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Abstract

Recommender systems (RSs) have been developing rapidly since they were introduced

in 1990s; and in practice, these systems have been applied in a variety of e-commerce

applications. Usually, RSs provide rating domains representing as finite sets and allow

users (customers) to evaluate items (products or services) with hard ratings which are

known as single values in the sets. However, user preferences are subjective and quali-

tative; therefore, in some scenarios, representing user preferences as hard ratings is not

suitable. Moreover, most previous studies on recommendation techniques have unfortu-

nately neglected the important issue of imperfect information which may be present due

to ambiguities and uncertainties in user ratings.

More recently, using soft ratings represented as subsets of a rating domain is consid-

ered to be a strategy to model not only subjective and qualitative information but also

imperfect information about user preferences in RSs. According to the literature, RSs of-

fering soft ratings are developed based on Dempster-Shafer theory (DST) which is known

as one of the most general theories for modeling imperfect information. Furthermore,

these days, communication and collaboration in social networks have become more and

more convenient and frequent, and social relations in social networks can naturally influ-

ence individual behaviors as well as decisions including the ones on buying items. In this

research, we have developed two novel collaborative filtering RSs based on DST, which

exploit community context information and community preferences extracted from social

networks for improving accuracy of recommendations. One of the developed systems is

able to deal with the sparsity problem, and the other can overcome both the sparsity and

cold-start problems.

In RSs based on DST, context information, community context information or com-

munity preference is employed for predicting unprovided ratings, and then both predicted

and provided ratings are used for computing user-user similarities. As predicted ratings

are not one hundred percent accurate, while the provided ratings are actually evaluated
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by users, in this research, we have proposed a new method for computing user-user simi-

larities, in which provided ratings are considered more significant than predicted ones.

As observed, Dempster’s rule is currently applied for combining information about

user preferences in RSs based on DST. However, when using this method, the combined

results usually contain many focal elements with very low probabilities and a few focal

elements with high probabilities. The focal elements with very low probabilities can lead

to unsatisfactory results in case of combining highly conflicting mass functions. Therefore,

in this research, we have developed two new combination methods, called 2-probabilities

focused combination and noise-averse combination, which are capable of reducing the

focal elements with very low probabilities. Moreover, Dempster’s rule does not allow to

combine totally conflicting mass functions which are common in RSs based on DST due to

the diversity of users; thus, we have also developed two new mixed combination methods

that support combining totally conflicting mass functions. In fact, the new combination

methods developed in this research can be employed as useful tools for fusing information

about user preferences from different sources in RSs based on DST.

Keywords: Recommender System, Dempster-Shafer Theory, Social Network, Informa-

tion Fusion, Uncertain Reasoning.
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Chapter 1

Introduction

As we have seen, on the one hand, in doing online business, online providers make ef-

forts to suggest suitable items to online users in order to increase sales growth; on the

other hand, while doing shopping on the Internet, online users want to not only share

their opinions with one another but also be recommended items related to what they are

looking for. Consequently, RSs [1, 2, 3, 4] have been developed to satisfy both online sup-

pliers and online users. Commonly, RSs collect information about user preferences from

multiple sources, estimate user preferences on unseen items, and then generate suitable

recommendations to each user mainly based on estimated data. Logically, quality of rec-

ommendations depends on the way to model user preferences and accuracy of estimations.

According to the literature, most RSs provide rating domains represented as finite sets

and allow users to express their preferences on items by hard ratings. Regarding online

providers’ point of view, a challenge of RSs is how to generate a short list of suitable

items to each specific user among a huge number of potential items, whereas information

about user preferences is commonly imperfect (uncertain, imprecise or incomplete). Even

though a user has evaluated an item by using a hard rating, this rating might contain

imperfect information. For example, let us consider a RS with a rating domain containing

5 elements and assume that a user has rated an item with a hard rating as 3; in this case,

we cannot know exactly what this user thought about the item because the user probably

wanted to evaluate the item as {2, 3}, {3, 4} or {2, 3, 4}, but the system only allows to

select one value, consequently, this user chose 3.
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Additionally, different users can have different opinions about the same item, and

naturally user preferences are qualitative [5]; therefore, each hard rating might encode

subjective and qualitative information inside. According to previous studies, using soft

ratings [6] is known not only as a strategy for modeling subjective, qualitative, and im-

perfect information but also as a more realistic and flexible way for representing user

preferences. Soft ratings are represented as subsets of a rating domain; for instance, with

a rating domain Θ = {1, 2, 3, 4, 5}, a user can rate an item as {2, 3} with a probability of

1.0, or {2} with a probability of 0.3 and {3} with a probability of 0.7.

More recently, RSs [6] based on DST [7, 8] have been studied and developed. Com-

paring to traditional RSs [1, 2, 3, 4] which represent user preferences as hard ratings,

RSs [6, 9, 10] based on DST have some advantages such as (1) offering soft ratings, (2)

modeling subjective, qualitative, and imperfect information about user preferences, and

(3) supporting combining information about user preferences from different sources.

In this research, we aim at making an intensive study on RSs based on DST. The

objectives of the research are as follows

• Exploiting information about user preferences from social networks to improve qual-

ity of recommendations in RSs based on DST

• Addressing the problems of fusing information about user preferences in RSs based

on DST

The main contributions of this research are as below

• Integrating RSs based on DST with social networks. As observed, these days social

networks are growing very fast as well as increasingly playing a significant role on

the Internet; and these networks contain huge amount of information that could

be useful for RSs. Practically, in a social network, users are naturally formed into

communities whose members interact frequently with one another [11]; and, for

example, when consulting for advice to buy a new item, people tend to believe

in the recommendations from their relatives and friends in the same community

rather than recommendations from anonymous users. Therefore, we have proposed

to integrate RSs based on DST with social networks and use community context

information about user preferences and community preferences extracted from the

2



networks for reducing the imperfection of information about user preferences and

dealing with the sparsity and cold-start problems.

• Developing a new method for computing user-user similarities. Commonly, RSs

based on DST predict unprovided ratings, and then employ both predicted and pro-

vided ratings for computing user-user similarities. However, these systems consider

the role of predicted ratings to be the same as that of provided ratings. Obviously,

predicted ratings are not one hundred percent accurate because of being generated

by computer programs, while provided ratings are actually evaluated by users; so it

is unreasonable to treat these two kinds of ratings equally. Thus, we have developed

a new method for computing user-user similarities, which considers the significant

role of provided ratings to be higher than that of predicted ones.

• Developing two new reducing combination methods. In RSs based on DST, user pref-

erences are represented as mass functions and tasks of combining mass functions are

executed frequently [12]. In addition, Dempster’s rule [7] is currently employed to

combine mass functions in these systems. However, when using this combination

method, the combined results usually contain a large number of focal elements with

very low probabilities and a few focal elements with high probabilities. Moreover, the

focal elements with very low probabilities can lead to unsatisfactory results [13, 14]

in case of combining highly conflicting mass functions. Thus, we have developed two

new combination methods that are capable of eliminating focal elements with very

low probabilities. The first new method, called 2-probabilities focused combination,

concentrates on significant focal elements defined as the ones with probabilities in

top two highest probabilities and ignores the other focal elements; and this method

helps to (1) handle combining highly conflicting mass functions, (2) improve time

of computation, and (3) overcome the weakness of an alternative method known as

2-points focused combination [15, 16, 17]. Regarding the second new method, called

noise-averse combination, focal elements whose probabilities are less than or equal

to an infinitesimal threshold are considered as noise that may be caused by the pro-

cess of fusing information, and then eliminated. Noise averse combination method

also has the advantages which 2-probabilities focused combination method possesses

and especially can prevent loss of valuable information about user preferences.
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• Developing two new mixed rules of combination. As mentioned above, Dempster’s

rule of combination is currently used for combing mass functions in RSs based on

DST. However, this combination method does not allow to combine totally con-

flicting mass functions; thus, in the existing RSs based on DST, totally conflicting

mass functions need to be eliminated in the data sets. In general, some people can

express their preferences on an item with rating values that are completely different

from the others. In other words, totally conflicting mass functions are common in

the systems because of the diversity of users. In this research, we have also devel-

oped two new mixed rules of combination, which are capable of handling totally

conflicting mass functions when combining information about user preferences in

RSs based on DST.

• Enriching knowledge science. It can be seen that user preference is one kind of tacit

knowledge. In this research, we have developed a new methodology for modeling

this kind of knowledge, discovering and extracting the knowledge which is hidden

in the process of human communication, gathering and synthesizing the knowledge

from different sources, handling conflicting knowledge, justifying the knowledge, and

creating new knowledge.

In the experiments, the prototype applications that implement the proposed RSs based

on DST as well the proposed combination methods were built by using SQL Server 2012

Standard Edition and Visual Basic 6.0; and all experiments were conducted in the envi-

ronment as follows

• Processor: Intel (R) Core (TM) i5-43000U CPU @1.90 GHz 2.50 GHz

• System type: 64-bit operating system, x64-based processor

• Installed memory (RAM): 4.00 GB

• Operation system: Windows 8.1 Enterprise

This dissertation contains 8 chapters as illustrated Figure 1.1. The content of each

chapter is briefly described as follows

• Chapter 1 introduces the context of research, research objectives, and contributions.
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Chapter 1

Introduction

Chapter 2

Background and literature reivew

Integrating RSs based on DST with social networks

Chapter 3

Using community context information

Chapter 4

Using community preferences

Reducing focal elements with very low probabilities

Chapter 5

Two-probabilities focused combination

Chapter 6

Noise-averse combination

Dealing with totally conflicting mass functions

Chapter 7

Two new mixed rules of combination

Chapter 8

Conclusion and future work

Figure 1.1: The content of the dissertation

• Chapter 2 provides background information about DST, and presents the literature

review of RSs.

• Chapter 3 describes the novel RS based on DST, which exploits community context

information extracted from the social network consisting of all users for reducing

the imperfection of information about user preferences as well as overcoming the

sparsity problem. Also, this chapter presents the new method to compute user-user

similarities (PRICAI 2014 ; ECSQARU 2015 ; IEEE Transactions on Systems, Man,

and Cybernetics: Systems).
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• Chapter 4 presents the novel RS based on DST, which is capable of exploiting

community preferences extracted from the social network for dealing with both the

sparsity and cold-start problems (CSoNet 2016 ; Knowledge-Based Systems).

• Chapter 5 describes the new combination method called 2-probabilities focused com-

bination (IUKM 2015 ; International Journal of Approximate Reasoning).

• Chapter 6 presents the new combination method called noise-averse combination

(ICTAI 2016(1)).

• Chapter 7 shows two new mixed rules of combination (ICTAI 2016(2)).

• Chapter 8 provides a summary of the dissertation as well as suggestions for the

future research.

6



Chapter 2

Background and Literature Review

In this chapter, we first provide basic information about DST and its applications includ-

ing RSs. Then, we present the literature review of RSs.

2.1 Dempster-Shafer Theory

Over the years, management of imperfect information has become increasingly important;

and a number of mathematical theories have been developed for representing inperfect

information, such as probability theory [18], possibility theory [19], rough set theory

[20], DST [7, 8]. Most these approaches are capable of representing a specific aspect of

imperfect information [21]. Importantly, among these, DST is considered to be the most

general one [6, 22], as depicted in Table 2.1 (in this table, ri,k is a rating of a user on an

item with a rating domain Θ = {θ1, θ2, ..., θL}).

DST, so-called evidence theory or theory of belief functions, is capable of modeling

uncertain, imprecise, and incomplete information. Also, DST provides a powerful tool

to combine information from multiple sources and arrive at a degree of belief, which is

represented by a mathematical object called belief function that takes into account all

the available information. So far, this theory has grown into an active research topic [23].

Particularly, DST has been applied in a large number of applications such as multiple

attribute decision making [24, 25, 26], RSs [6, 9, 10], image processing [27, 28], computer

vision and robotics [29, 30], filtering and tracking [31, 32, 33], classification [34, 35, 36, 37],

clustering [38, 39, 40, 41], decision analysis [42, 43, 44], and so on.
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Table 2.1: Modeling with imperfect information

Type of Remarks

Imperfection Proposition ri,k

Hard θi 1.0

Probabilistic θ1 0.1 Singleton focal elements only

θ2 0.7

θ3 0.2

Possibilistic θ1 0.7 Consonant focal elements only

(θ1, θ3) 0.2

Θ 0.1

Ambiguity (θ1, θ2) 1.0 Inability to discern among ratings

Vacuous Θ 1.0 Missing/unknown entry

DST
∑
A⊆Θ

ri,k(A) = 1.0 The most general

In the context of this theory, a problem domain is represented by a finite set Θ =

{θ1, θ2, ..., θL} of mutually exclusive and exhaustive hypotheses, called the frame of dis-

cernment (FoD) [8]. A function m : 2Θ → [0, 1] is called a mass function or basic proba-

bility assignment (BPA) if it satisfies m(∅) = 0 and
∑
A⊆Θ

m(A) = 1, where 2Θ is the power

set of Θ. Mass function m is vacuous if m(Θ) = 1 and ∀A 6= Θ,m(A) = 0. A subset

A ⊆ Θ with m(A) > 0 is called a focal element of mass function m. Let us consider

the example, adapted from [45]. Mr. Jones has been murdered; and we know that there

are three suspects, Peter, Paul and Mary. The evidence that we have initially is that

Mrs. Jones saw the murder going away, but she is short-signed and she only saw that

it was a man. We also know that Mrs. Jones is drunk 20% of the time. When mod-

eling the information in this situation by using DST, we have a set of hypotheses Θ =

{Peter, Paul,Mary} and a mass function m : 2Θ → [0, 1], which represents the evidence,

with 2Θ = {∅, {Peter}, {Paul}, {Mary}, {Peter, Paul}, {Peter,Mary}, {Paul,Mary},

{Peter, Paul,Mary}}. Since we know that 80% the murder is a man and we know nothing
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about the remaining probability, we have

m({Peter, Paul}) = 0.8;

m({Peter, Paul,Mary}) = 0.2.
(2.1)

As we can see, the focal set of mass function m contains two focal elements {Peter, Paul}

and {Peter, Paul,Mary}.

For RSs, DST helps to model user preferences with uncertain, imprecise, and incom-

plete information. For example, in a RS with a rating domain Θ = {1, 2, 3, 4, 5}, when

asking a user to evaluate an item, this user can have some possible answers as below

1. “I will rate it as 4 and I am sure about it”; (The rating is precise and certain).

2. “I will rate it as 4 and I am 90% sure about it”; (The rating is precise and uncertain).

3. “I will rate it at least 4 and I am sure about it”; (The rating is imprecise and

certain).

4. “I will rate it at least 4 and I am 90% sure about it”; (The rating is imprecise and

uncertain).

5. “I will not rate it now”; (The rating is incomplete).

In this scenario, these answers can be modeled by mass functions, respectively, as follows

1. r1({4}) = 1.0.

2. r2({4}) = 0.9; r2(Θ) = 0.1.

3. r3({4, 5}) = 1.0.

4. r4({4, 5}) = 0.9; r4(Θ) = 0.1.

5. r5(Θ) = 1.0.

Furthermore, two useful operations that play a vital role in this theory are Dempster’s

rule of combination and discounting [8]. Let us consider two mass functions m1 and m2
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defined on the same frame Θ. Dempster’s rule of combination, denoted by m = m1⊕m2,

can be used for combining these two mass functions as below

m(∅) = 0;

m(A) =
1

1−K
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C);

where K =
∑

B,C⊆Θ,B∩C=∅

m1(B)m2(C) 6= 0.

(2.2)

Here, K represents basic probability mass associated with conflict. As remarked in the

literature, Dempster’s rule serves as a powerful tool for fusing information from different

sources [46]. The discounting operation is used when the information source providing

mass function m has probability δ of reliability. In this case, one may adopt 1− δ ∈ [0, 1]

as one’s discount rate, resulting in a new mass function mδ defined by

mδ(A) =

δm(A), for A ⊂ Θ;

δm(Θ) + (1− δ), for A = Θ.

(2.3)

Besides, regarding Smets’ two-level view in the so-called transferable belief model [47, 48],

when a decision needs to be made, the mass function m encoded the available evidence

should be transformed into a probability distribution called pignistic probability function

Bp : Θ→ [0, 1] defined by

Bp(θi) =
∑

A⊆Θ|θi∈A

m(A)

| A |
(2.4)

In RSs, Dempster’s rule of combination and discounting operations are useful for combin-

ing information about user preferences from different sources, and pignistic probability

function can be used when the systems need to make a decision to provide a suitable

recommendation to a user.

2.2 Literature Review

2.2.1 Overview of Recommendation Techniques

The roots of RSs can be traced back to the extensive work in cognitive science, approx-

imation theories, information retrieval, forecasting theories; in addition, RS also have

10



links to management science and to consumer choice modeling in marketing [1]. Since the

mid-1990s, RSs has emerged as an independent research area [49, 50].

Specially, during the last two decades, developing RSs has become an active research

topic [1]. RSs are known as software tools and techniques usually offering personalize

recommendations to users [51, 52]. The recommendations are commonly represented as

ranked lists of items; and in performing this ranking, RSs try to colect information about

user preferences and estimate user preferences on unseen items [3]. For increasing accuracy

of estimating user preferences on unseen items, RSs commonly try to gather information

about user preferences from different sources. Naturally, the more sources of information

about user preferences are available, the more effective estimations will be. As we can

observe, there are two main methods to collect information about user preferences in

RSs. The first is to obtain the information explicitly from user profiles [53, 54] or ratings

[55, 56]. The second is to gather the information implicitly by monitoring user behaviors

[57, 58, 59], or by extracting information from context [60, 61, 62] or social networks

[63, 64].

For online users, RSs help to deal with information overload by providing a list of

suitable items to each specific user [1]. For online providers, these systems are employed

as an effective tool for increasing sale growths, selling more diverse items, improving the

user satisfaction and fidelity, and better understanding what a user wants [3].

According to the literature, recommendation techniques can be classified into three

categories [1, 65] as bellow

• Collaborative filtering recommendations: The recommendations are provided based

on the assumption that if users shared the same interests in the past, they will also

have similar tastes in the future.

• Content-based recommendations: Each user will be recommended items which are

similar to the items this user preferred in the past.

• Hybrid approaches: A hybrid method is a combination of content-based and collab-

orative filtering methods for the purpose of overcoming certain limitations.

The classification of recommendation techniques is illustrated in illustrated in Figure 2.1.
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Recommendation techniques

Content-basedCollaborative filtering
(Widely implemented)

Hybrid

Sparsity New Items
Cold-start

New Users Limited Content Analysis Overspecialization

Figure 2.1: Classification of recommendation techniques

As remarked in the previous studies, among these three categories, collaborative fil-

tering is considered to be the most popular and widely implemented approach [3, 66]. To

generate suitable recommendations to an active user, collaborative filtering RSs try to

find other users who share the same rating patterns with this user, and use their existing

ratings for predicting preferences of this user on unseen items, after that generate suit-

able recommendations based on the predicted preferences; in other words, these systems

are capable of understanding and exploiting relationships between items that are linked

implicitly through the users who have rated them [67]. However, collaborative filtering

RSs suffer from two fundamental problems [1] which are briefly described as below

• Number of items in the RSs can be very large; but, each user only rates a small

subset of them. As a consequence, rating matrixes are usually very sparse. This issue

is known as the sparisty problem which is supposed to majorly affect performances

of recommendations [68].

• When a new item has just added, the RSs do not have information about people’s

preferences on it; in such a case, it is difficult to recommend this item to users.

Furthermore, when a new user has just joined in, the RSs have no knowledge about

preference of this user; so, it is also difficult to generate suitable recommendations

for him/her. Both new users and new items cause the cold-start problem.

So far, many researchers focus on solving the sparsity and cold-start problems in col-

laborative filtering RSs, and various methods have been developed for overcoming these

problems. A popular method is known as matrix factorization [69, 70, 71] that identifys

latent factors and employs these factors for predicting all unprovided ratings. Addition-

ally, in [72], the authors proposed to combine collaborative filtering with content-based

12



approaches for tackling these problems. Besides, some authors suggested using additional

information from other sources, such as demographic information [73, 74, 75] or implicit

preferences inferred from users’ actions that relate to specific item [67]. In addition, as

observed, social networks have become an effective communication medium which can

connect a larger number of people; and integrating with social networks has emerged as

an active research topic [76, 77]. Actually, social networks contain a large amount of

information that can be useful for dealing with the sparsity and cold-start problems in

collaborative filtering RSs. Up to now, a variety of collaborative filtering RSs have been

developed based on social networks [76, 78, 79]; and most of these systems employ social

trust [80, 81, 82] for overcoming the sparsity and cold-start problems.

The content-based recommendations have their roots in information retrieval and in-

formation filtering search; and content-based RSs suggest items whose features are similar

to the features of items which the user liked in the past. The basic process performed by a

content-based RS consists in matching up the features of a user profiles with the features

of a content item [3]. In fact, content-based RSs have several limitations [1], as follows

• The new users who have rated very few or no items would not be able to get accurate

recommendations. This issue is also known as new user problem.

• In content-based RSs, the features need to be explicitly associated with items. Thus,

to have a sufficient set of features, the content must either be in a form that can be

parsed automatically by computer programs or features should be assigned to items

manually. It can be seen that content-based RSs work well in extracting features

form text documents, and these systems have an inherent problem with automatics

feature extraction from other domains such as images, audio and video streams.

This drawback in content-based RSs is called limited content analysis.

• In content-based RSs, a user is usually limited to being recommend items that are

similar to those already rated. This issue is known as the overspecialization problem.

As mentioned earlier, most RSs provide rating domains represented as finite sets and

allow users to express their preferences on items by hard ratings and each hard rating

can encode qualitative, subjective and imperfect information about user preferences. In

addition, in some cases, hard ratings are not suitable, as illustrated in Example 1.

13



Rating matrix

Predict unprovided ratings

Context information

Compute user-user similarities

Select neighborhoods for active users

Estimate ratings for active users

Generate recommendations for active users

Figure 2.2: The process of recommendations in CoFiDS

RSs [6] based on DST [7, 8] have been studied and developed. Comparing to tra-

ditional RSs [1, 2, 3, 4] which represent user preferences as hard ratings, RSs [6, 9, 10]

based on DST have some advantages such as (1) offering soft ratings, (2) modeling sub-

jective, qualitative, and imperfect information about user preferences, and (3) supporting

combining information about user preferences from different sources.

Example 1 Let us consider a RS offering hard ratings with a rating domain

containing 5 elements Θ = {1, 2, 3, 4, 5} and assume that a user has rated two

items I1 and I2 as 3 and 4 respectively. Now, this user would like to rate an

item I2 with a rating value representing that item I2 is better than item I1

but worse than item I3. However, the user can only rate item I2 with a rating

value in the rating domain, such as 3 or 4; that means hard ratings are not

suitable in this scenario.

2.2.2 RSs Based on DST

More resently, RSs [6] based on DST have been studied and developed. Comparing to

traditional collaborative filtering RSs [1, 3, 83], the systems based on DST have serveral

advantages [84] such as offering soft ratings, modeling user preferences with not only

uncertain, imprecise, and incomplete but also subjective and qualitative information, and

combining information about user preferences from different sources easily.

Particularly, it is seen that CoFiDS [6] could be considered as a pioneer RS that offers

soft ratings. In addition, this system overcomes the sparsity problem by exploiting con-
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text information for generating unprovided ratings and deals with imperfect information

by using DST for modeling ratings. The general process of recommendations in CoFiDS

consists of 5 steps as illustrated in Figure 2.2. First, unprovided ratings are predicted by

using the context information. Then, user-user similarities are calculated by employing

both provided and predicted ratings. Next, for an active user, a neighborhood set accord-

ing to each unrated item is selected, and the rating of this user on the item is estimated

based on the ratings of his/her neighbors. Finally, the estimated ratings on all unrated

items are ranked, and suitable items are selected to recommend to the active user.

However, CoFiDS considers predicted ratings to normally be the same as provided

ones, and this system is not able to predict all unprovided ratings as it is expected.

Moreover, in CoFiDS, the cold-start problem has not been solved and the other sources

of information about user preferences, such as social networks, has not been exploited.

2.2.3 Evaluation Criteria

For evaluating RSs offering hard ratings and hard decisions, MAE (Mean Absolute Error)

is widely used for performance evaluation. MAE measures the different between the true

ratings and the corresponding estimated ratings as follows

MAE(θj) =
1

| Dj |
∑

(i,k)∈Dj

| ri,k − r̂i,k | (2.5)

where Dj is the testing set identifying the user-item pairs whose true rating is ri,k = θj ∈

Θ, r̂i,k ∈ Θ are the true rating and predicted rating of user Ui on item Ik respectively.

In addition, when considering tasks of recommendation as calssfication tasks, triditional

evaluations such as Precision, Recall and Fβ [85] can be used.

Furthermore, most recently, researchers have developed some new assessment methods

which are capable of measuring performances of RSs that offers soft ratings, such as

DS-Precision, DS-Recall [22] and DS-MAE, DS-Fβ [6]. Let us denote that the finally

estimated rating (which is used for generating recommendation) of user Ui on item Ik is

r̂i,k; and the pignistic probability distributions according to r̂i,k is represented as B̂pi,k.

15



The new assessment methods can be described as below

DS-MAE(θj) =
1

| Dj |
×

∑
(i,k)∈Dj ;θl∈Θ

B̂pi,k(θl)× | θj − θl |;

DS-Precision(θj) =
TP (θj)

TP (θj) + FP (θj)
;

DS-Recall(θj) =
TP (θj)

TP (θj) + FN(θj)
;

DS-Fβ(θj) =
(β2 + 1)×DS-Precision(θj)×DS-Recall(θj)

β2 ×DS-Precision(θj) +DS-Recall(θj)
;

(2.6)

with Dj is the testing set identifying the user-item pairs whose true rating is θj ∈ Θ,

β ≥ 1, and

TP (θj) =
∑

(i,k)∈Dj

B̂pi,k(θj);

FP (θj) =
∑

(i,k)∈Dl;j 6=l

B̂pi,k(θj);

FN(θj) =
∑

(i,k)∈Dj

B̂pi,k(θl).

(2.7)
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Chapter 3

Using Community Context

Information

3.1 Introduction

As mentioned previously, these days social networks are growing very fast and play a vital

role on the Internet. Social networks are also known as an effective communication and

collaboration medium that can connect many people. For RSs, these networks provide

additional information about users and their friends, and this information can be used

for not only better understanding user behaviors and ratings but also interpreting user

preferences more precisely [77]. Moreover, in a social network, people are formed into

some communities; and in each of which, members usually interact with one another very

often [11] and share information about a variety of topics as well as products or services.

Under such an observation, in this chapter, we develop a novel collaborative filtering

RS based on DST, which exploits community context information extracted from the

social network containing all users for improving quality of recommendations. In this

system, the extracted information is employed for predicting unprovided ratings, and

then both predicted and provided ratings are used for computing user-user similarities.

As predicted ratings are not one hundred percent accurate, while the provided ratings

are actually evaluated by users, we also develop a new method for computing user-user

similarities, in which provided ratings are considered more significant than predicted ones.
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3.2 Data Modeling

Let U = {U1, U2, ..., UM} be the set of all users and let I = {I1, I2, ..., IN} be the set of

all items. Note that in real-world applications, the number of elements in U and I can be

very large. Each rating of user Ui on item Ik is defined as a mass function ri,k : 2Θ → [0, 1]

spanning over a rating domain Θ = {θ1, θ2, ..., θL}, a rank-order set of L preference labels,

where θi < θj whenever i < j. Additionally, Dempster’s rule of combination is applied

for combining mass functions in the system.

Each unprovided rating can be modeled by vacuous and considered as manifest lack

of evidence. However, it can be seen that vacuous representation is high uncertain. Thus,

community context information is employed for predicting unprovided ratings to reduce

the uncertainty introduced by vacuous. Context information that might influence user

preferences on items can be considered as a set of concepts for grouping users or items [6].

For example, in a movie RS, characteristics such as user gender, user occupation, movie

genre are to be regarded as concepts. Each concept can consist of a number of groups,

e.g. the movie genre might contain some groups such as drama, comedy, action, mystery,

horror, animation. Supposing that, in the system, there are P characteristics which can

be considered as concepts, and each concept Cp with 1 ≤ p ≤ P consists of a maximum

of Qp groups. Formally, context information is denoted by C and represented as follows

C = {C1, C2, ..., CP};

Cp = {Gp,1, Gp,2, ..., Gp,Qp}, where p = 1, P .
(3.1)

As illustrated in Figure 3.1, each user Ui can be interested in several groups and each

item Ik may belong to some groups from the same concept. For a given concept Cp, the

groups in which user Ui is interested are identified by mapping functions fp as below

fp : U→ 2Cp

Ui 7→ fp(Ui) ⊆ Cp;
(3.2)

and the groups to which item Ik belongs are determined by mapping function gp as follows

gp : I→ 2Cp

Ik 7→ gp(Ik) ⊆ Cp,
(3.3)

where 2Cp is the power set of Cp [6].
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Figure 3.1: The context information influencing on users and items

Social network

Detect overlapping communities

...Community C1 Community CV

Predict unprovided ratings Predict unprovided ratings

Compute user-user similarities

Select neighborhoods for active users

Estimate ratings for active users

Compute user-user similarities

Select neighborhoods for active users

Estimate ratings for active users

Generate recommendations for active users

...

Figure 3.2: The process of recommendations in the proposed system

Basically, a social network can be considered to be a social structure made of nodes

regarding individuals or organizations, and edges that connect nodes in various relations

such as friendship or kinship [11]; and the social structure is usually represented by a

graphical graph or an adjacency matrix. In addition, in the social network, an individual

can simultaneously belong to a variety of communities. Here, we assume that all users

join in a social network represented as an undirected graph G = (U,F), with U is the

set of all users (nodes) and F is the set of all friend relationships (edges).

Generally, the process of recommendations in the proposed system is illustrated in Fig-

ure 3.2. As can be seen in this figure, first, overlapping communities in the social network

are detected; and assuming that after detecting, we achieve V overlapping communities.

Second, tasks such as predicting unprovided ratings, computing user-user similarities,
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selecting neighborhoods and estimating ratings for active users on unseen items are per-

formed in each community independently. Finally, the estimated ratings of each active

user in the communities to which he/she belongs are combined, and then suitable recom-

mendations to this user are generated mainly based on the combined results. In the rest

of this section, details of tasks in this process will be presented.

3.3 Detecting Overlapping Communities

Over the years, numerous techniques have been developed for detecting communities in

social networks, such as removal of high-betweenness [86, 87, 88], mimicking human pair

wise communication [89], modularity optimization [90, 91], detection of dense sub-graphs

[92]. In this research, we adopt Speaker-Listener Label Propagation (SLPA) algorithm

[89] for naturally uncovering communities in the social network. The reason is that this

algorithm is able to not only effectively detect overlapping communities in a large-scale

network with the time complexity scaling linearly with the number of edges, but also

avoid producing a number of small size communities.

SLPA algorithm is an extension of Label Propagation Algorithm (LPA) [93]. Regard-

ing LPA algorithm, each node holds only a single label, but in SLPA algorithm, each

node has a memory of the labels received in the past and takes its content to account

to make the current decision. Additionally, SLPA algorithm simulates human pairwise

communication, and in each communication step, one node is a speaker, and the other is

a listener. Briefly, SLPA algorithm consists of three stages represented as follows

1. First, the memory of each node is initialized with a unique label.

2. Next, the following steps are repeated until the maximum iteration T is reached:

• One node is selected as a listener.

• Each neighbor of the listener randomly selects a label with probability propor-

tional to the occurrence frequency of this label in its memory and sends the

selected label to the listener.

• The listener adds the most popular label received to its memory.

3. Finally, overlapping communities are identified based on the labels in the memories.
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Note that some communities detected by using SLPA algorithm might consist of a

large or a small number of users. Therefore, we continue applying this algorithm to

separate the large communities into several smaller communities (if possible); and, for

each member in the small communities, we assign it to the community containing most of

its neighbors. Formally, let Min and Max be the minimum and maximum number users

in a community which we expect to achieve. The communities consisting of more than

Max or less than Min users are considered as large or small communities, respectively.

The values of Min and Max can be selected according to each specific application.

We assume that, after executing SLPA algorithm, we get V overlapping communities,

denoted by CCC = {C1, C2, ..., CV }. Next, as mentioned earlier, predicting unprovided ratings,

computing user-user similarities, selecting neighborhoods and estimate ratings will be

performed in each overlapping community independently.

3.4 Performing on Communities

Note that the tasks described in this subsection are performed in a community Cv ∈ CCC.

3.4.1 Generating Unprovided Ratings

The ratings of all users in the community is denoted by a rating matrix R = {ri,k} with

Ui ∈ Cv and k = 1, N . The unprovided ratings in the matrix are generated mainly based

on the method suggested in [6]. Let us consider that the items being rated by user Ui

and the users who have rated item Ik are denoted by RIi = {Il ∈ I|ri,l 6= vacuous} and

RUk = {Ul ∈ U|rl,k 6= vacuous}, respectively.

For a given concept Cp with p = 1, P , the preference of all users on item Ik regarding

each group Gp,q ∈ gp(Ik), with 1 ≤ q ≤ Qp, defined by Gmk,p,q : 2Θ → [0, 1], is calculated

by combining provided ratings of users who are interested in group Gp,q and have rated

item Ik, as below

Gmk,p,q =
⊕

{i|Ik∈RIi,Gp,q∈fp(Ui),Gp,q∈gp(Ik)}

ri,k. (3.4)

Supposing that user Ui has not rated item Ik, the process for predicting unprovided

rating ri,k regarding the preference of user Ui on item Ik is performed as follows
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• First, since user Ui belongs to community Cv, Ui’s preference on item Ik is influenced

by the preferences of members in this community. Additionally, it would appear that

users who are interested in the same group of a given concept can be expected to

possess similar preferences regarding this group. Under such an observation, for

each concept Cp, if user Ui is interested in a group Gp,q ∈ Cp then Ui’s preference

on item Ik regarding group Gp,p, denoted by Gmi,k,p,q : 2Θ → [0, 1], can be assigned

the preference of users regarding group Gp,q in community Cv on item Ik regarding

group Gp,q, as follows

Gmi,k,p,q =G mk,p,q. (3.5)

• Second, Ui’s preference on item Ik regarding concept Cp, denoted by Cmi,k,p : 2Θ →

[0, 1], is computed by combining preferences of user Ui on item Ik regarding group

Gp,q with 1 ≤ q ≤ Qp, as below

Cmi,k,p =
⊕

{q|Gp,q∈fp(Ui),Gp,q∈gp(Ik)}

Gmi,k,p,q. (3.6)

• Next, Ui’s preference on item Ik regarding context C, denoted by Cmi,k : 2Θ → [0, 1],

is achieved by combining all preferences of user Ui on item Ik regarding group Cp

with 1 ≤ p ≤ P , as follows

Cmi,k =
⊕
p=1,P

Cmi,k,p. (3.7)

• Finally, if context information C does not affect user Ui on item Ik, fp(Ui)∩gp(Ik) =

∅ with 1 ≤ p ≤ P , unprovided rating ri,k is assigned the result obtained by combining

all existing ratings on item Ik as shown below

ri,k =
⊕

{j|Uj∈RUk}

mj,k. (3.8)

Otherwise, unprovided rating ri,k is assigned the Ui’s preference regarding context

C, as follows

ri,k = Cmi,k. (3.9)

A demonstration of generating unprovided ratings is depicted in Example 2.
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Table 3.1: Rating matrix

Ik

U1 4 for 90%

U2 At least 3

U3

U4 5 for 80%

U5

Table 3.2: Ratings are represented as mass functions

Ik

U1 r1,k({4}) = 0.9; r1,k(Θ) = 0.1

U2 r2,k({3, 4, 5}) = 1

U3

U4 r3,k({5}) = 0.8; r3,k(Θ) = 0.2

U5

Example 2 Let us consider a simple movie RS with a rating domain

Θ = {1, 2, 3, 4, 5}. Assuming that the context information in this system

is represented as bellow

C = {C1} = {Genre};

C1 = {G1,1, G1,2, G1,3, G1,4} = {Drama,Classics,Western,Horror}.
(3.10)

In this RS, let us consider an item Ik and a community containing four users

U1, U2, U3, U4 and U5. Supposing that the genres to which Ik belongs are as

follows

g1(Ik) = {G1,3, G1,4} = {Western,Horror}; (3.11)

and the genres in which each user is interested are as below

f1(U1) = {G1,1, G1,3} = {Drama,Western};

f1(U2) = {G1,2, G1,4} = {Classics,Horror};

f1(U3) = {G1,1, G1,2, G1,4} = {Drama,Classics,Horror};

f1(U4) = {G1,2, G1,3, G1,4} = {Classics,Western,Horror};

f1(U5) = {G1,1, G1,2} = {Drama,Classics}.

(3.12)

Additionally, assuming that the flexible ratings on item Ik are shown in Table

3.1. In the system, these ratings are represented as mass functions as illus-

trated in Table 3.2. It is seen that item Ik belongs to genre Western, and

two users U1 and U4 who are also interested in genre Western have rated this

item; therefore, the ratings of users U1 and U4 are considered as pieces of the
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preference of users in the community on item Ik regarding genre Western.

As a result, the preference of users on item Ik regarding genre Western is

obtained by combining all related pieces (using Equation (3.4)) as below

Gmk,1,3 = r1,k ⊕ r4,k. (3.13)

After computing, we have

Gmk,1,3({4}) ≈ 0.643;

Gmk,1,3({5}) ≈ 0.286;

Gmk,1,3(Θ) ≈ 0.071.

(3.14)

Similarly, the preference of users on item Ik regarding genre Horror is com-

puted as follows

Gmk,1,4 = r2,k ⊕ r4,k; (3.15)

and after computing we have

Gmk,1,4({5}) = 0.8;

Gmk,1,4({3, 4, 5}) = 0.2.
(3.16)

As observed, two users U3 and U5 has not rated item Ik; thus, the unprovided

ratings of these users, r3,k and r5,k, need to be generated. The process to

generate r3,k is as follows

• As we can see, f1(U3) ∩ g1(Ik) = {Horror}. In addition, since user

U3 is a member in the community, the preference of user U3 on item

Ik regarding genre Horror is probably influenced by the preference of

users in the community on item Ik regarding genre Horror. Then, the

preference of user U3 on item Ik regarding genre Horror is calculated by

using Equation (3.5) as below

Gm3,k,1,4 = Gmk,1,4. (3.17)

• Then, the preference of user U3 on item Ik regarding concept C1, Genre,

is achieved by applying Equation (3.6) as follows

Cm3,k,1 = Gm3,k,1,4. (3.18)
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• Next, the preference of user U3 on item Ik regarding context C is obtained

by applying Equation (3.7) as below

Cm3,k = Gm3,k,1. (3.19)

• Finally, using Equation (3.9), the unprovided rating r3,k is achieved as

below

r3,k = Cm3,k. (3.20)

In other words, we have

r3,k({5}) = 0.8;

r3,k({3, 4, 5}) = 0.2.
(3.21)

As observed, the context information does on affect user U5 on item Ik because

f1(U5) ∩ g1(Ik) = ∅. Consequently, the unprovided rating r5,k is generated by

using Equation (3.8) as follows

r5,k = r1,k ⊕ r2,k ⊕ r4,k. (3.22)

After computing we get

r5,k({4}) ≈ 0.643;

r5,k({5}) ≈ 0.286;

r5,k({3, 4, 5}) ≈ 0.071.

(3.23)

3.4.2 Computing User-User Similarities

In the rating matrix R = {ri,k}, each entry ri,k represents the user Ui’s preference toward

a single item Ik. The user Ui’s preference toward all items as a whole can be represented

by the cross-product FoD Θ = Θ1 ×Θ2 × ...×ΘN , where Θi = Θ,∀i = 1, N [6, 22]. Let

us consider a focal element A ⊆ Θ of mass function ri,k; the cylindrical extension of this

focal element to the cross-product Θ is cylΘ(A) = [Θ1...Θi−1AΘi+1...ΘN ]. The mapping

Mi,k : 2Θ → [0, 1], where Mi,k(B) = ri,k(A) for B = cylΘ(A) and 0 otherwise, generates

a valid mass function defined on the FoD Θ [22]. The mass function Mi : 2Θ → [0, 1],

where Mi =
N⊕
k=1

Mi,k, is referred to as the user-BPA of user Ui in community Cv [6].
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Let us consider user Ui’s user-BPA Mi and mass functions ri,k with k = 1, N . The

pignistic probability of a singleton θi1 × ...× θiN ∈ Θ, is

Bpi (θi1 × ...× θiN ) =
N∏
k=1

Bpi,k(θik), (3.24)

where θik ∈ Θ, and Bpi and Bpi,k are user Ui’s pignistic probability distributions corre-

sponding to its user-BPA and user preference mass function, respectively [6].

So as to compute distances among users, we use the distance measure method intro-

duced in [94]. According to this method, the distance between two user-BPAs Mi and

Mj defined over the same cross-product Θ is D(Mi,Mj) = CD(Bpi, Bpj), where Bpi and

Bpj are the pignistic probability distributions corresponding to Mi and Mj, respectively,

and CD refers to the Chan and Darwiche distance measure [94] represented as below

CD(Bpi, Bpj)=lnmax
θi∈Θ

Bpj(θi)

Bpi(θi)
−lnmin

θi∈Θ

Bpj(θi)

Bpi(θi)
. (3.25)

The distance between the two user-BPAs Mi and Mj is

D(Mi,Mj) =
N∑
k=1

CD(Bpi,k, Bpj,k), (3.26)

where Bpi,k and Bpj,k refer to the pignistic probability distributions corresponding to

preference ratings of user Ui and Uj on item Ik, respectively [6].

According to equation (3.26), the role of each expression CD(Bpi,k, Bpj,k) is considered

to be the same for all items regardless of whether ratings of users Ui and Uj on them are

predicted or provided. Obviously, the expression based on provided ratings must be more

reliable than the one based on predicted ratings. Moreover, for each item Ik, it is easy to

recognize as follows

• In case neither user Ui nor user Uj has rated item Ik that means both ratings ri,k

and rj,k are predicted ones. Since Bpi,k and Bpj,k are derived from ratings ri,k and

rj,k respectively, the value of the expression CD(Bpi,k, Bpj,k) is not fully reliable in

this case.

• The value of the expression CD(Bpi,k, Bpj,k) is also not fully reliable if either user

Ui or user Uj has not rated item Ik.
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Table 3.3: The values of the reliability function µ(xi,k, xj,k)

xi,k xj,k µ(xi,k, xj,k)

0 0 1

0 1 1− w1

1 0 1− w1

1 1 1− 2× w1 − w2

• The value of the expression CD(Bpi,k, Bpj,k) is only fully reliable if both user Ui

and Uj have rated item Ik.

In order to improve the accuracy of measuring the distance between two users, we

need to consider the importance of provided ratings to be higher than that of predicted

ones. To achieve this goal, we propose a new method to compute the distance between

two user-BPAs Mi and Mj, as below

D̂(Mi,Mj) =
N∑
k=1

µ(xi,k, xj,k)× CD(Bpi,k, Bpj,k), (3.27)

where µ(xi,k, xj,k) ∈ [0, 1] is a reliability function referring to the trust of the evaluation

of both user Ui and user Uj on item Ik. ∀(i, k), xi,k ∈ {0, 1}; xi,k = 1 when Ui has rated

Ik, otherwise Ui has not.

Since µ(xi,k, xj,k) ∈ [0, 1], the distinguishing of provided and predicted ratings does not

destroy the elegance of the selected distance measure method [94]. When µ(xi,k, xi,k) < 1

indicates that the distance between user Ui and user Uj is shorter than it actually is; that

means user Ui has a higher opportunity for being a member in user Uj’s neighborhood

set, and vice versa.

In practice, the reliability function µ(xi,k, xj,k) can be selected according to each spe-

cific application. In the general case, we suggest a reliability function as below

µ(xi,k, xj,k) = 1− w1 × (xi,k + xj,k)− w2 × xi,k × xj,k, (3.28)

where w1 ≥ 0 and w2 ≥ 0 are the reliability coefficients representing the state when a

user has rated an item and two users together have rated an item, respectively. Because

of ∀(i, k), xi,k ∈ {0, 1}, the function µ(xi,k, xj,k) has to belong to one of four cases as
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Figure 3.3: The domains of w1 and w2

shown in Table 3.3. In addition, under the condition 0 ≤ µ(xi,k, xj,k) ≤ 1, the domains of

coefficients w1 and w2 must be in the parallel diagonal line shading area in Figure 3.3.

Consider a monotonically decreasing function ψ: [0,∞] → [0, 1] satisfying ψ(0) = 1

and ψ(∞) = 0. Then, with respect to ψ, si,j = ψ(D̂(Mi,k,Mj,k)) is referred to as the

user-user similarity between users Ui and Uj. To compute user-user similarities, we select

the monotonically decreasing function as follows

ψ(x) = e−γ×x, where γ ∈ (0,∞). (3.29)

Consequently, the user-user similarity matrix is generated as S = {si,j} with Ui, Uj ∈ Cv.

3.4.3 Selecting Neighborhoods

We adopt the method proposed in [95] for selecting neighborhoods for active users. This

method is effective because of the inclusion of two popular strategies known as K-nearest

neighbor and minimum similarity shareholding. Formally, in order to select neighborhood

set Ni,k for user Ui regarding item Ik, users who have rated item Ik and whose similarity

with user Ui is equal or greater than a threshold τ is extracted. Next, K users with

highest similarity with user Ui is selected from the extracted list.

3.4.4 Estimating Ratings

After obtaining neighborhood set Ni,k, the rating rj,k of each neighbor Uj ∈ Ni,k is

discounted by the user-user similarity si,j ∈ S between user Ui and Uj as follows

r
si,j
j,k (A) =

si,j × rj,k(A), for A ⊂ Θ;

si,j × rj,k(Θ) + (1− si,j), for A = Θ.

(3.30)
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The estimated rating for user Ui on unrated item Ik is represented as below

r̂i,k = ri,k ⊕ ri,k,

where ri,k =
⊕

{j|Uj∈Ni,k}

r
si,j
j,k .

(3.31)

3.5 Generating Recommendations

The suitable recommendations for an active user Ui are generated according to the number

of communities to which this user belongs. If user Ui is a member of only one community

Cv, the finally estimated rating of this user on item Ik is user Ui’s estimated rating of

user Ui on item Ik in community Cv. In case user Ui belongs to a variety of communities

simultaneously, the finally estimated rating of this user on item Ik is achieved by combining

the estimated ratings on item Ik in the communities to which user Ui belongs.

For a hard decision on a singleton θi ∈ Θ, the pignistic probability is applied, and

then the singleton having the highest probability is selected as the preference label. In

case a preference label (a singleton or a composite) is needed, the maximum belief with

nonoverlapping interval strategy [96] is applied; if such as preference label can not be

found, the decision is made according to the favor of composite preference label that has

the maximum belief and those singletons have a higher plausibility [6].

3.6 Experiment

3.6.1 Data Sets

In the research area of RSs, Movielens 100K data set1, collected by the GroupLens Re-

search Project at the University of Minnesota, is widely used for measuring performances

of recommendations. Thus, this data set was selected in the experiments.

Movielens 100K data set consists of 943 users, 1682 movies, and 100,000 hard ratings

with a rating domain containing 5 elements Θ = {1, 2, 3, 4, 5} (L = 5). Each user has

rated at least 20 movies. In this data set, context information, considered for grouping

1http://grouplens.org/datasets/movielens/
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user, is represented as below

C = {C1} = {Genre};

C1 = {G1,1, G1,2, ..., G1,19} = {Unknown,Action,Adventure, Animation,

Children′s, Comedy, Crime,Documentary,Drama, Fantasy, F ilm-Noir,

Horror,Musical,Mystery, Romance, Sci-Fi, Thriller,War,Western}.

(3.32)

However, information about genres in which a user interested is not available; thus, we

assume that the genres in which a user is interested are assigned by genres of all items

which have been rated by this user. In addition, each hard rating ri,k = θl ∈ Θ of user

Ui on item Ik was transformed into the corresponding soft rating ri,k by the DS modeling

function suggested in [6] as follows

ri,k(A) =



αi,k × (1− σi,k), for A = {θl};

αi,k × σi,k, for A = B;

1− αi,k, for A = Θ;

0, otherwise,

with B =


{θ1, θ2}, if l = 1;

{θL−1, θL}, if l = L;

{θl−1, θl, θl+1}, otherwise.

(3.33)

Here, αi,k ∈ [0, 1] and σi,k are a trust factor and a dispersion factor according to the

rating ri,k, respectively [6]. The trust factor quantifies how likely the user assigned rating

reflects the user’s true perception; and the dispersion factor quantifies how likely the user

assigned rating would span a larger set [6].

Note that the social network information is not available in Movielens 100K data set;

thus, with this data set, we can only evaluate the impact of assigning weights to rating

data in the proposed system. To measure the full ability of the proposed system, we

selected Flixster data set2.

Flixster data set contains friend relationships and hard ratings on movies with a rating

domain containing 10 elements Θ = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0} (L = 10).

2https://www.cs.ubc.ca/ jamalim/datasets/
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However, in this data set the genres to which each movie belongs are not available. Thus

we have enriched the data set by crawling the genres of movies.

After crawling and cleaning, we achieved a new Flixster data set that contains 49,410

friend relationships, 535,013 hard ratings from 3,827 users on 1210 movies. In the new

data set, each user has rated at least 15 movies; and all the genres considered as context

information are represented as below

C = {Genre};

Genre = {Drama,Comedy,Action & Adventure, Television,

Mystery & Suspense,Horror, Science F iction & Fantasy,

KiDS& Family, Art House & International, Romance, Classics,

Musical & Performing Arts, Anime & Manga,Animation,Western,

Documentary, Special Interest, Sports & Fitness, Cult Movies}.

(3.34)

In this data set, information about genres in which a user interested is not available;

therefore, we also assume that the genres in which user Ui ∈ U is interested are assigned

by genres of all items rated by user Ui. To transform each hard rating ri,k = θl ∈ Θ of

user Ui on item Ik into the corresponding soft rating ri,k, we applied the DS modeling

function as shown below

ri,k(A)=



αi,k(1− σi,k), for A = {θl};

3
5
αi,kσi,k, for A = B;

2
5
αi,kσi,k, for A = C;

1− αi,k, for A = Θ;

0, otherwise,

where B=


{θ1, θ2}, if l = 1;

{θL−1, θL}, if l = L;

{θl−1, θl, θl+1}, otherwise,

and C =



{θ1, θ2, θ3}, if l = 1;

{θ1, θ2, θ3, θ4}, if l = 2;

{θL−3, θL−2, θL−1, θL}, if l = L− 1;

{θL−2, θL−1, θL}, if l = L;

{θl−2, θl−1, θl, θl+1, θl+2}, otherwise,

(3.35)

and αi,k ∈ [0, 1] is a trust factor, σi,k ∈ [0, 1] is a dispersion factor [6].
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Table 3.4: Overlapping communities in Flixster data set

Community IDs. Total number of users

16 226

49 377

50 2749

86 712

90 1011

113 460

147 105

All users join in a social network whose nodes are connected by undirected friend-

ships. After detecting communities from this social network by using SLPA algorithm,

we obtained 7 overlapping communities, as illustrated in Table 3.4

To evaluate the proposed system on Movielens and Flixster data sets, we adopted

all assessment methods mentioned in chapter 2. Moreover, we also selected CoFiDS for

performance comparison.

3.6.2 Results of Experiment on Movielens Data Set

First, 10% of users in Movielens data set were randomly selected. Then, for each selected

user, we randomly withheld 5 ratings, the withheld ratings were used as testing data and

the remaining ratings were considered as training data. Finally, recommendations were

computed for the testing data. We repeated this process for 10 times, and the average

results of 10 splits were represented in this section. Additionally, in the experiments, some

parameters were selected as follows: γ = 10−4, β = 1, ∀(i, k){αi,k, σi,k} = {0.9, 2/9}.

Table 3.5 and 3.6 show the overall MAE and DS-MAE criterion results computed

by mean of these evaluation criteria with K = 15, τ = 0 according to two coefficients

w1 and w2, respectively. The statistics in these tables indicate that the performance of

the proposed system is almost linearly dependent on values of coefficient w1; this finding

is the same for the other evaluation criteria. Coefficient w2 just slightly influences the

performance in hard decisions, but seems not to affect the performance in soft decisions;
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Table 3.5: Overall MAE versus w1 and w2 (Movielens data set)

w1

0.0 0.1 0.2 0.3 0.4 0.5

w2

0.0 0.8361 0.8366 0.8363 0.8350 0.8342 0.8334

0.1 0.8363 0.8363 0.8363 0.8347 0.8342

0.2 0.8366 0.8363 0.8361 0.8342 0.8342

0.3 0.8366 0.8363 0.8361 0.8339

0.4 0.8363 0.8363 0.8358 0.8339

0.5 0.8363 0.8363 0.8355

0.6 0.8363 0.8361 0.8355

0.7 0.8363 0.8361

0.8 0.8361 0.8361

0.9 0.8358

1.0 0.8358

Table 3.6: Overall DS-MAE versus w1 and w2 (Movielens data set)

w1

0.0 0.1 0.2 0.3 0.4 0.5

w2

0.0 0.8406 0.8406 0.8405 0.8402 0.8399 0.8397

0.1 0.8406 0.8406 0.8405 0.8401 0.8399

0.2 0.8406 0.8406 0.8404 0.8401 0.8400

0.3 0.8406 0.8405 0.8404 0.8400

0.4 0.8406 0.8405 0.8405 0.8400

0.5 0.8406 0.8406 0.8404

0.6 0.8406 0.8405 0.8404

0.7 0.8406 0.8405

0.8 0.8406 0.8405

0.9 0.8405

1.0 0.8406
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Figure 3.4: Visualizing overall MAE (Movielens data set)

Figure 3.5: Visualizing overall DS-MAE (Movielens data set)
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Figure 3.6: Overall MAE versus K (Movielens data set)

Figure 3.7: Overall DS-MAE versus K (Movielens data set)
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Table 3.7: The comparison in hard decisions (Movielens data set)

Metric
True Rating

Overall
1 2 3 4 5

Proposed system:

Precision 0.3201 0.2210 0.3188 0.4002 0.4179 0.3630

Recall 0.0906 0.0892 0.3179 0.6413 0.1885 0.3709

MAE 2.1368 1.4242 0.7790 0.4212 1.0175 0.8383

F1 0.1205 0.1245 0.3170 0.4924 0.2571 0.3384

CoFiDS:

Precision 0.3118 0.2151 0.3177 0.3996 0.4171 0.3609

Recall 0.0873 0.0872 0.3157 0.6418 0.1866 0.3697

MAE 2.1435 1.4325 0.7813 0.4224 1.0202 0.8413

F1 0.1148 0.1216 0.3152 0.4921 0.2551 0.3366

the reason is that, in the data set, when considering two users, the number of movies

rated by these two users is very small while the total number of movies is large. Figure

3.4 and Figure 3.5 depict the same information visually.

To compare with CoFiDS, we conducted the experiments with w1 = 0.5, w2 = 0, τ = 0,

and several values of K. Figure 3.6 and Figure 3.7 show the overall MAE and DS-MAE

criterion results of both the proposed system and CoFiDS change with neighborhood size

K. According to these figures, the performances of two systems are fluctuated when

K < 42, and then appear to be stable with K ≥ 42; in particular, both figures show that

the proposed system is more effective than CoFiDS in all cases. Note that, with K ≥ 42,

members in neighborhood sets become stable; this leads to the stable performances as we

can observe in Figure 3.6 and Figure 3.7.

Tables 3.7 and 3.8 show summarized results of the performance comparisons between

the proposed system and CoFiDS in hard and soft decisions, respectively, with K =

30, w1 = 0.5, w2 = 0 and τ = 0. In each category in these tables, every rating has its own

column, the bold values indicate the better performance, and underlined values illustrate

equal performance. Importantly, the statistics in both tables show that, except for soft

decisions with true rating value θ4 = 4, the proposed system achieves better performance
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Table 3.8: The comparison in soft decisions (Movielens data set)

DS True Rating
Overall

-Metric 1 2 3 4 5

Proposed system:

Precision 0.3001 0.2035 0.3150 0.3990 0.4016 0.3551

Recall 0.0663 0.0926 0.3164 0.6391 0.1847 0.3680

MAE 2.1963 1.4313 0.7721 0.4122 1.0317 0.8405

F1 0.1036 0.1248 0.3147 0.4909 0.2507 0.3349

CoFiDS:

Precision 0.2926 0.2032 0.3148 0.3990 0.4020 0.3547

Recall 0.0658 0.0934 0.3155 0.6398 0.1837 0.3679

MAE 2.1973 1.4323 0.7724 0.4118 1.0359 0.8415

F1 0.1028 0.1255 0.3141 0.4911 0.2500 0.3347

in all selected measurement criteria. However, absolute values of the performance of

the proposed system are just slightly higher than those of CoFiDS. The reason is that

MovieLens data set contains a small number of provided ratings. In case more provided

ratings are available, the proposed system can be much better than CoFiDS.

3.6.3 Results of Experiment on Flixster Data Set

For each user in Flixster data set, we withheld randomly 5 ratings. The withheld ratings

were used as the testing data; and the remaining ratings were considered as the train-

ing data. In all experiments, some parameters are selected as follows: γ = 10−5, β =

1, ∀(i, k){αi,k, σi,k} = {0.9, 2/9}, Min = 100, Max = 500, and T = 100.

In order to measure the impact of two coefficients w1 and w2 on Flixster data set, we

selected K = 25 and τ = 0.75 for the experiments. Tables 3.9 and 3.10 represent results

of overall MAE and DS-MAE criteria, respectively. It can be seen in these tables that

when w1 ≤ 0.2 and w2 ≥ 0.5, the performance of the proposed system is mostly linearly

dependent on values of both coefficients w1 and w2; in the other cases, only some values of

coefficients w1 and w2 effect the proposed system. Table 3.9 and Table 3.10 are visualized
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Table 3.9: Overall MAE versus w1 and w2 (Flixster data set)

w1

0.0 0.1 0.2 0.3 0.4 0.5

w2

0.0 0.8337 0.8337 0.8338 0.8333 0.8338 0.8338

0.1 0.8337 0.8335 0.8338 0.8334 0.8336

0.2 0.8339 0.8335 0.8337 0.8336 0.8337

0.3 0.8339 0.8337 0.8338 0.8334

0.4 0.8339 0.8339 0.8337 0.8338

0.5 0.8339 0.8339 0.8336

0.6 0.8339 0.8338 0.8337

0.7 0.8337 0.8337

0.8 0.8337 0.8337

0.9 0.8337

1.0 0.8337

Table 3.10: Overall DS-MAE versus w1 and w2 (Flixster data set)

w1

0.0 0.1 0.2 0.3 0.4 0.5

w2

0.0 0.8340 0.8337 0.8338 0.8338 0.8340 0.8337

0.1 0.8340 0.8338 0.8337 0.8339 0.8339

0.2 0.8341 0.8337 0.8337 0.8340 0.8339

0.3 0.8339 0.8338 0.8337 0.8339

0.4 0.8339 0.8338 0.8338 0.8340

0.5 0.8340 0.8339 0.8338

0.6 0.8341 0.8339 0.8339

0.7 0.8339 0.8339

0.8 0.8339 0.8339

0.9 0.8339

1.0 0.8339
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Figure 3.8: Visualizing overall MAE (Flixster data set)

in Figure 3.8 and Figure 3.9, respectively.

To compare with CoFiDS, we selected w1 = 0.2, w2 = 0.5, τ = 0, and several values of

neighborhood size K. The results are shown in Figure 3.10 and Figure 3.11. According

to these figures, the proposed system achieves better performance in both hard and soft

decisions in all selected values of K, specially when K ≤ 45. These results indicate that

using community context information for predicting unprovided ratings and assigning

weights to rating data when computing user-user similarity is capable of improving the

performance of recommendations.

Tables 3.11 and 3.12 show summarized results of the performance comparisons between

the proposed system and CoFiDS, with K = 40, τ = 0, in hard and soft decisions,

respectively. In these tables, every rating value has its own column; underlined values

indicate the better performance, bold values illustrate equal performances, and italic

values mention that they are incomparable for comparison. Note that, in the data set,

the number users rated as 1.0, 1.5, 2.0 or 2.5 is very small compared to the number of

people rated as higher values. So, in these two tables, it can be seen that the columns

regarding rating values ranging from 1.0 to 2.5 contain some values as 0 or N/A (Not

applicable).

As we have seen from statistics in both Tables 3.11 and 3.12, the proposed system

achieves better performance in all selected measurement criteria in most of true rating
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Figure 3.9: Visualizing overall DS-MAE (Flixster data set)

Figure 3.10: Overall MAE versus K (Flixster data set)
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Figure 3.11: Overall DS-MAE versus K (Flixster data set)

Table 3.11: The comparison in hard decisions (Flixster data set)

Metric
True rating value

Overall
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Proposed system:

MAE 3.3170 2.8783 2.3949 1.8790 1.3992 0.8983 0.4795 0.1515 0.5722 0.9740 0.8346

Precision 0.8750 0 0 0 0.2000 0.2100 0.1789 0.2019 0.1616 0.3811 0.2357

Recall 0.0221 0 0 0 0.0010 0.0674 0.1477 0.7809 0.0138 0.0911 0.2099

F1 0.0431 N/A N/A N/A 0.0020 0.1021 0.1618 0.3208 0.0254 0.1470 N/A

CoFiDS:

MAE 3.3281 2.9006 2.4205 1.898 1.4052 0.9017 0.4796 0.1226 0.5701 0.998 0.8372

Precision 0.8750 N/A N/A N/A N/A 0.1998 0.1778 0.2005 0.1000 0.3960 N/A

Recall 0.0221 0 0 0 0 0.0607 0.122 0.8247 0.0013 0.07 0.2069

F1 0.0431 N/A N/A N/A N/A 0.0931 0.1447 0.3226 0.0026 0.1189 N/A

values. However, the same as in Movielens data set, the absolute values of the performance

of the proposed system are just slightly higher than those of CoFiDS. When more provided

ratings are availabe and/or we identify communities in the social network by using another

information such as the number of messages, emails, comments, tags, and so on, the

different absolute values may be much greater.

3.7 Conclusion

In summary, in this chapter, we have developed a novel collaborative filtering system

that uses DST for representing ratings and employs community context information for
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Table 3.12: The comparison in soft decisions (Flixster data set)

DS-Metric
True rating value

Overall
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Proposed system:

MAE 3.3172 2.8811 2.3965 1.879 1.3969 0.8994 0.4794 0.1519 0.5710 0.9725 0.8342

Precision 0.8637 0 0 0.1406 0.1152 0.2088 0.1787 0.2018 0.1682 0.3813 0.2368

Recall 0.0221 0 0 0.0007 0.0005 0.0667 0.1478 0.7796 0.0148 0.0920 0.2100

F1 0.0431 0 0 0.0015 0.0011 0.1011 0.1618 0.3206 0.0273 0.1482 0.1426

CoFiDS:

MAE 3.3283 2.9014 2.4208 1.8971 1.4060 0.9009 0.4802 0.1226 0.5706 0.9976 0.8372

Precision 0.8750 0 0 0.0001 0.0002 0.2031 0.1770 0.2006 0.0966 0.3965 0.2198

Recall 0.0221 0 0 0 0 0.0617 0.1217 0.8245 0.0014 0.0702 0.207

F1 0.0431 0 0 0 0 0.0947 0.1442 0.3227 0.0028 0.1193 0.1292

predicting unprovided ratings. After predicting, suitable recommendations are generated

by using both predicted and provided ratings with the important aspect being the stip-

ulation that provided ratings are more important than predicted ones. Remarkably, the

developed system is capable of dealing with both the sparsity problem and imperfect

information. Moreover, the experiment results show that performance of the proposed

system has improved in both hard and soft decisions compared with CoFiDS.
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Chapter 4

Using Community Preferences

4.1 Introduction

Naturally, in a community different members can have different preferences on an item;

and the overall preference of all members is called the community preference. Actually, for

each user, community preferences can influence his/her preferences on unseen items. In

this chapter, we develop a new collaborative filtering RS, which is capable of extracting

community preferences from the network and employing the extracted preferences for

improving quality of recommendations. Especially, in the developed system, we have

introduced a new perspective to deal with the sparsity and cold-start problems by using

community preferences. To evaluate the new system, we have selected the community-

based RS offering soft ratings, which is presented in the previous chapter, for performance

comparison.

The difference between the RSs based on DST (System 2) developed in this chapter

and the RSs based on DST presented in chapter 3 (System 1) is summarized in Table

4.1. As can be seen in this table, both systems are capable of integrating with the social

network containing all users as well as using the new method developed in chapter 3

for computing user-user similarities. As we can see, in System 1, community context

information is employed for overcoming the sparsity problem; and in case the community

context information does not affect a user on an item, the existing ratings on the item is

used. However, System 1 is not effective when dealing with the cold-start problem because

when the community context information does not effect users (including new users) on
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Table 4.1: Comparing two RSs based on DST

System 1 System 2

Integrating with the social network X X

Using the new method for computing
X X

user-user similarities

Overcoming the sparsity problem Existing ratings Community preferences

(C does not affect) (C does not affect)

Overcoming the cold-start problem Vacuous Community preferences

a new item, the existing ratings on this item are not available. As mentioned previously,

missing ratings can be modeled by vacuous; but vacuous representation is highly uncertain.

In System 2, we propose to exploit community preferences for overcoming the sparsity

and cold-start problems.

4.2 Data Modeling

Let U = {U1, U2, ..., UM} be the set of M users and I = {I1, I2, ..., IN} be the set of N

items. Each rating of user Ui on item Ik is represented as a mass function ri,k spanning

over a rating domain Θ = {θ1, θ2, ..., θL}. In addition, Dempster’s rule of combination [7]

is selected for fusing information.

As remarked in [6, 12, 97], context information that may significantly influence user

preferences on items can be considered as concepts. Assuming that, in the system, context

information consists of P concepts denoted by C = {C1, C2, ..., CP} and each concept

Cp ∈ C contains at most Qp groups, denoted by Cp = {Gp,1, Gp,2, ..., Gp,Qp}. In addition,

for concept Cp with 1 ≤ p ≤ P , a user ui ∈ U can be interested in several groups, and

an item Ik ∈ I can belong to one or some groups of this concept. The groups in which

user Ui is interested and the groups to which item Ik belongs are identified by mapping

functions fp and gp as presented in Equations (3.2) and (3.3) respectively.

In addition, items and users are separated into two different spaces, called item space

and user space. In the user space, we assume that all users together join in a social

network representing as an undirected graph G = (U,F), where U is the set of all users
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I1 I2 I3 I4 I5 I6 I7 I8
... IN

Item space

User space
(Social network)

U1

U2

U3

U4

U5

U6 U7
... UM

Rating items

Friend relationships

Community boundaries

Figure 4.1: Underlying the social network in the proposed system

Social network

Detect overlapping communities

...Community C1 Community CV

Extract community preferences

Overcome sparisty and cold-start problems

Compute user-user similarities

Select neighborhoods for active users

Estimate ratings for active users

Extract community preferences

Overcome sparisty and cold-start problems

Compute user-user similarities

Select neighborhoods for active users

Estimate ratings for active users...

Generate recommendations for active users

Figure 4.2: The process of recommendations of the proposed system

(nodes) and F is the set of all friend relationships (edges). In this social network, users

can form into several communities, and a user can belong to one or several communities

at the same time. The visual information about the underlying social network is depicted

in Figure. 4.1 (adapted from [98]). In this figure, supposing that six users U1, U2, ..., U6

belong to a community and they have rated several items.

The general process of recommendations of the system is illustrated in Figure. 4.2.

As can be seen in this figure, first, the communities are uncovered in the social network;

and then main tasks, such as extracting community preferences, dealing with the spar-

sity and cold-start problems, computing user-user similarities, selecting neighborhoods,
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C

C1

...
CPCp

...

Gp,1 Gp,Qp

...
Gp,q

...

Uj
is interested in

Ik

belongs to

[a piece of preference: rj,k]

Figure 4.3: Community preference on item Ik regarding group Gp,q

and estimating ratings on unseen items are performed in each community independently;

after that, the suitable recommendations for each active user will be generated based on

estimated ratings on the communities to which this user belongs.

In the process of recommendations the task of detecting overlapping communities in

the social network is the same as the task presented in Section 3.3 in chapter 3; after

completing this task, we also assume that we achieve V overlapping communities denoted

by CCC = {C1, C2, ..., CV }. Additionally, the tasks such as computing user-user similarities,

selecting neighborhoods, estimating ratings, and generating recommendations are the

same as the corresponding tasks presented in chapter 3.

4.3 Performing in a Community

In this section, we will present about details of the tasks of extracting community prefer-

ences and overcoming the sparsity and cold-start problems in a community Cv ∈ CCC with

1 ≤ v ≤ V .

4.3.1 Extracting Community Preference

The rating matrix of all members in the community is denoted by R = {ri,k} with

ri,k is the rating of user Ui on item Ik. In addition, all items rated by user Ui and all

users who have rated item Ik are denoted by RIi and RUk, respectively. In addition,

in the community, each member has his/her own preference on an item, and the overall

preference of all members is called the community preference on the item.
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C1

...
CPCp

...

Gp,1 Gp,Qp

...
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...
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is interested in

Ik
[a piece of preference: Gmk,p,q]

belongs to

Figure 4.4: Community preference on item Ik regarding concept Cp

Let consider an item Ik. If this item belongs to group Gp,q of a concept Cp then each

rating of user Uj, who is interested in group Gp,q, on this item can be considered as a

piece of community preference on item Ik regarding group Gp,q, as illustrated in Figure.

4.3. Consequently, community preference on item Ik regarding group Gp,q, denoted by

Gmk,p,q, can be obtained by combining all related pieces as below

Gmk,p,q =
⊕

{j|Ik∈RIj ,Gp,q∈fp(Uj)∩gp(Ik)}

rj,k. (4.1)

Since Gp,q ∈ Cp, community preference on item Ik regarding group Gp,q reflects a

piece of community preference on item Ik regarding concept Cp, as illustrated in Figure.

4.4. Thus, community preference on item Ik regarding concept Cp, denoted by Cmk,p, is

computed as follows

Cmk,p =
⊕

{q|Gp,q∈Cp,Gp,q∈gp(Ik)}

Gmk,p,q. (4.2)

Obviously, community preference on item Ik regarding concept Cp is regarded as a piece

of community preference on item Ik, as illustrated in Figure. 4.5. Therefore, community

preference on item Ik as a whole, denoted by Cmk, is calculated as below

Cmk =
⊕

{p|∃Gp,q∈Cp,Gp,q∈gp(Ik)}

Cmk,p. (4.3)

Besides, community preference on item Ik regarding group Gp,q,
Gmk,p,q, is viewed

as a piece of community preference regarding group Gp,q overall all items. As a result,

community preference regarding group Gp,q, denoted by Gmp,q, is obtained as follows

Gmp,q =
⊕

{k|1≤k≤N,∃Gp,q∈Cp,Gp,q∈gp(Ik)}

Gmk,p,q. (4.4)
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C1

...
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...

Ui
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[a piece of preference: Cmk,p]

belongs to at least one group

Figure 4.5: Community preference on item Ik

A demonstration of extracting community preferences is illustrated in Example 3.

Example 3 Let us consider the move RS described in Example 2. The

community presences on the community containing five users U1, U2, U3, U4,

and U5 are computed as follows

• It can be seen that, item Ik belong to genres Western and Horror. Thus,

each rating of a user who is interested in genre Western (or Horror)

is considered as a piece of community preference on item Ik regarding

genre Western (or Horror). In addition, community preference on item

Ik regarding genre Western (or Horror) are generated by combining all

related pieces. Applying Equation (4.1), community preferences on item

Ik regarding genres Western and Horror are achieved as below

Gmk,1,3 = r1,k ⊕ r4,k;

Gmk,1,4 = r2,k ⊕ r4,k.
(4.5)

After computing, we obtain the values of Gmk,1,3 and Gmk,1,4 as presented

in Equations (3.14) and (3.16), respectively.

• The community preference on item Ik regarding concept Genre is ob-

tained by combing all community preferences on item Ik regarding all

genres to which item Ik belongs. Applying Equation (4.2), the commu-

nity preference on item Ik regarding concept Genre is achieved as below

Cmk,1 =G mk,1,3 ⊕ Gmk,1,4. (4.6)
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After computing, we have

Cmk,1({4}) ≈ 0.643;

Cmk,1({5}) ≈ 0.286;

Cmk,1(Θ) ≈ 0.071.

(4.7)

• Community preference on item Ik regarding context C is obtained by

combing all community preferences on item Ik regarding all concepts.

Thus, applying Equation (4.3), we have community preference on item

Ik as follows

Cmk = Cmk,1. (4.8)

• Assuming that, there is only one item Ik in the system, the community

preferences regarding genres Western and Horror are computed by using

Equation (4.4) as below

Gm1,3 = Gmk,1,4

Gm1,4 = Gmk,1,4

(4.9)

4.3.2 Overcoming the Sparsity Problem

In the system, unprovided ratings need to be generated in order to deal with the sparsity

problem. Assuming that users who are interested in the same group of a concept can be

expected to possess similar preferences regarding to that group. Additionally, supposing

that, user Ui has not rated item Ik; the process for generating unprovided rating of user

Ui on item Ik, denoted by ri,k, contains five steps as follows

• First, as mentioned earlier, user Ui is a member in the community; so, the preference

of user Ui is influenced by the preference of the community. Because of this, if user

Ui is interested in a group Gp,q to which item Ik belongs, user Ui’s preference on item

Ik regarding group Gp,q, denoted by Gmi,k,p,q, is signed by community preference on

item Ik regarding the same group Gp,q, as below

Gmi,k,p,q =Gmk,p,q. (4.10)

• Second, it can be seen that user Ui’s preference on item Ik regarding group Gp,q

reflects a piece of user Ui’s preference on the item regarding concept Cp. Conse-

quently, user Ui’s preference on item Ik regarding concept Cp, denoted by Cmi,k,p, is
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computed as follows

Cmi,k,p =
⊕

{q|Gp,q∈Cp,Gp,q∈fp(Ui)∩gp(Ik)}

Gmi,k,p,q. (4.11)

• Then, user Ui’s preference on item Ik regarding concept Cp is a piece of user Ui’s

preference on item Ik as a whole. As a result, user Ui’s preference on item Ik, denoted

by Cmi,k, is achieved by combining user Ui’s preferences on item Ik regarding all

concepts, as shown below

Cmi,k =
⊕

{p|∃Gp,q∈Cp,Gp,q∈fp(Ui)∩gp(Ik)}

Cmi,k,p. (4.12)

• Next, unprovided rating ri,k is assigned user Ui’s preference on item Ik, as shown

below

ri,k = Cmi,k. (4.13)

• Finally, in case, unprovided rating ri,k cannot be generated by using equations (4.10)

(4.11), (4.12) and (4.13) because the context information does not affect user Ui

and item Ik, in other words ∀p, fp(Ui)∩ gp(Ik) = ∅. We propose that ri,k is assigned

community preference on item Ik, as follow

ri,k =Cmk. (4.14)

It is seen that when community context information affects a user on an item, the result

of generating unprovided rating of this user on the item by using community preferences is

the same as the result obtained by using community context information. However, when

community context information does not affect, the result obtained by using community

preferences will be different, as depicted in Example 4.

Example 4 Let us consider the movie RS described in Examples 2 and 3.

In this scenario, f1(U5) ∩ g1(Ik) = ∅, thus the unprovided rating r5,k of user

U5 on item Ik is assigned by the community preference on item Ik generated

by using Equation (3.8) as follows

r5,k = Cmk,1. (4.15)

The value of Cmk,1 is presented in Equation (4.7). As we can observed, this

value is different from the value presented in Equation (3.23).
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4.3.3 Overcoming the Cold-Start Problem: New Items

Let consider a new item Ik′ , and supposing that, for each concept Cp, the information

about the groups, to which this item belong are available. We assume that if Gp,q ∈ gp(Ik′)

then the community preference on group Gp,q is considered to be the community preference

on this item regarding group Gp,q. Based on the assumption, all unprovided ratings on

item Ik′ can be generated. After that, this item is treated the same as any other one. As

a result, the new item problem is completely eliminated from the system.

For each group Gp,q ∈ gp(Ik′), community preference on item Ik′ regarding group Gp,q

is assigned by community preference on group Gp,q, as below

Gmk′,p,q =Gmp,q. (4.16)

Then, for each user Ui, applying Equations (4.10), (4.11), (4.12), (4.13) and (4.14) to

generate the unprovided rating of user Ui on item Ik′ .

In the special situation, the groups to which item Ik′ belongs are very new for the

community. In other words, Gmp,q corresponding to ∀Gp,q ∈ gp(Ik′) does not exist. If

there are some users, who are not interested in any Gp,q ∈ gp(Ik′) but have looked at and

rated the item, the rating on Ik′ is assigned by combining all existing ratings on the item

as follows

ri,k′ =
⊕

{j|Ik∈RIj ,Gp,q∈gp(Ik),Gp,q /∈fp(Uj)}

rj,k, for Ui ∈ U. (4.17)

Otherwise, if nobody in the community has rated this item, Uk′ = ∅, then for each user

Ui ∈ U, ri,k′ is assigned by vacuous.

A demonstration of generating unprovided ratings for new items is illustrated in Ex-

ample 5.

Example 5 Let us consider the move RS described in Examples 2 and 3.

Assuming that a new item Ik′ belonging to genres Drama and Horror is just

added into this system. In this case, community preference regarding genre

Horror is considered as community preference on this item regarding genre

Horror. Applying Equation (4.16) we have

Gmk′,1,4 = Gm1,4. (4.18)
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As observed, users U2, U3 and U4 are interested in genre Horror, thus, the

preferences of these users on item Ik′ regarding genre Horror is obtained by

using Equations (4.10) as follows

Gm2,k′,1,4 = Gm3,k′,1,4 = Gm4,k′,1,4 =G mk′,1,4; (4.19)

Then, applying Equations (4.11), (4.12), and (4.13), the unprovided ratings

r2,k′ , r3,k′ and r4,k′ will be generated as below

r2,k′ = r3,k′ = r4,k′ = Gm1,4. (4.20)

However, in this example, there is no users who are interested in genre Drama

have ratings. So, community preference regarding genre Drama is vacuous.

As the result, the unproved ratings of users U1 and U5 are vacuous.

4.3.4 Overcoming the Cold-Start Problem: New Users

Let consider a new user Ui′ . In the system, all unprovided ratings regarding this user are

generated; and then, there is no difference between user Ui′ and the other ones in terms

of being recommended. As a result, the new user problem is solved.

In case the profile of user Ui′ contains information about the groups of each concept

Cp, in which user Ui′ is interested, the unprovided ratings of this user on each item Ik are

generated as follows

• Community preference on item Ik regarding a group Gp,q ∈ fp(Ui′) is considered as

Ui′ ’s preference on item Ik regarding a group Gp,q, as below

Gmi′,k,p,q =Gmk,p,q. (4.21)

• Applying the equations (4.11), (4.12), (4.13) and (4.14) for user Ui′ , the unprovided

rating ri′,k will be created.

Otherwise, if the information about the groups in which user Ui′ is interested is not avail-

able, the unprovided rating of this user on an item Ik is assigned community preference

on item Ik as follows

ri′,k =Cmk (4.22)
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In Example 2, users U3 and U5 can be considered as new users because they have not

rated any item. The process of generating unproved ratings of these users can be seen in

Example 4.

At this point, all unprovided ratings related new items as well as new users have been

created. As a result, the cold-start problem is completely eliminated in the system.

4.4 Experiment

To evaluate the proposed system, the system introduced in [12] was selected as a baseline

for performance comparison. The same as the proposed system in this chapter, the

baseline is also developed based on DST. To deal with the sparsity problem, the baseline

exploits community context information extracted from the social network. The baseline

is not capable of tackling the cold-start problem; however, unprovided ratings are signed

by vacuous for new items as well as users who are not affected by the context information.

In addition, to measure recommendation performances, evaluation methods DS-MAE [6],

and DS-Precision, DS-Recall [22] were chosen.

Flixster data set [12], described in Section 3.6.1, was selected in the experiments. In

this data set, the genres in which a user is interested are not available; thus, we assume

that a user is interested in a genre if this user has rated at least 11 movies belonging

to that genre. Since the proposed system works with soft ratings, the Dempster-Shafer

modeling function presented in Equation 3.35 was adopted for transforming hard ratings

in this data set into soft ratings. All users in this data set belong to a social network

whose nodes are linked by undirected friendships. To discover overlapping communities

in this social network, SLPA algorithm [89] was also selected.

The values of parameters in the experiments were selected mainly based on the an-

alyzed results published in [97, 6], as follows: γ = 10−4, w1 = 0.3, w2 = 0.1 and

∀(i, k){αi,k, σi,k} = {0.9, 2/9}. In addition, to choose the value for parameter τ , all values

of user-user similarity in matrix S were sorted in ascending order, and the lowest value

of top 50% of highest values in S was selected. In addition, this data set was separated

into two parts, testing data and training data; the first one contains random selections of

5 ratings of each user, and the other consists of the remaining ratings.

The results of comparison according to overallDS-MAE, DS-Precision andDS-Recall
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Table 4.2: Experiment results

K
DS-MAE DS-Precision DS-Recall

Baseline New system Baseline New system Baseline New system

5 0.95978 0.85227 0.20442 0.22506 0.17956 0.18872

10 0.95263 0.85241 0.20533 0.22495 0.18101 0.18878

15 0.94846 0.85241 0.20561 0.22498 0.18174 0.18884

20 0.94643 0.85236 0.20580 0.22511 0.18202 0.18894

25 0.94492 0.85235 0.20596 0.22516 0.18231 0.18895

30 0.94378 0.85231 0.20596 0.22514 0.18247 0.18895

35 0.94259 0.85231 0.20589 0.22517 0.18263 0.18898

40 0.94151 0.85229 0.20600 0.22522 0.18281 0.18902

45 0.94057 0.85229 0.20594 0.22522 0.18295 0.18905

50 0.94007 0.85229 0.20595 0.22525 0.18300 0.18908

55 0.93964 0.85227 0.20597 0.22531 0.18308 0.18912

60 0.93919 0.85226 0.20600 0.22536 0.18315 0.18916

65 0.93900 0.85226 0.20599 0.22540 0.18317 0.18918

70 0.93891 0.85226 0.20600 0.22539 0.18320 0.18918

75 0.93869 0.85226 0.20602 0.22541 0.18322 0.18919

80 0.93853 0.85227 0.20605 0.22538 0.18325 0.18919

85 0.93841 0.85226 0.20607 0.22539 0.18327 0.18920

90 0.93836 0.85226 0.20606 0.22540 0.18329 0.18921

95 0.93830 0.85226 0.20607 0.22540 0.18330 0.18921

100 0.93825 0.85226 0.20607 0.22539 0.18331 0.18922

105 0.93822 0.85226 0.20607 0.22539 0.18331 0.18922

110 0.93820 0.85226 0.20606 0.22538 0.18331 0.18922

115 0.93818 0.85227 0.20604 0.22538 0.18331 0.18922

120 0.93817 0.85227 0.20603 0.22536 0.18332 0.18921

125 0.93816 0.85227 0.20603 0.22536 0.18332 0.18921

130 0.93814 0.85227 0.20603 0.22536 0.18332 0.18922

135 0.93814 0.85227 0.20601 0.22535 0.18333 0.18922

140 0.93812 0.85227 0.20601 0.22535 0.18333 0.18922

145 0.93812 0.85227 0.20600 0.22534 0.18333 0.18923

150 0.93810 0.85227 0.20600 0.22534 0.18333 0.18923
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Figure 4.6: Overall DS-MAE versus K

varying with changing neighborhood size K are summarized and illustrated Table. 4.2.

Note that, in this table, the bold values indicate the better ones. As observed, the new

system is more effective than the baseline in all cases. That means integrating with

community preferences is capable of improving the quality of recommendations.

The results as illustrated in Table 4.2 are also visualized in Figures 4.6, 4.7, and 4.8.

According to these figures, the performances of the baseline increase with K <= 20 for

DS-Precision and K <= 40 for DS-MAE and DS-Recall, and become stable when

K > 20 for DS-Precision and K > 40 for DS-MAE and DS-Recall. Specially, the

performances of the new system are better and more stable than those of the baseline.

These results indicate that using community preferences is more effective than using

community context information for generating unprovided ratings in RSs based on DST.

4.5 Conclusion

In this chapter, we have developed a new collaborative filtering RS that is capable of

integrating with a social network consisting of all users. In this system, community

preferences are extracted from the social network and represented as mass functions first,

and then the extracted preferences are employed for predicting all unprovided ratings of

users on items (including new users and new items), after that, suitable recommendations

are generated mainly based on both provided and predicted ratings without concerning

about whether users or items are new or not.
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Figure 4.7: Overall DS-Precision versus K

Figure 4.8: Overall DS-Recall versus K
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Chapter 5

Two-Probabilities Focused

Combination

5.1 Introduction

As can be seen that in the research area of DST [7, 8], Dempster’s rule of combination

plays a significant role [99] as well as being employed as a powerful tool to combine

information in a variety of applications [37, 100, 101, 102]. Particularly, this combination

method is currently applied in RSs [6, 10, 12, 97] based on DST.

In RSs based on DST, ratings or user preferences on items (products or services)

are represented as mass functions and tasks of combining mass functions are executed

frequently [6, 12, 97]. However, when combining information by using Dempster’s rule

of combination, the combined results usually contain many focal elements with very low

probabilities and a few focal elements with high probabilities [103], a typical example of

this kind of combined results is illustrated in Table 5.1.

In addition, when combining two highly conflicting mass functions by using Dempster’s

rule, the focal elements with very low probabilities can lead to unsatisfactory results

[13, 14]. Moreover, in RSs based on DST, highly and even totally conflicting ratings are

very common because of the diversity of users, and ratings from different users are not

verified to be totally reliable and independent. Under those circumstances, combining

information about user preferences in these systems by using Dempster’s rule may be not

effective and other rules of combination can be more appropriate.
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Table 5.1: A combined result representing as mass function m

m({3.5}) = 0.999999980892241

m({3.0}) = 1.91077577843934E-08

m({4.0}) = 7.86327480839232E-16

m({4.5}) = 4.85693565681365E-43

m({2.5}) = 4.64318514160755E-48

m({3.0, 3.5}) = 2.09075154133808E-64

m({3.5, 4.0}) = 8.60391580797565E-67

m({5.0}) = 5.00831844339378E-68

m({2.5, 3.0}) = 2.22082105935693E-75

m({4.0, 4.5}) = 3.76097996470203E-80

m({2.0}) = 2.39546318569105E-87

m({2.5, 3.0, 3.5}) = 1.33165249421964E-91

m({4.5, 5.0}) = 4.43884166473141E-92

m({3.5, 4.0, 4.5}) = 5.48005141571796E-94

m({1.5, 2.0, 2.5}) = 2.66666663099885E-100

m({Θ}) = 1E-100

In [15, 16, 17], the authors have developed a combination method, known as 2-points

focused combination, which is capable of distinguishing focal elements with very low

probabilities from the ones with high probabilities. Regarding this method, mass functions

are reduced into triplet or 2-points focused mass functions [15, 16, 17] whose focal sets

consist of two focal elements with the highest probabilities and the whole set element;

for instance, the mass function illustrated in Table 5.1 will be reduced into a triplet mass

function m̄ as shown in Table 5.2. Moreover, this method can help RSs based on DST

to handle combining highly conflicting mass functions and improve time of computation

[104]. However, in case the focal set of a mass function contains more than two focal

elements with the same highest probabilities (excluding the whole set one), this mass

function can be reduced into several triplet mass functions, as illustrated in Example

6; and when combining this mass function with another one by using 2-points focused

combination method, we can achieve differently combined results depending on which
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Table 5.2: Triplet mass function m̄

m̄({3.5}) = 0.999999980892241

m̄({3.0}) = 1.91077577843934E-08

m̄(Θ) = 8.13198474256578E-16

Table 5.3: Mass function m1

m1({1}) = 0.30

m1({3}) = 0.30

m1({4}) = 0.04

m1({5}) = 0.30

m1({1, 2, 3, 4, 5}) = 0.06

Table 5.4: Mass function m2

m2({1}) = 0.40

m2({2}) = 0.10

m2({3}) = 0.07

m2({4}) = 0.40

m2({1, 2, 3, 4, 5}) = 0.03

corresponding triplet mass function is selected.

Example 6 Assuming that, in a RS based on DST with a rating domain

Θ = {1, 2, 3, 4, 5}, we need to combine two ratings by using 2-points focused

combination method. These ratings are represented by two mass functions

denoted by m1 and m2 as well as being depicted in Tables 5.3 and 5.4, re-

spectively. When converting into triplet mass functions, mass function m1

can be one of three different triplet mass functions, called m̄
(1)
1 , m̄

(2)
1 , and

m̄
(3)
1 , as shown in Tables 5.5, 5.6 and 5.7, respectively; and mass function

m2 has an only one triplet mass function, denoted by m̄2, described in Table

5.8. Regarding three options for selecting triplet mass function correspond-

ing to mass function m1, when combing two mass functions m1 and m2 using

2-points focused combination method, we can achieve three possible results

denoted as m̄(1), m̄(2) and m̄(3), as shown in Tables 5.9, 5.10, and 5.11 respec-

tively. We can observe that triplet mass function m̄(3) is significantly different

from triplet mass functions m̄(1) and m̄(2). As a result, 2-points focused com-

bination method is not effective in this scenario.

In this chapter, we develop a new combination method that concentrates on significant

focal elements defined as the ones with probabilities in top two highest probabilities and
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Table 5.5: Triplet mass function m̄
(1)
1

m̄
(1)
1 ({1}) = 0.30

m̄
(1)
1 ({3}) = 0.30

m̄
(1)
1 ({1, 2, 3, 4, 5}) = 0.40

Table 5.6: Triplet mass function m̄
(2)
1

m̄
(2)
1 ({1}) = 0.30

m̄
(2)
1 ({5}) = 0.30

m̄
(2)
1 ({1, 2, 3, 4, 5}) = 0.40

Table 5.7: Triplet mass function m̄
(3)
1

m̄
(3)
1 ({3}) = 0.30

m̄
(3)
1 ({5}) = 0.30

m̄
(3)
1 ({1, 2, 3, 4, 5}) = 0.40

Table 5.8: Triplet mass function m̄2

m̄2({1}) = 0.40

m̄2({4}) = 0.40

m̄2({1, 2, 3, 4, 5}) = 0.20

ignores the other focal elements excluding the whole set element. With this characteristic,

the new method also has the advantages which 2-points focused combination method

possesses. Particularly, when combing two mass functions by using the proposed method,

we can get only one combined result; that means this method is capable of tackling the

weakness of 2-points focused combination method.

In the experiments, to measure the effectiveness and efficiency of the new method,

it was integrated in the RSs based on DST, introduced in [12, 97, 6], using Movielens

and Flixster data sets and compared with 2-points focused combination method. The

experiment results indicate that, regarding to accuracy of recommendations, the new

method is better than 2-points focused combination method; and the time of computation

of the new method can be comparable to that of 2-points focused combination method

whose time complexity is linear [104].

5.2 The Proposed Combination Method

In RSs based on DST, let us consider a mass function m : 2Θ → [0, 1] defined on a

rating domain Θ = {θ1, θ2, ..., θL}. The focal set of mass function m is denoted by F . As

mentioned previously, in the focal set F , especially when mass function m is a combined

result, usually most of focal elements have infinitesimal probabilities whereas a few focal

elements have high probabilities.

We propose that, in focal set F , only focal elements with probabilities in top two
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Table 5.9: Triplet mass function m̄(1)

m̄(1)({1}) = 0.53

m̄(1)({4}) = 0.25

m̄(1)({1, 2, 3, 4, 5}) = 0.22

Table 5.10: Triplet mass function m̄(2)

m̄(2)({1}) = 0.53

m̄(2)({4}) = 0.25

m̄(2)({1, 2, 3, 4, 5}) = 0.22

Table 5.11: Triplet mass function m̄(3)

m̄(3)({1}) = 0.31

m̄(3)({4}) = 0.31

m̄(3)({1, 2, 3, 4, 5}) = 0.38

highest ones are retained, and other focal elements excluding the whole set element are

treated as noise that may be caused due to superficial rating or resulting from the process

of information fusion and then eliminated. Note that, the probabilities of the eliminated

focal elements are transferred to the whole set element in order to make sure that the

achieved mass function is still well-defined.

Formally, assuming that F ′ = F\{Θ} and F ′ contains n elements. After sorting

all elements in F ′ by descending probabilities, we obtain F ′ = {A1, A2, ..., An}, where

m(Ai) = pi with Ai ⊂ Θ, and p1 ≥ p2 ≥ p3 ≥ ... ≥ pn. Based on mass function m,

2-probabilities focused mass function m̈ : 2Θ → [0, 1] is defined as follows

m̈(A) =



m(A), for A ⊂ Θ and (m(A) = p1 or m(A) = p2);

1−
∑

{B⊂Θ|m(B)=p1}
m(B)−

∑
{C⊂Θ|m(C)=p2}

m(C), if A = Θ;

0, otherwise.

(5.1)

Let us consider two 2-probabilities focused mass functions m̈1 and m̈2 defined on the

same frame of discernment Θ. The method to combine these two 2-probabilities focused

mass functions, denoted by m̈ = m̈1 ] m̈2 and called 2-probabilities focused combination,

contains two steps as shown below

• First, 2-probabilities focused mass functions m̈1 and m̈2 are combined by using

Dempster’s rule regarding Equation (2.2). Let m′ denote the combined result, we

have m′ = m̈1 ⊕ m̈2.
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Table 5.12: Mass function m′1

m′1({1}) = 0.85

m′1({1, 2}) = 0.12

m′1({2}) = 0.02

m′1({3}) = 0.01

Table 5.13: Mass function m′2

m′2({3}) = 0.01

m′2({4}) = 0.05

m′2({5}) = 0.94

• Second, mass function m′ is converted into corresponding 2-probabilities focused

mass function m̄ according to Equation (5.1).

Supposing that we need to combine n 2-probabilities focused mass functions, defined

on the same frame Θ, by using 2-probabilities focused combination method. In the best

case, when n 2-probabilities focused mass functions as well as the temporary combined

results are 2-points focused mass functions, the proposed method will be the same as 2-

points focused combination method. Moreover, as remarked in [104], the time complexity

of 2-points focused combination method is linear O(n). Thus, the time complexity of the

proposed method is linear in the best case.

In the worst case known as when there no focal elements are eliminiated from both

n 2-probabilities focused mass functions and the temporary combined results, the time

complexity of 2-probabilities focused combination is the same as that of Dempster’s rule

whose time complexity is exponential O(|Θ |n−1) [17]. Therefore, the time complexity of

2-probabilities focused combination exponential in the worst case.

It can be seen that, with 2-probabilities focused combination method, RSs based on

DST can have three advantages as follows

• First, by transferring probabilities of eliminated focal elements to the whole set

element, this method can help RSs based on DST handle combining highly con-

flicting mass function. For example, in a RS based on DST with a rating domain

Θ = {1, 2, 3, 4, 5}, let us consider two ratings represented as two mass functions

shown in Tables 5.12 and 5.13 respectively. When combining these two mass func-

tions by using Dempster’s rule of combination, m′ = m′1⊕m′2, we will get a unsatis-

factory result, m′({3}) = 1. With 2-probabilities focused combination method, two

mass functions m′1 and m′2 are transformed into two 2-probabilities focused mass

functions shown in Tables 5.14 and 5.15 respectively, and the combined result of
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Table 5.14: 2-probabilities focused mass function m̈′1

m̈′1({1}) = 0.85

m̈′1({1, 2}) = 0.12

m̈′1({1, 2, 3, 4, 5}) = 0.03

Table 5.15: 2-probabilities focused mass function m̈′2

m̈′2({4}) = 0.05

m̈′2({5}) = 0.94

m̈′2({1, 2, 3, 4, 5}) = 0.01

these two 2-probabilities focused mass functions is more reasonable, as illustrated in

Table 5.16.

• Second, when reducing the number of focal elements in focal sets of mass functions,

logically, it takes less time to combine them together. Thus, time of computation

in the system is improved.

• Finally, from a given mass function, we can induce only one 2-probabilities focused

mass function; thus, we get only one combined result when combining mass func-

tions together by using 2-probabilities focused combination method. Let us consider

Example 6 again. Regarding mass function m1, there is only one 2-probabilities

focused mass function m̈1 as depicted in Table 5.17; and the 2-probabilities focused

mass function m̈2 corresponding to mass function m2 is shown in Table 5.18. Con-

sequently, after combining two 2-probabilities focused mass functions m̈1 and m̈2

using 2-probabilities focused combination method, we achieve one combined result

as illustrated in Table 5.19.

However, 2-probabilities focused combination method is not associative; in other words,

when combining several mass functions by using this combination method, the combined

result is influenced by the order of inputs. So as to evaluate the effect of this weakness

on RSs based on DST, we have conducted the experiment on Flixster data set. Details

and results of this experiment are presented in Section 5.3.2.

Generally, in RSs based on DST, we can model user preferences by t-probabilities
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Table 5.16: 2-probabilities focused mass function m̈′

m̈′({1}) = 0.214105793

m̈′({5}) = 0.710327456

m̈′({1, 2, 3, 4, 5}) = 0.075566751

Table 5.17: 2-probabilities focused mass function m̈1

m̈1({1}) = 0.30

m̈1({3}) = 0.30

m̈1({4}) = 0.04

m̈1({5}) = 0.30

m̈1({1, 2, 3, 4, 5}) = 0.06

focused mass functions as well as using t-probabilities focused combination method with

t is an integer number ranging from 1 to 2|Θ| − 2 for combining information.

5.3 Experiment

To evaluate 2-probabilities focused combination method, 2-points focused combination

method [15, 16, 17] were selected for the purpose of comparisons in both accuracy of

recommendations and time of computation. In addition, to measure accuracy of recom-

mendations, evaluation methods DS-MAE was chosen.

We conducted experiments on two RSs based on DST, which consist of characteristics

as described in the previous section. The first system, similar to the system proposed in

[97, 6], does not integrate with social networks. In contrast, the second one, the same

as the system introduced in [12], is capable of integrating with community information

extracted from the social network containing all users. Note that in these two systems,

Equation (3.27) is employed to compute distance between two users.

Since the two systems work with domains with soft ratings, the method suggested in

[6] was adopted for generating data sets in the experiments. Regarding this method, data

sets with hard ratings are selected first, and then a DS modeling function is applied to

transform the hard ratings into corresponding soft ratings. Here, Movielens and Flixster
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Table 5.18: 2-probabilities focused mass function m̈2

m̈2({1}) = 0.40

m̈2({2}) = 0.10

m̈2({4}) = 0.40

m̈2({1, 2, 3, 4, 5}) = 0.10

Table 5.19: 2-probabilities focused mass function m̈

m̈({1}) = 0.60

m̈({4}) = 0.15

m̈({1, 2, 3, 4, 5}) = 0.25

data sets described in Section 3.6.1 were used then first and the second systems, respec-

tively. In these data sets, each hard rating of a user Ui on an item Ik was transformed

into the corresponding soft rating which is presented by a 2-probabilities focused mass

function m̈i,k by using the DS modeling function presented Equation (3.33). Besides, in

both Movielens and Flixster data sets, the information about the genres in which a user

is interested is not available. Thus, we assume that if a user has rated an item then this

user is interested in all genres to which the item belongs.

In the rest of this section, experiments on the first system with Movielens data set as

well as those on the second system with Flixster data set are provided. Note that, the

values of parameters in these systems are selected mainly based on the analyzed results

published in [6, 97].

5.3.1 Experiment on Movielens Data Set

The values of parameters were selected as follows: γ = 10−4, w1 = 0.3, w2 = 0.1, and

∀(i, k){αi,k, σi,k} = {0.9, 2/9}. Particularly, it is unreasonable to select a fixed value for

parameter τ to use in the experiments. The reason is that, with different combination

methods, the values of user-user similarities of two specific users are different. Thus,

to select value for parameter τ , all values in user-user similarity matrix were sorted in

ascending, and then, a value of si,j that can retain top 30% of the highest values in the

rating matrix was chosen for τ .
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Figure 5.1: Overall DS-MAE versus K (Movielens data set)

Figure 5.2: Overall time of computation versus K (Movielens data set)
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Additionally, 10-fold cross validation was used in the experiments. Firstly, ratings in

this data set were divided into 10 folds; each fold contains random 10% ratings of each

user. Then, the experiments were conducted 10 times; in each time, one of 10 folds was

selected as testing data and the remaining ratings were employed as training data. The

average results of 10 times will be represented in the remainder of this section.

Figure 5.1 demonstrates overall DS-MAE criterion results changes with neighborhood

size K. Note that, in this figure, the smaller values are the better ones. As can be seen

in the figure, with K ≤ 40 performances of the two methods increase sharply as well

as being the same as each other. With K > 40, performances of both methods become

stable; and especially, 2-probabilities focused combination is slightly better than 2-points

focused combination method.

Execution time for the task of estimating ratings varies with neighborhood size K is

depicted in Figure 5.2. As can be seen in this figure, the time taken by 2-probabilities

focused is quite effective as well as being comparable to 2-points focused combination.

5.3.2 Experiment on Flixster Data Set

All users in Flixster data set belong to a social network whose nodes are linked by undi-

rected friendships. So as to discover overlapping communities in this social network, SLPA

algorithm [89] was selected. After executing this algorithm, 7 overlapping communities

were detected and they are depicted in Table 3.4.

The rating matrix containing all rating data in the Flixster data set was divided into

7 sub-rating matrices according to 7 communities. Each sub-rating matrix consists of

the ratings of members in the corresponding community. After that, tasks of predicting

unrated data, computing user-user similarities, selecting neighborhood, and estimating

rating data were performed in each community independently. The finally estimated

rating data for an active user were generated by combining all estimated rating data of

this user in the communities to which he/she belongs. The suitable recommendations will

be generated based on the finally estimated rating data.

The values of parameters were selected as follows: γ = 10−4, w1 = 0.3, w2 = 0.1 and

∀(i, k){αi,k, σi,k} = {0.9, 2/9}. To choose the value for parameter τ , all values in user-user

similarity matrix were sorted in ascending, and then, a value of si,j that can retain top
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Figure 5.3: Overall DS-MAE versus K (Flixster data set)

50% of the highest values in the rating matrix. In addition, this data set was separated

into two parts, testing data and training data; the first one contains random 5 ratings of

each user, and the other consists of the remaining ratings.

Overall DS-MAE criterion results varies with neighborhood size K is depicted in

Figure 5.3 . This figure shows that the performances of both combination methods are

similar to each other and rise sharply when K ≤ 15; with K in between 15 and 110, the

performances are fluctuated; and then become quite stable when K > 110. As observed

in this feature, regarding recommendation accuracy, 2-probabilities focused combination

is slightly better than 2-points focused combination.

The computation time for the task of estimating ratings changes with neighborhood

size K is depicted in Figure 5.4. As observed, execution time of 2-probabilities focused

combination is somewhat worse than but comparable to that of 2-points focused combi-

nation. Additionally, this result is consistent with the result illustrated in Figure 5.2.

To evaluate the weakness of 2-probabilities focused combination method, an experi-

ment was conducted as follows. Seventeen users, each of them belongs to 4 communities

concurrently, were selected; and these users as well as their corresponding communities

are shown in Table 5.20. For each user, the estimated ratings on an item in his/her com-

munities are considered as pieces of evidence of the finally estimated rating on the item.
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Figure 5.4: Overall time of computation versus K (Flixster data set)

Thus, the finally estimated rating is generated by combining corresponding 4 pieces of

evidence by using this method. There are 24 combinations of the inputs when combing

4 pieces of evidence. The performances of recommendations regarding 24 combinations

were evaluated by using DS-MAE evaluation criterion; and the results with K = 45 are

illustrated in Tables 5.21 and 5.22.

In Tables 5.21 and 5.22, each column presents the overall DS-MAE for one user; and

µ and SD are means and standard deviations of overall DS-MAE over 24 combinations

respectively. As observed, the standard deviations are very small (SD is smaller than

0.01 for 4 users, in between 0.01 and 0.1 for 12 users, and about 0.1059 for one user).

That means, in the RSs, when combining information by using 2-probabilities focused

combination, input order is just minor affected the combined results.

5.4 Conclusion

In RSs based on DST, tasks of combining information are performed very open and play

a vital role. However, highly conflicting mass functions representing user preferences are

very common in the systems. Thus, in this chapter, we have developed a new combination

method, called 2-probabilities focused combination, which can help the systems handle
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Table 5.20: Users belonging to four overlapping communities

User IDs
Community IDs

16 49 50 86 90 113 147

90 X X X X

206 X X X X

601 X X X X

1106 X X X X

1523 X X X X

1611 X X X X

1820 X X X X

2302 X X X X

2441 X X X X

2523 X X X X

2825 X X X X

3012 X X X X

3021 X X X X

3024 X X X X

3061 X X X X

3282 X X X X

3481 X X X X

combining highly conflicting mass functions. Also, the new method is capable of improving

time of computation and tackling the weakness of an alternative combination method

known as 2-points focused combination.
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Table 5.21: DS-MAE varies with twenty four combinations (part 1)

No.
User IDs

90 206 601 1106 1523 1611 1820 2302 2441

1 1.20663 0.78436 1.19467 0.67151 1.09809 0.76991 1.19449 0.51485 1.13954

2 1.15631 0.77841 1.19384 0.88947 1.09985 0.77171 1.11603 0.52434 1.13692

3 1.18254 0.83257 1.19132 0.67529 1.10304 0.77412 1.17816 0.65597 1.13778

4 1.06767 0.74446 1.18026 0.89375 1.10540 0.76072 1.10144 0.71870 1.18033

5 1.04333 0.71440 1.18976 0.89158 1.10707 0.76905 1.12229 0.55391 1.16420

6 1.04686 0.72602 1.17988 0.89321 1.10642 0.75059 1.09904 0.58141 1.12196

7 1.12474 0.73366 1.18902 0.89312 1.10520 0.85901 1.04451 0.81300 1.18558

8 1.13057 0.70265 1.18832 0.89324 1.11029 0.76606 1.04080 0.69762 1.17637

9 1.12119 0.76086 1.18543 0.89281 1.10424 0.84659 1.12487 0.82616 1.17124

10 1.06767 0.74446 1.18026 0.89375 1.10540 0.76072 1.10144 0.71870 1.18033

11 1.05450 0.70331 1.18430 0.89323 1.10712 0.75395 1.10842 0.58004 1.15608

12 1.04686 0.72602 1.17988 0.89321 1.10642 0.75059 1.09904 0.58141 1.12196

13 1.14624 0.68937 1.19437 0.89390 1.10560 0.79425 1.04196 0.60060 1.14811

14 1.13057 0.70265 1.18832 0.89324 1.11029 0.76606 1.04080 0.69762 1.17637

15 1.13490 0.79629 1.19928 0.84851 1.09768 0.76911 1.06677 0.54010 1.13746

16 1.15631 0.77841 1.19384 0.88947 1.09985 0.77171 1.11603 0.52434 1.13692

17 1.05450 0.70331 1.18430 0.89323 1.10712 0.75395 1.10842 0.58004 1.15608

18 1.04333 0.71440 1.18976 0.89158 1.10707 0.76905 1.12229 0.55391 1.16420

19 1.14624 0.68937 1.19437 0.89390 1.10560 0.79425 1.04196 0.60060 1.14811

20 1.12474 0.73366 1.18902 0.89312 1.10520 0.85901 1.04451 0.81300 1.18558

21 1.13490 0.79629 1.19928 0.84851 1.09768 0.76911 1.06677 0.54010 1.13746

22 1.20663 0.78436 1.19467 0.67151 1.09809 0.76991 1.19449 0.51485 1.13954

23 1.12119 0.76086 1.18543 0.89281 1.10424 0.84659 1.12487 0.82616 1.17124

24 1.18254 0.83257 1.19132 0.67529 1.10304 0.77412 1.17816 0.65597 1.13778

µ 1.11796 0.74720 1.18920 0.85247 1.10417 0.78209 1.10323 0.63389 1.15463

SD 0.05274 0.04295 0.00583 0.08275 0.00377 0.03411 0.04882 0.10588 0.02020
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Table 5.22: DS-MAE varies with twenty four combinations (part 2)

No.
User IDs

2523 2825 3012 3021 3024 3061 3282 3481

1 1.54115 1.13978 1.50942 1.29970 0.97805 0.58283 1.93319 1.09029

2 1.53108 1.08298 1.49625 1.29963 0.94727 0.64155 1.92527 1.09210

3 1.53921 1.10816 1.43177 1.29970 0.93814 0.57665 1.88074 1.06980

4 1.52362 1.06260 1.45589 1.29946 0.93895 0.70653 1.81822 1.07599

5 1.53234 0.95396 1.49751 1.29937 0.95869 0.75097 1.89421 1.02075

6 1.51809 0.99396 1.46803 1.29937 0.94765 0.74716 1.80553 1.00148

7 1.53751 1.01736 1.53441 1.29946 1.00114 0.51073 1.83120 1.29152

8 1.53106 1.03701 1.52828 1.29947 1.00664 0.70271 1.83379 1.29183

9 1.53389 1.10749 1.43813 1.29951 0.92185 0.62258 1.80976 1.13714

10 1.52362 1.06260 1.45589 1.29946 0.93895 0.70653 1.81822 1.07599

11 1.53366 1.00921 1.49699 1.29940 0.97276 0.74295 1.84090 0.99981

12 1.51809 0.99396 1.46803 1.29937 0.94765 0.74716 1.80553 1.00148

13 1.54034 1.03765 1.59069 1.29957 1.00905 0.56031 1.87270 1.15649

14 1.53106 1.03701 1.52828 1.29947 1.00664 0.70271 1.83379 1.29183

15 1.54321 1.05644 1.58039 1.29975 1.00663 0.56641 1.92080 1.09462

16 1.53108 1.08298 1.49625 1.29963 0.94727 0.64155 1.92527 1.09210

17 1.53366 1.00921 1.49699 1.29940 0.97276 0.74295 1.84090 0.99981

18 1.53234 0.95396 1.49751 1.29937 0.95869 0.75097 1.89421 1.02075

19 1.54034 1.03765 1.59069 1.29957 1.00905 0.56031 1.87270 1.15649

20 1.53751 1.01736 1.53441 1.29946 1.00114 0.51073 1.83120 1.29152

21 1.54321 1.05644 1.58039 1.29975 1.00663 0.56641 1.92080 1.09462

22 1.54115 1.13978 1.50942 1.29970 0.97805 0.58283 1.93319 1.09029

23 1.53389 1.10749 1.43813 1.29951 0.92185 0.62258 1.80976 1.13714

24 1.53921 1.10816 1.43177 1.29970 0.93814 0.57665 1.88074 1.06980

µ 1.53376 1.05055 1.50231 1.29953 0.96890 0.64261 1.86386 1.11015

SD 0.00720 0.05229 0.04950 0.00013 0.03047 0.08275 0.04570 0.09533
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Chapter 6

Noise-Averse Combination

6.1 Introduction

As mentioned previously, in RSs based on DST, when several or a large number of mass

functions are combined together by using Dempster’s rule [7], in the focal set of the

combined result, most focal elements usually have very low probabilities whereas a few

focal elements have high probabilities. To deal with this issue, in [15, 17, 104], the

authors introduced a combination method called 2-points focused combination; and in

the previous chapter, we also developed a new combination method called 2-probabilities

focused combination.

However, when using 2-points focused or 2-probabilities focused combination methods,

focal elements with probabilities that are not very small might also be eliminated in some

cases. With 2-points focused combination method, focal elements (excluding the whole set

element) which are not selected to the corresponding triplet mass function will always be

eliminated regardless of whether their probabilities are infinitesimal or not. Additionally,

when 2-probabilities focused combination method is used for combining information, the

focal elements whose probabilities are not in top two highest probabilities are constantly

eliminated except for the whole set element.

Intuitively, focal elements with probabilities which are not very small could contain

information that is valuable for the RSs. When these focal elements are transferred to

the whole set element, the information is treated as ignorance in the reasoning process of

generating suitable recommendations to a specific user. In other words, the elimination
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of this kind of focal elements could affect quality of recommendations because of loss of

valuable information.

Under such an observation, in this chapter, we develop a new combination method that

is capable of eliminating only the focal elements having very low probabilities. Regarding

this method, first, a threshold to identify very low probabilities is clearly defined, and

then focal elements with probabilities which are less than or equal to this threshold are

eliminated. It is seen that reducing mass functions by using the threshold can help the RSs

avoid unsatisfactory results, prevent loss of valuable information, improve computation

time, and overcome the weakness of 2-points focused combination method. Moreover,

the new method is tested in a wide range of experiments on Movielens data set, and the

experiment results indicate that the proposed method is much better than the baselines

in accuracy of recommendations.

6.2 The Proposed Combination Method

Let us consider a RS based on DST with a rating domain which consists of L levels of

preferences, Θ = {θ1, θ2, ..., θL}; and a mass function m : 2Θ → [0, 1]. As mentioned pre-

viously, when mass function m is a combined result by using Dempster’s rule of combina-

tion, only some focal elements in the focal set of this mass function have high probabilities

whereas many others have very low probabilities [103].

Assuming that ε denotes a threshold to distinguish very low probabilities with the

others; actually, ε should be a very small positive number. We propose that, in mass

function m, focal elements with probabilities are less than or equal to threshold ε should

be treated as noise and then eliminated. Note that, the probabilities of the eliminated

focal elements must be added to that of the whole set element. After eliminating noise or

the focal elements with very low probabilities, the achieved mass function is then called

noise-averse mass function.

Formally, based on mass function m and threshold ε, a noise-averse mass function

ṁ : 2Θ → [0, 1] is defined as follows

ṁ(A) = m(A), for A ⊂ Θ and m(A) > ε;

ṁ(Θ) = m(Θ) +
∑

{B⊂Θ|m(B)≤ε}

m(B).
(6.1)
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Subsequently, in RSs based on DST, ratings or user preferences are represented by noise-

averse mass functions instead of general ones.

Additionally, let us consider two noise-averse mass functions ṁ1 and ṁ2 which are

defined on the same rating domain Θ. The new combination method called noise-averse

combination for combining these two mass functions, denoted by ṁ = ṁ1 C ṁ2, is defined

as follows

ṁ(A) = m′(A), for A ⊂ Θ and m′(A) > ε;

ṁ(Θ) = m′(Θ) +
∑

{B⊂Θ|m′(B)≤ε}

m′(B),

where, m′ = ṁ1 ⊕ ṁ2.

(6.2)

As can be seen in Equation (6.2), first two noise-averse mass functions ṁ1 and ṁ2 are

combined by using Dempster’s rule of combination as shown in Equation (2.2), and then

the combined result is transformed into corresponding noise-averse mass function ṁ ac-

cording to Equation (6.1).

By transferring the focal elements with probabilities less than or equal to threshold ε

to the whole set element, the noise-averse combination method obtains the advantages

as follows

• First, this method is capable of avoiding unsatisfactory results that are caused by

combining highly conflicting mass functions by using Dempster’s rule of combina-

tion.

• Second, this method helps to not only prevent loss of valuable information but also

improve quality of recommendations because of its ability to retain all focal elements

whose probabilities are greater than the threshold.

• Third, this method helps to improve time of computation because eliminating focal

elements with very low probabilities will reduce time of computation.

• Finally, this method overcomes the problem of unstable results caused by the

non-uniqueness of triplet mass functions when using 2-points focused combination

method.

However, noise-averse combination method is not associative. In the future, we will
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measure the effect of input orders on performances of recommendations when this method

is used for combining information.

Supposing that we need to combine n noise-averse mass functions, which are defined

on the same rating domain Θ, by using the new combination method. In the worst case,

known as when the probabilities of focal elements (excluding the whole set element) in

focal sets of both n noise-averse mass functions and the temporary results are all greater

than threshold ε, it means that no focal elements are eliminated. In this situation, the time

complexity of the new combination is the same as that of Dempster’s rule of combination

whose time complexity is exponential O(|Θ |n−1) [17]. Therefore, it can be said that the

time complexity of the new combination method is still exponential in the worst case.

In the best case, when both n noise-averse focused mass functions and the temporary

results are 2-points focused mass functions, noise-averse combination method will be the

same as 2-points focused combination method whose time complexity is linear O(n) [104].

6.3 Experiment

To evaluate noise-averse combination method, we integrated it into the RS based on

DST [97], and selected 2-points focused and 2-probabilities focused combination methods

for performance comparison on both accuracy of recommendations as well as time of

computation. In addition, we also chose evaluation criteria DS-MAE [6], DS-Precision

[22], DS-Recall [22], and DS-F1 [6] for measuring performances.

MovieLens data set described in Section 3.6.2 was used in experiments. In this data

set, genres of movies are considered as context information; and we assumed that if a user

has rated an item then this user is said to be interested in all genres to which the item

belongs. Moreover, the RS [97] works with soft ratings; thus, each hard rating in the data

set was transformed into the corresponding soft rating by using Equation 3.33.

In the experiments, we assumed that focal elements with probabilities which are less

than or equal to 10−10 are considered as noise; thus, ε = 10−10 was selected for noise-averse

combination method. Additionally, the values of the other parameters were selected based

on the analyzed results published in [97, 6], as follows: w1 = 0.3, w2 = 0.1, γ = 10−5,

β = 1, and ∀i, k{αi,k, σi,k} = {0.9, 2/9}. Particularly, it is unreasonable to select a

fixed value for parameter τ to use in the experiments. The reason is that, with different
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Figure 6.1: Results evaluated by criterion DS-MAE versus K

Figure 6.2: Results evaluated by criterion DS-Precision versus K
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Figure 6.3: Results evaluated by criterion DS-Recall versus K

Figure 6.4: Results evaluated by criterion DS-F1 versus K
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Figure 6.5: Overall time of computation versus K

combination methods, the values of user-user similarities of two specific users are different.

To select the value for parameter τ , we first sorted all values in the user-user similarity

matrix [97] in ascending order, and then we selected the value which can retain top 65%

of the highest values in rating matrix as the value for parameter τ . Besides, 10% ratings

of each user were randomly selected to be the testing set and the remaining ratings were

considered as the training set.

Figure 6.1 illustrates the overall results of recommendation performances evaluated by

criterion DS-MAE changes with neighborhood size K. As observed in this figure, perfor-

mances of 2-points focused and 2-probabilities focused combination methods are similar to

each other. In particular, the performance of noise-averse combination method is much

better than those of 2-points focused and 2-probabilities focused combination methods.

Furthermore, Figures 6.2, 6.3, and 6.4 show the same comparison results obtained by

evaluating with criteria DS-Precision, DS-Recall, and DS-F1 respectively.

As for comparing performances in time of computation, we measured the execution

time for the task of estimating ratings [97] varies with neighborhood size K. The compari-

son results are depicted in Figure 6.5. Regarding this figure, 2-points focused combination

method is the most effective one; the second place is 2-probabilities focused combination

method; and noise-averse combination method is in the last place. However, as observed,
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the performance in time of computation of the new combination method is not much

worse than those of the baselines.

6.4 Conclusion

In this chapter, we developed a new reducing combination method, called noise-averse

combination, for combining information in RSs based on DST. By reducing focal elements

whose probabilities are less than or equal to a very small threshold ε, this method is

capable of preventing loss of valuable information about user preferences in the systems.

Regarding the experimental results, the new method outperforms the baselines in accuracy

of recommendations; in addition, time of computation of this method is not much worse

than that of 2-points focused combination method whose time complexity is linear.

80



Chapter 7

Mixed Rules of Combination

7.1 Introduction

In RSs based on DST, tasks of combining information play a significant role as well as

being used very often; and, in almost all cases, Dempster’s rule of combination [7] is

applied. However, this combination method does not allow to combine totally conflicting

mass functions. Therefore, in the existing RSs based on DST, totally conflicting mass

functions need to be eliminated in the data sets. To do this, values of dispersion factors

in the Dempster-Shafer modeling functions [6] have been selected to be less than 1 to make

sure that the whole set element is added to corresponding mass functions. In general, some

people can express their preferences on an item with rating values that are completely

different from the ones evaluated by some others. In other words, several mass functions

corresponding to the ratings on an item can be totally conflicting. Thus, in RSs based

DST, these mass functions need to be combined together.

In this chapter, we first discuss the characteristics of combining information in RSs

based on DST, and then analyze six popular combination methods in the context of RSs.

Based on the analysis results, we propose two new mixed combination methods that help

to handle combining totally conflicting mass functions in RSs based on DST. To evaluate

the new methods, we integrate them into a typical RS based on DST, and then measure

recommendation performances on Movielens data set.
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7.2 Characteristics of Combining Information

In RSs based on DST, user preferences on items are represented as mass functions, and

recommendations are mainly generated based on combining these mass functions. To

work with these systems, a binary combination operator, denoted by �, is required to

satisfy three basic requirements as below

• Commutativity. m1 �m2 = m2 �m1 for any two mass functions m1 and m2;

• Associativity. (m1 �m2)�m3 = m1 � (m2 �m3) for any three mass functions m1,

m2 and m3;

• Idempotence. m = m�m for any mass function m.

Among these requirements, only the first one is mandatory. In addition, if operator �

is not associative but quasi-associative [105], it is still accepted. Operator � is quasi-

associative if it supports updating an existing combined result when a new mass function

needs to be combined with that result [106, 105]. In case, this operator is neither as-

sociative nor quasi-associative, but orders of inputs just slightly affect recommendation

performances; it can be used in the systems.

As observed in the RSs, conflicting ratings usually occur because of the diversity of

users. When handling conflict by using Yager’s rule of combination [107], the conflict

is transferred into the whole set element; therefore, in most cases, combined results will

be vacuous. On the contrary, if Smets’ rule of combination [108] is applied, the conflict

is transferred into the empty set element; and in this situation, combined results have

a high possibility to be a mass function whose focal set contains only the emptyset,

called fully-subnormal mass function. Therefore, with both Yager’s and Smets’ rules

of combination, the achieved information is very high uncertainty. Furthermore, in the

systems, the number of ratings on each item increases over time, and new ratings are

required to combine with the existing ones on this item for the purpose of updating

knowledge about users’ preferences on the item. When combing a combined result, which

is vacuous, with any other new mass function by using Yager’s or DP’s [109] rule of

combination, the obtained result will always be vacuous. Whereas, with Smets’s rule of

combination, when combining fully-subnormal mass function with a new mass function,

the combined result will still be fully-subnormal mass function regardless of the new
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Table 7.1: Ratings on item Ik

Users Items Ratings

Ui Ik
ri,k({5}) = 0.15

ri,k({4}) = 0.85

Uj Ik
rj,k({3}) = 0.90

rj,k({2}) = 0.10

one. The issue of unchanged results when combining with new mass functions is called

non-sense combination; and in the RSs, it is better if operator � can void this issue.

Additionally, in the RSs, generally different users can have different preferences on an

item; thus they can evaluate opposite ratings on the same item. For this reason, totally

conflicting mass functions are common in the systems. In fact, these mass functions

also need to be combined together, as illustrated in Example 7. Therefore, operator �

must be capable of dealing with this issue, called totally-conflicting combination; and this

requirement cannot be optional.

Example 7 Let us consider a RS based on DST with a rating domain Θ =

{1, 2, 3, 4, 5}. Supposing that, in this system, (1) each rating of a user on an

item is considered as a piece of users’ preference on the item, and (2) users’

preference on an item is computed by combing all pieces of users’ preference on

this item. In addition, assuming that there are only two users Ui and Uj who

have rated item k, and the ratings are represented as two mass functions ri,k

and rj,k shown in Table 7.1. As we can see in this table, these mass functions

are totally conflicting. Obviously, the users’ preference on item k does exist;

thus, in this case, two mass functions ri,k and rj,k must be combined together.

As for generating recommendations for a particular user, the RSs commonly predict

the ratings of this user on all unseen items, rank these ratings, and then select the highest

ranked items. In the predicting process, combining operations are used frequently for

combining pieces of evidence of this user’s preference on each unseen item [12, 97, 6].

However, with Smets’s rule of combination, a predicted rating can be fully subnormal; thus

it cannot compare with other ones, this issue is called incomparable ratings. Therefore, in
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order to be used in the systems, operator � need to make sure that predicted ratings on

unseen items are able to be ranked; and this requirement is mandatory.

In short, beside three basic requirements, operator� needs to be capable of overcoming

three problems as listed below

• Non-sense combination;

• Totally-conflicting combination;

• Incomparable ratings.

7.3 Existing Combination Methods

In a RS based on DST, let us consider n mass functions m1,m2, ...,mn defined on the

same rating domain Θ. Assuming that the sources providing these mass functions are

independent. In this section, six popular combination methods for combining two or all

of these mass functions together will be analyzed according to the requirements listed in

the previous section.

7.3.1 Dempster’s Rule of Combination

Dempster’s rule of combination [7] for combining two mass functions m1 and m2 has

been presented in Section 2.1. Nevertheless, for better understanding in this chapter, this

combination method is re-denoted by m⊕ = m1 ⊕m2 as below

m⊕(∅) = 0;

m⊕(A) =
1

1−K
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C), for ∅ 6= A ⊆ Θ;

where K =
∑

B,C⊆Θ,B∩C=∅

m1(B)m2(C) 6= 0.

(7.1)

Here, K represents the basic probability mass associated with conflict before normaliza-

tion. When K = 1, m⊕ does not exist; that means, this combination method is not able

to overcome totally-conflicting combination problem.

It can be seen that Dempster’s rule of combination is commutative, associative, but

not idempotent [7, 106]. Additionally, it is capable of dealing with non-sense combination
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problem. Besides, predicted ratings that are generated by using this combination method

are always comparable.

7.3.2 Smets’s Rule of Combination

Smets’s rule of combination [108], also known as conjunctive rule of combination, for

combining two mass functions m1 and m2, denoted by m⊗ = m1 ⊗ m2, is defined as

follows

m⊗(A) =
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C), for A ⊆ Θ. (7.2)

As can be seen in this equation, masses are not re normalized and the conflict is stored in

the mass given to the empty set. The same as Dempster’s rule of combination, this com-

bination method is commutative, associative, but not idempotent [108]. Furthermore, it

is capable of tackling totally-conflicting combination problem. However, when combining

two totally conflicting ones together, the focal set of the combined result will always be

fully-subnormal mass function, as illustrated in Example 8.

Example 8 Let us consider the RS in Example 7 again. Assuming that

only two users Ui and Uj have rated item It, and the ratings are represented

as two mass functions ri,t and rj,t shown in Table 7.2. When computing users’

preferences by using Smets’ rule of combination, users’ preference on item k

is the same as that on item t, as shown below

(ri,k ⊗ rj,k)(∅) = 1;

(ri,k ⊗ rj,k)(A) = 0, for ∅ 6= A ⊆ Θ;

(ri,t ⊗ rj,t)(∅) = 1;

(ri,t ⊗ rj,t)(A) = 0, for ∅ 6= A ⊆ Θ.

(7.3)

As can be seen, these combined results are unreasonable because ratings on

item i are significantly different from those on item i′.

When combining n mass functions m1,m2, ...,mn together by using Smets’s rule of com-

bination; if at least two mass functions mi and mj with i 6= j are totally conflicting,

regardless of the other mass functions, the combined result will always be fully subnor-

mal. In addition, in some cases, the predicted ratings can also be fully subnormal. Thus,
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Table 7.2: Ratings on item It

Users Items Ratings

Ui It
ri,t({2, 3}) = 0.05

ri,t({2}) = 0.95

Uj It rj,t({1}) = 1.00

as mentioned earlier, this combination method can not tackle both no-sense combination

and incomparable ratings problems.

7.3.3 Yager’s Rule of Combination

Yager’s rule of combination [107] for combining two mass functions m1 and m2, denoted

by m� = m1 �m2, is defined as below

m�(A) =



0, if A = ∅;∑
B,C⊆Θ,B∩C=A

m1(B)m2(C), for ∅ 6= A ⊂ Θ;

m1(Θ)m2(Θ) +
∑

B,C⊆Θ,B∩C=∅

m1(B)m2(C), if A = Θ.

(7.4)

This combination method is commutative, but neither associative nor idempotent [107].

Actually, it is quasi-associative [105]; and the corresponding n-ary operator [106] to com-

bine n mass functions m1,m2, ...,mn is given by

m�(∅) = 0;

m�(A) =
∑

∩ni=1Ai=A

m1(A1)m2(A2)...mn(An), for ∅ 6= A ⊂ Θ;

m�(Θ) = m1(Θ)m2(Θ)...mn(Θ) +
∑

∩ni=1Ai=∅

m1(A1)m2(A2)...mn(An);

where Ai ⊆ Θ with i = 1, ..., n.

(7.5)

With this n-ary operator, a combined result is capable of updating when a new mass

function is available [106].

In addition, with Yager’s rule of combination, the conflict is transferred to the whole

set element Θ. For this reason, this combination method is able to deal with totally-

conflicting combination problem. But, when two totally conflicting mass functions are
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combined together, the combined result is always vacuous, as demonstrated in Example

9.

Example 9 Let us consider the RS in Examples 7 and 8. When computing

users’ preferences on item Ui and Uj by using Yager’ rule of combination,

combined results are similar, as below

(ri,k � rj,k)(Θ) = 1;

(ri,k � rj,k)(A) = 0, for A ⊂ Θ.

(ri,t � rj,t)(Θ) = 1;

(ri,t � rj,t)(A) = 0, for A ⊂ Θ.

(7.6)

As observed, the combined results are unreasonable.

Moreover, when combining n mass functions, m1,m2, ...,mn by using Yager’s rule of com-

bination, the combined result will always be vacuous if there are at least two mass func-

tions mi and mj with i 6= j are totally conflicting. Thus, this combination method is not

able to overcome non-sense combination problem. Besides, predicted ratings generated

based on this combination method can be ranked.

7.3.4 Dubois and Prade’s Rule of Combination

Dubois and Prade (DP)’s rule of combination [109], called disjunctive rule of combination,

for combining two mass functions m1 and m2, denoted by m} = m1 }m2, is given by

m}(A) =
∑

B,C⊆Θ,B∪C=A

m1(B)m2(C), for A ⊆ Θ. (7.7)

This combination method is commutative, associative, but not idempotent [109]. In

addition, it supports combining totally conflicting mass functions. However, when com-

bining a large number of mass functions together by using this method, the combined

result is vacuous in most of cases. The reason is that, with union operator, ∪, the larger

number of mass functions are combined, the higher possibility of the union result con-

taining all elements in rating domain.

Moreover, when the combined result is vacuous, it will still be vacuous regardless of

other new mass functions that are added. Besides, this combination method is capable of

tackling incomparable ratings problem.
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7.3.5 Dubois and Prade’s “hybrid” Rule of Combination

DP’s “hybrid” rule of combination [110] for combining two mass functions m1 and m2,

denoted by m� = m1 �m2, is defined as follows

m�(∅) = 0;

m�(A) =
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C)

+
∑

B,C⊆Θ,B∩C=∅,B∪C=A

m1(B)m2(C), for ∅ 6= A ⊆ Θ.

(7.8)

This combination method is commutative, but neither associative nor idempotent

[110]. In addition, it is able to overcome totally-conflicting combining, non-sense combi-

nation, and incomparable ratings problems.

7.3.6 Averaging Rule of Combination

The averaging rule of combination [111], also known as mixing combination rule, for

combining two mass functions m1 and m2, denoted by m~ = m1~m2, is defined as below

m~(A) =
1

2

(
m1(A) +m2(A)

)
, for A ⊆ Θ. (7.9)

This combination method is commutative and idempotent. In addition, it is not associa-

tive, but quasi-associative [106]. Let m~ denotes the combined result after combining n

mass functions m1,m2, ...,mn with n > 1, m~ = m1 ~m2 ~ ...~mn. When a new mass

function m′ needs to be combined with this combined result, it can be updated as follows

m~(A) =
m~(A)× n+m′(A)

n+ 1
, for ∀A ⊆ Θ. (7.10)

Besides, the same as DP’s “hybrid” rule of combination, this combination method is

capable of dealing with the three problems.

7.3.7 Summary

The summary of analyzing six popular combination methods is shown in Table 7.3. As

observed in this table, all six selected combination methods satisfy the first mandatory

requirement (Commutativity). However, Dempster’s rule of combination can not meet

the next mandatory requirement (TCC), and Smets’ rule of combination does not satisfy
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Table 7.3: Summary of analyzing popular combination methods

Methods
Requirements

Commutativity? Associativity Idempotence NSC TCC? IR?

Dempster’s Yes Yes No Yes No Yes

Smets’s Yes Yes No No Yes No

Yager’s Yes No‡ No No Yes Yes

DP’s Yes Yes No No Yes Yes

DP’s “hybrid” Yes No No Yes Yes Yes

Averaging Yes No‡ Yes Yes Yes Yes

NSC: Tackling non-sense combination problem.

TCC: Tackling totally-conflicting combination problem.

IR: Tackling incomparable ratings problem.

? Requirements are mandatory.

‡ Combination methods are not associative, but quasi-associative.

the last mandatory requirement (IR). Therefore, both of these combination methods are

not suitable for RSs based on DST.

The last four combination methods listed in this table can be used for combining

information in the systems. However, when combining totally conflicting mass functions

with Yager’s rule of combination, the combined result will always be vacuous; and when

combining a large number of mass functions together, both Yager’s and DP’s combination

rules suffer from the non-sense combination problem. Moreover, only DP’s “hybrid” rule

of combination is neither associative nor quasi-associative; thus, in the experiments we

will measure the effect of input orders on recommendation performances.

7.4 Two Mixed Rules of Combination

According to the literature, among the six popular combination methods, Dempster’s

rule of combination is the most well-known as well as playing an important role in the

research area of DST [99]. So far, this combination method has been applied in various

applications [100, 37, 112]. However, as mentioned earlier, it cannot work with RSs based

on DST because of inability to overcome fully-conflicting combination problem. Moreover,

when combining highly conflicting mass functions, this combination method can generate
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Table 7.4: Results of combining two totally conflicting mass functions

Dempter’s Smets’s Yager’s DP’s or DP’s “hybrid” Averaging

N/A r⊗(∅) = 1 r�({1, 2, 3, 4, 5}) = 1

r}({3, 5}) = r�({3, 5}) = 0.135 r~({5}) = 0.075

r}({2, 5}) = r�({2, 5}) = 0.015 r~({4}) = 0.425

r}({3, 4}) = r�({3, 4}) = 0.765 r~({3}) = 0.45

r}({2, 4}) = r�({2, 4}) = 0.085 r~({2}) = 0.05

Mass function r is the combined result after combining two mass functions ru,i and ru′,i.

counterintuitive results [14].

As for better understanding abilities to deal with totally conflicting mass functions

of six methods, let us consider two examples illustrated in Tables 7.4. Table 7.4 shows

results after combining two totally conflicting ratings presented in Table 7.1. As can be

seen in this table, when combining two totally conflicting mass functions, DP’s, DP’s

“hybrid” and averaging rule of combinations can achieve the most reasonable results.

Under such an observation, we propose two new mixed combination methods for com-

bining information in RSs based on DST. Formally, let us consider two mass functions m1

and m2 defined on rating domain Θ. In order to combine these two mass functions, a com-

bination of DP’s and Dempster’s rules of combination, called mixed 1 rule of combination

and denoted by m� = m1 �m2, is defined as follows

m�(A) =



0, for A = ∅;
1

1−K
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C), for K < η1, ∅ 6= A ⊆ Θ;

∑
B,C⊆Θ,B∪C=A

m1(B)m2(C), for K ≥ η1, ∅ 6= A ⊆ Θ;

where K =
∑

B,C⊆Θ,B∩C=∅

m1(B)m2(C) and η1 ∈ [0, 1].

(7.11)

The second new method is a combination of Dempster’s and averaging rule of combination,
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called mixed 2 rule of combination and denoted by m� = m1 �m2, is given by

m�(A) =



0, for A = ∅;
1

1−K
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C), for K < η2, ∅ 6= A ⊆ Θ;

1

2
(m1(A) +m2(A)), for K ≥ η2, ∅ 6= A ⊆ Θ;

where K =
∑

B,C⊆Θ,B∩C=∅

m1(B)m2(C) and η2 ∈ [0, 1].

(7.12)

The parameters η1 and η2 represent a threshold for separating low conflicting from high

conflicting mass functions; and the values for them are selected according to a specific

RS based on DST. When two mass functions are low conflicting, they are combined by

using Dempster’s rule of combination; otherwise, DP’s or averaging rules of combination

is employed.

It can be seen that two new mixed combination methods can satisfy three manda-

tory requirements and an optional one (N.S.C). However, these combination methods are

neither idempotent nor associative. In the experiments, we will measure the influence of

input orders on recommendation performances when these methods are applied.

7.5 Experiment

In order to evaluate two new mixed combination methods, they were integrated into a RS

[97], and the recommendation performances according to these methods were measured.

Note that, for these methods, we selected η1 = η2 = 1; that means DP’s or averaging

rules of combination are only employed to combine totally conflicting mass functions.

As mentioned earlier, among the six popular combination methods, four of them can

be applied into RSs based on DST. In the experiments, all of these four methods were used

as baselines. In addition, to measure recommendation performances, evaluation criteria

DS-MAE [6], DS-Precision [22], DS-Recall [22], and DS-F1 [6] were selected.

Movielens data set described in Section 3.6.1 was selected for the experiments. In

this data set, information about the genres, in which a user is interested, is not available;

thus, we assumed that a user is interested in a genre if this user has rated at least 5

items belonging to that genre. In addition, each hard rating was transformed into a

corresponding soft rating by using Equation (3.33). Note that, when computing user-user
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Table 7.5: Performance comparison according to DS-MAE

K
Combination Methods

Yager’s DP’s DP’s “hybrid” Averaging Mixed 1 Mixed 2

5 1.51340 1.49701 0.97056 1.08703 0.86083 0.85828

10 1.51341 1.49969 0.97846 1.08775 0.85347 0.85159

15 1.51341 1.50121 0.98228 1.08832 0.85203 0.84956

20 1.51340 1.50212 0.98622 1.08876 0.84884 0.84715

25 1.51339 1.50269 0.99078 1.08909 0.84846 0.84713

30 1.51338 1.50304 0.99389 1.08945 0.84740 0.84649

35 1.51337 1.50324 0.99993 1.08970 0.84723 0.84568

40 1.51336 1.50337 1.00344 1.08994 0.84638 0.84542

45 1.51336 1.50346 1.00628 1.09024 0.84603 0.84581

50 1.51335 1.50352 1.00811 1.09043 0.84640 0.84625

55 1.51335 1.50356 1.00789 1.09055 0.84626 0.84601

60 1.51334 1.50358 1.00831 1.09065 0.84636 0.84591

65 1.51334 1.50360 1.00941 1.09073 0.84612 0.84516

70 1.51334 1.50361 1.01020 1.09083 0.84577 0.84493

75 1.51334 1.50362 1.00990 1.09093 0.84574 0.84475

80 1.51334 1.50363 1.01048 1.09108 0.84595 0.84517

85 1.51334 1.50363 1.01044 1.09117 0.84621 0.84541

90 1.51334 1.50363 1.01049 1.09126 0.84631 0.84564

95 1.51334 1.50363 1.01131 1.09133 0.84613 0.84592

100 1.51334 1.50363 1.01062 1.09138 0.84628 0.84567

105 1.51333 1.50364 1.01132 1.09142 0.84618 0.84557

110 1.51333 1.50364 1.01162 1.09147 0.84621 0.84548

115 1.51333 1.50364 1.01028 1.09151 0.84581 0.84558

120 1.51333 1.50364 1.00987 1.09156 0.84573 0.84524

125 1.51333 1.50364 1.00930 1.09162 0.84558 0.84527

130 1.51333 1.50364 1.00952 1.09166 0.84551 0.84494

135 1.51333 1.50364 1.00964 1.09170 0.84547 0.84482

140 1.51333 1.50364 1.01081 1.09176 0.84575 0.84494

145 1.51333 1.50364 1.01083 1.09182 0.84545 0.84488

150 1.51333 1.50364 1.01105 1.09187 0.84582 0.84506
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similarity, if the focal set of a rating does not consist of the whole set element, the whole

set element with very low probability ε, an infinitesimal positive number, needs to be

added into the focal set. The user-user similarity between two users was computed by

using the Equations 3.27, 3.28, and 3.29. To select the value for threshold τ , all values of

user-user similarity were sorted in ascending, and then the value that can retain top 80%

of highest values was chosen. The values of the other parameters were selected as follows:

∀(i, k), {αi,k, σi,k} = {0.9, 0.1}, w1 = 0.3, w2 = 0.1, γ = 10−6 and ε = 10−300. Besides, 10%

of ratings in the data set were randomly selected as testing data, the remaining ratings

were used as training data.

Table 7.5 summarizes recommendation performances changing with neighborhood size

K according to DS-MAE. In this table, overall performance of each combination method

is presented in a column, the underlined value indicates the best one in each row. As can be

seen, two new mixed combination methods outperform the other ones for all the cases. In

fact, the second mixed combination method is in the first place; following is the first mixed

combination method; the third place is DP’s “hybrid” rule of combination; averaging rule

of combination is better than DP’s rule of combination; and Yager’s rule of combination

is the worst one. Besides, recommendation performance of DP’s rule of combination is

just slightly better than that of Yager’s rule of combination; and performances of these

two methods are significantly worse than the others. The reason is that when combining

a large number of mass functions with these two methods, the combined results usually

are vacuous.

In Fig. 7.1, the similar information, as presented in Table 7.5, is depicted in a visual-

ization way. Additionally, the result of performance comparison according DS-Recall is

the same as the comparison result according to DS-MAE, as illustrated in Fig. 7.2. That

means two proposed combination methods also outperform the baselines with criterion

DS-Recall.

Fig. 7.3 and Fig. 7.4 show the results of performance comparison according to criteria

DS-Precision and DS-F1, respectively. Regarding these figures, DP’s “hybrid” rule of

combination is the best one, and Yager’s and DP’s rules of combination are still signifi-

cantly worse than the others. In addition, the performances of two proposed combination

methods can be comparable to DP’s “hybrid” and averaging rules of combination.
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Figure 7.1: Performances according to DS-MAE versus K

Figure 7.2: Performances according to DS-Recall versus K
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Figure 7.3: Performances according to DS-Precision versus K

Figure 7.4: Performances according to DS-F1 versus K
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Table 7.6: Changes of performances according to DS-MAE

No.
Combination Methods

DP’s “hybrid” Mixed 1 Mixed 2

1 0.951786 0.851369 0.850781

2 0.953341 0.851369 0.850781

3 0.952666 0.851369 0.850781

4 0.954449 0.851369 0.850781

5 0.958122 0.851369 0.850781

6 0.956171 0.851369 0.850781

7 0.952064 0.851369 0.850781

8 0.954039 0.851369 0.850781

9 0.951597 0.851369 0.850781

10 0.954449 0.851369 0.850781

11 0.957031 0.851369 0.850781

12 0.956171 0.851369 0.850781

13 0.952015 0.851369 0.850781

14 0.954039 0.851369 0.850781

15 0.952465 0.851369 0.850781

16 0.953341 0.851369 0.850781

17 0.957031 0.851369 0.850781

18 0.958122 0.851369 0.850781

19 0.952015 0.851369 0.850781

20 0.952064 0.851369 0.850781

21 0.952465 0.851369 0.850781

22 0.951786 0.851369 0.850781

23 0.951597 0.851369 0.850781

24 0.952666 0.851369 0.850781

µ 0.953812 0.851369 0.850781

SD 4.66123e-06 1.28619e-32 2.05790e-31
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To evaluate the effect of input orders on two new mixed combination methods as well

as DP’s “hybrid” rule of combination, we conducted an experiment as follows. First, we

selected neighborhood size K = 4 and threshold τ = 0. Then, we measured the recom-

mendation performances for each user on an item according to 24 possible combinations

of 4 neighborhoods. The performances according to DS-MAE are presented in Table

7.6. As observed, the standard deviations are very small in all the cases. That means,

in RSs based on DST, when combining information by using two new mixed combina-

tion methods or DP’s “hybrid” of combination, input orders are just minorly affected the

recommendation performances.

7.6 Conclusion

RSs based on DST are effective in not only modeling user preferences with uncertain, im-

precise and incomplete information but also combining information from different sources.

For users, these systems offer a more realistic and flexible way to represent ratings (soft

ratings). In this chapter, have investigated tasks of combining information in these sys-

tems, and listed three basic requirements as well as three particular problems (non-sense

combination, fully-conflicting combination and incomparable ratings) for these tasks. In

addition, we have analyzed six popular combination methods and pointed out which of

them can be used in the systems. Especially, we have developed two new mixed combi-

nation methods for information fusion in RSs based on DST. To test and evaluate these

methods, we have integrated them into the RS introduced in [97] and measured recom-

mendation performances on Movielens data set.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

More recently, some researchers have focused on developing RSs based on DST. Comparing

to traditional RSs which offer hard ratings, the RSs based on DST have some advantages

such as representing user preferences in a more realistic and flexible way, modeling user

preferences with subjective, qualitative, and imperfect information, and combining infor-

mation about user preferences from different sources easily. However, so far, research on

RSs based on DST is still limited. In this research, we have presented an intensive study

of integrating RSs based on DST with social networks, computing user-user similarities,

and combining information in RSs based on DST.

In the research, we pointed out that using community context information or commu-

nity preferences helps to improve accuracy of recommendations and tackle the sparsity

and cold-start problems in RSs based on DST. Additionally, when computing user-user

similarities, provided ratings should be weighted more important than predicted ones.

As observed, in RSs based on DST, tasks of combining information are performed very

open and play a vital role. In addition, highly conflicting mass functions which represent

user preferences on items are very common. Thus, in this research, we have developed

two new combination methods, called 2-probabilities focused combination and noise-averse

combination, which help the systems handle combining highly conflicting mass functions,

improve time of computation, and overcoming the weakness of an alternative combination

method known as 2-points focused combination.
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Also, we have investigated tasks of combining information in these systems, and listed

three basic requirements and three particular problems (non-sense combination, fully-

conflicting combination and incomparable ratings) for these tasks. In addition, we have

analyzed six popular combination methods and pointed out which of them can be used

in the systems. Especially, we have developed two new mixed combination methods for

information fusion in the systems.

8.2 Suggestions for Future Research

As we can see, more work needs to be done before we can draw more solid conclusions

about RSs based on DST. For the future research, we suggest some possible directions as

follows

• The quality of community preferences can be improved not only by detecting over-

lapping communities in social networks by using other attributes such as tagging,

messaging, frequency of discussing, but also by dealing with the grey-sheep users

problem [113].

• Further evaluating as well as demonstrating the advantages of noise-averse com-

bination method need to be done, such as measuring the dependence of accuracy

of recommendations and time of computation on the threshold ε, and measuring

the effect of input orders on performances of recommendations when combining

information by using this combination method.

• Two new mixed rules of combination also need to be further evaluated with different

data sets and the best values for parameters η1 and η2 need to be investigated.

• Combination of noise-averse combination method with averaging rule of combina-

tion could be an effective way for fusing information about user preferences in RSs

based on DST.
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and J. J. Samper-Zapater, “Recommetz: A context-aware knowledge-based mobile

recommender system for movie showtimes,” Expert Syst. Appl., vol. 42, no. 3, pp.

1202–1222, 2015.
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