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Abstract

In this work, we focus on radiation field that could be generated after the nuclear acci-

dent or the attack of Radiological Disperse Devices (RDD) which is commonly known as

Dirt bomb. Since harmful radioactive substance unleashed in this situation could cause

public health and environmental damage, we want to develop the ability for robots to

detect quickly and localize the illicit radiation sources.

There are several ways to get the knowledge of the radiation field. One way is to use

the static sensor network distribute throughout the area of interest and iteratively esti-

mate the field. However, static sensor network requires high both deployment density

and communication/computational loads to provide good accuracy. The most efficient

use of sensor can then be achieved using the aerial robots, where each sensor equipped

with the robot can explore many different locations.

This thesis describes work in deploying a single Unmanned Aerial Vehicle (UAV) to

map the radiation field, and to localize the radioactive sources. Modern UAVs have

gained great popularity in the recent year both in research and commercial platforms.

Deploying such UAVs in radiation fields are attractive because they allow using the

robotic sensors in unstructured and cluttered environments. Furthermore, for many

applications, the mission to be performed is time-limited, meaning that a rapid mapping

or localization is required to minimize losses.

We bring together results from our application of four distinct problems in radiation

fields. Firstly, we seek the radioactive hotspot in unknown radiation fields, where the

robot makes an online path planning with myopic observations. Secondly, we estimate

environmental boundaries of unknown radiation fields with an apriori known threshold

value. Thirdly, accounting the cumulative effects of the sources, we seek a framework to

localize the radioactive sources efficiently. Finally, we attempt to solve another problem

of radiation fields that is the determination of multiple regions of interest.

We design path planners that enable the UAV to perform above mentioned tasks.

We have implemented a trajectory controller to validate our assumption (related to the

robot localization). We also show numerical results of experiments which are demon-

strated in simulated environments.

Keywords. UAV, Radiation field, Path planning, Source localization, Contour.
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Chapter 1

Introduction

Natural disasters are sometimes inevitable. Thus, effective emergency relief and disaster

recovery coordination can be facilitated by immediate on-the-spot investigations. For

instance, if radioactivity levels spike in areas around nuclear power plants, it is very

important to find source locations and leaks to quickly characterize the severity of the

situation. Similarly, many problems related to environmental monitoring such as the

chemical spills or tracking of oil in the sea, exploration of radioactively contaminated

area, tracking contaminated cloud or forest fire or harmful algae blooms, monitoring

the sea temperature, etc. require localizing the source to accomplish the goal. This goal

usually entails efficient mapping, sensing, or searching of environmental phenomena.

Applications such as search and rescue seek an effective means to use robotic sensors

to monitor a target area. This thesis focuses on the problem of generating plans that

enable a single UAV to localize the radiation sources efficiently. The problem of spatial

sensing has been advocated extensively in sensor network literature. However, this

thesis focuses on source localization while respecting robotics constraints.

Modern Unmanned Aerial Vehicles (UAVs) offer the stable motion performance, with

hovering capabilities both in indoor and outdoor environments and also with carrying

moderate payloads. This enables them to perform a wide range of application tasks,

which include surveillance, search, and rescue, exploration and mapping. The ability to

access and navigate in unstructured or cluttered environments makes UAVs attractive

platform for disaster recovery tasks.

1.1 Types of Problems

Fig. 1 shows an overview of a static radiation field. There are many problems associated

with such fields. However, the main goal of this thesis is to find exploration strategies for

UAVs that deals with constrained localization problems. Among the many constrained

1



Figure 1.1: An overhead view of the neighborhood around Fukushima nuclear power
plant. This picture is an example of a radiation field, and taken from the website of
Norwegian Institute of Air Research.

localization problems, we focus on four problem for radiation sources: hotspot localiza-

tion, environmental boundary estimation, source localization, and multiple regions of

interest (ROIs) localization.

1.1.1 Hotspot localization

The radiation hotspot is the zone where the level of radiation is significantly greater

than in other regions. The formation of hotspot depends on the geometric dimension

and spatial distribution of radiation elements. The localization of hotspot is of great im-

portance to understand the range of radiation effects over contaminated areas. Efficient

emergency relief and disaster recovery coordination can be facilitated by immediate

hotspot localization using unmanned aerial vehicles (UAVs) that must be accomplished

within limited time frame. Since the UAV needs to explore over large areas, an efficient

UAV navigation algorithm is crucial for fast hotspot localization.

Hotspot seeking is somewhat similar to the extremum seeking problem which has

been widely studied in robotics [1, 2, 3]. The goal is to plan an optimal path in which

the UAV can find an unknown hotspot location, while minimizing the exploration cost.

Although these approaches are often implemented via gradient-based methods, in prac-

tice, it is unlikely to get a significant gradient difference at every exploration step espe-

cially in large areas. Likewise, when there is no distinct hotpot, the exploration cannot

2



Figure 1.2: An overhead view of the hotspot given the target field which is denoted by
red ellipse. The goal of this mission is to seek a path to localize the hotspot ( denoted
by red dot) while considering the UAV’s constraints.

be terminated. To cope with such problems which are caused by similar radiation lev-

els, the Randomly exploring Information Gathering (RIG) algorithm is a worthy candi-

date [4]. It is computationally efficient and ensures asymptotically optimal solution to

achieve information gathering in continuous space with motion constraints. However,

when there is a single hotspot, the performance of the RIG should be further improved

in such a way that deals with exploration constraints. Specially, the exploration per-

formance can be evaluated using the area coverage metric, which is the amount of

sample points required to converge to the hotspot. Furthermore, after localizing the

hotspot, a UAV return path should be generated that connects the hotspot and the UAV

initial position. This loop closure is necessary to generalize the informative path and

the measurement uncertainty assessment of the same locations, to stop exploring due

to emergency reasons, etc.

1.1.2 Environmental Boundary Estimation

Since the last decade, estimating the environmental boundary has been drawn much

attention in the robotics community. A wide range of applications is possible where

robotic sensors have a substantial impact. For instance, robots equipped with dedicated

sensors deployed for tracking of oil or chemical spills in the sea [5, 6], localization

of radiation sources [7], exploration of radioactively contaminated area [8], tracking

contaminated cloud [9] or forest fire [10] or harmful algae blooms [11], monitoring

the sea temperature [12], etc. In many such missions are devoted to the gathering of

spatial phenomena where sensors observe the measurement in a point-wise fashion at

their locations.

Environmental boundary estimation can be thought of as Level Set Estimation (LSE)

problems. In this problem, one must find a control policy to identify the region of

environment where the measurement of phenomena exceeded some threshold value.

Several attempts have been made to accomplish this by utilizing a known map [13,
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Figure 1.3: An overhead view of the environmental boundary of the target field. The
goal of this mission is to estimate the environmental boundary (denoted by black lines)
while tracking the UAV’s trajectories.

14]. However, in many practical scenarios such map may not be apriori available. A

popular online method is to estimate the boundary of an unknown field with the aid of

multiple robots [15, 16]. This approach primarily is benefited from the communication

among robots. Since at each time step multiple robots can report the measurement

of several locations, computing spatial derivatives of the sensor information performed

faster than a single robot. Considering estimation on environmental boundaries instead

of the complete area coverage provides a useful abstraction that reduces the energy

consumption. Here, the goal is to estimate the shape of the target area subject to the

robot’s path. However, when the environment is unknown, it is hard to plan such a path

that identifies which locations are appealing and which are not.

In this study, we consider the problem of estimating environmental boundary using

a single UAV. UAVs offer the stable motion performance, with hovering capabilities both

in indoor and outdoor environments and also with carrying moderate payloads. This

enables them to perform a wide range of application tasks, which include surveillance,

search, and rescue, exploration and mapping. The ability to access and navigate in

unstructured or cluttered environments make UAVs attractive platform for a variety of

such missions. To achieve this objective, at each time step, the UAV needs sequentially

select the sampling locations while respecting to some threshold value. For solving this

problem, we propose a boundary estimation algorithm, which utilizes a proportional-

integral-derivative (PID) controller to determine the turn rate of UAV [8]. We also

provide an optimization technique on the number of samples needed to achieve a cer-

tain accuracy by considering to make a closed path. The reason for doing so is that, in

the problem such as ours, apart from the gathering of spatial information by traveling

to each sensing location, we also have to take into account the time constraints.
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Figure 1.4: An schematic view of estimating radiation sources given the target field.
The goal of this mission is to localize radiation sources. The black dots are the radiation
sources while the dashed lines represent influenced areas.

1.1.3 Source Localization

After a nuclear accident, a radiation field can be generated by the leakage of radiation

sources. A typical radiation field originating from a single hotspot can be generated by

three spatial distributions of sources; scattered, clustered and biased. Of these, the clus-

tered sources are relatively easy to localize, because the sources are located in a close

proximity to the center of distribution. In other cases, it is not very straightforward,

because, when multiple radiating sources generate a hotspot in a cumulative manner,

sources do not coincide with the hotspot position. Regardless of our knowledge about

the hotspot position, we attempt to solve the multiple radiation localization problem in

two steps: the Regions Of Interest (ROIs) selection followed by the source localization.

As a disaster recovery plan, it is important to know the distribution of radiation levels

over an area of interest, so that rescue mission could be accelerated to minimize the

losses. In this kind of situation, autonomous flying robots such as Unmanned Air Vehi-

cle (UAV) can be deployed to monitor the state of radiation effect. Radiation sensors

mounted on a UAV can detect the intensity in a radiation field, giving an indication of

the activities of nearby sources. The inverse square relationship between the intensity

of the radiation source and its distance from the observer can be used to lead the robot

to the radiation sources by finding the maximum intensity value.

The search areas may span very large geometric distances, but the measurement at-

tributes of a large radiation field is available only in the close proximity of the sources.

Therefore, depending on the radiation leaks, several radioactively contaminated areas

can be found in a large radiation field. Since nearby sources also cumulatively con-

tribute to generating a hotspot, without losing the generality, we assume that only

a single hotspot exists in each contaminated area, which is caused by all the nearby

sources. UAVs may need to fly over a large contamination area, which often leads to

problems in designing the exploration strategy with limited resources e.g. limited bat-
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tery life, sensing range and so on. All locations in a contaminated area are not uniformly

important to explore for spatial localization of radioactive sources. Thus, an effective

search strategy within a limited fraction of locations can facilitate efficient estimation

of radiation source positions. Along this line, it is also important to estimate the distri-

bution of radiation intensity on the geometric map, so that we can reduce our Regions

of Interest (ROIs) not only for the field characterization but also for the source local-

ization. Given reliable sensor model about the radiation field and accurate localization

and navigation performance of the UAV, the goal of this thesis is to plan an exploration

strategy for the UAV to rapidly localize all the sources. A common solution is to cover

the whole target area so that a global picture of the radiation exposure of that area can

be obtained. However, covering the whole area in this regard is not optimal since the

UAV has to take in account the limited time constraints (partly due to the battery life).

Recent works estimate the sources in a radiation field using either Hough transfor-

mation (HT) [17] or Gaussian mixture [18]. When a radiation field comprises of clus-

tered sources, a standard way is to use the HT, especially when the sources are located

at the center of the distribution. HT can significantly reduce the UAV exploration cost,

allowing UAVs to determine the source positions by exploring only the contour line of

the radiation intensity not far away from the sources [17]. However, the cumulative ra-

diating effect of biased and scattered sources makes the field more complex to estimate,

as the sources are not located in close proximity to the center of the distribution. Thus,

the problem of estimating a radiation field, which is generated by the combination of

multiple sources effect, is often considered as the problem to estimate components from

a Gaussian mixture [18].

To balance the tradeoff between the exploration and the localization problems, an

adaptive framework is proposed in this work, which can narrow down the robotic ex-

ploration and concurrently accelerate the source localization processes. Thus, in this

thesis, given the hotspot location along with limited samples of the radiation field, our

aim is to answer the following question- “how quickly and accurately can we localize all
the radiating sources in a temporally invariant radiation environment?”

1.1.4 Regions of Interest (ROIs) Localization

Radiation field monitoring has been commonly studied in robotics. The goal is to plan a

path in which the robot can localize all the contaminated locations in a given target area.

Since the contaminated locations could be spatially distributed throughout the target

area, a search is needed to localize all of them. Thus, required tasks associated with the

search inspire various methods in addressing the coverage problem. Techniques used in

search can be classified by how many robots are used for this application. In the case
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Figure 1.5: An overview of determining Regions of Interest (ROIs) for a large target
field. The goal of this mission is to localize ROIs while minimizing the travel cost. The
red lines represent ROIs in this figure for a predefined threshold value z.

of multiple robots, the target area can be partitioned in smaller subregions according to

the number of robots to reduce the search space. However, in the case of a single robot

exploration, neither the partitioning of the target area is straightforward, nor the robot

has long sustainability due to the limited battery life.

The majority of coverage planning work has been proposed for known environments

[19, 20, 21]. Often these approaches are motivated to minimize the uncertainty metric

of a given map. A common choice is to add an exploration to that location where the

uncertainty metric such as entropy or mutual information is high. However, in many

situations, a radiation map for the target area may not be a priori available. The problem

can then be seen by its close relation to covering the entire target area for localizing the

contaminated locations. Hence, complete coverage algorithms are often used. Even

though complete coverage algorithms ensure the complete terrain visitation, lack the

opportunity to optimize the localization rate of contaminated locations rather than the

coverage objectives.

Considering estimation on environmental boundaries instead of the complete cover-
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age provides a useful abstraction that reduces the energy consumption [22, 23]. Here,

the path planning problem consists of estimating boundary of contaminated areas that

allow the robot to sense the Regions of Interest (ROIs). However, when the environ-

ment is unknown, it is hard to plan a path that identifies which areas are interesting

and which are not. In conventional algorithms for the coverage planning with obsta-

cles, the path is usually generated to cover the free space of the environment in an

optimum fashion. In our problem, rather than avoiding ROIs, we want to identify their

locations and geometrical size rapidly. Determining ROIs in a radiation field allows us

to prioritize the search area in such way that minimizes the exploration of the robot.

In this study, motivated by a single UAV, we investigate an additional component to

the coverage problems by localizing the radiation contaminated locations rapidly. This

is important because in a single UAV exploration, sometimes the target area is too large

for the UAV to completely cover in a given exploration budget (maximum exploration

time). Since it is also of the interest that the UAV is to localize all the contaminated

locations as quickly as possible, the algorithm must behave as the complete coverage

over long periods of operation. This problem might be thought of as target acquisition

problems [24]. However, there is an important caveat. Target acquisition problems

assumed that the robot equipped with a sensor that has a wide field of view, whereas in

our problem, the robot sensor works in a point-wise fashion. Therefore, the robot needs

to travel a location to get a measurement.

1.2 Outline

Our approach focuses on an integrated framework that strives for the complete solution

to the radiation field mapping and the source localization. We start with single hotspot

based radiation fields. Then, we incorporate an approach to deal with multiple hotspots.

In chapter 2, we provide a strong motivation for this research by reviewing some of

the efforts done to address each of subproblems.

In chapter 3, we explain the preliminaries of this thesis with a prerequisite experi-

ment. This experiment is deemed to verify our assumption.

The following four chapters explain and detail techniques and methods used in our

framework.

In chapter 4, we address the problem of hotspot seeking in an unknown radiation

field where the assumptions is that the field contains only one hotspot.

In chapter 5, we develop a framework for environmental boundary tracking and

estimation in unknown environments.

In chapter 6, we propose an efficient approach to the multiple source localization

and contour mapping problem of radiation fields.
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In chapter 7, we present a framework to solve the problem of determining regions

of interest (ROIs) in unknown radiation fields.

Finally, in chapter 8, we summarize the thesis contributions, and the capabilities of

the proposed framework. We also provide future directions to improve and the extend

the current work.
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Chapter 2

Related work

The concept of radioactive source localization has been explored extensively in the lit-

erature. We present existing work from the areas of the sensor network, active sensing,

path planning, motion planning, and environmental monitoring. For each area, we

describe how current approaches in the area related to our thesis problem regarding

the four dimensions: hotspot seeking, boundary estimation, source localization, and

multiple regions of interest determination.

2.1 Hotspot Seeking

In contrast to conventional path planners finding the path between the current position

and the goal position, the goal (hotpsot) position is unknown. Since the UAV detects the

hotspot only with the intensity measurement, our problem is closely related to the active

sampling, selecting observation locations that minimize the prediction uncertainty or

maximizing the information gain [25, 26].

Earlier studies were concerned with the localization of sources that do not affect

one another [27]. However, the hotspot is no longer coincident with the source po-

sition, if the cumulative effect of sources exists. Several strategies attempted to find

the hotspot generated by multiple sources [28, 29], which can be generalized into the

model-free and model-based approaches. The model-free approaches are extremum

seeking methods, where the gradient ascending or the maximum likelihood path is gen-

erated. However they tend to converge to local maxima [30]. In the context of model-

based approach, source seeking can be performed using either the mutual information

(MI) [31, 32] or MI gradient [33]. While such algorithms were shown to be useful for a

range of applications, they typically rely on restrictive assumptions on the field and do

not explicitly optimize the exploration path.

In the grid based approach, the area is decomposed into a finite number of rectan-
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gular cells [34]. A topographic mapping based exploration strategy was proposed to

localize multiple sources in our earlier work [35]. Similar approaches can be found

in [36]. Probabilistic random sampling based exploration can also be applied when

the radiation fields are considered as vector fields [37]. Even though these aforemen-

tioned methods perform heuristically well, they overlook the area coverage issues and

the exploration was not guaranteed to terminate optimally.

The computational complexity of the planner such as submodular function based

near optimal planning [38], maximum entropy sampling [39], maximum mutual in-

formation [40] does not suit on-line implementation. Recent path planning algorithms

have focused on the generation of approximate paths with limited computation. Our

work extends these ideas to the domain of hotspot seeking in a radiation field. Hollinger

et. al. proposed three variants of a random sampling based information gathering al-

gorithms subject to a budget constraint [4]. Out of their three algorithms, namely,

RIG-roadmap, RIG-graph and RIG-tree, they conclude that the RIG-tree is the best in

terms of effectiveness.

2.2 Boundary Estimation

Environmental boundary estimation has been recently highlighted in robotics. The goal

is to seek a path over a target area in which the robot discovers an isoline in a certain

scalar field. The original boundary estimation has been modified and applied in various

applications. One way is to deal with this problem is to utilize sensor network over a

target area [41]. In this approach, a sensor array deployed in such way that we can

get access to the spatial derivatives of the field at every time. However, static sensor

networks require high density to provide a good accuracy of observation. Thus, this

framework raises two important issues- cost for implementing such an infrastructure,

and computational/communication loads for the estimation process.

On the other hand, mobile robots equipped with dedicated sensors can autonomously

gather information on the boundary of interest. However, to derive this benefit, a mo-

tion planning algorithm is the necessity condition.

Planning algorithm for such systems has gained much popularity in the robotics

community. Many methods assume access to a prior map of the target field. The objec-

tive of these methods is to utilize the machine learning scheme for level set estimation

[13, 14]. In addition to the strong requirement of the availability of prior map, such

methods suffer from high computational cost. Hence, when the environment is un-

known, the boundary estimation problem becomes more complex.

Several works have been developed to advocate cases in which the boundary is pro-

jected by interpolating the robot localization and the sampled points. The methods
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used in most studies requires a large number of robots to estimate the boundary shape

[22, 42]. The goal in this framework is to design a control strategy for a multi-agent

system that has advantages of integrating the detection, tracking and estimation pro-

cesses. However, in this work, our focus is to solve a different boundary estimation

problem by handling a single UAV with a point-wise access to only the value of a gen-

eral field. In this work, without compromising the estimation accuracy, we intend to

generate a closed boundary path that makes efficient use of the limited travel time.

Matveev et al. [12] categorize the solution of such problem into two categories -

gradient or derivative dependent approach and other is the gradient-free approach. A

gradient-based method is computationally simple and easy to implement especially in

the static field. The most popular gradient-based robotic algorithms inspired from the

snake algorithm, which often adapted in image segmentation problems [43]. In [15],

a decentralized cooperative boundary tracking algorithm proposed that generated an

artificial potential field by assuming the direct access to the field gradient. Several

works advocated the problem caused by sensor noises to estimate the field gradient,

proposed to incorporate a filter into the framework.

The gradient free bang-bang controller reported in [16]. Switching between two

pre-defined steering angles proposed in [44]. In recent years, Saldana et al. [45] ex-

tended the polynomial approximation [46] to predict environmental boundary behavior

for a single robot. Matveev et al. [23] demonstrated a sliding mode method for dynamic

fields. Baron et al. proposed PD controller to estimate the contour line in a radial har-

monic field [47]. Later, Towler et al. reported PID controller to estimate the contour

line in a radiation field accurately [8]. Without knowledge of the boundary evolu-

tion dynamics, such methods can efficiently track a dynamic boundary. However, these

methods rely, more or less, on the initial approximations/assumptions of the field. In

an unknown environment, such assumptions are prone to violate, puts an extra burden

on controller tuning, and may a threat of performance degradation.

We propose a novel framework that originates from the control law in [8] and does

not employ gradient estimate to track the environmental boundary. We enhance the

basic model by incorporating not only a noise canceling filter but also a novel adaptive

crossing angle correction scheme. Our method is robust in the sense of minimizing ex-

ploration to track the boundary and does not need any prior knowledge on the field.

Although we demonstrate our algorithm in a static environment, under the assumption

that the environmental dynamics are tractable by vehicle motion, it is then straightfor-

ward to implement this method in dynamic environments.
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2.3 Source Localization

The radiation field can be analyzed through a wide range of characterization techniques

ranging from a point source to mixture models. Earlier works focus on point source

based field characterization [48, 27, 49], whereas more variations are found in recent

literature. Recent researches have made significant progress in predicting spatial radia-

tion field using Gaussian Process [50, 51]. However, when multiple sources are placed

in an area showing cumulative effects, Gaussian Mixture Model (GMM) [18] is a well-

suited method to characterize it. Of these choices, we use the GMM in our work to

characterize a radiation field originating from multiple sources.

In order to illustrate the radiation effects over an area of interest, a radiation map

is needed. A grid based map could have a finite number of rectangular cells [52] to

represent the field property. On the other hand, we can explain the radiation field

using topographic maps [53, 17]. In the topographic map, the field is characterized

by large scale intensity measurements and quantitative representation of distribution

using contour lines. Thus, it is very useful for the time-limited mission. To this end, our

work present the first prediction model of the source locations by analyzing topographic

maps.

Hotspot detection is often termed as a source seeking problem in the literature.

Several strategies are applied to find a hotspot in an unknown radiation field. Those

strategies are mostly divided into two categories, namely, model-free and model-based

approaches. Specifically, model-free based approaches involve following a stochastic

gradient of the radiation field intensity. It is observed that since the gradient of the

intensity is followed, without a priori threshold limit (definition of the hotspot) those

algorithms tend to converge to a neighborhood of a local maximum of the field [31]. In

the context of model-based approach, source seeking can be performed using either the

mutual information (MI) [31, 32] or MI gradient [54, 33]. While the popular approach

for the source seeking task is to deploy a group of distributed robots [31, 55, 56], a

single robot can travel to several locations in order to gather intensity measurements

[57, 58, 59], and then the hotspot can be localized by a predefined threshold value

[31]. We exploit the source seeking algorithm to generate a UAV trajectory from an

arbitrary intensity zone to the hotspot zone for prior knowledge of the field.

Numerous approaches can be found in the literature to estimate the multiple radia-

tion sources. The Archimedian spiral search pattern [60] is basically exhaustive search

to determine the radiation sources within the target area. The Artificial Potential Field

(APF) [61] based exploration in a radiation field might get confused more easily with

the presence of multiple sources. Multi-robot adaptive sampling uses distributed robot

exploration to classify radiation fields via recursive geometric subdivision [56]. If the
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map of the target area is a priori known, powerful algorithms like submodular optimiza-

tion [62], mutual information gain [55], maximum entropy based path planning [63]

can yield good results. Despite having a radiation map or an exhaustive search pattern,

a key challenge in radiation field mapping is plagued with a limited flight time of the

robot needed to find a ROI. This heckles the UAV in large-scale radiation field mapping.

In literature, we have seen that GMM based radiation field parameters can be esti-

mated using a progressive correction technique [18], where a uniformly distributed sen-

sor array was deployed in the area of interest. The sequence of distributions is succes-

sively approximated by the Bayes’ rule. However, in our case the problem is complicated

by the limitation of robotic exploration that gathers spatial measurement attributes of

the field. To avoid the problem associated with limited exploration, we propose to use

a topographic map to represent the large radiation field with a finite number of contour

lines. Only a few efforts have been made to improve radioactive source detection using

the topographic mapping strategy. Jerry Towler [17] used Archimedian spiral search

patterns to gather measurements and discovered the contour lines with user-defined

intensity values. He finally proposed to use the HT to estimate the source position.

Although the performance of HT is satisfactory for the clustered sources, in contrast, it

gives the worst results for the biased and the scattered sources respectively. Throughour

empirical investigation, we demonstrate that our adaptive switching methodology not

only optimizes the ROI but also persistently and accurately localizes the sources.

2.4 ROIs determination

Area coverage planning has been extensively studied in robotics. The goal is to seek

a path over a target area in which the robot covers all the locations. The basic area

coverage has been modified and applied in various applications. The algorithm we

present solve a different area coverage problem by generating paths that make efficient

use of the limited travel time and maximizing the probability of finding the radiation

contaminated locations as the ROIs. This problem is somewhat similar to complete area

coverage problems. Coverage planning problem was firstly addressed by Choset [64],

where he classified the solution approaches either based on heuristic or cell decompo-

sition.

Heuristic methods explore the target area with predefined rules or a set of behaviors.

The widely used heuristic methods are lawnmower pattern, raster scanning, inward

spiral search, wall following, etc. Heuristic search is computationally less expensive,

but cannot guarantee the optimal performance.

On the other hand, in cell decomposition, the target area is decomposed into smaller

areas. Galceran and Carries [65] proposed an exact and uniform decomposition of the
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target area by a grid of equally spaced cells. Then, the coverage problem can be solved

as the Traveling Salesman problem and is known to be NP-hard. Usually, in that case,

a Hamiltonian path is determined using the spanning tree algorithm, which visits each

cell exactly once. In recent year, a variant of Hamiltonian path utilized for the per-

sistent coverage problem [66]. However, if there are obstacles in the target area, it

is not possible to generate the Hamiltonian path in all the cases. The Boustrophedon

cellular decomposition can then solve this problem for bounded planar environments

with known obstacles [67]. The key idea is to construct a graph by decomposing the

target area subject to obstacle positions and finding a minimal cost tour through all re-

gions. In literature, we have seen an extension of that algorithm while respecting sensor

feedback [20, 68, 69]. When unknown obstacles exist in the environment, the Morse

decomposition used for determining critical points in the target area, and then incre-

mentally construct the Reeb graph to solve the online coverage problem optimally [70].

Another way is to satisfy a temporal logic specification consisting of safety components

in a partially unknown environment [71].

To address the problem of adversarial coverage in environmental monitoring issues,

Yehoshua [21] proposed a variant of spanning tree algorithm to split the target area into

connected areas of safe and dangerous cells, and then covers safe areas before moving

to dangerous one. However, the main flaw of this work is that a map of threats in

needed in advance, which may not be available in many situations. On the other hand,

if we make an assumption on the distribution of phenomena, for instance, a mine-laying

pattern in the minefield is a priori available, the probabilistic demining algorithm [70]

could have the option to solve our problem.

In recent years, estimating the shape of environmental boundaries has been a high-

lighted topic [72, 43, 73, 42]. However, it is not straightforward to couple a boundary

estimation algorithm in our problem. The major difficulty is that coverage planning

assumes that all the locations have same properties while boundary estimation assumes

that a cluster of contaminated locations can be monitored by approximating only a

closed boundary. Most of the boundary estimation research consists of two parts 1)

defining a threshold to be used as a gradient information, 2) minimizing the square

error between the sampling location and the desired threshold to find the robot’s trajec-

tory that close the level curve.

Importantly, boundary estimation was not considered in area coverage studies [46,

45]. In coverage planning, the optimality was evaluated only by the coverage volume,

not by time. This is because the properties of measurement attributes were excluded

from the planning phase. Our approach broadens the optimality definition to take into

area coverage together with localization rate of contaminated locations by including

boundary estimation in the planning phase.
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Recently, some approaches have been evaluated to reduce the search space. Split-

merge cells used for a trapezoidal cell decomposition, which proposed for agriculture

applications. Partitioning the target area is popular for multi-robot coverage control

problems, for instance, Voronoi-based coverage control introduced in [74, 75], the re-

cursive geometric subdivision offered to monitor spatiotemporal field [76]. Of these,

the Voronoi-based coverage control is closest to our own in that it considers the size

of heterogeneous disk-shaped robots when it partitions the target area. Though it is

different from us in that the size of radiation contaminated areas is used instead of

heterogeneous robots, which is sampled from a single robot’s exploration as well as is

computed online.

An important aspect of any path planning is whether the resource costs are optimized

or not. Since robots have limited endurance and sensing range, the coverage plan needs

to be optimized for finite resources. Aside from the traditional coverage planning where

resource costs overlooked, an optimal persistent coverage plan proposed in [77], where

authors find a collection of tours for multiple robots that every target is visited by the

robots and the minimum frequency of which a target is visited is maximized. In the

case of the single robot, a hierarchical planner proposed in [78], where they compute

the mode food ratio heuristic to prioritize search regions.

Our work presents the first opportunistic and iterative environmental boundary es-

timation for area coverage problem. The methodology is evaluated using two different

strategies (namely, boundary estimation and coverage planning) within a novel frame-

work that localizes unknown ROIs with an arbitrary initial position of the robot.The

novelties of proposed framework in two folds. Firstly, we proposed a novel online

framework to integrate environmental boundary estimation and area coverage prob-

lem together. Secondly, inspired by existing area coverage approaches, throughout

the results, we demonstrate the performances of our two different algorithms namely

Voronoi-based coverage and recursive geometric subdivision.

Although proposed framework is applied in the context of field radiation monitoring,

our approach is general and can be scaled to other domains where an opportunistic

collection of environmental phenomena is necessary.
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Chapter 3

Preliminaries

In this chapter we will briefly explain our basic assumptions, mathematical tools which

are used in our proposed algorithms, and the prerequisite experiment which is deemed

to verify our assumption.

3.1 Assumptions

Throughout the thesis we make the following assumptions

1. Perfect localization: We perform the real robot navigation and trajectory track-

ing experiments in unknown indoor environments, and observed that localization

uncertainty are negligible.

2. Environment representation: We consider the cumulative effect of nearby radi-

ation sources and represent the environment using mathematical model.

3. Static radiation field: We assume that the radiation field behaves like a static field

given the duration of mission, and also do not consider the external disturbances

for such kind of fields.

4. Myopic observation: We assume that the robot senses the environment in point-

wise fashion, and there is no an apriori map available to the robot. Therefore, the

robot needs to explore a location to get the measurement attribute.

5. Online exploration: Throughout the thesis we assume that the mission time is

sufficient enough for a single UAV exploration, and the computational power is

also sufficient enough for the real-time operations.
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3.2 Mathematical tools

To develop the algorithms we use the following mathematical tools:

Gaussian Mixture Model (GMM): In point source localization research, most of prob-

lems considered to model the environment using the Poisson distribution. Therefore,

the hotspot coincidences in the position of source. However, if nearby sources exhibit

the cumulative behaviors in the field, then it is not straightforward to model the envi-

ronment using the Poisson distribution. We then adopt Gaussian Mixture Model (GMM)

to characterize such fields. A Gaussian mixture model is a weighted sum of M compo-

nent Gaussian densities as given by the equation,

p(x|λ) =
M∑
i=1

πiN (x|µi,Σi)

where x is a D−dimensional continuous -valued data vector, πi are the mixture weights,

and N is a D−variate Gaussian distribution with mean vector µi and covariance matrix

Σi. The parameters of GMM collectively represented by the notation, λ = {πi, µi,Σi}.

Traveling Salesman Problem (TSP): The TSP is often advocated in combinatorial

optimization and graph theory. Given the graph G = (V,E) where V represents the

set of vertices and E the set of undirected edges, the algorithm finds the lowest-cost

tour of G that includes every vertex, v ∈ V of the graph just once. This kind of prob-

lem is NP-hard problem and there is no known polynomial-time solution. Therefore,

approximation algorithms are often used to find the optimal solutions.

Hamiltonian Path: In graph theory, Given the graph G = (V,E) where V represents

the set of vertices and E the set of undirected edges, a Hamiltonian path (or traceable

path) is a path in an undirected or directed graph that visits each vertex, v ∈ V exactly

once. The computational complexity of determining the Hamiltonian path problem is

NP-complete. Algorithms like ’brute force search’, ’dynamic programming’, or ’Monte-

carlo algorithm’ can be used to solve this problem.

Information Gain: Information gain can be thought of as the Kullback-Leibler diver-

gence, which is a measure of the difference between two probability distributions. Let

H(X) be the Shanon entropy of the random variable X and H(X|Y ) be the conditional

entropy of random variableX given that the value of Y is known. Then, the information
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gain can be defined as follows:

I = H(X)−H(X|Y )

In general, information gain quantifies the amount of information of X can be obtained

through Y .

Voronoi Diagram: Voronoi Diagram is the partitioning method of a plane with n

points into a specific subset of the plane such that each subset contains exactly one

generating point. In typical Voronoi diagram the set of generating points is apriori
known. The Voronoi polygons are then constructed such that every point in a given

polygon is closer to its generating point than to any other. However, in our case, we

randomly initialize the generating points and iteratively update their positions.

Extended Kalman Filter (EKF): The EKF processes the actions and observations of

the robot using a joint distribution. It assumes this distribution is Gaussian with the

posterior mean µt and covariance Σt. Given a non-linear process and measurement

models, the EKF can be used to linearize them. The overall algorithm can be divided

into two folds: prediction step and update step. In the prediction step, given the control

signal ut and the state transition matrix Ft|µt−1, we predict the state and the covariance

as follows

µt = f(µt−1, ut−1),

Σt = Ft−1Σt−1F
T
t−1 +Qt−1,

where Qt is the process noise. Then the robot make the observation zt which is subject

to measurement noise covariance Rt.

In the update step, first we compute the measurement Jacobian Ht|µt−1 and kalman

gain Kt as follows

Kt = ΣtH
T
t (HtΣtH

T
t +Rt)−1.

After computing the Kt, we update our state and covariance as follows

µt = µt +Kt(h(µt, 0)− zt),

Σt = (I −KtHt)Σt.

Contour Line: In a topographic map, the contour line represents the isoline along

which the measurement has a constant value. Contour lines could be curved, straight

or a mixture of both on a map. The configuration of these contours show us the change
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in elevation between points. In our case, constructing contour lines in radiation fields

can be thought of in two ways. On the one hand, the geometric based approach this

problem is considered as curve reconstruction problem: given a finite sample V of an

unknown curve λ, the goal is to construct a graph G = (V,E) in such a way that two

points in V are connected by an edge e ∈ E show us the change in elevation between

points iff the points are adjacent on λ. On the other hand, the gradient vector flow

approach the contour line is the separator between two gradient layers.

Variational Bayesian Inference (VB): VB Inference is well known clustering tech-

nique that often used in GMM. This is a particular method which aims to find some

approximate joint distribution Q(X; θ) over hidden variables X to approximate the true

posterior p(X) subject to the minimum Kullback-Leibler divergenceKL[Q(X; θ)||p(X)].
In our case, we do not know the number of mixture component apriori. Therefore, it is

advantageous to use the VB because it can automatically localize the unknown sources

as to determine the number of the mixture components.

3.3 Prerequisite Experiments

In our following chapters, we will describe different path planning algorithms which

would be demonstrated in simulated environment. However, we have observed through-

out out the implementation that the robot localization is very accurate with negligible

uncertainties. In this following section, we will verify our assumption related to the

robot localization with the implementation of a trajectory controller for a low cost aerial

platform.

3.3.1 System Overview

We propose a system consisting of a commercially available quadrotor equipped with

two cameras and a laptop serving as the ground station. In our quadrotor, the front

camera has the larger field of view (FOV) compared to the bottom one. Therefore, we

use it for the monocular visual SLAM purpose. The quadrotor can stabilize its orienta-

tion with the onboard bottom camera. On the ground station, we implement the path

planner, the state estimator, and the position controller. In the following, we describe

the aerial platform and the software modules.
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Aerial Platform

We built our system from selected off-the-shelf components. Our quadrotor is the Parrot
AR.Drone 2.0, which is a low-cost platform, and with a weight of only 420g and a pro-

tective hull, safe to be used in public places. This platform is powered by one 1, 000mAh
LiPo battery, which allows a flight time of 30min. However, we modify neither the hard-

ware itself nor the software running onboard. We communicate with the quadrocopter

using wireless LAN. For navigating a large environment, we use Amped Wireless Range
Extender (SR10000) that extends the range any wireless network by up to 929m2.

The onboard computer of AR.Drone is equipped with a 3 − axis gyroscope and ac-
celerometer, an ultrasound altimeter, and two cameras. Furthermore, it features an air

pressure sensor, a magnetic compass. The front camera is aimed to cover a diagonal

field of view of 92 deg and has a resolution of 640× 360, significant radial distortion and

a rolling shutter.

Figure 3.1: Aerial platform: Our aerial platform is AR.Drone, which is commercially
available low cost platform.

The real time image is transferred to a laptop at 30fps using lossy compression. On

the other hand, the second camera aims downward, covers a diagonal field of view of

64 deg and has a resolution of 320 × 240 at 60fps. Only one of the two video streams

can be streamed to the laptop at the same time. The onboard software uses the bottom

camera to estimate the horizontal velocity. Since the software uses the optical flow

algorithm to estimate the navigational velocity (Nav Vel.), the accuracy of the estimation

highly depends on the ground texture and flight altitude.

Software Modules

Fig. (3.2) shows an overview of our system. The software used in our system runs

on two different processing units namely the default AR.Drone hardware, and a lap-
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Figure 3.2: Schematic representation of proposed control strategy.

top, which serves as the ground station. All the computations required to localize the

quadrotor are performed offboard. We use ROS middleware to communicate with our

aerial platform.

All sensor readings, as well as the estimated horizontal velocities, are sent to the

laptop at a frequency of up to 200Hz. Using our setup, the Drone can send image frame

to the laptop around 18 fps to 20 fps. On the laptop, we adopt ORB-SLAM as a visual

SLAM (V-SLAM) module. The visual odometry pipeline outputs an unscaled pose, which

is then fused with the IMU readings in the Unscented Kalman filter (UKF) framework

multisensor fusion to compute a metric state estimate.

Given a target area and a set of path, the objective of trajectory manager is to com-

pute the vehicle’s motion along a path from start to goal. After deciding the desire

trajectory, our actuation phase is responsible to exploit that trajectory. From the state

estimate and a reference trajectory, we compute the desired control signals by position

controller, which are then sent to the Drone at 30 Hz speed. Note that, the trajectory

controller not only control the robot position and corresponding velocity but also con-

trol its orientation. It also deals with robot kino-dynamic and algorithmic constraints.

Thus, we formulate closed-form solution for our robot navigation problem. One of the

fundamental problems in robotics is accurate localization. The noise comes with sen-

sor measurement often leads the state to unstable and poor results. To overcome this
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situation, measurements pass through some sort of filters in order to update the belief

space. Moreover, if the robot is equipped with multiple sensors to acquire the same

state information, sensor fusion can be used to estimate the state with high accuracy

[79, 80].

State estimation

While most works perform the state estimation through an EKF [81, 82] in this section,

we will show how to implement a UKF to fuse the available sensorial data to track the

drone states.

Multiple sensor reading

In order to estimate the six degree-of-freedom (DOF) robot pose, multiple sensor read-

ing i.e. both on-board and off-board are fused together. In this work, we have adopted

ORB-SLAM algorithm by R. Mur-Artal [83], which is implemented at off-board module.

While the SLAM process passively localizes the robot and bulids a map in camera co-

ordinate frame, on-board odometry and IMU actively represent the robot state in body

coordinate frame. Note that the output of the SLAM process is position, (xt, yt, zt) and

orientation,
(
θ̇, φ̇, ψ̇

)
, whereas the output of on-board state is linear velocity (ẍt, ÿt, z̈t) ;

linear acceleration, (ẍt, ÿt, z̈t) and angular velocity,
(
θ̇, φ̇, ψ̇

)
. It is then important to both

of those information into a global coordinate frame.

Since the map is relative to the robot pose, accurate pose estimation is very helpful

to understand the environment perfectly. The raw reading from all the sensors can be

expressed as follow

z[1] = {x, y, z, θ, φ, ψ}
z[2] =

{
ẋ, ẏ, ż, θ̇, φ̇, ψ̇

}
z[3] =

{
ẍ, ÿ, z̈, θ̇, φ̇, ψ̇

} (3.1)

where z[1], z[2] and z[3] are the raw reading from off-board SLAM, on-board odometry

and IMU respectively. After determining the appropriate transformation matrices, for

instance, from the camera coordinate to the global coordinate TCG and from the body

coordinate to global coordinate TBG , we can easily find the individual raw state such that

xSLAM = TCG .z
[1]

xodo = TBG .
{
z[2] ∪ z[3]

} (3.2)

Since the on-board odometry and IMU both are representing the orientation changes,

we can easily summarize the robot pose by taking the mean over those readings. How-
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ever,one of the shortcomings of monocular SLAM is that the scale ambiguity. Therefore,

to fuse the xSLAM with xodo, an estimate for this scale factor is essential. This leads to

the following representation

xSLAM = Γ · xodo, (3.3)

where Γ is scale factor. Once we experimentally determine Γ, at each discrete time

frame, k, the raw state measurement is comprised as follow

xk =
{
x, y, z, ẋ, ẏ, ż, θ, φ, ψ, θ̇, φ̇, ψ̇

}
(3.4)

In our settings, the measurement accuracy of an off-board SLAM is higher compared

to the other sensor modalities. As observer J. Engel [79], the communication speed of

video frame rate is much slower than other on-board sensor readings. For this reason,

we compute the state transition of the robot pose not only based on SLAM process but

also fusing the other sensor measurements that update more frequently. By integrating

the actual onboard odometry and IMU measurements, the robot pose is estimated faster

and more accurately than a blind prediction on the SLAM reading.

The Unscented Kalman Filter (UKF)

The most popular EKF [84] based fusion algorithm uses recursive mean square error

method to estimate the prior and current observation which is represented by Gaus-

sian Random Variable (GRV). The optimal gain of the filter is expressed as through the

function of posterior covariance matrices which is then propagated through the first

order linearization of a nonlinear system. However, this approximation can introduce

large errors in the true GRV which may lead the system to sub-optimal performance and

sometimes divergence of the filter. Even though particle filter [85] relax GRV bounds

the assumption of the state distribution, it demands more sample points (particles) to

reach the accurate distribution. The major flaws of this method are that the number of

particles required grows exponentially in the n dimension of the state. Wan et al. [86]

reported that the UKF results in the approximation that is accurate to the third order for

Gaussian inputs for all non-linearity. For non-Gaussian inputs, the approximation is ac-

curate to at least the second order with the accuracy of third and higher order moments

determined with the same computational cost as EKF. Therefore, we adapt Unscented

Kalman Filter (UKF) for sensor fusion module.

Similar to other version of Kalman filters, the UKF is also a recursive algorithm that is

capable to produce very accurate state estimation from the noisy sensor measurements.

When the robot executes a control action, uk, its next state can be estimated by a
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Algorithm 1 The Uncented Kalman Filter

Require: weight wi which size is 2na + 1, sigma points χk, initial state xak
Ensure: optimal state xk with associated covariance pk

1: Map the nonlinear system
χk+1 = F (χk, k) +B (uk, k)

2: Compute the predicted mean

xk+1|k =
2na+1∑
i=1

wiχi,k+1|k

3: Compute the predicted covariance

pk+1|k =
2na+1∑
i=1

wi
[
χi,k+1|k − xk+1|k

][
χi,k+1|k − xk+1|k

]T
4: Find the mean observation

Yk = h
(
χk+1|k,uk, k

)
yk =

2na+1∑
i=1

wiYi,k

5: Determine the covariance
py =

2na+1∑
i=1

wi [Yi,k − yi,k][Yi,k − yi,k]T

6: Estimate the cross correlation between state estimation and measurement sequence

pxy =
2na+1∑
i=1

wi
[
χi,k+1|k − xk+1|k

]
[Yi,k − yi,k]T

7: Determine the Kalman gain
Kk = pxypy

−1

8: update the measurement state
xk|k = xk+1|k + Kk (ỹk − yk)

9: update the measurement covariance
pk|k = pk+1|k −KkpyKT

k
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nonlinear process model such that

xk+1 = F (xk, wk) + Buk

yk+1 = H (xk+1,vk)
(3.5)

where F is the state transition model matrix, B is the control input matrix, H is the

sensor observation model and finally, wk and vk represent the Gaussian noise with zero

mean estimation. Although there are many complicated prediction models are available

for quadrotor UAV in literature, without loss of generality, a working prediction model

can be expressed as follow

φ̇ (x,u) = K3 (K4uvx − φ)
θ̇ (x,u) = K3

(
K4uvy − θ

)
ψ̈ (x,u) = K5

(
K6uvψ̇ − ψ̇

)
z̈ (x,u) = K7 (K8uvż − ż)

(3.6)

Since the acceleration force is propotional to the projection of the quadrotor’s z-axis

onto the horizontal plane, according to [79], we can rewrite the above Eqn. (5.8) as

follow
ẍ (xk) = K1 (cosψ sinφ cos θ − sinψ sin θ)−K2ẋk

ÿ (xk) = K1 (cosψ sinφ cos θ − sinψ sin θ)−K2ẋk
(3.7)

where all the proportionality coefficient K1, ..., K8 are estimated by experimentally.

In order to estimate the optimal state using UKF, we convert the raw state to the

augmented state such that

xa
k =

[
xT

k , v
T
k , w

T
k

]
(3.8)

The goal of the UKF algorithm is to infer the robot state using a set of weighted sigma

points which are deterministically chosen as follow

χk =
[

xa
k xa

k ±
√

(L+ λ) pak
]

(3.9)

Unlike EKF, for every time step, the sigma points are propagated based on the state

transition model and control inputs instead of robot state. After that an optimal state

associated with a covariance are computed using the algorithm 1.

3.3.2 Controller Design

We have adapted a nonlinear controller, which is designed with basis on a dynamic

model of the AR.Drone, with the closed-loop stability proven using the theory of Lya-

punov. In this section, we will explain the simplified mathematical model of our aerial
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platform, and then we will show how to use that model to design the control law.

3.3.3 Mathematical Model

In this subsection, we will explain the behavior of our drone using the mathematical

model. As our drone is a quadrotor, the flight behavior determined by the speeds of each

of the four motors, as they vary in concert, or in opposition to each other. The dynamic

model of our quadrotor is already known in the literature, and can be represented as



mẍ = (cosψ sinφ+ cosψ cosφ sin θ)u1

mÿ = (− cosψ sinφ+ sinψ cosφ sin θ)u1

mz̈ = (cosφ cos θ)u1 −mg

Ixxφ̈ = u2 − (Izz − Iyy)θ̇ψ̇

Iyyθ̈ = u3 − (Ixx − Izz)φ̇ψ̇

Izzψ̈ = u4

(3.10)

where, m represents the mass of the AR.Drone, g is the gravity acceleration, Ixx, Iyy and

Izz are the moments of inertia, and u1, · · · , u4 are control signals.

To derive the kinematics model of the drone, we assume the following relationships

hold in its body frame 

v̇x = K1uvx −K2vx

v̇y = K3uvy −K4vy

z̈ = K5uż −K6ż

ψ̈ = K7uψ̇ −K8ψ̇

, (3.11)

where v̇x and v̇y represent linear accelerations with respect to the axes xb and yb, z̈ rep-

resents the linear acceleration with respect to the axis zw, and ψ̈ represents the angular

acceleration with respect to the axis zw. The parameters K1, · · · ,K8 are proportionality

constants to be experimentally identified.

The equation of the motion is then derived by transforming the Eqn. (3.11) to the

global frame as follows


ẍ

ÿ

z̈

ψ̈

 =


K1cosψ −K3sinψ 0 0
K1sinψ K3cosψ 0 0

0 0 K5 0
0 0 0 K7




uvx

uvy

uż

uψ̇

. (3.12)

To adopt such model, we assume four degrees of freedom of interest (vx,vy,ż, ψ̇),
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and model each of them as an independent linear system. Then we generate the con-

trol signals (uvx,uvx,uvż , uvψ̇) by considering the drone’s center of mass as the point of

interest to the controller (the target point whose position is being controlled).

3.3.4 Trajectory Controller

We use the nonlinear controller proposed in [87] to guide the AR.Drone in positioning

and trajectory tracking tasks. Let the current pose of drone be X = [x y z ψ]T and the

desired pose be Xd = [xd yd zd ψd]T . We define the tracking error as follows

X̃ = Xd −X =
[
xd − x yd − y zd − z ψd − ψ

]T
. (3.13)

Note that Xd can be a function of time, we can then characterize the trajectory as

follows

Ẍ = f1U− f2Ẋ, (3.14)

where

Ẍ =


ẍ

ÿ

z̈

ψ̈

 , U =


uvx

uvy

uvż

uvψ̇

 , Ẋ =


vx

vy

ż

ψ̇

 , (3.15)

with f1 and f2 being the two 4× 4 matrices of (3.12). To compute the control law,

we adopt an inverse dynamic controller given by

U = f−1
1 (ν + f2Ẋ), (3.16)

with

ν = Ẍd + κpX̃ + κd
˙̃X, (3.17)

where Kpx and Kdx are matrices that represent the proportional and the derivative gains

as follows

κp =


Kpx 0 0 0

0 Kpy 0 0
0 0 Kpz 0
0 0 0 Kpψ

 , (3.18)
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and

κd =


Kdx 0 0 0

0 Kdy 0 0
0 0 Kdz 0
0 0 0 Kdψ

 . (3.19)

Note that it is beyond the scope of this subsection to prove the stability of above

controller, our overall approach is to exploit the control law to directly control the

quadrotor. The stability of this controller has already been proven in [87].

Experiment Results

We perform a series of real world experiments to validate the properties of the proposed

system. All the experiments were performed in indoor environments. In this section,

first, we will analyze the V-SLAM algorithm’s accuracy and behavior. To obtain the

ground truth scale, we performed several tests by manually moving the drone a fixed

distance and comparing the moved distance with the distance measured by the V-SLAM

system. We also point out the fact that for controlling a drone, it is necessary to have

enough visual features in the environment to accurate estimate the pose of the drone

by V-SLAM. We remark that the tests in the following section. Finally, we explain how

the addition of accurate state estimator significantly improves the control accuracy and

tracking abilities.

Scale estimation

It is important to find the accurate scale factor, Γ in Eqn. (3.3) before fusing all the

sensor information. On the one hand, to determine the XY scale of the visual SLAM,

we performed a manual experiment, where the robot is translated around 0.5m × 2m
rectangular area in a hand-held manner, shown in Fig. 3.3. The ORB-SLAM module has

the capability to initialize the visual SLAM based on initial motion automatically. When

the environment is planar, nearly planar or there is low parallax, ORB-SLAM module

explained it by a homography matrix. Otherwise, a fundamental matrix is computed

to explain non-planer environment. In our experiments, the non-planar environment

is larger than the planar environment. Observing how the scale can be varied in two

different environments from a series of experiments, we have found two values for Γ as

follows

Γ =

5 if planar

15 otherwise
. (3.20)

On the other hand, we determine the altitude of the drone by fusing the height z
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(a) Initial view (b) Final view (c) 3D map

Figure 3.3: Experiment of determining the tracking threshold Value.

from the V-SLAM module, acceleration reading from the IMU, and altitude reading from

the ultrasonic sensor. Since the V-SLAM initial height with accurate Γ also does not the

coincidence to global origin (0, 0, 0), we initially compute an offset of visual SLAM w.r.t

ultrasonic reading. We add this offset to the estimated height which is computed by

V-SLAM module, and then fuse all the information using the UKF. All the modules in
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Figure 3.4: Schematic representation of proposed control loop.

Fig. 3.3 should work simultaneously to obtain the best performance from the state

estimator. However, we have observed that when the ORB-SLAM module significantly

gets reduced the number of feature correspondents, it leads the V-SLAM module to

deadlock situation. This fact is known as the tracking lost and a relocalization is possible

by backtracking the previous trajectory. To avoid such problem, we initially find the

minimum number of tracking point is required to conduct an experiment smoothly.

We performed an experiment where the robot was navigating manually in hand hold

fashion. We plot the number of feature correspondence with respect to elapsed time
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Table 3.1: Overview of experiments

Parameter Value
# waypoints 20
path len.(m) 10.35
max RMSE(m) 0.2308
max var. (m) 0.0120
time (s) 104.1298

in Fig. (3.4), and determine the threshold value just before the tracking lost. In our

experiments, we use the threshold value 80.

Trajectory control accuracy

We performed real-robot-experiments in the context of determining uncertainties for the

trajectory control. The trajectories generated by the simulated environment were used

for this experiments. To this end, we want to minimize the localization uncertainties

of the robot given a planned trajectory. Localization uncertainties are relevant since

the sampled locations are often inaccurate due to navigational errors from the position

controller. We use the root mean squared error (RMSE) to measure the localization

uncertainties. While executing a planned trajectory, the RMSEs were computed between

the desired positions and the actual positions of the UAV.

RMSEi =
√

[Xi
d − X̂i]T × [Xi

d − X̂i], (3.21)

where i is the index of desired configuration and i = {1, · · · , 20}. Given i, Xd and X̂
represent the desired configuration and the successive tracked configuration.

Fig. 3.5(a), shows the sampled trajectory for each experiment. The sampled tra-

jectory was explored 4 times to determine the localization uncertainties shown in Fig.

3.5(b). The overview of experiment results were shown in Table 3.1. It took 104.13s to

traverse the sampled path of 10.35m. We observed maximum 0.23m RMSE error while

traversing 20 waypoints. The maximum variance of RMSE from 4 experiments was no-

ticed 0.012m. The video available in the link https://youtube/TUIh5ZLXM38 presents

the demonstration of correspondent experiments.

3.4 Summary

This chapter provides our basic assumptions, and the brief explanation of mathematical

tools which will be used in following chapters. Furthermore, we also implement a

vision-based quadrotor model that can autonomously execute a given trajectory. The
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system does not rely on external positioning - GPS or motion capturing systems, as

sensing. We describe not only the hardware platform and the software of our system

but also detail the state estimation and the trajectory control. We report the experiments

results with the video which is publicly available to the robotics community. Throughout

the result we have shown that the perfect localization assumption is valid, since the

error is almost negligible.
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Chapter 4

Hotspot Localization

In this work, we take the hotspot seeking problem as the information gathering problem

considering a threshold value to terminate the exploration. Focusing on the area cov-

erage issues, we generate a regularly spaced hexagonal grid of sampling points. After

localizing the hotspot, we propose a loop-closing path, allowing the UAV to return back

to its initial position while visiting the informative locations.

Fig. 7.2 shows all the necessary steps for the proposed system.
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Figure 4.1: System Overview: The hotspot localization is performed by sampling, plan-
ning, and action phases. It is noteworthy that the UAV not only finds the hotspot but
also returns to the initial position while visiting informative locations.
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4.1 Problem formulation

A hotspot can be generated by multiple sources with unknown strength in a 2D area. Let

xH = 〈xh, zh〉 denote the hotspot, where the postion of it is given by xh and the expected

measurement is a positive real number, zh ∈ R+. A radiation field generated by multiple

sources can be characterized using Gaussian Mixture Model [35]. Therefore, xH can

be remotely traced by the radiation sensors mounted on the UAV. For simplicity and

without loss the generality, we assume that the measurement of the hotspot, z, from a

remote location, x, can be given by

z (x) = zh exp
(
−||x− xh||

σ

)
(4.1)

where σ is the spread of the measurement and zh is the strength of hotspot. If we

assume that measurements are spatially distributed throughout the environment, then

the hotspot seeking in a radiation field is somewhat similar to the informative path

planning, where the planner queries the path subject to the maximal information gain,

I. Let, at time t, the entropy of previously gathered measurements be H(z1:t) and the

entropy of measurements given the location xt be H(z1:t|xt). The information gain is

then computed by the absolute difference of these entropies as follows

I := abs (H(z1:t)−H(z1:t|xt)) . (4.2)

Using this metric, one of the efficient way for path planning is random sampling based

approach [4]. In [4], information is gathered in two folds. Firstly, a number of sample

locations are generated in a random manner and then measurements are gathered after

traveling each of them. Let n be the set of samples at time t such that nt = {1, 2, ..., n}.
A tree τ is then constructed by iteratively sampling in neighbor locations. Thus, the

goal of an informative path planner at time t is to find a maximal informative location

around the neighbors in such a way that

x∗t = arg max
i∈∀n∈τ

abs
(
H(z1:t)−H(z1:t|xit)

)
. (4.3)

If the sampling budget time T is given, the path P is then generated by assimilating all

the local best locations given by

P =
T⋃
t

{x∗t} (4.4)

However, the hotspot seeking algorithm is considered as a goal oriented problem whereas

in [4] the informative path planning is basically a goal free problem. An informative

path planner can then find the hotspot by simply adding a termination condition, zh,
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such that

P∗ =
T⋃
t

{x∗t} s.t. z (xt) < zh (4.5)

The problem of hotspot seeking becomes complicated when the information metrics for

each sample location does not vary significantly at each sampling step. In that situation,

we define the area coverage ratio as the performance index of the planner. We assume

that the target area can be fully characterized by sampling the finite number of spa-

tially distributed locations. Given a target area, A ← ∀{x}, let the sampled locations

be denoted by the set, D ← ∪{∃x ∈ A}. The UAV will visit only unexplored area and

when A\D ← {}, the area would be fully covered. Let Dit+1 be the prediction over Dit+1

given the next sampling location xit, and c (xit)
∆= |Dit+1|

|A| be the area coverage ratio at

exploration time, t. Since expensive explorations are required to gather the measure-

ment attributes, zt, we want to minimize the area coverage ratio at each sampling step

t. Thus, our desired hotspot directed sampling path can be expressed as follows

P∗ = min
c(xt)

max
I(xt)

∑
t
(c (xt) + ηI (xt)) s.t. z (xt) < zh (4.6)

where η is normalizing constant. Although a sampling path is the necessary condition

to localize an unknown hotspot, it is observed that all the sampled locations are not

informative. Thus, when the UAV has to return back its initial location, it can visit only

to the most informative locations to make an efficient tour. In this way, we can then find

the loop closure path by visiting only to the most informative locations. Let W be the

total information gain for the loop closure path, which can be computed by visiting all

the sampled locations. Since we already know all the sample locations x ∈ D and their

corresponding information I (x), the informativeness of each location can be evaluated

by a weight, w, as follows

w(x) ∆= I (x)
dist (x, x0) (4.7)

where x0 is the initial position of UAV and dist is the function that computes Eucledian

distance. Therefore, the optimal returning path can be obtained through avoiding less

informative locations given by

P∗opt = max
∑
x∈D

I (x)x s.t.
∑
x∈D

w(x)x <= W (4.8)

In summary, the goal of this thesis is to answer the following question- given a termi-
nation threshold zh of an unknown hotspot, xH; how to generate a tour path, 〈P∗,P∗opt〉,
to quickly localize the hotspot position xt, where z (xt) > zh ?
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4.2 Algorithm Descriptions

We now discuss the sampling strategy that generates the UAV trajectory toward the

hotspot, minimizing the area coverage ratio. The key idea is to use the samples over a

set of hexagonal grids and to build a tree of possible trajectories by extending candidate

trajectories toward the sampled points. The hexagonal grid has two benefits: it covers

more directions compared to the rectangular grid, and is the most efficient shape that

can tile the 2D plane [88].

4.2.1 Local field Sampling

We propose a HexTree based sampling strategy inspired from the RIG-tree structure [4],

where vertices in the graph represent a tuple of location, cost, and information. Unlike

the RIG-tree, a HexTree has a fixed number (six) of children nodes, qhex, centering at

a (virtual) parent node vt. As the name implies, the children nodes are hexagonally

distributed, and each of them is separated from its neighbors by the same interval a,

and the adjacent parents share common children nodes depending on their locations.

The root of the tree represents the initial position. During the sampling period, the

robot visits only the children nodes and then the planning decision is stored in the

parent node. Thus, each parent node contains the information of the local best child

node.

Algorithm 2 HexTree formulation
Require: A, x0

1: Tree
2: Tree.AddRoot(x0)
3: vt ← x0
4: while not converged to hotspot do
5: qhex ← HexagonalSampling(A, vt)
6: qsort ← GetSamplePath(qhex)
7: qbest ← FindMaxInfoEdgeOnTree(Tree, qsort)
8: vt+1 ← GetNewParent(A, T ree, qhex, qbest)
9: for all i ∈ nt do

10: if zit > zh then
11: return OptimalReturnPath (tree)
12: end if
13: end for
14: end while

37



4.2.2 Sampling path generation

The tree structure is now under a favorable condition to reduce the UAV exploration

using radiation field properties. We can create an incremental version of Hamiltonian

path to visit each child location, xit ∈ qhex, at most one time and avoid redundant visits

to the same location. Instead of n number of random points, the HexTree constraints

sample points into six at sampling time t, and that some of them are shared. Therefore,

we can optimize the sample path to only unexplored locations. In order to generate a

Hamiltonian path to the current UAV location, first, we assign a global index set J with

the index function ind. ind generates a unique index for each node mapping the node

from the position domain xit ∈ R into the index domain ind(xit) ∈ N. We store each

visited node into J = ∪{ind(xit)}. Secondly, we compute the traveling cost between the

UAV and each new node position given by

qit.cost = dist(xit, x0)ind(xit)/∈J (4.9)

Once we compute the cost of each node, we sort all the candidate nodes using the

Hamiltonian path algorithm [89]. Thus, we find the optimal sequence to sample the

local hexagonal grid. Note that, even though we sample the area using a regular hexag-

onal grid, the sample path does not need to follow such a pattern. At each step, the UAV

exploration is ended with a candidate child location and the subsequent sample path is

generated with the evolved location.

Algorithm 3 Sampling path generation
Require: qhex

1: for ∀xit ∈ qhex do
2: if ind(xit) /∈ J then
3: qit.cost← dist(xit, x0)
4: else
5: qit.cost←∞
6: end if
7: end for
8: qsort ← HamiltonianPath(qhex)
9: return qsort

4.2.3 The next best parent

Given the sample path defined by Alg. 3, the robot travels each of the node location at

most one time as similar to Fig. 4.2 and gathers the measurement attributes. Based on

the gathered information, the next best parent location is computed using the following

steps- firstly, we assign the virtual edges for each sample location deterministically, for
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instance, the virtual edges {BF,EF,EA, ...} in Fig. 4.2 represent the nodes {B,F,E, ..}.
Secondly, we compute the information gain for each node using the Eqn. 4.6. Thirdly,

the edge which has maximum information gain, we find the neighbor edges. For in-

stance, the edges HB and EF are the neighbor edges of BF in Fig. 4.2. Finally, we

extend the neighbor edges in such a way that coincidence a point, G in Fig. 4.2, which

is the next best parent location. Note that, G is a virtual point where the robot does not

visit. It is only computed to generate the next sample locations in a hexagonal manner.

4.2.4 The optimal return path

While the UAV iteratively seeks the hotspot location, all the sampled locations are not

likely to be informative due to the fixed sample interval. We therefore generate an

optimal return path using the dynamic programming based Knapsack algorithm [90].

Specifically, we constrain the travel distance while maximizing the information gain.

Since the HexTree already tracked all the information through the sampling step, we

convert it to the Knapsack variables. The return path abandons those locations where

the measurement does not add much important information to the field. The local field

was represented by the child node having the maximum information gain, which was

also stored in the virtual parent node. Neglecting the distance between such a child

node and its parent node, we can easily generate the return path based on the parent

node locations only.

4.3 Optimality Analysis

Our approach is to tile the hexagon through the sample nodes using the area coverage

strategy. Since the tiling process involves node sharing, the redundant visit can be

avoided by generating the Hamiltonian path. However, when the robot has to avoid the

shared nodes, there can be an increase in the path length. We will now give an upper

bound on this path length.

Definition 4.3.1. Let’s assume that ’a’ is the step length which is required to travel two
consecutive children nodes in a parent grid and ’n’ is the total number of parents in the
tree. An online algorithm solving the navigation problem is said to be optimal if the total
path length is bounded by a factor

(
5 +
√

3
)
na

We first state a number of modest assumptions that are required for this analysis.

Next, we place a bound on the sampled path by finding the proofs of two essential

theorems.
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Figure 4.2: HexTree Sampling Pattern: The red dots are the sampled locations and
the cyan lines are the sampled path. The purple lines are drawn to determine the next
parent (virtual) location denoted by G.

Assumption 4.3.1. There exists at least one new child node in each parent node to extend
the tree towards the goal position.

This assumption requires that some free space is available to create a sample parent.

Since two consecutive sample parents share at least one edge, to make a valid sample

patent at least one new vertex is required.

Assumption 4.3.2. Starting with an arbitrary location, the robot travels to each child
node of a sample parent in a Hamiltonian path manner.

We want to optimize the total length of exploration time. Thus, this assumption

leads the navigation problem to an optimal solution. Since the adjacent parents are

sharing at least one edge- which means at least two children nodes, traveling to all the

children at most one time is helpful to avoid the redundant visits.

Theorem 4.3.1. If ’n’ number of hexagons are required to reach the goal position, there
exists at least 5n edges which are required to generate a Hamiltonian path

Proof. Given a hexagonal grid, initially, the robot can travel at most 6−1 = 5 vertices to

make a Hamiltonian path. If this pattern follows, then it is straightforward to conclude

that 5n edges are required in total. However, since two adjacent hexagonal grids share

at least one edge, the robot skips 2 vertices while travailing to all the children nodes.

From Fig. 4.2, we can understand that the number of edges which is required to extend

the Hamiltonian path for the adjacent grid is 6− 2 = 4. However, since the robot needs

to travel at least distance a to reach the adjacent grid, which is equivalent to the length

of an edge, we can then compute the total edges as follow

4n+ n = 5n (4.10)
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Theorem 4.3.2. If ’n’ number of parents are required to extend the tree onto the goal
position and ’a’ is the distance between the consecutive neighbors, the sampled path for the
HexTree can be extended upto a

√
3(n− 1).

Proof. In the worst case, the robot travels to the farther child node of the neighbor

parent and the neighbor parent shares only two common children. Fig. 4.2 shows the

worst case scenario, where the robot travels to the farthest child node. Let’s assume

that the robot is located at node A and the goal node is denoted as B in the Fig. 4.2. In

order to compute the worst case path distance, AC, we draw two imaginary edges from

A to B and B to C. Since a regular hexagon comprises of six equilateral triangles, the

length of BC can be computed from the triangle BDC as follows

BC = 2
√

(a2 − a2/4) = a
√

3 (4.11)

And it is obvious from the Fig. 4.2 that the length of AB is the diameter of the

hexagon, computed by

AB = 2a (4.12)

Thus, using the triangle inequality theorem for the triangle ABC, we can state that

AB + BC > AC. As a result we can compute the upper bound of AC from the Eqn.

4.12 and the Eqn. 4.11 as follows

AC < (a
√

3 + 2a) (4.13)

However, as we know from the definition that the minimum travel distance between

two consecutive children nodes is a and in the worst case scenario two consecutive

parents are shared at least one edge which length is also a, thus, the maximum length

of AC can be exceeded upto

∆AC = a
√

3 + 2a− a− a = a
√

3 (4.14)

As we can see from the Fig. 4.2, we need at least two hexagons to compute the

length of AC, therefore, the worst case path could be extended by the n number of

hexagons as follows

∑
n−1 ∆AC = (n− 1)∆AC = a

√
3(n− 1) (4.15)

Combining the theorems and the above equations, we can compute the final bound
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Table 4.1: Overview of parameters

Parameter Value Description

A 30m× 30m Target area size
Hstr 3000 Strength of hotspot
Hpos [ 25 20] Position of hotspot
σ [150 150] Spreading matrix
a 1m Sample step length
ξ 2900 Termination threshold

Table 4.2: Algorithm performance

RIG Tree HexTree

# iterations 55 7
# samples 55 42
path len.(m) 24.849 7.865
time (s) 104.364 43.256
std. dist. (m) 10.416 0
Max path len. (km) ∞ 2.33

of the sampled path as follows

∑
n−1 ∆AC + 5na < a

√
3(n− 1) + 5na ≈ (5 +

√
3)na (4.16)

4.4 Simulation Results

We present results of numerical experiments with the HexTree planner compared to the

RIG-tree planner. Our return path is also compared to the path smoothing algorithm.

Table I presents an overview of parameters used for the experiments. Each algorithm is

implemented in MATLAB on a PC with a 3.40GHz Intel(R) Core(TM) i7 processor and

8.0GB RAM.

4.4.1 Compared Strategies

The RIG-tree planner is in principle capable of finding the hotspot, which is asymptoti-

cally optimal. However, it takes a very long time to converge to the hotspot. For a single

UAV exploring over a large area, the HexTree planner is even faster than the RIG-tree

planner. To compare the performance of both planners, we measure the total length

of sampled path and the time to converge with the same initial position, step size, and

termination condition.

Fig. 6.8 shows the difference between the HexTree and RIGtree planners. The Hex-
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Figure 4.3: Performance comparison: White dots are the sample locations, cyan lines
are the sampled path, the blue triangle is the hotspot position, the baseline colored map
is the radiation distribution. A UAV needs to sequentially explore each location to gather
the information. The RIG tree does not have sequential path generation characteristics.
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Tree sampled path was restricted by the hexagons, and only 7 iterations were required

to converge to the hotspot, while 55 iterations were required for the RIG-tree. Further-

more, since the HexTree sampled path was sequentially optimized, we can see from

Table 4.2 that the HexTree traversed only 7.865m distance to find the hotspot, whereas

the RIG-tree traversed 24.849m. Since the RIGtree randomly sampled the area, it re-

quired more sample points (55) and longer time (104.364s). On the other hand, the

HexTree clearly outperformed the RIG-tree in terms of the sample point (42) and the

convergence time (43.256s). The total distance required to reach the hotspot with the

RIG-tree varied significantly across 10 experiments, while the HexTree remained con-

stant. In case of the absence of hotspot, the RIG-tree could not find any condition for

which sampling will be terminated, resulting in a sampled path of infinite length. On

the other hand, the HexTree needed only 346 iterations to completely cover the 900m2

area, resulting in 2.33km sampled path to reach a termination point.

4.4.2 Path Smoothing Vs. Optimal Return Path

The sampled path may contain locations that lead to redundant visits in view of in-

formation gathering. Optimizing the return path is therefore an essential step similar

to the RRT [37] path smoothing. Our focus is to find the most informative locations

considering the travel cost. As the RIG-tree does not have the return path, we compare

our return path with the RRT path smoothing. We have performed 3 simulations with

different initial UAV positions and hotspot locations as shown in Fig. 4. Since the path

smoothing finds the shortest path to the initial position, the return path for the RIG-tree

looks more like a straight line and cannot find any informative locations from the sam-

pled path. Meanwhile, the proposed path finds several locations considered as the most

informative locations satisfying the travel distance constraint.

4.5 Summary

We address the problem of hotspot seeking in an unknown radiation field using an Un-

manned Aerial Vehicle (UAV) with limited resources. For on-the-spot investigation of

accidental radiation releases, without a priori knowledge on the whereabouts of the

source of radiation substances leakages, it is very difficult to navigate and return a

UAV for fast hotpost localization. We propose a novel Hexagonal Tree (HexTree) based

sampling algorithm to find such an optimal tour path based on the appropriate mea-

surement locations. We make a realistic assumption on the environment, theoretically

analyze the optimality of proposed algorithm, and numerically compare the perfor-

mance with the existing method. The proposed algorithm gives faster convergence to
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Figure 4.4: Return path generation: HexTree return path is generated while visit-
ing informative locations. On the other hand, the path smoothing algorithm finds the
shortest path to the initial location subject to distance constraints.

the hotspot, an optimal exploration termination condition, and more informative loca-

tions while returning to the initial position than conventional random sampling based

exploration and path smoothing algorithms.
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Chapter 5

Boundary Estimation

5.1 Problem Formulation

In this work, we want a single UAV to have the ability to estimate an unknown boundary.

To enable this robot to estimate such boundary which is defined by threshold β, it needs

to sample along the boundary to gather measurements in a point-wise fashion. The

objective is to track spatial sampling points, S, and augment these with a smoothing

function to estimate the desired boundary. Thus, the problem we want to solve here

stated as follows:

Given a threshold value β for an unknown environment that may include non-concave
regions and the measurements subject to noise wt, how to accurately track a closed bound-
ary set S in a finite time limit.

Similar to [15, 12, 16], we also assume that the boundary is described by a smooth,

regular, simple, closed curve.

5.1.1 Field Characterization

Our focus is to find a region within the environment where there is a phenomenon

delimited by a perimeter. This region of interest Ω ∈ R2 is a finite set and enclosed by a

boundary. The measurement of a location in such field defined as a map

z(x) : R2 → R, (5.1)

that evaluates the strength of the phenomenon at the point x, and expressed in intensity

unit.

Definition 5.1.1 (Region of interest (ROI)). The region of interest is the collection of
points in the environment where the measurement z(x) is greater than some threshold
value β, i.e. the set {x ∈ Ω|z(x) > β}.
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Our boundary of interest S is a simple closed curve that represents the perimeter of

ROI. Since we want to minimize the robot’s exploration, the ROI can be determined by

tracking the boundary line S only.

Definition 5.1.2 (Boundary line). The closed curve is said to be boundary line if it repre-
sents a level set S such that for each point x ∈ Ω, the measurement satisfies threshold β,
i.e. the set

S := {x ∈ Ω|z(x) = β} . (5.2)

Note that it is common to assume that the measurements varies linearly in the vicin-

ity of boundary line [23, 16]. Therefore, a linear controller is sufficient enough to

sample such kind of boundaries.

5.1.2 Spatial Sampling

To sample the environmental boundary S, we use a single UAV to gather the measure-

ment in a point-wise manner. We assume that only 2D Euclidean trajectory is sufficient

enough to estimate S. Therefore, throughout this chapter, the UAV’s position repre-

sented by x, i.e. x ∈ R2, and it expressed in polar coordinate system.

3
t /3

t

/;
t

O
ref;

0

;
t

Figure 5.1: Boundary Estimation: A environmental boundary is estimated by varying
the polar radius ρt and angle θt w.r.t the reference origin Oref

Fig. 5.1 shows the key concept to make a closed boundary, which is similar to our

previous work [?]. The overall process is in two folds: Firstly, we transform the origin

of the polar coordinate to the initial robot’s neighborhood location denoted by Oref . It

is a random location inside the boundary, where z(Oref ) > β. Secondly, by continuously

varying the polar radius ρ and polar angle θ, we find the level set curve S.

5.1.3 Controller Synthesis

Let at time t the robot 2D-coordinate be represented by the polar angular position θt

and radius ρt such that x := [ρt, θt]. To track the S at each time step t, a point-2-point
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controller predicts a relative location u : R+ × [0, 1]→ R2 as follows

ut(δρt, δθt) = δρt ×

cos δθt
sin δθt,

 (5.3)

where δρt and δθt are predicted increments of radius and angle respectively. These

increments are subjected to the measurement of the current location z(xt). The robot

is assumed to be able to localize itself within the environment with a negligible on the

boundary estimation.

After executing every motion, the distance traveled by the robot to track the Si can

be defined as the curvature of the boundary, denoted by κ. Let l be the length of the

curvature when the robot finishes its tracking by returning back to the initial position.

To approximate a boundary, the robot has to explore the vicinity of the boundary of

interest in a such way that satisfies the Eqn. (7.11). Since the measurement affected by

sensor noise, we can then explain the robot’s observation as follows

h(xt) = z(xt) + wt, (5.4)

where wt is the Gaussian white noise with zero mean. If apriori initial approximation of

S is available, the robot can then estimate the S by n vertices polygon P ∗n by measuring

the Lebesgue similarity δs as follows

δs (S, P ∗n) =
∫ 2π

0
ρ (θ)α dθ =

∫
l∈S

κ(l)(1−α)dl (5.5)

where α > 0 which represents the polynomial degree and κ := ρ−1. To construct the

best P ∗n , Melure and Vitale [91] consider α = 3. However, there are several flaws in the

polynomial approximations such that

• if an initial approximation of the boundary is not given, determining the polyno-

mial degree α is troublesome.

• in order to approximate an area Ai, the n ∈ P ∗n should be sufficiently large. As a

result, for an unknown and arbitrary areaAi, it is then difficult to deterministically

choose the value of n.

• it requires to store a large number of variables, resulting in a substantial increase

of memories as well as computational expenses, which restricts the possibility to

perform a wide-scale computational experiment.

On the other hand, removing the assumption on the initial estimation, the simplest

tracking algorithm for a single robot is the bang-bang controller, where the robot keeps
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changing its direction subject to threshold β. For instance, when h(xt) < β it moves

inside direction and in outside direction when h(xt) > β. This controller works well

except for a few drawbacks.

• with large δθt, the tracking becomes very inefficient [16].

• since the robot’s observation is affected by noise w(t), with a large w(t), it may

turn the wrong way and fail to track the boundary.

• when the boundary has narrow bottlenecks, the controller fails to cover it [92].

Incorporating the filter for denoising measurements is standard practice for naviga-

tion tasks. However, the crossing angle correction is less common within robotics. To

limit the crossing angle, Jin et al. [16] proposed the following modification

δθt := sgn(h(xt)− β) (t · ω̃ − 2θ0) /2, (5.6)

where θ0 is a preset reference, and ω̃ is the angular velocity of robot. In recent year,

Matveev et al. [23] proposed a side way controller in a dynamic environment with

following modification

δθt := sgn
( ˙h(xt)− χ[h(xt)− β]

)
, (5.7)

where χ is a linear function with a preset saturation and ˙h(xt) = h(xt)
dt

. However, tun-

ing such preset parameters for a controller are troublesome, especially in an unknown

environment.

5.2 Algorithm Description

5.2.1 State Estimation and Prediction

Let us denote the robot location at time t as xt = (ρt, θt) with the respect to Oref . When

the robot visits a location xt, it receives the field measurement for the corresponding

location denoted by z(xt). The robot motion is generated by a controller subject to

somewhat predictive function given by as follows

f(xt, ut) = xt + ut =
ρt
θt

+
δρt
δθt

 (5.8)
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where ut = [δρt, δθt]T is the controller output that represents the next relative location

based on the observation on xt location given by

h(xt) =


ρt

θt

z(xt)

+


0
0
wt

 (5.9)

where wt is Gaussian white noise. The goal of boundary estimation is to infer the robot

location based on knowledge of the control actions and observations. The level set curve

is generated by accumulating all the robot’s locations. Since the robot’s observation is

affected by the random noise, we use the Extended Kalman Filter (EKF) to make a better

prediction.

5.2.2 Controller Design

In this section we describe the process for designing a controller for estimating envi-

ronmental boundary while respecting the constraints of a single robot exploration. For

estimating the environmental boundary, the robot needs to explore the environment

and exchanges measurements. Given the state xt, a controller makes use of the corre-

sponding measurement z(xt) in order to predict the next target state xt+1. We use a PID

controller where the control signal ut is given by

ut =
kP · e+ kI ·

∫
edt+ kD · ė

δθt

 =
∑3

i=1 e(i)k(i)
δθt

 , (5.10)

where e = [e,
∫
edt, ė]T and k = [kP , kI , kD]T are the vectors contain the proportional,

integration and derivative errors and gain respectively. Given the current measurement

z(xt), the relative location of the robot can be found by computing the error metrics as

follows

e = β − z(xt), ė = de

dt
. (5.11)

We can then reformulate the state prediction used in Eqn. (5.8) by plugin the vari-

able ut from Eqn. (5.10) as follows

f(xt, ut) =
ρt+1

θt+1

 =
ρt
θt

+
∑3

i=1 e(i)k(i)
δθt.

 (5.12)

This integration over the state naturally takes into consideration the error metric of the

next relative location is expected to low: if the robot samples very close to the boundary

then e will be low as most exploration steps, while if the sampling location is far from

the boundary the e will be larger. However, it does not take into account the angle
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correction aspects, an issue for exploration over non-concave boundaries which may

lead to falsely determining the boundary, as noted in [16].

5.2.3 Adaptive Crossing Angle Correction

In order to accurately track the environmental boundary, the non-concave regions must

be crossed at fine angle correction. The main idea is that initially a coarse angle in-

crement δθ is used and is reined only in areas that are likely to contain a non-concave

boundary. If the error metric in Eqn. (5.10) turns out to be a large value, the proce-

dure can then be activated. The basic operation of this adaptive angle correction can be

explained as follows

δθt+1 = abs

(
δθt − e · atan

(
δθ2

t

ρ2
t+1

))
. (5.13)

For a non-concave boundary the error metric e is higher, resulting in large ρt+1 value.

With a large ρt+1, the Eqn. (5.13) returns a small δθt value. As a result, the robot adds

more exploration with fine angular increment in non-concave surface. Thus, we can

rewrite the Eqn. (5.12) as follows

f(xt, ut) =
ρt+1

θt+1

 =
ρt
θt

+


∑3
i=1 e(i)k(i)

abs
(
δθt − e · atan

(
δθ2
t

ρ2
t+1

))
.

 (5.14)

Eqn. (5.14) is an accurate prediction to our true boundary estimation objective. The

intuition behind this is that the robot should travel the nonconcave regions with fine

angular increments to better estimate the boundary, while the concave regions can be

travel with coarse angular increment. Using this reasoning it is simple to adapt the

definition of angle correction used in [23, 16]. The angle correction in [23, 16] is

chosen deterministically, which limits wide application; while our approach offers an

adaptability of how to best explore any random non-concave regions in an unknown

boundary.

5.2.4 Boundary Tracking Algorithm

Single robot’s boundary tracking algorithm iteratively chooses a destination target to

minimize the expected error metric of the predicted location based on the current esti-

mate. A tour through these targets estimate the length of boundary as follows

∫
t

3∑
i=1

e(i)k(i)abs
(
δθt − atan

(
δθ2

t

ρ2
t+1

)
e

)
δt ≈

∫
l∈S

κ(l)dl. (5.15)
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We can find a closed loop path in solving Eqn. (5.15) by replacing the boundary limit

from time domain to angular domain. The following theorem establishes a convergence

bound for Boundary tracking algorithm 1 in terms of finite time termination condition.

Theorem 5.2.1 (Convergence theorem). When the UAV samples an unknown environ-
ment, with prediction model specified by (5.14) and control law specified by (5.10), we
have:

lim
t→∞

f(xt, ut)→ x0. (5.16)

Proof. Let, at t = 0 the robot’s position be x0 = [ρ0, θ0]T . In a closed path, the robot’s

final location is the same as initial location. The final location can then be found when

the robot will be xt = [ρ0, 2π + θ0]T . Let assume that the following relationship holds

∫ 2π+θ0

θ0
ρδθ =

∫
S
κ(l)dl. (5.17)

Thus, we can rewrite Eqn (5.15) as follows

∫
t

3∑
i=1

e(i)k(i) · abs
(
δθt − e · atan

(
δθ2

t

ρ2
t+1

))
δt =

∫ 2π+θ0

θ0

3∑
i=1

e(i)k(i) · abs
(
δθt − e · atan

(
δθ2

t

ρ(θt+1)2

))
.

(5.18)

Given ρ0 >> δρt and θ0 >> δθt, the requirements in Eqn. (5.18) met by all small

enough δθt. Since abs
(
δθt − e · atan

(
δθ2
t

ρ(θt+1)2

))
> 0 in Eqn. (5.18), θt monotonically

increases in every iteration. Thus, when t→∞, then ∃θt that goes to θ0 + 2π, resulting

in termination with finite time limit. Then, the robot can reach its initial location x0 for

the angle θ0 + 2π by overlooking the increment of δρt, i.e. δρ(θ0 + 2π) ≈ 0.

The overall boundary tracking algorithm is explained in Alg. 1. It is important to

note that this is not a traditional PID algorithm in [8], as the EKF based noise cancel-

lation and adaptive angular correction features are incorporated into the target state

estimation. As a result, this boundary tracking algorithm exhibits the robust and ac-

curate estimation of an unknown environmental boundary so that the robot naturally

minimize the length of regions where the estimation accuracy is poor.

5.3 Simulation Results

The three scenarios considered in the simulations shown in Fig. 5.2. The radiation

fields are simulated in Gaussian Mixture Model (GMM) with two components. The
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Algorithm 4 Boundary tracking

Require: initial state xt
Ensure: Boundary S

1: S← {xt}
2: while xt(2) < 2π + xt(2) do
3: Get measurement

z(xt) = h(xt)

4: Compute controller output

ut =
[∑3

i=1 e(i)k(i)
δθt

]
=
[
ρt+1
δθt

]

5: Perform angle correction

δθt+1 = abs

(
δθt − e · atan

(
δθ2

t

ρ2
t+1

))

6: Predict target state with EKF

xt+1 = f(xt, ut)

7: Update boundary
S← ∪{xt+1}

8: end while
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GMM satisfies the following equation

GMM(Θ) =
2∑
i=1

πiN (µi,Σi) , (5.19)

where each vector component is characterized by normal distributions N with weights

πi, means µi and covariance matrices Σi. The measurement of the field is represented

by the random points distributed according to Eqn. (5.19). The robot sensing range is

defined by a circle with radius 0.25m. The measurement of a location is computed by

the number of particles inside the robot’s sensing range.

We have conducted 9 experiments in total for 3 different scenarios with 3 factors.

For each scenario, the initial robot position was defined randomly. The measurement of

the initial position was considered as the boundary threshold explained in Eqn. (7.11)

such that β = z(x0). To sample the environment, the state prediction of the robot were

considered by varing two factors as explained in Section 3: angle correction and noise

cancellation. Each experiment was evaluated into two phases- exploration phase and

estimation phase. The exploration phase corresponds to the robot traveling through

its predicted location, without further reshaping it. The estimation phase corresponds

to when the exploration phase is finished and a smooth boundary is generated over

explored locations.

Fig. 5.2 depicts the scenarios considered in our experiments. All the parameters

for GMM specified in sub captions of Fig. 5.2. The ground truth of the radiation field

visualized by a set of blue contour lines, while the measurements of the field represented

by pink dots. The robot’s position denoted by the red circle. Given a robot location, the

measurement of that location computed by the density of pink dots within the red circle.

Since the origin of robot’s coordinate could be any random point inside the contour

lines. We did not explicitly show the origin location.

5.3.1 Exploration Phase

During this phase, the robot starts from an initial location and generates a closed path

by tracking β. To generate the explored path, we perform 3 experiments for each sce-

nario by varying 3 factors: 1) the robot travels its entire path with deterministic angle

correction, measuring the sensory function z(xt) without any noise filter. 2) the robot

travels its entire path with adaptive angle correction as explained in Section 3, but

any noise filter. 3) the robot travels its entire path with the adaptive angle correction

and the EKF as explained in Section 3. Since θ is bounded by [0, 2π] and it increases

monotonically with δθt at each step t, the robot can visit only one location per θt.

To access the performance of angle correction, we performed three experiments
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Figure 5.2: Radiation field: the field is generated using GMM. The measurement of the
field is represented by pink dots and the robot’s initial position is denoted by red circle.
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with three different scenarios. Fig. 5.3 shows the angle correction over time. While

δθt is acquired at different points in time t, the initial δθ0 is the same for all algorithms.

As we discussed earlier, the robot state denoted by xt = [ρt, θt]T , and the origin of

the robot’s coordinate transformed to nearby random location x0 where z(x0) > β.

Therefore, initially smaller ρt value resulting in coarse δθt. As the time proceeds, the

robot travels those locations where ρt is high value, resulting in the fine δθt by adaptive

angle correction. Fig. 5.4 shows the estimated boundaries by different algorithms. This

explains the direct consequence of the necessity of angle correction. It is also evident

from the Fig 5.4 that the measurement noise makes it harder to obtain and maintain

an accurate estimate because the error caused by it accumulated over time. However,

it is not the fact that long time adaptive angle correction always yields an accurate

estimate. We reported in Fig 5.3 that adaptive angle correction is not an issue when

the measurement noise leads the robot in the wrong estimate. The more interesting

observations reported in Fig 5.3. Note that unless the work in [22], the robot needs

to explore the boundary of interest at most one time, resulting in the minimization of

required exploration.

5.3.2 Estimation Phase

When the robot finishes its exploration phase, a smooth boundary is estimated along

the traveled locations. we use polynomial curve fitting with order 4 to generate such a

smooth boundary. The magenta lines in Fig 5.4 are the estimated boundaries for each

exploration phase. In order to evaluate the estimation accuracy, we use the Hausdorff

distance to measure how far estimated boundary space is from the Ground truth. Let

S and S∗ be two polynomial representations of the estimated boundary and the ground

truth respectively. We then define their Hausdorff distance by

dH(S,S∗) = max
{

sup
Sx∈S

inf
Sy∈S∗

d(Sx, Sy) ,

sup
Sy∈S∗

inf
Sx∈S

d(Sx, Sy)
} (5.20)

where d is the distance function, sup represents the supremum and inf the infimum.

Existing works that estimate the environmental boundary require deterministic an-

gle correction, prior estimation, revisiting some locations. In absence of prior estima-

tion, we therefore propose adaptive angle correction with EKF to provide an accurate

estimation while respecting the limited exploration budget. To compare the accuracy

among the estimated boundaries, we performed 9 experiments. Table 5.1 summarizes

the experiment results with the respect to Hausdorff distance.The estimated boundary
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Figure 5.3: Angle correction: the performance of angle correction is demonstrated by
varying 3 factors, namely, adaptive angle, deterministic angel and adaptive angle with
EKF. The performance of the adaptive angle with EKF outperforms than others.

Table 5.1: Hausdorff distance for estimated boundaries

Adaptive
Angle

Deterministic
Angle

Adaptive
Angle+EKF

Scene 1 1.00± 0.07 2.36± 0.45 0.74± 0.05
Scene 2 0.30± 0.05 5.53± 0.09 0.23± 0.01
Scene 3 0.29± 0.2 0.87± 0.11 0.29± 0.00
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with minimum dH represents the better estimation accuracy. As it obvious from the

table, the proposed boundary estimation shows the minimum value compared to oth-

ers. This is likely due to the presence of the noise cancellation and an adaptive angular

adjustment features. Despite those features, the dH is relatively high and indicates poor

accuracy.

5.4 Summary

Environmental boundary estimation is the process of bounding the region(s) where the

measurement of all locations exceed a certain threshold value. In this chapter, we de-

velop a framework for environmental boundary tracking and estimation in unknown

environments. Dedicated sensors mounted on the vehicle considered to measure the

boundary of interest in a point wise fashion. Focusing on the limited resources of Un-

manned Aerial Vehicles (UAVs), it is important to track an unknown boundary in a fast

manner. Therefore, we seek to a motion plan that leverages a single UAV to estimate

the boundary of a given target area while minimizing the exploration cost. To do so, we

improve the conventional PID controller based framework by integrating a noise can-

celing filter and a novel adaptive crossing angle correction scheme. The effectiveness

of the proposed algorithm demonstrated in three different simulated environments. We

also analyze the performance of framework subjects to proposed modifications.
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Figure 5.4: Estimation Accuracy: The robot’s explorations represented by red dots.
The blue contour line is the ground truth while the green contour line is estimated
boundary. The adaptive angle correction with EKF always performed better among the
others.
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Chapter 6

Source Localization

Fig. 6.1 shows all the necessary steps of our proposed algorithm. Although our source

position estimation is also based on a topographic map, the proposed approach differs

significantly from [17]. First, from a given partial map, we find a set of interested

measurement attributes (intensity values) coupled with the position information using

our novel log gradient classifier. Starting with the initial positions, multiple contour

lines are generated by tracking identical intensity values. Secondly, the ROI contour

line is automatically chosen using contour shape analysis. Finally, instead of a sin-

gle method -which cannot optimize all type of distributed sources, we propose a self-

adaptive framework to select the appropriate method to localize the source positions in

the most efficient manner.

6.1 Radiation Field Modeling

There are significant differences between geographic mapping and radiation distribu-

tion mapping [52]. In this work, we aim to include the radiation intensity and its

distribution on top of a geographic map, based on the assumption that the UAV local-

ization error is negligible. In our radiation mapping problem, we assume that a partial

observation of the field is given, but the overall radiation distribution is unknown. Par-

tial observation can be found, for instance, observing a UAV trajectory coupled with

measurement attributes of the radiation field. It is necessary that the UAV trajectory

connects an arbitrary intensity zone to the hotspot so that a rough estimation of the ra-

diation field can be made initially. While the accurate radiation map can be obtained at

the expense of exhaustively exploring the area, it is desirable to develop an efficient and

effective mapping method considering the limited resources of UAVs. In this chapter,

we categorize the field, so that the UAV does not need to visit all the terrains, but rather

to explore only the ROI contour or the area bounded by the ROI contour to localize the
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sources.

In this section, we explain the procedure to characterize the radiation field using

GMM. Next we explain how to incorporate prior knowledge. Using the log-gradient

classifier, we segment the partial map into several interested positions.

6.1.1 Field Characterization

The intensity in the field could change gradually or abruptly depending on the source

location. A region could have high intensity values because of the influence of multiple

sources or the presence of strong sources nearby. Hence, it is not plausible to detect

individual sources because of unknown diffusion information about each source. In or-

der to predict their possible locations, we attempt to show their effect in the geographic

map, adding the distribution of radioactive intensity on the map. In other words, the

cumulative radiation effect of the sources is unlikely to be represented using a unimodal

Gaussian model. For this reason we use GMM to characterize the radiation field. Let

x ∈ X represent the location of the field and z (x) ∈ Z represent the corresponding

measurement. The field property is characterized using GMM with M components such

that

Fm (x;α, µ,Σ) :=
M∑
b=1

αbφ (x− µb)
Σb

2 (6.1)

where φ (x) = exp
(
− ||x||

2

2

)
/(2π) ; µ1, ..., µM are the means; Σ1, ...,ΣM are the vari-

ances and α1, ..., αM are the mixing weights that describe the Gaussian components. The

mixing weights are non-negative and add up to one. In order to generate the ground

truth, we assume that each component has equal strength and the relative distance be-

tween each mean and measured location has influenced α. However, in our case α is

equally divided by the number of sources (M), and the variance (Σ) is not important to

localize sources. Therefore, we only need to estimate the mean (µ) of the sources using

VB.

6.1.2 Log-gradient classifier (lgc)

The log-gradient classifier works like a rounding function for grouping the partial map.

It converts the partial map into a finite number of interested positions based on the

numerical relationship. Let xi=0 be the robot initial position, xi=h be the hotspot location

and i be the element index of the partial map, i : R3 → N. Also let the function

z (x0, xi) be the measurement attribute of the corresponding location xi w.r.t. x0 such

that z : R2 → R. Let us draw a line as shown in Fig. 1(c) connecting the robot position.

62



The line also contains the measurement attributes based on the region of the colored

radiation map. Therefore, the partial map is the set of a small section of the field

including the corresponding measurement attribute. Our target is to group the partial

map in an efficient way. First, we investigate how the measurement varies w.r.t. the

robot position by taking gradient at a map index i given by

∇i = z (x0, xi)
d (x0, xi)

(6.2)

where, d(x0, xi) is the distance function w.r.t. the initial position of the robot. However,

in order to group the different zones into the same layer, we rather focus on the power

of gradient values given by

log (∇i) = log
(
z (x0, xi)
d (x0, xi)

)
(6.3)

The log-gradient operator classifies the partial map using Eqn. (6.3), which is depen-

dent on the precision value, Λ, to get the number of classified regions xĵ, where ĵ ∈ Nm

is the index set that contains a subset index of the partial map locations. In summary,

the input of the log-gradient classifier (lgc) is a partial map which is a set of explored

locations coupled with measurement attributes, < x0:h, z0:h >∈ Rn×3, and a user defined

precision value Λ; while the output is the classified regions coupled with the measure-

ment attribute < xĵ, zĵ >∈ Rm×3. Note that the dimension of the classified regions m is

smaller than the dimension of the partial map n. The operation of lgc can be expressed

as follows

lgc (< x0:h, z0:h >,Λ) :=< xĵ, zĵ > (6.4)

The sequence of interested positions starts from the hotspot location and terminates at

the outward periphery such that ĵ = {h : m} in Eqn. 6.4. Intuitively, we can say that if

Λ is a high value (say 8 digits after the decimal point), the classified regions are more in

terms of dimensions, results in more number of interested positions shown in Fig. 7.2.

6.2 Topographic Mapping

The lgc provides the primary interested locations as well as their corresponding mea-

surements, the whole contour line is discovered in the contour generation phase. We

use the intensity information to track a contour line. It is known that intensity along

the contour line is a constant value, the robot then discovers the contour line by map-

ping the measurement gradient into the geometric domain. However, it is beyond the

scope of this chapter to summarize the state of the art in detector model; our overall
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approach is concerned about the robotic exploration and is not restricted to a specific

sensor model. Without loss of generality, we will restrict our discussion to the explo-

ration strategy along with measurement uncertainties. Note that as defined by the lgc,
we start contour discovering algorithm relative to the nearest distance from the hotspot

so to adaptively stop contour generation phase.

6.2.1 Contour line discovering

Let us denote the robot position at time t as xt = {xt, yt} in Cartesian coordinate. How-

ever, it is well known that drawing a contour line is relatively easier in Polar coordinate

system, that motivates us to compute the robot position in Polar coordinate. The con-

version from the Cartesian coordinate to the Polar coordinate system is simple and given

by
rt =

√
(xt − x0)2 + (yt − y0)2,

θt = arctan
(
yt − y0

xt − x0

)
,

(6.5)

where x0 and y0 are the initial positions. In order to draw a contour line, we transfer

the reference point of the Polar coordinate to the hotspot location xh. Let r be the

radial distance from the reference point to the robot location. When the robot executes

a control action, its next best location is given by a process model xt+1 = g(xt, rt, θt),
where θ is the polar angle which range is 0 to 2π. By recursively updating the polar

angle and the radial distance, a contour line over the robot positions can be discovered.

Fig. 6.2 (a) shows the geometric analysis of a contour line. Let, at each iteration

step, us adjust the radial distance and the polar angle as follows

rt = rt−1 + δr,

θt = θt−1 + δθ,
(6.6)

where δr is the radial increment of r, where δr ∈ R+ and δθ is the angular increment

of θ, where δθ ∈ R+. Note that, if δr is 0 and δθ is Constant, the robot will discover a

circular contour line. However, the goal of the contour discovering algorithm is to infer

the robot position at each step based on knowledge of the observation of field strength

(defined as intensity I).

Let cr be the contour length in geometric domain while cI be the contour length in

intensity domain. The goal is to estimate the contour line in geometric domain by track-

ing the contour line in intensity domain. After each motion, the robot receives measure-

ment attribute zt of the field according to its current position xt. The observation of the

contour line in an intensity domain is given by a measurement model I = h(zt, zµ, zw),
where zµ are the target intensity sets for the intensity tracking and zw is some unknown
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white noise added to model the measurement uncertainty. Starting from an arbitrary

position on the contour line assigned by the lgc, the contour discovering algorithm re-

peatedly uses the measurement gradient information to map the geometric contour line

by estimating an unknown scale λ such that

cr = λ · cI , (6.7)

where the length of cr is given by

cr =
2π∫
0

r2 +
(
δr

δθ

)2

δθ, (6.8)

and the length of cI is given by

cI =
2π∫
0

I2 +
(
δI

δθ

)2

δθ. (6.9)

Since the lgc initially assigned the values of r and I in Eqn. 6.8 and Eqn. 6.9, the

main challenge is to compute the scale λ that maps the δI and δr. Next, we will show

how to incorporate the measurement gradient information to accurately estimate the

contour line in geometric domain.

6.2.2 Accurate Estimation

As it is obvious from Eqn. 6.6 that at each iteration step the robot has to infer the radial

distance of the next location, the measurement uncertainties as well as the prediction

uncertainties may lead the robot along the inaccurate contour line. Therefore, in this

subsection, we introduce a recursive Bayesian filter to cope with the above mentioned

uncertainties.

The contour line over the geometric domain can be discovered by discretizing the

polar angle θt into a constant increment δθ ∈ R+. Given the current polar angle θt, the

robot estimates the radial increment δrt|θt at each iteration step. After that, it computes

the intensity gradient δIt|θt ∈ R as follows

δIt|θt = zt − zµ + zw (6.10)

where zµ is the target intensity, zt is the current measurement attribute and zw is Gaus-

sian white noise. Note that the intensity gradient could be a positive or a negative value

depending on the sensing location. In order to apply this gradient information in geo-

metric domain, we use a recursive Bayesian filter to compute the optimal scale λ given
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by

λ = δrt|θt · δIt|θt ·
(
δr(t−1)|θt

)−1
(6.11)

Since the recursive Bayesian filter summarizes the current estimation δrt|θt · δIt|θt with

the respect to the immediate past δr(t−1)|θt, as more observations are made, the scale

will begin to converge to the true value. However, given a polar angle θt, when the

estimated scale λ is a large value, the robot has to travel a long radial distance r, which

can cause a huge prediction uncertainties. If we do not minimize that uncertainties, it

will be propagated throughout the Bayesian filter into the future estimation, resulting

in poor estimation accuracy.

Here we propose to optimize the polar angle increments to compensate for the dis-

crepancy between the desired polar angle θt and the radial distance r as follows

δθt|rt = atan

(
δθ2

t

r2
t

)
(6.12)

In this case a large radial increment is discretized by reducing the polar angle given by

θt = θt − δθt|rt (6.13)

Algorithm 5 summarizes the overall estimation method. Note that each iteration step

the predicted polar angle increment is a constant value, but the effective polar angle

update is consistent with the optimal scale. Fig. 6.2 (b) represents the exploration

strategy to discover an unknown contour line in the geometric domain.

6.2.3 Finding the ROI contour

A topographic map may contain multiple contour lines depending on the designed pa-

rameter (Λ). However, all the contour lines are not important to explain the character-

istic property of distribution. Obviously, contours near to the hotspot region are very

important, since they help us visualize anisotropic, dynamic changes in the intensity

of the radiation field. As the contour line goes outwards from the hotspot, the shape

tends to be quite similar to each other. Therefore, we can analyze the contours shapes

whereby the robot can terminate the exploration.

The previous contour line discovering process was designed to discover all the con-

tour lines. Based on that process, we can find ĉ = {c1, c2, .., cl}, which is the set of

contour lines. Note that cr, cI are the length of each contour line in the geometric

domain and the intensity domain respectively, whereas ĉ ∈ Rl is the index set of all

contours and l is the dimension of that set. We consider the global Cartesian coordinate

system in order to analyze the degree of similarity between neighboring contour lines.
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Figure 6.2: Contour discover: A contour is discovered by recursively updating the radial
distance and the polar angle using a Bayesian filter.
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Algorithm 5 Contour discovery

Require: initial r, initial θ, initial δr, constant δθ
Ensure: Contour line in geometric domain

1: Predict radial distance
r(t|t−1) = r(t−1|t−1) + δrt|θt

2: Predict polar angle
θt = θt−1 + δθ

3: Compute measurement residual
δIt|θt = zt − zµ + zw

4: Compute optimal scale
λ = δrt|θt · δIt|θt ·

(
δr(t−1)|θt

)−1

5: Update radial increment
δrt = λ · δrt

6: Update radial distance
rt = rt + δrt

7: Update polar angle increment
δθt|rt = atan(δθ2

t /r
2
t )

8: Update polar angle
θt = θt − δθt|rt

For this we introduce the elements σx and σy, at each exploration in the contour dis-

covering process to compute the relative changes of initially assigned radius, r0, to the

radius, rt, at current exploration step given by

σx = {(rt − r0) cos (δθ)} ,
σy = {(rt − r0) sin (δθ)} .

(6.14)

It is obvious from the above equation that σ̂x =
{⋃
t
σx

t

}
and σ̂y =

{⋃
t
σy

t

}
represent

the change in the radius w.r.t. the global Cartesian x-axis and y-axis respectively. Next,

we will analyze the similarity between two neighboring contour lines by defining a

function given by Γ : Rl×2 → R. We compute a score for each contour line w.r.t. the

neighboring contour line closer to the hotspot using the following equation such that

Γ∗ = tan−1E{σ̂x}2

E
{
σ̂y

}2 − Γ, (6.15)

where Γ∗ is the current contour score and Γ is the neighboring contour score. When

Γ∗ reaches a predefined tolerance limit, adding a new contour would be redundant.

Therefore, the robot can stop its exploration and narrow down the ROI to the previous

contour such that

ROIC = arg min
l

{
max
Γ∗∈Γl

{
Γl (cl, c(l − 1))

}}
. (6.16)
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where, ROIC is the region of interested contour index.

6.3 Radiation Sources Localization

In this section, we briefly explain two different approaches to the localization of the

radiation sources, namely HT and VB inference. The HT approach is reasonably accurate

if we deal with the clustered sources only. It can localize the source position by exploring

only to the ROI contour line. When the source distribution is somewhat uniformly

scattered or biased, a potentially more accurate estimation than the HT can be obtained

by the VB inference. The particular VB approach used here is based on the importance

sampling which involves drawing samples from the ROI. In the context of ROI, a dense

sampling can be performed within the bounded region, so that the estimation of the

VB can converge to the true source positions. Note that the main VB algorithm takes

account of measurement uncertainties while estimating the source positions. Therefore,

we will skip the additional explanation of the measurement uncertainties for the VB

algorithm. On the other hand, since the input of HT is a contour line, the uncertainties

caused by the measurement instabilities are already discussed in the earlier section.

6.3.1 HT based source localization

The Hough Transform (HT) is a very useful tool to solve the computer vision and the

image processing problems. Although HT is typically used to detect lines, it has been

applied to the radiation sources detection problem in [17]. Since only contour lines are

required to localize sources, it should be straightforward to use the conventional HT in

the rapid source localization mission. In order to implement HT to localize the sources,

first, the detected contour lines are converted to a binary image. Secondly, the binary

image is downsampled from one half to one quarter the original resolution to reduce

the computational burden. Thirdly, the Hough circles are chosen by deterministically

defining the maximum and minimum lengths of the radius parameters. Finally, the

transform process can determine the center of each circular distribution.

However, for the HT has several major disadvantages, especially when applied to

unknown radiation distributions. First, the determination process of the Hough circles

is sensitive to the radius parameter. Without a good radius parameter, HT cannot accu-

rately estimate the source positions. Furthermore, it is observed that HT can perform

well when sources are clustered within a comparatively small area and their effects are

approximated by a Gaussian distribution. It can therefore be concluded that, the appli-

cations of the HT in the source localization process are likely to be limited and source

distribution type-specific.
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A significant advantage of the HT over the VB is that it does not require information

regarding the whereabouts of ROIs. We therefore use the HT to optimize exploration

for the clustered sources, where the ROI contour localizes the sources with reasonable

accuracy. The pseudo-code for the HT algorithm is given in Algorithm 6. In our simula-

tion the convenient radial upper bound is the size of the image, while the lower bound

is one ninth of the image size. The matlab function we use here is houghcircles that

detects the center of the radiation sources.

Algorithm 6 Hough Transform
Require: ROI contour
Ensure: Sources

1: Convert the contour to a binary image
cImage = cnt2bin(contour)

2: Determine the parameters
maxRadius = size(cImage)
minRadius = maxRadius/9

3: Localize the sources
centers = houghcircles(cImage,maxRadius,minRadius)

6.3.2 VB inference based source localization

The exploration goal of the robot in this subsection is to gather the measurement at-

tribute for a set of sensing locations which is bounded by the ROI contour line. Esti-

mating radiation sources with given a set of measurements is commonly referred to as

inverse problem. The inverse problem is difficult by the fact that different regions could

have the same intensity value. However, in our proposed framework, the ROI contour

line can provide an additional information of the measurement distribution in geometric

domain. Therefore, we here contribute a probabilistic kernel function, so that the distri-

bution of sensing locations along with their corresponding measurement attributes can

jointly compute the maximum likelihood for the VB algorithm, that results in improved

estimation accuracy.

Let P be the exploration path that traverses each of the sensing location at most one

time. With slightly abusing the notation, assume that a location of the path xs ∈ P pairs

with the measurement attribute of that location zs generates a sample point < xs, zs >.

After traveling the path P, the robot finds all the sample points bounded by the ROI

contour line, which is then used to compute a probabilistic kernel function given by

k(∀zs) = 1
2 + exp(∀zs)

. (6.17)

Although we have gathered the measurement attribute, the actual sources are hidden
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variables. In order to estimate the source positions, firstly, we characterize the ROI area

as an unknown GMM. Secondly, based on the measurement attribute, the parameters

of the GMM are obtained by computing maximum likelihood. The goal of the kernel

function is to combine the geometric shape information and the measurement attributes

as follows

p(∀xs|∀zs) = N (∀xs, µ (xs))− k(∀zs), (6.18)

where ∀xs is a column vector that contains all the sensing locations information and ∀zs
is also the column vector of corresponding measurements, thus, the normal distribution

N (∀xs, µ (xs)), the probabilistic kernel k(∀zs) are also a column vectors respectively. Fi-

nally, the optimal number of components for Bayesian GMM can be obtained iteratively

using a variational EM algorithm [93], which is achieved through partially performing

an E-step and observing the maximization of E-step and M-step using the same function

F [q, π] such that

F [q, π] =
∑
x∈∀x

∫
q (∀z, µ,T) log p (∀x,∀z, µ, T ; π)

q (∀z, µ,T) ∂µ∂T , (6.19)

where the parameters (µ, T, π) are the mean (center) of the sources, the precision ma-

trices and the mixture weights respectively. q is the arbitrary distribution that approxi-

mates the posterior distribution defined by

p (∀x,∀z, µ, T ; π) def= p (∀x|∀z, µ, T |∀x; π) . (6.20)

From Eqn. (6.18), we can see that uniform sample points inside the ROI area are

explicitly biased toward the significant measurement attribute, which results in conver-

sion of cluster samples. Therefore, the VB can easily estimate the optimal number of

sources and their corresponding locations. The detailed formulas for computing the

parameters can be found in [93]. In summary, at each iteration, the VB performs two

following steps:

• Variational E-Step: Evaluate q∗ = arg max
q

F [q, π]

• Variational M-Step: Find π∗ = arg max
π

F [q∗, π]

A notable property of this model is that when maximizing F , the prior distribution of

µ and T penalizes the overlapping components, therefore the redundant sources whose

effect are negligible to the distribution, are eliminated. Furthermore, it is sufficient to

find the mean µ components to estimate the source position. We use an open source

MATLAB function [94] to implement VB.
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Algorithm 7 Variational Bayesian

Require: ROI contour, exploration path P
Ensure: The number of sources and their corresponding positions

1: Generate the sample points by traveling P.
2: Compute the probabilistic kernel function using the Eqn. (6.17).
3: Compute the maximum likelihood function using the Eqn. (6.18).
4: Estimate the number of sources and their corresponding positions using the Eqn.

(6.19).

6.3.3 Adaptive switching strategy

The HT and VB methods described in earlier sections are now selectively used. We

propose a switching method supported by the ROI selection scheme presented in the

previous section, allowing the method to rapidly converge to a solution despite the lack

of prior knowledge of the radiation field.

Similar to the ROI selection process, the variance slope of each contour lines can be

used to estimate the distribution of source positions. Note that the sources are different

than the measurement distribution. According to our findings, the variance slope as

described in the previous section exhibits the following three characteristic properties

such that

1) Increasing order of the slope gradient : In this category, the variance slope

decreases from the outer periphery to the hotspot periphery. We observed that bi-

ased sources exhibit this type of behavior, because the inner contour line of biased

sources is almost circular and outer contour lines are elongated along a specific

direction. Thus, the variance slope converges from an elliptical and irregular cir-

cular shape to a (nearly) round shape.

2) Decreasing order of the slope gradient : Unlike the previous definition, the con-

tour shape of a scattered sources is propagated from the nearly round to elliptical

and irregular circular shapes while approaching to the inner contour. Therefore,

the variance slope exhibits a decreasing property while stepping toward inner con-

tour lines.

3) Constant order of the slope gradient : When sources are positioned close to

each other, all the contour lines detected by the exploration, basically turn out to

be uniform circular shapes. Thus, the variance slope remains at a nearly constant

level. We found that this is the case for the clustered sources.

An optimized active exploration performance, as described in the earlier section, can be

achieved by selecting an to appropriate method. In detail, the HT can be applied only
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for the constant order of the gradient slope property. On the other hand, the VB can

be used to tackle the increasing and decreasing order of the gradient slope properties.

Choosing an appropriate method by this strategy alleviates the need for superfluous

exploration. It is observed that without the proposed selection method can localize the

sources with improved accuracy. However, the challenging part is fast and accurate

analysis of the ROI contour.

6.4 Simulation Result

We have performed an extensive simulation validation of our algorithm in different set-

tings of the sources. Our first experiment focuses on reducing ROI in the radiation field

depending on measurement distribution. Next, we extend the experimental settings

to evaluate the source localization strategy. Finally, we analyze the effect of the ROI

selection to the source localization, and also show that the proposed adaptive method

optimizes the tradeoff between exploration and localization accuracy. However, the

partial map given to this system does not depend on specific initial positions. It just

contains the rough idea of the intensity distribution from lower to higher zones. In

summary, we have shown that the ROI selection is very important since it can reduce

the traversed path and enhance the estimation accuracy. Furthermore, we have also

shown the under which condition we can extremely reduce the traversed path.

6.4.1 Reducing ROI

The partial map of the environment contains the UAV trajectory and corresponding

measurement up to the hotspot location. The log-gradient classifier (lgc) classifies the

trajectory depending on the measurement change. The main advantage of lgc is that

it automatically segments the trajectory depending on the numerical properties of the

measurement, resulting in a finite number of groups. Each group contains the start-

ing position and the corresponding measurement value. It is then further explored to

determine the whole line through the contour discovering process. We perform three

experiments in determining ROI contour where sources are distributed in such form as

scattered, clustered and biased respectively.

Fig. 6.3 represents our experimental situations, where the contour lines are drawn

by mapping the intensity changes into the geographic domain. The background gray

colored map is the distribution of the measurement, while the yellow line represents

the given trajectory of UAV, which is also the partial map that fed to lgc.
Although lgc segmented the field into a finite number of groups, the similarity anal-

ysis of contour shape allows us to reduce the contour numbers further more. The simi-
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Figure 6.3: Finding ROI contour: The evaluation of the ROI contour computed by sim-
ilarity analysis. Three different experiments are conducted namely scattered sources
(a-d), clustered sources (e-h) and biased sources (i-l). The blue, green, red contours in
(a,e,i) are labeled as (1,2,3) in (b, c, f, g, j, k). The variance of each contour is com-
puted over circular path while the similarity slope between two consecutive contours
is computed using Eqn. (6.16). The arrow in (c, g, k) indicates the starting position
of similar contours. Finally the red contour line shown in (d, h, l) represents the ROI
contour where the red dots are the actual sources.

larity slope varies depending on the distribution. As can be seen in Fig. 6.3 (c), (g), (k),

the similarity slope between two consecutive contours reaches to a saturation level after

a certain period. When the slope gets saturated, we can discard the current contour and

fix our ROI onto the previous one, which explains why the ROI contours in Fig. 6.3 (d),

(h), (l), are 2, 1, 2 respectively.

6.4.2 Source Estimation

In this scenario, we have extended our experiments to source localization. After deter-

mining the ROI contour, we consider how the sources are localized. Fig. 6.4 shows the

overall procedure of the algorithm, where the partial map in Fig. 6.3 (i) is discretized
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using the lgc and a finite number of contours are drawn using the topographic map-

ping process. Among the traversed contours, the ROI contour is selected for further

exploration. Samples are taken uniformly from the area bounded by the contour. The

red circles in Fig. 6.4 (b), (e), (h), are the uniform sample locations. It can be seen

from Fig. 6.4 (a), (d), (g), the sampling region is bounded by an approximate region

of 30m × 25m, while our initial area of interest was at most 15m × 15m. The result

suggests that a significant reduction is made in the ROI. This improvement is achieved

by the similarity analysis of contour lines.

Figure 6.4: Source Localization: A radiation field is classified into a finite number of
contour lines in (a, d, g) using log gradient classifier. Contour generation process is au-
tomatically terminated depending on similarity in shape analysis and uniform samples
are taken inside the ROI contour in (b, e, h). In (c, f, i) red dots are the actual sources,
black circles are the estimated sources by Hough transform and green circles are the
estimated sources by proposed algorithm.

Since the number of estimated sources is not equal to the actual sources, the per-

formance of algorithm is measured by computing the distance to the nearest estimated

source. Table 6.1 shows the difference between the VB and the HT. NDS1, NDS2, NDS3

are the Euclidean distance between the nearest estimated source and the actual sources,

respectively. In Fig. 6.4 (c), (f), (i), the red dots are the actual sources while the black

circles and the green circles are the estimated sources using the HT and the VB algo-

rithm, respectively.

The performance achieved by VB is outstanding and very close to the original source

location. It takes at most 264 iterations to converge to the resulting state. This improve-

ment is achieved with a gathering of real measurement data inside the ROI contour.

There are several reasons that the estimated sources do not exactly converge to the true

state. This could happen because of the linearization error and the inverse problem

[18]. Despite the variation in the true source positions, the worst case estimated error

for the VB is 4.490m while the maximum estimated error for the HT is 10.837m.
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Table 6.1: Sources estimation

Src. type Method
No. Src.
(ground truth) NDS1 NDS2 NDS3

Scatter VB 3 (3) 4.490 2.618 1.942
HT 1 (3) 4.490 2.618 7.758

Cluster VB 2 (3) 0.778 1.399 1.604
HT 1 (3) 0.778 1.408 1.707

Biased VB 2 (3) 2.570 0.998 2.502
HT 1 (3) 10.837 0.998 10.687

6.4.3 The Effect of ROI selection in localization

The selection of ROI contour is particularly important because the superfluous sources

are eliminated as the method converges to a solution, thereby leading to an accurate

localization of the sources. To visualize the effect of ROI selection, we have repeated

previous experiments, and for each of them, sequentially selected all the contour lines,

and estimated the source positions using the VB. In this setup, four contour lines are
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Figure 6.5: The effect of ROI selection : In this simulation, we compare the estimation
accuracy w.r.t. the ROI selection. The ROI contour selected by the proposed strategy is
denoted in the subfigure using the blue rectangular box. The source estimation simula-
tions are carried out by the selection of a contour line starting off the outer periphery
of the distribution. The red, blue and green circles are the estimated sources by the
VB, estimated sources by the HT and the ground truth positions. It is observed that the
ROI selection not only reduces the exploration space but also enhances the estimation
accuracy.

assigned by the proposed classifier. The index of the contour line is counted from the
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outer periphery. The effect of ROI can be seen in Fig. 4, which presents several results

with the selection of the different ROI contours. From the analysis of Fig. 6.4, one

can easily infer that the contour indexed 4, 2 and 3 are the ROI contours if we use

the proposed strategy. In order to analyze the effect of the ROI selection, we compute

the estimation error similar to the algorithm 8 for each contour index and plot them in

Fig. 6.6. The estimation errors are also shown for the clustered, biased and scattered

sources. Comparing to the ground truth denoted in the same Fig. 6.5, it is obvious from

Fig. 6.6 that most estimation errors converge to a minimum level with the proposed ROI

selection. Even though the proposed algorithm failed to show a minimum estimation

error for the scattered sources as in Fig. 6.5, we can see that all the sources are bounded

by the ROI contour line and the selected ROI contour is very close to the smallest loop,

numerically, less than 2m away from the actual sources. This performance is achieved

by a tight lower bound on the ROI area. The measurement likelihood is then generated

with high-density sampling in the ROI area, as it is well known that the performance of

VB excels with the increment of sampling density [95]. However, if ROI contour fails to

enclose all the sources, the performance of VB deteriorates due to inadequate samples.

1 2 3 4
0

2

4

6

8

10

12

Contour Index

E
st

im
at

io
n 

E
rr

or

 

 

Clustered
Biased
Scattered

Figure 6.6: Estimation error: The estimated errors are using Algorithm 8. The results
are computed with the mean over 100 simulations where the error bar represents the
variation. The blue, red and green bars represent the estimation error for the clustered,
biased and scattered sources. The minimum errors for the clustered, biased and scat-
tered sources are found for the contour indices 4, 2, 3 respectively while the selected
ROI contour indices using the proposed strategies are 4, 2, 2 respectively. Even though
the proposed strategies does not find the optimal solution for the scattered sources, the
estimation error is very close to the minimum error and bounded by the 2m distance.

On the other hand, the estimation of the HT depends on the geometric shape of the

contour lines. Fig. 6.7 shows how the estimation of the HT could be changed depending

on the geometric shape. However, in the case of round shapes, the HT has always found

the same center of the distribution even though the ROI contour is different. Thus, the
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ROI selection does not have a significant impact on the source localization, but only to

prohibit the UAV from performing additional contour discovering processes.

6.4.4 Performance of the adaptive framework

Comparing the localization accuracy and considering the exploration constraints, the

proposed adaptive method is a very efficient yet accurate solution. In general, we have

found that there is a way out to optimize the localization process if the ROI contour can

be accurately selected and analyzed. For comparing the performance of the adaptive

method, we applied a slightly different metric: we looked at the estimation error and

the length of traveled path which is required to perform each of the algorithms. Fig 6.8

shows the error convergence properties of each method. Since the estimated sources

are different w.r.t. the ground truth sources, we then compute the average estimation

error w.r.t. the nearest estimated sources similar to Algorithm 8. The simulations were

performed into two phases. In the first phase, all the simulations were conducted in-

dependently without considering the ROI selection method. In order to compute the

estimation error, we combine 100 simulation results and plot the mean estimation error

with variance. Even though the ROI selection does not have any influence to estimate

the sources in the first case, it is obvious from the Fig. 6.8 that the VB outperforms the

HT except for the clustered sources.

Table 6.2 demonstrates the efficiency of the proposed framework. It is interesting to

note that the sensitivity of the source localization manifests in the ROI selection criteria.

Looking at Table 6.2, one can see that the estimation errors computed by the VB along

with the ROI and the HT along with ROI are very close only for the clustered sources,

numerically 0.95m and 1.15m. In that situation, a rapid solution without any additional

exploration in the ROI can then be generated using the HT, resulting in 19.77m path to

travel instead of 30.84m path.

However, the significance of the ROI selection can be verified by the Fig. 6.8 (b).

While the maximum and minimum mean estimation error without the ROI selection

method were around 7m and 3m respectively, in the second case (with the proposed ROI

selection method), the maximum and minimum errors converged to 2.25m and 0.85m
respectively. It is observed from the table 6.2 that regardless of the specific ROI, the VB

always outperformed the HT. However, in the first case, the estimation error of the VB is

more sensitive for the biased sources. As observed in Fig. 6.6, the wrong ROI selection

caused a large estimation error. Thus, the better results can be achieved only with

the appropriate ROI selection. It is also obvious from the table 6.2 that the number of

samples points without a ROI selection method cannot improve the estimation accuracy.

As a result, the path required for the VB algorithm is usually longer without the ROI
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Table 6.2: Exploration efficiency

Parameters Clustered Biased Scattered
Path

Len. (m)
Estimation
Error (m)

Path
Len. (m)

Estimation
Error (m)

Path
Len. (m)

Estimation
Error (m)

a path without ROI + VB 226.92 5.5 330.85 3.11 352.55 3.25
a path without ROI +HT 53.44 5.95 66.78 3.25 68.41 7.02

a path with ROI + HT 19.77 1.15 51.16 2.25 41.01 2.05
a path with ROI + VB 30.84 0.95 189.00 1.25 122.18 1.75

selection than the path with the ROI selection. Despite the more sampling points by the

longer path, the estimation accuracy is always better in the case of a path with the ROI

selection, shown in the table 6.2.

Algorithm 8 Estimation error computation
Require: source, estimation
Ensure: averageError

1: mse← {}
2: averageError ← 0
3: for i = 0 to size(source) do
4: for j = 0 to size(estimation) do
5: xs ← source(i, 1)
6: xe ← estimation(j, 1)
7: ys ← source(i, 2)
8: ye ← estimation(j, 2)
9: mse← mse ∪ sqrt((xs − xe)2 + (ys − ye)2)

10: end for
11: averageError ← averageError +min(mse);
12: end for
13: averageError ← averageError/size(source);

Since HT generates optimal results for clustered sources, we can then extend its

applications to a collection of isolated sources. However, the localization of isolated

sources is beyond the scope of this chapter. For a collection of a point sources, if one

begins with the VB method which is explained in this chapter, then the VB can converge

to a solution but with poor estimation. The reason why the performance of VB is poor

is that our proposed method is designed focusing on the single hotspot with multiple

sources. In the case of isolated sources, there could have been multiple hotspots and the

measurement attributes are not evenly distributed throughout the target area. These

results support two conclusions. First, the estimation of the VB always provides the

better solution than the HT at the expense of additional exploration. Second, HT can

drastically reduce the exploration expense, but the desired results can be obtained only

for the clustered sources.
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Figure 6.7: Performance analysis : Source localization simulations are carried out by
the HT and the VB independently. The simulations are conducted in three types of
spatially distributed sources, namely, biased, scattered and clustered. It is observed that
the localization accuracy of HT is better only for the clustered sources. In the case of
biased and scattered sources, the VB leads the solution to the close proximity of the
ground truth positions. The ground truths are shown in the last row with the triangular
shape.

6.5 Summary

In this chapter, we propose an efficient approach to the multiple source localization and

contour mapping problem of radiation fields using Unmanned Aerial Vehicles (UAVs). A

typical radiation field originating from a single hotspot can be generated by three spatial

distributions of sources; scattered, clustered and biased. Of these, the clustered sources

are relatively easy to localize, because the sources are located in a close proximity to the

center of distribution. In other cases, it is not very straightforward, because, when mul-

tiple radiating sources generate a hotspot in a cumulative manner, sources do not coin-

cide with the hotspot position. Regardless of our knowledge about the hotspot position,

we attempt to solve the multiple radiation localization problem in two steps: the Region

Of Interest (ROI) selection and the source localization. Existing algorithms eventually

explore whole area, causing the problem of excessive use of UAV resources. We there-

fore propose a framework to reduce ROI in a radiation field that not only optimizes the

resources but also increases the localization accuracy. For the source localization pro-

cess, two different methods are employed interchangeably. Those methods are called

the Hough Transform and the Variational Bayesian, adaptively selected with a switching
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Figure 6.8: The analysis of error convergence : The performance of the HT and VB is
evaluated w.r.t the nearest estimated source location. The estimation error is computed
over 100 iterations using algorithm 1 with (a) all possible combinations of the ROI
selection (b) with the proposed ROI selection. The red bar is the estimation error of the
VB and the blue bar is of the HT. It is obvious that the VB outperforms the HT in terms
of estimation accuracy. It note worthy that the outstanding error convergence can be
obtained only with the proposed ROI selection method.

technique and the overall performance is evaluated by balancing between the localiza-

tion accuracy and the required exploration. In favor of the optimization, the prediction

model defines the type of sources in a way that the adaptive switching methodology can

converge to an optimal solution by selecting an appropriate method. Thus, the proposed

framework enables the UAV to accurately localize the radiation sources in a fast man-

ner. In order to verify the validity and the performance of the proposed strategies, we

performed extensive numerical experiments with different numbers of sources and their

positions. Our empirical results clearly show that the proposed approach outperforms

existing individual approaches.
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Chapter 7

ROIs determination

Our work presents the first opportunistic and iterative environmental boundary esti-

mation for area coverage problem. The methodology is evaluated using two different

strategies (namely, boundary estimation and coverage planning) within a novel frame-

work that localizes unknown ROIs with an arbitrary initial position of the robot.The

novelties of proposed framework in two folds. Firstly, our approach based on gradi-

ent based boundary estimation overcomes the limitation of previous approaches (detail

explanation can be found in Section 4). Secondly, inspired by existing area coverage ap-

proaches, throughout the results, we demonstrate the performances of our two different

algorithms namely Voronoi-based coverage and recursive geometric subdivision.

Although proposed framework is applied in the context of field radiation monitoring,

our approach is general and can be scaled to other domains where an opportunistic

collection of environmental phenomena is necessary.

7.1 Problem Formulation

We are given a target area T , which contains radiation sources, which strength can be

sensed by the robot. We assume that T can be decomposed into a regular grid with n

cells. Let us denote this grid byG. Since radiation sources might be spatially distributed,

measurement attributes are not available for every cell. Thus, G contains two type of

cells, i.e., free cells and contaminated cells. Furthermore, nearby sources cumulatively

affect the target area, resulting in a joint distribution of measurement attributes. Let

us assume that each cell c is associated with a measurement attribute z. The robot is

equipped with a sensor to make a point-wise measurement z(t) at its position x(t) at

time t. The Regions of Interest (ROIs) in T are those cells J := ∪∃c where the robot

finds z > 0. The contaminated areas are continuous. Therefore, the robot can trace such

areas by tracking only to the boundaries. Therefore, the definitions of the contaminated
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and the free cell are quantified through a binary probability value given by

pc =

0, if z ≈ 0

1, otherwise
. (7.1)

Figure 7.1: The dark blue cells have no measurement attributes whereas other colored
cells represent the measurement attributes.

Fig. 7.1 shows an example world map of size 50 × 50. Depending on the spatial

locations of the radiation sources, measurement attributes are also spatially distributed

throughout T . The dark blue cells are the cell where pc = 0. The other colored cells

represent the fact that measurement attributes are available such that pc = 1. We can

then find multiple ROIs while splitting J subject to spatial distances.

Definition 7.1.1. Regions of Interest (ROIs): A collection of cells corresponds to a set of
contaminated locations in a given target area T , i.e. the set {J ∈ T |pc = 1}.

The global mission of the robot can be defined in two different ways, which implies

two different objective functions as follows

• the minimum time to localize an ROI,

• the total time to localize all the ROIs in T .

Without losing any generality, we assume that the travel time is proportional to the

travel distance. Therefore, firstly, we will use the boundary estimation technique that

minimizes the robot’s exploration to localize an ROI. Secondly, we will use the heuristic

area coverage technique that ensures to localize all the ROIs in T . The total time is

taken into account by summing up the boundary estimation paths and the heuristic

area coverage paths.
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Let us formally define these objective functions. First, starting from an initial cell,

we denote the coverage path followed by the robot throughout the free cells by P. Note

that, |J|<< n i.e., the number of contaminated cells are much lesser than free cells. We

define the event SP as the event that the robot reaches to any ROI which is not localized

beforehand. The complete coverage path P can be then discretized by the presence of

ROI. Therefore, the expected probability to find an ROI can be expressed as follows

E[SP ] =
∑
c∈P

(1− pc) . (7.2)

Thus, the first objective is to find an online coverage path that minimizes E[SP ]. Note

that, in this objective, the heading of the path is not important, once the robot heuris-

tically reaches any location of an ROI, the boundary tracking algorithm is followed to

determine the ROI size.

For the second objective, we denote the sequence of newly discovered ROIs along

the coverage path P. if there exists k number of ROIs in T , we discretize P into a subset

Q = {q1.q2, ..., qk}. Since the travel time is proportional to the length of qk, we want to

find the minimum length paths in the set Q to localize all the ROIs. Therefore, the total

events C (P) that the robot is experienced to localize a finite set of ROIs given by

C (P) =
∑
qk∈Q

Sqk s.t. |Q|≤ |ROI|, (7.3)

where |Q| is the cardinality of set Q and |ROI| is the number of ROIs are detected in T .

If |ROI| is a priori given, our focus is to find the minimum exploration time to achieve

that number. We then derive the performance index of the robot from eq. (7.3). A

formal definition of the performance index as follows.

Definition 7.1.2. Performance Index (PI): The performance index of the robot is eval-
uated with respect to the minimum explored path to localize all of ROIs, i.e. PI =
argminC (P) s.t. |Q|≤ |ROI|.

Since we do not know the exact number of ROIs exists in T , it is not possible to stop

the robot’s exploration when all ROIs are localized. Then, the robot exploration can

be terminated by exploration budget. Otherwise, the robot’s task is to plan an online

path through T such that every ROIs is rapidly localized while subject to complete area

coverage.
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7.2 Algorithm Descriptions

Fig. 7.2 shows the overall schematic of our proposed system. The algorithm we pro-

pose can be broken down into three steps. In the first step, Adaptive Hierarchical Area
Decomposition, we adaptively partition the target area in hierarchical order to reduce

the search space of the robot. We then find the subregions given by the partition using

the Finding subregions. When the subregions are determined, we examine the utility

to traverse each subregion that explained in the Utility function design. The subregion

which has maximum utility, we plan a coverage path through the set of unvisited cells.

The robot progresses through this path. If the robot notices an ROI along its path, it

will drop exploring more and iterates whole steps. Otherwise, the whole steps iterated

after traveling along the entire path.

Figure 7.2: System Overview: The figure shows all the steps performed by the heuristic
area coverage, and ROI estimation algorithms. Starting from an arbitrary location, the
robot can iteratively localize the desired number of ROIs using this framework.

7.2.1 Adaptive Hierarchical Area Decomposition

To reduce the computational complexity while navigating a large environment, the

search space for the path planning needs to be at a tractable level. We argue that

these objectives can be achieved by adaptive partitioning of the target area in hierar-

chical order. Given the position of ROIs, the hierarchical order is determined by a local
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minimum distance with the respect to the robot’s relative position. Therefore, we pro-

pose the recursive quad division and the Voronoi-based partition in the sense of limiting

the search space. Fig. 7.3 shows the overall overview of each algorithm. With a given

partition, our goal is to find an ROI through the limited exploration.

Recursive quadratic subdivision The recursive quadratic subdivision (RQS) algo-

rithm follows a greedy approach, wherein each step it leads the robot to the nearest

ROI to its current location that has not been covered yet. The main idea is that initially

an optimal path is generated to include every cell in T , which induced from the grid

cells. A simple TSP algorithm is adapted to generate such type of path [96], since it

minimizes the path length between the robot’s current location and all other unvisited

cells in the grid. The robot starts to explore along this path. When a contaminated cell

found, it switches to the boundary estimation planner. An ROI then computed from

the estimated boundary. Thus, the robot determines a minimum route from its loca-

tion even executing the TSP path entirely. If there are no contaminated cells in the

target area, then the robot always optimally explore the whole target area. However, in

the presence of multiple ROIs, this coverage path can be further optimized based on a

simple heuristic search.

In the second phase, RQS finds a coverage path that minimizes the travel distance to

connect the desired number of ROIs. Finding such a path is possible by subdividing the

area into four quadrants from the center of ROI. As we iteratively localize the ROIs, the

geometric partitions are also recursively subdivided. As a result, if the area turns out

to be either the entire target area or a subdivision of the previous decomposition, it is

further decomposed into four divisions based on the center of ROI. The three basic op-

erations of this decomposition are as follows. Firstly, we generate a TSP path to explore

the unexplored cells optimally. Secondly, when an ROI is determined, we terminate the

exploration and decompose the area. Finally, the region of each division is determined

by Alg. 9.

We demonstrate the recursive quadratic subdivision while the robot is covering its

free space using an example depicted in Fig. 7.3(a). The robot starts to cover the

space in a vast cell by generating a TSP path over the target area from the leftmost

corner; the target area is shown as the red rectangle in Fig. 7.3 (a). When the robot

reaches the cell where Pc = 1, which is the unvisited location of a contaminated area,

it finishes covering the TSP path. Since the contaminated area is unknown a priori, the

robot follows the boundary tracking algorithm to cover it. The robot then constructs an

ellipse over the estimated boundary to represent the ROI, shown as the orange ellipse

in Fig. 7.3 (a). At this point, it encounters the quadratic subdivision at the center point

of the ellipse, shown as blue lines in Fig. 7.3 (a). The robot chooses the subdivision
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(a) RQS decomposition:
The area is decomposed into four subdivi-
sions based on the center position of ROIs.

(b) VBS decomposition:
Starting with the random partitions, the
partitions updated by the center position of
ROIs.

Figure 7.3: Area decomposition: Two different algorithms are proposed to decompose
the search space into smaller regions. The RQS decompose the area in a greedy manner,
while the VBS iteratively approaches to optimal decomposition.
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that maximizes the utility function, and repeats the step described above as shown in

Fig. 7.3 (a). Since the hierarchical quadratic subdivision is connected to each other, the

robot is guaranteed to visit all the subdivisions in the target area, and thus completely

cover the space.

Voronoi Based Subdivision The Voronoi-based subdivision (VBS) uses the Voronoi-

based approach to partition the target area. The main idea is to partition the area

by representing the ROI centers as the Voronoi centroids. Since in our case the ROI

centers are not apriori available, we have introduced a few changes to the original

Voronoi-based partition algorithm. Firstly, it randomly partitions the target area using

four random points inside the target area. Secondly, it leads the robot to the nearest

centroid from its initial location. Finally, similar to the RQS, TSP algorithm generates

the coverage path. The robot starts to explore along this route when a contaminated

cell found; it switches to the boundary estimation planner. An ROI then computed

from the estimated boundary. Unlike RQS, the robot finds a minimum route to ROI

from its location either while traveling to the Voronoi centroid or while executing TSP

path. Although these paths increase the probability of finding ROI, if there are no

contaminated cells in the subregion, then the complete coverage path would be larger

than RQS coverage path because of traveling to the centroid. Note that in VBS, the

initial search space limited by the random partition, while in RQS, the initial search

space is the whole target area. The partition of the target area updated by the center

position of the detected ROI.

In the second phase, VBS finds a coverage path that connects the desired number of

ROIs. Finding such path is possible by iteratively updating the Voronoi centroids. The

iterative updates of centroids lead VBS to generate an optimal partition of the search

space. However, when the number of ROIs is greater than the number of random initial

points, the partition centroids are not only iteratively updated but also incrementally

constructed. The four basic operations of this decomposition are as follows. Firstly, we

generate randomized incremental construction of partitions to reduce the search space.

Secondly, the robot moves to the Voronoi centroid, and TSP algorithm creates a coverage

path to explore the unexplored cells optimally of a given subdivision. Thirdly, when an

ROI is determined, we terminate the exploration and update the Voronoi centroids.

Finally, the region of each division is determined by Alg. 9.

We demonstrate the Voronoi-based subdivision while the robot is covering its free

space using an example depicted in Fig. 7.3(b). Voronoi Diagram is the partitioning

method of a plane with n points into a specific subset of the plane such that each subset

contains exactly one generating point. In typical Voronoi diagram, the set of generating

points is apriori known. The Voronoi polygons are then constructed such that every
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Algorithm 9 Finding subregions

Require: Graph, G = (V,E,B)
Ensure: Subregions, Λ

1: for all e ∈ E do
2: ψG ← intersect(e, B)
3: Eψ ← trim(e, ψG)
4: end for{Shorten initial edges}
5: for all b ∈ B do
6: ψb ← intersect(b, E)
7: Eb ← combination(ψb, 2)
8: Eb ← unique(Eb)
9: end for{Finding box edges}

10: E ← {{Eb} ∪ {Eψ}} {update graph}
11: for all p ∈ ψc do
12: Λ← ∪NeighborEdges(p, E)
13: end for{update partition area}

point in a given polygon is closer to its generating point than to any other. However,

in our case, we randomly initialize the generating points and iteratively update their

positions.

The robot starts to cover the space in a vast cell by moving into the centroid of the

current Voronoi region (red dot) which is located at the rightmost corner; the target

area is shown as the black rectangle in Fig. 7.3 (b). Then, the robot constructs a TSP

path to cover the given region. Whenever the robot reaches the cell where Pc = 1, which

is the unvisited location of a contaminated area, it finishes covering the centroid path or

the TSP path. Since the contaminated area is unknown a priori, similar to the RQS, the

robot follows the boundary tracking algorithm to cover it. The robot then constructs an

ellipse over the estimated boundary to represent the ROI, shown as the orange ellipse

in Fig. 7.3 (b). At this point, it encounters the update of Voronoi centroid. The Voronoi

centroid of the current region is replaced by the center point of the ellipse, shown as

blue dots in Fig. 7.3 (b). If there are more ROIs than the Voronoi centroids which are

chosen initially, the overall Voronoi partitions are reconstructed with updated centroids.

Note that the minimum number of subdivisions in this case is four, and the algorithm

can also cover more than four subdivisions. The robot chooses the subdivision that

maximizes the utility function and repeats the step described above as shown in Fig.

7.3 (b). Since the Voronoi regions are connected, the robot is guaranteed to visit all the

subdivisions in the target area, and thus completely cover the space.
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7.2.2 Finding subregions

At the end of the second phase, each algorithm finds the subregions based on its par-

tition method. For this purpose, it begins by creating the graph G = (V,E,B) induced

from above mentioned methods. We represent the target area as a rectangular box B in

G. The initial partitions are the edge set E that includes edges with infinite lengths. To

find subregions Λ, firstly, we shorten each edge e ∈ E subject to B. Let V be the set of

vertices that includes three types of subsets such that V = {{ψG}, {ψb}, {ψc}}. Let ψG
be the first subset of V that represents the vertices at the intersection between B and E.

Also, let ψb be the set of vertices that represents the corner points of B, and let ψc be the

centroid of ROIs. Once we trim the long edges, the new partition represented by Eψ.

Secondly, we find all the possible combination of edges on B and represent by Eb. The

G is then updated by combining these two set of edges such that E ← {{Eb} ∪ {Eψ}}.
Finally, we group all subregions Λ by finding the neighbor edges. Finding such a neigh-

bors is straightforward. Given ψc, an anti-clockwise walk along the E can sort such

neighbors.

7.2.3 Utility function design

In the third phase, each algorithm finds the best search space among all subdivisions of

the target area. For this action, it computes the utility between each of subdivisions. The

utility is designed to favor destinations which offer higher expected information gain.

Throughout this work, we use an explored grid map, m, to model the environment. This

map is a binary map where each cell represents visited or unvisited information. Let i

be the index of each subdivision and the division of such a map satisfies the following

equation

m =
∑
i

m[i]. (7.4)

An action at generated at time step t is represented by a sequence of relative move-

ments at = ût:T−1 which the robot has to carry out starting from its current position xt.

During the execution of at, if the robot finds a contaminated cell along its path, then it

estimates an ROI in the map. Therefore, the explored trajectory of the robot indicates

some of the cells in m as follows

x1:t = ∃c ∈ m. (7.5)

In the case when the robot finds an ROI in the map, we have to treat the ROI cells

differently. We assumed that traveling inside an ROI is redundant, and want to avoid

such a region. Therefore, the cells bounded by an ROI considered as similar as visited
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cells. Let dt be the set that represents these cells as follows

dt = {∀c ∈ ROI1, ∀c ∈ ROI2 · · ·}. (7.6)

Assuming that each cell c in m is independent of each other. Then the posterior entropy

of m can be computed as follows

H(p(m|x1:t, dt)) = −
∑
c∈m

p(c) log p(c)+

(1 + p(c)) log(1− p(c)).
(7.7)

Given a subdivision, since the robot does not know when it will find an ROI along its

path, the coverage path should include all cells to compute the expected information

gain. Thus, the entropy of target subdivision can write as follows

H(p(m[i]|x[i]
t+1:T , dt, at)) = −

∑
c∈m[i]

p(c) log p(c)+

(1 + p(c)) log(1− p(c)).
(7.8)

To compute the information gain of a subdivision, we calculated the change in en-

tropy caused by the integration of posterior and predicted prior into the robot’s world

model as follows

I(m[i], at) = H(p(m|x1:t, dt))−H(p(m[i]|x[i]
t+1:T , dt, at)). (7.9)

After computing the expected information the utility for each action under consid-

eration, we select the action a∗t with highest expected information

a∗t = arg max
at

I(m[i], at). (7.10)

There are some works in exploration and mapping problems that consider another quan-

tity besides the information gain in Eqn. (7.10). That is the cost to reach the subdivision.

However, we observed that adding such a quantity with the utility function decreases

the overall performance of both algorithms. Thus, every time the robot has to make the

decision where to go next, it uses only information maximization metric to determine

the action a∗t .

7.3 Finding ROIs

We employ a boundary estimation algorithm to determine the ROIs by using the pro-

posed exploration method. In this section, first, we will explain how to generalize an
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arbitrary boundary. Next, we will show the generalization properties. Since the ROIs are

the function of boundaries, we then focus on only the analysis of boundary estimation.

7.3.1 Environmental Boundary Generalization

ROIs over the target area T are dependent on the boundary line estimated by envi-

ronmental boundary algorithm. Memorizing a complex boundary is computationally

expensive, therefore to obtain the tractable level of computation, we require the para-

metric estimation of the boundary.

Definition 7.3.1. Boundary line: The line is said to be boundary line if it represents the
intersection between the contaminated area and non-contaminated areas.

Assume an contaminated area δA is a non-convex set where the continuous bound-

ary is defined by a level set δA as follows

δA =
{
x ∈ R2|z(x) = β

}
, (7.11)

where β is the measurement threshold.

Boundary algorithm ensures that an environmental boundary can be estimated by

tracking the robot states such that δA = {x1:t}. When the exploration is terminated,

this set δA can be used to estimate of the best fit to an ellipse. This generalization is

done by the least squares criterion from the set δA. We also consider the possible tilt of

the ellipse from the conic ellipse representation as follows

ROI(δA) = aSx
2 + bSxSy + cSy

2 + dSx + eSy + f = 0, (7.12)

where {Sx, Sy} ∈ δA and a, b, c, d, e, f are the parameter for a second degree polynomial

equation. After the estimation, the tilt is replaced by a rotation matrix from the ROI,

and then the rest of parameters are extracted from the conic representation.

7.3.2 Analysis of Boundary Estimation Algorithm

Proposition 7.3.1. Given a contaminated area Ai ∈ A, the measurement attribute of a
location x is not available if and only if x /∈ Ai.

Proof. Assume that the cardinality of A is 1 for a given T . To prove this proposition,

first we will show that all the locations bounded by the boundary δAi are important and

all the outside locations from boundary are negligible.

The sufficiency of this proposition is trivial and we can easily prove it by Definition

1. By Definition 1, z(x) > β if x is the close proximity to the sources. By Definition 3,
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we can say that all the sources are covered by the boundary lines. Since β represent

the boundary threshold, we can conclude that ∀x ∈ Ai where z > β are bounded by

δAi. Similarly, the necessity of this proposition also follows the Definition 1. Let, xh
is the hotspot location for Ai where z(xh) maximum subject to ∀x 6= xh. As the robot

travel far from xh the following relationship hold by Definition 1, z(xh) > z (∀x 6= xh).
When z(x) << z(xh) i.e., the measurement of x is too less than the xh, we neglect those

locations by drawing boundary line. Therefore, for any location outside the boundary

line, the measurement is z(x) < β and it is negligible.

Proposition 7.3.2. Let δAi be the estimated area generated by the boundary tracking
boundary algorithm. Then Ai is a contaminated area if the effects of every nearby sources
can be jointly described by the area shape.

Proof. This is true by the construction of Eqn. (7.11). In particular, since δAi is con-

tinuous, then the contaminated area Ai must be continuous. Thus, the continuous Ai
represents the joint effects of every near by sources.

It is evident from the above proposition 7.3.2 that the boundary tracking algorithm

can estimate an ROI. Once boundary tracking algorithm computes the environmental

boundary set δA, we determine the ROI by fitting an ellipse to the sample points of

δA. This generalization has done by minimizing the least square distance between the

sample points and the Conic representation of the ellipse. After that, we extract the

parameters from that Conic representation by removing the tilt. Next, we will explain

how to extend this approach to find multiple ROIs.

Lemma 7.3.1. Given a target area T , if δA1 and δA2 are the two boundaries. Then
δA1 ∩ δA2 = ∅.

Proof. Suppose δA1 ∩ δA2 6= ∅. Then the contaminated area A1 be overlapped with the

A2, which contradicts the proposition 7.3.2.

The above lemma 7.3.1 implies that the boundary tracking algorithm can efficiently

separate the contaminated areas.

Theorem 7.3.1. Given a target area T , the boundary algorithm can estimate the boundary
of every contaminated area, i.e. ∀δAi ∈ A.

Proof. Suppose there are n number of contaminated areas in T such that n = |A|. We

use mathematical induction to prove this theorem.

• Base case: if n = 1, then it is trivial that the boundary algorithm can uniquely

estimate the boundary of contaminated area δAi without overlapping any others.
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• Induction step: Suppose n = 2. Then there are two cases when estimated bound-

aries are not equal to n. Firstly, estimated boundaries are greater than n is im-

possible, because it contradicts definition 7.3.1. Secondly, it is also not possible

that estimated boundaries are less than n, because it contradicts lemma 7.3.1.

Therefore, estimated boundaries are exactly equal to n, as required.

7.4 Simulation Results

To find the shortest coverage path, we perform 4 different experiments. We assume

that the target area contains at most 5 ROIs. The performance of each algorithm was

evaluated by the distance of coverage paths. To demonstrate the efficiency, we start

localizing 2 out of 5 ROIs and conclude by 5 out of 5 ROIs. We also have analyzed

the worst case performance and we present a statistical analysis of two algorithms from

20 trial runs. The performance of algorithms significantly varied from each other. In

particular, we have observed a noticeable difference of the algorithms on localizing

uniformly distributed random ROIs. It is noteworthy that to compute the efficiency, the

ROIs shape should remain fixed for each algorithm, we then overlook the additional

path cost required to estimate ROIs.

7.4.1 Finding coverage path that connects the desired number of

ROIs

We now consider the case of finding ROIs that meet the desired level of exploration.

Therefore, we focus on the shortest coverage path for a given number of ROIs. We

consider a 50m×50m grid area where 5 uniformly distributed random ROIs are located.

Starting from an initial location (1, 1), the robot has to find the minimum coverage path

that connects the desired number of ROIs. The coverage path can be found by adjusting

the cost to the inversely proportional to the unexplored area. In another word, the robot

explores the mostly unexplored region first.

Fig. 7.4 (a) shows a toy example of RQS algorithm. In RQS, the initial search space

is fixed to the whole target area. Once an ROI is found in a subregion, the search space

is subdivided into four regions based on the center position of the detected ROI. The

robot avoids exploring the cells bounded by the ROI and starts its exploration from the

nearest corner position of a new subregion. Next time only that subregion is divided

into four more divisions again. These processes are iterated until the end of the mission.

We have observed that the smaller the search space and the more efficient the RQS is.
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(a) RQS coverage paths on a sample map with uniformly distributed random ROIs. The blue
line in upper figure shows the coverage path, while the colored lines are the partition of the
target area. A region is divided into 4 subregions based on the center of ROI. For a new region,
the searching process is started from the corner. The search spaces are iteratively reduced based
on the position of the center of ROIs.
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(b) VBS coverage paths on a sample map with uniformly distributed random ROIs. The dark
green line in upper figure shows the coverage path, while the colored lines are the partition of
the target area. The centroid of each region is represented by the same colored cycle. For a new
region, the searching process is started from the centroid. The partitions are iteratively updated
based on the true position of the center of ROIs.

Figure 7.4: Coverage path: The robot starts the coverage in cell (1,1) and detects any 3
ROIs out of 5. The shape of each ROI is elliptical and is represented in unique color. The
lower grid map represents the coverage map. The measured cells are represented by
black color. A cell is called to be measured if it is included either in coverage trajectory
or it is bounded by the detected ROIs. In general, the VBS’s coverage path is shorter
than the RQS’s.
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A basic reason is that the complexity of TSP algorithm increases with the dimension of

search space. However, the RQS has a property to sequentially narrow down the search

space, resulting in faster convergence when the ROIs are closely located. On the other

hand, this kind of heuristic subdivision may cause the increment of the traveling time

of the robot from its current position to the unexplored region.

Fig. 7.4 (b) shows a toy example of VBS algorithm. In VBS, the initial search space

is generated by randomly choosing 4 points bounded in the target area. We will call

these points as the Voronoi centroids. The initial search space is then subdivided into

four regions based on the Voronoi centroids. The robot moves the centroid of a Voronoi

region first and exhaustively search for an ROI within that region. When an ROI is

found whether traveling to the centroid or searching the entire subregion, the robot

updates the Voronoi diagram. Similar to the RQS, the robot avoids exploring the cells

bounded by the ROI. These processes are iterated until the end of the mission. We have

observed that due to the initial smaller search space and the VBS is more efficient than

RQS. However, the VBS requires at least 3 points to partition the entire search space

optimally. When there are less than 3 ROIs in total area and the robot has to localize all

of them, the VBS performance is not stable as compared to the RQS.

7.4.2 Performance comparison

Fig. 7.5 shows a performance comparison. To access the long-term performance of

each algorithm, we ran the same experiments for 20 times by gradually increase the

target numbers. Fig. 7.5 (a), (b), (c), (d) shows the results in area coverage percentage

metric. We divided the given target area into three different regions- 1) explored by

the robot 2) covered by the ROIs 3) remained unexplored. Our goal is to minimize the

explored region as small as possible. To make a fair comparison, we use five uniformly

distributed random ellipses and try to find the shortest path that connects 2, 3, 4, and

5 ROIs. For them, the covered regions by ROIs are 6, 9, 13, and 16 percentage of the

target area. The unexplored region then determined by subtracting the covered and

explored regions from the total area.

The reduction of search space directly influences of the explored areas. When the

number target of ROIs is less than total ROIs existed in the target area, the robot dra-

matically reduces the amount of explored region. In worst case scenario, when the robot

needs to localize all five ROIs, it requires traveling more locations to find the ROIs, re-

sulting in higher exploration regions. However, the performance of each algorithm is

not stable, and we use the error bar of the bar chart to represent their standard devia-

tion. For both algorithms, the deviation increases with the increment of the number of

target ROIs.
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It is evident from the Fig. 7.5, the VBS always outperforms the RQS because of the

optimal search space division strategy. Furthermore, when the number of target ROIs

is less than the total number of ROIs, the VBS significantly reduces the explored region

than the RQS. We reported the numeric performance comparison between the VBS and

the RQS in Fig. 7.5.

7.5 Summary

In this chapter, we present a framework to solve the problem of rapidly determining re-

gions of interest (ROIs) in unknown intensity distribution, especially in radiation fields.

The vast majority of existing literature on robotics area coverage does not report the

identification of ROIs. In a radiation field, ROIs limit the range of exploration to miti-

gate the monitoring problem. However, considering the limited resources of Unmanned

Aerial Vehicle (UAV) as a mobile measurement system, it is challenging to determine

ROIs in unknown radiation fields. Given the target area, we attempt to plan a path

that facilitates the localization of ROIs with a single UAV, while minimizing the explo-

ration cost. To reduce the complexity of exploration of large scale environment, initially

whole areas are adaptively decomposed by two hierarchical methods based on recursive

quadratic subdivision and Voronoi based subdivision. Once an informative decomposed

sub area is selected by maximizing a utility function, the robot heuristically reaches

to contaminated areas and then a boundary estimation algorithm is adopted to esti-

mate the environmental boundaries. This boundary estimation algorithm should have

specific properties that are deemed to be incorporated into the proposed framework,

therefore, those properties are theoretically analyzed in this chapter. Finally, the de-

tailed boundaries are approximated by ellipses, called the ROIs of the target area and

whole procedures are iterated to sequentially cover the all areas. The simulation results

demonstrate that our framework allows a single UAV to efficiently and explore a given

target area to maximize the localization rate of ROIs.
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Chapter 8

Conclusions and Future work

8.1 Thesis Contributions

The approaches presented in this thesis represent different types of path planning strate-

gies that tackle the source localization problem in the radiation field. Focusing on the

limited flight time of UAV and computational resources, we have subdivided the main

issue into four subproblems. Our approaches strive for the optimal solution when mis-

sion time is limited and heuristic approximation when computational resources are re-

stricted. Finally, we show how to implement such path planning algorithms in a real

robot platform.

The main contributions of this thesis are as follows:

Hotspot Localization In chapter 3, we have proposed an online HexTree path plan-

ner for UAV navigation to efficiently localize the radiation hotspot. The sampled path

generated by the HexTree planner was optimal and ensured termination of exploration.

After localizing the hotspot, a loop closing trajectory was generated from sampled tra-

jectories, which contained the most informative locations considering the travel cost.

Through our theoretical analysis, we have proven the optimality of the HexTree path

and found an upper bound of path length. Since the UAV explored a large area for spa-

tial sampling, the HexTree planner clearly outperformed the RIG-tree planner in terms

of the distance traveled and the convergence time. The contributions of this chapter

are as follows:

1. A novel hexagon tiling based workspace decomposition,

2. Efficient HexTree based sampling strategy,

3. Optimal return path generation strategy, and

4. Theoretical and numerical analysis.
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Boundary Estimation In chapter 4, we presented an improved PID control law that

derives a UAV to track the boundary of unknown environments. On one hand, the

integration of EKF in conventional framework ensures an accurate prediction even in

the presence of the noisy sensor reading. On the other hand, adaptive crossing angle

correction eliminates the extra burden on controller tuning. We showed that the robot

can accurately estimate the boundary by adding more samples in non-concave regions.

Finally, we proved how to estimate a boundary in a finite time limit.

Three different simulation scenarios were considered to evaluate the efficiency of the

proposed algorithm. The tuning parameters remain unchanged in all experiments, the

results of similarity analysis show that the proposed modifications outperform others in

all the cases.

The contributions of this chapter are as follows:

1. We have formulate the boundary estimation problem which does not require a
priori information at all.

2. Our algorithm can estimate the boundary in a fast manner while minimizing the

exploration of UAV.

3. The proposed algorithm is complete, which means that the estimation process

terminates within a finite operation time.

4. Focusing on the limited computational capabilities of the UAV, the proposed algo-

rithm can robustly determine the boundary.

Source Localization A single UAV exploration based multiple unknown radiation

sources localization problem is investigated in chapter 5. Three different cases of spa-

tial distributed sources are considered to demonstrate the efficiency of the proposed

algorithms. In order to explore a large radiation field using a UAV, we propose to adopt

a topographic mapping strategy along with the reduction of ROI in the field. The seg-

mentation of a large radiation field was primarily done by a novel log-gradient classifier

(lgc) that segregates a priori known trajectory coupled with measurements. The trajec-

tory connects the lower intensity region to the hotspot region of the field, where the lgc

segments it into a finite number of key positions. The contour lines are then generated

by tracking a constant intensity value. However, the similarity analysis of contour shape

indicates that the ROI in an unknown radiation field can be further reduced by avoiding

superfluous contour lines.

In order to localize the radiation sources, the mitigation strategy such as proposed

framework is demonstrated to be effective. It can easily deal with the trade-off between

the cost of robotic exploration and the accuracy of source localization. Reducing the

100



ROI could potentially be effective in making the robot aware of sources positions. The

diagnostic criterion used for analyzing the ROI shape can be extended to predict the

type of distributed sources. Although the radiation sources might be arbitrarily located

in an unknown radiation field, the proposed framework not only accelerates the mission

completion time but also leads to accurate estimation close to actual sources. In the

numerical simulation, it can be seen that with the proposed ROI selection method, the

VB clearly outperforms the HT in terms of accuracy. To determine the clustered sources,

the HT can easily show a as similar performance as the VB without any additional

exploration. Thus, the proposed framework opted the HT only for the clustered cases,

otherwise, the VB is adopted.

The contributions of this chapter are as follow:

1. Characterizing the cumulative radiation effects with multiple sources.

2. Finding the region of interest (ROI) in large radioactively contaminated areas to

narrow down the search area.

3. Quickly and accurately localizing the sources that are actively acting in the radia-

tion field.

ROIs Determination In this chapter, we have discussed the ROIs determining prob-

lem for a large environment and its various aspects. First, we have proposed a novel

online framework to integrate the environmental boundary estimation and area cover-

age problems. Second, we theoretically analyze the properties of the boundary estima-

tion algorithm which is deemed to best satisfy such conflicting requirements. Third, we

proposed two different adaptive area decomposition and search algorithms to localize

the desired number of ROIs rapidly: RQS, which uses a greedy-based approach for re-

ducing the search space, and VBS, uses an optimal partitioning strategy for updating

the search space. Fourth, we demonstrate these algorithms in a simulated environment,

and statistically analyze their relative performance.

The simulation results show that, in general, VBS creates coverage path is shorter

than the coverage path by RQS. VBS has clear benefit when handling fewer ROIs since

it performs a global planning of the coverage according to the size of the target area.

On the other hand, RQS plans only local best decomposition, resulting in overall poor

performance. Both algorithms do not require to complete coverage of the target area

and save a significant amount of redundant exploration. Comparing all the experiments,

we have shown that, in general, required explored areas are less than unexplored areas.

Furthermore, the robot does not need to visit the covered areas by ROIs. As a result,

even in worst case scenarios, the required exploration to determine ROIs is always less

than complete area coverage algorithms.
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In future, we would like to extend the algorithms for multi-robot systems. We would

also consider the problem associated with non-stationary environmental boundaries.

The contributions of this chapter are as follows:

1. We have formulated the localization of ROIs which does not require a priori infor-

mation at all.

2. Our algorithm can localize ROIs in a fast manner by minimizing the exploration

of UAV.

3. The proposed algorithm is complete, which means all contaminated locations are

identified for the long operation of UAV.

4. Focusing on the limited computational capabilities of the UAV, proposed algorithm

can robustly determine ROIs.

5. To our best knowledge, this is the first approach that integrates the environmental

boundary estimation problem to the area coverage problem.

Implementation We elaborate the implementation details in Chapter 7. The real

world demonstrations of such path planning algorithms are motivated by implementing

a trajectory controller with an accurate state estimator in a low-cost aerial platform. We

remove the assumption of GPS-based localization and discuss how a UAV could navigate

in an unknown and GPS-denied environment.

8.2 Future Directions

3D Path Planning One dimension we did not include this work is the consideration

of three dimensions (3D) path planning, which is essential for localizing radioactive

sources. While maintaining constant altitude may still result in plausible plans, adding

z-axis planning may increase the localization accuracy. For example, measuring a loca-

tion by changing altitude may provide a better estimation since the real world is 3D.

One way to incorporate this constraint is to integrate 3D search algorithm to the

path planner. This embedding will allow us to gather 3D sensor reading from the en-

vironment. The cost of the path should be further revised by including the travel cost

along the z-axis.

Since the increment of one dimension in search space significantly increase the com-

putational complexity, the 3D search may not perform well in real time. Therefore,

investigating this and other ways to optimize the search space during the planning pro-

cess is a subject of future work.
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Multi-robot Coverage The ideas presented so far have focused on developing ap-

proaches to tackle path planning problems of a single UAV. While a single UAV can

cover only certain target areas, others demand to divide the large target area and in-

clude multiple robots. For example, suppose we have a group of robots that is assigned

the task of searching for radiation sources in a large environment. This problem can be

modeled as multi robots coverage problem, highlighting the fact that many tasks related

to "ROIs determination" can unite multiple robots routing problems.

The focus for future work is on developing an integrated approach that addresses

problems of determining ROIs with multiple robots. The goal is to minimize the mission

time while ensuring complete, accurate and computationally efficient determinations.

Non-myopic Observations For the robot exploration, we assumed that no map is

available in advance. For our experiments, we only simulated static radiation fields and

the robot needs to sense the environment in a point-wise fashion. Since the environment

is completely unknown to the robot, it cannot make a good prediction. As the robot

sequentially gathers observations, the prediction converges to the accurate result.

For future work, we will make an assumption that a preliminary map is available.

Thus, the goal of exploration would be to reduce map uncertainties. Additionally, we

will consider the UAV’s constraints to design an efficient and effective path planner.

Finally, a more thorough evaluation of this algorithm requires testing it in real-world

scenarios with different datasets. These experiments will support new issues that need

to be addressed for this approach.

Real World Constraints For this work, we made an assumption that the radiation field

behaves like a static environment due to limited mission time. However, in certain cases,

the environment may be dynamic. The wind disturbance or radiation decay may deviate

the radiation field model from its ideal form. In these cases, as the robot explores the

environment, the measurements are updated not only in the spatial domain but also in

the temporal domain. Furthermore, during path planning in geometric space, we don’t

consider any obstacles that may hinder to sample in certain locations. Currently, we are

not addressing those problems, but this is an interesting research direction for future

work.

103



Bibliography

[1] Shun-ichi Azuma, Mahmut Selman Sakar, and George J Pappas. Stochastic source

seeking by mobile robots. IEEE Transactions Automatic Control, 2308-2321, 2012.

[2] Nima Ghods, Paul Frihauf, and Miroslav Krstic. Multi-agent deployment in the

plane using stochastic extremum seeking. In IEEE Conf. Decision and Control, 5505-
5510, 2010.

[3] Nikolay A Atanasov, Jerome Le Ny, and George J Pappas. Distributed algorithms

for stochastic source seeking with mobile robot networks. ASME Journal Dynamic
Systems, Measurement, and Control, 2015.

[4] Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based robotic informa-

tion gathering algorithms. Int’l Journal Robotics Research, 2014.

[5] Shuai Li, Yi Guo, and Brian Bingham. Multi-robot cooperative control for moni-

toring and tracking dynamic plumes. In IEEE International Conference on Robotics
and Automation, pages 67–73, 2014.

[6] Muhammad Fahad, Nathaniel Saul, Yi Guo, and Brian Bingham. Robotic simula-

tion of dynamic plume tracking by unmanned surface vessels. In IEEE International
Conference on Robotics and Automation, pages 2654–2659, 2015.

[7] Abdullah Al Redwan Newaz, Sungmoon Jeong, Hosun Lee, Hyejeong Ryu,

Nak Young Chong, and Matthew T. Mason. Fast radiation mapping and multi-

ple source localization using topographic contour map and incremental density

estimation. In IEEE International Conference on Robotics and Automation, pages

1515–1521, 2016.

[8] Jerry Towler, Bryan Krawiec, and Kevin Kochersberger. Terrain and Radiation

Mapping in Post-Disaster Environments Using an Autonomous Helicopter. Remote
Sensing, 4:1995–2015, 2012.

104



[9] BA White, Antonios Tsourdos, I Ashokoraj, S Subchan, and Rafal Zbikowski. Con-

taminant cloud boundary monitoring using uav sensor swarms. AIAA Journal of
Guidance, Control, and Dynamics, 2005.

[10] David W. Casbeer, Derek B. Kingston, Randal W. Beard, and Timothy W. McLain.

Cooperative forest fire surveillance using a team of small unmanned air vehicles.

Int. J. Systems Science, 37:351–360, 2006.

[11] Balakrishna Gokaraju, Surya S. Durbha, Roger L. King, and Nicolas H. Younan.

Sensor web and data mining approaches for harmful algal bloom detection and

monitoring in the gulf of mexico region. In IEEE International Geoscience & Remote
Sensing Symposium, pages 789–792, 2009.

[12] Alexey S. Matveev, Hamid Teimoori, and Andrey V. Savkin. Method for tracking

of environmental level sets by a unicycle-like vehicle. Automatica, 48:2252–2261,

2012.

[13] Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas Krause. Active learning

for level set estimation. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, pages 1344–1350. IJCAI/AAAI, 2013.

[14] Tairen Sun, Hailong Pei, Yongping Pan, and Caihong Zhang. Robust adaptive

neural network control for environmental boundary tracking by mobile robots.

International Journal of Robust and Nonlinear Control, 23:123–136, 2013.

[15] Mong-ying A Hsieh. Stabilization of Multiple Robots on Stable Orbits via Lo-

cal Sensing Stabilization of Multiple Robots on Stable Orbits via Local Sensing.

(April):2312–2317, 2007.

[16] Environmental boundary tracking and estimation using multiple autonomous ve-

hicles. Proceedings of the IEEE Conference on Decision and Control, pages 4918–

4923, 2007.

[17] Jerry Towler, Bryan Krawiec, and Kevin Kochersberger. Radiation mapping in post-

disaster environments using an autonomous helicopter. Remote Sensing, 1995-
2015, 2012.

[18] Mark R Morelande and Alex Skvortsov. Radiation field estimation using a gaussian

mixture. In Information Fusion, Int’l Conf. on, 2247-2254, 2009.

[19] Ling Xu. Graph Planning for Environmental Coverage. Carnegie Mellon University,

(August):135, 2011.

105



[20] Liam Paull, Carl Thibault, Amr Nagaty, Mae Seto, and Howard Li. Sensor-driven

area coverage for an autonomous fixed-wing unmanned aerial vehicle. IEEE Trans-
actions on Cybernetics, 44:1605–1618, 2014.

[21] R. Yehoshua, N. Agmon, and G. A. Kaminka. Robotic adversarial coverage of

known environments. The International Journal of Robotics Research, pages 1–26,

2016.

[22] Daniel E Soltero, Mac Schwager, and Daniela Rus. Decentralized path planning for

coverage tasks using gradient descent adaptive control. The International Journal
of Robotics Research, 33:401–425, 2014.

[23] Alexey S. Matveev, Michael Colin Hoy, Kirill Ovchinnikov, Alexander Anisimov,

and Andrey V. Savkin. Robot navigation for monitoring unsteady environmental

boundaries without field gradient estimation. Automatica, 62:227–235, 2015.

[24] P. Dames and V. Kumar. Autonomous localization of an unknown number of tar-

gets without data association using teams of mobile sensors. IEEE Transactions on
Automation Science and Engineering, 12:850–864, 2015.

[25] Kian Hsiang Low, John M Dolan, and Pradeep Khosla. Adaptive multi-robot wide-

area exploration and mapping. In Int’l Conf. Autonomous Agents and Multiagent
Systems, 23-30, 2008.

[26] Kian Hsiang Low, John M Dolan, and Pradeep K Khosla. Information-theoretic

approach to efficient adaptive path planning for mobile robotic environmental

sensing. In Int’l Conf. Automated Planning and Scheduling, 2009.

[27] Jerry Towler, Bryan Krawiec, and Kevin Kochersberger. Radiation mapping in post-

disaster environments using an autonomous helicopter. Remote Sensing, 1995-
2015, 2012.

[28] Mark R Morelande and Alex Skvortsov. Radiation field estimation using a gaussian

mixture. In Int’l Conf. Information Fusion, 2247-2254, 2009.

[29] Jren-Chit Chin, David KY Yau, and Nageswara SV Rao. Efficient and robust lo-

calization of multiple radiation sources in complex environments. In IEEE Conf.
Distributed Computing Systems, 780-789, 2011.

[30] Er-Wei Bai, Kidane Yosief, Soura Dasgupta, and Raghuraman Mudumbai. The

maximum likelihood estimate for radiation source localization: Initializing an it-

erative search. In IEEE Conf. Decision and Control, 277-282, 2014.

106



[31] Benjamin Charrow, Vijay Kumar, and Nathan Michael. Approximate represen-

tations for multi-robot control policies that maximize mutual information. In

Robotics: Science and Systems, 2013.

[32] Gregory Hitz, Alkis Gotovos, Francois Pomerleau, Marie-Eve Garneau, Cedric

Pradalier, Anna Krause, and Roland Y Siegwart. Fully autonomous focused ex-

ploration for robotic environmental monitoring. In IEEE Int’l Conf. Robotics and
Automation, 2658-2664, 2014.

[33] Philip Dames, Mac Schwager, Vipin Kumar, and Daniela Rus. A decentralized

control policy for adaptive information gathering in hazardous environments. In

IEEE Conf. Decision and Control, 2807-2813, 2012.

[34] RA Cortez and HG Tanner. Radiation mapping using multiple robots. In ANS Joint
Topical Meeting on Emergency Preparedness and Response and Robotic and Remote
Systems, 157-159, 2008.

[35] Redwan Newaz, Abdullah Al, Sungmoon Jeong, Hosun Lee, Hyejeong Ryu,

Nak Young Chong, and Matthew T. Mason. Fast radiation mapping and multi-

ple source localization using topographic contour map and incremental density

estimation. In IEEE Int’l Conf. Robotics and Automation, 1515-1521, 2016.

[36] Jinlu Han and YangQuan Chen. Multiple uav formations for cooperative source

seeking and contour mapping of a radiative signal field. Jour. Intelligent & Robotic
Systems, 323-332, 2014.

[37] Inyoung Ko, Beobkyoon Kim, and Frank Chongwoo Park. Randomized path plan-

ning on vector fields. Int’l Journal Robotics Research, 1664-1682, 2014.

[38] Andreas Krause and Carlos Guestrin. Near-optimal observation selection using

submodular functions. In AAAI Conf. Artificial Intelligence, 1650-1654, 2007.

[39] Nannan Cao, Kian Hsiang Low, and John M Dolan. Multi-robot informative path

planning for active sensing of environmental phenomena: A tale of two algo-

rithms. In Int’l Conf. Autonomous Agents and Multi-agent Systems,7-14, 2013.

[40] Young-Ho Kim and Dylan Shell. Distributed robotic sampling of non-homogeneous

spatio-temporal fields via recursive geometric sub-division. In IEEE Int’l Conf.
Robotics and Automation, 557-562, 2014.

[41] Zuoen Wang, Jingxian Wu, Jing Yang, and Hai Lin. Optimal energy efficient level

set estimation of spatially-temporally correlated random fields. In International
Conference on Communications, pages 1–6. IEEE, 2016.

107



[42] D. Marthaler and Andrea L. Bertozzi. Tracking environmental level sets with au-

tonomous vehicles. Journal of the Electrochemical Society, 129:2865, 2003.

[43] R Willett and R Nowak. Minimax Optimal Level Set Estimation. IEEE Transactions
on Image Processing, 16(12):2965–2979, 2007.

[44] Abhijeet Joshi, Trevor Ashley, Yuan R. Huang, and Andrea L. Bertozzi. Experi-

mental validation of cooperative environmental boundary tracking with on-board

sensors. In 2009 American Control Conference, pages 2630–2635. IEEE, 2009.

[45] David Salda and Renato Assunc. Predicting Environmental Boundary Behaviors

with a Mobile Robot. 2016.

[46] Sara Susca, Francesco Bullo, and Sonia Martinez. Monitoring environmental

boundaries with a robotic sensor network. IEEE Transactions on Control Systems
Technology, 16:288–296, 2008.

[47] Dimitar Baronov and John Baillieul. Reactive exploration through following iso-

lines in a potential field. pages 2141–2146. IEEE, 2007.

[48] R Cortez, Xanthi Papageorgiou, H Tanner, A Klimenko, K Borozdin, Ron Lumia,

and W Priedhorsky. Smart radiation sensor management. IEEE Robotics & Au-
tomation Magazine, 15(3):85-93, 2008.

[49] Jinlu Han and YangQuan Chen. Multiple uav formations for cooperative source

seeking and contour mapping of a radiative signal field. Jour. Intelligent & Robotic
Systems, 323-332, 2014.

[50] Matteo Reggente and Achim J Lilienthal. Using local wind information for gas

distribution mapping in outdoor environments with a mobile robot. In Sensors,
IEEE, 1715-1720, 2009.

[51] Nannan Cao, Kian Hsiang Low, and John M Dolan. Multi-robot informative path

planning for active sensing of environmental phenomena: A tale of two algo-

rithms. In Int’l Conf. on Autonomous agents and multi-agent systems, 7-14, 2013.

[52] RA Cortez and HG Tanner. Radiation mapping using multiple robots. In Emergency
Preparedness and Response and Robotic and Remote Systems, ANS Int’l Joint Topical
Meeting on, 157-159, 2008.

[53] Jinlu Han and YangQuan Chen. Multiple uav formations for cooperative source

seeking and contour mapping of a radiative signal field. Jour. Intelligent & Robotic
Systems, 323-332, 2014.

108



[54] Cong Wang, Chung-Yen Lin, and Masayoshi Tomizuka. Statistical learning algo-

rithms to compensate slow visual feedback for industrial robots. ASME Journal
Dynamic Systems, Measurement, and Control, 2015.

[55] Kian Hsiang Low, John M Dolan, and Pradeep Khosla. Adaptive multi-robot wide-

area exploration and mapping. In Int’l Conf. on Autonomous agents and multiagent
systems, 23-30, 2008.

[56] Young-Ho Kim and Dylan Shell. Distributed robotic sampling of non-homogeneous

spatio-temporal fields via recursive geometric sub-division. In Robotics and Au-
tomation, IEEE Int’l Conf. on, 557-562, 2014.

[57] Nima Ghods and Miroslav Krstic. Source seeking with very slow or drifting sensors.

Journal of Dynamic Systems, Measurement, and Control, 044504-044508, 2011.

[58] Shun-ichi Azuma, Mahmut Selman Sakar, and George J Pappas. Stochastic source

seeking by mobile robots. Automatic Control, IEEE Transactions on, 2308-2321,

2012.
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