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Abstract

Real-time systems are playing an important role in our society. In the last two decades,

there has been a dramatic rise in the number of real-time systems being used in our daily

lives and in industry production. Representative examples include vehicle and flight

control, chemical plant control, telecommunications, and multimedia systems. These

systems all make use of real-time technologies.

The most important attribute that sets real-time systems apart from other systems

is that the correctness of systems depends not only on the computed results but also on

the time at which results are produced. In other words, a task in a real-time system is

required to be completed before a specific time instant which is called deadlines. This

sensitivity to timing is central feature of system behaviors. To satisfy this requirement,

tasks need to be allocated sufficient resources (e.g., processor) so as to meet their deadlines

(i.e., to be completed before their deadlines). Scientific community has made great efforts

in developing scheduling polices for properly allocating resources to tasks. This field of

study is referred to as real-time scheduling.

With decades of efforts, real-time scheduling on uniprocessor systems can be viewed as

relatively mature. But there still remain many problems. For example, for a soft or firm

real-time system, when the system is under overload condition, some tasks will miss dead-

lines. It is important to minimize the degree of system performance degradation caused

by the missed deadline tasks. For this problem, the performance of existing scheduling

algorithms is not satisfactory.

Compared to uniprocessor systems, real-time scheduling on multiprocessor systems is

far from well-studied. Even for the simpler problem of scheduling identical multiprocessor

systems, there still remain many problems. For the harder problem of scheduling heteroge-

neous multiprocessor systems, where we have to face an awkward reality that considering

a relatively practical application scenario, there is still no solution to efficiently schedule

heterogeneous multiprocessor systems. This becomes unfortunate since current progress

in developing heterogeneous multiprocessor systems is a long way ahead of research efforts
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to determine the best scheduling policies.

These situations motive this research. The vision of this research is to help developers

easily and efficiently design scheduling for real-time systems with low cost. To approach

this vision, a Real-time scheduling methodology based on Satisfiability Modulo Theories

(RSMT) is proposed. In RSMT, the problem of scheduling is treated as a satisfiability

problem. The key work is to formalize the satisfiability problem using first-order logical

formulas. Through formalization, a SAT model is constructed to represent the scheduling

problem. This SAT model is a set of first-order logic formulas (within linear arithmetic in

the formulas) which express all the scheduling constraints that a desired schedule should

satisfy. After the SAT model is constructed, a SMT (satisfiability modulo theories) solver

(e.g., Z3, Yices) is employed to solve the formalized problem. A desired schedule can be

generated based on a solution model returned by the underlying SMT solver.

After RSMT is proposed, it is first applied to uniprocessor time-driven systems to solve

the overload problem. Then, RSMT is exploited to design scheduling for multiprocessor

time-driven systems. Heterogeneous real-time systems have been considered. At last, in

order to apply RSMT to design scheduling for event-driven systems, a method of combin-

ing RSMT and online scheduling algorithm is given. Through these studies, RSMT shows

capabilities to be applied to design scheduling for various kinds of scheduling targets and

systems, from uniprocessor to multiprocessor, from time-driven to event-driven. In addi-

tion, many practical requirements that are considered in real-time scheduling domain can

be dealt with, e.g., task dependency relation, tasks with different degrees of importance,

task preemption, and task migration. Benefit from these capabilities, RSMT leads us one

step closer to the vision. To the best of my knowledge, it is the first time systematically

introducing SMT to solve a series of problems covering a wide scope in real-time schedul-

ing domain.

keywords: real-time systems, satisfiability modulo theories, real-time scheduling,

overload problem, heterogeneous multiprocessor systems
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Chapter 1

Introduction

1.1 Research Background

Real-time systems are playing an important role in our society. In the last two decades,

there has been a dramatic rise in the number of real-time systems being used in our

daily lives and in industry production. Representative examples include vehicle and flight

control, chemical plant control, telecommunications, and multimedia systems. These

systems all make use of real-time technologies [1].

The most important attribute that sets real-time systems apart from other systems is

that the correctness of systems depends not only on the computed results but also on the

time at which results are produced [1]. In other words, a task in the system is required

to be completed before a specific time instant which is called deadline. This sensitivity

to timing is central feature of system behaviors [38]. To satisfy this requirement, tasks

need to be allocated sufficient resources (e.g., processor) so as to meet their deadlines.

Scientific community has made great efforts in developing scheduling polices for properly

allocating resources to tasks. This field of study is referred to as real-time scheduling.

1.1.1 Why Scheduling

The well-known Moore’s law [72] tells that the number of transistors in a dense integrated

circuit doubles approximately every two years. This prediction has been proved accurate

for several decades and describes a driving force of technological and social change, pro-

ductivity, and economic growth [73]. With this development rate, currently the price

1



of processor is quite cheap compared to 1970s in which the first real-time scheduling

algorithm was proposed [14]. Based on this comparison, a question raises: considering

the cheap price of processor, since we can afford many processors for our systems, it is

doubtful that research on real-time scheduling is still necessary.

This question comes from our intuitive impression, but if we think deeper, we can

find that there are lots of limitations and disadvantages to install more processors. For

example, in space-sensitive industries (e.g., auto industry), the space of a system is very

limited. In such a system, it is impractical to install more processors. Moreover, more

processors results in more energy consumption. Even if we ignore the additional cost due

to installing more processors, in the case of the same performance, a system consuming

less energy can surely outstrips the one consuming more. More seriously, more energy

consumption means more heat emission. From the observation that many data centers

located in extremely cold environments, we can know that the heat emission is quite an

important consideration, even a bottleneck, when designing such systems. Considering

these limitations and disadvantages, how to effectively utilize processor resources becomes

particularly important. Research on scheduling just aims at solving this problem.

1.1.2 Classification of Real-Time Systems

1.1.2.1 Based on timing requirements

Although all the real-time systems have the timing requirements, the stringency level of

such requirements can be different [3, 28, 29], which depends on their applied scenarios.

a. Hard real-time systems

Some systems cannot tolerate any task missing deadline, as a missed deadline task can

result in a catastrophe, such as loss of human lives. This kind of systems is referred to

as hard real-time systems [14]. Some typical examples are cruise control systems, flight

control systems.

Some other systems do not have such strict timing requirements. They allow tasks

missing deadlines occasionally, since a missed deadline task will just decrease quality-

of-service (QoS) rather than causing a catastrophe. For this kind of systems, based on

2



usefulness of a missed deadline task, systems can be further divided into three categories.

b. Firm real-time systems

For a firm real-time system, a missed deadline task is useless to the system. Such a task

is called firm deadline task, in other words, we say this task has firm deadline [74]. A

typical example is weather forecast system.

c. Soft real-time systems

For a soft real-time system, a missed deadline task may still be useful to the system. Such

a task is called soft deadline task, in other words, we say this task has soft deadline [14].

A typical example is multimedia system.

d. Mixed critical real-time systems

A relatively complex real-time system may contain both firm deadline tasks and soft

deadline tasks. For example, an integrated management system equipped on a vehicle

can manage both cruise control system (comprising firm deadline tasks) and sound sys-

tem (comprising soft deadline tasks). This kind of systems is referred to as mixed critical

real-time systems [75].

This research considers all the kinds of systems mentioned above.

1.1.2.2 Based on processors

Another classification criterion is based on equipped processors.

a. Uniprocessor real-time systems

A simple real-time system can have only one processor1. This kind of systems is referred

to as uniprocessor real-time systems[69].

1In this dissertation, as the specific architecture of a computing unit is not considered, the term

“processor” is used to refer to all kinds of computing units.
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b. Multiprocessor real-time systems

With respect to uniprocessor real-time systems, real-time systems which contain multiple

processors are referred to as multiprocessor real-time systems. Based on types of the

equipped processors, the multiprocessor real-time systems can be further divided into

three categories [13].

• Heterogeneous multiprocessor real-time systems. The processors equipped

in the systems are with different types. They can have different computing speeds,

which means for the same task, different processors need different time to complete

the task. Moreover, not all tasks may be able to be executed on all the processors.

• Uniform multiprocessor real-time systems. The processors equipped in the

systems are the same type but with different computing speeds. With respect to

heterogeneous multiprocessor real-time systems, all the tasks can be executed on all

the processors.

• Identical multiprocessor real-time systems. The processors equipped in the

systems are exactly the same, and of course, all the tasks can be executed on all the

processors.

This research considers all the kinds of systems mentioned above.

1.1.2.3 Based on task triggered paradigms

a. Event-driven systems

In an event-driven system, tasks are triggered as a consequence of the occurrence of an

event. Such an event is a change of state in a real-time object which has to be handled by

the system [76, 77]. For example, in a cruise control system, when drive presses a button

in the control lever, an event will be issued. Correspondingly, to response to this event,

some specified tasks are triggered.

As the events are usually initiated by the outside environment in which the system

operates (e.g., operations of users), the time at which the events are initiated is highly

randomized. Due to this randomness, in many implementations of real-time systems,

4



signaling of the events is realized by interrupt mechanism, which brings the occurrence of

an event to attention of the processor.

Although initiated times of the events are random, other information, such as which

tasks should be initiated to response to a particular event, are predefined at the time

when designing the system.

b. Time-driven systems

In a time-driven system, tasks are driven by system clocks which could be continuous as in

physical time, or discrete as if the clock were a metronome [77]. The time points at which

tasks will be triggered are predetermined. This driven mechanism makes the time-driven

systems more controllable than event-driven systems due to more determinism.

One drawback of time-driven system is lack on flexibility [78]. All the parameters of

tasks must be known in advance. Compared to time-driven systems, the main advantage

of event-driven systems is their capability to fast react to asynchronous external events

which are randomly triggered at system run-time [79]. Therefore, event-driven systems

show better real-time performance.

RSMT first focuses on time-driven systems. Through combining with online

scheduling algorithm, RSMT shows capability to design scheduling for event-

driven systems.

1.1.3 Classification of Real-Time Scheduling

Generally speaking, scheduling (conducted by a scheduler) is the process of allocating

resources (especially, processors) to tasks. The allocating result (i.e., scheduling result)

is called schedule (noun). Research on real-time scheduling is to study how to properly

allocate resources to tasks, so that, system timing requirements can be guaranteed.

1.1.3.1 Based on way to schedule tasks

In real-time scheduling, there are at least two different ways to schedule (verb) the tasks

[11].
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a. Offline scheduling

In offline scheduling, a scheduling table is generated before system run-time which specifies

all the information needed to schedule tasks, e.g., start execution time of all the tasks

contained in the system. Later, at system run-time, this scheduling table is used by

the scheduler to schedule tasks. As in this scheduling paradigm, tasks are scheduled

before system run-time, scheduling methods adopting this scheduling paradigm are usually

applied to time-driven systems. Note that, offline scheduling is also called table-driven

scheduling [69].

b. Online scheduling

In online scheduling, a number referring to as priority is assigned to each task at system

run-time usually based on task parameters. For example, the priority assignment can be

based on task deadline, say a task with earlier deadline has a higher priority. The task

with the highest priority will be executed first. As in this scheduling paradigm, tasks are

scheduled at system run-time, scheduling methods adopting this scheduling paradigm can

be applied to both time-driven and event-driven systems. Note that, online scheduling is

also called priority-driven scheduling [69].

RSMT focuses on offline scheduling, but a method of combining RSMT and

online scheduling is given.

1.1.3.2 Based on task migration

For multiprocessor systems, a criterion to categorize the scheduling techniques is based

on whether a task is allowed to migrate from one processor to another or not [69].
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a. Non-migrative scheduling

In non-migrative scheduling, tasks migrating 2 among processors is not allowed. That is,

if task τi needs the computed results of τj , task τi can only be executed on the processor

on which task τj has been executed.

b. Intra-migrative scheduling

In intra-migrative scheduling, tasks can migrate among processors with the same type. For

an identical or homogeneous multiprocessor systems, this means that tasks can migrate

among all the processors, since processors are the same type in these systems.

c. Fully-migrative scheduling

In fully-migrative scheduling, tasks cannot only migrate among processors with the same

type, but also among processors with different types.

For identical or homogeneous multiprocessor systems, fully-migrative scheduling is the

same as intra-migrative scheduling. But for heterogeneous multiprocessor systems, these

two types of scheduling are different, since different types of processors are equipped in

a heterogeneous multiprocessor system. Note that, in a heterogeneous multiprocessor

system, since not all tasks are able to be executed on all the processors, a task cannot

migrate to the processor on which it cannot be executed.

This research considers all the kinds of scheduling methods mentioned above.

1.1.3.3 Based on task preemption

Task preemption is to denote the phenomenon that a task running (i.e., being executed) on

a processor is forced by scheduler to relinquish the processor before it completes execution

[13].

2Strictly speaking, the data of the computed results of the task (or the signal issued by the task)

migrates among processors. More details will be explained in Chapter 4. For conciseness, tasks migrating

is used to refer to the meaning mentioned above hereafter.
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a. Preemptive scheduling

In preemptive scheduling, a running task can be preempted by another task.

b. Non-preemptive scheduling

In non-preemptive scheduling, task preemption is not allowed.

This research considers all the kinds of scheduling methods mentioned above.

1.1.3.4 Based on other practical requirements

Besides task preemption and task migration, there are still many other practical require-

ments considered in real-time scheduling domain. Similar to the classification based on

task preemption, we can classify the scheduling methods based on if they can support

the corresponding requirements. Here are some practical requirements: task dependency

relation, tasks with different degrees of importance.

Task dependency relation restricts the execution order of tasks. A task depending on

another one can start to run only after the depended task has been completed. Tasks

have such dependency relation may be because one task needs the computed results of

the others. Such situation widely exists in practical applications.

Tasks contained in a system may not be equally important. This situation also widely

exists in practical applications. Scheduling methods not supporting the requirement, tasks

with different degrees of importance, cannot be applied to these applications.

This research considers both task dependency relation and tasks with different

degrees of importance.

1.1.4 Background on Real-Time Scheduling

Scheduling for uniprocessor real-time systems

Research on uniprocessor real-time scheduling can trace back to the late 1960s and early

1970s [14].
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The paper by Liu and Layland [14] is regarded as the foundational work in real-time

scheduling theory. The paper addressed the problem of multiprogramming scheduling on

a uniprocessor real-time system. In the paper, two scheduling algorithms: fixed priority

scheduling algorithm and deadline driven scheduling algorithm were proposed3. Some

assumptions were applied to the proposed scheduling algorithms, e.g., i) The requests

for all tasks for which hard deadlines exist are periodic; ii) Tasks are independent; iii)

Run-time for each task is constant for that task and does not vary with time. Two

theoretical bounds were adopted: i) an optimal fixed priority scheduler possesses an

upper bound to processor utilization which may be as low as 70 percent for large task

sets; ii) full processor utilization can be achieved by dynamically assigning priorities on

the basis of their current deadlines. To obtain theoretical bounds, some proof methods

like interchanging task priorities were introduced. These outcomes have heavily influenced

the course of research on real-time scheduling for decades.

Since the seminal paper, in the 1980s and 1990s, significant research effort has been

made (e.g., [2, 4, 10, 12, 17]). Authors in [15, 16] provide historical accounts of the most

important advances in the field of uniprocessor scheduling during those decades. For

example, in 1982, Leung [17] considered fixed-priority scheduling for sets of tasks that

have deadlines less than their periods; Authors in [5] provided analysis techniques for

systems where tasks can communicate with each other.

Today, real-time scheduling on uniprocessor systems can be viewed as relatively mature

[13]. A large number of key results have been obtained and documented in textbooks

(e.g., [29, 40, 41]). But there is still significant scope for further research. For example,

for a soft or firm real-time system, when the system is under overload condition, some

tasks will miss deadlines. It is important to minimize the degree of system performance

degradation caused by the missed deadline tasks. For this problem, the performance of

existing scheduling algorithms is not satisfactory.

Scheduling for multiprocessor real-time systems

Although multiprocessor real-time scheduling theory also has its origins in the late 1960s

and early 1970s [14], compared to uniprocessor systems, real-time scheduling on multi-

3As the system model studied in [14] is different as the model studied in this dissertation, some terms

like “fixed priority” is not applied to the model studied in this dissertation.
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processor systems is far from well-studied. Liu in [14] noted that real-time scheduling on

multiprocessor systems is intrinsically a much more difficult problem than on uniproces-

sor systems: “Few of the results obtained for a single processor generalize directly to the

multiple processor case; bringing in additional processors adds a new dimension to the

scheduling problem. The simple fact that a task can use only one processor even when

several processors are free at the same time adds a surprising amount of difficulty to the

scheduling of multiple processors.”

Most of existing works deal with the simpler problem, scheduling identical or uniform

multiprocessor real-time systems, e.g., [62, 63, 64, 65, 66, 67]. But even for this simpler

problem, there still remain many problems. For example, in a comprehensive survey [13],

some open issues are emphasized: i) limits on processor utilization; ii) ineffective schedu-

lability tests; iii) consideration of overheads; iv) limited task models for multiprocessor

systems; and v) limited policies for access to shared resources.

For the harder problem of scheduling heterogeneous multiprocessor, some works have

been conducted, e.g., [56, 57, 58, 59, 60, 61, 61, 68]. However, all these works consider the

non-migrative scheduling. That is, tasks are not allowed to migrative among processors,

which is a simpler case compared to full- and intra-migrative scheduling which allow

task migrating among processors through network channels. Few works consider full- or

intra-migrative scheduling for heterogeneous multiprocessor systems.

This results in an awkward reality that considering a relatively practical application

scenario (e.g., considering task dependency relation), there is still no solution to efficiently

schedule heterogeneous multiprocessor systems. This becomes unfortunate since current

progress in developing heterogeneous multiprocessor systems is a long way ahead of re-

search efforts to determine the best scheduling policies. Many chip makers have already

offered chips having different types of processors, both for desktops and embedded devices

[42], such as AMD Inc. [43], Apple Inc. [44], Intel Corporation [45, 46], Nvidia Inc. [47],

Qualcomm Inc. [48], Samsung Inc. [49], ST Ericsson [50], and Texas Instruments [51].

Developing real-time systems based on these produces can results in systems that are

heavily over specified and expensive due to lack of necessary theoretical underpinnings.
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1.1.5 Shortcomings of Conventional Design Method

Conventional design method for scheduling real-time systems is to design scheduling algo-

rithms which is adopted by most of existing works (e.g., [1, 3, 13, 14, 52, 54]). This design

method has its intrinsic shortcomings, which inevitably hinders the scheduling problems

from being solved. Its major shortcomings are as follows.

• It is difficult, even impossible, to adapt some existing scheduling algorithms to

different systems or to different scheduling targets.

• When we design a scheduling algorithm for a newly developed system, it is difficult

to benefit from the existing scheduling algorithms, which usually results in a high

cost.

• For many existing scheduling algorithms, to enhance them to support some practical

requirements (e.g., considering task dependency relation) is difficult, even impossi-

ble.

Let’s use the scheduling algorithm GS (greedy scheduling) proposed in [52] as an example.

GS dedicates to solving the overload problem. It can only be applied to uniprocessor sys-

tems for its specific scheduling target, maximizing total number of successfully completed

tasks. The key idea of GS is based on the idea of greedy algorithm. Through analyzing

characteristics of the uniprocessor systems and scheduling target, GS gives its processing

flow. Such processing flow is customized for the uniprocessor systems and the specific

scheduling target. Moreover, GS assumes that tasks are independent with each other.

When we consider task dependency relation which widely exists in practical applications,

GS cannot be applied.

These shortcomings hinder developers to easily and efficiently design scheduling for

real-time systems, which usually results in a high cost. Mainly because of this, many

problems exist in real-time scheduling domain. Based on these observations, I conduct

this research.
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1.2 Research Vision and Purpose

The vision of this research is to help developers easily and efficiently design scheduling

for real-time systems with low cost.

To approach this vision, a Real-time scheduling methodology based on Satisfiability

Modulo Theories (RSMT) is proposed. First, RSMT is applied to uniprocessor time-

driven systems in which it focuses on solving the overload problem. Then, RSMT is

exploited to design scheduling for multiprocessor time-driven systems. Heterogeneous

real-time systems have been considered. At last, in order to apply RSMT to design

scheduling for event-driven systems, a method of combining RSMT and online scheduling

algorithm is given.

Through these studies, RSMT shows capabilities to design scheduling for various kinds

of scheduling targets and systems, from uniprocessor to multiprocessor, from time-driven

to event-driven. In addition, many practical requirements that are considered in real-time

scheduling domain can be dealt with, e.g., task dependency relation, tasks with different

degrees of importance, task preemption, and task migration (see details in Chapter 3, 4,

and 5). Benefit from these capabilities, RSMT leads us one step closer to the vision.

1.3 Contribution

• RSMT provides a unified design strategy for scheduling real-time sys-

tems. In RSMT, scheduling problem is treated as a satisfiability problem which is

formalized by first-order logical formulas. Such formalization provides a firm theo-

retic foundation to solve the scheduling problems (see details in Chapter 2, 3, and

4).

• RSMT can reduce cost of designing scheduling for real-time systems.

When adapting a system to other scheduling targets, system constraints defined in

the SAT model can be totally reused, only little modification on target constraints

needs to make, which means the scheduling constraints defined for an existing system

can greatly benefit the design for a newly developed system (see details in Chapter

3 and 4).
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• RSMT can help developers easily and efficiently design scheduling for

real-time systems. Based on the design guidelines given in this research, develop-

ers can directly apply RSMT to design scheduling for various kinds of systems and

scheduling targets, and to handle many practical requirements (see details in Chap-

ter 3, 4, and 5). Moreover, for a newly encountered scheduling problem, through

modifying or adding scheduling constraints given in Chapter 3 and 4, developers

may also apply RSMT to solve the problem (see details in section 6.3).

To the best of my knowledge, it is the first time systematically introducing SMT to solve

a series of problems covering a wide scope in real-time scheduling domain.

1.4 Organization of Dissertation

Chapter 2. The framework of RSMT is given. To illustrate the usage of the framework,

an example of designing scheduling for a simple scenario is shown.

Chapter 3. RSMT is applied to address the overload problem. The target system is time-

driven uniprocessor real-time systems. Various kinds of scheduling targets

and requirements are considered.

Chapter 4. RSMT is applied to design scheduling for time-driven multiprocessor real-time

systems. Since the heterogeneous systems are considered, it means RSMT

can also be applied to identical and uniform systems as scheduling problems

for such systems can be treated as special cases of scheduling heterogeneous

multiprocessor systems.

Chapter 5. Since RSMT performs in offline paradigm, it limits the capability of RSMT

to be applied to event-driven systems. In this chapter, a method of combining

RSMT and online scheduling algorithm is given. After the method is intro-

duced, to show its usage in practical applications, a case study on a running

car which comprises of radar, cruise control, and engine control is conducted.

Through the case study, a method for generating task dependency relation

based on SOFL (structured-object-oriented-formal) specification is also pro-

vided.
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Chapter 6. Related works are summarized. Some discussions on validity of RSMT, con-

sidering critical resources are conducted. Advantages, disadvantages, and

future works are given.
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Chapter 2

Framework of the SMT-based

Scheduling Methodology

In this chapter, the framework of RSMT which is based on satisfiability modulo theories

(SMT) [18] is given. The design guidelines for scheduling uniprocessor and multiprocessor

real-time systems described in Chapter 3 and 4 are all based on this framework.

Organization of this chapter. The brief introduction of SMT is given in section 2.1.

The framework is explained in section 2.2. To illustrate the usage of the framework, a

simple example is studied in this chapter. The application scenario and its applied task

model is explained in section 2.3. The key work that using first-order logical formulas to

formalize the scheduling problem is described in section 2.4. The process of generating the

desired schedule is explained in section 2.5, while section 2.6 gives the scheduling result

obtained by applying the framework to the studied example. Discussion and summary

are given in section 2.7.

2.1 Satisfiability Modulo Theories (SMT)

Satisfiability modulo theories (SMT) is extension of boolean satisfiability (SAT). It checks

satisfiability of logic formulas in first-order formulation with regard to certain background

theories like linear integer arithmetic or bit-vectors [18]. A first-order logic formula uses

variables as well as quantifiers, functional and predicate symbols, and logical operators
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[19]. A formula F is satisfiable, if there is an interpretation that makes F true. For

example, formula ∃a, b ∈ R, (b > a + 1.0) ∧ (b < a + 1.1), where R is real number

set, is satisfiable, as there is an interpretation, a '→ −1.05, b '→ 0, that makes F true.

In contrast, a formula F is unsatisfiable, if there does not exist any interpretation that

makes F true. For example, if we define ∃a, b ∈ Z, where Z is integer set, the formula

(b > a+ 1.0) ∧ (b < a+ 1.1) will be unsatisfiable.

For a satisfiability problem that has been formalized by first-order logic formulas, a

SMT solver (e.g., Z3 [20], Yices [21]) can be employed to solver such a problem. If all

the logic formulas are satisfiable, the SMT solver will return the result sat and a solution

model which contains an interpretation for all the variables defined in the formulas that

makes all the formulas true. For the case ∃a, b ∈ R, the model is: a '→ −1.05, b '→ 0.

If there is an unsatisfiable logic formula, SMT solver returns the result unsat with an

empty model, for the case ∃a, b ∈ Z.

2.2 Framework

The framework of RSMT is illustrated in Figure 2.1. There are three layers included in

the framework.

The first layer is problem modeling layer. In a real-time system, tasks are required to

be completed before their deadlines. In order to satisfy this requirement, their required

computation resources (e.g., processor) should be allocated to tasks at the right time.
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The allocated result is called schedule, while the allocating process is called scheduling

which is conducted by a scheduler equipped in the system.

In the framework, the tasks are modeled based on task model and function model

(explained in Chapter 4), while the computation resources are modeled based on network

channel model and processor model (only for multiprocessor systems, explained in Chapter

4). For a specific scheduling target, it can be expressed based on the modeled tasks and

computation resources.

The second layer is problem formalization layer. In the framework, the problem of

scheduling is treated as a satisfiability problem. In order to solve this satisfiability problem,

the key work is to formalize the problem using first-order logical formulas (see details in

Chapter 2, 3, and 4). Through formalization, a SAT model is constructed to represent the

scheduling problem. This SAT model is a set of first-order logic formulas (within linear

arithmetic in the formulas) which express all the scheduling constraints that a desired

schedule should satisfy. There are two kinds of constraints: system constraints and target

constraints. System constraints are based on the characteristics of the specific system

(i.e., tasks and computation resources). For example, if two tasks run on a processor, a

schedule should make sure that the execution time of these two tasks cannot have overlap.

Target constraints are based on the scheduling targets. For example, for a hard real-time

systems, a schedule should guarantee that all the tasks can meet their deadlines.

The third layer is problem solving layer. After the SAT model is constructed, a SMT

solver (e.g., Z3, Yices) is employed to solve the formalized problem. A solution model can

be returned by the SMT solver. This solution model gives an interpretation for all the

variables defined in the SAT model, and under the interpretation, all the logic formulas in

the SAT model are evaluated as true. It means the satisfiability problem represented by

the SAT model (i.e., the scheduling problem) is solved, and based on this interpretation,

a desired schedule can be generated. To illustrate the usage of the framework, a simple

example is given as follows.

2.3 Application Scenario and Task Model

Considering a uniprocessor real-time system containing multiple tasks which are indepen-

dent with each other. These tasks are required to be completed before their deadlines,

17



and missed deadline tasks are useless to the system. In other words, these tasks have firm

deadlines. For simplicity, task preemption is not allowed.

Applying to this application scenario, the task model used in this example is given

below. Each task τi is a 3-tuple τi = (ri, ei, di), where i is the index of a task, ri is the

request time instant, ei is the required execution time, and di is the deadline. A task

τi requires a processor to execute at the time instant ri, and a reasonable task should

meet that ri + ei ≤ di and ei > 0. Symbol T = {τ1, τ2, . . . , τn} denotes the set of tasks

contained in the system, where n is the number of tasks. Symbol si is used to represent

the start execution time of task τi. A successfully completed task (i.e., a task which has

been completed before its deadline) τi means it has been allocated ei time slots in time

interval [ri, di). A task τi should be discarded at system time t, if it features ei > di − t,

as such task cannot be successfully completed.

Based on this task model, let’s consider a specific example. A uniprocessor real-time

system comprises of four tasks T ={τ1, τ2, . . . , τ4}, where τ1 = (0, 1, 5), τ2 = (0, 2, 4), τ3 =

(2, 1, 6), and τ4 = (2, 1, 3). These tasks are independent with each other, and task pre-

emption is not allowed. Notice that, as described in Chapter 1, since RSMT performs in

offline paradigm, the parameters of the tasks that contained in the system are required

to be known before system run-time, that is, the system is a time-driven system.

2.4 Scheduling Constraints

To apply the framework, the key work is to formalize the problem using first-order logical

formulas to construct the SAT model. The variables defined in the SAT model are the

start execution time for all the tasks contained in the system, i.e., si for ∀τi ∈ T .

System Constraints
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2.4.1 Constraint on start execution time of tasks

As a task can start to run only after it requests, the start execution time si of a task

should be larger than or equal to its request time instant ri.

∀τi ∈ T

si ≥ ri

(2.1)

2.4.2 Constraint on processor

A processor can execute only one task at a time. This is interpreted as: there is no overlap

of the execution time of any two tasks.

∀τi, τj ∈ T , i ̸= j

(si ≥ sj + ej) ∨ (sj ≥ si + ei)
(2.2)

Target Constraints

2.4.3 Constraint on deadlines of tasks

A successfully completed task τi should be completed before its deadline.

∀τi ∈ T

si + ei ≤ di

(2.3)

2.5 Schedule Synthesis

After all the constraints are defined, now we can employ a SMT solver to generate a

desired schedule. The whole process of generating the schedule is summarized in Alg. 1.

Function Assert(T ) (line 1) interprets the constraints defined in section 2.4 as asser-

tions A (boolean formulas that can be input into a SMT solver). The variables of these

boolean formulas are the start time si for ∀τi ∈ T . Function CallSMTSolver(A) (line 2)

calls a SMT solver to find a solution model M for A.

If the solution model does exist, indicated by a non-empty model M is returned (line

3), based on the solution model M, the schedule S can be returned by the function

GenSch(M) (line 4). When there does not exist a solution model, indicated by returning

an empty model M (line 5), which means the target constraints (defined in formula 2.3)
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Algorithm 1 Schedule synthesis
Input: task set T

Output: schedule S

1: A := Assert(T )

2: M := CallSMTSolver(A)

3: if M ̸= ∅ then

4: return S := GenSch(M)

5: else

6: return UNFEASIBLE

7: end if

cannot be satisfied, that is, there does not exist a schedule that can make all the tasks

meet their deadlines. Under this case, the algorithms returns UNFEASIBLE.

2.6 Scheduling Result

Recall the example introduced in section 2.3. Through the schedule synthesis described

in section 2.5, we can get the solution model as: s1 = 3, s2 = 0, s3 = 4, s4 = 2, and the

corresponding schedule S shown in Figure 2.2. We can see that the generated schedule S

can make all the tasks meet deadlines.

2.7 Discussion and Summary

In this chapter, the framework of RSMT is given. This framework gives a unified design

strategy for developers designing scheduling for real-time systems. In the framework,

scheduling problem is treated as a satisfiability problem which is formalized by first-order

logical formulas. Such formalization provides a firm theoretic foundation to solve the
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scheduling problems.

From the description of the problem solving layer of the framework, we can see that, af-

ter the SAT model is constructed, there are three steps for RSMT generating the schedul-

ing table: i): interpreting the SAT model as the input format of the underlying SMT

solver (interpreting), ii): SMT solver computing the scheduling problem and outputting

a solution model (computing), and iii): generating a scheduling table based on the so-

lution model (generating). Compared to the operations of interpreting and generating

which are quite straightforward, operation of the computing has exponential complexity

[23] and becomes the major limitation of RSMT (more details will be discussed in Chapter

4).
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Chapter 3

Scheduling for Uniprocessor

Real-Time Systems

3.1 Introduction

A task in a real-time system is required to be completed before its deadline. Such sen-

sitivity to timing is central feature of system behaviors [38]. For firm and soft real-time

systems, under normal workload conditions, a scheduler with a proper scheduling policy

can make all the tasks be completed before their deadlines. However, in practical environ-

ment, system workload may vary widely because of dynamic changes of work environment.

Once system workload becomes too heavy so that there does not exist a feasible schedule

can make all the tasks meet their deadlines, we say the system is overloaded. Note that,

even in well-defined systems, under some special cases (e.g., transient transition between

different operating modes), such overload problem may also happen.

When the overload problem happens, it is important to minimize the degree of system

performance degradation caused by the missed deadline tasks. A system that panics and

suffers a drastic fall in performance when a problem happens, is likely to contribute to this

problem rather than help solve it [2]. To achieve this target, the design of scheduling is

crucial, as different scheduling policies will lead to different degrees of performance degra-

dation. Many objectives for the design of scheduling policies described in [3, 4] can be

considered. For example, (i) maximizing total number of tasks that meet deadlines, (ii)

maximizing effective processor utilization, (iii) maximizing obtained values of completed
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tasks. Which objectives are appropriate in a given situation depends, of course, upon the

application. I first focus on maximizing total number of tasks that meet their deadlines.

This objective is reasonable for a firm real-time systems upon the application scenario

that when a missed deadline task corresponds to a disgruntled customer, and the aim is

to keep as many customers satisfied as possible [2]. Then, RSMT is applied to the design

objectives: maximizing effective processor utilization and maximizing obtained values of

completed tasks.

Organization of this chapter. In section 3.2, system model is presented and research

preliminary is given. Scheduling constraints defined in the SAT model are given in section

3.3. The process of generating the desired schedule is explained in section 3.4. Simulations

and performance evaluation are shown in section 3.5. In section 3.6, design guidelines for

applying RSMT to different scheduling targets are given. Summary is given in section

3.7.

3.2 System Model, Definition, and Preliminary

3.2.1 System Model

In this chapter, the general firm-deadline model proposed in [6] is adopted for systems

with uniprocessor. The “firm-deadline” means only tasks completed before their deadlines

are considered valuable, and any task missing its deadline is worthless to system.

This task model is similar to the task model used in Chapter 2. Particularly, in

order to allow task preemption, for all tasks in T , task τi is defined as consisting of a

series of indivisible fragment (atomic operation), denoted by τi : (f1, f2, . . . , fm), where

m = |τi| is the number of fragments in task τi
1. fi,j denotes the j-th fragment of τi,

and the last fragment of task τi is denoted by fi,e. Symbol si,j is used to represent the

start execution time of fi,j. Symbol ei,j denotes the required execution time of fi,j , and

∀fj ∈ τi,
∑

ei,j = ei. For 1 ≤ i < m, fi+1 can start to run only when fi has been

completed. A successfully completed task τi means fi,e has been allocated ei,e time slots

1RSMT can also deal with the condition that task preemption is prohibited, by just constraining every

tasks consisting of only one indivisible fragment.
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in time interval [ri, di). Symbol rei represents the remaining execution time of task τi.

Initially, it equals to ei. After τi has been executed for δ (δ ≤ ei) time slots, rei = ei − δ.

If rei = 0, it means τi has been completed. A task τi should be discarded at system time

t, if it features rei > di − t, as such task cannot be successfully completed.

3.2.2 Definition

In a real-time system, scheduler can use different schedules to schedule task set T .

When there exists a schedule that can make all tasks meet their deadlines, the system

is underloaded, and the task set is feasible. In contrast, when there does not exist a

schedule that can make all the tasks meet their deadlines, the system is overloaded, and

the task set is infeasible (refer [4]).

An example in Figure 3.1 is used to illustrate this definition. As shown in Figure

3.1 (a), at t = 0, T ′ = {τ1, τ2}, where T ′ is the set of the tasks that have arrived in

the system (not including tasks that have been successfully completed or have missed

deadlines). Using earliest deadline first (EDF) algorithm to schedule T ′ can make all

tasks meet their deadlines, where EDF first schedules the task with the earliest deadline.

Thus, the system is underloaded, and the task set T ′ is feasible. EDF algorithm proposed

in literature [14] has been proven as an optimal scheduling algorithm on uniprocessor [33].

That is, if using EDF to schedule a task set cannot make all tasks meet their deadlines,

no other algorithms can. Thus, EDF scheduling algorithm can be used to tell if a task

set is feasible.

After the system passed a time unit, as shown in Figure 3.1 (b), τ1 has been successfully

completed, and a new task τ3 arrives in the system. At that time, T ′ = {τ2, τ3}. Using

EDF to schedule T ′ can only make τ3 meet its deadline. Task τ2 should be discarded at

t = 2, as re2 > d2 − t, where d2 = 3, re2 = 2. Thus, the system is overloaded, and the

task set T ′ is infeasible.

3.2.3 Preliminary

There are many scheduling algorithms used in various real-time systems. In this subsec-

tion, through an example described in Figure 3.2, the performance of three widely used

scheduling algorithms, shortest remaining time first (SRTF), EDF, and least laxity first
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Figure 3.1: Example for underloaded and overloaded

(LLF), are studied. In the example, the lengths of all the indivisible fragments in all the

tasks are set to one.

Scheduling results: (i): SRTF first schedules the task with the shortest remaining

execution time. The scheduling sequence is (τ3, τ1, τ1, τ4, τ1). By this sequence, τ4 and

τ1 can be completed sequentially. (ii): EDF first schedules the task with the earliest

deadline. The result of the scheduling sequence is (τ2, τ2, τ2, τ2, τ2, τ4). It can complete τ2

and τ4 sequentially. (iii): LLF first schedules the task with the least laxity. For τi, the

laxity li is computed as li = di− rei− t. It can complete tasks τ2 and τ4 sequentially with

the same scheduling sequence generated by EDF.

All of the three scheduling algorithms achieve two as the number of task completion.

To know if it is the maximum value, for this simple example with only four tasks, we

can enumerate all the schedule to find the maximum number of task completion. An

optimal schedule (schedule that can achieve the maximum number of task completion) is

(τ3, τ3, τ3, τ3, τ1, τ1, τ1, τ4) which can complete three tasks τ3, τ1, and τ4 sequentially.

Based on above analysis, through this example, we can see that, for overloaded real-

time system, a new scheduling method is needed.

3.3 Scheduling Constraints

Compared to the scheduling problem studied in Chapter 2, to solve the overload prob-

lem, more scheduling constraints are needed to construct the SAT model. This section

describes all the constraints expressed in the SAT model.

System Constraints
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3.3.1 Constraint on start execution time of tasks

As a task can only start to run after it requests, the start time of the first fragment of a

task should be larger than or equal to the request time instant ri.

∀τi ∈ T

si,1 ≥ ri

(3.1)

3.3.2 Constraint on start execution time of different fragments

The series of fragments contained in a task should be executed sequentially. Therefore,

a fragment of a task can start to run only when its previous fragments of the task have

been completed.

∀τi ∈ T , ∀fa, fb ∈ τi

b > a ⇒ si,b ≥ si,a + ei,a

(3.2)

Symbol ⇒ denotes implication logical operator.

3.3.3 Constraint on processor

A processor can execute only one fragment at a time. This is interpreted as: there is no

overlap of the execution time of any two fragments of any two different tasks.

∀τi, τj ∈ T , i ̸= j, ∀fa ∈ τi, ∀fb ∈ τj

(si,a ≥ sj,b + ej,b) ∨ (sj,b ≥ si,a + ei,a)
(3.3)

3.3.4 Constraint on task dependency

In practical systems, tasks usually have dependency relation with each other. For example,

task τj may require the computed results of τi; or task τi can issue a signal to activate

task τj only when τi has been completed. Thus, τj can start to run only after τi has been

completed. Such dependency relation is denoted as τi ≺ τj .

∀τi, τj ∈ T

τi ≺ τj ⇒ (sj,1 ≥ si,e + ei,e)∧

(si,e + ei,e > di ⇒ sj,1 = +∞)

(3.4)
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Figure 3.2: Performance of scheduling algorithms

This formula expresses that any two tasks that have dependency relation τi ≺ τj , the

first fragment of task τj can start to run only when the last fragment of task τi has been

completed. As the series of fragments contained in a task are executed sequentially, this

formula can make sure that task τj starts to run only after τi has been completed. More-

over, if task τi has not been successfully completed, task τj cannot start to run.

Target Constraints

3.3.5 Constraints on scheduling target

A successfully completed task τi should be completed before its deadline. As all the

fragments contained in a task run sequentially, this constraint can be interpreted as:

for task τi, if its last fragment fi,e can complete before its deadline di, task τi will be

successfully completed. Let n be the number of successfully completed tasks, and its

initial value is set to 0.

∀τi ∈ T

if (si,e + ei,e ≤ di)

n := n+ 1

end

(3.5)

where symbol ei,e is the required execution time of fi,e. Let symbol sn denote the maxi-

mum number of tasks in T that can be successfully completed, and obviously, sn ∈ [0 |T |].
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The constraints on scheduling target can be expressed as:

n ≥ sn (3.6)

Note that, here the constraints on scheduling target is set as n ≥ sn rather than n = sn

is based on experience. With n ≥ sn, following the schedule synthesis described in the

next section, the time efficiency of RSMT can be better than with n = sn.

3.4 Schedule Synthesis

After all the constraints are defined, now we can employ a SMT solver to generate a

desired schedule. The process of schedule synthesis is summarized in Alg. 2. Func-

tion Assert(T , |T |) (line 1) interprets the constraints defined in section 3.3 as assertions

(boolean formulas that can be input into a SMT solver) with |T | as the maximum number

of successfully completed tasks (i.e., set sn := |T | in constraints on scheduling target).

The variables of these boolean formulas are start time si,j for ∀τi ∈ T , ∀fj ∈ τi. Function

CallSMTSolver(A) (line 2) calls a SMT solver to find a solution model M for A. If such

a model does exist, it will be returned by the function, otherwise an empty model will be

returned.

For constraints on scheduling target, it is first set as sn := |T |, that is to expect all the

tasks in T can be successfully completed. If this expectation can be satisfied, it means

overload problem does not happen, solution model M will be returned. As M contains

all the values of si,j, for ∀τi ∈ T , ∀fj ∈ τi, the start execution time of all the fragments of

all the tasks can be extracted, it means the schedule S for task set T can be generated

(line 1-5).

When overload problem happens, not all tasks in T can be successfully completed.

This condition is indicated by an empty model returned by function CallSMTSolver(A),

which means constraints on scheduling target cannot be satisfied. We need to decrease

the set value of sn. To achieve the maximum number of task completion means to find

the maximum value of sn with which there exists a solution model. Binary search is used

to find the maximum value of sn (line 6–22). With the maximum value of sn, a solution

model can be returned by function CallSMTSolver(A). Meanwhile, with sn := sn + 1,

CallSMTSolver(A) will return an empty model. This is the criterion to judge if the value
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Algorithm 2 Schedule synthesis
Input: task set T

Output: schedule S

1: A := Assert(T , |T |)

2: M := CallSMTSolver(A)

3: if M ̸= ∅ then

4: return S based on model M

5: end if

6: start := 0, end := |T |

7: while true do

8: mid := start + ⌊(end− start)/2⌋

9: A := Assert(T ,mid)

10: M := CallSMTSolver(A)

11: if M = ∅ then

12: end := mid − 1

13: else

14: A′ := Assert(T , mid+ 1)

15: M′ := CallSMTSolver(A′)

16: if M′ ̸= ∅ then

17: start := mid+ 1

18: else

19: return S based on model M

20: end if

21: end if

22: end while

of sn is the maximum value. When we get the solution model M with the maximum

value sn, based on M, the schedule S can be generated (line 19).

Through the procedure of the schedule synthesis, the maximum value of sn can be

found. Meanwhile, as all the constraints defined in the SAT model have been satisfied, it

means S can achieve the maximum number of task completion.

3.4.1 Scheduling Results

Recall the example shown in Figure 3.2. In this example, T = {τ1, τ2, τ3, τ4}. Based on

the schedule synthesis shown in Alg. 2, we can get the solution model M which defines

the values of si,j for ∀τi ∈ T , ∀fj ∈ τi. The model is as follows: s1,1 = 4, s1,2 = 5, s1,3 =

6, s2,1 = 8, s2,2 = 9, s2,3 = 10, s2,4 = 11, s2,5 = 12, s3,1 = 0, s3,2 = 1, s3,3 = 2, s3,4 =

3, s4,1 = 7. Based on this model, as shown in Figure 3.3 (without τ1 ≺ τ4), we can

get the scheduling sequence S = (τ3, τ3, τ3, τ3, τ1, τ1, τ1, τ4) (as τ2 cannot be successfully

completed, it should not be included in S). This scheduling sequence can complete three
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Figure 3.3: Results by using RSMT for the example shown in Figure 3.2

tasks τ3, τ1, and τ4 consequently, which is the maximum number of task completion for

T .

If we add a task dependency relation τ2 ≺ τ4, we can get model: s1,1 = 1, s1,2 =

2, s1,3 = 6, s2,1 = 7, s2,2 = 8, s2,3 = 9, s2,4 = 10, s2,5 = 11, s3,1 = 0, s3,2 = 3, s3,3 = 4, s3,4 =

5, s4,1 = 12. Based on this model, as shown in Figure 3.3 (with τ2 ≺ τ4), we can get the

scheduling sequence S = (τ3, τ1, τ1, τ3, τ3, τ3, τ1). This scheduling sequence can complete

two tasks τ3 and τ1 consequently, which is also the maximum number of task completion

for T with the dependency relation τ2 ≺ τ4.

3.5 Simulation and Evaluation

In this section, results of the simulations which are conducted to study the performance

of RSMT are presented. A prototype tool for RSMT, based on the system model, con-

straint formulation, and schedule synthesis described above, has been implemented. The

underlying SMT solver employed by the tool is Z3 which is a state-of-the art SMT solver.

In addition to the three well-known algorithms: SRTF, EDF, and LLF, two algorithms

proposed in my previous works: DPSC 2 [54] and GSFC 3 [52], which are specific to the

overload problem are also adopted as the baseline algorithms.

2DPSC uses the idea of dynamic programming and congestion control to deal with the overload

problem.
3GSFC uses the idea of greedy algorithm and feedback control to deal with the overload problem.
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Figure 3.4: Success ratio of RSMT and the baseline scheduling algorithms

3.5.1 Simulation Settings

The metric used to compare the performance of different scheduling methods is success

ratio which denotes the ratio of the input tasks that have been completed before their

deadlines to all the input tasks. For the time complexity, RSMT has exponential com-

plexity, which is much more complex than the baseline algorithms4. In order to evaluate

the time that RSMT spends on scheduling all the input tasks, the simulation results of the

SMT solver computing time and the total spent time (including interpreting, computing,

and generating time) of RSMT are calculated in the simulation studies.

The input tasks are generated according to Poisson distribution with arriving rate λ

which represents the number of tasks that arrive in the system per 100 time units. As the

workload can be changed by λ, the attributes of tasks in the simulations are given a simple

setting. For each task τi, ei varies in [1, 6] with exponential distribution. The number

of indivisible fragments of a task varies in [1, 3]. To characterize tasks with different

tightness deadline, the assignment of di is according to equation: di = ri + sfi ∗ ei, where

sfi is slack factor that indicates the tightness of task deadline. For each task τi, sfi varies

in [1, 6].

4If quick sort algorithm is used to conduct sort operation, the worst-case time complexity of EDF,

SRTF, LLF are quadratic, while DPSC and GSFC are pseudo-polynomial.
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Figure 3.6: Total spent time of RSMT

In a well-defined system, usually the length of system overload time is not long, and

the degree of system overload is not serious. If a system is under overload condition for a

long time or the degree of system overload is very serious, it means the capability of the
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system is not enough to handle its work. Based on this observation, the values of λ are

set as 8, 10, 12, and 14 to represent different degrees of system overload conditions. The

input total number of tasks are set as 100, 200, 300, 400, and 500 to represent different

lengths of system overload time. All the simulations are run on a 64bit 4-core 2.5 GHz

Intel Xeon E3 PC with 32GB memory.

3.5.2 Evaluation

The simulation results are shown in Figure 3.4, Figure 3.5, and Figure 3.6. The values

shown in the figures are the average values of running simulation 100 times. As the

performance of EDF, SRTF, and LLF are almost the same in terms of success ratio, only

the results of EDF are shown in Figure 3.4.

For success ratio, through the analysis in section 3.4, RSMT can achieve the optimal

result5. As shown in Figure 3.4, the values of success ratio for RSMT are larger than the

baseline algorithms under all the values of λ, it means RSMT performs better than the

baseline algorithms in terms of success ratio.

For SMT solver computing time, as shown in Figure 3.5, with increasing value of λ and

task number, the value of computing time is increasing. This is because, with bigger value

of λ, more tasks wait to be executed on the processor at a time. As described in section

3.3, the scheduling constraint Constraint on processor guarantees that no overlap of the

execution time of any two tasks on a processor. The increasing number of waiting tasks

will make the underlying SMT solver need much more calculation to return a solution

model. Similarly, with increasing value of task number, the total number of tasks that

need to be scheduled is increasing. This will also increase the calculation time for the

underlying SMT solver to return a solution model.

For total spent time of RSMT, from Figure 3.6 we can see that RSMT needs several

seconds to generate the desired scheduling table, which means RSMT is capable to handle

the scheduling problem.

5Only when all the scheduling constraints are defined in the SAT model. More details will be discussed

in section 6.2.
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3.6 Adapting to Other Scheduling Targets

In the constructed SAT model, there are two kinds of scheduling constraints: system

constraints and target constraints. This kind of design makes RSMT flexible to design

scheduling for other objectives by just modifying the target constraints. In this section,

two examples are given to show how to apply RSMT to different design objectives.

3.6.1 Maximizing Effective Processor Utilization

Effective Processor Utilization (EPU) measures the fraction of time that the processor

spends on executing tasks which are successfully completed before their deadlines. For

a firm real-time system, if customers pay for the usage of the processor only when their

tasks have been successfully completed, EPU may be a reasonable measure [4].

Constraints on scheduling target

A successfully completed task τi should be completed before its deadline. As mentioned

in section 3.3.5, since all the fragments contained in a task run sequentially, this con-

straint can be interpreted as: the last fragment of a successfully completed task should

be completed before its deadline. Let symbol e denote effective processor time (time that

the processor spends on executing tasks which are successfully completed before their

deadlines), and its initial value is set to 0.

∀τi ∈ T

if (si,e + ei,e ≤ di)

e := e+ ei

end

(3.7)

Let symbol ssi,e denote the maximum value of si,e for tasks in T that have been successfully

completed. The effective processor utilization epu can be calculated as:

epu =
e

ssi,e + ei,e
(3.8)

Let symbol sepu denote the maximum value of effective processor utilization, and obvi-

ously, sepu ∈ [0 1]. The constraints on scheduling target can be expressed as:

epu ≥ sepu (3.9)
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Algorithm 3 Schedule synthesis for maximizing effective processor utilization
Input: task set T

Output: schedule S

1: A := Assert(T , 1)

2: M := CallSMTSolver(A)

3: if M ̸= ∅ then

4: return S based on model M

5: end if

6: start := 0, end := 1

7: while true do

8: mid := start + (end− start)/2

9: A := Assert(T ,mid)

10: M := CallSMTSolver(A)

11: if M = ∅ then

12: end := mid − step

13: else

14: A′ := Assert(T , mid+ step)

15: M′ := CallSMTSolver(A′)

16: if M′ ̸= ∅ then

17: start := mid+ step

18: else

19: return S based on model M

20: end if

21: end if

22: end while

Schedule Synthesis

The process of schedule synthesis is summarized in Alg. 3. This process of schedule

synthesis is quite similar to the process described in Alg. 2. Function Assert(T , 1) (line

1) interprets the system constraints defined in section 3.3 and target constraints descried

in section 3.6.1 as assertions with sepu := 1 in constraints on scheduling target. If this

expectation can be satisfied, it means overload problem does not happen, model M will

be returned by function CallSMTSolver(A) (line 2). Based on M, the schedule S can be

generated (line 4).

When overload problem happens, sepu := 1 cannot be satisfied. We need to decrease

the set value of sepu. Binary search is used to find the maximum value of sepu (line

6–22). With the maximum value of sepu, a solution model can be returned by function

CallSMTSolver(A). Meanwhile, with sepu := sepu+step, CallSMTSolver(A) will return

an empty model. This is the criterion to judge if the value of sepu is the maximum value.

Note that, the variable step is predefined and can be used to control search space of SMT
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solver. Increasing step makes the algorithm faster but also reduces the solution space.

3.6.2 Maximizing Obtained Values of Completed Tasks

In a real-time system, when a task is successfully completed, it means a utility of the

system has been achieved. In other words, through completing tasks, some values can be

obtained by the system.

When tasks are treated as equally important, the values obtained by the system

through completing different tasks are the same. Thus, in that case, the design objective

maximizing the obtained values of completed tasks is the same as the design objective

maximizing total number of tasks that meet deadlines. However, when tasks are treated

as with different degrees of importance, these two objectives become different.

For a firm real-time system that contains tasks with different degrees of importance,

each task τi is a 4-tuple τi = (ri, ei, di, vi), where vi is the value of task τi that can be

obtained by the system when τi is successfully completed.

Constraints on scheduling target

Let symbol v be the obtained values of the completed tasks, and its initial value is set to

0.

∀τi ∈ T

if (si,e + ei,e ≤ di)

v := v + vi

end

(3.10)

Let symbol sv denote the maximum obtained values of completed tasks, and obviously,

sv is no less than 0 and no larger than
∑

vi for ∀τi ∈ T . The constraints on scheduling

target can be expressed as:

v ≥ sv (3.11)

Schedule Synthesis

The process of schedule synthesis is summarized in Alg. 4. This process of schedule

synthesis is quite similar to the process described in Alg. 2 and Alg. 3.
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Algorithm 4 Schedule synthesis for maximizing obtained values of completed tasks
Input: task set T

Output: schedule S

1: A := Assert(T ,
∑

vi)

2: M := CallSMTSolver(A)

3: if M ̸= ∅ then

4: return S based on model M

5: end if

6: start := 0, end :=
∑

vi

7: while true do

8: mid := start + (end− start)/2

9: A := Assert(T ,mid)

10: M := CallSMTSolver(A)

11: if M = ∅ then

12: end := mid − min v(T )

13: else

14: A′ := Assert(T , mid+ min v(T ))

15: M′ := CallSMTSolver(A′)

16: if M′ ̸= ∅ then

17: start := mid+ min v(T )

18: else

19: return S based on model M

20: end if

21: end if

22: end while

Function Assert(T ,
∑

vi) (line 1) interprets the system constraints defined in section

3.3 and target constraints descried in formula 3.10 as assertions with sv :=
∑

vi in

constraints on scheduling target. If this expectation can be satisfied, it means overload

problem does not happen, model M will be returned by function CallSMTSolver(A) (line

2). Based on M, the schedule S can be generated (line 4).

When overload problem happens, sv :=
∑

vi cannot be satisfied. We need to decrease

the set value of sv. Binary search is used to find the maximum value of sv (line 6–

22). With the maximum value of sv, a solution model can be returned by function

CallSMTSolver(A). Meanwhile, with sv := sv+min v(T ), CallSMTSolver(A) will return

an empty model, where symbol min v(T ) represents the minimum value of vi for ∀τi ∈ T .

This is the criterion to judge if the value of sv is the maximum value.
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3.7 Summary

In this chapter, RSMT is applied to uniprocessor real-time systems to solve the overload

problem. Design guidelines for many practical requirements that widely studied in real-

time scheduling domain are given. Three scheduling targets that are reasonable under

the overload condition are considered.

In RSMT, the scheduling constraints contained in the constructed SAT model are

divided into two parts: system constraints and target constraints. This kind of design

makes RSMT flexible to design scheduling for other objectives. When adapting to different

scheduling targets, little modification on target constraints and schedule synthesis needs

to make, and the system constraints can be totally reused.
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Chapter 4

Scheduling for Multiprocessor

Real-Time Systems

4.1 Introduction

Currently, many practical real-time systems are equipped within multiple processors, for

which the schedule synthesis to make sure that all the tasks can be completed before

their deadlines is known to be an NP complete problem [23]. Even in the simpler case of

identical multiprocessor systems, finding a feasible schedule is NP-complete in the strong

sense [42] (see an example in [53]).

Many researches (e.g., [24, 25, 26, 27]) have been conducted to challenge the problem

of scheduling multiprocessor systems. But, even for the simpler problem of scheduling

identical multiprocessor systems, there still remain many problems. A comprehensive

survey of scheduling for identical multiprocessor real-time systems can be found in [13].

For the harder problem of scheduling heterogeneous multiprocessor systems, where we

have to face an awkward reality that considering a relatively practical application scenario,

there is still no solution to efficiently schedule heterogeneous multiprocessor systems.

To solve these problems, in this chapter, RSMT is applied to design scheduling for

heterogeneous multiprocessor real-time systems. As scheduling identical and uniform

multiprocessor systems can be treated as special cases of scheduling heterogeneous multi-

processor systems, it means RSMT can also be applied to schedule identical and uniform

multiprocessor systems. Various kinds of systems (soft, firm, hard, and mixed critical
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real-time systems) and scheduling targets have been considered.

Organization of this chapter. In section 4.2, system model is presented. Scheduling

constraints defined in the SAT model are given in section 4.3. The process of generating

the desired schedule is explained in section 4.4. Simulations and performance evaluation

are shown in section 4.5. In this section, based on simulations, problem scope in which

RSMT can be applied is also shown. Meanwhile, a promising method which can expand

the scope is described. In section 4.6, the design guidelines for adapting RSMT to different

scheduling targets are given. Summary is given in section 4.7.

4.2 System Model

4.2.1 Function Set

Function set defines set of the functions that can be achieved by a real-time system.

Let F = {F1, F2, . . . , Fn} denote the function set. Functions contained in the set are

independent with each other. Each function Fi ∈ F is achieved by a series of tasks,

represented as poset (Ti,≺), where Ti ̸= ∅ denotes the set of the corresponding tasks, and

symbol ≺ denotes the dependency relation of the tasks in Ti (detail of the poset will be

explained in the next subsection). For real-time systems, when functions are triggered at

system time instant rfi, they are required to be completed before deadline, represented

by dfi. Based on above analysis, the function is defined as Fi = ((Ti,≺), rfi, dfi).

Note that, unlike conventional researches on real-time scheduling which set deadline to

task (in Chapter 2 and 3, deadline is also set to task), in this chapter, the deadline is set

to the function level rather than the task level. This setting can better reflect the reality

that the deadline requirement is for functions in real-time systems, while a function is

achieved by a series of tasks cooperated together. To further illustrate advantage of the

function model, an example will be given after all the models are introduced.

4.2.2 Task Poset

For each function, it is achieved by a series of tasks cooperated together. Poset (Ti,≺) is

used to denote such a series of tasks, where Ti ⊆ T is the task set corresponding to Fi,
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and Ti = {τ1, τ2, . . . , τm}, where τj ∈ Ti is a task, and m is the number of tasks. Symbol

T represents that set of tasks contained in the system. Task τj ∈ Ti
1 is indicated by τi,j .

If a task τi ∈ T is used by multiple functions, for concise expression, multiple copies of

the task are defined in the task set T . For example, if task τk is used by function Fi and

Fj , two tasks (with the same operations of τk) are defined in the task set T to represent

τk used in function Fi and Fj, respectively.

Symbol ≺ indicates the dependency relation between two tasks. That is, τk, τj ∈

Ti, τk ≺ τj indicates that task τj can start to run only after task τk has been completed.

The dependency relation is transitive. That is, τk ≺ τj , τj ≺ τl ⇒ τk ≺ τl.

Definition (start task) A start task of (Ti,≺) is such a task τj ∈ Ti that starts

earliest of all the tasks in Ti, that is, ∀τk ∈ Ti, j ̸= k ⇒ τj ≺ τk.

Definition (end task) An end task of (Ti,≺) is such a task τj ∈ Ti that starts latest

of all the tasks in Ti, that is, ∀τk ∈ Ti, j ̸= k ⇒ τk ≺ τj.

Without losing generality, for a task poset (Ti,≺), it is assumed that there is one start

task (denoted by τsi) and one end task (denoted by τei)2. Each task has two parameters,

τj = (cj , mj), where j is the index of the task. cj is the required computation cost which

means the number of time slots needed by a unit speed processor to complete task τj

(can be analogous to task execution time e defined in Chapter 3); and mj is the required

migration cost for task τj migrating from a processor to another one. The parameter mj

combined with parameters of network (details will be explained later) is used to calculated

the overhead of migrating task.

4.2.3 Processor Set

In multiprocessor real-time systems, processors are used to execute tasks. Symbol P =

{p1, p2, . . . , pl} is used to denote the set of processors, where l is the number of processors.

Each processor pa is a 2-tuple, pa = (spa, TSa), where a is the index of the processor.

1Based on this task poset model, task preemption is not supported. To support task preemption, we

can define a task consisting of a series of indivisible fragments (refer to Chapter 3 for more details).
2To express a function with many start (end) tasks, we can set a virtual task to be a new start (end)

task. Such a special task contains empty operations and starts before (after) all the original start (end)

tasks.
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Figure 4.1: Topologies of network channel: (a) Ring, (b) Mesh, (c) Tree

Parameter spa is the speed of the processor. When task τi running on processor pa, the

number of time slots needed for processor pa to complete task τi, represented by task

completion tcia:

tcia =
ci
spa

(4.1)

TSa is the task set that can be completed by processor pa. This parameter is for het-

erogeneous systems in which processors have different architectures, and some tasks can

only be executed on some specific processors. If TSa = ∅, it means processor pa cannot

be used to execute any task in the system.

Note that, if we set processors for ∀pi ∈ P having the same spa and TSa, the systems

will be simplified to identical real-time systems. Similarly, if we set processors for ∀pi ∈ P

having the same spa, the systems will be simplified to uniform real-time systems.

Processors have independent local clocks3, they are synchronized with each other in

the time domain through synchronization protocol. The maximum difference between the

local clocks of any two processors in the networked systems is called network precision

(also called synchronization jitter) which is a global constant defined in the system [31].

Symbol δ is used to denote the network precision.

4.2.4 Network Channel Set

In multiprocessor real-time systems, processors are connected through network channels.

Symbol N ⊆ P ×P is used to denote set of the network channels. This network channel

model is generic and can characterize different kinds of network topologies, e.g., bus, ring,

mesh, and tree. Moreover, it makes RSMT support all the non-, intra-, fully-migrative

scheduling manners as shown in Figure 4.1. Symbol na→b ∈ N denotes the network

3In this research, clock acts as a metronome and is defined in discrete values.
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channel from processor pa to pb, where pa, pb ∈ P, a ̸= b. Symbol nsa→b represents speed

of na→b.

When the data of the computed results of task τi (or the signal issued by task τi

when it is completed) migrates from processor pa to pb
4, the time slots spent on network

channel, represented by tmi
a→b, can be calculated as:

tmi
a→b =

mi

nsa→b
(4.2)

Based on tmi
a→b, we can get the time instant that processor pb receives the data of task

τi migrating from processor pa through network channel na→b, represented by ria→b, as

ria→b = sia→b + tmi
a→b + δ (4.3)

where, sia→b is the start time of τi migrating through network channel na→b, and δ is the

network precision.

Note that, through setting network channel set N , we can specify desired scheduling

manners such as non-, intra-, or fully-migrative scheduling. For example, if we want to

design a non-migrative scheduling, we can set N = ∅. For intra-migrative scheduling,

we can set the network channels only existing among processors having the same TS.

For fully-migrative scheduling, we can set the network channels existing among all the

processors.

4.2.5 Advantage of Function Model

To show the advantage of the function model, an example is shown in Figure 4.2. In this

example, a multiprocessor system is equipped with two processors p1 and p2 which have

processing speed 1 and 2, respectively. There is no network channel connecting these two

processors. Two tasks τ1 and τ2 with dependency relation τ1 ≺ τ2 arrive in the system at

t = 0. When assigning deadline to task τ1, as both two processors p1 and p2 can execute

these two tasks, based on the conventional task model used in Chapter 2, the deadline

assignment is in a dilemma. For example, when assigning d1 based on processor p1, we

can get d1 = 2, while based on processor p2, we can get d1 = 3. As a task can only have

4For conciseness, we say “task τi migrates from processor pa to pb” to mean “the data of the computed

results of task τi (or the signal issued by task τi when it is completed) migrates from processor pa to pb”,

hereafter.
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Figure 4.2: Deadline assignment when applying conventional task model
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Figure 4.3: Possible execution scenario when assigning d1 = 2

one deadline assignment, we need to make a choice from these two values. If d1 = 3 is

chosen, when these two tasks are executed on processor p1, task τ2 cannot be completed

before its deadline when task τ1 is completed at its deadline t = 3. Therefore, d1 = 3 is

not a proper deadline assignment. Now, we try d1 = 2. This assignment will make time

slot [2 3) cannot be utilized by task τ1. A possible execution scenario shown in Figure

4.3 is used to illustrate this defect. Assume, in addition to task τ1 and τ2, task τ3 also

arrives in the system at t = 0, and processor p2 is used to execute these three tasks. From

the figure, we can see that, under the assignment of d1 = 2, processor p2 cannot make all

the three tasks meet their deadlines. A possible execution sequence will discard τ3.

Compared to the conventional task model, the proposed function model sets deadline

to function level. Let’s reuse function model to re-represent this execution scenario. As

task τ1 and τ2 have dependency relation τ1 ≺ τ2, these two tasks can be represented as one

function F1 = ((T1,≺), 0, 4), T1 = {τ1, τ2}, c1 = 2, c2 = 2, while task τ3 can be represented
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Figure 4.5: An example of scheduling for multiprocessor real-time systems

as function F2 = ((T2,≺), 0, 2), T2 = {τ3}, c3 = 4. We can see that, as deadline is assigned

to function, there is no deadline assignment dilemma when applying the function model.

Figure 4.4 shows the execution sequence by applying the function model. Following

the execution sequence, all the three tasks can be successfully completed. This shows

advantage of the function model, and also reflects the fact that, for systems equipped

with multiple different speed processors, the conventional task model is not capable to

model tasks which have dependency relation with each other.

4.2.6 An Example

To illustrate the defined system model, an example of scheduling for multiprocessor real-

time systems is shown in Figure 4.5. In this example, there are three processors p1, p2, p3 in

the system. These processors are connected with each other through six network channels
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n1→2, n2→1, n1→3, n3→1, n2→3, n3→2. The network precision δ is 1. In the system, a function

F = ((T,≺), 0, 10) is waiting to be executed on the processors. The task poset of the

function is (T,≺) which comprises of six tasks. Task dependency relations are described

in a directed acyclic graph. An edge starting from task τi to task τj represented by a

dotted line denotes a dependency relation τi ≺ τj .

4.3 Scheduling Constraints

This section describes all the constraints expressed in the SAT model.

System Constraints

4.3.1 Constraint on start execution time of functions

Task set Ti corresponding to function Fi can start to run only after the function is trig-

gered. That is, the start execution time of the start task of the poset (Ti,≺) should be

larger than or equal to the triggered time of function Fi.

∀Fi ∈ F , ∀pa ∈ P

sτsia ≥ rfi

(4.4)

where symbol sτsia denotes the start execution time of task τsi on processor pa.

4.3.2 Constraint on start time of task migration

If a task τi can migrate from processor pa to processor pb through network channel na→b,

it implies that i): task τi has been completed by processor pa; or ii): τi has migrated to

processor pa from another processor. For the first case, task τi can start to migrate after

it has been completed, and for the second case, task τi can start to migrate after it has

already migrated to processor pa.

∀τi ∈ T , ∀na→b ∈ N , ∃nc→a ∈ N

(sia→b ≥ sia + tcia) ∨ (sia→b ≥ ric→a)
(4.5)

where symbol sia→b denotes the start time of task τi migrating through network channel

na→b, sia denotes the start execution time of task τi on processor pa.
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4.3.3 Constraint on task dependency

For processor pa, if τi ≺ τj , task τj can start to run only after τi has been completed.

Similar to the constraints on start time of task migration, there are two cases. i): task

τi has been completed by processor pa; ii): task τi has migrated to processor pa from

another processor. For the first case, τj can start to run after τi has been completed, and

for the second case, τj can start to run after τi has already migrated to processor pa.

∀τi, τj ∈ T , ∀pa ∈ P, ∃nb→a ∈ N

τi ≺ τj ⇒ (sja ≥ sia + tcia) ∨ (sja ≥ rib→a)
(4.6)

4.3.4 Constraint on processors

A processor can execute only one task at a time. This is interpreted as: there is no overlap

of the execution time of any two tasks.

∀τi, τj ∈ T , i ̸= j, ∀pa ∈ P

(sia ≥ sja + tcja) ∨ (sja ≥ sia + tcia)
(4.7)

4.3.5 Constraint on network channels

A network channel can transfer data of only one task at a time. That is, there is no

overlap of the migration time of any two tasks on a network channel.

∀τi, τj ∈ T , i ̸= j, ∀na→b ∈ N

(sia→b ≥ sja→b + tmj
a→b) ∨ (sja→b ≥ sia→b + tmi

a→b)
(4.8)

4.3.6 Constraint on heterogeneous processors

In heterogeneous systems, processors have different architectures, some tasks can only

be executed on some specific processors. For tasks that cannot be executed on some

processors, the start execution time of the tasks in such processors are set to +∞, which

means the tasks will never start to run on these specific processors.

∀pa ∈ P, ∀τi ∈ T − TSa

sia = +∞
(4.9)

Target Constraints
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4.3.7 Constraint on deadlines of functions

For every triggered function, the desired schedule should make sure that the function can

be completed before its deadline. For a hard deadline system, this requirement should be

guaranteed throughout the time period during which the system is running. Developers

should make such a guarantee when they design the system.

∀Fi ∈ F , ∃pa ∈ P

sτeia + tcτeia ≤ dfi

(4.10)

where symbol sτeia is the start execution time of task τei on processor pa, and tcτeia is the

number of time slots needed for processor pa to complete task τei.

4.4 Schedule Synthesis

After all the constraints are defined, we now can employ a SMT solver to generate the

desired schedule. The process of schedule synthesis is summarized in Alg. 5. Function

A := Assert(F , T ,P,N ) (line 1) interprets the constraints defined in section 4.3 as

assertions (boolean formulas that can be input into a SMT solver) based on the system

model. The variables of these boolean formulas are the start time of task execution on

processor, sja, and start time of task migration through network, sjb→c, for ∀Fi ∈ F , ∀τj ∈

Ti, ∀pa ∈ P, ∀nb→c ∈ N . Function CallSMTSolver(A) (line 2) calls a SMT solver to find

a solution model M for A, which contains interpretation for all the variables sja and sjb→c

defined in the set of assertions A. If the solution model does not exist (M = ∅) (line 3),

message UNFEASIBLE will be returned (line 4), which means there does not exist a schedule

can make all the functions meet their deadlines. Otherwise, if the solution model exists

(M ≠ ∅), based on M, function GenSch(M) generates the desired schedule S which can

make all the functions meet their deadlines (line 6).

Alg. 6 describes details of function GenSch(). It returns the schedule S which is a set

of variables selected from the solution model M. M contains the interpretation for all the

variables sja and sjb→c defined in the set of assertions A. As existential quantifier are used in

formula 4.5, 4.6, and 4.10, we need to further select sja and sjb→c that can form the desired

schedule. For example, in formula 4.10, we should find which processor (i.e., to determine

the value of processor index a) can make the logical formula ∀Fi ∈ F , sτeia + tcτeia ≤ dfi
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Algorithm 5 Schedule synthesis
Input: function set F , task set T , processor set P, network set N

Output: schedule S

1: A := Assert(F , T ,P,N )

2: M := CallSMTSolver(A)

3: if M = ∅ then

4: return UNFEASIBLE

5: end if

6: return S := GenSch(M)

Algorithm 6 GenSch()
Input: solution model M

Output: schedule S

1: S := ∅

2: for all Fi ∈ F do

3: sort task set Ti, such that ⟨τ1, τ2, . . . , τn⟩ is a permutation with τj1 ⊀ τj2 for 1 ≤ j1 < j2 ≤ n, where n is the number

of tasks in Ti

4: determine s1a based on formula 4.10, S := S ∪ {s1a}

5: for all τj ∈ Ti\τ1 do

6: determine sja based on formula 4.5 and 4.6

S := S ∪ {sja}

7: if τj has migrated among processors then

8: determine sj
b→c

based on formula 4.5 and 4.6

S := S ∪ {sj
b→c

}

9: end if

10: end for

11: end for

be evaluated as true. After this judgment, we can determine sja and sjb→c that can form

the desired schedule. For each function Fi, GenSch() first sorts its corresponding task set

Ti, such that ⟨τ1, τ2, . . . , τn⟩ is a permutation with τj1 ⊀ τj2 for 1 ≤ j1 < j2 ≤ n (line 3).

Follow this sorted order, the first task τ1 is the end task τei of function Fi. Based on

formula 4.10, the value of processor index a can be determined. That is, we can determine

s1a (i.e., s
τei
a ) (line 4). For other tasks in Ti, as τj1 ⊀ τj2 for 1 ≤ j1 < j2 ≤ n, after the value

of s1a is determined, based on formula 4.5 and 4.6, the values of sja and sjb→c (only for tasks

which migrates among processors) can be determined (line 5-10). After this, the desired

schedule S can be generated. Notice that, since solution model M gives interpretations

of all the variables defined in the SAT model which can satisfy all the formulas contained

in the SAT model, function GenSch() can always generate the desired schedule S.

From the schedule synthesis, we can know that RSMT is an optimal scheduling
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Figure 4.6: Scheduling result for example shown in Figure 4.5 by using RSMT

method5, that is, if RSMT cannot make all tasks meet their deadlines (return UNFEASIBLE),

no other scheduling methods can.

4.4.1 Scheduling Results

Recall the example shown in Figure 4.5. Based on the schedule synthesis described in

Alg. 5, we can get the solution model M which defines the values of the start time of

task execution on processor, sja, and the start time of task migration through network,

sjb→c, for ∀Fi ∈ F , ∀τj ∈ Ti, ∀pa ∈ P, ∀nb→c ∈ N . From the model M, through function

GenSch() as shown in Alg. 6, we can get the scheduling result as shown in Figure 4.6. It

can be seen that, the scheduling sequence can make the function meet its deadline. Some

characteristics of this scheduling sequence should be noticed:

• Task τ1 has been executed on processor p1 from system time t = 1 to t = 3, and it

has also been executed on processor p3 from system time t = 2 to t = 3. This means

that RSMT can handle parallel execution of tasks, and can make a task repeatedly

run on different processors when such repeated execution is necessary.

• Task τ2 runs on processor p2 from t = 6 to t = 7. Although task τ2 needs the

computed results obtained from completing task τ1, such computed results not only

can be obtained by completing task τ1 on processor p2 itself, but also be obtained

by transferring the computed results from other processor that has completed task

5Only when all the scheduling constraints are defined in the SAT model. More details will be discussed

in section 6.2.

50



τ1. Specified to this example, at system time t = 6, processor p2 gets the computed

results of task τ1 from processor p1.

4.5 Simulation, Evaluation, and Limitation

In this section, results of the simulations which are conducted to study the performance

of RSMT are presented. A prototype tool for RSMT, based on the system model, con-

straint formulation, and schedule synthesis described above, has been implemented. The

underlying SMT solver employed by the tool is Z3.

4.5.1 Simulation Settings

In order to evaluate the time that RSMT spends on scheduling all the input tasks, the

simulation results of the SMT solver computing time and the total spent time (including

interpreting, computing, and generating time) of RSMT are calculated in the simulation

studies.

The input functions are generated according to Poisson distribution with arriving

rate λ which represents number of the functions that arrive in the system per 100 time

units. The number of the tasks within a function varies in [1, 3]. The dependency

relation of the tasks is randomly assigned. For each task τj , cj and mj vary in [1, 7] with

exponential distribution. The deadline assignment of a function dfi is according to the

formula: dfi = rfi+⌊sfi∗Ci⌋, where Ci is total computation cost of all the tasks contained

in the function, and sfi is slack factor that indicates the tightness of task deadline. For

each function, sfi varies in [1, 3]. For the network channels, a mesh topology (all the

processors are connected with each other through network channels) is considered in the

simulation, and the network speed varies in [1, 6]. For the processor set, the speed of

processors varies in [1, 6], and the task sets which can be executed on specific processors

are randomly assigned.

There are many parameters that can affect the time that RSMT spends on scheduling

input tasks. I mainly study the impacts of the number of functions, number of processors,

and the parameter λ. The time-out value of SMT solver computing time is set to 1 hour

after which the scheduling problem is deemed unfeasible. All the simulations run on a
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64bit 4-core 2.5 GHz Intel Xeon E3 PC with 32GB memory.

4.5.2 Evaluation

The simulation results for the performance of RSMT are shown in Figure 4.7, 4.8, 4.9,

and 4.10. The values shown in the figures are the average values of running simulation

100 times.

For systems with four processors, the simulation results are shown in Figure 4.7 and

Figure 4.8. When λ ≥ 20, the underlying SMT solver Z3 returns the result unsat, which

means systems are under overload condition with λ ≥ 20.

From Figure 4.7, we can see that with increasing value of λ and function number,

the value of the computing time increases. This is because, with bigger value of λ, more

functions (means more tasks) wait to be executed on processors at a time. As described

in section 4.3, the scheduling constraints Constraint on processors and Constraint on

network channels, guarantees that no overlap of the execution time of any two tasks on

a processor and no overlap of the migration time of any two tasks on a network channel,

respectively. The increasing number of waiting tasks will make the underlying SMT solver

need much more calculation to return a solution model. Similarly, with increasing value

of function number, the total number of tasks that need to be scheduled is increasing.

This will also increase the calculation time for the underlying SMT solver to return a

solution model.

For total spent time of RSMT, Figure 4.8 shows that RSMT needs less than 1 minute

to generate the desired scheduling table, which means RSMT is capable to handle the

scheduling problem for systems with four processors under the simulation settings.

For systems with five processors, the simulation results are shown in Figure 4.9 and

Figure 4.10. When λ ≥ 26, function number = 200, the simulation is time-out, which

means the scheduling problem is too complicated for the underlying SMT solver to return

a solution model within the limit of time (within 1 hour).

Comparing results shown in Figure 4.7 and Figure 4.9, it can be seen that the prob-

lem of scheduling systems with 5 processors is much more complicated than scheduling

systems with 4 processors. This is denoted by the results that, under the same values of

λ and function number, e.g., λ = 18, function number = 200, the underlying SMT solver
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Figure 4.7: SMT solver computing time for system with 4 processors
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Figure 4.8: Total spent time of RSMT for systems with 4 processors

needs much more time to return a solution model for systems with 5 processors (around

200 seconds) than systems with 4 processors (around 20 seconds). Moreover, from Fig-

ure 4.9 and Figure 4.10, we can see that, the computing time occupies vast majority of
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Figure 4.9: SMT solver computing time for system with 5 processors
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Figure 4.10: Total spent time of RSMT for systems with 5 processors

the total spent time. This phenomenon is much more obvious for scheduling systems

with 5 processors than scheduling systems with 4 processors. This confirms the expla-

nation described in section 2.7 that compared to the operation of the interpreting and
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Figure 4.11: Applied scope of RSMT (migrative scheduling)

the generating, the operation of the computing is much more complication (exponential

complexity) and becomes major limitation of RSMT. In the next subsection, the applied

scope of RSMT is given, and some methods which can expand the scope are discussed.

4.5.3 Applied Scope

In the simulation studies, network channel with mesh topology is considered. Under this

setting, tasks are allowed to migrate among all the processors equipped in systems. Such

scheduling manner is called migrative scheduling (more precisely speaking, fully-migrative

scheduling). Under the simulation settings, the scope in which RSMT can be applied is

shown in Figure 4.11. Symbol Pro# in the figure means processor number. Note that,

the results are obtained with function number = 200, which means with function number

= 100 or 50, the applied scope will be larger.

From the figure, we can see that, with increasing number of processor, the underlying

SMT solver becomes easier to time-out. For example, when processor number = 6, the

SMT solver becomes time-out when λ ≥ 25, while when processor number = 12, the SMT

solver becomes time-out when λ ≥ 15.
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Figure 4.12: Applied scope of RSMT (non-migrative scheduling)
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Figure 4.13: Applied scope of RSMT (processor number: 8, 12)

Non-migrative Scheduling

In addition to migrative scheduling, some systems do not allow tasks migrating among

processors. Such scheduling manner is called non-migrative scheduling. To give the limi-

tation of RSMT in such scheduling manner, in the simulation setting, the network channel
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Figure 4.14: Different division

set is set as ∅. Under this settings, the scope in which RSMT can be applied is shown

in Figure 4.12. Symbol Pro# in the figure means processor number. Compared to the

applied scope for migrative scheduling, we can see that the applied scope of RSMT in

non-migrative scheduling manner is much larger than it in migrative scheduling manner.

In order to show this comparison result more clearly, in Figure 4.13, the applied scope

of RSMT in both migrative and non-migrative scheduling manners for processor number:

8 and 12 are shown together. Symbol mig-Pro# and non-Pro# in the figure mean pro-

cessor number in migrative scheduling and non-migrative scheduling, respectively. This

is because, when adopting non-migrative scheduling manner, the scheduling constraint

Constraint on network channels does not need to be considered, which will reduce a

lot of calculation for the underlying SMT to return a solution model, consequently the

computing time of RSMT will reduce.

Divide-And-Conquer

The applied scopes show the limitation of RSMT. As mentioned in section 2.7, such lim-

itation is mainly because the computing operation of RSMT has exponential complexity.

When a system configuration is beyond the scope, RSMT cannot be directly applied. In

order to overcome such limitation to a certain extent, the idea divide-and-conquer 6 sheds

some light.

6The basic idea of divide-and-conquer is to recursively break down a problem into sub-problems of the

same or related type, until these sub-problems become simple enough to be solved directly. The solutions

for the sub-problems are then combined to give a solution for the original problem [80].
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Figure 4.16: Scheduling result under the division case b in Figure 4.14

Considering a scenario: three functions are to be executed on two processors. The three

functions are: F1 = ((T1,≺), 0, 2), T1 = {τ1}, c1 = 2; F2 = ((T2,≺), 1, 2), T2 = {τ2}, c2 = 2;

F3 = ((T3,≺), 0, 2), T3 = {τ3}, c2 = 2, and the two processors are: p1 = (2, {τ1, τ2}),

p2 = (1, {τ1, τ3}). If we directly apply RSMT to design scheduling for this scenario, the

problem complexity is to schedule three functions onto two processors. Under this case,

the scheduling result is shown in Figure 4.15. We can see that, all the three functions can

be successfully completed before their deadlines.

Now, we borrow the idea divide-and-conquer. Since task τ1 can be executed on both

processor p1 and p2, there are two possible divisions for this scenario, which are shown

in Figure 4.14. Under the division case a, by applying RSMT, we can get the scheduling

result as shown in Figure 4.15, which is the same as the result when directly apply RSMT

without division. But the problem complexity becomes scheduling two functions onto one

processor plus scheduling one function onto one processor.
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From the scheduling constraints Constraint on processors which guarantees that there

is no overlap of the execution time of any two tasks on a processor, we can know that the

problem complexity after division becomes less than it without division. This means some

scheduling problems that cannot be solved by directly applying RSMT can be solved by

RSMT after division, in other words, the applied scope of RSMT becomes larger after

problem division.

However, under the division b, by applying RSMT, we can get the scheduling result

as shown in Figure 4.16. Under this division, function F3 cannot be successfully complete

before its deadline. This is because, after problem division, the solution space for the

underlying SMT solver to return a solution model is reduced, which means RSMT may

not be able to find the optimal result as it can find without division.

From this example, we can see that the idea divide-and-conquer can, on the one

hand, expand the applied scope of RSMT by reducing problem complexity, on the other

hand, it will reduce the solution space for the underlying SMT solver to return a solution

model, which may result in a non-optimal solution. Further research on how to avoid this

disadvantage is an important future work.

4.6 Adapting to Other Scheduling Targets

There are many targets to be considered when designing scheduling for real-time systems.

Which objectives are appropriate in a given situation depends, of course, upon the appli-

cation. In this section, the design guidelines for adapt RSMT to other different scheduling

targets are given.

4.6.1 Maximizing obtained values of completed functions

For a firm or soft real-time system, under normal workload conditions, there exists a

schedule that can make all the triggered functions meet their deadlines. However, as

mentioned in Chapter 3, due to dynamic changes of work environment, in practical en-

vironment, system workload may vary widely. Once system workload becomes too heavy

so that there does not exist a feasible schedule can make all the functions meet their

deadlines, we say the system is overloaded. When system is overloaded, one reasonable
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scheduling target is to maximize the obtained values of the completed functions. For this

scheduling target, a mixed critical system (system with both firm and soft deadline func-

tions) is considered. Note that, scheduling soft (firm) real-time systems can be treated

as a special case of scheduling mixed critical systems under which the set of firm (soft)

deadline functions contained in the systems is an empty set. This means RSMT can also

be applied to firm and soft real-time systems.

Constraints on scheduling target

For this scheduling target, a function with firm deadline is defined as Fi = ((Ti,≺

), rfi, dfi, vi), where vi is the value that system can obtain by completing the function

Fi before its deadline dfi. If such a function misses its deadline, it will be useless to the

system. Symbol FH is used to denote the set of firm deadline functions contained in

the system. Let symbol v be the obtained values of the completed functions, and its

initial value is set to 0. The value that system can obtain by completing the firm deadline

functions can be calculated as follows.

∀Fi ∈ FH

if ∃pa ∈ P, sτeia + tcτeia ≤ dfi

v := v + vi

end

(4.11)

For a function with soft deadline, it may still be useful to the system even it has missed

deadline. Thus, without losing generality, a soft deadline function is defined as Fi =

((Ti,≺), rfi, dfi, fi(t)), where fi(t) is the coefficient function to indicate the value that the

system can obtain by completing function Fi at system time instant t. Symbol FS is

used to denote the set of soft deadline functions contained in the system. The values that

system can obtain by completing the soft deadline functions can be calculated as:

∀Fi ∈ FS

if ∃pa ∈ P, sτeia < +∞

v := v + fi(s
τei
a + tcτeia )

end

(4.12)

Note that, the inequality sτeia < +∞ denotes that function Fi has been completed in

processor pa.
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Algorithm 7 Schedule synthesis for maximizing obtained values of completed functions
Input: function set F , task set T , processor set P, network set N

Output: schedule S

1: A := Assert(F , T ,P,N , max)

2: M := CallSMTSolver(A)

3: if M ̸= ∅ then

4: return S := GenSch(M)

5: end if

6: start := 0, end := max

7: while true do

8: mid := start + (end− start)/2

9: A := Assert(F , T ,P,N ,mid)

10: M := CallSMTSolver(A)

11: if M = ∅ then

12: end := mid − step

13: else

14: A := Assert(F , T ,P,N ,mid+ step)

15: M′ := CallSMTSolver(A′)

16: if M′ ̸= ∅ then

17: start := mid+ step

18: else

19: return S := GenSch(M)

20: end if

21: end if

22: end while

Let symbol sv denote the maximum obtained values of the completed functions, and

obviously sv is no less than 0 and no larger than the sum of the values of the firm

deadline functions (
∑

vi for ∀Fi ∈ FH) and the values of the soft deadline functions

when completed before deadlines (
∑

fi(ti), for ∀Fi ∈ FS, where ti is the completed time

instant of task τi, and ti < dfi). Symbol max is used to represent the sum of the values.

The constraints on the scheduling target can be expressed as:

v ≥ sv (4.13)

Schedule Synthesis

Similar to the schedule synthesis described in Chapter 3 for overload problem of the

uniprocessor systems, the process of schedule synthesis is summarized in Alg. 7.

Function Assert(F , T ,P,N , max) (line 1) interprets the system constraints defined in

section 4.3 and target constraints descried in section 4.6.1 as assertions with sv := max

in formula 4.13. If this expectation can be satisfied, it means overload problem does not
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happen, model M will be returned by function CallSMTSolver(A) (line 2). Based on M,

schedule S can be generated by function GenSch() (line 4), where function GenSch(A) is

described in Alg. 6.

When overload problem happens, if we set sv := max, constraint on scheduling target

cannot be satisfied. We need to decrease the set value of sv. Binary search is used to

find the maximum value of sv (line 6–22). With the maximum value of sv, a solution

model can be returned by function CallSMTSolver(A). Meanwhile, with sv := sv+ step,

CallSMTSolver(A) will return an empty model. This is the criterion to judge if the value

of sv is the maximum value. Note that, variable step is predefined and can be used to

control the search space of SMT solver. Increasing step makes the algorithm faster but

also reduce the solution space.

4.6.2 Making firm deadline functions meet deadlines first

Constraint on scheduling target

Since firm deadline functions usually play important roles in a real-time system, when the

system is under overload condition, a reasonable scheduling target is to first make sure

that all the firm deadline functions meet their deadlines, then maximize obtained values

of the completed soft deadline functions. To make firm deadline functions meet deadlines,

we can get

∀Fi ∈ FH, ∃pa ∈ P

sτeia + tcτeia ≤ dfi

(4.14)

To maximize the obtained value of the completed soft deadline functions, the formula is

similar to it for the previous scheduling target. Let symbol v be the obtained values of

the completed functions, and its initial value is set to 0. The values that the system can

obtain by completing the soft deadline functions can be calculated as:

∀Fi ∈ FS

if ∃pa ∈ P, sτeia < +∞

v := v + fi(s
τei
a + tcτeia )

end

(4.15)
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Algorithm 8 Schedule synthesis for making firm deadline functions meet deadlines first
Input: function set F , task set T , processor set P, network set N

Output: schedule S

1: A := Assert(F , T ,P,N , max soft)

2: M := CallSMTSolver(A)

3: if M ̸= ∅ then

4: return S := GenSch(M)

5: end if

6: start := 0, end := max soft

7: while true do

8: mid := start + (end− start)/2

9: A := Assert(F , T ,P,N ,mid)

10: M := CallSMTSolver(A)

11: if M = ∅ then

12: end := mid − step

13: else

14: A := Assert(F , T ,P,N ,mid+ step)

15: M′ := CallSMTSolver(A′)

16: if M′ ̸= ∅ then

17: start := mid+ step

18: else

19: return S := GenSch(M)

20: end if

21: end if

22: end while

Let symbol sv denote the maximum obtained values of the completed soft deadline func-

tions, and obviously sv is no less than 0 and no larger than the values of the soft deadline

functions when completed before deadlines (
∑

fi(ti), for ∀Fi ∈ FS, where ti is the com-

pleted time instant of task τi, and ti < dfi), represented as max soft. The constraints on

scheduling target can be expressed as:

v ≥ sv (4.16)

Schedule Synthesis

The process of schedule synthesis is described in Alg. 8 which is quite similar to the

process described in Alg. 7. The only modification is just replacing the max appearing

in Alg. 7 as max soft (line 1 and 6) in Alg. 8. This is because of the target constraint

described in section 4.6.2 that only needs to maximize obtained values of the completed

soft deadline functions as firm deadline functions has been guaranteed to be completed

before their deadlines.
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4.7 Summary

In this chapter, RSMT is applied to design scheduling for heterogeneous multiprocessor

real-time systems. As scheduling identical and uniform multiprocessor systems can be

treated as special cases of scheduling heterogeneous multiprocessor systems, it means

RSMT can also be applied to schedule identical and uniform multiprocessor systems.

Various kinds (soft, firm, hard, and mixed critical) of systems and various types of

scheduling manners (non-, intra-, fully-migrative scheduling) have been considered. De-

sign guidelines for several practical requirements, and various kinds of scheduling targets

that widely studied in real-time scheduling domain are given.

As mentioned in Chapter 3, dividing scheduling constraints into system constraints and

target constraints makes RSMT flexible to design scheduling for other objectives by just

modifying the target constraints. Design guidelines for three scheduling targets that are

reasonable under the corresponding application scenarios are given. Adapting a system

to different scheduling targets, little modification on target constraints and scheduling

synthesis needs to make, and the system constraints can be totally reused.
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Chapter 5

Use of Combining Offline and Online

Scheduling

With increasing of system complexity, many real-time systems for industrial applications

contain mixed sets of functions including both time-triggered functions (triggered by sys-

tem clock) and event-triggered functions (triggered by event). Since events are usually

initiated by outside environment in which systems operate, the time at which events are

initiated is highly randomized. As mentioned in Chapter 1, RSMT performs in offline

scheduling paradigm, it requires arriving time (i.e., triggered time) of functions known a

priori. Such requirement limits the capability of RSMT to be applied to systems contain-

ing event-triggered functions. In order to overcome this limitation, a method of combining

RSMT and online scheduling algorithm is given in this chapter. The target systems are

heterogeneous multiprocessor real-time systems. Through this method, RSMT shows ca-

pability to design scheduling for systems containing event-triggered functions1. After the

method is introduced, through a case study on a running car, the usage of this combination

method in practical applications is shown. Moreover, from this case study, a method for

generating task dependency relation based on SOFL (structured-object-oriented-formal)

specification is also provided.

Organization of this chapter. In section 5.1, the method of combining offline and

1Event-driven systems can be treated as a special case of systems containing event-triggered functions,

since all the functions contained in event-driven systems are event-triggered functions.
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online scheduling is provided. To explain this method, section 5.1.1 introduces systems

models and assumptions. Details of the method is described in section 5.1.2. Some

discussions are conducted in section 5.1.3. To show the usage of the method, a case study

on a running car is conducted in section 5.2. There are two parts included in the case

study. First, through a detailed study on cruise control system, a method for generating

task dependency relation based on SOFL specification is provided. Details of this method

is described in section 5.2.1. After task dependency relation is generated, the combination

method is applied to design scheduling for the running car. Details are described in section

5.2.2. At last, section 5.3 summarizes this chapter.

5.1 Combining Offline and Online Scheduling

5.1.1 System Model and Assumption

In order to model time-triggered and event-triggered functions, the idea from the con-

ventional periodic and sporadic task models which are used to model time-triggered and

event-triggered tasks [1] is borrowed. Let’s first introduce the periodic and sporadic task

models. In both task models, a task gives rise to a potentially infinite sequence of exe-

cutions (called instants of task). In the periodic task model, task instants arrive strictly

periodically, separated by a fixed time interval which is called the period of the periodic

task. Compared to the periodic task model, in the sporadic task model, task instants may

arrive at any time once a minimum inter-arrival time has elapsed since the arrival of the

previous instant of the same task, this minimum inter-arrival time is called the period of

the sporadic task.

Analogy to periodic and sporadic task models, the periodic and sporadic function

models are given as follows. In both function models, a function gives rise to a potentially

infinite sequence of executions (called instants of function). A periodic function set is

denoted by PF = {PF1, PF2, . . . , PFn}, where n is the number of periodic function.

Each function PFi ∈ PF is characterized by PFi = ((Ti,≺), rdi, pi), where i is the

function index, (Ti,≺), Ti ̸= ∅ is the task poset, rdi is the relative deadline, and pi is

the period. Task poset (Ti,≺) has the same definition as it used in the function model

described in section 4.2. Meanwhile, relative deadline rdi denotes that when a function
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Figure 5.1: Periodic function PF1
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Figure 5.2: Sporadic function SF2

instant PF j
i is triggered at system time t, the specific time before which it required to

be completed is t + rdi, where symbol PF j
i represents the j-th instant of function PFi.

Period pi denotes that when a function instant PF j
i is triggered at system time t, the next

instant of the same function, represented by PF j+1
i , will be triggered at t+ pi. Figure 5.1

shows a possible execution of a periodic function PF1 = ((T1,≺), 1, 4), T1 = {τ1}, c1 = 1,

on a unit speed processor, where c1 is the computation cost of τi. Symbol τ ji in the

figure denotes the j-th instant of task τi (this notation is used hereafter). It shows that

when the first instant of the function PF1 is triggered at t = 0, the triggered time of the

subsequent instant is determined (t = 4). This determinacy is the essential characteristic

of time-triggered function.

Symbol SF = {SF1, SF2, . . . , SFm} is used to represent a sporadic function set, where

m is the number of sporadic function. Note that, a function cannot be belong to both

periodic function set and sporadic function set, i.e., PF ∩ SF = ∅. Each function SFi ∈

SF is characterized by SFi = ((Ti,≺), rdi, pi), where i is the function index, (Ti,≺), Ti ̸= ∅
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Figure 5.3: Example of system containing both periodic and sporadic function

is the task poset, rdi is the relative deadline, and pi is the period. The definition of task

poset, relative deadline is the same as they are for periodic function model, and the only

difference is the definition of period. In sporadic function model, period pi denotes that

when a function instant SF j
i is triggered at system time t, the next instant of the same

function, represented by SF j+1
i can be triggered at any time at or after t+ pi. Figure 5.2

shows possible executions of a sporadic function SF2 = ((T2,≺), 2, 2), T2 = {τ2}, c2 = 1,

on a unit speed processor. It shows that when the first instant of the function SF2 is

triggered at t = 0, the triggered time of the subsequent instant is not determined. The

only information is that the triggered time of the subsequent instant will be later than

t = 2. This non-determinacy reflects the randomness of event-triggered function.

Unlike periodic and sporadic task models that set deadline to task, in periodic and

sporadic function models, deadline is set to function, while a function is achieved by a

series of tasks cooperated together. The advantage of this setting, especially for scheduling

heterogeneous multiprocessor systems, can refer section 4.2.5. In addition to periodic and

sporadic function models, the task, processor, and network channel models proposed in

Chapter 4 can be used to model the other parts of a heterogeneous multiprocessor system.

Based on these system models, it is assumed that the first instant of each periodic

function is triggered at the time when system starts up (i.e., t = 0). The dependency

relation among functions, task migration among processors, and the overload problem are

not considered. Meanwhile, task preemption is allowed at any time.

5.1.2 Combination Method

When task migration is not considered, the procedure of scheduling multiprocessor real-

time system can be divided into two phases. The first phase is to assign functions to

processors, and the second phase is to allocate processor time slots to tasks. As in the
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second phase, the allocating operation performs on each single processor, how to allocate

is a problem of scheduling uniprocessor system. In the combination method, function-to-

processor assignment conducts offline, while slot-to-task allocation performs online. To

explain the combination method, with an example depicted in Figure 5.3, the method

is described step by step. In the example, there are three functions: PF1, SF2, SF3.

Functions PF1 and SF2 are the corresponding functions used in the previous section,

while the possible execution sequences of the sporadic function SF3 on a unit speed

processor is denoted in Figure 5.4.

Offline Function-to-processor Assignment

In the offline phase, for a sporadic function SFi = ((Ti,≺), rdi, pi), due to the non-

determinacy, the actually triggered time of function instants cannot be known. However,

we do know its maximum triggered frequency, i.e., triggered once every pi time units. In

order to guarantee that all the functions (including both periodic and sporadic functions)

can meet their deadlines, it is wondered that if there exists a worst-case arriving pat-

tern. That is, if we can make sure that all the functions can meet their deadlines under

the worst-case arriving pattern, regardless of when the sporadic functions are actually

triggered, deadlines of all the functions can be guaranteed at system run-time. Fortu-

nately, when scheduling uniprocessor system by online scheduling algorithm EDF, such

worst-case arriving pattern does exist, i.e., all the sporadic functions triggered with their

maximum frequency (Lemma 1, refer [81]). Some studied examples about such worst-

case arriving pattern can also be found in [81]. Meanwhile, as mentioned in Chapter 3,

EDF is an optimal scheduling algorithm on uniprocessor, in the sense that if there is any

scheduling method can guarantee deadlines of all the functions in a function set, EDF

also can (Lemma 2, refer [33]). Based on these results, the key idea of the combination

method comes out.

Theorem. If we can apply RSMT to decide function-to-processor assignment following

which all the function deadlines can be guaranteed by RSMT under the worst-case arriving

pattern, then applying EDF algorithm on each processor to decide slot-to-task allocation

online can make sure that all the function deadlines can be guaranteed at system run-time.

Proof. When functions are triggered following the worst-case arriving pattern, on each

processor, as deadlines of the functions that are assigned to the processor can be guar-
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Figure 5.5: Sporadic function SF2 triggered with maximum frequency

anteed by RSMT, according to Lemma 2, EDF also can guarantee the deadlines of the

functions. Furthermore, according to Lemma 1, when using EDF to perform scheduling

on uniprocessor, if deadlines of functions can be guaranteed under the worst-case arriving

pattern, regardless of when the sporadic functions are actually triggered, deadlines of all

the functions can be guaranteed at system run-time.

Let’s first assume that all the sporadic functions are triggered with their maximum

frequency. Possible execution sequences of function SF2 and SF3 are shown in Figure 5.5

and 5.6, respectively. From these figures, it can be observed that if a sporadic function

SFi = ((Ti,≺), rdi, pi) is triggered with its maximum frequency, it behaves exactly like a

periodic task with period pi. For example, in Figure 5.5, when sporadic function SF2 =

((T2,≺), 2, 2) is triggered with its maximum frequency, i.e., triggered once every 2 time

units, it behaves exactly like a periodic task PF2 = ((T2,≺), 2, 2). The similar result

has also been observed in [82] (for conventional sporadic task model). Since under the

worst-case arriving pattern, sporadic functions can be treated as periodic functions, and

the triggered time of function instants can be known a priori, it means RSMT can be

applied. We now adopt RSMT to generate scheduling table for the example shown in

Figure 5.3 under the worst-case arriving pattern.
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Figure 5.6: Sporadic function SF3 triggered with maximum frequency
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Figure 5.7: Scheduling table deciding function-to-processor assignment

From the periodic function model, it can be known that instant of a periodic function

PFi = ((Ti,≺), rdi, pi) is repeatedly triggered every pi time units. Therefore, for a periodic

function set PF = {PF1, PF2, . . . , PFn}, when the first instants of all the functions are

triggered at the same time (based on the system assumptions, the first instants of all the

functions are triggered at t = 0), the triggered pattern of function instant will repeat

every lcm time units, where lcm denotes the least common multiple of period pi for all

the functions in set PF . This means, if all the function instants triggered within time

interval [0 lcm) can meet their deadlines, the deadlines of all the future triggered function

instants can also be guaranteed.

Specific to the example shown in Figure 5.3, as lcm equals to 8 (p1 = 4, p2 = 2, p3 = 8),

we only need to make sure that all the function instants triggered within time interval

[0 8) can meet their deadlines. These function instants are: PF 1
1 , PF 2

1 , SF
1
2 , SF

2
2 , SF

3
2 ,

SF 4
2 , SF

1
3 , where PF j

i (SF j
i ) denotes the j-th instant of function PFi (SFi). As function

instant can be modeled by task poset, triggered time, and deadline, e.g., PF 1
1 can be

modeled as ((T1,≺), rfi, dfi), where task poset T1 = {τ1}, triggered time rfi = 0, and

deadline dfi = 1, function instant can be analogous to the “function” proposed in section
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4.2. Moreover, as the task, processor, and network channel models (defined as ∅, as task

migration is not considered) proposed in section 4.2 are used to model the other parts

of the system, based on the method described in Chapter 4, we now can apply RSMT

to generate scheduling table for the function instants PF 1
1 , PF 2

1 , SF
1
2 , SF

2
2 , SF

3
2 , SF

4
2 ,

SF 1
3 . The result is shown in Figure 5.7.

The scheduling table shows two types of information. The first type of information

is function-to-processor assignment. From the Figure 5.7, it can be seen that function

PF1 and SF3 are assigned to processor p1, while function SF2 is assigned to processor p2.

The second type of information is slot-to-task allocation. That is, all the task instants

have been allocated corresponding time slots. For example, the second instant of task

τ2, represented by τ 22 , has been allocated time slot [2 3) on processor p2. It can be seen

that, under the function-to-processor assignment, deadlines of the function instants can

be guaranteed following the slot-to-task allocation.

For the information of slot-to-task allocation, since the scheduling table is specific

to the system under the worst-case arriving pattern, when system really runs, sporadic

functions may not be triggered with their maximum frequency, and the actually triggered

time of sporadic functions can only be known at system run-time. This means the slot-to-

task allocation denoted by the scheduling table cannot be used at system run-time, while

it should be decided online.

Online Slot-to-task Allocation

According to the theorem proposed before, after the function-to-processor assignment

is decided, we now can apply EDF algorithm on each processor to decide slot-to-task

allocation online. By this way, all the function deadlines can be guaranteed at system

run-time regardless of when the sporadic functions are actually triggered. Figure 5.8

shows the execution sequence generated by EDF in time interval [0 8) on processor p1

when the first instant of sporadic function SF3 is triggered at t = 2.

Note that, the proposed combination method deals with the issue of deadline guar-

antee for event-driven systems. For other issues (e.g., scheduling overhead) that may be

considered when we design scheduling for event-driven systems, how to properly use the

combination idea needs further study.
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Figure 5.8: EDF deciding slot-to-task allocation (allocation on processor p1)

5.1.3 Discussion

In the offline phase, in order to guarantee that all the functions can meet their deadlines,

RSMT generates scheduling table based on the worst-case arriving pattern, i.e., all the

sporadic functions triggered with their maximum frequency. As at system run-time,

sporadic functions may not be triggered with their maximum frequency, under this case,

processor resources that are reserved for the functions may be wasted. For example, as

shown in Figure 5.7, processor p2 is reserved for sporadic function SF2. In an extreme

case, function SF2 may never be triggered, which means processor p2 will never be used.

This kind of waste is mainly because we want to guarantee that all the functions can

meet their deadlines. For hard real-time systems, since such guarantee is an essential

requirement, this kind of waste cannot be avoided or reduced. But for other kinds of real-

time systems (e.g., firm, soft, and mixed critical real-time systems) which allow functions

missing deadlines occasionally, this kind of waste can be reduced to a certain extent.

For example, in the offline phase, when performing RSMT to generate the scheduling

table, we may assume that some sporadic functions are not triggered with their maximum

frequency. Specific to the example shown in Figure 5.3, if in the offline phase, we assume

function SF2 is triggered every 4 time units, only using processor p1 can handle the

execution of all the three functions. The result is shown in Figure 5.9. But of course, when

the triggered frequency of SF2 exceeds the assumed frequency, some function instants may

miss deadlines. A possible scenario with a missed deadline function instant is depicted in

Figure 5.10. In the possible scenario, function SF2 is triggered every 2 time units within

time interval [0 8). Under this triggered frequency, the function instant SF 4
2 will miss its

deadline.

Based on above analysis and examples, we can see that reserving more resources can

better guarantee deadline of function, while it may also result in more waste of resources.

For firm, soft, and mixed critical real-time systems, in order to reduce possible waste, we
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Figure 5.9: Scheduling table generated by RSMT (assuming sporadic function SF2 trig-

gered every 4 time units)

1 4
1

3
1

5
1

1
1

1
2

2
1

2
2

2
3

issue 2
4 discard 2

4 

Figure 5.10: Possible scenario with missed deadline function instant

may reserve less resources with a certain degree of sacrifice of function deadline guarantee.

This resource reduction should be especially wary as such a real-time system can only

tolerate function missing deadline occasionally. If this situation happens too often, it

means the reserved resources are not enough to support the normal operation of the

system.

We may reserve resources based on observation of the actually triggered frequency

of sporadic functions; or we can give different degrees of deadline guarantee to different

sporadic functions based on their importance. How to properly deal with the trade-off

between function deadline guarantee and resource reservation is an important future work.

5.2 Use Case Study

5.2.1 Task Dependency Relation Generation

In a real-time system, multiple tasks are cooperated together to achieve a function. Usu-

ally, in a practical application, there are dependency relations among these tasks. Such

dependency relation has been widely considered when designing scheduling for real-time

systems. However, works in real-time scheduling domain mainly focus on how to design

scheduling to handle the task dependency relations and assume such relations are known

a priori. Few works study how to generate the task dependency relation.
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In order to generate the dependency relation, a feasible method is based on require-

ment specification of an application. However, with continuously increasing complexity

in development of system, to correctly generate the dependency relation is becoming a

challenge. A primary problem is that requirement specification may not be accurately and

easily understood by system designers. The major reason causing such a problem is the

notations and languages used in the specification lack of precise syntaxes and semantics.

These notations and languages inevitably associate ambiguity and may lead to misunder-

standing. To solve this problem, formal specification gives a promising solution. With

precise constraints of semantics and syntaxes, formal specification can precisely define the

behaviors of the system and provide a firm basis for designing the system.

Unfortunately, there exist some difficulties in using formal methods. For example, it

requires significant abstraction and mathematical skills; it usually costs more in time and

human effort for analysis and design [34]. These difficulties have hindered wide usage

of formal methods. To address these difficulties, SOFL, a formal engineering methodol-

ogy, has been proposed in [34, 35], where SOFL refers to structured-object-oriented-formal

language. It proposes changes to notation, methodology, and support environments for

constructing systems, which makes formal methods more practical and acceptable. Mean-

while, it has precise semantics and syntaxes, which provides a firm foundation for correctly

generating the task dependency relation. To show how SOFL can be used to generate

task dependency relation, in this subsection, a case study on cruise control system is

conducted.

5.2.1.1 Cruise Control System

Cruise control system (CCS) is a servomechanism that can maintain a constant vehicle

speed set by a driver. It accomplishes this function by measuring vehicle speed, comparing

it to set speed, and automatically adjusting throttle according to a control algorithm. It

is usually used for long drives across highways. By using the CCS, drivers do not need to

control the throttle pedal to maintain the speed of vehicles, which can alleviate the fatigue

of drivers. Meanwhile, it can reduce unnecessary change of speed, which usually results

in better fuel efficiency. With these advantages, CCS has now been widely equipped in

various brands of automobiles, such as BMW, Audi, and Volkswagen.
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Figure 5.11: Function buttons on the control lever of a cruise control system (figure is

from the home page of Audi)

CCS developed by different automobile manufacturers usually have different auxiliary

functions. Figure 5.11 shows the control lever of a CCS equipped in an Audi automobile.

A driver can activate different functions by pressing the function buttons on the control

lever. Button ON and OFF are to turn on and turn off the system, respectively. After the

system turns on, when the button SET is pressed, if the speed of the vehicle is within a

specific speed interval which is supported by the CCS, the system will start to maintain

current vehicle speed until the driver presses button OFF, or CANCEL, or steps on brake.

SPEED+ and SPEED- is used to adjust the set speed when the system keeps on maintain

current vehicle speed. When SPEED+ is pressed, the set speed will be increased, and

the system will increase current speed to the set speed and maintain the speed of vehicle

at that level. The button CANCEL can temporarily turn off the system, meanwhile the

button RESUME can resume the system to the moment at which the system is temporarily

turned off.

5.2.1.2 Requirements Specification

As the objective is to investigate how to generate task dependency relation from SOFL

specification, rather than develop a fully functional system, for simplicity, only parts of

the functions are considered in the case study. Moreover, to the consideration of safety, a

new CONFIRM button is provided.

After the system turns on2, the primary functions required by a CCS are as follows.

2As function button SET in Figure 5.11 is not considered, in the case study, system turns on means
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Figure 5.12: Condition data flow diagram (CDFD) for the cruise control system

1. Let the driver increase and decrease the value of the set speed. The set speed is

required within a speed interval supported by the CCS. To the consideration of

safety, a confirmation operation is needed to confirm the setting.

2. Keep on maintaining the vehicle speed at the set value.

Although above specification is very simple, it still may cause misunderstanding. For

example, the sentence “a confirmation operation is needed to confirm the setting” does

not clearly describe what will happen if the confirmation operation is not performed. A

designer may think that if an operation of increasing or decreasing is not followed by a

confirmation operation, the operation will be ignored. While another designer may think

that the confirmation operation is needed only when the driver has finished the setting

(maybe after pressing button SPEED+ and SPEED- many times). In order to avoid any

potential misunderstandings, as described above, formal notation can help greatly.

5.2.1.3 SOFL Specification

A SOFL specification is a hierarchical condition data flow diagram (CDFD) that is linked

with a hierarchy of specification modules (modules) [35]. The CDFD comprises of a

set of processes and describes data flows between them, while the associated modules

the system stars to maintain current vehicle speed.

77



precisely define the functionality of the components (process, data flow, data store) in

the CDFD. Each process in the CDFD is associated with a process which is defined

in the modules and describes functions in terms of pre and post conditions, within the

specific specification context of the module [36]. More details about SOFL specification

are described in [34] [35].

CDFD

The CDFD of the CCS is shown in Figure 5.12, and the associated module is shown in

Figure 5.13. In Figure 5.12, each box surrounded by narrow borders denotes a process,

such as SET adjust() and CRU control(), which describes an operation. It consumes

inputs and produces outputs. Each directed line with a labeled variable name denotes

a data flow. A solid line denotes an active data flow, while a dotted line denotes a

control data flow. The box with a number and an identifier (e.g., temp speed) is a data

store which can be accessed by processes. A directed line from a data store to a process

represents the process can read the data from the store, while a directed line from a

process to a data store means the process can read, write, and update the data in the

store. More details about the components used in the CDFD can refer [35] [37].

The CCS comprises of two primary functions: setting desired vehicle speed (through

increasing or decreasing the set speed) and maintaining the vehicle speed at the set value.

These two functions are triggered by ECU() (electronic control unit) process. Processes

with names star with SET are for the first functions, and processes CRU control() is for

the second function. When the system is running, process ECU() keeps on monitoring

the inputs of drivers. Different inputs will trigger different processes to achieve different

functions. The selection of speed up, speed down, or confirm denotes the corresponding

function buttons on the system control lever shown in Figure 5.11 is pressed by the driver.

When button speed up or speed down is pressed, process ECU() will generate a data

flow act adjust to indicate which command has actually been selected, and passes

this information to process SET adjust(). Based on the value of act adjust, process

SET adjust() will trigger either processes SET up() (speed up is selected) or SET down()

(speed down is selected). Process SET up() or SET down() first reads temp speed from

the data store, and try to update temp speed by increasing or decreasing it with a con-
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stant value, respectively. As the CCS can only run within a designed speed interval,

before updating the data, process SET up() and SET down() will first check if the up-

dated value of temp speed is within the interval. If not, an error message will be issued.

Data temp speed is a temporary data that can be manipulated by process SET up() and

SET down() and only after process SET update() performs, the value of temp speed can

be assigned to set speed. After process SET up() or SET down() completes the updates

of temp speed, it will send the completion information to process SET update(). Process

SET update() will assign data temp speed to set speed only after the confirm button

is pressed. After process SET update() assigns the value of temp speed to set speed,

it will trigger process SET control() to control current vehicle speed current speed to

the new set speed set speed.

When no function button is pressed by the driver, it means the driver does not want to

adjust the set speed and wants to maintain current vehicle speed, process CRU control()

will be triggered by process ECU(). Process CRU control() maintains current vehicle

speed current speed to the value of set speed based on a control algorithm.

module

Compared to the specification written in natural language given in section 5.2.1, the

functional abstraction expressed by the CDFD is obviously more comprehensible, espe-

cially the dependency relations among processes can be clearly expressed. However, in

order to accurate describe system behaviors, all the components (conditional process,

data flows, and data stores) in the CDFD must be precisely defined. To achieve this, the

CDFD is associated with a module shown as in Figure 5.13.

In the module, part const shows the constant variables used in the module. All the

data flow variables, and data stores in the CDFD are defined in the var part. Each of

them is defined in a specific data type. Keyword inv stands for invariant and indicates

the properties that must be sustained throughout the entire specification. For example,

min sp <= set speed <= max sp in part inv means the set value of the CCS must be

no larger than the maximum value that supported by the system and no less than the

minimum value. Function Controller() achieves the function of speed control based on

a control algorithm. At this level of specification, the control algorithm has not been
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var

ext #current_speed: real;
\*the current_speed is an external data store that 
exists independently of the cruise control system. 
The data is read from the speed sensor equipped 
on the vehicle.*\
temp_speed, set_speed: real;
speed_up, speed_down, confirm,
col_confirm, col_cruise, col_up, col_down,
col_set: sign;
act_adjust: bool;
errMsg1, errMsg2, errMsg3: string;

c-process CRU_control

c-process CRU_control(col_cruise: sign)
ext rd set_speed: real

wr current_speed: real
post col_cruise <> nil and current_speed =

controller(current_speed, set_speed)
end-process;

processInit()

c-process Init

c-process Init()
pre  min_sp <= current_speed <= max_sp;
post set_speed = current_speed and

temp_speed = current_speed
end-process;

function Controller

function Controller(speed: real, desired_speed: 
real): real
== undefined /* This function operates actuators 
to control  the speed to the desired_speed based 
on a control algorithm.  A precise definition is left 
for design or implementation. */
end-function;

Inv

min_sp <= set_speed <= max_sp;
min_sp <= temp_speed <= max_sp;

c-process SET_down

c-process SET_down(col_down: sign) errMsg2:
string
ext wr temp_speed: real
post temp_speed - step_down >= min_sp and

temp_speed = temp_speed - step_down or
temp_speed - step_down < min_sp and
errMsg2 = "the setting speed is too low"

end-process;

c-process ECU

c-process ECU(speed_up: sign | speed_down: 
sign | confirm: sign | dummy: void) act_adjust: 
bool | col_confirm: sign | col_cruise: sign
post speed_up <> nil and act_adjust = true or

speed_down <> nil and act_adjust = false or
confirm <> nil and col_confirm <> nil or
bound(dummy) and col_cruise <> nil

end-process;

c-process SET_control

c-process SET_control(col_set: sign)
ext rd set_speed: real

wr current_speed: real
post col_set <> nil and current_speed =

controller(current_speed, set_speed)
end-process;

c-process SET_update

c-process SET_update(con_confirm: sign)
errMsg3: string | col_set: sign
ext rd temp_speed: real

wr set_speed: real
post min_sp <= temp_speed <= max_sp and

set_speed = temp_speed and col_set <> nil or
temp_speed < min_sp and errMsg3 = "the
setting speed is too low" or
temp_speed > max_sp and errMsg3 = "the
setting speed is too high"

end-process;

c-process SET_up

c-process SET_up(col_up: sign) errMsg1: string
ext wr temp_speed: real
post temp_speed + step_up <= max_sp and

temp_speed = temp_speed + step_up or
temp_speed + step_up > max_sp and
errMsg1 = "the setting speed is too high"

end-process;

c-process SET_adjust

c-process SET_adjust(act_adjust: bool) col_up: sign
| col_down: sign
post act_adjust = true and col_up <>nil or

act_adjust = false and col_down <> nil
end-process;

processInit()

const
min_sp: real; /* minimum value of set speed */
max_sp: real; /* maximum value of set speed */
step_up: real; /* the increased value of 
temp_speed when process SET_up performs one 
time */
step_down: real; /* the decreased value of 
temp_speed when process SET_down performs 
one time */

Figure 5.13: Module for the cruise control system

designed.

Process Init() is the initial process which performs only one time when the system

stars up. We can see that, pre condition defined in the process Init() requires that

current speed should be less than or equal to max sp and larger than or equal to min sp.

This ensures that the system can star up only when vehicle is running within the speed

interval that supported by the CCS.

Each processes in the CDFD is associated with a process specification in the module.

It describes functions of the processes in terms of pre and post conditions in which pred-

icate logic is adopted. For example, the post condition in process SET adjust() means:

if the value of data flow variable act adjust is true, process SET adjust() will trigger

SET up() by generating control signal col up, otherwise act adjust with a false value

will make process SET down() be triggered.
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Figure 5.14: Task dependency graph for cruise control system generated from the SOFL

specification

5.2.1.4 Generating Task Dependency Relation

A process described in a SOFL specification represents an operation contained in the CCS,

and it can be designed as a task (thread) contained in the system. In CCS, as a task,

e.g., task ECU (from process ECU() in the CDFD), can have multiple input and output

ports, and signals from different input ports can activate different tasks (trigger different

processes). To express dependency relation for such kind of tasks, the dependency relation

should be expressed on port level. To express the task dependency relation, a directed

graph, called task dependency graph, is constructed from the SOFL specification, and its

formal definition is as follows.

Definition (task dependency graph) A task dependency graph is a directed acyclic

graph. G = (P,E, P0, Pe), where P is set of task ports, E ⊆ P ×P is dependency relation

(edge) set, with (pi, pj) ∈ E, pi ̸= pj, where pi, pj ∈ P . P0 ⊂ P is the start port set, and

Pe ⊂ P is the end port set.

An edge (pi, pj) in the task dependency graph means signal generated by port pj can be

issued only after port pi generates its signal. Symbol pi ≺ pj is used to illustrate this

dependency relation. The dependency relation is transitive. That is, pi ≺ pj, pj ≺ pk ⇒

pi ≺ pk. A start port pi ∈ P0 features that ∀pj ∈ P , "pj ≺ pi, while an end port pk ∈ Pe

features that ∀pj ∈ P, "pk ≺ pj .

Based on this definition, from the SOFL specification, we can easily generate the task
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dependency graph. From the CDFD shown in Figure 5.12, we can see that the input ports

of process ECU() are the start port set. By checking the corresponding process ECU() in

the module shown in Figure 5.13, we can know that port p5 (port indexes are denoted

within each process block in Figure 5.12) can generate signal act adjust only when port

p1 or p2 accepts its signal speed up or speed down. This means there exist dependency

relations between port (p1, p5) and (p2, p5), that is, there exist edges from p1 to p5 and

from p2 to p5 in the dependency relation graph. By this method, we can get the task

dependency graph for the CCS. The result is shown in Figure 5.143. Note that, as either

signal from port p1 or port p2 can activate port p5 to generate its signal, we need two

disjoint tree structures to represent the dependency relations.

In Figure 5.14, there are four disjoint tree structures in the figures (denoted with

shades). Ports p1, p2, p3, p4 are the start ports. The signals accepted by these ports are

generated based on operations of the driver (pressing some function buttons or pressing

no function button). Ports p12, p14, p18, p21, p16 are the end ports. A function (a response

of the CCS to the corresponding operation of the driver) is denoted by a series of ports

existing in the graph, which starts from a start port and ends with an end port4. Spe-

cific to this example, there are seven functions in the system. For example, port series

(p4, p7, p15, p16) denotes a function which expresses the response of the CCS to the situa-

tion that no function button is pressed by the driver.

5.2.1.5 Scheduling Problem Modeling

After the task dependency relation is generated, we now can model the scheduling problem

based on the models provided in RSMT. As described in section 5.2.1, seven functions

are contained in the system. Since these functions are triggered by user input, sporadic

function model proposed in section 5.1.1 is adopted to model these functions5.

• F1 = ((T1,≺), rd1, p1), T1 = {τ1, τ2, τ3}, where τ1, τ2, τ3 represents task ECU1,

SET adjust1, SET up1, respectively.

3Task dependency relation is transitive. A checking algorithm to check if there exist mistakes in the

SOFL specification based on the transitivity of task dependency relation is introduced in research [55].
4A function described at this state has been further refined compared to it described in section 5.2.1.
5To avoid confusion with notations used in section 5.2.2, each function is denoted by Fi rather than

SFi temporarily, where i is index of function.
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• F2 = ((T2,≺), rd2, p2), T2 = {τ4, τ5, τ6}, where τ4, τ5, τ6 represents task ECU2,

SET adjust2, SET down2, respectively.

• F3 = ((T3,≺), rd3, p3), T3 = {τ7, τ8, τ9}, where τ7, τ8, τ9 represents task ECU3,

SET adjust3, SET up3, respectively.

• F4 = ((T4,≺), rd4, p4), T4 = {τ10, τ11, τ12}, where τ10, τ11, τ12 represents task ECU4,

SET adjust4, SET down4, respectively.

• F5 = ((T5,≺), rd5, p5), T5 = {τ13, τ14}, where τ13, τ14 represents task ECU5,

SET update5, respectively.

• F6 = ((T6,≺), rd6, p6), T6 = {τ15, τ16, τ17}, where τ15, τ16, τ17 represents task ECU6,

SET update6, SET control6, respectively.

• F7 = ((T7,≺), rd7, p7), T7 = {τ18, τ19}, where τ18, τ19 represents task ECU7,

CRU control7, respectively.

The task dependency relations in the task posets are expressed in the task dependency

relation graph shown in Figure 5.14. In addition, the subscripts of the tasks denote the

indexes of the functions in which the tasks are used. For example, ECU1 denotes task ECU

used in function F1. Note that, a task (e.g., ECU) used in different functions has different

operations.

After the functions contained in the CCS are modeled by the sporadic function model,

the task, processors, and network channel model provided in RSMT can be directly applied

to model other parts of the system.

Similar to CCS, for other systems e.g., radar, engine control, we can use this method

to generate the task dependency relation, and then models provided in RSMT can be

used to model the scheduling problem for the corresponding systems.

5.2.2 Scheduling for a Running Car

To show the usage of RSMT in practical applications, in this subsection, a case study on

a running car which is equipped with multiple processors is conducted. Three systems:

radar, cruise control, and engine control are considered in the case study. The application

scenario is shown in Figure 5.15. When a driver drives a car on a highway, the radar
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Figure 5.15: Application scenario for a running car (figure is from the Internet)

1
1

Figure 5.16: Possible execution of function SFa

system keeps on detect the distance from the front car in order to avoid too close to that

car. This detection repeats periodically, which means it can be modeled by the periodic

function model. The engine control system controls the operation of the engine of the

car. It is triggered by the engine events, such as pulses generated by sensors at the engine

crankshaft. Therefore, we can use the sporadic function model to model the engine control

system.

We now apply the combination method to design scheduling for the running car. Note

that, a system may contain multiple functions. For an event-driven system, at a time,

only some specific functions will be triggered to response to the initiated event. For

example, there are seven functions contained in CCS. But at a time, only one function

will be triggered to response to the initiated event, e.g., function F1 will be triggered to

increase the set speed (if the speed is within the supported speed interval) when drive

presses button speed up. However, when designing scheduling for an event-driven system,
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Figure 5.17: Possible execution of function SFb
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Figure 5.18: Sporadic function SF1 representing execution of cruise control system

we should make sure that no matter which function is triggered, its deadline can always

be guaranteed. Because of this, an interesting phenomenon arises. Assume an event-

driven system comprising of two functions, SFa = ((Ta,≺), 2, 2), Ta = {τ1}, c1 = 1 and

SFb = ((Tb,≺), 2, 2), Tb = {τ2}, c2 = 2. The possible execution sequences of these two

functions are shown in Figure 5.16 and Figure 5.17. Obviously, only using a unit speed

processor cannot guarantee the deadlines of these two functions. But if these two functions

cannot be triggered at the same time, we can see that if the processor resources can make

sure that function SFb can meet its deadline, then such processor resources can also

guarantee the deadline of function SFa. Therefore, in this case, one unit speed processor

is enough to guarantee the deadlines of these two functions.

We call function SFb as indicating function as it can be used to indicate how much

resources are needed to guarantee the deadlines of all the functions contained in an event-

driven systems. Note that, indicating function may be a function set. For example, if

function SFa and SFb can only be executed on two different processor p1 and p2 respec-

tively, we need to reserve these two processor resources. Under this case, the indicating
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Figure 5.19: Sporadic function SF2 representing execution of engine control system

function is the function set {SFa, SFb}.

As for different number of functions, the way how the combination method operates

is the same, for conciseness, in the case study of the running car, it is assumed that there

exist indicating function SF1 = ((T1,≺), 6, 6) and SF2 = ((T2,≺), 3, 3) in cruise control

and engine control system, respectively. They are used to represent the executions of

these two systems. In addition, periodic function PF3 = ((T3,≺), 4, 6) is used to represent

execution of the radar system. The possible executions of these three functions are shown

in Figure 5.18, Figure 5.19, and Figure 5.20. For the equipped processors, assume two

processors with speed 1 and speed 2 are equipped in the system, and all the functions can

be executed on both processors.

Through the combination method proposed in the previous section, in the offline phase,

RSMT generates the scheduling table to decide function-to-processor assignment. The

result is shown in Figure 5.21. It can be seen that, function SF1 is assigned to processor

p1, while function SF2 and PF3 are assigned to processor p2. After function-to-processor

assignment is decided, EDF is applied to decide slot-to-task allocation online. To see the

scheduling performance at system run-time, let’s construct some running scenarios.

Running scenario a: When a drive starts to drive the car, the cruise control system is

turned off, while the speed of the car is increasing.

Under this scenario, function SF1 will not be triggered, while the triggered frequency of

function SF2 will increase. Figure 5.22 shows a possible execution sequence. As SF1 is

not triggered, there is no task executed on processor p1. On processor p2, after the first

instant of function SF2 is triggered at t = 0, the second instant is triggered after 5 time
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Figure 5.20: Periodic function PF3 representing execution of radar system
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Figure 5.21: Scheduling table generated by RSMT

units. Then at t = 9, the third instant of function SF2 is triggered, which has passed 4

time units after its previous triggered time.

Running scenario b: At t = 96, driver turns on the cruise control system, and the car

runs at a constant speed.

Under this scenario, function SF1 and SF2 will be triggered at a fixed frequency. Figure

5.23 shows a possible execution sequence. It can be seen that function SF1 is triggered

every 7 time units, while function SF2 is triggered every 5 time units.

From the scheduling results for these two running scenarios, it can be seen that the

combination method can guarantee the deadlines of all the functions. This shows the

effectiveness of the combination method.
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Figure 5.22: Scheduling result for running scenario a
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Figure 5.23: Scheduling result for running scenario b

5.3 Summary

Since RSMT performs in offline scheduling paradigm, it limits the capability of RSMT to

handle event-triggered functions. To overcome such limitation, in this chapter, a method

of combining RSMT and the online scheduling algorithm EDF is given. In the method,

RSMT performs offline to assign functions to processors, while EDF performs online to

allocate processor time slots to tasks. By this way, RSMT shows capability to design

scheduling for systems containing event-triggered functions.

To show the usage of this combination method in practical applications, a case study

on a running car is conducted. Through envisioned running scenarios, the effectiveness of

the combination method is demonstrated. Moreover, from the case study, a method for

generating task dependency relation based on SOFL specification is also provided. This

method addresses the problem how to generate task dependency relation which is rarely

studied in real-time scheduling domain.
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Chapter 6

Discussion and Conclusion

6.1 Related Work

For a real-time system, sensitivity to timing is central feature of system behaviors. To

guarantee the timing requirements, scientific community has made great efforts. Numer-

ous researches have been conducted in real-time scheduling domain. The most relevant

works can be divided into three categories.

6.1.1 Scheduling for Overload

Work in this dissertation

In this dissertation, RSMT is first applied to schedule uniprocessor real-time systems.

The overload problem that existing works cannot handle well has been studied [30]. More-

over, when RSMT is applied to schedule multiprocessor real-time systems, the overload

problem has also been considered [22].

Other works

In the literature on real-time systems, several scheduling algorithms have been pro-

posed to deal with the overload problem. In [10], the problem of selecting tasks for

rejection in an overloaded system is considered. Random criticality values are assigned

to tasks. The goal is to schedule all the critical tasks and make sure that the weight of

rejected non-critical tasks is minimized. As the values are randomly assigned, the perfor-

mance of this method cannot be guaranteed. In [2], authors studied some special cases
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of overloaded systems. They impose certain constraints on the values of task attributes.

For example, under a special case, all the tasks have the same request time instant. An

algorithm has been proposed to handle this special case. As the algorithms proposed in [2]

can only handle some special cases, it means they are not applicable for most situations.

Other approaches focus on providing less stringent guarantees for temporal constraints.

The elastic task model (ETM) proposed in [39] aims at increasing task periods to handle

overload in adaptive real-time control systems. In ETM, periodic tasks are able to change

their execution rate to provide different qualities of service. Authors in [6] introduced

skippable tasks which are allowed to miss deadlines occasionally. Each task is assigned to

a skip parameter which represents tolerance of this task to miss deadline. An algorithm

was proposed to adjust system workload such that tasks adhere to their timing and skip

constraints.

Comparison

All the works in [10, 2, 39, 6] are customized to their own scheduling targets, and

many practical requirements (e.g., task dependency relation, tasks with different degrees

of importance) cannot be handled. Moreover, none of them has dealt with multiproces-

sor systems. Compared to these works, because first-order logical formulas are used to

formalize scheduling constraints, through various formulas, RSMT can handle many prac-

tical requirements and scheduling targets. Moreover, through formulas given in Chapter

4, RSMT can be applied to multiprocessor systems. The main disadvantage of RSMT is

that RMST can only perform in offline paradigm. This limits the capability of RSMT

to handle overload problem for systems containing event-triggered tasks (or functions).

Further research is needed to overcome this limitation to a certain extent.

6.1.2 Scheduling for Multiprocessor Systems

Work in this dissertation

In Chapter 4 and Chapter 5, RSMT is applied to schedule multiprocessor real-time

systems [22, 32]. The problem of scheduling heterogeneous multiprocessor systems is ad-

dressed, which means the problems of scheduling identical and uniform multiprocessor

systems have also been addressed as such problems can be treated as special cases of
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scheduling heterogeneous multiprocessor systems.

Other works

Scheduling multiprocessor real-time systems is much more complex than scheduling

uniprocessor real-time systems. Most of existing works deal with the relatively simpler

problem, scheduling identical multiprocessor systems, e.g., [62, 63, 64, 65, 66, 67].

For scheduling heterogeneous multiprocessor systems, some works have been con-

ducted, e.g., [56, 57, 58, 59, 60, 61, 61, 68]. However, all these works consider the

non-migrative scheduling manner. That is, tasks are not allowed to migrative among pro-

cessors, which is a simpler case compared to full- and intra-migrative scheduling which

allow task migrating among processors through network channels.

Few works consider full- or intra-migrative scheduling for heterogeneous multiprocessor

systems. In [42], authors considered the problem of assigning implicit-deadline sporadic

tasks onto a heterogeneous multiprocessor platform. The platform is limited to comprising

two different types of processors (two-type platform). In [69], authors considered intra-

migrative scheduling for heterogeneous multiprocessor systems. They study how to find a

task-to-processor-type assignment. After the assignment is found, an optimal scheduling

algorithm (without considering many practical requirements, e.g., task dependency rela-

tion) for identical multiprocessor systems, such as ERfair [25], DP-Fair [70], U-EDF [71],

is used to schedule tasks. This procedure makes the algorithms proposed in [69] inevitably

introduce all the restrictions (e.g., cannot handle task dependency relation) incorporated

in their used algorithms (ERfair, DP-Fair, U-EDF).

Comparison

Similarly, all the works mentioned above cannot deal with many practical require-

ments. Compared to these works, RSMT can handle many practical requirements. In

addition, RSMT can be applied to schedule heterogeneous multiprocessor systems. More-

over, as the usage of network channel model, when designing scheduling for time-driven

systems, RSMT can conveniently handle all the non-, intra-, fully-migrative scheduling

manners.

When design scheduling for event-driven systems, the combination method introduced
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in Chapter 5 is limited to non-migrative scheduling manner. Compared to works in [56,

57, 58, 59, 60, 61, 61, 68], this combination method shows advantages: i) less online

scheduling overhead, as performing EDF on each processor is much simpler than the other

methods; ii) requiring weaker assumptions, e.g., no need to assume tasks are independent

with each other; and iii) can usually achieve better scheduling result, since the underlying

SMT solver searches solution space completely (when scheduling problems are within the

applied scopes), while other methods mainly depend on heuristic approaches which can

get good results only when proper configuration parameters for the scheduling problems

are found.

The main limitation of RSMT is that it has exponential complexity. As mentioned

before, how to properly deal with this complexity is an important future work.

6.1.3 Scheduling Based on SMT/SAT

Work in this dissertation

Based on SMT, RSMT is proposed. First, the focus of RSMT is on time-driven sys-

tems [22, 30, 32]. Then, through combination with EDF, RSMT shows capability to

design scheduling for event-driven systems.

Other works

Some existing works have considered designing scheduling based on SMT. In [9], au-

thors gave a simple example on using SMT for designing scheduling. They considered a

scenario that scheduling three tasks (called jobs in [9]) onto two processors (called ma-

chines in [9]). Meanwhile, each task consists of two individual fragments (called tasks in

[9]). In this example, they assume fragments of all the tasks are pre-assigned to specific

processors before designing scheduling. Under this assumption, the scheduling problem

becomes: deciding start execution time of fragments on their assigned processors.

This is much simpler than the problem of scheduling multiprocessor systems studied

in Chapter 4. As the studied problem includes: (1) assigning functions to processors; (2)

deciding start execution time of tasks on their assigned processors; (3) assigning tasks

to network channels, if the tasks need to migrate among processors; (4) deciding start

migration time of tasks on their assigned network channels. Moreover, a task may be
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assigned to multiple processors and network channels, which is not considered in the

example given in [9]. Thus, RSMT can also be applied to the scenario studied in [9], as

the scheduling problem is one sub problem (problem (2)) considered in RSMT.

In [7, 23], authors studied the problem of scheduling time-triggered networked systems

(one of multiprocessor real-time systems). Similar to the research in [9], they assume that

fragments of all the tasks are pre-assigned to specific processors and network channels

(task migration is considered in these works, but not considered in [9]).

In [8], authors studied the problem of scheduling distributed real-time systems (one of

multiprocessor real-time systems). Their work is limited to bus network topology. Com-

pared to this work, due to the generality of the network channel model provided in RSMT,

RSMT can be applied to various kinds of network topologies (e.g., bus, ring, mesh, and

tree).

Comparison

Scheduling problems studied in [9, 7, 23, 8] are simpler than the problems studied in

RSMT. In addition, works in [9, 7, 23] are limited to time-driven systems, while RSMT

can be applied to design scheduling for both time- and event-driven systems. Also, all the

works mentioned above are customized to their own scheduling targets, while when design

scheduling for time-driven systems, RSMT can be applied to various kinds of scheduling

targets.

6.2 Validity of RSMT

When applying RSMT to design scheduling for real-time systems, the validity of RSMT

mainly relies on the constructed SAT model. Such a SAT model comprises of a series

of first-order logic formulas which define scheduling constraints that a desired optimal

schedule should satisfy. This design makes RSMT valid only when all the scheduling

constraints are defined in the SAT model. If a scheduling constraint which is not defined

in the SAT model while required by a system, it will make RSMT invalid. For example, in

Chapter 3, a constraint called constraint on task dependency defines the task dependency

relation in the system. If this constraint is not included in the SAT model, it means the

task dependency relation is not considered when applying RSMT to design scheduling.
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Meanwhile, if a system requires such task dependency relation, RSMT will be invalid.

The constraints given in Chapter 3 and Chapter 4 are the most common constraints

that widely exist in many real-time systems. For some systems with their own charac-

teristics, additional constraints should be given. These constraints are mainly from the

analysis of the system specification, just as described in section 5.2.1, we get the con-

straint on task dependency relation from the SOFL specification. To ensure the validity

of RSMT, we need to make sure that all the constraints are included in the constructed

SAT model. Moreover, as several logical formulas are contained in the SAT model, it is

also important to make sure that no contradiction exists in the model.

To meet these requirements, some verification techniques (e.g., testing, model check-

ing) should be applied to verify the constructed SAT model. Further research on how to

apply these verification techniques is needed.

6.3 Considering Critical Resources

When applying RSMT to design scheduling for real-time systems, processor is the mainly

considered computation resource. Actually, when other critical resources (e.g., printer)

are considered, RSMT can be easily applied. To achieve this, we only need to add a

scheduling constraint when constructing the SAT model. Based on the model defined in

Chapter 4, the constraint can be expressed as:

∀τi, τj ∈ T , i ̸= j, ∀rα ∈ R

(sαi ≥ sαj + tcαj ) ∨ (sαj ≥ sαi + tcαi )

Symbol sαi represents the time instant at which task τi requests resource rα ∈ R, where

R is the set of critical resources. Symbol tcαi means the time slots that task τi needs to

occupy resource rα. By adding this scheduling constraint, RSMT generated schedule can

make sure that no multiple tasks access to a critical resource at the same time.

From this example, we can see that, for a newly encountered scheduling problem (e.g.,

considering other critical resources), through modifying or adding scheduling constraints

to the constraints given in Chapter 3 and 4, developers may easily apply RSMT to solve

the problem.
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6.4 Limitation of RSMT

As mentioned in Chapter 4, because the computing operation of the underlying SMT

solver has exponential complexity, when the scale of scheduling problem is very large, the

underlying SMT solver may easily be time-out. The preliminary idea of adopting divide-

and-conquer may overcome such limitation to a certain extent. But for some scheduling

problems, e.g., a huge number of tasks contained in the system, as the solution space

is too large, divide-and-conquer will no longer be applicable. Some other sophisticated

methods should be applied to deal with such a limitation. From another point of view, for

a scheduling problem which will lead to a very large solution space after it is formalized

by first-order logical formulas, RSMT is not quite suitable to be applied to solve such a

problem. Note that, when applying the periodic and sporadic function models, as RSMT

has to consider all the function instants within lcm time units, where lcm denotes the

least common multiple of function period for all the functions contained in the system,

a small number of functions may also lead the underlying SMT being time-out. For

example, in an audio and video system, a common audio sampling frequency is 44.1kHz,

and a standard video refresh rate is 60Hz. For two functions with such frequencies, a lot

of function instants need to be considered when applying RSMT to design scheduling for

the system.

However we should notice that, through constantly improving the performance of SMT

solvers by research communities, the capability of the solvers keeps on increasing. Benefit

from this, the problem scope that RSMT can support will also keeps on enlarging.

6.5 Accomplishment

Based on RSMT, I give design guidelines for various kinds of scheduling targets and

real-time systems, from uniprocessor to multiprocessor systems (including identical, uni-

form, and heterogeneous systems), from soft to mixed critical real-time systems. Many

requirements that are considered in real-time scheduling domain have been taken into

account, e.g., task dependency relation, tasks with different degrees of importance, task

preemption, and task migration. These design guidelines are given gradually from simple

(uniprocessor) to complex (multiprocessor) systems. Through comparisons, it can benefit
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readers to solve their own scheduling problems by modifying the design guidelines that

have already been given.

With these design guidelines, by applying RSMT, some problems (e.g., overload prob-

lem for time-driven systems) have been better solved compared to existing methods, and

more important, solutions for some unsolved problems (e.g., scheduling heterogeneous

multiprocessor systems) have been obtained.

To show the usage of RSMT in practical applications, a case study on a running car

which comprises of radar, cruise control, and engine control is conducted. In the case

study, a method for generating task dependency relation based on SOFL specification is

given. This method addresses the problem of generating task dependency relation that is

rarely studied in real-time scheduling domain.

6.6 Advantage of RSMT

Compared to the conventional design method (i.e., designing scheduling algorithms),

RSMT has the following advantages.

• RSMT can be applied to a wide scope in real-time scheduling domain (various

systems, various scheduling targets).

• The scheduling constraints defined for an application scenario can be easily extended

to and reused for other different application scenarios (e.g., system constraints can

be totally reused when adapting a system to a different scheduling target).

• RSMT can handle many complex systems (e.g., heterogeneous systems) and many

practical requirements (e.g., task dependency relation).

6.7 Disadvantage and Future Work

From the simulations on applying RSMT to schedule multiprocessor systems, we can

know that when a system is very complex (e.g., having many processors), RSMT may be

time-out, which means the computation is too complex for the underlying SMT solver to

return a solution model under the given time limitation. This situation happens is mainly

because SMT solver has exponential complexity. How to properly handle this complexity
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is essential for improving the applicability of RSMT. As described in section 4.5.3, a

preliminary method which borrows the idea divide-and-conquer shows some potential to

deal with this problem. More comprehensive study is needed.

When applying RSMT to design scheduling for event-driven systems through the com-

bination method proposed in Chapter 5, there is a trade-off between function deadline

guarantee and resource reservation. That is, reserving more resources can better guarantee

function deadline but may result in more resource waste, while reserving less resources can

reduce possible waste but may sacrifice a certain degree of function deadline guarantee.

How to properly deal with this trade-off is an important future work.

Another future work is to study how to verify the constructed SAT model. As men-

tioned in section 6.2, such verification is necessary to ensure the validity of RSMT.

6.8 Summary of Scheduling Constraints

The main work for applying RSMT to design scheduling is to design scheduling constraints

to construct the SAT model. In this section, all the scheduling constraints provided in

Chapter 3 and Chapter 4 are summarized.

These constraints cover a wide scope of problems studied in real-time scheduling do-

main, but of course, cannot cover all the scheduling problems. For an uncovered problem,

I hope developers can solve the problem by modifying the scheduling constraints provided

here.

6.8.1 Scheduling for Uniprocessor Real-Time Systems

System Constraints

(in section 3.3)

1. Constraint on start execution time of tasks

∀τi ∈ T

si,1 ≥ ri
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2. Constraint on start execution time of different fragments

∀τi ∈ T , ∀fa, fb ∈ τi

b > a ⇒ si,b ≥ si,a + ei,a

3. Constraint on processor

∀τi, τj ∈ T , i ̸= j, ∀fa ∈ τi, ∀fb ∈ τj

(si,a ≥ sj,b + ej,b) ∨ (sj,b ≥ si,a + ei,a)

4. Constraint on task dependency

∀τi, τj ∈ T

τi ≺ τj ⇒ (sj,1 ≥ si,e + ei,e)∧

(si,e + ei,e > di ⇒ sj,1 = +∞)

Target Constraints

1. Maximizing number of task completion

(in section 3.3)

Let n be the number of successfully completed tasks, and its initial value is set to 0.

∀τi ∈ T

if (si,e + ei,e ≤ di)

n := n+ 1

end

Let symbol sn denote the maximum number of tasks in T that can be successfully com-

pleted. The constraints on scheduling target can be expressed as:

n ≥ sn
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2. Maximizing effective processor utilization

(in section 3.6)

Let symbol e be effective processor time, and its initial value is set to 0.

∀τi ∈ T

if (si,e + ei,e ≤ di)

e := e+ ei

end

Let symbol ssi,e denote the maximum value of si,e for tasks in T that have been successfully

completed. The effective processor utilization epu can be calculated as:

epu =
e

ssi,e + ei,e

Let symbol sepu denote the maximum value of effective processor utilization. The con-

straints on scheduling target can be expressed as:

epu ≥ sepu

3. Maximizing obtained values of completed tasks

(in section 3.6)

Let symbol v be the obtained values of the completed tasks, and its initial value is set to

0.

∀τi ∈ T

if (si,e + ei,e ≤ di)

v := v + vi

end

Let symbol sv denote the maximum obtained values of completed tasks. The constraints

on scheduling target can be expressed as:

v ≥ sv

6.8.2 Scheduling for Multiprocessor Real-Time Systems

System Constraints

(in section 4.3)

99



1. Constraint on start execution time of functions

∀Fi ∈ F , ∀pa ∈ P

sτsia ≥ rfi

2. Constraint on start time of task migration

∀τi ∈ T , ∀na→b ∈ N , ∃nc→a ∈ N

(sia→b ≥ sia + tcia) ∨ (sia→b ≥ ric→a)

3. Constraint on task dependency

∀τi, τj ∈ T , ∀pa ∈ P, ∃nb→a ∈ N

τi ≺ τj ⇒ (sja ≥ sia + tcia) ∨ (sja ≥ rib→a)

4. Constraint on processors

∀τi, τj ∈ T , i ̸= j, ∀pa ∈ P

(sia ≥ sja + tcja) ∨ (sja ≥ sia + tcia)

5. Constraint on network channels

∀τi, τj ∈ T , i ̸= j, ∀na→b ∈ N

(sia→b ≥ sja→b + tmj
a→b) ∨ (sja→b ≥ sia→b + tmi

a→b)

6. Constraint on heterogeneous processors

∀pa ∈ P, ∀τi ∈ T − TSa

sia = +∞

Target Constraints

1. Making all functions meet deadlines

(in section 4.3)

∀Fi ∈ F , ∃pa ∈ P

sτeia + tcτeia ≤ dfi
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2. Maximizing obtained values of completed functions

(in section 4.6)

Let symbol v be the obtained values of the completed functions, and its initial value is

set to 0.

∀Fi ∈ FH

if ∃pa ∈ P, sτeia + tcτeia ≤ dfi

v := v + vi

end

∀Fi ∈ FS

if ∃pa ∈ P, sτeia < +∞

v := v + fi(s
τei
a + tcτeia )

end

Let symbol sv denote the maximum obtained values of the completed functions. The

constraints on the scheduling target can be expressed as:

v ≥ sv

3. Making firm deadline functions meet deadlines first

(in section 4.6)

∀Fi ∈ FH, ∃pa ∈ P

sτeia + tcτeia ≤ dfi

Let symbol v be the obtained values of the completed functions, and its initial value is

set to 0.

∀Fi ∈ FS

if ∃pa ∈ P, sτeia < +∞

v := v + fi(s
τei
a + tcτeia )

end
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Let symbol sv denote the maximum obtained values of the completed soft deadline func-

tions. The constraints on scheduling target can be expressed as:

v ≥ sv
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