
Doctoral Dissertation

MAPPING FUNCTIONS THAT

MAXIMIZE MUTUAL INFORMATION

FOR DECODING LDPC CODES

FRANCISCO JAVIER CUADROS ROMERO

Supervisor: Professor Brian Michael Kurkoski

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2017

Reviewed by

Professor Mineo Kaneko

Professor Hideki Yagi

Professor Dirk Wubben

Professor Tadashi Matsumoto

Abstract

Low-density parity-check (LDPC) codes have been reported to perform
close to the channel capacity. LDPC decoders and channel quantization
algorithms are usually implemented using floating point simulations in
Matlab/C or another programming languages. Once these algorithms
are carefully optimized, the next step is to carry out their correspond-
ing hardware implementation in a very-large-scale integrated (VLSI) cir-
cuit. In such implementation, LDPC decoders and channel quantization
algorithms are converted to a fixed-point representation. For example,
the offset min-sum (OMS) algorithm for decoding LDPC codes uses real-
valued operations: addition, min. But the channel and decoder messages
are usually quantized to a bit width of 4 to 7 bits, depending on the perfor-
mance/complexity tradeoff. In this research, floating-point algorithms are
not used. Instead, the central method is “direct design” of VLSI circuits
for LDPC decoders and channel quantizers.

The objective of this research is to design LDPC decoder schemes
and channel quantizers that can be implemented in VLSI circuits. For
LDPC decoders, the goal is designs that achieve high throughput (a few
iterations) and low gate count (a few bits per message). For channel
quantization, the goal is to find an optimal quantization scheme, for a
fixed bit width, even when the error distribution model is based only on
sample data.

In this dissertation, we have developed a technique where the LDPC
decoders and channel quantization implementations, including quantiza-
tion of messages, are designed using only the probability distribution from
the channel. Given a probability distribution, our method designs a lookup
table (LUT) that maximizes mutual information, and LUTs are imple-
mented directly in VLSI circuits. This is the “max-LUT method”.

The proposed lookup tables are sometimes referred as mapping func-
tions. The mapping functions we propose are used for channel quantiza-
tion and for message-passing decoding of LDPC codes. These mapping
functions are not derived from belief-propagation decoding or one of its
approximations, instead, the decoding mapping functions are based on
a channel quantizer that maximizes mutual information. More precisely,
the construction technique is a systematic method which uses an optimal

i

quantizer at each step of density evolution to generate message-passing
decoding mappings.

In a simple manner, the design of LDPC decoders by maximization
of mutual information is analogous to finding non-uniform quantization
schemes where the quantization can vary with each iteration.

The proposed decoding mapping functions are particularly well suited
for data storage applications, because they can be designed from non-
parametric and irregular noise distributions. Though finite-length simula-
tions show that the proposed decoding mappings functions present good
performance for a variety of code rates.

Numerical results show that using 4 bits per message and a few itera-
tions (10–20 iterations) are sufficient to approach the error-rate decoding
performance of full (without quantization) sum-product algorithm (SPA),
less than 5–7 bits per message typically needed to perform around 1 dB
away from the error-rate decoding performance of full SPA.

Another result of this research is that the construction technique for
the mapping functions is flexible since it can generate maps for arbitrary
number of bits per message, and can be applied to arbitrary binary-input
memoryless channels.

Keywords: LDPC decoding, mapping functions, lookup tables, quan-
tization, sum-product algorithm.

ii

Acknowledgments

First of all, I wish to thank to all committee members who kindly accepted
to be part of it. Undoubtedly, Prof. Brian Kurkoski is the first person
whom I really want to show my gratitude to. His guidance and support
throughout the time of my dissertation have an incalculable value. This
dissertation brings me back memories of the days when I was an exchange
master student in the University of Electro-Communications (UEC) in
Tokyo. I was really lucky to get in touch with Prof. Brian M. Kurkoski
for the very first time. I remember he accepted me in his lab knowing that
my background in information theory and coding theory was really low.
I used to be an image processing guy, but not anymore. Other professor
to whom I would like to thank is Prof. Hideki Yagi who took care of me
when Prof. Brian left UEC to work in JAIST. I remember that he always
had time to solve my questions in a simple and clear way. Later when I
became Ph. D. student at JAIST, I was lucky again because I had the
chance to meet Prof. Tad Matsumoto who always has the tricky questions
that make me study harder.

I would like to thank Dr. Khoirul Anwar, assistant professor in our
laboratory, for his selfless help. Also, I would like to say thank you to
all my lab colleagues who already left as well as those who still stay
there, Pen-Shun Lu, Hui Zhou, Ade Irawan, Xin He, Shen Qian, Kun
Wu, Muhammad Reza Kahar Aziz, Ricardo Antonio Parrao Hernandez,
Erick Garcia Alvarez, Ryouta Sekiya, Mohammad Nur Hasan and Fan
Zhou for their kind help and friendship.

Before to finish, I want to thank to the Consejo Nacional de Ciencia y
Tecnologia – CONACYT (the Mexican National Council for Science and
Technology) because it supported part of my Ph. D. studies in JAIST.

Moreover, I want to thank all members of the university staff who
managed my living in JAIST well so that I can concentrate to the research
work. Finally, thanks to my parents who are thousands miles away in
Mexico. Their spiritual support will be treasured forever in my deep
heart.

iii

Contents

Abstract i

Acknowledgments iii

List of symbols vi

Abbreviations xiv

List of Figures xix

List of Tables xxiii

1 Introduction 1
1.1 Transmission and storage of data 1
1.2 LDPC codes and their key properties 4
1.3 Decoding of LDPC codes 5
1.4 Discrete LDPC decoding algorithms 6
1.5 Proposed technique for LDPC decoding 8
1.6 Summary of contributions 11
1.7 Dissertation outline . 13

2 Preliminaries 14
2.1 Performance measures . 14
2.2 Channel capacity . 15
2.3 Channel capacity for useful DMCs 16

2.3.1 The binary symmetric channel 17
2.3.2 The binary-input AWGN channel 17

2.4 Representation of LDPC codes 20
2.4.1 Matrix representation 21
2.4.2 Graphical representation 21

2.5 The Gallager sum-product algorithm 22
2.6 Summary . 25

iv

3 Max-LUT method: Maximizing mutual information 26
3.1 Factorization of a global function 26
3.2 Recursive determination of marginals 29
3.3 Message-passing algorithm in cycle-free factor graphs . . . 32
3.4 Message-passing algorithm in factor graphs with cycles . . 33
3.5 Message-passing decoding and its variations 36
3.6 Discretized message-passing decoding 38

3.6.1 Discretized message-passing decoding on a Tanner
graph . 38

3.6.2 Discretized message-passing decoding on a decom-
posed Tanner graph 40

3.7 Optimal quantizer that maximizes mutual information . . 43
3.7.1 Partial mutual information 45
3.7.2 Quantization algorithm 45

3.8 Max-LUT method . 47
3.9 Constructing a decoding mapping function via max-LUT

method . 48
3.10 Summary . 50

4 Discretized density evolution 52
4.1 Density evolution . 52
4.2 Density evolution for regular LDPC codes via Gaussian

aproximation . 53
4.3 Proposed discretized density evolution algorithm 57

4.3.1 Discretized density evolution algorithm with quan-
tization . 58

4.3.2 Discretized density evolution algorithm in a decom-
posed Tanner graph 60

4.4 Decoding thresholds for BI-AWGNC 63
4.5 Lookup table arrangement and its representation in a tree 68
4.6 Summary . 70

5 Finite-length LDPC decoding via mapping functions 71
5.1 Finite-length results for LDPC codes 72

5.1.1 Simulation results for low rate codes 73
5.1.2 Simulation results for medium code rates 76
5.1.3 Simulation results for high rate codes 80

5.2 Summary . 84

v

6 Conclusions and future work 86
6.1 Conclusions . 86
6.2 Future work . 87

Appendix A 88

Bibliography 95

Publications 100

vi

List of symbols

Kcode Amount of incoming data bits to the channel encoder.

N Length of the code. Size of an outgoing codeword from the channel
encoder.

R Rate of the code.

u Binary codeword of length N .

û Estimated binary codeword by the decoder of length N .

H Parity-check matrix.

M Number of rows in a parity-check matrix H.

i Indicates a row in a parity-check matrix H.

j Indicates a bit position inside of a codeword u or estimated codeword
û. It is also used to indicate a column in a parity-check matrix H.

hi,j Value of the element in the row i and column j of a parity-check
matrix H.

dv Degree of the variable node. Number of ones in a column of the parity-
check matrix.

dc Degree of the check node. Number of ones in a row of the parity-check
matrix.

dmin Minimum distance of a code.

K Number of quantization levels.

uj Encoded bit belonging to the codeword u.

ûj Estimated decoded bit belonging to an estimated codeword û. This
variable is also used in Chapter 3 as a generic binary random variable
of a generic function f .

vii

yj Indicates the jth output from a binary-input discrete memoryless chan-
nel.

ŷj Indicates the binary jth output from a binary-input discrete memory-
less channel.

ûj Decoded bit belonging to the estimated codeword û.

Pb Bit-error probability.

Pcw Codeword-error probability.

X A discrete random variable. Input to a binary-input discrete memory-
less channel.

X Alphabet for the discrete random variable X.

Y A discrete random variable. Output of a binary-input discrete memo-
ryless channel.

Y Alphabet for the discrete random variable Y .

H(·) Entropy of a discrete random variable.

H(·|·) Conditional entropy between two discrete random variables.

p(·) Probability mass function.

p(·|·) Conditional probability mass function.

p(·, ·) Joint probability of two variables.

I(·; ·) Mutual information between two discrete random variables.

C Channel capacity.

CBSC Channel capacity for the binary symmetric channel (BSC).

h(·) Binary entropy function.

ε Cross-over probability in a binary symmetric channel (BSC).

x Vector of length N which is used as the input to a binary-input discrete
memoryless channel.

y Binary decoded vector of length N .

viii

xj Indicates a mapping point for the BPSK modulation i.e. xj ∈ {−1, 1}.

Eb Energy per message bit.

Ec Energy per transmitted coded bit.

a It is equal to the square root of the energy per transmitted coded bit.

Ec Energy per transmitted coded bit.

σ Standard deviation for a BI-AWGNC.

σ2 Variance for a BI-AWGNC.

$ Gaussian noise vector of length N .

$j jth Gaussian noise value of the vector $.

N0 Noise espectral density.

Eb/N0 Bit signal-to-noise ratio.

R Set of the real numbers.

E Expected value of a discrete random variable.

N (0, σ2) Gaussian distribution with mean 0 and variance σ2.

CBI−AWGNC Channel capacity for a binary-input additive white Gaussian
noise channel (BI-AWGNC).

δ Arbitrary small value.

Qfunc(·) Q-function.

N (i) Set of indices that are nonzero elements in the row i of a parity-check
matrix H.

M(j) Set of indices that are nonzero elements in the column j of a parity-
check matrix H.

N (i)\j Set of indices that are nonzero elements in the row i of a parity-
check matrix H without the index j.

M(j)\i Set of indices that are nonzero elements in the column j of a
parity-check matrix H without the index i.

ix

Vj→i Decoder message from the variable node j to the check node i.

Li→j Decoder message from the check node i to the variable node j.

Lj Log-likelihood ratio of the jth bit.

f Generic function used in Chapter 3.∑
∼{·} Variables inside of the braces indicate the variables not being summed

over.

g Generic global function used in Chapter 3.

r Generic binary ransom variable used in Chapter 3.

W Number of factors of a global function g or f .

w A specific factor of a global function g or f .

gw(r, . . .) Factor w of a global function g with root r.

Ccode A linear block code.

(p0, p1) Vector of probabilities of a binary random variable which represent
a decoder message.

(q0, q1) Vector of probabilities of a binary random variable which represent
a decoder message.

Φ Mapping function or lookup table that performs the check node update.

φ Mapping function or lookup table that performs part of the check node
update in a decomposed check node.

Ψ Mapping function or lookup table that performs the variable node up-
date.

ψ Mapping function or lookup table that performs part of the variable
node update in a decomposed check node.

Γ Mapping function or lookup table that performs the hard decision in a
variable node.

γ Mapping function or lookup table that performs part of the hard deci-
sion in a decomposed variable node.

Λ{·} Parametrization used in a message-passing algorithm.

x

Ω Generic variable used in Chapter 3 to explain an approximation of the
variable node update.

d Degree of a node.

` Number of iteration.

Z Channel message.

Z Alphabet for the channel message.

L Check-to-variable node message.

L Alphabet for the check-to-variable node messages.

S Message between a pair of mapping functions φ in a decomposed check
node.

S Alphabet for the interconnecting messages S in a decomposed check
node.

V Variable-to-check node message.

V Alphabet for the variable-to-check node messages.

T Message between a pair of mapping functions ψ in a decomposed vari-
able node.

T Alphabet for the interconnecting messages T in a decomposed variable
node.

Q A quantizer.

Q Set of all possible quantizers.

Q∗ Optimal quantizer that maximizes mutual information.

a Boundary in a finely quantized channel output.

a∗ Optimal boundary that maximizes mutual information.

px Input distribution of the channel input X.

pz|x Transition probability between the input to the channel x and the
quantizer output z.

xi

Qz|y Transition probability between the quantizer output z and the output
of the channel y, i.e. Qz|y ∈ {0, 1}.

A Subset of channel outputs y.

ι Partial mutual information.

ρz(y) State of the quantization algorithm that represents the maximum
partial mutual information when 1 to y values of Y are quantized to
1 to z values of Z.

hz(a) Used to save a local decision during the quantization algorithm that
finds the optimal quantizer Q∗.

α∗ Decoding threshold computed by the density evolution algorithm.

L0 Initial channel message.

m0 Mean of the initial channel message L0.

m(`) Mean of the variable-to-check message Vj→i.

n(`) Mean of the check-to-variable message Li→j.

p(·) Probability density function.

r(0)(x0, y0) Initial channel transition probability at iteration `.

t Generic probability distribution used during the DEA.

t̃ Generic joint probability distribution used during the DEA.

r(`) Probability distribution for V at iteration `.

r̃(`) Joint distribution distribution of the incoming messages to the vari-
able node at iteration `.

l(`) Probability distribution for L at iteration `.

l̃(`) Joint distribution distribution of the incoming messages to the check
node at iteration `.

fc Function for the check node (modulo two addition).

Q
(`)
c Optimal quantizer that maximizes mutual information at the itera-

tion ` in the check node.

xii

fv Function for the variable node (equality).

Q
(`)
v Optimal quantizer that maximizes mutual information at the itera-

tion ` in the variable node.

⊗ Kronecker product.

K Number of quantization levels.

y′ Concatenation of the incoming messages to a node.

xiii

Abbreviations

ARQ Automatic request-for-repeat

BER Bit-error rate

BI-AWGNC Binary-input additive white Gaussian noise channel

BP Belief propagation

BPSK Binary phase-shift keying

Blue-ray Digital optical data storage format

BSC Binary symmetric channel

CD Compact disc

dB Decibel

DMC Discrete memoryless channels

DVD Digital versatile disc or digital video disc

FAID Finite alphabet iterative decoder

FEC Forward-error-correction

FER Frame-error rate

FPGA Field-programmable gate array

IC Integrated circuit

IEEE Institute of electrical and electronics engineers

LD Likelihood difference

LDPC Low-density parity-check

LLR Log-likelihood ratio

xiv

LUT Lookup table

max-LUT Lookup table that maximizes mutual information

MD Mapping decoder

MPF Marginalize-product-of-function

MS Min-sum

NQBPA Non-uniform quantized belief propagation algorithm

OMS Offset min-sum

pdf Probability density function

PLR Parity likelihood ratio

RS-LDPC Reed-Solomon based LDPC

SNR Signal-to-noise ratio

SPA Sum-product algorithm

SSD Solid-state drive

USB Universal serial bus

UTP Unshielded twisted-pair

VLSI Very-large-scale integration

WER Word-error rate

Wi-Fi It is a trademark of the Wi-Fi Alliance

WiMax Worldwide interoperability for microwave access

xv

List of Figures

1.1 Block diagram of general digital communication system. . 2
1.2 Graphical representation of a parity-check matrix H by a

Tanner graph. Edges interconnecting nodes of different
types are drawn wherever there is a one in the matrix H. . 4

2.1 Diagram and channel capacity plot for the binary symmet-
ric channel. 17

2.2 Block diagram that represents the transmission of a binary
codeword u through the BI-AWGNC. Coding a decoding
are assumed to be carried out by LDPC codes. 18

2.3 Plotting soft-decision and hard-decision capacity curves for
the BI-AWGNC, along with the curve for the Shannon ca-
pacity. 19

2.4 Tanner graph for the parity-check matrix H in (2.26) . . . 22

3.1 Representation of a bipartite tree with two factors (sub-
trees) closed by ellipses (left hand side). Tanner graph of
a code Ccode with its corresponding check node equations
(right hand side). 28

3.2 Initialization conditions and node operations of the message-
passing algorithm on a bipartite tree. 34

3.3 A factor graph representation of a linear block code (left).
Tanner graph representation of a linear block code empha-
sizing an existing 4-cycle by dashed lines (right) 35

xvi

3.4 Decomposition of the variable node and check node into a
set of two-input mapping functions (or two-input lookup
tables). (a) Check node update operation. (b) Variable
node update operation. (c) Hard decision operation on the
variable node. (d) Decomposition of the check node update

operation Ψ
(`)
c into the set of two-input mapping functions

ψ
(`)
1 , . . . , ψ

(`)
dc−2. (e) Decomposition of the variable node up-

date operation Φ
(`)
v into the set of two-input mapping func-

tions φ
(`)
1 , . . . , φ

(`)
dv−1. (f) Decomposition of the hard decision

operation Γ
(`)
v into the set of two-input mapping functions

γ
(`)
1 , . . . , γ

(`)
dv

. 39
3.5 Required memory locations to implement both the decod-

ing lookup table Ψ
(`)
c and its decomposition ψ

(`)
1 , . . . , ψ

(`)
4 .

This example consider a check node with degree dc = 6 and
incoming messages V with a resolution of ∆ = 3 bits. . . . 41

3.6 Overview of the designing process for the mapping func-
tion Φ. (a) degree-2 LDPC variable node with inputs L
and Z and output V . (b) Input distributions Pr(L|X)
and Pr(Z|X). (c) Joint distribution Pr(L,Z|X) quantized
to five-valued variable V using the optimal quantizer Q∗

which maximizes the mutual information between X and
V . (d) The resulting lookup table corresponding to Q∗.
This lookup table computes V = Φ(L,Z) to maximize mu-
tual information. 48

4.1 Evolution of the Gaussian pdfs for the variable-to-check
message V

(`)
j→i. Different values of Eb/N0 are used. 55

4.2 Behavior of the mean µ(`) as a function of the number of
iterations `. 56

4.3 Noise decoding thresholds for a regular (3, 6)-LDPC code
with rate 1/2 and using different number of levels K for
the decoder message quantization. The term log2(K) is
the number of bits to represent the decoder messages while
log2(|Z|) is the number of bits to represent the BI-AWGNC
message. 64

xvii

4.4 Noise decoding thresholds for a (4, 6) regular LDPC code
with rate 1/3 and using different number of levels K for
the decoder message quantization. The term log2(K) is
the number of bits to represent the decoder messages while
log2(|Z|) is the number of bits to represent the BI-AWGNC
message. 67

4.5 Tree representation of the implementation of a hard deci-
sion operation using lookup table. The node has six inputs
including the channel message. 69

5.1 BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the
code: dv = 4, dc = 5, R = 0.2, and N = 6535. The maxi-
mum number of Iterations was set to 25. The numbers next
to the curves represent the average number of iterations for
each simulation point. 74

5.2 BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the
code: dv = 4, dc = 6, R = 0.33, and N = 816. The maxi-
mum number of Iterations was set to 25. The numbers next
to the curves represent the average number of iterations for
each simulation point. 75

5.3 BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the
code: dv = 3, dc = 6, R = 0.5, and N = 2640. The maxi-
mum number of Iterations was set to 25. The numbers next
to the curves represent the average number of iterations for
each simulation point. 77

5.4 BER results for the proposed decoding mapping functions,
and sum-product algorithm. Parameters of the code: dv =
4, dc = 8, R = 0.5, and N = 10456. The maximum num-
ber of Iterations was set to 30. The numbers next to the
curves represent the average number of iterations for each
simulation point. 78

5.5 Word-error rate results for SPA using floating point num-
bers, FAIDs using 7 levels of quantization and the decod-
ing mappings (max-LUT) using 3 and 4 bits per message.
A regular (dv = 3, dc = 12)-LDPC code was used with
R = 0.75, block length N = 2388 and a maximum of 60
iterations. 79

xviii

5.6 BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the
code: dv = 6, dc = 32, R = 0.84, and N = 2048. The maxi-
mum number of Iterations was set to 30. The numbers next
to the curves represent the average number of iterations for
each simulation point. 81

5.7 BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the
code: dv = 4, dc = 36, R = 0.89, and N = 1998. The maxi-
mum number of Iterations was set to 30. The numbers next
to the curves represent the average number of iterations for
each simulation point. 82

5.8 BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the
code: dv = 4, dc = 69, R = 0.94, and N = 8970. The maxi-
mum number of Iterations was set to 20. The numbers next
to the curves represent the average number of iterations for
each simulation point. 83

xix

List of Tables

1.1 List of various proposed discrete message-passing decoding
algorithms using a certain number of bits to represent each
received coded bit beloging to a received noisy codeword.
PLR: Parity likelihood ratio, MS: min-sum, NQBPA: non-
uniform quantized belief propagation algorithm, SPA: sum-
product algorithm, OMS: offset min-sum, FAID: Finite al-
phabet iterative decoder, MD: mapping decoder, max-LUT:
lookup table that maximizes mutual information, BSC: Bi-
nary symmetric channel, BI-AWGNC: Binary-input addi-
tive white Gaussian noise channel. 9

4.1 Noise decoding thresholds for a regular (dv = 3, dc = 6)-
LDPC with rate R = 1/2 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 65

4.2 Comparison for different arrangements (trees) to implement
a hard decision operation with six inputs including the
channel message. The decoding thresholds σ∗ were com-
puted considering that the incoming messages have a reso-
lution of 3 bits. 69

5.1 Simulation parameters for the proposed decoding mapping
functions. 73

5.2 Noise decoding thresholds for channel and decoder message
quantization using 3 and 4 bits per message. 73

xx

5.3 Noise decoding thresholds for channel and decoder message
quantization using 3 and 4 bits per message. In the case of
the (dv = 3, dc = 12)-LDPC code, its variance noise thresh-
olds σ2 were used to calculate the corresponding crossover
probabilities ε for the BSC via the Q-function. 76

5.4 Decoding thresholds for channel and decoder message quan-
tization using 3 and 4 bits per message. 80

A.1 Noise decoding thresholds for a regular (dv = 2, dc = 40)-
LDPC with rate R = 19/20 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 89

A.2 Noise decoding thresholds for a regular (dv = 3, dc = 4)-
LDPC with rate R = 1/4 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 89

A.3 Noise decoding thresholds for a regular (dv = 3, dc = 6)-
LDPC with rate R = 1/2 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 90

A.4 Noise decoding thresholds for a regular (dv = 4, dc = 5)-
LDPC with rate R = 1/5 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 90

xxi

A.5 Noise decoding thresholds for a regular (dv = 4, dc = 6)-
LDPC with rate R = 1/3 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 91

A.6 Noise decoding thresholds for a regular (dv = 4, dc = 8)-
LDPC with rate R = 1/2 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 91

A.7 Noise decoding thresholds for a regular (dv = 4, dc = 9)-
LDPC with rate R = 5/9 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 92

A.8 Noise decoding thresholds for a regular (dv = 4, dc = 36)-
LDPC with rate R = 8/9 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 92

A.9 Noise decoding thresholds for a regular (dv = 4, dc = 42)-
LDPC with rate R = 19/21 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 93

xxii

A.10 Noise decoding thresholds for a regular (dv = 4, dc = 69)-
LDPC with rate R = 65/69 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 93

A.11 Noise decoding thresholds for a regular (dv = 6, dc = 32)-
LDPC with rate R = 13/16 over a BI-AWGNC using differ-
ent quantization levels K and |Z| for the decoder message
and the channel message respectively. The term log2(K) is
the number of bits to represent the decoder message, while
log2(|Z|) is the number of bits to represent the channel
message. 94

xxiii

Chapter 1

Introduction

Source coding and channel coding were initially presented in A Mathemat-
ical Theory of Communications [1], the groundbreaking paper published
by Shannon in 1948. In this paper, Shannon defined channel capacity and
proved that it is the upper bound of the rate at which we can transmit in-
formation over a noisy channel with a probability of error negligibly small.
In the following years a variety of codes were proposed. However, it was
not until 1993 when turbo codes were published [2], the first class of codes
reporting a performance close to the channel capacity. Later, around 1996
a rediscovery of low-density parity-check (LDPC) codes were also shown
to have near-capacity performance, even though LDPC codes (sometimes
called Gallager codes) were conceived by Gallager in 1961 [3], they were
mainly forgotten due to the complexity involved in their implementation.
Turbo codes lead themselves to a passionate study but they are outside
the scope of this work, this work is completely related to the decoding of
LDPC codes.

1.1 Transmission and storage of data

Digital communication and storage systems helping people to share and
save their information can be seen everywhere at anytime. Some of the
most common examples of digital communication systems include smart
phones, tablets, smart digital television via satellite or cable, internet
access either wired via cable modem and wirelessly via Wi-Fi and WiMax.
On the side of digital storage systems, we can mention optical disk drives
(e.g. CD, DVD, Blue-ray), solid-state drives (SSD), memory cards, USB
flash drives, and magnetic disk drives, although the latter is increasingly
disappearing from personal devices.

1

Information
Source

Compression
(Source

encoder)
Encryption

Encoding
(Channel
encoder)

Modulation

Destination Source
Decoder Decryption

Decoding
(Channel
decoder)

Demodulation

Channel
Receiver

Transmitter

Figure 1.1: Block diagram of general digital communication system.

All the above examples of communication and storage systems can be
more globally put into a simple and common framework. Such framework
was first proposed by Shannon in [1].

Originally, the block diagram proposed by Shannon of a general com-
munication system had five blocks; an information source, transmitter,
channel, receiver and destination, see Fig. 1.1. Each of the blocks is de-
scribed below. Given that some of the blocks in the diagram perform more
than one operation, those are decomposed and described as a set of well
defined operations.

1. The information source is considered a stream of random numbers
(commonly binary) that follow a probability distribution and repre-
sent some type of data that a user (a person or a system) wants to
communicate to other user. The incoming signal to the information
source block may be digital (e.g. computer file) or analog (e.g., light
being sensed by a digital camera, sound capture by a microphone,
etc.), in such a case, an analog-to-digital conversion is applied to
produce a digitized output signal.

2. The transmitter is a compound of the following four operations.
Since Shannon refers to these operations as a whole, they are drawn
inside of the transmitter block, see Fig. 1.1.

• Compression (or source coding) can be seen as the operation
in the communication process, where the existing redundancy

2

in the user data is eliminated, thus the output of this operation
produces equiprobable outputs. Depend upon the application,
the compression can be lossless (lower bounded by the entropy
of the data source) or lossy (governed by the rate-distortion
theorem [4, p. 301]).

• Encryption is sometimes considered in the communication sys-
tem, and it can be described as a mapping from user data into
a “secret” code, so that non authorized users cannot recognize
relevant data.

• Encoding (or channel coding) is an addition method of struc-
tured redundancy to enable error detection/correction capa-
bility. Commonly, every incoming sequence of Kcode symbols,
called message, is mapped to another sequence of N symbols,
called codeword, always having N > Kcode. The ratio Kcode/N
is called code rate and is normally denoted by R such that
0 < R = Kcode/N < 1.

• Modulation takes the codewords which have some useful and
efficient redundancy and generates the waveforms that meet
the requirements of the specified noisy channel.

3. The channel is the physical medium whereby the modulated out-
put is conveyed “through space when signaling from here to there
(transmission), or through time when signaling from now to then
(storage)” (Hamming [5, p. 20]).

4. The receiver is the counterpart of the transmitter block. There-
fore, it is also decomposed into the corresponding “inverse” set of
operations for those in the transmitter block. These operations are
wrapped inside of the receiver block, see Fig. 1.1.

• The demodulation is the part of the receiver in a communica-
tion system where the output from the channel is converted into
noisy sequences (other important operations are performed in
this sub block, but they fall beyond the scope of this disserta-
tion).

• The channel decoder attempts to recover the original data en-
coded by the channel encoder, starting from the demodulated
noisy sequences (or corrupted codewords). It produces valid
messages for the following processes wrapped in the receiver
side. This is the main subject of this dissertation.

3

Check nodes

Variable nodes

H =

2

66664

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

3

77775

Parity check matrix

+	

6-cycle

dv

dc

Figure 1.2: Graphical representation of a parity-check matrix H by a
Tanner graph. Edges interconnecting nodes of different types are drawn
wherever there is a one in the matrix H.

• Decryption. Removes any encryption.

• The source decoder recovers the compressed data.

5. The destination represents the user for whom data is intended.

1.2 LDPC codes and their key properties

An LDPC code is a block code for channel coding that has a parity-check
matrix H which is sparse. There are two types of LDPC codes: regu-
lar and irregular. Regular LDPC codes have a constant number of ones
dv in each column (column weight) and a constant number of ones dc
in each row (row weight), otherwise the code is defined as an irregular
LDPC code. LDPC codes can be analysed using a Tanner graph, which
is a bipartite graph that separates the nodes into variable nodes (graph-
ically represented by circles corresponding to columns of H) and check
nodes (graphically represented by squares corresponding to rows of H),
see Fig 1.2 for an example of a parity-check matrix H with dv = 2, dc = 4
whose Tanner graph is also shown.

The following results are provided by Gallager [3] and Mackay [6].
LDPC codes have a quite simple construction (randomly generated parity
check matrix), given an optimal decoder, LDPC codes are good codes
(code families that achieve arbitrary small probability of error at non-
zero communication rates up to some maximum rate that may be less
than the capacity of a given channel), and they have good distance (the
minimum distance dmin of the code divided by the length N of that such

4

code tends to a constant greater than zero). These results hold for any
column weight dv ≥ 3. Furthermore, there are sequences of LDPC codes
in which dv increases gradually with the length N of the code, in such
a way that the ratio dv/N still goes to zero, this property gives a good
distance [6, p. 557].

1.3 Decoding of LDPC codes

Using the Tanner graph of an LDPC code, a cycle is defined as a sequence
of edges that form a closed path. For instance, in Fig 1.2 we can observe
a cycle whose length is equal to the number of edges that form it, for
this specific example such length is equal to 6 and as a result this cycle is
denoted as 6-cycle. If an LDPC code is drawn as a tree (which is possible
only if there are no cycles in the Tanner graph or in the parity-check
matrix), optimal message-passing decoding can be achieved, unfortunately
at the same time, LDPC codes with good minimum distance properties
cannot be found for this setting [7, p. 64]. On the other hand, the existence
of cycles leads to a suboptimal iterative message-passing decoding which
requires a large length (e.g. 107) to have a probability of error negligibly
small [8].

The best iterative message passing decoding algorithm known for LDPC
codes is the sum-product algorithm (SPA) (from now on, we will some-
times omit the word “iterative” when we refer to decoding algorithms for
LDPC codes, since it is understood that the decoding process is iterative),
also known as iterative probabilistic decoding or belief propagation (BP).

It is well known that the best decoding performance of LDPC codes
can be achieved using the SPA with irregular LDPC codes [9]. In irregular
LDPC codes the degree distributions of the nodes are optimized causing
nodes with different degrees. However, that increases the complexity of
the hardware implementation for LDPC decoders. Another problem of
employing irregular LDPC codes is that the optimal degree distributions
in the nodes generates 4-cyles which generates a decrement in the decoding
performance by causing an abrupt change in the slope of the resulting error
probability curve, this phenomenon is called the “error floor” [10, p. 399].
In contrast, despite regular LDPC codes having an error-rate performance
penalty respect to that achieved by irregular LDPC codes, they provide
an easy way to design an efficient hardware implmentation of LDPC de-
coders due to their structure (i.e. constant dc and dv in rows and columns
respectively). In this work, we only use regular LDPC codes due to their
friendly design (e.g. regular LDPC codes based on array codes, shortened

5

array codes, finite geometries, etc.) and hardware implementation (e.g.
generic node operations due to constant degree of the nodes, fully paral-
lel, serial or hybrid manageable architectures that reduce the integrated
circuit (IC) resources and speed up the throughput of the LDPC decoder
which allows a scalable design [11]).

1.4 Discrete LDPC decoding algorithms

Although it was mentioned above that the SPA provides the best decoding
performance (i.e. error-rate probability close to the the channel capacity),
when it comes to its hardware implementation, it becomes a problem due
to the fact that this algorithm employs nonlinear functions that need a
high resolution (i.e. 12 or more bits [12]) to represent each coded bit in
a codeword. This issue also requires that the corresponding architecture
work with high resolution variables that at the same time demand the
necessary arithmetical and logical units to process them.

Depending of the number of bits (resolution) utilized by a defined
variable to represent a coded bit at the decoder, we can define two types
of decoding: hard-decision, when one bit per coded bit is used, and soft-
decoding, when high number of bits e.g. 64 bits are used to represent each
coded bit. Commonly such variables receive the name of messages. There-
fore, 4-bit per message means that each variable that represents a coded
bit has a resolution of 4 bits which gives 16 possible values to represent
and processing a given noisy coded bit at the designed message-passing
decoder, e.g. the SPA. As one might expect, the error-rate probabil-
ity improves as the number of bits per message increases, for example,
soft-decision (more than one bit) gives better decoding performance than
hard-decision (one bit). As a result, the latency for reading and process-
ing the messages in an LDPC decoder is proportional to number of bits
per message used to represent such messages. Thus, the target of discrete
LDPC decoding algorithms is to reduce the number of bits as much as
possible to reduce the latency of the decoding process. The problem is
that at the same time, for the quantization of LDPC decoding algorithms,
a reduction of the number of bits per message can lead to a performance
penalty [3], [13], [14]. Indeed, this topic has received substantial attention
in both the research and engineering communities. Past work on discrete
message-passing decoding algorithms is summarized below.

One of the first works about the implications related to quantization
of the SPA was carried out by Li Ping et al. [12], in this work, it is
shown that a quantized SPA using 12 bits per message achieves error-rate

6

performance close to that obtained by SPA without quantization, but still
using 12 bits per message an error floor is observed. In [12], a binary-
input additive white Gaussian noise channel (BI-AWGNC) is considered.
To overcome the problem of quantization of the SPA, in [12] a parity
likelihood ratio (PLR) technique is proposed. In [12], using 6 bits per
message an error-rate performance close to non-quantized SPA is shown.

Due to the complex operations involved in the SPA (or BP) to gen-
erate the check-to-variable node messages, SPA is usually implemented
using approximations. One of the most common is the so-called BP-based
approximation [15] (commonly known as the “min-sum” (MS) approxi-
mation [16]). Thus, in [17] Chen et al. proposes two BP-based decoding
algorithms to reduce the decoding complexity. Using 6 bits per message
a gap of around 0.1 dB respect to full SPA (without quantization) on the
BI-AWGNC is presented.

MS decoding reduces the implementation complexity of the iterative
decoding process performing just a few tenths of a decibel inferior to
BP performance. In [18] Zhao et al. study the effects of clipping and
quantization on the performance of MS over a BI-AWGNC. The best
error-rate performance is achieved using 6-bits per message with a gap of
around 0.1 dB respect to that achieved by full SPA.

Chen et al. in [19] reported results using 5, 6 and 7 bits per message
with an uniform quantization scheme. In this work, using 6 bits per mes-
sage on a BI-AWGNC the proposed message-passing decoding algorithm
shows error-rate performance identical to full SPA.

In [20] Lee et al. proposed the idea of designing message-passing de-
coding algorithms using maximization of mutual information. They used
a nonuniform quantization scheme for a regular (dv = 3, dc = 6)-LDPC
code. Comparing with floating point SPA on a BI-AWGNC, 0.2 dB and
0.1 dB gaps are observed using 3 and 4 bits per message respectively,
albeit a significant amount of hand-optimization is mentioned and the
optimization procedures were not explained in detail.

From an engineering perspective, error floors of the (2048, 1723) Reed-
Solomon based LDPC (RS-LDPC) code and (2209,1978) array-based LDPC
code on a BI-AWGNC are studied in [21] by Z. Zhang et al. In it, 6-bit
uniform quantization is employed for a SPA decoder using a parallel-serial
decoder architecture in a field programmable gate array (FPGA). Part of
those 6 bits control the range of the quantization (lower negative real
value and upper positive real value), while the remaining bits define the
resolution (quantization step), a parallel-serial decoder architecture in a
field programmable gate array (FPGA) was used.

7

Offset min-sum (OMS) over a binary symmetric channel (BSC) using
4 bits per message and OMS over a BI-AWGNC using 5 and 6 bits per
message were proposed in [22] by X. Zhang et al.. In this work, using
4 bits per message on the BSC is enough to produce identical error-rate
performance than that obtained by OMS without quantization. On the
other hand, using 6 bits per message is sufficient to achieve the error-rate
performance of the full OMS over the BI-AWGNC.

More recently, in [23] Planjery et al. propose a 3-bit finite alpha-
bet iterative decoder (FAID). FAIDs are designed using the knowledge of
potentially harmful subgraphs that could be present in a given code. Pre-
sented results focus on column-weight-three codes over the (BSC), and in
all cases FAIDs decoding performance is better than that obtained by full
SPA.

Lewandowsky et al. also applied the information bottleneck method
to the implementation of quantization in LDPC decoders [24]. Using 4
bits per message over a BI-AWGNC, a gap around 0.2 dB respect to the
error-rate performance of full SPA is shown.

In this work we employ binary phase-shift keying (BPSK) modulation
since all the aforementioned work also implemented it in all the simulations
results. Thus a fair comparison can be made with all the above proposed
discrete LDPC decoding algorithms.

In Table 1.1, simulation parameters such as type of quantization, gap
with respect to full SPA (if available), number of bits per message, max-
imum number of iterations, type of considered channel, as well as other
details to identify and analyze each of the above discrete LDPC decoding
algorithms are described. Also the details about the proposed decoding
mapping functions for decoding LDPC codes denoted as “This work” are
presented.

In the following section, the idea behind the proposed decoding map-
ping functions and their benefits compared with the above described dis-
crete LDPC decoding algorithms are delineated.

1.5 Proposed technique for LDPC decoding

In this work, we propose a method to find message-passing decoding map-
ping functions for regular LDPC codes which can surpass the error-rate
decoding performance of sum-product algorithm (or BP) using only 4 bits
per message. These results are shown on the BSC and in the BI-AWGNC.
From the algorithms listed in Table 1.1 only FAIDs using 3 bits per mes-
sage have presented similar results, but only for the BSC.

8

T
ab

le
1.

1:
L

is
t

of
va

ri
ou

s
p
ro

p
os

ed
d
is

cr
et

e
m

es
sa

ge
-p

as
si

n
g

d
ec

o
d
in

g
al

go
ri

th
m

s
u
si

n
g

a
ce

rt
ai

n
n
u
m

b
er

of
b
it

s
to

re
p
re

se
n
t

ea
ch

re
ce

iv
ed

co
d
ed

b
it

b
el

og
in

g
to

a
re

ce
iv

ed
n
oi

sy
co

d
ew

or
d
.

P
L

R
:

P
ar

it
y

li
ke

li
h
o
o
d

ra
ti

o,
M

S
:

m
in

-s
u
m

,
N

Q
B

P
A

:
n
on

-u
n
if

or
m

q
u
an

ti
ze

d
b

el
ie

f
p
ro

p
ag

at
io

n
al

go
ri

th
m

,
S
P

A
:

su
m

-p
ro

d
u
ct

al
go

ri
th

m
,
O

M
S
:
off

se
t

m
in

-s
u
m

,
F
A

ID
:
F

in
it

e
al

p
h
ab

et
it

er
at

iv
e

d
ec

o
d
er

,
M

D
:
m

ap
p
in

g
d
ec

o
d
er

,
m

ax
-

L
U

T
:
lo

ok
u
p

ta
b
le

th
at

m
ax

im
iz

es
m

u
tu

al
in

fo
rm

at
io

n
,

B
S
C

:
B

in
ar

y
sy

m
m

et
ri

c
ch

an
n
el

,
B

I-
A

W
G

N
C

:
B

in
ar

y
-i

n
p
u
t

ad
d
it

iv
e

w
h
it

e
G

au
ss

ia
n

n
oi

se
ch

an
n
el

.

N
o.

A
u
th

or
A

lg
or

it
h
m

Q
u
an

ti
za

ti
on

G
ap

re
sp

ec
t

to
S
P

A
N

o.
of

b
it

s
M

ax
.

n
o.

of
it

er
at

io
n
s

C
h
an

n
el

I
P

in
g

et
al

.
(2

00
0)

[1
2]

P
L

R
U

n
if

or
m

0.
05

6
40

B
I-

A
W

G
N

C
II

C
h
en

et
al

.
(2

00
2)

[1
7]

B
P

-b
as

ed
U

n
if

or
m

0.
1

d
B

6
10

0
B

I-
A

W
G

N
C

II
I

Z
h
ao

et
al

.
(2

00
5)

[1
8]

M
S

U
n
if

or
m

0.
1

d
B

5–
6

20
0

B
I-

A
W

G
N

C
IV

C
h
en

et
al

.
(2

00
5)

[1
9]

M
S

U
n
if

or
m

Id
en

ti
ca

l
6

30
B

I-
A

W
G

N
C

V
L

ee
et

al
.

(2
00

5)
[2

0]
N

Q
B

P
A

N
on

-u
n
if

or
m

0.
1

d
B

3–
4

N
ot

m
en

ti
on

ed
B

I-
A

W
G

N
C

V
I

Z
.

Z
h
an

g
et

al
.

(2
00

9)
[2

1]
S
P

A
U

n
if

or
m

n
on

e
6

20
0

B
I-

A
W

G
N

C
V

II
X

.
Z

h
an

g
et

al
.

(2
01

2)
[2

2]
O

M
S

Q
u
as

i-
u
n
if

or
m

Id
en

ti
ca

l
(O

M
S
)

4
&

5–
6

20
0

B
S
C

/B
I-

A
W

G
N

C
V

II
I

P
la

n
je

ry
et

al
.

(2
01

3)
[2

3]
F
A

ID
U

n
if

or
m

B
et

te
r

3
10

0
B

S
C

IX
L

ew
an

d
ow

sk
y

et
al

.
(2

01
6)

[2
4]

M
D

N
on

-u
n
if

or
m

0.
2

d
B

4
50

B
I-

A
W

G
N

C
T

h
is

w
o
rk

m
ax

-L
U

T
N

on
-u

n
if

or
m

B
et

te
r

3–
4

25
(a

ve
ra

ge
10

–1
5)

B
S
C

/B
I-

A
W

G
N

C

9

More precisely, the proposed technique is a systematic method which
uses an optimal quantizer at each step of density evolution to generate
message-passing decoding mappings which maximize mutual information.
Previously in [20] the maximization of mutual information was utilized
to design decoding mapping functions too, but the technique was limited
only to a specific code rate. On the other hand, in this work the proposed
technique allows different LDPC codes and as a consequence different code
rates which makes the proposed maps suitable for different applications.

FAIDs along with the mapping decoder proposed in [24] by Lewan-
dowsky et al., represent the most similar works on the design of decoding
mapping functions. Compare with FAIDs, the proposed technique uses
an optimal quantizer to construct the decoding mapping functions while
FAIDs use the information of trapping sets existing in the codes. In second
place, comparing with row IX in Table 1.1, they proposed to use the infor-
mation bottleneck method to design the mapping functions, even though
they use a discretized density evolution algorithm they have to carry out
an extensive search for a good set of mapping functions to decode a speci-
fied code. In this work instead of using the information bottleneck method,
we use systematically an optimal quantizer. In our case, we can determine
a theoretical threshold for a specified LDPC code which is the designed
parameter to construct the decoding mapping functions, in this way, we
avoid an extensive search for a good set of decoding mapping functions.

The resulting message-passing decoding mappings are not quantized
versions of the sum-product algorithm, or min-sum decoding algorithm
nor modifications of these algorithms as in I, II, III, IV, VI and VII in
Table 1.1, instead, the proposed maps are based on an optimal quantizer
which maximizes mutual information [25].

Although the proposed mapping functions achieve near-SPA error-rate
performance using 4 bits per message, it is possible to construct them for
an arbitrary number of bits per message, as an example of this, in Chapter
5 also results using 3 bits per message are shown.

Our approach has both theoretical and practical aspects. The theo-
retical approach of this work is derived from a strong connection between
the problem of classification in statistical learning theory, and the prob-
lem of optimal quantization of discrete memoryless channels (DMC) in
information theory. On the practical side, finite-length results for various
regular LDPC code rates show that using 4 bits per message is sufficient to
perform close to theoretical limits, achieving or surpassing the error-rate
performance of full SPA.

The proposed maps do not necessarily correspond to elementary math-

10

ematical operations, but may be implemented by a lookup table (LUT).
This can lead to a hardware implementation of an LDPC decoder with
high throughput (number of decoded bits per second). Another signifi-
cant benefit of the proposed decoding mapping functions towards a high
throughput LDPC decoder, is that the required number of maximum num-
ber of iterations is the lowest among all listed algorithms in Table 1.1,
even better, in average the number of required iterations decreases to 10–
15 depending of code rate. Added to this, benefits of using a few bits
per message (3 or 4) include: reduction of the memory needed to store
the messages generated along the message-passing decoding process, re-
duction in the number of interconnect wires utilized between variable and
check nodes, reduced complexity of interconnect routing and reduced logic
complexity [20].

1.6 Summary of contributions

Throughout this work, we aim to describe how to design decoding map-
ping functions to decode regular (dv, dc)-LDPC codes which can be im-
plemented in integrated circuits using very-large-scale integration (VLSI).
For LDPC decoding, the goal is to design decoding algorithms able to meet
three features: 1) error-rate performance close to that of SPA (robust de-
coding algorithm able to work in different channels), 2) high throughput
(a few bits per message and a few number of iterations) and 3) low gate
count (a few resources for hardware implemntation). The problem is that
normally if a decoding algorithm achieves 1), it cannot meet 2) and 3) due
to the complexity associated to accomplish 1). On the other hand, if a
decoding algorithm meets 2) and 3) it cannot fulfill 1) due to low resolu-
tion representation of the variables implicated to estimate valid codewords
during the decoding process, or due to excessive assumptions that become
the decoding algorithm efficient for a few particular scenarios.

In this dissertation, a decoding algorithm that meets 1), 2) and 3) is
presented. More precisely, the proposed algorithm is an iterative message-
passing decoding algorithm that only uses mapping functions (lookup ta-
bles) to perform the local decisions involved in a common LDPC decoding
algorithm (e.g. SPA). The proposed algorithm only performs searches for
lookup tables to produce channel messages, decoder messages and estima-
tions of valid codewords, that is, the proposed algorithm does not require
any arithmetical operation, instead all messages are positive integers that
are used to search the corresponding value according to the type of node
and the value of the incoming messages to the node (i.e. the combination

11

of incoming messages represents an address in a lookup table).
The proposed algorithm is the result of the combination of previous ac-

complishments that represent the contributions of this dissertation. Such
contributions are described as follows:

• Max-LUT method. In this research, floating-point algorithms are
not used. Instead, the central method is “direct design” of VLSI
for decoders and channel quantizers. We have developed a tech-
nique where the decoder implementation, including quantization of
messages, are designed using only the probability distribution from
the channel. Given a probability distribution, our method
designs a lookup table (LUT) that maximizes mutual infor-
mation, and LUTs are implemented directly in VLSI. This
is the “max-LUT method”. It is well-known that maximiza-
tion of mutual information is Shannon’s channel capacity, and in
numerical results so far, the proposed method has excellent quanti-
zation/performance tradeoff.

• Quantized density evolution. Since we were interested in pre-
dicting the decoding performance of the proposed message-passing
decoding algorithm, we derive a density evolution algorithm that sys-
tematically at each step of the density evolution process performs
an optimal quantization (optimal in terms of maximizing mutual
information). The quantized density evolution algorithm that we
proposed, allows us to compute the theoretical decoding threshold
for a regular (dv, dc)-LDPC code ensemble and a specified number of
quantization levels K under the proposed decoding algorithm based
on mapping functions that maximize mutual information.

• Efficient implementation of LDPC decoders. For the design of
LDPC decoders, the max-LUT method is analogous to finding non-
uniform quantization schemes where the quantization can vary with
each iteration. In our finite-length results: the proposed decoding
mapping functions using 3 bits per message have a gap around 0.4
dB with respect to the error-rate performance achieved by full SPA.
On the other hand, the proposed decoding mapping functions using
4 bits per message are usually sufficient to achieve the error-rate
performance of full SPA. Under the proposed decoding technique,
the usual complexity of non-uniform quantization is avoided by using
lookup tables. Lastly, the proposed decoding mapping functions
using 4 bits per message show lower error floor than full SPA.

12

1.7 Dissertation outline

This dissertation is organized as follows.
In Chapter 1, introduction to LDPC codes and their basic properties

as well as their decoding is mentioned. In this chapter also motivation on
discrete LDPC decoding algorithms is presented. Later, the properties of
the proposed decoding mapping functions are delineated as well as their
main results. At the end of the chapter, the summary of the contributions
of this dissertation are described.

In Chapter 2, some fundamental concepts and useful facts about coding
theory are formally described. The framework for the proposed research
is established in this chapter. Fundamentals about LDPC codes and the
sum-product algorithm are described in this chapter.

In Chapter 3, we aim to describe the origin of the so-called sum-
product algorithm starting from its graphical representation in a tree until
its graphical representation in the so-called Tanner graph. Later in this
chapter, we present the max-LUT method and its application to channel
quantization and its application to designing local decoding lookup tables.

In Chapter 4, we first introduce the idea behind the density evolution
algorithm. Later, we describe a discretized density evolution algorithm
which uses the max-LUT method to systematically perform quantization
on the conditional probability distributions to generate the proposed de-
coding mapping functions. We also describe how to compute thresholds
for a given number of quantization levels K and for a given regular (dv, dc)-
LDPC code.

In Chapter 5, we analyze the error-rate performance of the proposed
decoding mapping functions of a wide range of extensive simulation results
for finite-length LDPC codes considering the BI-AWGNC and the BSC.

Finally, conclusions, as well as the future work, are presented in Chap-
ter 6.

13

Chapter 2

Preliminaries

In this chapter, we firstly establish the conventional performance measures
for message-passing decoders. Later, we recall the channel capacity and its
application for discrete memoryless channels of interest. At the end of this
chapter, we formally introduce the matrix and graphical representation of
LDPC codes, to later describe the sum-product algorithm for different
channel models.

2.1 Performance measures

Automatic request-for-repeat (ARQ) technique and forward error correc-
tion (FEC) technique can be seen as the two branches of error-control
coding. Firstly, ARQ is a technique which aims to carry out the task of
error detection using retransmission requests; in other words, its goal is to
detect whether or not a received sequence of symbols (commonly bits) has
errors, which are produced due to transmission through a noisy channel.
In the case that an ARQ has detected errors in the received sequence, a re-
quest of retransmission of the last sequence is sent to the transmitter from
the receiver. Secondly, FEC is the scheme whereby existing errors in the
received sequence (codeword) are corrected applying an error-correction
code. FEC systems normally target a low probability of decoding error.
There are systems which mix both schemes to guarantee reliable trans-
missions, an example of this is the IEEE 802.16-2005 standard for mobile
broadband wireless access, also known as “mobile WiMAX”.

Although ARQ techniques are enormously useful, in this work we con-
centrate on LDPC decoding which is a FEC technique.

Consider the transmission of the binary codeword u. The bit-error
probability Pb or sometimes also referred as BER is the probability that

14

the jth estimated bit ûj at the channel decoder output is not equal to the
encoded bit uj at the channel encoder output, this is,

Pb = Pr{ûj 6= uj}. (2.1)

Another performance measure commonly found in coding theory lit-
erature is the codeword-error probability, Pcw also referred as word-error
rate (WER) or frame-error rare (FER). Pcw is defined as the probability
that the estimated channel decoder codeword û is not equal to the channel
encoder codeword u, this is,

Pcw = Pr{û 6= u}. (2.2)

When it comes to compare decoding algorithms, commonly one is able
to see the decoding results as graphs where bit-error rate (BER)/frame-
error rate (FER) curves evaluated in a chosen range of signal-to-noise ratio
(SNR) are presented. In this work, we shall use the above performance
measures to present the decoding performance for the proposed decoding
algorithms.

2.2 Channel capacity

Information theory is incredibly relevant for coding theory, it establishes
the “playground” of coding schemes by clearly defining the performance
bounds. The most important equation in information theory is the equa-
tion to calculate the mutual information between two random variables X
and Y . The mutual information is the average information that one ran-
dom variable has about another random variable. Recalling the general
communication system model shown in Fig. 1.1, X normally represents
the channel input, while Y represents the channel output. When these
two random variables X and Y take values from discrete alphabets X and

15

Y respectively, the mutual information can be found as

I(X;Y) = H(Y)−H(Y |X) (2.3)

I(X;Y) =−
∑
y∈Y

p(y) log2 p(y)−
∑
x∈X

p(x)H(Y |X = x) (2.4)

I(X;Y) =−
∑
y∈Y

p(y) log2 p(y) (2.5)

−
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x) (2.6)

I(X;Y) =−
∑
y∈Y

p(y) log2 p(y) (2.7)

−
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x), (2.8)

where H(Y) is the entropy of the channel output Y , and H(Y |X) is con-
ditional entropy of Y given X. Mutual information has various proper-
ties [4], one of its properties is that it is symmetric in X and Y , such
that

I(X;Y) = I(Y ;X) (2.9)

= H(X)−H(X|Y). (2.10)

The channel capacity C of a discrete memoryless channel (DMC) 1

with input X and output Y is the maximization of mutual information
I(X;Y), where the maximization is over the channel input probability
distribution {p(x)}, resulting in

C = max
{p(x)}

I(X;Y). (2.11)

The idea behind the channel capacity C is of wide interest for commu-
nication systems because it aims to find the maximum achievable rate R
at which we can reconstruct the channel input sequences (codewords) at
the channel output with a negligible probability of error Pb.

2.3 Channel capacity for useful DMCs

In all practical communication systems, the goal is to transmit data reli-
ably through a noisy channel at the maximum possible rate. In order to be

1A channel is said to be memoryless if the probability distribution of the output
depends only on the input at that time and is conditionally independent of previous
channel inputs or outputs.

16

C
ap

ac
it
y0

1

0

1

Binary symmetric channel

X Y

1� "

"

1� "

"

"

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Diagram and channel capacity plot for the binary symmetric
channel.

able to do this, we need a noisy channel model that emulates the random
changes that a sequence conveyed through a physical channel suffers.

2.3.1 The binary symmetric channel

In this DMC, a binary input X ∈ {0, 1} and a binary output Y are
assumed. The probability of a bit error is defined by ε, see Fig. 2.1.
The channel capacity for the binary symmetric channel CBSC , plotted in
Fig. 2.1, can be computed through (2.11), resulting in

CBSC = 1− h(ε), (2.12)

where h(ε) is the binary entropy function

h(ε) = −ε log2(ε)− (1− ε) log2(1− ε). (2.13)

2.3.2 The binary-input AWGN channel

When a coded bit uj ∈ {0, 1} is transmitted through an additive white
Gaussian noise channel (AWGNC), first, it is mapped to xj = a(−1)uj ,
where a =

√
Ec (employing a binary phase-shift keying (BPSK) signal),

and Ec is the energy per transmitted coded bit, which is related to the
energy per message bit Eb such that Ec = REb, being R = Kcode/N the
rate of the code. Once uj is mapped to xj, xj is transmitted through

17

LDPC
encoder

Uncoded
bits

“0”“1”

BPSK modulation

xu
+

Eb
Detection

xi =
p
Ec(�1)ui

LDPC
decoder

y

û

R = Kcode/N

$ ⇠ N (0,�2)

�
p
Ec

p
Ec

Figure 2.2: Block diagram that represents the transmission of a binary
codeword u through the BI-AWGNC. Coding a decoding are assumed to
be carried out by LDPC codes.

a channel which adds a Gaussian noise value $j with zero mean and
variance σ2 = N0/2, i.e., $j ∼ N (0, σ2). At the output of the channel
the real value yj ∈ R, being yj = xj + $j is received. Therefore, this
channel is known as the binary-input AWGN channel (BI-AWGNC). The
transmission of the binary codeword u through the BI-AWGNC is shown
in Fig 2.2, where coding and decoding are assumed to be performed using
LDPC codes.

The capacity of the BI-AWGNC is

CBI−AWGNC = 0.5
∑
x=±a

∫ ∞
−∞

p(y|x) log2

(
p(y|x)

p(y)

)
dy, (2.14)

where

p(y|x = ±a) =
1√
2πσ

exp[−(y ± a)2/2σ2] (2.15)

and

p(y) =
1

2
[p(y|x = +a) + p(y|x = −a)]. (2.16)

Following (2.11), we can derive another formula to compute CBI−AWGNC ,
this is, C = H(Y)−H(Y |X) = H(Y)−H(Z), whereH(Z) = 0.5 log2(2πeσ2),
thus we have

CBI−AWGNC = −
∫ ∞
−∞

p(y) log2(p(y)) dy − 0.5 log2(2πeσ2). (2.17)

18

C
a
p
a
c
i
t
y
(
b
i
t
s
/
c
h
a
n
n
e
l
s
y
m
b
o
l
)

−2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

h

a

n

n

o

n

c

a

p

a

c

i

t

y

Hard-decision

Soft-decision

C
=

0

.5
l

o

g

2
� 1

+

1
�

2

�

Eb/N0 (dB)

(Binary symmetric channel (BSC))

Figure 2.3: Plotting soft-decision and hard-decision capacity curves for
the BI-AWGNC, along with the curve for the Shannon capacity.

Note that the integral in (2.17) may be estimated as

E{− log2(p(y))} ' − 1

J

J∑
j=1

log2(p(yj)), (2.18)

where {yj : j = 1, . . . , J} is a large group of realizations of Y (say 106)
and E{·} indicates the expected value of the discrete random variable.

In Fig. 2.3, the capacity curve CBI−AWGNC (labeled “soft-decision”)
versus the (bit) signal-to-noise ratio Eb/N0 in dB is plotted . Recall that
Eb/N0 = E[x2

j]/2Rσ
2 (in this work we assume E[x2

j] = 1). The value R
used in the Eb/N0 is considered as R = CBI−AWGNC , because R is assumed
to be lower than CBI−AWGNC just by an arbitrary small value δ, this is

Eb/N0(dB)soft = 10 log10(1/(2CBI−AWGNCσ
2)). (2.19)

In order to compute the hard-decision BI-AWGNC capacity curve (labeled
“hard-decision”), the hard-decisions ŷj from yj must to be obtained as
follows

ŷj =

{
1 if yj ≤ 0

0 if yj > 0.
(2.20)

19

Note that these hard-decisions transform the BI-AWGNC into a binary
symmetric channel with error probability ε such that, first, we can apply
the Q-function2 to estimate ε, resulting in

ε = Q(
√

2REb/N0), (2.21)

later recalling (2.12), we write CBSC = 1− h(ε) to finally produce

Eb/N0(dB)hard = 10 log10(1/(2CBSCσ
2)). (2.22)

In Fig. 2.3, the Shannon capacity curve is also shown, without loss of
generality, this is

CShannon = 0.5 log2

(
1 + 2R

Eb

N0

)
, (2.23)

and then

Eb/N0(dB)Shannon = 10 log10(1/(2CShannonσ
2)). (2.24)

2.4 Representation of LDPC codes

Even though we introduced LDPC codes in section 1.2 of Chapter 1, here
we concentrate our attention in the description of the sum-product algo-
rithm. Fig. 1.2 is used again but, modified to describe the flow of the
messages in the context of message-passing decoding and thus be able to
explain some useful equations of this section.

Due to complexity implementation requirements associated to the LDPC
codes in 1960, these linear block codes were forgotten for a while, until in
the mid 1990s with the work of MacKay, Luby, and others, they came back
again, but this time they continue being an interesting research topic.

The main reason why these codes are frequently studied, is because
they have shown to have decoding performance close to the Shannon ca-
pacity [8].

This section follows the presentation of LDPC codes in [10] and [26]. In
this research, only binary LDPC codes are considered. The representation
of LDPC codes can be carried out either in matrix form or in a graphical
form.

2The Q-function is the probability that a unit Gaussian N ∼ N (0, 1) exceeds x [26]:
Qfunc(x) = Pr(N > x) = 1√

2π

∫∞
x

exp (−n2/2) dn.

20

2.4.1 Matrix representation

An LDPC code is a linear block code given by the null space of an M ×N
parity-check matrix H, which has a low density of ones. A regular LDPC
code has a constant number of ones dv in each column and a constant
number of ones dc in each row, otherwise the code is called irregular.
Thus, the code rate R of a regular LDPC is

R ≥ 1− M

N
= 1− dv

dc
(2.25)

with equality when H is full rank. An example of a parity-check matrix
is as follows

H =

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 , (2.26)

where M = 5, N = 10, dv = 2 and dc = 4. Looking closely at the parity
check matrix in (2.26), we can see that the first row is not independent, this
is, it is the addition of the rest four rows. As a result R = 1−4/10 = 3/5.

2.4.2 Graphical representation

To graphically represent a parity-check matrix H of an LDPC code, we use
a Tanner graph, which is a bipartite graph, that is, the nodes are separated
into two types: check nodes, denoted as CN and variables nodes, denoted
as VN, with edges connecting only nodes from different types. For each
H there are M check nodes and N variable nodes. The Tanner graph
construction is as follows: each check node CN i is connected to a VN j
whenever element hi,j of H is equal to 1. Considering the parity-check
matrix in (2.26), the corresponding Tanner graph is depicted in Fig. 2.4.

Before describing the iterative decoding process of the SPA, we first
need to define some useful notation. We denote the set of VNs j that
participate in the CN i as

N (i) = {j : hi,j = 1}, (2.27)

in a similar manner, we denote the set of CNs i that participate in the
VN j as

M(j) = {i : hi,j = 1}. (2.28)

21

1 2 3 4 5

6 7 8 9 102 3 4 51

Check nodes

Variable nodes

Vj!i Li!j

Figure 2.4: Tanner graph for the parity-check matrix H in (2.26)

Using (2.27) and our example of a parity check matrix in (2.26), we
can write the set of VNs j that participate in each CN i as follows

N (1) = {1, 2, 3, 4},N (2) = {1, 5, 6, 7},N (3) = {2, 5, 8, 9},
N (4) = {3, 6, 8, 10},N (5) = {4, 7, 9, 10}.

In a similar way but using (2.28), we can write the set of CNs i that
participate in each VN j as follows

M(1) = {1, 2},M(2) = {1, 3},M(3) = {1, 4},M(4) = {1, 5},
M(5) = {2, 3},M(6) = {2, 4},M(7) = {2, 5},M(8) = {3, 4},

M(9) = {3, 5},M(10) = {4, 5}.

We use N (i)\j to indicate the set N (i) without the element j, e.g.,
N (1)\3 = {1, 2, 4}. Note that in the Tanner graph the messages sent from
VN j to the CN i are denoted as Vj→i, while the messages sent from the
CN i to the VN j are denoted as Li→j, this can be observed in Fig. 2.4.

2.5 The Gallager sum-product algorithm

In this section we describe the sum-product algorithm (SPA). At the be-
ginning of SPA, we initialize the variable-to-check node messages Vj→i

with the log-likelihood ratio (LLR) as

Lj = L(uj|yj) = log

(
Pr (uj = 0|yj)
Pr (uj = 1|yj)

)
, (2.29)

22

whenever hi,j = 1. Below, we define the LLRs for the BSC and for the
BI-AWGNC. For the BSC with b ∈ {0, 1} and bc as a complement (i.e.
when b = 0, bc = 1 and vice versa), we have

Lj = L(uj|yj) = (−1)yj log

(
1− ε
ε

)
, (2.30)

where the channel output yj ∈ {0, 1} and ε = Pr(yj = bc|uj = b). In the
case of the BI-AWGNC, we have

Lj = L(uj|yj) = 2yj/σ
2, (2.31)

being uj ∈ {0, 1}, xj = (−1)uj and the channel output yj = xj +$j, where
the $j are independent and normally distributed as N (0, σ2). Once the
LLRs in (2.30) and (2.31) have been defined, the iterative SPA is as follows:

1. Initialization. For all j, initialize Lj according to (2.29) for the
appropriate channel model used. Then, for all i, j that hi,j = 1, set
Vj→i = Lj.

2. Check node update. Compute Li→j for each check node as

Li→j = 2 tanh−1

(∏
j′∈N (i)\j

tanh

(
1

2
Vj′→i

))
, (2.32)

and then transmit to the variable nodes.

3. Variable node update. Compute Vj→i for each variable node as

Vj→i = Lj +
∑

i′∈M(j)\i

Li′→j (2.33)

and then transmit to the check nodes.

4. LLR total. For j = 1, 2, . . . , N compute

Ltotal
j = Lj +

∑
i∈M(j)

Li→j. (2.34)

5. Stoping criteria. For j = 1, 2, . . . , N , set

ûj =

{
1 if Ltotal

j < 0

0 else ,
(2.35)

to obtain û. if ûHT = 0 or the number of iterations equals the
maximum number of iterations, stop; else, go to step 2.

23

The equation (2.32) for the check node update, is the part of the SPA
that increases the complexity of a hardware implementation and at the
same time is quite sensible to quantization, this happends due to the prod-
uct, tanh and tanh−1 operations involved. Mainly the complexity issues of
the equation (2.32) are the motivation of all discrete LDPC decoding algo-
rithms shown in Table 1.1 in page 9 on chapter 1, as well as the motivation
of this work.

24

2.6 Summary

In this chapter, first we formally describe the bit-error rate and word/frame-
error rate as performance measures for decoding algorithms. In chapter
5, we will use this measures to analyze the error-rate performance of the
proposed decoding mapping functions for regular (dv, dc)-LDPC codes.

Later, we described shortly the channel capacity and we write its cor-
responding equation for some discrete memoryless channels that we use
in this work.

At the end of the Chapter, we present the sum-product algorithm and
we mentioned that the complexity of the check node update equation
(2.32) for its hardware implementation is the motivation of this work and
that of others proposed decoding algorithms.

25

Chapter 3

Max-LUT method:
Maximizing mutual
information

In this chapter, we describe a technique where the factor-graph-based
decoders and channel quantizer implementations, including quantization
of messages, are designed using only the probability distribution from the
channel. Given a probability distribution, our method designs a lookup ta-
ble (LUT) that maximizes mutual information. In addition, LUTs are de-
sirable by engineers who design very-large-scale integration (VLSI) hard-
ware implementations of the above operations. This method is called the
“max-LUT method”.

Before presenting the max-LUT method, we are interested in describ-
ing the origin of the sum-product algorithm (SPA) and its variations that
lead to some of its approximations (e.g. min-sum). This is important in
the first place to clarify the difference between the SPA and its approxi-
mations with respect to the proposed decoding algorithm. In the second
place, the description of the origin of SPA will also give a landscape over
possible range of applications that the proposed factor-graph-based decod-
ing algorithm could have. Also the decomposition of the local decoding
functions can be understood by describing the core of the SPA.

3.1 Factorization of a global function

Algorithms that have to deal with marginals of multivariate functions,
normally exploit the factorization of the global function. This leads to
the computation of a set of simpler local functions which only receive

26

as arguments a few random variables of the global function. An specific
example of these type of algorithms are the decoding algorithms based on
graphs, e.g sum-product algorithm to decode LDPC codes.

The essential idea of using the product of local functions to solve a
marginalize-product-of-functions (MPF) problem was first explicitly pre-
sented by Aji and McEliece [27]. Aji and McEliece in [28] proposed a
generalized distributive law which may solve some MPF problems using
junction trees (i.e. a mapping of a graph into a tree), but more impor-
tantly, it can also be used in factor graphs to describe the functionality of
a generic message-passing decoding algorithm commonly called the sum-
product algorithm. This result is significant because algorithms developed
in digital communications and other disciplines may be derived as a par-
ticular case of the sum-product algorithm attached to a suitable factor
graph.

As an example of a global function f and its factorization, consider a
set of six binary random variables û1, û2, û3, û4, û5, û6 ∈ {0, 1} such that
f(û1, û2, û3, û4, û5, û6). Suppose, f and its factorization are as follows

f(û1, û2, û3, û4, û5, û6) = f1(û1, û2, û3)f2(û1, û4, û6)f3(û4)f4(û4, û5). (3.1)

For this specific example, the global function f is factorized into four
factors f1, f2, f3 and f4.

Taking f and its factorizarion, we are interested in a graphical repre-
sentation. For this matter, we can draw a factor graph as follows: each
variable û; in the global function f is represented with a variable node (cir-
cle) and each factor of f in (3.1) is represented by a factor node (square).
The corresponding factor graph of the example in (3.1) is shown in the
left hand side of Fig. 3.1. Then, using edges connect a variable node to
a factor node whenever such variable node is an argument of that factor
node, e.g. in Fig. 3.1, we connect the variable nodes û1, û2 and û3 to the
factor node f1.

Note that the factor graph in Fig. 3.1 is in fact a tree with root in û1

for convenience. In this tree edges only connect nodes of different types;
in other words, the factor graph of the example in (3.1) is a bipartite tree
since it has two types of nodes; variable and factor nodes. As a result,
there is only one path between two nodes, e.g. there is only one path
between the variable nodes û3 and û5; this is indicated on Fig. 3.1 with a
dashed line.

The property that a global function can be represented by a bipartite
tree (no closed paths) is useful because it leads to the computation of a

27

f1 f2

f3 f4
f3

f1

f2

û1

û2 û3 û4

û5

û6

û1

û7

û3

û4

û6

û5

û2 û1 + û2 + û4 = 0

û3 + û4 + û6 = 0

û4 + û5 + û7 = 0

Figure 3.1: Representation of a bipartite tree with two factors (subtrees)
closed by ellipses (left hand side). Tanner graph of a code Ccode with its
corresponding check node equations (right hand side).

generic factorization of the global function. This property later will allow
the computation of exact marginals that become the main assumption
behind the node equations for the sum-product algorithm.

At the beginning of this section, we mentioned that the factorization
of a global function e.g. f , is useful for decoding algorithms, in order to
show the connection, we will use the following example. Consider a binary
linear code Ccode whose parity check matrix is

H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 . (3.2)

Therefore, Ccode has a set of binary codewords û of the form û =
(û1, û2, û3, û4, û5, û6, û7). In this example, the task of the global function
f is to verify if each incoming binary sequence û is a codeword of Ccode

(in this example f has seven arguments and different factorization than
in (3.1)). Thus, the global function f is

f(û1, û2, û3, û4, û5, û6, û7) =

{
1, if ûHT = 0,

0, otherwise.
(3.3)

Using the nonzero elements in each row of the parity check matrix H in
(3.2), the global function f can be factorized as

28

f(û1, û2, û3, û4, û5, û6, û7) = f1(û1, û2, û4)f2(û3, û4, û6)f3(û4, û5, û7),
(3.4)

where each factor f1, f2 and f3 of f is equal to 1 if the modulo two addition
(i.e. checksum) of its arguments û is equal to 0, otherwise is 0. In other
words, the global function f is satisfied when f1, f2 and f3 are equal to 1,
meaning that the incoming sequence û satisfies ûHT = 0. The graphical
representation of the above example receives the name of Tanner graph
and is shown in right hand side of Fig. 3.1. Since each factor of f in (3.4)
performs checksums, in the literature the factor nodes of the Tanner graph
are commonly called check nodes. In this way, we can say that a Tanner
graph is a particular case of a factor graph applied to the description of
codes.

3.2 Recursive determination of marginals

Employing the example in (3.1), suppose that we are interested in com-
puting the marginal of the global function f respect to û1, this is,

f(û1) =
∑

û2,û3,û4,û5,û6

f(û1, û2, û3, û4, û5, û6)

=
∑
∼{û1}

f(û1, û2, û3, û4, û5, û6).
(3.5)

Note that we introduce the not-sum or summary denoted as
∑
∼{·}

which indicates the variables not being summed over, i.e. the marginal of
f respect to û1 is the not-sum for û1 of f .

Now, consider a generic global function g whose graphical representa-
tion is a bipartite tree. Then, we are interested in computing the marginal

g(r) =
∑
∼{r}

g(r, . . .). (3.6)

In order to reduce the complexity of the marginalization in (3.6), we
will exploit the fact that g can be represented as a tree. Therefore, g has
a generic factorization as follows

29

g(r, . . .) =
W∏
w=1

[gw(r, . . .)], (3.7)

where W is an integer. An important property of the factorization in
(3.7) is that the variable r is an argument of each factor gw, but all other
variables only appears in one of the factors.

Thus, the factorization in (3.7) applied to the example in (3.1) gives

f(û1, û2, û3, û4, û5, û6) = [f1(û1, û2, û3)]︸ ︷︷ ︸
First factor

[f2(û1, û4, û6)f3(û4)f4(û4, û5)]︸ ︷︷ ︸
Second factor

,

(3.8)

where W = 2. In a graphical way, the above factorization of f is depicted
in Fig 3.1. In this figure the factorization of f in (3.8) is graphically the
partition of the tree into two subtrees with root û1, this is highlighted by
ellipses closing the two subtrees or factors of f .

Using the generic factorization of the function g in (3.7) and the dis-
tributive law, we can rewrite the marginalization of g respect to r as
follows

g(r) =
∑
∼{r}

g(r, . . .) =
∑
∼{r}

W∏
w=1

[gw(r, . . .)] =
W∏
w=1

[∑
∼{r}

gw(r, . . .)

]
. (3.9)

Note that the marginal
∑
∼{r} g(r, . . .) is the product of individual

marginals
∑
∼{r} gw(r, . . .). Therefore, the application of (3.9) to the

marginalization of f respect to û1 will produce

f(û1) =

[∑
∼{û1}

f1(û1, û2, û3)

][∑
∼{û1}

f2(û1, û4, û6)f3(û4)f4(û4, û5)

]
.

(3.10)

Since we want to decompose g in small pieces to perform simper local
operations, we define a generic factorization for each gw which contains a
kernel and the product of factors, this is,

30

gw(r, . . .) = η(r, r1, . . . , rJ)︸ ︷︷ ︸
Kernel

J∏
j=1

[
ηj(rj, . . .)

]
︸ ︷︷ ︸

Factors

. (3.11)

Thus, the kernel is the function contained in the root node of the current
factor gw. Note that the above generic factorization of gw only has the
variable r in the kernel while each of the other variables rj appears at
most twice; sometimes in the kernel and in one of the factors ηj(rj, . . .).
Identifying the structure of (3.11) in f , we can write f as

f(û1, û2, û3, û4, û5, û6) = [
f1(û1, û2, û3)︸ ︷︷ ︸

Kernel

[1]︸︷︷︸
û2

[1]︸︷︷︸
û3

]
︸ ︷︷ ︸

First factor

·

[
f2(û1, û4, û6)︸ ︷︷ ︸

Kernel

[f3(û4)f4(û4, û5)︸ ︷︷ ︸
û4

] [1]︸︷︷︸
û6

]
︸ ︷︷ ︸

Second factor

.

(3.12)

Taking advantage of (3.11), we can compute the marginal
∑
∼{r} gw(r, . . .)

by multiplying the kernel η(r, r1, . . . , rJ) with the individual marginals∑
∼{rj} ηj(rj, . . .) and summing all the remaining variables different than

r, more precisely

∑
∼{r}

gw(r, . . .) =
∑
∼{r}

η(r, r1, . . . , rJ)
J∏

j=1

[∑
∼{rj}

ηj(rj, . . .)
]

(3.13)

At this point we can apply (3.9) and (3.13) to recurvely fragment the
marginalization of g respect to r until we reach the leaves of the tree. Note
that the marginalization process is governed by the structure of the tree.

In the following section, we describe the method to compute the marginals
of the global function g whose graphical representation is a bipartite tree,
such a method is called message-passing algorithm.

31

3.3 Message-passing algorithm in cycle-free

factor graphs

The message-passing algorithm in cycle-free factor graphs (trees) is a
method that sends messages along the edges of the tree, starting from
the leaves and ending at the root. These messages are marginals of part
of the global function g that at the end are combined to compute the
marginal of the global function respect of a given variable r (root).

Assuming a tree with root r (or a rooted cycle-free factor graph in r),
the message-passing algorithm is as follows:

1. the calculation begins in the leaf nodes of the tree;

• if the leaf node is a variable node, it sends an identity function
(i.e., 1) to its parent node,

• if the leaf node is a factor node, it sends a description of f to
its parent node.

2. Each node must to wait to receive all incoming messages from its
children to compute its outgoing message that will be transmited to
its parent;

• if the the node is a variable node, it sends the product of all
incoming messages from its children,

• if the the node is a factor node, it performs the product of its
function f with all incoming messages from its children, and
then, it applies the summary

∑
∼{r′} or not-sum of r′, where r′

is its parent.

We have described in two general steps the computation of the marginal-
ization of a global function g respect to r, but we are interested in com-
puting the marginals for each variable in the global function g.

Computing all marginals of a global function g is possible by apply-
ing the previously described message-passing algorithm to different trees
which have one of the variables of g as a root. On the other hand, a better
approach is to compute the marginals of each variable of g in the same
tree. In order to do that, we start at all leaf nodes and for each node we
compute an outgoing message once we have all other incoming messages
from the rest of adjacent edges to the given node. Each node performs
these operations until all edges have transmitted messages in both direc-
tions. At the end, each variable node of the tree is able to calculate the
corresponding marginal.

32

The initialization conditions as well as the node operations of the
message-passing algorithm are shown in Fig 3.2. Looking at this figure,
note that a considerable amount of operations performed are sums and
products, carried out along the message-passing algorithm, for this rea-
son, sometimes it is called sum-product algorithm.

Since we are interested in the decoding of binary LDPC codes, it is
important to mention that the function f that appears in the factor node
in Fig 3.2 is the the addition modulo 2 of all its arguments which define
a binary sequence. The purpose of this function when decoding binary
LDPC codes is to add all probabilistic products of sequences that have
even number of ones and on the other side, add all the probabilistic prod-
ucts of sequences that have odd number of ones.

Later in section 3.5, we will explain some of the most common parame-
trization of the node function that lead to different approaches to perform
the message-passing decoding algorithm to decode LDPC codes.

3.4 Message-passing algorithm in factor gra-

phs with cycles

A linear block code Ccode, defined by its parity-check matrix H with M
rows and N columns, can be represented by a factor graph with N vari-
ables nodes and M factor nodes. As an example, consider a linear block
code Ccode whose parity-check matrix is

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 , (3.14)

the corresponding factor graph for the above matrix can be drawn as
shown on the left hand side of Fig. 3.3. On the other hand, a more useful
and structured graph is the Tanner graph which is depicted on the right
hand side of Fig. 3.3. Although both graphs are graphical representations
of Ccode, normally the Tanner graph is used to analyze the local decoding
functions involved in the message-passing algorithm. In Fig. 3.3, a closed
dashed path is shown, this is called a cycle whose girth is equal to four
since the cycle is constructed by four edges; in the literature this is written
as a 4-cycle.

The implication of an existing cycle in a parity check matrix implies
that Ccode cannot be represented by a tree. This further implies that

33

⌫(û) = 1

⌫(û) =
QW

w=1 ⌫w(û)

⌫(û) =
P

⇠{û} f(û, û1, . . . , ûJ)
QJ

j=1 ⌫j(ûj)

QW+1
w=1 ⌫w(û)

f1 fw fW

fW+1

f1 fw fW

fW+1

⌫1 ⌫w ⌫W

⌫W+1

û

⌫1 ⌫w ⌫W

û

û

⌫(û) = f(û)

û

f

f

f

û1 ûj ûJ

⌫1 ⌫j ⌫J

Factor node

Variable node

Marginalization

Initialization in the leaf nodes

Figure 3.2: Initialization conditions and node operations of the message-
passing algorithm on a bipartite tree.

34

û1 û2

û3

û4

û5

f1 f2
f1

û6

f3

f3

f2 û1 û2 û3 û4 û5 û6 û7

û7

Figure 3.3: A factor graph representation of a linear block code (left).
Tanner graph representation of a linear block code emphasizing an existing
4-cycle by dashed lines (right)

the variable nodes are not statistically independent and as a result the
marginals of the message passing decoding are not exact, which leads to
a suboptimal decoding.

On the other hand, if a linear block code Ccode of length N has a Tanner
graph without cycles, the maximum-likelihood soft-decision decoding of
Ccode can be achieved in time O(n2). However, in [29] it has been shown
that cycle-free Tanner graphs cannot support good codes. Specifically, it
is proved that if the rate R of a code Ccode is greater than or equal to
0.5 the minimum distance dmin is lower than or equal to 2. On the other
hand, if R < 0.5, Ccode is obtained from a code of rate ≥ 0.5 and distance
≤ 2 by simply repeating some symbols.

Even though the propagation rules of the sum-product algorithm shown
in Fig 3.2 are considered for a cycle-free graphs (trees), they may also be
applied to factor graphs with cycles. Although the results of the message-
passing algorithm operating in a factor graph with cycles cannot in general
be interpreted as exact function summaries, positive results from various
decoding codes such as turbo codes and low-density parity-check (LDPC)
codes have been reported [2], [30], [31].

35

3.5 Message-passing decoding and its vari-

ations

In this section we are interested in the structure of the equations of the
sum-product algorithm and their variations. The generic updating rules
of the nodes of a factor graph were shown in Fig 3.2. In this section we
are interested is defining the variable node update and the check node
update as two mapping functions Φ and Ψ respectively. This is to make
a distinction between the general equations for a factor graph and the
equations used for decoding LDPC codes in a Tanner graph. Some of the
following representations of the SPA date back to the work of Gallager [3].

Consider a variable node with degree three which receives two incoming
messages Li→j and Li′→j (we preserve the notation of the messages of the
SPA introduced in section 2.4 on page 20) whose probability mass function
may be represented by the vectors (p0, p1) and (q0, q1) respectively.

Following the generic updating rule of the sum-product algorithm,
when the two incoming messages Li→j and Li′→j arrive at the variable
node, we can write the outgoing normalized message as

Φ(p0, p1, q0, q1) =

(
p0q0

p0q0 + p1q1

,
p1q1

p0q0 + p1q1

)
(Variable). (3.15)

Note that the text Variable just indicates that this equation is performed
in the variable node. Similarly, at a check node with degree 3 which
represents the function f(û1, û2, û3) = (û1⊕û2⊕û3) (⊕means the modulo-
2 addition), we have

Ψ(p0, p1, q0, q1) = (p0q0 + p1q1, p0q1 + p1q0) (Check). (3.16)

In a similar manner to the variable node, the text Check just indicates
that this equation is performed in the check node.

Binary probability mass functions can be represented using a single
value. Variable node function Φ and check node function Ψ are described
below for different parametrizations. To avoid an excessive notation we
define the parametrization for each case using Λ{·}.

• Likelihood ratio (LR):

Λ(p0, p1) = p0/p1 (Definition) (3.17)

Φ(Λ1,Λ2) = Λ1Λ2 (Variable) (3.18)

Ψ(Λ1,Λ2) =
Λ1Λ2

Λ1 + Λ2

(Check). (3.19)

36

• Log-Likelihood ratio (LLR):

Λ(p0, p1) = ln(p0/p1) (Definition) (3.20)

Φ(Λ1,Λ2) = Λ1 + Λ2 (Variable) (3.21)

Ψ(Λ1,Λ2) = ln(cosh((Λ1 + Λ2)/2))

− ln(cosh((Λ1 − Λ2)/2)) (Check)

= 2 tanh−1(tanh(Λ1/2)(tanh(Λ2/2))

(3.22)

Note that when Ω � 1, ln(cosh(Ω) ≈ |Ω| − ln(2)) (in this specific
case | · | indicates absolute value), thus the approximation is

Ψmin(Λ1,Λ2) ≈

∣∣∣∣∣(Λ1 + Λ2)

2

∣∣∣∣∣−
∣∣∣∣∣(Λ1 − Λ2)

2

∣∣∣∣∣
= sgn(Λ1) sgn(Λ1) min(|Λ1|, |Λ2|),

(3.23)

which is known as the min-sum update rule.

• Likelihood difference (LD):

Λ(p0, p1) = p0 − p1 (Definition) (3.24)

Φ(Λ1,Λ2) =
Λ1 + Λ2

1 + (Λ1Λ2)
(Variable) (3.25)

Ψ(Λ1,Λ2) = Λ1Λ2 (Check). (3.26)

All the above representations of Λ are used to generate different decod-
ing algorithms. For example the most common hardware implementation
of SPA is using the parametrization in (3.21) and (3.23).

In the case that the nodes have degree larger than three, the above
functions may be applied in a “nested” fashion as

Φ(Λ1,Λ2, . . . ,Λn) = Φ(Λ1,Φ(Λ2, . . . ,Λn)) (3.27)

Ψ(Λ1,Λ2, . . . ,Λn) = Ψ(Λ1,Ψ(Λ2, . . . ,Λn)), (3.28)

this approach is useful when the functions Φ and Ψ in the nodes are
implemented as a lookup table (LUT). Another similar approach is to
decompose nodes in pairs to perform the functions Φ and Ψ in a parallel
manner, for instance if the degree of the nodes is 4, we have

Φ(Λ1,Λ2,Λ3,Λ4) = Φ(Φ(Λ1,Λ2),Φ(Λ3,Λ4)) (3.29)

Ψ(Λ1,Λ2,Λ3,Λ4) = Ψ(Ψ(Λ1,Λ2),Ψ(Λ3,Λ4)). (3.30)

37

Combining both approaches, lookup tables and parallel implementa-
tion, the speed of the decoding process is governed by the resolution of
the variables Λi (i.e. number of bits to represent a variable Λi).

Note that the fragmentations in (3.27)–(3.30) of the local node func-
tions Φ and Ψ, can lead to faster hardware implementation for LDPC
decoders due to the capability of pipelining or semi-parallel implementa-
tion of the node operations. Since our approach is to design Φ and Ψ as
lookup tables, we will take advantage of the decomposition of the nodes
to reduce the size of Φ and Ψ which brings a significant decrement in the
necessary resources for a hardware implementation. Detailed explanation
and an example of the benefits are described in subsection 3.6.2 on page
40.

3.6 Discretized message-passing decoding

In this section, a message-passing decoding algorithm using lookup tables
for the local functions Φ and Ψ is proposed. A decomposition in the nodes
is necessary to reduce complexity in the implementation of the proposed
decoding lookup tables. More precisely each variable and check node is
decomposed into a set of degree-3 nodes i.e. two inputs and one output.

The decomposition presented in this section will be used in Chapter
4 to describe the construction of the proposed decoding lookup tables via
quantized density evolution. First conventional message-passing decoding
on a Tanner graph without decomposition is introduced, later decom-
position is applied, graphical representations of both cases are shown in
Fig. 3.4.

3.6.1 Discretized message-passing decoding on a Tan-
ner graph

Here we consider a Tanner graph without decomposition for a regular
(dv, dc)-LDPC code. Message-passing decoding for this case is as follows.

At iteration `, the check node with degree dc finds the check-to-variable
node message L1, . . . , Ldc from alphabet L using dc−1 incoming messages
V1, . . . , Vdc−1 from alphabet V . The decoding mapping function that per-
forms these operations can be described as follows:

Ψ(`)
c : Vdc−1 → L. (3.31)

This step is shown diagrammatically in Fig. 3.4-(a).

38

i

j

. . .

 (`)
c

V1 V2 Vdc�1 Vdc Ldc

j

S1
 (`)
1 (`)

2 (`)
dc�2. . .

. . .
V1 V2 Vdc�1 Vdc LdcV3

i

. . .

. . .

L1 L2 Ldv�1 Ldv Vdv

�(`)
1

�(`)
2 �(`)

dv�1

i

j

. . .
L1 L2 Ldv�1 Ldv Vdv

�(`)
v

(a) (b) (c)

(d) (e) (f)

j

. . .
L1 L2 Ldv

x̂j

. . .

. . .

L1 L2 Ldv

�(`)
dv

�(`)
1

�(`)
2 x̂j

T1
T1

Zj Zj

Zj
Zj

�(`)
v

Figure 3.4: Decomposition of the variable node and check node into a set
of two-input mapping functions (or two-input lookup tables). (a) Check
node update operation. (b) Variable node update operation. (c) Hard
decision operation on the variable node. (d) Decomposition of the check

node update operation Ψ
(`)
c into the set of two-input mapping functions

ψ
(`)
1 , . . . , ψ

(`)
dc−2. (e) Decomposition of the variable node update operation

Φ
(`)
v into the set of two-input mapping functions φ

(`)
1 , . . . , φ

(`)
dv−1. (f) De-

composition of the hard decision operation Γ
(`)
v into the set of two-input

mapping functions γ
(`)
1 , . . . , γ

(`)
dv

.

Similarly, at iteration `, the variable node with degree dv finds the
variable-to-check messages V1, . . . , Vdv using the channel value Z from al-
phabet Z and dv − 1 incoming messages L1, . . . , Ldv−1. The decoding
mapping function that performs this operation can be described as fol-
lows:

Φ(`)
v : Z × Ldv−1 → V . (3.32)

This step is shown diagrammatically in Fig. 3.4-(b).
At iteration `, the variable node with degree dv calculates the esti-

mate û ∈ {0, 1} using the channel value Z and dv incoming messages
L1, . . . , Ldv :

Γ(`)
v : Z × Ldv → {0, 1}. (3.33)

This step is shown diagrammatically in Fig. 3.4-(c). This proceeds it-
eratively for ` = 1, 2, . . . until convergence is detected, or the maximum
number of iterations is reached.

39

3.6.2 Discretized message-passing decoding on a de-
composed Tanner graph

Throughout this section, we use the terms mapping and LUTs interchange-
ably. In the context of LDPC decoding, a degree-d node could naively use
a lookup table with d− 1 inputs to produce an output.

A general lookup table of ∆ address bits requires 2∆ memory locations
or indices. Assuming each input has the same resolution in bits denoted
by ∆, the number of indices (memory locations) for a LUT with d − 1
inputs is 2(d−1)∆. On the other hand, performing a decomposition of the
same degree-d node into a series of degree-3 nodes, and considering a
LUT implementation for each, the number of indices is (d− 2)22∆; clearly
2(d−1)∆ > (d− 2)22∆ for cases of interest.

As an example to illustrate the above observation, in Fig. 3.5, we use
a check node with degree equal to 6 (dc = 6) and we assume that each
incoming message V is represented using 3 bits, this is, ∆ = 3. The num-
ber of locations (addresses) needed to implement the check node decoding

lookup table Ψ
(`)
c without decomposition is equal to 32768 locations. On

the other hand, if the check node decoding lookup table Ψ
(`)
c is imple-

mented using the set of two-input lookup tables ψ
(`)
1 , . . . , ψ

(`)
4 , the number

of locations in drastically decreased to 256 locations.
From the above example, we can see that using a decomposed node

drastically reduces the hardware implementation resources, but in con-
trast, this introduces a delay in time processing which can be overcome
or at least mitigated by applying pipeline or semi-parallel implementation
previously described in (3.27)–(3.30).

When high rate LDPC codes are considered, the decomposition re-
duces dramatically the memory requirements for the implementation of a
message-passing decoding using LUTs. This worst-case analysis assumes
arbitrary lookup tables; symmetries in the lookup tables may reduce the
memory requirements.

Now, we proceed to describe the decomposition of the variable and
check nodes into a set of degree-3 nodes i.e. two inputs and one out-
put. Consider that the message-passing decoding maps Ψ

(`)
c , Φ

(`)
v and

Γ
(`)
v depicted in Fig. 3.4-(a), Fig. 3.4-(b) and Fig. 3.4-(c) respectively can

be implemented by lookup tables (LUTs). Then the mapping function

Ψ
(`)
c (check node c at iteration `) is decomposed into a series of smaller

mapping functions ψ
(`)
1 , . . . , ψ

(`)
dc−2, each with two input variables. As a

result of the decomposition, to communicate ψ
(`)
1 , . . . , ψ

(`)
dc−2, we introduce

Si ∈ S = {1, . . . , |S|}, for i = 1, . . . , dc − 3, where | · | indicates the

40

Without decomposition

With decomposition

j

 (`)
1 (`)

2

V1 V2 V3 V4 V5 V6

 (`)
3 (`)

4

L6

S2 S3S1

i (`)
c

V1 V2 V3 V4 V5 V6

L6

j

Memory locations

for the lookup table

(`)
c (� = number of

bits per message V)

Memory locations

for (`)
1 , . . . , (`)

4

2(dc�1)�

(dc � 2)22�

Example: dc = 6 and

� = 3 bits per message

2(dc�1)� = 32768

(dc � 2)22� = 4⇥ 64

= 256

Figure 3.5: Required memory locations to implement both the decoding
lookup table Ψ

(`)
c and its decomposition ψ

(`)
1 , . . . , ψ

(`)
4 . This example con-

sider a check node with degree dc = 6 and incoming messages V with a
resolution of ∆ = 3 bits.

cardinality of the set. Thus, the decomposition is:

ψ
(`)
1 : V2 → S, (3.34)

and for i = 2, 3, . . . , dc − 3,

ψ
(`)
i : S × V → S (3.35)

and finally,
ψ

(`)
dc−2 : S × V → L. (3.36)

The decomposition of Ψ
(`)
c is shown in Fig. 3.4-(d).

Continuing the decomposition process, the decoding mapping func-
tion Φ

(`)
v (variable node v at iteration `) is decomposed into a series of

smaller mapping functions φ
(`)
1 , . . . , φ

(`)
dv−1 each with two input variables.

To communicate φ
(`)
1 , . . . , φ

(`)
dv−1 we introduce Ti ∈ T = {1, . . . , |T |}, for

i = 1, . . . , dv − 2. Thus, the decomposition is:

φ
(`)
1 : Z × L → T , (3.37)

and for i = 2, 3, . . . , dv − 2,

41

φ
(`)
i : T × L → T (3.38)

and finally,
φ

(`)
dv−1 : T × L → V . (3.39)

The decomposition of Φ
(`)
v is shown in Fig. 3.4-(e).

Lastly, the mapping function Γ
(`)
v (hard decision on variable node v

at iteration `) is decomposed into a set of smaller mapping functions

γ
(`)
1 , . . . , γ

(`)
dv

, each has two input variables. For interconnecting these sub-

divisions, we use Ti as in the case of Φ
(`)
v but, for i = 1, . . . , dv − 1.

Hence, the decomposition is as follows:

γ
(`)
1 : Z × L → T , (3.40)

and for i = 2, 3, . . . , dv − 1

γ
(`)
i : T × L → T (3.41)

and finally,
γ

(`)
dv

: T × L → {0, 1}. (3.42)

The decomposition of Γ
(`)
v is shown in Fig. 3.4-(f). It is worth men-

tioning that the set of two-input mapping functions {φ(`)
1 , . . . , φ

(`)
dv−1} used

to generate the variable-to-check messages V are exactly the same as the
set of two-input mapping functions {γ(`)

1 , . . . , γ
(`)
dv−1} which generate the

hard decision estimates û.
So far we have only described the decomposition of the variable and

check nodes into a set of degree-3 nodes. The reason of this decompo-
sition is because we want to allocated two-input decoding lookup tables
in each of this degree-3 nodes i.e. because this decomposition reduces the
requirements of such decoding lookup tables.

Note that somehow at this moment we only have a decomposed Tan-
ner graph and we know that the decoding will be discrete and will be
performed by lookup tables, but what is the content of these lookup ta-
bles?. The answer requires that first we present the optimal quantization
algorithm that we are going to use to generate discretized channel and de-
coder messages, section 3.7. Later, using this quantization algorithm we
will be able to explain the max-LUT method which is the method to de-
sign a decoding lookup table that maximizes mutual information, section
3.8.

42

3.7 Optimal quantizer that maximizes mu-

tual information

Recently, the problem of optimal quantization of communications channels
has been shown to have a connection with the problem of classification
from statistical learning theory [25]. A common classification problem

deals with a Markov chain X → Y
Q→ Z, where X is a variable of inter-

est, Y is an observation, Q is a function called a classifier and Z is the
classification, essentially an estimate of X [32]. A well-known metric for
classification is to minimize conditional entropy [33]:

min
Q
H(X|Z), (3.43)

which is equivalent to:

max
Q

I(X;Z) = H(X)−min
Q
H(X|Z). (3.44)

Since channel capacity is the maximization of mutual information, a rea-
sonable metric for designing channel quantizers is to similarly maximize
the mutual information between the channel input and the quantizer out-
put.

The optimal quantizer Q∗ which maximizes the mutual information
between X and Z:

Q∗ = argmax
Q∈Q

I(X;Z), (3.45)

can be found efficiently over the set of all possible quantizers Q using
dynamic programming [25], when X is binary. The optimal quantizer Q∗

that maximizes mutual information between X and Z is deterministic,
meaning that Q∗ is a |Y| × |Z| binary matrix. This optimal quantizer is
found by an algorithm summarized below; in this work this algorithm is
referred as the Quantization Algorithm.

For a given discrete memoryless channel (DMC) with input X and
output Y using the alphabets X and Y respectively, finding the optimal
quantizer Q∗ which maps outputs Y of the DMC to a certain number of

quantization levels Z using alphabet Z, i.e. X → Y
Q∗→ Z, reduces to

finding the boundaries

{a∗1, a∗2, . . . a∗|Z|−1} ∈ Y (3.46)

which maximize mutual information between X and Z (| · | indicates car-
dinality of the set).

43

Let the channel input X ∼ px such that px = Pr(X = x). Let the
transition probabilities between X and Z be Pz|x = Pr(Z = z|X = x).

Thus the highest mutual information between X and Z that we can
achieve by using the optimal quantizer Q∗ is

I(X;Z) =
∑
z

∑
x

pxPz|x log
Pz|x∑

x′ px′Pz|x′
. (3.47)

Clearly, if |Z| ≥ |Y|, the trivial quantizer which maps each channel output
y to a unique quantizer output z will result. On the other hand, when
|Z| < |Y| the optimal quantizer Q∗ maps each channel output y to a single
value z′, for which Qz′|y = 1, and for all other values of z, Qz|y = 0.

Doing this, the optimal quantizer Q∗ builds |Z| sets (A1, . . . ,A|Z|)
consisting of consecutive channel outputs y sorted according to

log
P1|0

P1|1
< log

P2|0

P2|1
< · · · < log

P|Y||0
P|Y||1

(3.48)

[25, Lemma 3].
Thus, A1 is the set

{1, 2, . . . , a∗1}, (3.49)

A2 is the set

{a∗1 + 1, . . . , a∗2}, (3.50)

etc., and A|Z| is the set

{a∗|Z|−1 + 1, . . . , |Y|}, (3.51)

with

1 ≤ a∗1 < a∗2 < · · · < a∗|Z|−1 < |Y|. (3.52)

The quantization algorithm that finds the optimal quantizer Q∗ is im-
plemented using dynamic programming [25], and its implementation in
Matlab is available in [34].

44

3.7.1 Partial mutual information

For the purpose of describing the algorithm that finds the optimal quan-
tizer Q∗, partial mutual information is presented. Partial mutual informa-
tion ι is the contribution that one or more quantizer values makes to the
total mutual information. For a deterministic quantizer, the total mutual
information is

I(X;Z) =

|Z|∑
z=1

2∑
x=1

px
∑
y∈Az

Py|x log

∑
y′∈Az

Py′|x∑
x′ px′

∑
y′∈Az

Py′|x′
, (3.53)

since Qz|y = 1 if and only if y ∈ Az.
Under the quantization mapping from Y to Z, the preimage of quan-

tizer output z is Az. The partial mutual information ιz for this z is:

ιz =
2∑

x=1

px
∑
y∈Az

Py|x log

∑
y′∈Az

Py′|x∑
x′ px′

∑
y′∈Az

Py′|x′
(3.54)

so total mutual information is the sum of all partial mutual information
terms:

I(X;Z) =

|Z|∑
z=1

ιz· (3.55)

Further, let consecutive values a′ + 1 to a, with a′ < a < |Y|, be
assigned to a single quantizer output. Denote by ι(a′ → a), the partial
mutual information:

ι(a′ → a) =
2∑

x=1

px

a∑
y=a′+1

Py|x log

∑a
y′=a′+1 Py′|x∑

x′ px′
∑a

y′=a′+1 Py′|x′
. (3.56)

So if Az = {az−1 + 1, . . . , az}, then ιz = ι(az−1 + 1→ az).

3.7.2 Quantization algorithm

The quantization algorithm uses dynamic programming principles applied
to partial mutual information. The algorithm has state value ρz(y), which
is the maximum partial mutual information when 1 to y values of Y are
quantized to 1 to z values of Z. This can be computed recursively by
conditioning on the state value at time index z − 1:

45

ρz(a) = max
(
ρz−1(a′) + ι(a′ → a)

)
, (3.57)

where the maximization is taken over a′ ∈ {z − 1, . . . , a− 1}.
For convenience the algorithm is denoted as Q∗ = Quant(Px,y, |Z|),

where Q∗ is a |Z| × |Y| matrix.
The steps of the quantization algorithm are as follows:

1. Inputs: joint distribution Px,y and fix |Z|.

2. Initialize ρ0(0) = 0

3. Precompute partial mutual information. For each a′ ∈ {0, 1, . . . , |Y|−
1} and for each a ∈ {a′ + 1, . . . , t} (where) t = min(a′ + 1 + |Y| −
|Z|, |Y|):

• compute ι(a′ → a) according to (3.56)

4. Recursion. For each z ∈ {1, . . . , |Z|} and for each a ∈ {z, . . . , z +
|Y| − |Z|},

• compute ρz(a) according to (3.57),

• store the local decision hz(a) :
hz(a) = argmax

(
ρz−1(a′) + ι(a′ → a)

)
,

where the maximization is taken over a′ ∈ {z − 1, . . . , a− 1}.

5. Find the optimal quantizer by traceback. Let a∗|Z| = |Y|. For each

z ∈ {|Z| − 1, |Z| − 2, . . . , 1}:
a∗z = hz+1(a∗z+1).

6. Outputs:

• The optimal boundaries a∗1, a
∗
2, . . . , a

∗
|Z|−1. Equivalently, output

the matrix Q∗, where row z of Q∗ has ones in columns az−1 + 1
to az and zeros in all other columns.

• The maximum mutual information, ρ|Z|(|Y|) .

In following sections the quantization algorithm that finds the optimal
quantizerQ∗ is denoted as Q∗ = Quant(Px,y, |Z|). This algorithm receives
two inputs: Px,y which is a 2×|Y| joint probability matrix and an integer
|Z|, the output is Q∗ which is a |Y| × |Z| binary matrix. Since we can
compute Py|x, the matrix multiplication of Py|x and Q∗ will produce a
reduced conditional probability distribution Pz|x which is a 2×|Z| matrix.
Using Pz|x, we can compute the mutual information I(X;Z) using (3.47)
on page 44.

46

3.8 Max-LUT method

To describe the max-LUT method the following observations are useful.

• Observation one. Quantization schemes using a few bits per mes-
sage are inherent to modern communication systems, mainly because
the implementation of the algorithms is made in fixed precision hard-
ware (e.g. mobile devices, SSD, etc.).

• Observation two. Recalling the mathemathical definition of chan-
nel capacity in Chapter 2, we learned that the maximization of mu-
tual information reduces the uncertainty of the channel output. In
other words, maximization of mutual information is a natural metric
for communications channels because it reduces the uncertainty of
a random variable in such a way to maximize achievable communi-
cation rates. This simple insight on the channel output tell us that
the decoder will be immediately affected by any type of quantiza-
tion scheme concatenated to the output of the channel, this is, if the
the channel quantizer increases the mutual information between its
output and the input to the channel, the decoder will have a better
chance to correct errors successfully and vice versa.

• Observation three. Recalling the message-passing decoding on
factor graphs, we note that every node in the factor graph performs
a local computation/marginalization using its incoming inputs as
arguments. This means that the local functions seek to pass good
beliefs about a random variable, in others words, local decoding
functions in graphs as well as channel quantizers try to maximize
mutual information.

• Observation four. Lookup tables are widely used in modern hard-
ware implementations because they can replace real-valued or fixed-
point operations (e.g. multiplications, divisions, etc.), while produc-
ing higher data rates and a potentially easier VLSI implementation
because of their suitability for synthesization through Boolean alge-
bra and advanced optimization techniques.

Combining the above observations, a good idea will be to design a
lookup table that maximizes mutual information for both channel quan-
tization and message-passing decoding algorithms based on graphs (local
decoding). Precisely the above description is the result of the max-LUT
method. Explicitly, the max-LUT method will produce a suitable lookup

47

Figure 3.6: Overview of the designing process for the mapping function
Φ. (a) degree-2 LDPC variable node with inputs L and Z and output
V . (b) Input distributions Pr(L|X) and Pr(Z|X). (c) Joint distribution
Pr(L,Z|X) quantized to five-valued variable V using the optimal quantizer
Q∗ which maximizes the mutual information between X and V . (d) The
resulting lookup table corresponding to Q∗. This lookup table computes
V = Φ(L,Z) to maximize mutual information.

table that implicitly through its “decisions” maximizes mutual informa-
tion and, it can be applied to channel quantization and message-passing
decoding on factor graphs.

3.9 Constructing a decoding mapping func-

tion via max-LUT method

In this subsection, we present the idea of mapping functions for LDPC
decoding and its connection with the optimal quantizer Q∗ mentioned in
Subsection 3.7. Here a decoding mapping function is considered a lookup
table (LUT) in which each input has a defined resolution in bits.

Given two messages L and Z, a lookup table Φ provides the value V :

V = Φ(L,Z), (3.58)

if the check-to-variable node message is L and the channel message is Z,
and L and Z are two messages about an information bit X ∈ {0, 1}, then
we want to find the optimal lookup table Φ∗ which maximizes mutual
information between X and V , that is:

Φ∗ = arg max
Φ

I(X;V), (3.59)

48

This problem is identical to (3.45), if we consider the pair (L,Z) as a
single variable.

The direct design of the mapping function Φ can be described using
a simple degree-2 variable node, see Fig. 3.6-(a). The variable node
represents an information bit (or codeword symbol) X = 0 or 1. The
incoming check-to-variable node message is L, quantized to 6 values (not
a power of 2, to make the example clear), and a channel message Z has
been quantized to 2 bits. Assume the conditional distributions:

PL|X(l|x) = Pr(L = l|X = x) =[
0.05 0.22 0.42 0.23 0.06 0.02
0.03 0.02 0.06 0.19 0.45 0.25

]
and

PZ|X(z|x) = Pr(Z = z|X = x) =

[
0.40 0.30 0.20 0.10
0.20 0.20 0.30 0.30

]
illustrated in Fig. 3.6-(b).

Then the joint distribution PL,Z|X(l, z|x) can be easily constructed by
computing

PL,Z|X(l, z|x) =

[
PL|X(l|x = 0)⊗ PZ|X(z|x = 0)
PL|X(l|x = 1)⊗ PZ|X(z|x = 1)

]
=

[
0.020 0.088 0.168 . . . 0.023 0.006 0.002
0.006 0.004 0.012 . . . 0.057 0.135 0.075

]
, (3.60)

where ⊗ is the Kronecker product. Each column in the resulting 2 × 24
matrix PL,Z|X(l, z|x) can be labeled as a pair (l, z), for instance the second
column in (3.60) is (l, z) = (1, 2) and the 23th column is (l, z) = (6, 3).

In order to meet the sorting condition in (3.48) (i.e. the columns of
the matrix PL,Z|X(l, z|x) are sort from the smallest LLR until the highest
LLR), the position of the columns in PL,Z|X(l, z|x) will be permuted. For
the specific example used throughout this section the final order of the
columns for (3.60) can be seen in Fig. 3.6-(c), where the first column and
the last column are (l, z) = (6, 4) and (l, z) = (1, 2) respectively. For the
current example, we assume that we want five levels of quantization for
the variable-to-check message V .

Therefore, using PL,Z|X(l, z|x) and |V| = 5 we use the quantization
algorithm described in subsection 3.7.2 to find the optimal quantizer Q∗

49

which maximizes mutual information between X and V . The resulting
quantizer Q∗ has the following transpose:

(Q∗)T =

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 . (3.61)

This optimal quantizer Q∗ quantizes pairs (l, z) to the output variable-to-
check message V , see the right-hand side of Fig. 3.6-(c). Finally, using the
pairs (l, z), that map to v, we can find a mutual-information maximizing
decoding lookup table, which is shown in Fig. 3.6-(d). More precisaly the
lookup table Φ (or mapping function) can be constructed as Φ(l, z) = v if
(Q∗)T (v, (l, z)) = 1, where we can easily identify that when v = 1 the first
row of (Q∗)T has 5 ones in the columns: (3, 4), (5, 1), (5, 2), (6, 3) and (6, 4).
These five columns mapped to v = 1 are graphically represented in Fig 3.6-
(c) by the first five lines connecting the first circle which corresponds to
the case of v = 1. On the other hand, in Fig. 3.6-(d) we can observe that
all positions (l, z) equal to 1 in the two-input resulting lookup table are
the columns equal to one in row one of (Q∗)T .

In belief propagation, if the inputs to a node are permuted, the output
value usually does not change. However, in the proposed method, this
property does not hold, for example a degree-4 node with inputs (2, 0, 4)
may produce a different output than with the input (0, 4, 2). This is due
to the possible asymmetries inherent to mutual-information maximizing
quantization, see [25, Eq. (12)] for an example.

Note that the resulting lookup table Φ in Fig. 3.6-(d) is not symmetric
because the conditional input distributions are not symmetric. Recall
that the optimal quantizer results in nonuniform boundaries. Therefore,
when the quantizer uses an even number of levels and the distributions are
symmtetric the quantization regions are symmetric respect to the origin.
This is not the case of this example.

3.10 Summary

At the beginning of this chapter, we described the nature of message-
passing decoding algorithms working on a factor graph, which may or
may not have cycles. Later we described the equations of a sum-product
algorithm and some of the most common variations for these expressions.
A decomposition of the nodes in the Tanner graph is described in this

50

chapter as a solution to reduce the size of lookup tables implemented by
message-passing decoding algorithms.

In the middle of the chapter, we presented an optimal quantizer that
maximizes mutual information and we proceeded to its explanation.

At the end of the chapter, we connect all ideas to clearly, and by an
example describe the max-LUT method, which constructs a lookup table
or mapping function that maximizes mutual information; such a lookup
table can be used as a channel quantizer or as a local decoding operation
(message-passing decoding).

51

Chapter 4

Discretized density evolution

In this chapter, we describe the construction of decoding mapping func-
tions using the max-LUT method presented in Chapter 3. The proposed
construction technique is based on a discretized density evolution algo-
rithm which only uses the probability distribution from the channel. Given
a probability distribution, our density evolution algorithm builds decoding
mapping functions that maximizes mutual information and are applied
systematically during the decoding process. Before fully describing the
proposed discretized density evolution algorithm, first we give the idea
behind general density evolution using the Gaussian approximation.

4.1 Density evolution

The density evolution algorithm (DEA) is a technique which allows an-
alyzing the decoding performance of the message-passing algorithm on
ensembles of LDPC codes with specified degree distributions. Since in
this research we work with regular (dv, dc)-LDPC codes, the ensembles
are defined by constant degrees dc and dv for each row and column respec-
tively.

The analysis made by the density evolution algorithm shows that the
messsage-passing decoding for a sufficiently long LDPC code presents a
threshold effect, this is, communication is reliable “beyond” this threshold
and unreliable below it.

We denote the decoding threshold as α∗, in the case of the binary
symmetric channel α∗ is the cross-over probability ε and in the case of
the BI-AWGNC α∗ is the standard deviation σ. Note that for a regular
(dv, dc)-LDPC code it is possible to design different parity check matrices.
This was considered in [9] where it was shown that the decoding per-

52

formance of ` rounds of message-passing decoding on a randomly chosen
(dv, dc)-LDPC code ensemble converges to the ensemble average as the
length of the code n→∞.

4.2 Density evolution for regular LDPC codes

via Gaussian aproximation

The name of density evolution algorithm was used because this algorithm
tracks the probability density functions (pdf) of messages passed during
iterative decoding. Thus, the task of the DEA is to predict under which
channel value α (ε for the BSC and σ for the BI-AWGNC) the error
probability of the decoding process will converge to zero. Clearly there
is more than one channel value α in which the error probability goes to
zero, therefore the largest channel value α∗ is the decoding threshold of
the previously specified (dv, dc)-LDPC code when n→∞.

In this section, we describe how to compute the decoding threshold
α∗ of a long regular (dv, dc)-LDPC code. This process applies to various
binary-input channels with symmetric outputs, but we restrict the analysis
to the BI-AWGNC, therefore we want to compute the decoding threshold
σ∗.

The Gaussian approximation of the DEA uses the idea of approximat-
ing the pdfs of the messages used during the iterative decoding process
with Gaussians. Gaussians can be specified with only two parameters; the
mean and the variance. As a result we only have to analyze the evolu-
tion of these two values. In this section we will use a further simplification
that allows to represent the messages using only the mean of the Gaussian.
This is possible by assuming consistent normal densities, this is, the vari-
ance of the Gaussian is twice the value of the mean. Further explanation
and proofs are given in [35].

We assume that the all-zeros codeword u = [0, 0, . . . , 0] is mapped to
x using xj = (−1)uj , later x is transmitted into the channel. Therefore,
the initial channel message L0 from the BI-AWGNC is L0 = 2y/σ2. Be-
sides, L0 ∼ N (m0 = 2/σ2, 2m0 = 4/σ2), where m0 is the initial mean of
the initial channel message L0. Continuing with the iterative decoding
process, we track the messages Vj→i ∼ N (m(`), 2m(`)) from the variables
to the check nodes. To obtain the message Vj→i we compute its mean m(`)

as

m(`) = m0 + (dv − 1)µ(`−1), (4.1)

53

where we considered that the means µ(`) of the check-to-variable node
messages are the same at each iteration due to the regularity of the LDPC
code. For the check-to-variable node message Li→j ∼ N (µ(`), 2µ(`)) we
compute its mean µ(`) by

µ(`) = Υ−1

(
1−

[
1−Υ

(
m0 + (dv − 1)µ(`−1)

)]dc−1
)
, (4.2)

where for µ ≥ 0, we define

Υ(µ) = 1− 1√
4πµ

∫ ∞
−∞

tanh (τ/2) exp

[
− (τ − µ)2/(4µ)

]
dτ, (4.3)

with approximation Υ(µ) = exp(−0.4527µ0.86 + 0.0218). At this point we
are enabled to track the pdfs of the messages Vj→i and Li→j using (4.1) and
(4.2) respectively. The iterative process is initialized with µ(0) = 0. Note
that the evolution of the pdfs is governed by the degrees of the regular
LDPC code (dv, dc) and the channel parameter σ (for the BI-AWGNC
case). Since the degrees are fixed, the value that dominates the process
is the channel parameter σ. As a result, two possible behaviours of the
densities can be seen. In one situation when the channel parameter σ
is quite large i.e. Eb/N0 is small, the mean µ(`) converges to a small
fixed point. This means that the outgoing variable node message Vj→i has
a certain probability to have negative values which indicates a non-zero
probability of errors. On the other hand, for some smaller values of σ i.e.
Eb/N0 is large, the mean µ(`) goes go infinity. Therefore, the pdf of the
message Vj→i has all of its probability on positive values, this is,

lim
`→∞

∫ 0

−∞
p
(
V

(`)
j→i(τ)

)
dτ = 0, (4.4)

where p
(
V

(`)
j→i(τ)

)
is the pdf of the message Vj→i which depends on the

channel parameter σ. Then the decoding threshold σ∗ is given by

σ∗ = sup

{
σ : lim

`→∞

∫ 0

−∞
p
(
V

(`)
j→i(τ)

)
dτ = 0

}
. (4.5)

We use the following example to graphically describe the above in-
terpretation of the DEA using the Gaussian approximation. Consider

54

0 10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

1.72 dB, 800 iterations

1.71 dB, 800 iterations

1.7 dB, 800 iterations

1.7306 dB, 200 iterations

1.7306 dB, 508 iterations

1.7306 dB, 509 iterations

1.7306 dB, 510 iterations

1.7306 dB, 511 iterations

1.7306 dB, 512 iterations

p
�
V (`)
j!i

�

V (`)
j!i

Figure 4.1: Evolution of the Gaussian pdfs for the variable-to-check mes-
sage V

(`)
j→i. Different values of Eb/N0 are used.

a regular (dv = 4, dc = 6)-LDPC code with R = 1/3 and recall that
Eb/N0(dB) = 10 log10(1/(2Rσ2)). Thus, in Fig 4.1, we can see that when
Eb/N0 = 1.7 dB, 1.71 dB and 1.72 dB the means of the pdfs after 800
iterations are small, that is, there is a high probability that the message
V

(`)
j→i is negative for any iteration; as a result decoding errors are likely.

On the other hand, when Eb/N0 = 1.7306 dB the mean for the pdf of the

message V
(`)
j→i increases as the number of iterations increases. The evolu-

tion of the pdf for iterations 508 − 512 is plotted. Note that at iteration
512 the Gaussian is completely on the positive side. Meaning that the
error probability is negligibly small and goes to zero as `→∞

Using the same example, in Fig 4.2 we show the behaviour of the
means µ(`) as a function of the number of iterations `. In this figure we
can see that when the channel value σ is too large the mean µ(`) converges
to a fixed point that cannot guarantee free error decoding, i.e it does
not satisfy (4.4). This happens for Eb/N0 = 1.7 dB, 1.71 dB and 1.72
dB. On the other hand, for Eb/N0 = 1.7306 dB, 1.756 dB and 1.77 dB,

55

0 100 200 300 400 500 600 700 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration `

1.77 dB

µ(`)

Convergence

1.7 dB

1.71 dB
1.72 dB

1.7306 dB1.756 dB

Theshold �⇤
= 1.0035

Figure 4.2: Behavior of the mean µ(`) as a function of the number of
iterations `.

the mean µ(`) goes to infinity as the number of iterations ` → ∞. If
we continue decreasing the value of σ we will have convergence for all the
cases, but we are interested in the higher value of σ that allows a successful
decoding performance. For this specific example the decoding threshold
is σ∗ = 1.0035.

The density evolution algorithm via Gaussian approximation has a
penalty in the resulting values of the thresholds of around 0.1 dB (in
the BI-AWGNC case) due the assumption that the messages follows a
Gaussian distribution and additionally these Gaussian are assumed to be
consistent.

Note that the Gaussian approximation does not consider any kind of
quantization in the messages. In such a case the convolution of discretized
pdf will be performed. On the other hand, if the output of the channel
is not symmetric the DEA has to be modified. In the following section,
we will describe the proposed density evolution algorithm which can work
under the above two conditions since it applies the max-LUT method to

56

compute the evolution of quantized pdfs.

4.3 Proposed discretized density evolution

algorithm

The Shannon capacity defines the maximum rate at which we can transmit
information reliably through a noisy channel. In a similar manner, for an
LDPC code ensemble, it is possible to compute a noise threshold which
acts as a capacity for a given LDPC code ensemble. Such threshold,
represents an average value over the ensemble and not a value for an
individual finite-length code with a certain number of girths in its Tanner
graph representation nor considering any quantization scheme.

We were interested in the theoretical decoding thresholds of our de-
coding mapping functions for a given number of quantization levels. For
this reason, we derive a density evolution algorithm with quantization and
having the proposed decomposition in the on Subsection 3.6.2. The pro-
posed DEA allows tracking quantized densities of the messages that can
follow any symmetric and non-symmetric distribution.

Now, we describe an explicit method to compute the decoding map-
pings functions for a (dv, dc)-regular LDPC code. The construction of the
mapping functions considers the decomposition presented in Section 3.6,
where each node is decomposed into a set of 2-input mapping functions.
The quantization algorithm presented in Subsection 3.7.2, finds an op-
timal quantizer Q∗ for a DMC in the sense of maximization of mutual
information. In this research, we not only use this algorithm to quantize
the channel, we also use it to quantize the conditional probability distri-
butions during the proposed density evolution algorithm. In essence, we
will apply the max-LUT method during the proposed discretized density
evolution algorithm.

Classical density evolution is restricted to channels with certain sym-
metry properties. But here, asymmetrical binary-input DMCs are allowed,
and the optimized decoding lookup tables, and thus the distributions, may
be asymmetrical even if the channel was symmetrical. Wang et al. gen-
eralized density evolution to asymmetric channels [36]. They showed that
while error rates are codeword-dependent, it is sufficient to consider the
evolution of densities only for the two code bits, that is densities condi-
tioned on X = 0 and X = 1. The same method will be used here.

When density evolution is used, a channel parameter is needed [10]. As
in the previous section, we will use α as the channel parameter. Therefore,

57

the decoding threshold is indicated as α∗.

4.3.1 Discretized density evolution algorithm with
quantization

In this section, we describe the density evolution algorithm using the op-
timal quantizer presented in Subsection 3.7. An arbitrary, binary-input
DMC is used for transmission. It has a binary input X and |Z| outputs
Z ∈ Z = {1, . . . , |Z|}. The channel transition probabilities are denoted
by r(0):

r(0)(x0, y0) = Pr(Z = y0|X = x0), (4.6)

where x0 ∈ {0, 1} and y0 ∈ {1, . . . , |Z|}. On iteration `, the probability
distribution for V is:

r(`)(x, y) = Pr(V = y|X = x) (4.7)

with y ∈ V , and the probability distribution for L is:

l(`)(x, y) = Pr(L = y|X = x) (4.8)

with y ∈ L.

The following method finds the probability distributions r and l em-
ploying the quantization algorithm described in Subsection 3.7. In partic-
ular, for each iteration and each node type, there are three steps:

(a) Given the node input distributions, a conditional distribution is found.

(b) The quantization algorithm produces a quantizer to K levels.

(c) The reduced distribution is found, which is used in the next step of
the density evolution.

Two functions fc and fv are of interest when decoding LDPC codes.
At the check node:

fc(x1, . . . , xdc−1) = x1 + · · ·+ xdc−1 (mod 2) (4.9)

and at the variable node:

58

fv(x0, . . . , xdv−1) =

0 if x0 = x1 = · · · = 0
1 if x0 = x1 = · · · = 1

otherwise undefined

where xi are binary values. It is useful to use a single symbol that is a
concatenation of the component messages in the joint distribution. In the
context of the check node, let y′ denote the concatenation.

y′ = (y1, y2, . . . , ydc−1) (4.10)

where y′ ∈ Vdc−1. And in the context of the variable node, let y′ denote
the concatenation:

y′ = (y0, y1, y2, . . . , ydv−1) (4.11)

where y′ ∈ Z × Ldv−1.

Step (a) is to find the joint distributions l̃(`)(x,y′) and r̃(`)(x,y′),
given by:

l̃(`)(x,y′) =

(
1

2

)dc−2 ∑
x:fc(x)=x

dc−1∏
i=1

r(`−1)(xi, yi) (4.12)

where x = (x1, x2, . . . , xdc−1), and

r̃(`)(x,y′) =
∑

x:fv(x)=x

r(0)(x0, y0)
dv−1∏
i=1

l(`−1)(xi, yi) (4.13)

where x = (x0, x1, . . . , xdv−1).

Step (b). The quantizers Q
(`)
c and Q

(`)
v are generated at each iteration

` using the joint distributions l̃(`) and r̃(`) and the integer K:

Q(`)
c = Quant(l̃(`), K) and (4.14)

Q(`)
v = Quant(r̃(`), K). (4.15)

Step (c) is to find the reduced distributions by the following matrix
multiplications:

l(`) = l̃(`) Q(`)
c and (4.16)

r(`) = r̃(`) Q(`)
v . (4.17)

59

More precisely, density evolution is as follows:

1. Initialization: Initialize ` = 0 and the channel message given by
(4.6).

2. Check node: Compute (4.12), followed by (4.14), followed by (4.16).

3. Variable node: Compute (4.13), followed by (4.15), followed by
(4.17).

4. If the mutual information I(X; V) approaches 1, then declare con-
vergence and increase the channel parameter α and start again from
initialization. If a fixed number of iterations is exceeded, declare
non-convergence and the last channel parameter α where conver-
gence was declared is the decoding threshold α∗. Otherwise, incre-
ment ` and iterate from the check node step.

Using the four steps described above, we find the decoding threshold α∗

for a given regular (dv, dc)-LDPC code with |Z| levels for channel message
quantization and K levels for decoder message quantization. Note that
the decomposition of the nodes is not considered yet. In the following
subsection, we use the threshold α∗ computed by the above discretized
DEA and the decomposition of the nodes presented in subsection 3.6.2 to
construct the decoding mapping functions.

4.3.2 Discretized density evolution algorithm in a
decomposed Tanner graph

Once we have the decoding threshold α∗ for a given regular (dv, dc)-LDPC
code, in this section we describe how to construct the decoding mapping
functions ψ

(`)
1 , . . . , ψ

(`)
dc−2, φ

(`)
1 , . . . , φ

(`)
dv−1 and γ

(`)
1 , . . . , γ

(`)
dv

for each iteration
` in the decomposed Tanner graph presented in 3.6.2.

1. Initialization.The channel parameter α∗ is used to compute the
channel transition probability r(0). In case that a channel parameter
α∗ is not available, pass directly the channel transition probability
matrix r(0). Then, Initilize ` = 1 and t = r(0).

2. Check Node. At iteration ` find successively each check node de-
coding mapping function ψ

(`)
i for i ∈ {1, . . . , dc − 2} as follows:

60

a) Compute the conditional distribution t̃i as (equivalent to Step
(a) in Subsection 4.3.1):

t̃i =

[
1/2 0 0 1/2
0 1/2 1/2 0

]
(ti ⊗ r(`−1)

i), (4.18)

where ⊗ denotes the Kronecker product.

b) Generate the optimal quantizer Q
(`)
i using the distribution t̃i

and the size of one of the alphabets S or L as appropriate
(equivalent to Step (b) in Subsection 4.3.1):

Q
(`)
i =

{
Quant(t̃i, |L|) if i = dc − 2

Quant(t̃i, |S|) otherwise,
(4.19)

recall that the alphabet S is for the interconnection of the de-
coding mapping functions ψ

(`)
i while the alphabet L is to gen-

erate the check-to-variable node messages.

c) Reduce the distribution t̃i as (equivalent to Step (c) in Sub-
section 4.3.1):

ti = t̃i Q
(`)
i . (4.20)

d) Fill in the two-input lookup table ψ
(`)
i as:

ψ
(`)
i (y′) = y if Q

(`)
i (y,y′) = 1, (4.21)

where y′ ∈ V × V or V × S.
e) If i = dc−2 continue to 3) Variable Node, otherwise construct

the next ψ
(`)
i decoding mapping function by going to step a).

3. Variable Node. First initilize l
(`)
i = tdc−2 and t0 = r(0), then for the

current iteration ` find successively each φ
(`)
i for i ∈ {1, . . . , dv−1} :

a) Compute conditional distribution t̃i as (equivalent to Step (a)
in Subsection 4.3.1):

t̃i =

[
ti(x = 0, y)⊗ l(`)i (x = 0, y))

ti(x = 1, y)⊗ l(`)i (x = 1, y)).

]
(4.22)

61

b) Compute the optimal quantizer Q
(`)
i using the distribution t̃i

and the size of one of the alphabets T or V as appropriate
(equivalent to Step (b) in Subsection 4.3.1):

Q
(`)
i =

{
Quant(t̃i, |V|) if i = dv − 1

Quant(t̃i, |T |) if i < dv − 1,
(4.23)

recall that the alphabet T is for the interconnection of the
decoding mapping functions φ

(`)
i while the alphabet V is to

generate the variable-to-check node messages.

c) Reduce the distribution t̃i as (equivalent to Step (c) in Sub-
section 4.3.1):

ti = t̃i Q
(`)
i . (4.24)

d) Fill in the two-input lookup table φ
(`)
i by:

φ
(`)
i (y′) = y if Q

(`)
i (y,y′) = 1. (4.25)

If i = dv − 1 continue, otherwise go to a).

e) Using the distribution t̃i and the size of the alphabet T con-

struct the last two mapping functions γ
(`)
dv−1 and γ

(`)
dv

for the
hard decision operation as:

Q
(`)
i = Quant(t̃i, |T |), (4.26)

s = t̃i Q
(`)
i , (4.27)

γ
(`)
dv−1(y′) = y if Q

(`)
i (y,y′) = 1, (4.28)

s̃ =

[
s(x = 0, y)⊗ l(`)(x = 0, y))
s(x = 1, y)⊗ l(`)(x = 1, y))

]
, (4.29)

Q
(`)
i = Quant(s̃, 2), (4.30)

γ
(`)
dv

(y′) = y if Q
(`)
i (y,y′) = 1. (4.31)

Note that the decoding mapping functions for the variable node oper-
ation φ

(`)
1 , . . . , ψ

(`)
dv−2 are the same as the mapping functions γ

(`)
1 , . . . , γ

(`)
dv−2

(we remove the superscript ` from t and t̃ to avoid overloading notation,

62

also the subscript and superscript were removed from s and s̃). At this
point, we use t̃i to find the mutual information for iteration ` and verify
the convergence. If the mutual information I(X; V) approaches 1, then
declare convergence and all the mapping functions constructed for the
channel parameter α∗ will be used to decode the LDPC code with degrees
(dv, dc) . Otherwise, increment `, update r

(`)−1
1 = tdv−1 and go to a) in 2)

Check Node. Since through this process we use the decoding threshold
α∗ to initialize r(0) at some point we will find convergence. Therefore, the
final number of mapping functions depends of the decoding threshold α∗

computed for a given pair of degrees (dv, dc), and the size of the alphabets
V ,S,L and T .

An appealing aspect of the proposed technique is that the LUTs are
generated off-line. The offline complexity, while not as important as the
size of the lookup tables, is no worse than K6, with K representing the
size of the alphabet of one incoming message. Since each LUT has two
incoming messages the resulting input to the quantization algorithm is size
K2, and the quantization algorithm has no worse than cubic complexity.

4.4 Decoding thresholds for BI-AWGNC

Using the method of the previous section, we present the decoding thresh-
olds considering a regular (dv = 3, dc = 6)-LDPC code, under different
channel and decoder message quantization values.

In this research the message-passing decoding algorithms use two quan-
tization resolutions (bits per message), one for the channel message quan-
tization when a continuous channel such as the BI-AWGNC is considered,
and the other for the decoder message quantization.

In the proposed quantized density evolution algorithm, we are able to
specify different numbers of quantization levels for different parts of the
process, this is, we can define a certain number of quantization levels |Z|
for the quantization of the channel messages and define another number
of quantization levels for the decoder messages (i.e., |L|, |T |, |V| and |S|.
Note that the quantization levels used for the decoder message can be
different among them or can be the same. In our research, we set all
quantization levels to either 3 or 4 bits per message, that is, the cardinality
of all alphabets is 8 or 16 respectively. However, different variations can
be used, see Appendix A.

Consider the following example where the quantization levels for the
channel message is |Z| = 16, which differs from those used for decoder
message as |L|, |T |, |V| and |S| = 8. For the above example the channel

63

Figure 4.3: Noise decoding thresholds for a regular (3, 6)-LDPC code with
rate 1/2 and using different number of levels K for the decoder message
quantization. The term log2(K) is the number of bits to represent the
decoder messages while log2(|Z|) is the number of bits to represent the
BI-AWGNC message.

message is represented using 4 bits, while the decoder messages are rep-
resented with 3 bits, in this way the resolution in bits for the channel is 4
and 3 for the decoder. Note that a quantization resolution which is not a
power of two can be used, if required.

Note that the construction of the proposed decoding mapping functions
presented in Subsection 4.3.2 can be adapted by adjusting the quantization
levels (size of the alphabets).

The discretized density evolution analysis proposed in Subsection 4.3.1
is useful because we can know the error correction capability of a (dv, dc)-
LDPC code whose channel and decoder messages are quantized to K levels
without resorting to finite-length simulations.

Resulting thresholds under the proposed density evolution algorithm,
considering a regular (dv = 3, dc = 6)-LDPC code and different quantiza-

64

Table 4.1: Noise decoding thresholds for a regular (dv = 3, dc = 6)-LDPC
with rate R = 1/2 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.3078 0.4637 0.4414 0.4711 0.4859 0.4934 0.5008 0.5156 0.5156
3 0.3301 0.5379 0.5676 0.5973 0.5973 0.6195 0.6195 0.6418 0.6418
4 0.4266 0.5602 0.6270 0.6270 0.6492 0.6641 0.6715 0.6938 0.6938
5 0.4266 0.5676 0.6121 0.6641 0.6715 0.6863 0.6938 0.7160 0.7160
6 0.4711 0.6121 0.6270 0.6641 0.6938 0.6938 0.7012 0.7309 0.7309
8 0.4934 0.6121 0.6715 0.6789 0.6938 0.7160 0.7234 0.7383 0.7457
12 0.5008 0.6270 0.6641 0.6938 0.7012 0.7234 0.7309 0.7531 0.7605
16 0.5082 0.6418 0.6641 0.7012 0.7160 0.7234 0.7309 0.7531 0.7605
20 0.5082 0.6418 0.6715 0.6938 0.7160 0.7234 0.7309 0.7531 0.7605
24 0.5082 0.6418 0.6715 0.7012 0.7160 0.7309 0.7309 0.7605 0.7605
28 0.5082 0.6418 0.6789 0.7012 0.7160 0.7234 0.7309 0.7605 0.7605
32 0.5082 0.6418 0.6715 0.7012 0.7160 0.7309 0.7309 0.7605 0.7605

tion values for the channel and decoder messages, shown in Fig. 4.3.
The quantization levels for the BI-AWGNC were found by finely and

uniformly quantizing the BI-AWGNC, and then applying the quantization
algorithm presented in Subsection 3.7.2. Note that in Fig. 4.3, K is equal
to the cardinality of the alphabets of the decoding messages, that is:

|L| = |V| = |T | = |S| = K.

Figure 4.3 along its vertical axis shows the variance σ2 versus the channel
quantization levels |Z| in its horizontal axis. For this example in particu-
lar, we plotted different values of |Z|;

|Z| ∈ {2, 3, 4, 5, 6, 8, 12, 16, 20, 24, 28, 32},

while decoding messages were considered to be quantized as

K ∈ {2, 3, 4, 5, 6, 8, 16}.

In Figure 4.3, each valid combination of K and |Z| gives a decoding
threshold for the BI-AWGNC quantized to |Z| levels and decoder messages
quantized to K levels.

One of the most significant observations is the point reached when
|Z| = 16 and K = 16 (4-bits per message for both channel and decoder

65

messages), corresponding to σ2 = 0.7531 in the vertical axis of the graph.
This threshold is in fact difficult to distinguish from that achieved when
unquantized decoder messages are considered (see −◦− line on the graph
for unquantized decoding messages).

Numerically the noise thresholds are listed in Table 4.1. In this table,
the number of quantization levels |Z| for the channel message is indicated
in the rows on the table, while the quantization levels K for the decoder
message are listed in an arranged manner in the columns. Any pair |Z|,
K defines the theoretical decoding threshold for a (dv = 3, dc = 6)-LDPC
code.

Looking at the Table 4.1, the combination |Z| = 2, K = 16 corre-
sponds to 1 bit per message for the channel message and 4 bits per mes-
sage for the decoder message, the value in this intersection is σ2 = 0.5156.
Considering |Z| = 2 is equivalent to have a binary symmetric channel
(BSC), therefore the resulting lookup tables for |Z| = 2 may be used to
decode assuming a BSC with crossover probability ε. To know the equiv-
alent decoding threshold ε∗ for a specific σ2, we can apply the Q-function
in (2.21).

Another interesting example is the combination |Z| = 16, K = 8,
which gives σ2 = 0.7309. This case corresponds to 4 bit per message for
the channel message and 3 bits per message for the decoder message. Note
that, if we increment the channel resolution in one bit (|Z| = 32), there
is no improvement in the theoretical decoding threshold. On the other
hand, if we increment the resolution of the decoder message in one bit,
the decoding threshold increases to σ2 = 0.7605.

Another important observation in Fig. 4.3 is the decoding threshold
for the combination |Z| = 5, K = 4. The corresponding threshold in
this intersection is worst than that achieved when |Z| = 4, K = 4. The
conjecture that we can give is that when an odd number is chosen for the
channel quantization, the symmetry of the regions respect to the origin
is lost, that is, when |Z| = 5 the third quantization level starts before
zero and finishes after zero. This causes that at the time to perform the
hard decision this quantization region has to be zero or one. Thus the
asymmetry of the quantization regions affects one bit or another. This
implies that the hard decisions are not balanced.

In Fig. 4.4 we can see the decoding thresholds for a regular (4, 6)-LDPC
code for different combination of quantization values |Z|, and K. In this
figure we can also appreciate a not smooth performance in the decoding
threshold curves. The combinations that present more drastic changes are
|Z| = 5, K = 3 and |Z| = 4, K = 2. The first combination apparently

66

2 3 4 5 6 8 12 16 20 24 28 32

0.5

0.6

0.7

0.8

0.9

1
AWGN noise threshold

K = 32
K = 16
K = 8
K = 7

K = 6
K = 5

K = 4
K = 3

K = 2

BI-AWGN channel quantization levels |Z| (log scale)

N
o
i
s
e
T
h
r
e
s
h
o
l
d
s
(
c
h
a
n
n
e
l
v
a
r
i
a
n
c
e
�
2
)

Unquantized messagesUnquantized messages

Figure 4.4: Noise decoding thresholds for a (4, 6) regular LDPC code with
rate 1/3 and using different number of levels K for the decoder message
quantization. The term log2(K) is the number of bits to represent the
decoder messages while log2(|Z|) is the number of bits to represent the
BI-AWGNC message.

present a decrement in the decoding threshold due to the same reasoning
that we explained for the case of the Figure 4.3. The second combination
|Z| = 4, K = 2 is a new case where a decrement on the decoding threshold
σ2 is shown when an increment is expected. For this case an apparent
reason due to the symmetries of the quantization is not obvious. One
hypothesis could be that this performance is due to the code ensemble
itself. An analysis of the possible reasons of these unexpected decrements
could lead to an improvement of decoding thresholds. Therefore, this is a
tangible extension of the research presented in this work.

On the other hand, in Fig. 4.4 the SPA approaching performance of
the proposed decoding mapping functions using 4 bits per channel and
decoder message can also be observed for this code. In this figure we also
plotted the resulting decoding thresholds when 32 quantization levels are

67

used to represent the decoder messages. From this, we can appreciated
that the gain in the decoding threshold by increasing from 4 bits to 5 bits
is not significant.

4.5 Lookup table arrangement and its rep-

resentation in a tree

In section 3.5 on page 36, we briefly mentioned that the decomposition of
the variable and check nodes in smaller degree-3 nodes leads to an incre-
ment on the decoding time which can be overcome or at least mitigated
by using a semi parallel or pipeline architecture for the implementation of
the message passing decoding.

In this work, we have only focused our attention in a pipeline archi-
tecture which in fact is used for all the finite-length results presented in
Chapter 5.

Considering the hard decision operation in a variable node with degree
five, i.e. dv = 5, which is decomposed into a set of degree-3 nodes, the
hard decision operation needs to use five two-input lookup tables φ to
perform the hard decision estimation. One of the possible lookup table
arrangement to calculate the estimation may be the following

φ

(
φ

(
φ
(
φ(L,L), φ(L,L)

)
, L

)
, Z

)
∈ {0, 1}. (4.32)

Remember that the channel message Z also has to be considered in
this estimation. The flow of the above operation can be seen more clearly
using a tree representation, see the tree χ4 on the lower right part on
Fig 4.5 which corresponds to the lookup table processing flow in (4.32).
In the same figure another arrangements to perform the same operation
are depicted.

We are interested in knowing which tree that correspond to a specific
processing flow of the hard decision is better. In this matter, a reasonably
heuristic method has been previously proposed in [37]. Such metric does
not distinguish between the check-to-variable incoming messages L and
the channel message Z.

Since the data processing inequality states that processing only reduces
mutual information, then, the cumulative depth λ(χ) of a tree χ which is
the sum of all distances of all leaf nodes to the root node has to be the

68

�

L

Z
�

LLL

�
L �

LLLLL

�

Z

�

�

� �

LLLL L

Z
�

�

� �

LL

L

L L

Z

�

�1 �2

�3 �4

Figure 4.5: Tree representation of the implementation of a hard decision
operation using lookup table. The node has six inputs including the chan-
nel message.

smallest. Looking at Fig 4.5, a distance between a leaf node and the root
node is equal to the number of arrows that exist between them.

Using the tree examples in Fig 4.5, the authors of [37] present the table
4.2. In this table, we can appreciate that effectively there is a relationship
between the summatory of the paths λ(χ) and the decoding threshold
σ∗ computed via density evolution. Although, a variation exist in the
decoding threshold σ∗ among all four arrangements, that is not significant
to drastically chose one arrangement over the other. On the other hand,
this result is interesting for hardware implementation point of view since

Tree χ1 χ2 χ3 χ4

λ 10 11 16 19
σ∗ 0.5330 0.5327 0.5309 0.5305

Table 4.2: Comparison for different arrangements (trees) to implement
a hard decision operation with six inputs including the channel message.
The decoding thresholds σ∗ were computed considering that the incoming
messages have a resolution of 3 bits.

69

complete binary trees (i.e. a binary tree in which all interior nodes have
two children and all leaves have the same depth or same level) are desirable
due to they have short critical paths producing low complexity lookup
table implementations.

4.6 Summary

In this chapter, we first described the idea behind the density evolution
algorithm using the Gaussian approximation. Later we introduced the
proposed discretized density evolution algorithm. Such algorithm finds a
decoding threshold assuming a regular (dv, dc)-LDPC code with |Z| quan-
tization levels for the channel message and K quantization levels for the
decoder message.

Secondly, we described a decomposed density evolution algorithm which
performs the same operation as that above, but with the difference that,
this constructs the decoding mapping functions during the iterative de-
coding process. A decomposed Tanner graph is considered.

In this chapter, we also presented some numerical decoding thresholds
for a pair of regular (dv, dc)-LDPC codes using different combinations of
quantization values for the channel and decoder message quantization. At
the end of the chapter, a brief discussion about the implementations of
the decoding lookup tables was introduced.

70

Chapter 5

Finite-length LDPC decoding
via mapping functions

An infinite code length and a cycle-free graph are central assumptions
made by density evolution algorithm. Therefore, in this chapter, finite-
length simulations are presented to corroborate theoretical results ob-
tained via density evolution, which situate the proposed decoding mapping
functions theoretically close to the unquantized sum-product algorithm de-
coding performance. In this chapter, our decoding mapping functions use
3 and 4 bits per message for both channel and decoder message quantiza-
tion. Three aspects are considered to carry out the performance analysis
of the proposed decoding mapping functions: bit-error rate (BER), word-
error rate (WER) and average number of executed iterations. The legends
for the proposed decoding maps appearing on the figures in this section
are referred as max-LUT, since a natural way to implement the decod-
ing mapping functions can be using lookup tables (LUT) which maximize
(max) mutual information during the iterative decoding process.

Since intensive computer-based simulations for different codes were
perform, we divided the finite-length results in this section into three
subsections: simulation results for low rate codes, simulation results for
medium rate codes and simulation results for high rate codes. At the end
of this chapter, a summary about the most important observations from
the finite-length simulations is presented.

71

5.1 Finite-length results for LDPC codes

For finite-length simulations of LDPC codes under message-passing de-
coding, the bit-error rate (or word-error rate) performance curves, can be
divided into two regions: the waterfall region and the error-floor region.
In the waterfall region the error-rate performance curve goes down rapidly
and smoothly, while in the error-floor region, it is less hasty and it often
happens in the high bit signal-to-noise ratio (Eb/N0) region [22].

The waterfall region is caused due to a large number of unsuccessful
corrections and the slope of the error probability lowers exponentially in
the blocklength of the code. On the other hand, the error-floor region
whose decay is polynomial [38] represents a small number of errors gen-
erated mainly by near-codewords [39], trapping sets [40], or absorbing
sets [41].

From this overview on finite-length error-rate perfromance curves, we
can say that, the waterfall region is dominated by the implemented message-
passing decoding algorithm, while the error-floor mostly depends on the
code construction, although we will see that the proposed decoding map-
ping functions exhibits good performance in both regions.

In a simple manner, the proposed decoding mapping functions, can be
seen as the optimal local recorded partitions (i.e, LUTs) of the tracked
probability distributions during the discretized density evolution process
presented in Section 4.3 on page 57.

In this section, finite-length results for our decoding mapping functions
using 3 and 4 bits per message are presented. The channel and decoder
message quantization use the same number of bits per message. In all
cases, we use the sum-product algorithm for comparison without both
channel and decoder message quantization.

Since we are interested in channel and decoder message quantization,
we mainly used the BI-AWGNC with variance value σ2 as a channel model.
Results presented in Fig. 5.5 on page 79, are a special case because of a
request for [42]. In table 5.1, we list a total of 12 different codes used
during the finite-length computer-based simulations. In this table, the
simulation parameters such as degrees of the nodes (dv, dc), code rate R,
code block length N , maximum number of iterations abbreviated as “Max.
iter.”, and type of code construction are listed.

In all BER/WER graphs, proposed decoding mapping functions are
labeled as “3 or 4 bit/msg max-LUT”, the digit indicates the number of
bits for the channel and decoder message. Next to each BER/WER curve,
the average number of iterations for each corresponding simulation point

72

is indicated.
We proceed through the presentation of the finite-length simulation

results grouping them by the rate of the code. Under this consideration,
we define three subsections: simulation results for low rate codes, medium
rate codes, and high rate codes. This division was considered to carry out
the analysis of the results in a more structured and efficient way, e.g. high
rate codes requires less number of iterations than low rate codes. Codes
with medium rates commonly give more insights about error floors.

Table 5.1: Simulation parameters for the proposed decoding mapping
functions.

Figure dv dc R N Max. iter. Code
Fig. 5.1 on page 74 4 5 0.2 6535 30 Array code [43]
Fig. 5.2 on page 75 4 6 0.33 816 30 Gallager [44]
Fig. 5.3 on page 77 3 6 0.5 2640 25 Gallager [44]
Fig. 5.4 on page 78 4 8 0.5 10456 25 Array code [43]
Fig. 5.5 on page 79 3 12 0.75 2388 60 Gallager [44]
Fig. 5.6 on page 81 6 32 0.84 2048 30 Quasi-cyclic code [45]
Fig. 5.7 on page 82 4 36 0.89 1998 30 Gallager [44]
Fig. 5.8 on page 83 4 69 0.94 8970 20 Array code [46]

5.1.1 Simulation results for low rate codes

In this Subsection, we carry out the finite-length simulation analysis (i.e.,
BER and WER) for our decoding mapping functions using 3 and 4 bits per
message using the BI-AWGNC and cosidering low rate codes (lower than
0.35). To do so, we consider two different codes with the following rates:
R = 0.2 and R = 0.33. The noise decoding thresholds σ2 for different
combinations of channel and decoder message quantization over a BI-
AWGNC for the chosen codes are deployed in tables A.4 and A.5 on page
91. The noise decoding thresholds used to construct the mapping functions
for the (dv = 4, dc = 5)-LDPC code with R = 0.2 and (dv = 4, dc = 6)-
LDPC code with R = 0.33 are shown in table 5.2.

Table 5.2: Noise decoding thresholds for channel and decoder message
quantization using 3 and 4 bits per message.

Code σ2 (3 bits) σ2 (4 bits)
(dv = 4, dc = 5)-LDPC code 1.2875 1.3617
(dv = 4, dc = 6)-LDPC code 0.9461 0.9980

73

B
i
t
-
e
r
r
o
r
r
a
t
e

2 2.5 3 3.5 4 4.5 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

29 →

23 →

16 →

12 →

10 →

←30
←28

←22

←16

←13

←30←30
←30

←25

←18

←14

4-bit/msg max-LUT

3-bit/msg max-LUT

Eb/N0(dB)

Floating point SPA

(a) Bit-error rate.

2 2.5 3 3.5 4 4.5 5
10−6

10−5

10−4

10−3

10−2

10−1

100
29 →

23 →

16 →

12 →

10 →

←30
←28

←22

←16

←13

←30←30←30

←25

←18

←14

4-bit/msg max-LUT

3-bit/msg max-LUT

Eb/N0(dB)

Floating point SPA

W
o
r
d
-
e
r
r
o
r
r
a
t
e

(b) Word-error rate.

Figure 5.1: BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the code: dv = 4,
dc = 5, R = 0.2, and N = 6535. The maximum number of Iterations was
set to 25. The numbers next to the curves represent the average number
of iterations for each simulation point.

At the beginning of the design of the proposed decoding mapping func-
tions for low rate codes, our main concern was the average number of
iterations for successful decoding. The reason of this concern, was a con-
siderable amount of iterations computed by the discretized density evolu-
tion algorithm presented in Section 4.3, meaning that, the set of decoding
mapping functions is large, which could lead to a latency problem during
the decoding process.

Fortunately, the average number of iterations achieved by the chosen
low rate codes is around 14 iterations for the lowest BER point achieved.
This result was unexpected but at the same time opened the application
of the proposed decoding mapping functions to decode efficiently low rate
codes, i.e. perform siccessuful decoding using a few number of iterations.

In Fig 5.1, BER and WER results are presented for a (dv = 4, dc = 5)-
LDPC code with rate R = 0.2. The length of such a code is N = 6535
and the maximum number of iterations was set to 30 iterations.

In Fig 5.1a, at 10−5 the proposed mapping functions using 3 bits per
message achieve a small gap of around 0.35 dB, comparing with the curve
drawn by SPA. In the same graph, but using 4 bits per message the gap
practically disappear and following the curve down, we start seeing a small
crossing over the bit-error rate curve of SPA that seems that is going to be

74

2 2.5 3 3.5 4 4.5 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

11 →
9 →

7 →

6 →

6 →

5 →

5 →

←14

←11

←9

←8

←7

←20
←15

←12

←10

←8

←7

←6

←6

4-bit/msg max-LUT

3-bit/msg max-LUT

B
i
t
-
e
r
r
o
r
r
a
t
e

Eb/N0(dB)

Floating point SPA

(a) Bit-error rate.

2 2.5 3 3.5 4 4.5 5
10−6

10−5

10−4

10−3

10−2

10−1

100

11 →

9 →

7 →

6 →

6 →

5 →

5 →

←14

←11

←9

←8

←7

←20
←15

←12

←10

←8

←7

←6

←6

4-bit/msg max-LUT

3-bit/msg max-LUT

Eb/N0(dB)

Floating point SPA

W
o
r
d
-
e
r
r
o
r
r
a
t
e

(b) Word-error rate.

Figure 5.2: BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the code: dv = 4,
dc = 6, R = 0.33, and N = 816. The maximum number of Iterations was
set to 25. The numbers next to the curves represent the average number
of iterations for each simulation point.

surpassed in a lower error floor region. This performance is of substantial
interest since our decoding mapping functions can in fact achieve the BER
curve of a full sum-product algorithm.

In Fig 5.1b, the corresponding WER results for the same code used
in Fig. 5.1a. Even though a tiny gap of less than 0.1 dB exists at 10−4

using 4 bits per message, the decoding results of our maps still are an
interesting result for discrete LDPC decoders whose performance penalty
is around 1 dB in the better cases using 6 or more bits per message. On
the other hand, thinking about a good tradeoff between complexity and
performance the proposed mappings using 3 bits per message fits really
well into this target.

The second low rate code is a (dv = 4, dc = 6)-LDPC code with a small
length of N = 816 and rate R = 0.33. The maximum number of iterations
for this code is 30. The previous code had a length of a few thousands,
here his counterpart is presented.

In Fig.5.2a, at 10−5 the proposed maps using 4 bits per message have
a gain over SPA, while using 3 bits per message a small gap of less than
0.1 dB is shown. Although long codes mainly dominate most of the error-
correcting code applications, we wonder about the performance of our
decoding mapping functions in different scenarios. Even though the length

75

of the code is small, there is no error-rate penalty associated to this issue.
Similar performance to that described above is achieved for WER results
shown in Fig.5.2b.

Another observation from simulation results shown in Fig. 5.1 and
Fig.5.2, is that the average number of iterations seen by the proposed
decoding mapping functions is close to that obtained by the SPA. In the
case of R = 0.2 code, at the lowest BER point the average number of
iterations achieved by SPA is 10, while our maps using 3 bits per message
achieved 14 and using 4 bits per messages achieved 13. In the second
simulation where the code rate is R = 0.33, at the lowest BER point the
average number of iterations achieved by SPA is 5, while our maps using
3 bits per message achieved 6 and using 4 bits per messages achieved 7.
This is significant as well as the error-rate performance since it dominates
the latency in an iterative decoding algorithm.

Table 5.3: Noise decoding thresholds for channel and decoder message
quantization using 3 and 4 bits per message. In the case of the (dv =
3, dc = 12)-LDPC code, its variance noise thresholds σ2 were used to
calculate the corresponding crossover probabilities ε for the BSC via the
Q-function.

Code σ2 (3 bits) σ2 (4 bits)
(dv = 3, dc = 6)-LDPC code 0.7531 0.7234
(dv = 4, dc = 8)-LDPC code 0.6863 0.6566
(dv = 3, dc = 12)-LDPC code 0.2680 0.2625

ε = 0.0267 ε = 0.0255

5.1.2 Simulation results for medium code rates

Throughout this Subsection, we analyze the performance of three regular
LDPC codes with rates R = 0.5 and R = 0.75. In the case of R = 0.75
code, the channel model is the BSC. Therefore, we use the Q-function
presented in (2.21) to compute the noise decoding threshold ε for the
BSC from the σ2 threshold obtained by setting the channel quantization
of a BI-AWGNC to 2 levels. The set of decoding mapping functions for
each one of the three codes used in this Section were constructed using
the variance values σ2 presented in table 5.3.

Noise decoding thresholds for different combinations of channel and de-
coder message quantization for the R = 0.5 code are included in table A.3
on page 90.

76

1 1.5 2 2.5 3 3.5 4
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

23 →

18 →

13 →

10 →

9 →
8 →
8 →8 →

←22
←20

←17

←14

←12

←10

←9

←25

←20

←16

←13

←11

4-bit/msg max-LUT

3-bit/msg max-LUT

B
i
t
-
e
r
r
o
r
r
a
t
e

Eb/N0(dB)

Floating point SPA

(a) Bit-error rate.

1 1.5 2 2.5 3 3.5 4
10−6

10−5

10−4

10−3

10−2

10−1

100

23 →

18 →

13 →

10 →

9 →8 →
8 →

8 →

←22
←20

←17

←14

←12

←10←9

←25

←20

←16

←13

←11

4-bit/msg max-LUT

3-bit/msg max-LUT

Eb/N0(dB)

Floating point SPA

W
o
r
d
-
e
r
r
o
r
r
a
t
e

(b) Word-error rate.

Figure 5.3: BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the code: dv = 3,
dc = 6, R = 0.5, and N = 2640. The maximum number of Iterations was
set to 25. The numbers next to the curves represent the average number
of iterations for each simulation point.

In Fig. 5.3, BER and WER simulation results over a BI-AWGNC for
a (dv = 3, dc = 6)-LDPC code are shown.

In Fig. 5.3a, at 10−6 we can observe that, the proposed decoding map-
ping functions using 3 bits per message perform around 0.35 dB away
from full sum-product algorithm performance. While the average number
of iterations for SPA is 8, the proposed mapping functions achieved 11.
Even though we set the maximum number of iterations to 25, this result
is significant since other quantized decoding algorithms require a range
between 50 to 200 iterations to approach close to SPA performance, e.
g. 50 iterations in [24], and 200 iterations in [22] and [47]. Even better,
looking at the BER curve for the proposed decoding maps using 4 bits per
message, we appreciate that at 10−6 the performance of these maps is a
bit better than that achieved by the floating point SPA. In this case, our
maps used 12 iterations in average.

In Fig. 5.3b, WER for the same simulation are shown. Using 3 bits
per message, a gap around 0.6 dB at 10−3 can be seen. Down at 10−5 the
proposed decoding maps using 4 bits per message follow closely the WER
performance of SPA.

Continuing with 1/2 rate codes, in Fig. 5.4, we plot the BER and WER
performance for a (dv = 4, dc = 8)-LDPC code with length N = 10456.

77

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

30 →
28 →

18 →

13 →

12 →

←30

←25

←17

←16

←13

←30 ←30
←28

←19

←14

←13

4-bit/msg max-LUT

3-bit/msg max-LUT

B
i
t
-
e
r
r
o
r
r
a
t
e

Eb/N0(dB)

Floating point SPA

(a) Bit-error rate.

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
10−6

10−5

10−4

10−3

10−2

10−1

100 30 →
28 →

18 →

13 →

12 →

←30

←25

←17

←16

←13

←30←30
←28

←19

←14

←13

4-bit/msg max-LUT

3-bit/msg max-LUT

Eb/N0(dB)

Floating point SPA

W
o
r
d
-
e
r
r
o
r
r
a
t
e

(b) Word-error rate.

Figure 5.4: BER results for the proposed decoding mapping functions,
and sum-product algorithm. Parameters of the code: dv = 4, dc = 8,
R = 0.5, and N = 10456. The maximum number of Iterations was set
to 30. The numbers next to the curves represent the average number of
iterations for each simulation point.

Corresponding noise decoding thresholds for the above code using 3 and
4 bits per message are shown in table 5.3. The set of thresholds for
different combinations of channel and decoder message quantization for a
(dv = 4, dc = 8)-LDPC code are presented in table A.6 on page 91.

A well known result in coding and information theory is that, error-rate
performance improve as N goes larger. Both graphs in Fig. 5.4 corroborate
this fact. Even though the code rate in this simulation is the same as
the previous code in Fig. 5.3, the code in Fig. 5.4 shows a stronger error
correction capability by an increment of around 5 times in the block length.
Another advantage of the code in Fig. 5.4 over the code in Fig. 5.3, is that
the code in Fig. 5.4 is an array code [43], therefore, it is free of 4-girth
cycles by construction.

The decoding benefit of non existing 4-girth cycles in this code, can
be seen in both Fig. 5.4a and 5.4b. Numerically, in Fig. 5.4a at 10−5 our
decoding mappings using 3 bits per message have a gap around 0.3 dB
respect to SPA performance. In the same plot, a small gap barely of 0.07
dB for 4 bits case is hardly appreciated. Note that at the lowest error-
rate probability achieved by the proposed decoders, the average number
of iterations is only one over that achieved by SPA. Similar gap rations in
Fig. 5.4b are kept by both sets of decoding mapping functions.

78

3-bit/msg max-LUT

4-bit/msg max-LUT

7-level FAID

10−2
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Floating point SPA

Cross-over probability "

W
o
r
d
-
e
r
r
o
r
r
a
t
e

Figure 5.5: Word-error rate results for SPA using floating point numbers,
FAIDs using 7 levels of quantization and the decoding mappings (max-
LUT) using 3 and 4 bits per message. A regular (dv = 3, dc = 12)-LDPC
code was used with R = 0.75, block length N = 2388 and a maximum of
60 iterations.

The last code to be analyzed in this Subsection is a (dv = 3, dc = 12)-
LDPC code with rate R = 0.751 and block length N = 2388. The maxi-
mum number of iterations for our proposed decoding mapping functions
is 60, while the results taken from [23] for the SPA and the 7-level finite-
alphabet iterative decoder (labeled as 7-level FAID in the graph) is 100.

Looking at the error-floor region in Fig. 5.5, the proposed decoding
mapping functions using 3 bits per message approach closely the SPA
decoding performance, while using 4 bits per message they can surpass it
though the maximum number of iterations is 40 less than the maximum of
100 for SPA. Similar to FAIDs, the proposed decoding maps have better
error-rate performance than SPA in the error-floor region.

In Fig. 5.5, FAIDs show better performance in the error-floor region
than the proposed decoding mapping functions since FAIDs are designed

79

to avoid the effects of harmful subgraphs, lowering the error floor. In
the proposed technique, the mapping functions are not explicitly designed
to have this property, but we believe that a similar phenomenon occurs.
One advantage of the proposed technique over FAIDs, is that the proposed
mapping functions can be used on a variety of channels, not only the BSC.
Another issue with FAIDs is that the simulation results are restricted to
weight-3 LDPC codes since there are most prone to have error-floors.

Even though FAIDs present good performance in the error-floor re-
gion, it can also be appreciated in Fig. 5.5 that FAIDs have error-rate
penalty in the waterfall region, this happens because FAIDs perform the
min operation in the check node updates, which is an approximation to
the check node update performed by SPA and as a result a loss is seen.

5.1.3 Simulation results for high rate codes

In this subsection, we analyze finite-length results for three different LDPC
codes with rates R = 0.84, R = 0.89 and R = 0.94 and lengths N = 2048,
N = 1998 and N = 8970 respectively.

Table 5.4: Decoding thresholds for channel and decoder message quanti-
zation using 3 and 4 bits per message.

Code σ2 (3 bits) σ2 (4 bits)
(dv = 6, dc = 32)-LDPC code 0.2930 0.2855
(dv = 4, dc = 36)-LDPC code 0.2410 0.2410
(dv = 4, dc = 69)-LDPC code 0.1867 0.1867

The noise decoding threshold used to construct the set of decoding
mapping functions used in this section are listed in table 5.4. In Fig. 5.6,
the BER and WER simulation results for the (dv = 6, dc = 32)-LDPC code
are shown. The maximum number of iterations was set to 30. In table
A.11 on page 94 different combinations on channel and decoder message
quantization for the above code can be found. Since (dv = 6, dc = 32)-
LDPC code is used in the IEEE 802.3an 10GBase-T standard producing
an operation of 10 Gb/s Ethernet over up to 100 m of CAT-6a unshielded
twisted-pair (UTP) cable, we are interested in the maximum number of
iterations needed by the proposed maps to achieve similar decoding per-
formance of that achieved by the SPA using 30 iterations as a maximum.
In Fig. 5.6a, BER results are depicted using solid lines while the WER re-
sults are shown by dashed lines. In this graph, looking at the BER results

80

3.5 4 4.5
10−10

10−8

10−6

10−4

10−2

100
4-bit/msg max-LUT

Iter. 30 !

 Iter. 10

B
i
t
/
W
o
r
d
-
e
r
r
o
r
r
a
t
e

Eb/N0 (dB)

8

4

3

3

3

3

10

5

4

4

4

4

Floating point SPA

(a) Bit/Word error rate.

3.5 4 4.5
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
4-bit/msg max-LUT

Eb/N0 (dB)

4-bit/msg max-LUT (zero codeword)

Floating point SPA

B
i
t
-
e
r
r
o
r
r
a
t
e

(b) Bit-error rate.

Figure 5.6: BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the code: dv = 6,
dc = 32, R = 0.84, and N = 2048. The maximum number of Iterations
was set to 30. The numbers next to the curves represent the average
number of iterations for each simulation point.

for proposed decoding mapping functions, we can note that using 10 itera-
tions as a maximum the proposed decoding mapping functions can achieve
the BER performance of SPA using a maximum of 30 iterations. On the
other hand, in Fig 5.6b a BER evolution through the maximum number
of iterations of the proposed maps can be observed. Thus, in Fig 5.6b
from top to the bottom, the first 10 dashed lines in green correspond to
the BER performance achieved using 1–10 as the maximum number of
iterations respectively. Note that the performance of the proposed maps
using 30 as the maximum number of iterations is plotted by a green solid
line. For this simulation, the average number of iterations achieved by
SPA is {8, 4, 3, 3, 3, 3} while {10, 5, 4, 4, 4, 4} are those achieved by the
proposed decoding mapping functions using 4 bits per message (see the
numbers next to the BER curves in Fig. 5.6a), this means that for the
lowest error-rate point corresponding to 4.5 dB, SPA achieved 3 and the
proposed maps achieved 4. These numbers mean that most of the time
the decoders perform 3 and 4 iterations respectively when the bit signal-
to-noise ratio Eb/N0 = 4.5 dB. On the other hand, this does not mean
that if we set the maximum number of iterations to 3 or 4, we will get
the same performance. In Fig. 5.6a, at 10−8 a gain of around 0.1 dB over
SPA performance can be appreciated, this gap is setting 30 iterations as

81

3.5 4 4.5 5 5.5 6
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

8 →
6 →

4 →

3 →

3 →

3 →

2 →

←9
←7

←6

←4

←3

←3

←3

←10
←8

←7

←5

←4

←4

←3

←3

4-bit/msg max-LUT

3-bit/msg max-LUT

B
i
t
-
e
r
r
o
r
r
a
t
e

Eb/N0(dB)

Floating point SPA

(a) Bit-error rate.

3.5 4 4.5 5 5.5 6
10−6

10−5

10−4

10−3

10−2

10−1

100

8 →

6 →

4 →

3 →

3 →

3 →

2 →

←9

←7

←6

←4

←3

←3

←3

←10
←8

←7

←5

←4

←4

←3

←3

4-bit/msg max-LUT

3-bit/msg max-LUT

Eb/N0(dB)

Floating point SPA

W
o
r
d
-
e
r
r
o
r
r
a
t
e

(b) Word-error rate.

Figure 5.7: BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the code: dv = 4,
dc = 36, R = 0.89, and N = 1998. The maximum number of Iterations
was set to 30. The numbers next to the curves represent the average
number of iterations for each simulation point.

a maximum number of iterations.
An important observation of the proposed decoding mapping functions

is that the maps are not symmetric, this property was mentioned during
the description made for the max-LUT method in Subsection 3.9. For
all simulations presented in this chapter, we evaluated random codewords
but for the simulation in Fig. 5.6, we also evaluated all zeros codeword to
know wether an important difference due to symmetries in the mapping
functions may exist. In Fig. 5.6b, the BER results for all zeros codeword
also is depicted. Making a comparison between BER results achieved by
the proposed decoding mapping functions using 4 bits per message, we
can note that a small gap in fact exist due to symmetries but in any case
both BER curves surpass the SPA performance curve.

The second high rate code is a (dv = 4, dc = 36)-LDPC code with rate
R = 0.89 and length N = 1998. The maximum number of iterations also
was set to 30. The noise decoding thresholds employed to compute the
decoding mapping functions using 3 and 4 bits per message are presented
in table 5.4.

In Fig.5.7, BER and WER results are presented. In Fig.5.7a, the
proposed decoding mapping functions using 4 bits per message approach
the SPA performance. On the other hand, using 3 bits per message at

82

4.4 4.6 4.8 5 5.2 5.4
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

14 →

7 →

5 →

5 →

4 →
4 →

←16

←9

←6

←6
←6

4-bit/msg max-LUT

B
i
t
/
W
o
r
d
-
e
r
r
o
r
r
a
t
e

Eb/N0 (dB)

Floating point SPA

Figure 5.8: BER and WER results for the proposed decoding mapping
functions, and sum-product algorithm. Parameters of the code: dv = 4,
dc = 69, R = 0.94, and N = 8970. The maximum number of Iterations
was set to 20. The numbers next to the curves represent the average
number of iterations for each simulation point.

10−8 a gap around 0.25 dB can be seen. In Fig.5.7b, the WER results are
shown, where at 10−5 the proposed maps using 3 bits per message have
a gap around 0.35 dB. Again we continue seeing similar performance in
the results to those presented for low and medium rate codes. Looking at
the average number of iterations, we can note that in general the numbers
have reduced compare to those in low and medium rates, this is not a
surprise since the values of Eb/N0 are bigger. Thus looking at the lowest
error-rate probability for each decoding algorithm, we can see that the
average number of iterations for SPA is 2 and for both decoding mapping
functions is 3.

The third high rate code is a (dv = 4, dc = 69)-LDPC code with rate
R = 0.94 and length N = 8970. The maximum number of iterations is
set to 20. As the other codes, the noise decoding thresholds for different

83

channel and decoder message quantization can be found in table A.10
on page 93. Those decoding thresholds used for this specific simulation
appear listen in table 5.4.

Continuing with the finite-length results for high rate codes, in Fig. 5.8
BER and WER results are shown for SPA and the proposed decoding
mapping functions using 4 bits per message over a BI-AWGNC. In Fig. 5.8,
we observe that even though in the waterfall region the BER curve of SPA
is approximately 0.05 dB better than the proposed decoding mapping
functions using 4 bits per message, at BER of 10−8, SPA is reached by the
proposed maps. In the same graph, WER results show a similar behaviour.
From this results, we intuit that the loss in the waterfall region is because
of too few bits per message were used. On the other hand, to approach
SPA at low-error probability is of greater significance. In Fig. 5.8, at the
lowest error-rate probability the average number of iterations of SPA is 4
while for the proposed decoding mappings is 6.

5.2 Summary

In this chapter, we analyzed the compuer-based simulation results for
different regular (dv, dc)-LDPC codes. We divided the finite-length results
into three different subsections to obtain a better understanding of the
error correction capability of our proposed decoding mapping functions
using 3 and 4 bits per message. Even though, the proposed mapping
functions can be built for any number of bits per message (e.g., 1, 2, . . . ,
etc.), we were interested in the sets of decoding mapping functions using
a few bits per message (i.e. 3 or 4) able to reach or perform close to
full sum-product algorithm using floating point values. Below, we list the
most important observations observed in the simulations presented in this
chapter.

• In 7 of the 8 codes simulated over the BI-AWGNC, the proposed
decoding mapping functions using 4 bits per message achieved the
error-rate performance of the sum-product algorithm using floating
point numbers and, in some cases SPA was even surpassed by the
proposed maps. In the case that the proposed decoding mapping
functions using 4 bits per message had a gap respect to SPA, it was
around 0.1 dB.

• Comparing the SPA with the proposed decoding mapping functions
using 3 bits per message over a BI-AWGN channel, the proposed
maps have a gap at most of 0.4 dB.

84

• Using a degree in the variable node dv ≥ 4 the error-rate curves
look more smoothly, this aspect is due to two reasons, one that
codes with dv = 3 are more prone to have 4-girth cycles, and second
that the chosen codes mostly are array codes (i.e., these codes by
construction guarantee non 4-girth cycles [43]).

• An increment in the length of the code above 8000 generated a small
gap of 0.05 dB but in the error-floor region the proposed decoding
mapping functions achieved the SPA performance.

• On the average number of iterations, the proposed decoding mapping
functions using 3 and 4 bits per message follow closely the numbers
achieved by SPA. In all cases less than 15.

• The positive results obtained in this work for short and medium
code lengths, indicates that maximization of mutual information as
a metric for designing decoding mapping functions is suitable and
could lead to successful decoding of regular LDPC codes. An open
question is if the efficient decoding performance of the proposed
maps will remain close to that achieved by the SPA for code lengths
larger than 100000.

85

Chapter 6

Conclusions and future work

6.1 Conclusions

In this dissertation, we have developed a technique where the LDPC de-
coders and channel quantization implementations, including quantization
of messages, are designed using only the probability distributions from the
channel. Given a probability distribution, our method designs a lookup
table (LUT) that maximizes mutual information, and LUTs are imple-
mented directly in VLSI. This is the “max-LUT method”.

The proposed lookup tables or sometimes referred as mapping func-
tions are used for channel quantization and for message-passing decoding
of LDPC codes. These decoding mapping functions are not derived from
belief-propagation decoding or one of its approximations, instead, the de-
coding mapping functions are based on a channel quantizer that maximizes
mutual information. More precisely, the construction technique is a sys-
tematic method which uses an optimal quantizer at each step of density
evolution to generate message-passing decoding mappings.

In a simple manner, the design of LDPC decoders by maximization
of mutual information is analogous to finding non-uniform quantization
schemes where the quantization can vary with each iteration.

Simulation results show that the proposed decoding mapping functions
using 4 bits per message can approach the error-rate performance of sum-
product algorithm in the waterfall region and can surpass it in the error-
floor region, this was observed in the BSC as well as in the BI-AWGNC.
Originally, the proposed mapping functions/LUTs targeted data storage
applications but after simulations results, the propose maps show good
performance for a variety of rate codes.

86

6.2 Future work

During the development of the proposed decoding mapping functions for
LDPC decoding, we have visualized some interesting research paths that
may lead to exiting results for information and coding theory. Those are
listed below.

• The proposed mapping functions are locally optimal in the sense of
maximization of mutual information. Therefore, a natural problem
to solve is to construct mapping function which are globally optimal.

• Density evolution algorithm assume an infinite block length for an
LDPC code, it would be interesting to design a density evolution
algorithm for finnite-length LDPC codes, in this way the quantizers
could be optimized to produce higher decoding thresholds.

• Perform a channel quantization based on training data could give
more information for our decoding mappings, unfortunately that
kind of training data is only available in companies working on data
storage applications.

• Extension of our approach to non-binary LDPC codes is an exciting
research path, which is suitable to investigate in a near future.

• Since the optimal quantizer that we used in this research is connected
to machine learning techniques, an interesting research path is to
design “smart” LDPC decoders, this is, decoders that learn from
unsuccessful decoding and modify the content of the lookup tables.

• Even though the proposed decoding mapping functions give some
advantages in the hardware design of an LDPC decoder, the re-
liability of the hardware implementation itself needs more research
since it is susceptible of error provoked by physical internal problems
existing in VLSI.

87

Appendix A

Noise thresholds for a
BI-AWGNC

In this appendix, decoding thresholds assuming a binary-input addi-
tive white Gaussian noise channel (BI-AWGNC) are presented. In this
section there are 11 different tables, each one is related to a specific
(dv, dc)-LDPC code. The set of channel quantization levels listed are
|Z| ∈ {2, 3, 4, 5, 6, 8, 12, 16, 20, 24, 28, 32}. The set of decoder message
quantization listed are K ∈ {2, 3, 4, 5, 6, 7, 8, 16, 32}. An intersection be-
tween a row (number of quantization levels for the BI-AWGN) and a
column (number of quantization levels for the decoder message) repre-
sents the decoding threshold of that specific (dv, dc)-LDPC with channel
quantization levels |Z| and decoder quantization levels K. If other com-
binations for |Z| and K are investigated or other (dv, dc)-LDPC codes are
investigated, apply the construction method presented in Section 4.3.

88

Table A.1: Noise decoding thresholds for a regular (dv = 2, dc = 40)-LDPC
with rate R = 19/20 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.0648 0.0709 0.0831 0.0831 0.0892 0.0892 0.0892 0.0892 0.0892
3 0.0831 0.0831 0.1075 0.1075 0.1075 0.1075 0.1075 0.1075 0.1075
4 0.0953 0.0953 0.1136 0.1136 0.1197 0.1197 0.1197 0.1197 0.1197
5 0.1014 0.1014 0.1197 0.1197 0.1197 0.1258 0.1258 0.1258 0.1258
6 0.1014 0.1075 0.1258 0.1258 0.1258 0.1258 0.1319 0.1319 0.1319
8 0.0953 0.1136 0.1258 0.1258 0.1319 0.1319 0.1319 0.1380 0.1380
12 0.1014 0.1197 0.1258 0.1319 0.1319 0.1380 0.1380 0.1380 0.1380
16 0.1014 0.1197 0.1258 0.1319 0.1380 0.1380 0.1380 0.1380 0.1441
20 0.1014 0.1197 0.1258 0.1319 0.1380 0.1380 0.1380 0.1380 0.1441
24 0.1014 0.1197 0.1319 0.1319 0.1380 0.1380 0.1380 0.1441 0.1441
28 0.1014 0.1197 0.1319 0.1319 0.1380 0.1380 0.1380 0.1441 0.1441
32 0.1014 0.1197 0.1319 0.1319 0.1380 0.1380 0.1380 0.1441 0.1441

Table A.2: Noise decoding thresholds for a regular (dv = 3, dc = 4)-LDPC
with rate R = 1/4 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.5973 0.8199 0.8793 0.9387 0.9758 0.9906 1.0055 1.0426 1.0574
3 0.5527 1.1094 1.0426 1.1688 1.1836 1.2355 1.2430 1.3023 1.3172
4 0.7680 1.0871 1.2504 1.2430 1.3023 1.3320 1.3469 1.4137 1.4211
5 0.7309 1.0648 1.2133 1.3320 1.3469 1.3914 1.3988 1.4582 1.4805
6 0.8273 1.1316 1.2430 1.3320 1.3914 1.4062 1.4359 1.4879 1.5102
8 0.8570 1.1688 1.2727 1.3543 1.3840 1.4359 1.4582 1.5250 1.5398
12 0.8719 1.2059 1.3098 1.3766 1.4211 1.4434 1.4730 1.5398 1.5547
16 0.8719 1.2133 1.3172 1.3840 1.4211 1.4582 1.4730 1.5473 1.5621
20 0.8719 1.2207 1.3172 1.3914 1.4285 1.4730 1.4730 1.5473 1.5621
24 0.8719 1.2207 1.3246 1.3840 1.4285 1.4656 1.4805 1.5473 1.5695
28 0.8719 1.2281 1.3246 1.3914 1.4359 1.4656 1.4805 1.5473 1.5695
32 0.8719 1.2281 1.3246 1.3914 1.4359 1.4656 1.4805 1.5473 1.5695

89

Table A.3: Noise decoding thresholds for a regular (dv = 3, dc = 6)-LDPC
with rate R = 1/2 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.3078 0.4637 0.4414 0.4711 0.4859 0.4934 0.5008 0.5156 0.5156
3 0.3301 0.5379 0.5676 0.5973 0.5973 0.6195 0.6195 0.6418 0.6418
4 0.4266 0.5602 0.6270 0.6270 0.6492 0.6641 0.6715 0.6938 0.6938
5 0.4266 0.5676 0.6121 0.6641 0.6715 0.6863 0.6938 0.7160 0.7160
6 0.4711 0.6121 0.6270 0.6641 0.6938 0.6938 0.7012 0.7309 0.7309
8 0.4934 0.6121 0.6715 0.6789 0.6938 0.7160 0.7234 0.7383 0.7457
12 0.5008 0.6270 0.6641 0.6938 0.7012 0.7234 0.7309 0.7531 0.7605
16 0.5082 0.6418 0.6641 0.7012 0.7160 0.7234 0.7309 0.7531 0.7605
20 0.5082 0.6418 0.6715 0.6938 0.7160 0.7234 0.7309 0.7531 0.7605
24 0.5082 0.6418 0.6715 0.7012 0.7160 0.7309 0.7309 0.7605 0.7605
28 0.5082 0.6418 0.6789 0.7012 0.7160 0.7234 0.7309 0.7605 0.7605
32 0.5082 0.6418 0.6715 0.7012 0.7160 0.7309 0.7309 0.7605 0.7605

Table A.4: Noise decoding thresholds for a regular (dv = 4, dc = 5)-LDPC
with rate R = 1/5 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.5527 0.8125 0.8273 0.8570 0.8867 0.8941 0.9090 0.9387 0.9461
3 0.8125 0.9016 0.9906 1.0500 1.0797 1.1020 1.1242 1.1613 1.1688
4 0.7160 0.9832 1.1094 1.1168 1.1613 1.1910 1.2059 1.2504 1.2578
5 0.8125 0.9387 1.1094 1.1762 1.2059 1.2281 1.2430 1.2949 1.3023
6 0.8867 1.0723 1.1020 1.1910 1.2281 1.2504 1.2652 1.3172 1.3246
8 0.8793 1.0871 1.1242 1.2207 1.2430 1.2727 1.2875 1.3395 1.3469
12 0.8941 1.1020 1.1688 1.2355 1.2578 1.2949 1.3098 1.3617 1.3691
16 0.8941 1.1391 1.1688 1.2355 1.2652 1.2949 1.3098 1.3617 1.3766
20 0.9016 1.1391 1.1762 1.2355 1.2652 1.2949 1.3172 1.3691 1.3766
24 0.9016 1.1316 1.1836 1.2430 1.2652 1.3023 1.3172 1.3691 1.3766
28 0.9016 1.1316 1.1836 1.2430 1.2727 1.3023 1.3172 1.3691 1.3766
32 0.9016 1.1391 1.1836 1.2430 1.2652 1.3023 1.3172 1.3691 1.3766

90

Table A.5: Noise decoding thresholds for a regular (dv = 4, dc = 6)-LDPC
with rate R = 1/3 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.4563 0.6121 0.6195 0.6418 0.6566 0.6641 0.6715 0.6938 0.6938
3 0.6195 0.6789 0.7309 0.7828 0.8051 0.8199 0.8273 0.8570 0.8570
4 0.5602 0.7309 0.8273 0.8422 0.8645 0.8793 0.8867 0.9164 0.9238
5 0.6418 0.7234 0.8199 0.8645 0.8867 0.9016 0.9164 0.9461 0.9535
6 0.6863 0.8348 0.8273 0.8793 0.9090 0.9164 0.9313 0.9609 0.9684
8 0.6863 0.8199 0.8422 0.9090 0.9164 0.9387 0.9461 0.9832 0.9832
12 0.6938 0.8199 0.8645 0.9090 0.9313 0.9535 0.9609 0.9906 0.9980
16 0.6938 0.8496 0.8645 0.9164 0.9313 0.9535 0.9684 0.9980 1.0055
20 0.7012 0.8496 0.8719 0.9164 0.9387 0.9535 0.9684 0.9980 1.0055
24 0.6938 0.8422 0.8793 0.9238 0.9387 0.9535 0.9684 0.9980 1.0055
28 0.7012 0.8496 0.8719 0.9164 0.9387 0.9535 0.9684 0.9980 1.0055
32 0.7012 0.8496 0.8793 0.9238 0.9387 0.9609 0.9684 0.9980 1.0055

Table A.6: Noise decoding thresholds for a regular (dv = 4, dc = 8)-LDPC
with rate R = 1/2 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.3598 0.4340 0.4340 0.4488 0.4637 0.4637 0.4711 0.4785 0.4859
3 0.4488 0.4785 0.5230 0.5527 0.5602 0.5750 0.5750 0.5898 0.5973
4 0.4340 0.5230 0.5750 0.5898 0.6047 0.6121 0.6195 0.6344 0.6344
5 0.4785 0.5305 0.5750 0.6047 0.6195 0.6270 0.6344 0.6492 0.6566
6 0.5008 0.5898 0.5898 0.6195 0.6344 0.6418 0.6492 0.6641 0.6641
8 0.5082 0.5750 0.5898 0.6344 0.6418 0.6492 0.6566 0.6715 0.6789
12 0.5082 0.5898 0.6047 0.6344 0.6492 0.6566 0.6641 0.6789 0.6863
16 0.5082 0.5973 0.6121 0.6344 0.6492 0.6641 0.6641 0.6863 0.6863
20 0.5156 0.5973 0.6047 0.6344 0.6492 0.6641 0.6715 0.6863 0.6863
24 0.5156 0.5973 0.6121 0.6418 0.6492 0.6641 0.6715 0.6863 0.6938
28 0.5156 0.6047 0.6195 0.6418 0.6492 0.6641 0.6715 0.6863 0.6938
32 0.5156 0.5973 0.6121 0.6418 0.6492 0.6641 0.6715 0.6863 0.6938

91

Table A.7: Noise decoding thresholds for a regular (dv = 4, dc = 9)-LDPC
with rate R = 5/9 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.3301 0.3820 0.3820 0.4043 0.4117 0.4117 0.4191 0.4266 0.4266
3 0.4043 0.4340 0.4711 0.4859 0.5008 0.5082 0.5082 0.5230 0.5230
4 0.3895 0.4711 0.5156 0.5230 0.5305 0.5453 0.5453 0.5602 0.5602
5 0.4340 0.4711 0.5156 0.5379 0.5527 0.5602 0.5676 0.5750 0.5824
6 0.4488 0.5230 0.5305 0.5453 0.5602 0.5676 0.5750 0.5898 0.5898
8 0.4563 0.5156 0.5305 0.5602 0.5676 0.5750 0.5824 0.5973 0.5973
12 0.4563 0.5305 0.5379 0.5602 0.5750 0.5824 0.5898 0.6047 0.6047
16 0.4637 0.5305 0.5453 0.5676 0.5750 0.5824 0.5898 0.6047 0.6047
20 0.4637 0.5305 0.5379 0.5676 0.5750 0.5898 0.5898 0.6047 0.6121
24 0.4637 0.5305 0.5453 0.5676 0.5750 0.5898 0.5898 0.6047 0.6121
28 0.4637 0.5379 0.5453 0.5676 0.5750 0.5898 0.5898 0.6047 0.6121
32 0.4637 0.5305 0.5453 0.5676 0.5750 0.5898 0.5898 0.6047 0.6121

Table A.8: Noise decoding thresholds for a regular (dv = 4, dc = 36)-LDPC
with rate R = 8/9 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.1445 0.1594 0.1668 0.1742 0.1742 0.1742 0.1742 0.1816 0.1816
3 0.1816 0.1965 0.2039 0.2113 0.2113 0.2113 0.2113 0.2188 0.2188
4 0.1891 0.2039 0.2188 0.2188 0.2262 0.2262 0.2262 0.2336 0.2336
5 0.1965 0.2113 0.2188 0.2262 0.2262 0.2336 0.2336 0.2336 0.2336
6 0.2039 0.2262 0.2262 0.2336 0.2336 0.2336 0.2336 0.2410 0.2410
8 0.2113 0.2188 0.2262 0.2336 0.2336 0.2336 0.2410 0.2410 0.2410
12 0.2113 0.2262 0.2262 0.2336 0.2336 0.2410 0.2410 0.2410 0.2410
16 0.2113 0.2262 0.2262 0.2336 0.2410 0.2410 0.2410 0.2410 0.2484
20 0.2113 0.2262 0.2262 0.2336 0.2410 0.2410 0.2410 0.2484 0.2484
24 0.2113 0.2262 0.2262 0.2336 0.2410 0.2410 0.2410 0.2484 0.2484
28 0.2113 0.2262 0.2262 0.2336 0.2410 0.2410 0.2410 0.2484 0.2484
32 0.2113 0.2262 0.2262 0.2336 0.2410 0.2410 0.2410 0.2484 0.2484

92

Table A.9: Noise decoding thresholds for a regular (dv = 4, dc = 42)-LDPC
with rate R = 19/21 over a BI-AWGNC using different quantization levels
K and |Z| for the decoder message and the channel message respectively.
The term log2(K) is the number of bits to represent the decoder message,
while log2(|Z|) is the number of bits to represent the channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.1371 0.1520 0.1594 0.1594 0.1668 0.1668 0.1668 0.1668 0.1668
3 0.1742 0.1891 0.1891 0.1965 0.1965 0.1965 0.2039 0.2039 0.2039
4 0.1816 0.1965 0.2039 0.2113 0.2113 0.2113 0.2113 0.2188 0.2188
5 0.1891 0.1965 0.2039 0.2113 0.2188 0.2188 0.2188 0.2188 0.2188
6 0.1891 0.2113 0.2113 0.2188 0.2188 0.2188 0.2188 0.2262 0.2262
8 0.1965 0.2039 0.2113 0.2188 0.2188 0.2188 0.2262 0.2262 0.2262
12 0.1965 0.2113 0.2113 0.2188 0.2188 0.2262 0.2262 0.2262 0.2262
16 0.1965 0.2113 0.2113 0.2188 0.2262 0.2262 0.2262 0.2262 0.2262
20 0.1965 0.2113 0.2113 0.2188 0.2262 0.2262 0.2262 0.2262 0.2262
24 0.1965 0.2113 0.2113 0.2188 0.2262 0.2262 0.2262 0.2262 0.2262
28 0.1965 0.2113 0.2113 0.2188 0.2262 0.2262 0.2262 0.2262 0.2336
32 0.1965 0.2113 0.2113 0.2188 0.2262 0.2262 0.2262 0.2262 0.2336

Table A.10: Noise decoding thresholds for a regular (dv = 4, dc = 69)-
LDPC with rate R = 65/69 over a BI-AWGNC using different quantiza-
tion levels K and |Z| for the decoder message and the channel message
respectively. The term log2(K) is the number of bits to represent the
decoder message, while log2(|Z|) is the number of bits to represent the
channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.1136 0.1319 0.1313 0.1312 0.1312 0.1406 0.1380 0.1380 0.1406
3 0.1441 0.1562 0.1625 0.1594 0.1594 0.1688 0.1684 0.1684 0.1688
4 0.1502 0.1623 0.1688 0.1688 0.1781 0.1781 0.1745 0.1806 0.1781
5 0.1562 0.1688 0.1750 0.1781 0.1781 0.1781 0.1806 0.1806 0.1781
6 0.1623 0.1750 0.1750 0.1781 0.1781 0.1781 0.1867 0.1867 0.1875
8 0.1675 0.1688 0.1750 0.1781 0.1781 0.1875 0.1867 0.1867 0.1875
12 0.1675 0.1750 0.1750 0.1781 0.1875 0.1875 0.1867 0.1867 0.1875
16 0.1675 0.1750 0.1750 0.1781 0.1875 0.1875 0.1875 0.1867 0.1875
20 0.1675 0.1750 0.1750 0.1781 0.1875 0.1875 0.1875 0.1928 0.1875
24 0.1675 0.1750 0.1750 0.1781 0.1875 0.1875 0.1875 0.1928 0.1875
28 0.1675 0.1750 0.1750 0.1781 0.1875 0.1875 0.1875 0.1928 0.1875
32 0.1675 0.1750 0.1750 0.1781 0.1875 0.1875 0.1875 0.1875 0.1875

93

Table A.11: Noise decoding thresholds for a regular (dv = 6, dc = 32)-
LDPC with rate R = 13/16 over a BI-AWGNC using different quantiza-
tion levels K and |Z| for the decoder message and the channel message
respectively. The term log2(K) is the number of bits to represent the
decoder message, while log2(|Z|) is the number of bits to represent the
channel message.

|Z| K (All noise thresholds are the variance value σ2)
2 3 4 5 6 7 8 16 32

2 0.1891 0.2039 0.2039 0.2113 0.2113 0.2188 0.2188 0.2188 0.2188
3 0.2336 0.2410 0.2484 0.2559 0.2559 0.2559 0.2559 0.2633 0.2633
4 0.2410 0.2484 0.2559 0.2707 0.2707 0.2707 0.2707 0.2781 0.2781
5 0.2484 0.2559 0.2633 0.2707 0.2707 0.2781 0.2781 0.2781 0.2855
6 0.2410 0.2707 0.2633 0.2707 0.2781 0.2781 0.2781 0.2855 0.2855
8 0.2484 0.2559 0.2707 0.2781 0.2781 0.2855 0.2855 0.2855 0.2855
12 0.2559 0.2707 0.2707 0.2781 0.2855 0.2855 0.2855 0.2930 0.2930
16 0.2559 0.2707 0.2707 0.2781 0.2855 0.2855 0.2855 0.2930 0.2930
20 0.2559 0.2707 0.2707 0.2781 0.2855 0.2855 0.2855 0.2930 0.2930
24 0.2559 0.2707 0.2707 0.2781 0.2855 0.2855 0.2855 0.2930 0.2930
28 0.2559 0.2707 0.2707 0.2781 0.2855 0.2855 0.2855 0.2930 0.2930
32 0.2559 0.2707 0.2707 0.2781 0.2855 0.2855 0.2855 0.2930 0.2930

94

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” The
Bell System Technical Journal, vol. 27, pp. 379–423, 623–656,
July/October 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proceedings
IEEE International Conference on Communications, vol. 2, (Geneva,
Switzerland), pp. 1064–1070, IEEE, May 1993.

[3] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA,
USA: The M.I.T. Press, 1963.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Wiley, 1991.

[5] R. W. Hamming, Coding and Information Theory. Prentice-Hall,
Inc., 1986.

[6] D. J. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge university press, 2003.

[7] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[8] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” IEEE Communications Letters, vol. 5, pp. 58–60,
February 2001.

[9] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity check codes under message-passing decoding,” IEEE Transac-
tions on Information Theory, vol. 47, pp. 599–618, February 2001.

95

[10] W. Ryan and S. Lin, Channel codes: classical and modern. New
York, NY, USA: Cambridge University Press, 1st ed., 2009. ISBN
978-0-521-84868-8.

[11] M. Baldi, G. Cancellieri, and F. Chiaraluce, “Array convolutional
low-density parity-check codes,” IEEE Communications Letters,
vol. 18, pp. 336–339, February 2014.

[12] L. Ping and W. K. Leung, “Decoding low density parity check codes
with finite quantization bits,” IEEE Communications Letters, vol. 4,
pp. 62–64, February 2000.

[13] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the
modified weighted bit flipping decoding algorithm for LDPC codes,”
IEEE Communications Letters, vol. 9, pp. 814–816, September 2005.

[14] T. Magloire, N. Ngatched, M. Bossert, A. Fahrner, and F. Takawira,
“Two bit-flipping decoding algorithms for low-density parity-check
codes,” IEEE Transactions on Communications, vol. 57, pp. 591–
596, March 2009.

[15] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complex-
ity iterative decoding of low-density parity check codes based on be-
lief propagation,” IEEE Transactions on Communications, vol. 47,
pp. 673–680, May 1999.

[16] N. Wiberg, Codes and decoding on general graphs. PhD thesis, Dept.
Elec. Eng., Linköping Univ., Linköping, Sweden (Linköping Studies
in Science and Technology, Dissertation 440), 1996.

[17] J. Chen and M. P. C. Fossorier, “Density evolution for BP-based
decoding algorithms of LDPC codes and their quantized versions,” in
Proceedings IEEE Global Telecommunications Conference, (Taipei,
Taiwan), IEEE, November 2002.

[18] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementa-
tion of min-sum algorithm and its modifications for decoding low-
density parity-check (LDPC) codes,” IEEE Transactions on Com-
munications, vol. 53, pp. 549–554, April 2005.

[19] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y.
Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Transac-
tions on Communications, vol. 53, pp. 1288–1299, August 2005.

96

[20] J.-S. Lee and J. Thorpe, “Memory-efficient decoding of LDPC codes,”
in Proceedings of IEEE International Symposium on Information
Theory, (Adelaide, Australia), pp. 459–463, September 2005.

[21] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wain-
wright, “Design of LDPC decoders for improved low error rate per-
formance: quantization and algorithm choices,” IEEE Transactions
on Communications, vol. 57, pp. 3258–3268, November 2009.

[22] X. Zhang and P. H. Siegel, “Quantized min-sum decoders with low er-
ror floor for LDPC codes,” in Proceedings of IEEE International Sym-
posium on Information Theory, (Cambridge, MA, USA), pp. 2871–
2875, July 2012.

[23] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alpha-
bet iterative decoders–part I: Decoding beyond belief propagation on
the binary symmetric channel,” IEEE Transactions on Communica-
tions, vol. 61, pp. 4033–4045, October 2013.

[24] J. Lewandowsky, M. Stark, and G. Bauch, “Optimum message
mapping LDPC decoders derived from the sum-product algorithm,”
in Proceedings IEEE International Conference on Communications,
pp. 1–6, May 2016.

[25] B. M. Kurkoski and H. Yagi, “Quantization of binary-input discrete
memoryless channels,” IEEE Transactions on Information Theory,
vol. 60, pp. 4544–4552, August 2014.

[26] K. Moon Todd, Error Correction Coding, Mathematical Methods and
Algorithms. John Wiley & Sons, Ltd, 2005.

[27] S. M. Aji and R. J. McEliece, “A general algorithm for distribut-
ing information in a graph,” in Proceedings of IEEE International
Symposium on Information Theory, p. 6, June 1997.

[28] S. M. Aji and R. J. McEliece, “The generalized distributive law,”
IEEE Transactions on Information Theory, vol. 46, pp. 325–343,
March 2000.

[29] T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-
free tanner graphs?,” IEEE Transactions on Information Theory,
vol. 45, pp. 2173–2181, September 1999.

97

[30] D. J. C. MacKay, “Good error-correcting codes based on very
sparse matrices,” IEEE Transactions on Information Theory, vol. 45,
pp. 399–431, March 1999.

[31] D. J. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Electronics Letters, vol. 32, no. 18,
pp. 1645–1646, 1996.

[32] D. Burshtein, V. D. Pietra, D. Kanevsky, and A. Nadas, “Mini-
mum impurity partitions,” The Annals of Statistics, vol. 20, no. 3,
pp. 1637–1646, 1992.

[33] P. A. Chou, “Optimal partitioning for classification and regression
trees,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 13, pp. 340–354, April 1991.

[34] B. M. Kurkoski, “Source code-quantDMC, version 3.” http://www.

jaist.ac.jp/is/labs/bits/source, June 2002. Accessed: 2016-
04-13.

[35] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Transactions on Information Theory, vol. 47,
pp. 657–670, February 2001.

[36] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, “Density evolution for
asymmetric memoryless channels,” IEEE Transactions on Informa-
tion Theory, vol. 51, pp. 4216–4236, December 2005.

[37] M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz,
“Quantized message passing for LDPC codes,” in 2015 49th Asilo-
mar Conference on Signals, Systems and Computers, pp. 1606–1610,
November 2015.

[38] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, March 2008.

[39] D. J. MacKay and M. S. Postol, “Weaknesses of margulis and
ramanujan-margulis low-density parity-check codes,” Electronic
Notes in Theoretical Computer Science, vol. 74, pp. 97–104, 2003.

[40] T. Richardson, “Error floors of LDPC codes,” in Proceedings of the
Annual Allerton Conference on Communication Control and Com-
puting, vol. 41, pp. 1426–1435, The University; 1998, 2003.

98

[41] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and
B. Nikolic, “Analysis of absorbing sets and fully absorbing sets of
array-based LDPC codes,” IEEE Transactions on Information The-
ory, vol. 56, pp. 181–201, January 2010.

[42] F. J. C. Romero and B. M. Kurkoski, “LDPC decoding mappings
that maximize mutual information,” IEEE Journal on Selected Areas
in Communications, vol. 34, pp. 2391–2401, September 2016.

[43] O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened array codes
of large girth,” Information Theory, IEEE Transactions on, vol. 52,
no. 8, pp. 3707–3722, 2006.

[44] D. J. C. MacKay, “Encyclopedia of sparse graph codes.” http:

//www.inference.phy.cam.ac.uk/mackay/codes/data.html. Ac-
cessed: 2016-04-13.

[45] IEEE Std. 802.3an, IEEE Standard for Information Technology-
Telecommunications and Information Exchange between Systems- Lo-
cal and Metropolitan Area Networks-Specific Requirements Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications, September 2006.

[46] J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic
LDPC codes: Construction, low error-floor, large girth and a reduced-
complexity decoding scheme,” IEEE Transactions on Communica-
tions, vol. 62, pp. 2626–2637, August 2014.

[47] Z. Liu and D. A. Pados, “A decoding algorithm for finite-geometry
LDPC codes,” IEEE Transactions on Communications, vol. 53,
pp. 415–421, March 2005.

99

Publications

[1] F. J. C. Romero, B. M. Kurkoski, “Decoding mapping functions
for high-rate LDPC codes ,” The 8th Annual Non-Volatile Memories
Workshop (NVMW 2017), March 2017.

[2] F. J. C. Romero, B. M. Kurkoski, “Decoding mapping functions
that maximize mutual information for LDPC codes,” Proceedings of
the 39th Symposium on Information Theory and Its Applications,
pp. 187–192, December 2016.

[3] F. J. C. Romero, B. M. Kurkoski, “LDPC decoding mappings that
maximize mutual information,” IEEE Journal on Selected Areas in
Communications, vol. 34, No. 9, pp. 2391-2401, September 2016.

[4] F. J. C. Romero, B. M. Kurkoski, “Decoding LDPC codes with
mutual Information-maximizing lookup tables,” Proceedings of IEEE
International Symposium on Information Theory, vol. 34, No. 9, pp.
426–430, June 2015.

[5] F. J. C. Romero, B. M. Kurkoski, “Low complexity 3-bit LDPC-
LUT decoding algorithm,” Proceedings of the 37th Symposium on
Information Theory and Its Applications, vol. 34, No. 9, pp. 409–
414, December 2014.

[6] F. J. C. Romero, B. M. Kurkoski, H. Yagi, “Two-bit LDPC–LUT
decoder based on maximization of mutual information,” Proceedings
of the 36th Symposium on Information Theory and Its Applications,
vol. 34, No. 9, pp. 232–237, November 2013.

100

