
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
宣言的クラウドオーケストレーションのための対話的

定理証明フレームワーク

Author(s) 吉田, 裕之

Citation

Issue Date 2017-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/14244

Rights

Description Supervisor:二木　厚吉, 情報科学研究科, 博士

Doctoral Dissertation

An Interactive Theorem Proving Framework
for Declarative Cloud Orchestration

Hiroyuki Yoshida

Supervisor: Professor Kokichi Futatsugi

School of Information Science
Japan Advanced Institute of Science and Technology

March 2017

Abstract

An interactive theorem proving framework for verifying declarative cloud orchestration is pro-
posed.

Recent rapid progress of cloud computing accelerates the whole life cycle of system us-
age and requires much flexible automation of system operations. Automation of cloud system
operations is called cloud orchestration and correctness of cloud orchestration becomes much
crucial for many activities in the human society. However, correctness of automated cloud sys-
tem operations cannot depend on testing-based quality control because a cloud system is a kind
of distributed systems and it is not possible to exhaustively test all of its behavior which may
occur at various situations in the production environment. Formal approaches are expected to
provide systematic ways to guarantee correctness of cloud orchestration.

Formal approaches are mainly classified into two categories, model checking and theorem
proving. As opposed to model checking, theorem proving can verify models of arbitrary many
number of states and so suitable for proving absence of counter examples. However, when
applying to practical problems it requires many human efforts to develop proofs.

This dissertation proposes a framework of interactive proof development for a kind of live-
ness properties, leads-to property, of cloud orchestration. We say “framework” to mean some-
thing like an application framework of software development which brings high productivity by
minimizing development efforts and high maintainability by consistent structure of application
software.

The proposed framework provides (1) a general way to formalize specifications of different
kinds of cloud orchestration tools and (2) a procedure for how to verifying a kind of liveness
properties, as well as invariant properties, of formalized specifications. It also provides (3) gen-
eral templates and libraries of formal descriptions for specifying orchestration of cloud systems
and (4) proved lemmas for general predicates of the libraries to be used for verification.

The framework has been applied to the verification of specifications of AWS CloudFor-
mation and also of OASIS TOSCA, and is demonstrated to be effective for reducing generic
routine work and making a verification engineer concentrate on the work specific to each in-
dividual system. The case study of OASIS TOSCA shows that the framework can be used to
specify, represent, and verify the behavior models of TOSCA where the standard has not yet
provided any ways to do so. It also shows a general way to manage dependencies of cloud
resources which is a smarter one than that of the most popular tool, CloudFormation.

The major contributions of this dissertation are that (1) it introduces the idea of frameworks
from software development to proof development which results in high productivity and high
maintainability of proofs and (2) it shows that the framework can be effectively applied to a
non-trivial problem, that is, to specify, represent, and verify the behavior models of the standard
specification language of cloud orchestration.

Key Words: Cloud Orchestration, System Specification/Verification, Theorem Proving,
Framework, Proof Scores, CafeOBJ

i

Acknowledgments
First and foremost, I would like to express my sincere gratitude to my supervisor, Professor

Kokichi Futatsugi for his acute guidance, encouragement, and unlimited support throughout the
duration of my research. Without his support, this thesis could not have been completed. In
addition, I am indebted to him for giving me this invaluable opportunity to study abroad and
providing me the financial support.

I would like to thank Professor Kazuhiro Ogata for his feedback and wise advices on my
research. The quality of this research was significantly improved because of him.

My last acknowledgements go to my family for their support, unconditional love and vital
encouragement throughout my study and throughout my life.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Correctness of Automated Operations of Cloud Systems 1
1.2 Theorem Proving Framework for Cloud Orchestration 2
1.3 Formal Verification of System Behavior . 3
1.4 Standard Specification Language of Cloud Orchestration 5

2 Cloud Orchestration 7
2.1 AWS CloudFormation . 7
2.2 Puppet, Chef, and Ansible . 8
2.3 OASIS TOSCA . 13

3 Preliminaries of CafeOBJ 16
3.1 Modules and Equations . 16
3.2 Transition Rules . 19

3.2.1 Formalization of State Machines in CafeOBJ 19
3.3 Search Predicates . 20

3.3.1 Formalization of Search Predicates 22
3.4 Verification by Proof Scores . 22
3.5 Constructor-based Inductive Theorem Prover (CITP) 23

4 Theorem Proving Framework 28
4.1 Structure Models and Representations . 29
4.2 Behavior Models and Representations . 30
4.3 Simulation of Models . 32

5 General Templates and Predicate Libraries 34
5.1 Template Modules of Objects . 34
5.2 Template Modules for Links . 38
5.3 Proved Lemmas for Predefined Predicates . 42

5.3.1 Basic Lemmas . 42
5.3.2 Lemmas for Link Predicates . 44
5.3.3 Cyclic Dependency Lemma . 47

iii

6 Verification Procedure of Leads-to Properties 56
6.1 Procedure: Definition of Predicates . 58
6.2 Procedure: Proof of Sufficient Condition (1) 61
6.3 Procedure: Proof of Sufficient Condition (2) 64
6.4 Procedure: Proof of Sufficient Condition (3) 68
6.5 Procedure: Proof of Sufficient Condition (4) & (5) 70
6.6 A Lemma for Using Cyclic Dependency Lemma 76
6.7 Recommended Module Structure . 79
6.8 Considerations on Sound Proof Scores . 82

6.8.1 Usage of Equivalent Operator == 82
6.8.2 Usage of Search Predicates . 84
6.8.3 Usage of the Double Negation Idiom 85

7 Applying the Framework to TOSCA Specifications 86
7.1 Structure Model of TOSCA Templates . 86

7.1.1 Representation of the Example Structure Model 86
7.2 Behavior Model of TOSCA Templates . 101

7.2.1 Representation of the Example Behavior Model 103
7.3 Verification of TOSCA Templates . 105

7.3.1 Definition of Predicates . 105
7.3.2 Lemmas for Using Cyclic Dependency Lemma 109
7.3.3 Proof of Sufficient Condition (1) . 117
7.3.4 Proof of Sufficient Condition (2) . 118
7.3.5 Proof of Sufficient Condition (3) . 124

7.4 Evaluation . 124

8 Related Work and Conclusion 127
8.1 Related Work . 127
8.2 Future Issues . 129
8.3 Conclusion . 130

Publications 134

iv

List of Figures

2.1 A Very Simple CloudFormation Template . 8
2.2 A Simple Puppet Manifest for Setting up an HTTPD Server 9
2.3 A Simple Chef Recipe for Setting up an HTTPD Server 10
2.4 An Example YMAL Document . 11
2.5 A Simple Ansible Playbook for Setting up an HTTPD Server 12
2.6 An Example of TOSCA topology . 14
2.7 A Topology Template of TOSCA . 14

4.1 Simple Behavior Model of CloudFormation 30

6.1 Verification Procedure for Condition (1) . 64
6.2 Verification Procedure for Condition (2) for each rule 69
6.3 Recommended Module Structure . 80

7.1 Typical Behavior of Relationship Types . 102

v

List of Tables

7.1 Number of goals and cases . 125
7.2 Reuse rate of entities provided by the framework 125
7.3 Lines of Codes . 126

vi

Chapter 1

Introduction

Cloud computing has recently emerged as an important infrastructure supporting many aspects
of human activities. In former days, it took several months to make system infrastructure re-
sources (computer, network, storage, etc.) available, while in these days, it takes only several
minutes to do so. This situation accelerates the whole life cycle of system usage where much
flexible automation is required for system operations such as setting up, scaling, patching, and
so on. The total automation of system operations is sometimes called “Infrastructure as Code”
(IaC).

1.1 Correctness of Automated Operations of Cloud Systems
A system on cloud consists of many “parts,” such as virtual machines (VMs), storages, and
network services as well as software packages, configuration files, and user accounts in VMs.
These parts are called resources and the automated management of cloud resources is called
resource orchestration, or cloud orchestration.

The most popular cloud orchestration tool is CloudFormation [3] provided as a service by
Amazon Web Services (AWS) and a compatible open source tool is being developed as Open-
Stack Heat [31]. CloudFormation can manage resources provided by IaaS platform of AWS,
such as VMs (EC2), block storages (EBS), load balancers (ELB), and so on. CloudForma-
tion automatically sets up these resources according to declaratively defined dependencies of
resources. However, CloudFormation does not directly manage resources inside VMs and in-
stead it allows to specify any types of scripts for initially setting up VMs, such as installing
Httpd package, creating configuration files, copying contents, and activating an Httpd compo-
nent. Shell command scripts were commonly used for this layer of management and recently
several open source tools become popular such as Puppet [24], Chef [6], and Ansible [25]. Cur-
rently operation engineers have to learn and use these several kinds of tools in actual situations,
which results in much elaboration to guarantee correctness of automated operations. In an ac-
tual commercial experience of the author, more than 50% of troubles are caused by defects in
those dependency definitions and scripts.

Correctness of cloud orchestration is much more crucial than that of the former systems
because cloud systems serve to much more people in much longer time than the former systems
used mainly inside of companies. Although cloud computing enables to easily, cheaply, and
repeatedly prepare testing environments for cloud systems, test-based quality control is not suf-
ficient for automated system operations because a cloud system is a kind of distributed systems
and it is not possible to exhaustively test all of its behavior which may occur at various situa-

1

tions in the production environment. In practice, typical and problematic defects of automated
system operations often occur at unusual situations, for example, when activation of some com-
ponent is much delayed because of unexpected heavy accesses to file/database systems or when
accidental termination of some component occurs and it returns no responses. In order to test
operations at unusual situations, Netflix, an American video on demand company, has been us-
ing a resiliency tool, named Chaos Monkey [20], which intentionally and randomly terminates
some components of their system in the production environment. Chaos is controlled to occur
during business hours of weekdays so that operation engineers can solve the problems and learn
from them when automated operations fail to deal with the situations. Reinhold, E. [26], an en-
gineer of Uber, the most famous online transportation network company, reported that they are
using a similar resiliency tools, named uDestroy, to unleash controlled chaos on their services.

1.2 Theorem Proving Framework for Cloud Orchestration
We believe formal approaches will provide more systematic ways to guarantee correctness of
cloud orchestration because they have theoretical bases to exhaustively test all possible behavior
of cloud systems. Formal approaches have a long research history of more than half a century
and many theories and techniques together with the remarkable evolution of computing power
enable to apply them to various domains, such as automotive software, mobile IC chip firmware,
financial and military applications, and so on.

However, it is difficult, as ever, to apply formal approaches to practical scale problems
because they require distinctive knowledge and skills and there are not enough number of en-
gineers who have acquired such knowledge and skills. In the computer company, the author is
working for, there have been many trial projects applying various formal approaches, several
selected engineers were trained for each project, and most of the trials were reported as suc-
ceeded. But none of them was expanded to apply to practical projects after trained engineers
dispersed.

The shortage of competent engineers is a very common problem when a new technology
is applied to practical scale problems. For example, about twenty years ago we had to shift
our software development methods from structured models to object oriented models. Many
projects suffered from lack of competent object oriented architects and Java programmers,
which is a major reason why some of the projects lost several million dollars. However, ob-
ject orientation becomes a matured technology nowadays and many large-scale applications are
developed using object oriented architectures. It is not because the shortage of competent en-
gineers is fully resolved. Instead, now we successfully make use of high reusability of object
oriented designs and programs especially as application frameworks.

For example, Ruby on Rails (RoR) [14] is one of the most popular application frameworks.
RoR defines an MVC architecture of web applications, provides super classes and utility classes
to implement the architecture, and gives developers a guide for how to design and code web
applications. RoR brings high productivity by minimizing development efforts and high main-
tainability by consistent structure of applications. In general, an application framework focuses
on a specific application domain and provides (1) a general application model which defines
structure and behavior of applications in the domain, (2) abstract reusable entities, i.e. super
classes and utility classes, which can be instantiated to implement the application model, and
(3) procedures which define how the developers design, program, and configure their own ap-
plications. Using an application framework is a very popular approach to raise the skill level

2

of novice engineers and to enable a large number of engineers to efficiently develop a practical
scale application with the consistent structure and behavior.

This dissertation proposes a “framework” of interactive proof development for a kind of
liveness properties, leads-to property, of cloud orchestration. The most important property of
an automated system operation, which we want to guarantee, is that the operation surely brings
a cloud system to a desired state. We say “surely” to mean that the system always reaches
some final state from any initial states, which is formalized as (init leads-to f inal). There are
two major difficulties to verify the reachability of cloud orchestration. One is to find sufficient
conditions for the reachability. The framework assists proof developers how to construct the
sufficient conditions for their own problem. Another difficulty is to manage acyclicness of
resource dependency. In a cloud system, dependency among resources should not become
cyclic in order to reach a desired state. The framework provides how to formalize and prove the
invariant property of the acyclicness.

Similarly to application frameworks in software development, the theorem proving frame-
work provides a general formalization of cloud orchestration specifications of different kinds
of tools and provides a procedure for how to verify leads-to properties, and also invariant prop-
erties, of the specifications. It also provides logic templates and predicate libraries which are
defined in a general level of abstraction and can be instantiated as problem specific descriptions,
predicates, and lemmas. Using them, the verification procedure assists developers to system-
atically think and develop proofs of leads-to properties. The theorem proving framework is
expected to raise the skill level of proof developers and to enable a number of engineers to
efficiently develop practical scale proofs of cloud orchestration with a consistent structure.

1.3 Formal Verification of System Behavior
One major approach of formal verification of system behavior is model checking which is based
on exhaustive analysis of states of transition systems and can automatically find counter ex-
amples included in the specified models. However, the sizes of models are limited and thus
absence of counter examples cannot be proved.

Model checking has been used for verification of software behavior since 1990’s. For ex-
ample, Magee, J., et al. [17] used model checking to verify safety and liveness properties of
software architecture. Cornejo, M. A., et al. [8] specified an existing (and commonly used) dy-
namic reconfiguration protocol in LOTOS (Language Of Temporal Ordering Specification) and
verified several temporal properties, such as “every reconfiguration command is eventually fol-
lowed by an acknowledgment”, using model checking techniques of the CADP tool set. Vassev,
E., et al. [34] applied model checking to autonomic computing in the NASA Voyager mission.
They show that liveness properties, such as “a picture taken by the Voyager will eventually
be result in sending a message to antennas on Earth”, specified by ASSL (Autonomic System
Specification Language), can be verified. Song, J., et al. [30] used the SPIN model checker to
verify two invariant properties of a self-configuration procedure for autonomous networks of
cellular base stations. Recently, Salaün, G., et al. [9, 27, 28] designed a system setup protocol
in the cloud and demonstrated to verify a liveness property of the protocol using their model
checking method.

The framework proposed in this dissertation supports another approach, namely interactive
theorem proving, which can verify models of arbitrary many number of states and so suitable
for proving absence of counter examples. It requires thinking through meanings of the specified

3

models, which is very important aspect of developing trusted systems. However, when applying
to practical problems, it requires many human efforts to develop proofs for splitting the cases,
establishing lemmas, and proving them in the course of verification.

There also exist several researches to apply the theorem proving approach to practical prob-
lems. Klein, G. et al. [16] used the Isabelle/HOL theorem prover to verify functional correctness
of OS Kernel. They wrote 4900 lines of the abstract specification, 5700 lines of the Haskell pro-
totype which is automatically converted to the executable specification, and 8700 lines of the
C program which is converted to the implementation specification. They proved two step re-
finements (from abstract to executable and from executable to implementation level) using the
forward simulation method and wrote about 200-kilo proof steps. Since they focused functional
correctness, they did not ensure correctness of the abstract specification.

The German Verisoft project [12] researches verification of a whole software stack from
verified hardware to verified application programs. In the project, Alkassar, E., et al. [2] used
the Isabelle/HOL theorem prover to verify functional correctness of their page-fault handler in
which program properties are specified by the Hoare logic, transferred or mapped to several
lower stack layers, and finally implemented by a hardware instruction set. They proved more
than twelve thousands of lemmas and wrote more than 244-kilo proof steps. They found some
difficulty to keep a consistent style of proof development in such scale of problem, which they
described as follows:

“The theories were developed by various people from different sites with differ-
ent backgrounds and Isabelle offers its users quite some opportunity to develop an
individual proof style. Some prefer rather small steps others try to push automation
as far as possible. Some prefer the‘ apply’style, which often leads a large number
of intermediate lemmas, others structure their proofs with Isar.”

None of the existing researches described above did not consider reuse of proofs which our
framework provides for its users. As far as we know, reuse of proofs is discussed only in Event-
B community as the generic instantiation approach proposed by Abrial, J. and Hallerstede,
S. [1]. The idea of the generic instantiation is that it is sufficient to prove instantiated axioms in
order to reuse proofs of a generic machine and its refined machines.

Silva, R. and Butler, M. J. [29] proposed to use theorem proving to ensure the sufficient
condition of the generic instantiation. Using the renaming and composing plug-ins for the Rodin
platform (a tool set for Event-B), they defined a way of instantiating generic machines and
generating the sufficient condition as a theorem of the concrete machine whose proof obligation
will be ensured by Rodin’s theorem prover. Tikhonova, U., et al. [32] applied this idea to verify
LACE DSL programs of controlling lithography machines. However, the generated theorems
are too large for the automatic provers of Rodin to discharge. They say that they do not expect
their average user to prove these theorems using interactive provers, as it requires knowledge of
propositional calculus and understanding of proof strategies. Instead of theorem proving, they
employed evaluation of structural properties predicates in the animation plug-in of Rodin.

The existing researches of applying theorem proving to practical scale problems commonly
reported that it requires much human efforts and the shortage of competent proof engineer is a
remained problem, which is the main concern of this dissertation.

One of the major contributions of this dissertation is to introduce the idea of frameworks
from software development to proof development, which has a unique set of features as follows:

• The framework supports verification of leads-to properties as well as invariant properties
of practical scale problems using interactive theorem proving.

4

• It provides a general way to formalize specifications in a specific domain, i.e. cloud
orchestration.
• It provides abstract entities and proved lemmas to be reused to specify and verify concrete

problems with high productivity.
• It also provides a procedure to guide novice proof engineers which results in consistent

proofs with high maintainability.

Although the above features of this dissertation are, in principle, not dependent on the theo-
rem proving system to be implemented, the following functionalities of CafeOBJ, described in
Chapter 3, contribute to realizing the effective framework.

• Transition search predicates enable to prove the reachability of state transition systems
together with equations in a unified manner of predicate logic.

• Template modules enable to define general entities and to reuse them by instantiating
and renaming which brings high productivity.

• Constructor-based inductive theorem prover enables users to easily follow the pro-
vided procedure and develop consistent structure of models and proofs which brings high
maintainability.

1.4 Standard Specification Language of Cloud Orchestration
The second major contribution of this dissertation is to show that the idea of theorem proving
framework can be effectively applied to a non-trivial problem, that is, to specify, represent, and
verify the behavior models of the standard specification language of cloud orchestration where
the standard has not yet provided any ways to do so.

While orchestration tools are specialized into two management layers, on IaaS and inside
VMs, there is a unified standard specification language, OASIS TOSCA [21] that can be used
to describe the structure of both types of resources. The resource structure is called a topology
and a TOSCA tool is expected to automate system operations based on resource dependencies
declaratively defined by topologies.

TOSCA assumes two main engineering roles, namely a type architect and an application
architect. In a typical scenario, type architects define and provide several types of resources and
an application architect uses them to define a topology of a cloud system. The type architect also
defines operations1 of resource types, such as creating, starting, stopping, or deleting resources.
A system operation of a cloud system is implemented as an invocation sequence of the type
operations, which can be decided in two kinds of manners. One is an imperative manner in
which the application architect uses a process modeling language to define a plan that explicitly
invokes these type operations. Another is a declarative one in which the application architect
only defines a topology and a TOSCA tool will automatically invoke appropriate type operations
based on the defined topology. Naturally, the declarative manner is a main target of OASIS
TOSCA because it promotes more abstract and reusable descriptions of topologies.

Currently there are no practical implementations of the declarative manner of TOSCA and
one of the reasons is that no standard set of type operations are defined and there is no way for
type architects to define behavior of their own types. In Section 7.2, we will describe how to

1In this dissertation, we say a type operation as an operation of a type whereas TOSCA calls it a lifecycle
operation.

5

use our framework to define behavior of TOSCA types and to verify that a specified topology
can correctly automate to set up the cloud system.

The rest of this dissertation is organized as follows. Chapter 2 introduces several cloud
orchestration tools. Chapter 3 introduces functionalities of CafeOBJ language in which we
represent formal specifications of cloud systems. Chapter 4 describes a general model of cloud
orchestration. Chapter 5 describes general logic templates and predicate libraries. Chapter 6
presents the procedure for verification of leads-to properties using a simple example specifica-
tion of CloudFormation. Chapter 7 explains how the framework is applied to verification of
OASIS TOSCA specifications. Chapter 8 explains related work and future issues.

6

Chapter 2

Cloud Orchestration

Cloud computing is a model for providing computational resources that allows on-demand ac-
cesses via the internet to shared pools of configurable resources such as networks, computers,
storage, middleware, development tools, applications, etc.

Cloud computing services are classified into three categories by the type of computing re-
sources to provide. IaaS (Infrastructure as a Service) is one of the service categories which
mainly provides hardware facilities via the internet. Such as servers, storages, and networks
are typically provided and called as virtual machines(VMs), virtual storages, and virtual net-
works. PaaS (Platform as a Service) is another category which mainly provides middleware
(software components for constructing applications) via the internet, such as application servers,
databases, and messaging queues, and so on. SaaS (Software as a Service) is the last category
in which applications are provided via the internet.

Recent rapid progress of cloud computing accelerates the whole life cycle of system usage
and requires much flexible automation of system operations, such as set-up, scale-out, scale-
in, or shutdown of cloud systems. Automation of cloud system operations is called resource
orchestration, or cloud orchestration and there are many cloud orchestration tools used in prac-
tical situations. This chapter introduces several popular cloud orchestration tools and describes
differences of their ways to specify automated system operations.

2.1 AWS CloudFormation
The most popular cloud orchestration tool is CloudFormation [3] provided as a service by Ama-
zon Web Services (AWS). CloudFormation can manage resources provided by IaaS platform of
AWS, such as VMs (EC2), block storages (EBS), and load balancers (ELB). CloudFormation
automatically sets up these resources according to a template that declaratively defines depen-
dencies of resources. A template is a set of resources and a resource has an identifier and a type
and includes several properties which may depend on other resources.

Fig. 2.1 is part of a very simple CloudFormation template written in JSON format [15].
This template specifies the dependency of the resources in a simple cloud system on the AWS
IaaS platform shown in lower part of Fig. 2.1. There are two resources; one has the identi-
fier MyInstance and the type AWS::EC2::Instance, another has the identifier MyEIP and
the type AWS::EC2::EIP. Note that an Elastic Compute Cloud instance (EC2 instance) is a
virtual machine on AWS IaaS platform and an Elastic IP (EIP) provides a static IP address
for an EC2 instance which is dynamically created and activated. MyEIP has a property whose
type is InstanceID. The property refers MyInstance which makes resource MyEIP depend

7

{ "Resources" : {

"MyInstance" : {

"Type" : "AWS::EC2::Instance",

"MyEIP" : {

"Type" : "AWS::EC2::EIP",

"Properties" : {

"InstanceId" : { "Ref" : "MyInstance" }

}}}}}

Figure 2.1: A Very Simple CloudFormation Template

on MyInstance. Thus, CloudFormation firstly activates MyInstance and then activates MyEIP
with a parameter of the instance ID of MyInstance.

2.2 Puppet, Chef, and Ansible
Puppet, Chef, and Ansible are not cloud orchestration tools but deployment tools (also called
configuration tools) which are used by cloud orchestration tools to set up resources inside VMs.

Puppet [24] provides a domain specific language (DSL) to describe executable Ruby [18]
scripts for setting up resources inside VMs. A Ruby script of Puppet is called a manifest and
executed in a VM. Fig. 2.2 is a simple manifest written in Puppet DSL to set up an httpd service.
A manifest is a list of declarations each of which declares the desired state of a resource. Each
declaration specifies a type, a title, and attributes of a resource. For example, the first four lines
of the manifest shown in Fig. 2.2 specifies that a package type resource named httpd is desired
to be installed to the target VM. A package means an installable package of a middleware which
is the Apache HTTP server in this case. The second declaration of the example manifest means
that an httpd service is desired to be running and it requires the httpd package resource above
is in the specified state. The third one means that the specified directory is desired to exist. The
fourth means that a file is desired to be copied from the Puppet server to the specified file path
whose owner is root, group is root, and mode is 644, which requires the directory declared
above is in the specified state. The fifth one also means that a file is desired to be copied and
this resource should be checked whenever the state of the specified service resource is changed.
A manifest is not necessarily executed from top to bottom; the order is decided by require
and subscribe attributes. A manifest is idempotent which means the result of its execution
is always the same because nothing is done when a specified resource is already in the desired
state.

Chef [6] also provides a Ruby-based DSL to describe executable scripts for setting up re-
sources inside VMs. A script is called a recipe and executed in a VM. A collection of related
recipes and auxiliary files is called a cookbook. Fig. 2.3 is a simple recipe written in Chef DSL
to set up an httpd service. A recipe is a list of declarations each of which declares the desired
state of a resource. Each declaration specifies a type, a name, attributes, and actions of a re-
source. For example, the first three lines of the recipe shown in Fig. 2.3 specifies that a package
type resource named httpd is desired to be installed to the target VM and the action to do

8

package { "httpd":

name => "httpd",

ensure => "installed"

}

service { "httpd":

name => "httpd",

enable => "true",

ensure => running,

require => Package["httpd"]

}

file { "/var/www/html/sample":

ensure => directory,

owner => "apache",

group => "apache",

mode => "755",

require => Package["httpd"]

}

file { "/var/www/html/sample/sample.html":

source => "puppet:///files/sample.html",

owner => "root",

group => "root",

mode => "644",

require => File["/var/www/html/sample"]

}

file { "/etc/httpd/conf/httpd.conf":

source => "puppet:///files/httpd.conf",

mode => "644",

owner => "root",

group => "root"

subscribe => Service["httpd"]

}

Figure 2.2: A Simple Puppet Manifest for Setting up an HTTPD Server

9

package "httpd" do

action :install

end

cookbook_file "/etc/httpd/conf/httpd.conf" do

source "httpd.conf"

owner ’root’

group ’root’

mode 00644

end

directory "/var/www/html/sample" do

owner ’apache’

group ’apache’

mode 00755

action :create

end

cookbook_file "/var/www/html/sample/sample.html" do

source "sample.html"

owner ’root’

group ’root’

mode 00644

end

service "httpd" do

supports :status => true, :restart => true, :reload => true

action [:enable,:start]

end

Figure 2.3: A Simple Chef Recipe for Setting up an HTTPD Server

10

A: one

B:

- C: two

D: three

- E: four

F: five

G: six

Figure 2.4: An Example YMAL Document

so is :install. The second declaration of the example recipe means that a file httpd.conf
included in the cookbook of this recipe is desired to be copied to the specified file path whose
owner is root, group is root, and mode is 00644. The third one means that the specified
directory is desired to exist and the fifth one means that an httpd service is desired to be run-
ning. As opposed to a Puppet manifest, a Chef recipe is executed from top to bottom and so
the order of resources is critical; the fourth and fifth resources should not be inverted because
the directory should exist before the file is copied into it. A recipe is idempotent similarly as a
Puppet manifest. Since actions to achieve the desired states (e.g. :install) are abstracted and
implemented for many kinds of operating systems, a recipe is independent from the difference
of them.

What corresponds to a manifest of Puppet or a recipe of Chef is called a playbook in
Ansible [25]. Although Ansible is implemented by Python [33], a playbook is not an ex-
ecutable script in Python but a YAML format file [7] which is interpreted and executed by
ansible-playbook command. Before showing an example playbook, we will briefly explain
the YAML format. A YAML document represents nesting key-value lists and arrays. A key
and its value are separated by a colon (:). Keys with the same indentation composes a list. In
Fig. 2.4, the top level list has three key-value pairs whose keys are A, B, and G. An array is repre-
sented by minus signs (-) with the same indentation. In the figure, the value of key B is an array
with two elements each of which is a key-value list with two pairs. Let us write a key-value
list as {(k1, v1), (k2, v2), ... }and an array as [e1, e2, ...], then the data structure
represented by the YAML document in Fig. 2.4 is the following list:
{(A, one), (B, [{(C, two), (D, three)}, {(E, four), (F, five)}]), (G, six)}

A playbook represents an array of plays which are a sports analogy; many plays are required
to set up a cloud system. Fig. 2.5 is a simple example playbook to set up an httpd service which
represents only one play. A play is a key-value list including keys of hosts, tasks, and so
on. Key hosts specifies machines to which the play is applied. Key tasks specifies an array
of tasks which are executed in order. In the example, the task array includes five tasks. A task
is a key-value list and typically begins with the pair of name key and its value which serves
as a comment. The second pair of a task specifies a module and the parameters to invoke it.
A module is a command provided by Ansible which can be remotely executed on the specified
VMs. In the example, module yumwill install the package resource named httpd, module file
will create the specified file or directory, and service will start the httpd service to be running.
Similarly as a Chef recipe, tasks in an Ansible playbook are executed from top to bottom and
so the order of tasks is critical. A playbook is idempotent similarly as a Puppet manifest and
a Chef recipe. Since modules to achieve the desired states are abstracted and implemented for
many kinds of operating systems, a playbook is independent from the difference of them.

Although there are several differences among Puppet, Chef, and Ansible which are omitted
to explain here, they share several common features in comparison with shell command scripts

11

- hosts: webservers

tasks:

- name: be sure httpd is installed

yum: name=httpd state=installed

- name: be sure httpd.conf exists

file: src=/file/httpd.conf

path=/etc/httpd/conf/httpd.conf

state=file

owner=root

group=root

mode=0644

- name: be sure springboot root directory exists

file: path=/var/www/html/sample

state=directory

owner=apache

group=apache

mode=0755

- name: be sure sample.html exists

file: src=/file/sample.html

path=/var/www/html/sample/sample.html

state=file

owner=root

group=root

mode=0644

- name: be sure httpd is running and enabled

service: name=httpd state=running enabled=yes

Figure 2.5: A Simple Ansible Playbook for Setting up an HTTPD Server

12

provided by operating systems of VMs. They provide domain specific languages to describe
the desired states of resources. The descriptions in the DSLs are idempotent and abstracted to
be independent from the difference of operation systems.

However, people have to learn and use at least two different kinds of tools (orchestration
tools and configuration tools) with different styles of specifications and functionalities, which
results in much elaboration to guarantee the correctness of automated system operations.

2.3 OASIS TOSCA
OASIS TOSCA[21] is a standard specification language to describe automation of a cloud sys-
tem consisting of service components and their relationships using a service template. It pro-
vides interoperable deployments of cloud systems across different cloud environments and their
management throughout the complete lifecycle (e.g. setting up, scaling, patching, monitoring,
etc.). A service template consists of a topology template and optionally a set of plans. A topol-
ogy template defines the resource structure of a cloud system. Note that a topology template
can be parameterized to give actual environment parameters such as IP addresses, which is the
reason why named as “template” and in this dissertation we simply say “a topology” for the
sake of brevity. A plan is an imperative definition of a system operation of the cloud system,
such as a setup plan, written by a standard process modeling language, such as BPMN [23].

In TOSCA, a resource is called a node that has several capabilities and requirements. A
topology consists of a set of nodes and a set of relationships of nodes. A capability is a function
that the node provides to another node, while a requirement is a function that the node needs
to be provided by another node. A relationship relates a requirement of a source node to a
capability of a target node. Note that nodes and relationships in a topology template can also be
parameterized, thus the exact terms of TOSCA are node templates and relationship templates.
Fig. 2.6 shows a typical example of topology that consists of nine nodes and nine relationships.
White circles represent capabilities and black ones are requirements.

The current version of TOSCA is an XML-based language1. Fig 2.7 is part of the topology
template of Fig. 2.6. In this example, there are two nodes (VMApache and OSApache) and
one relationship. VMApacheOS is a capability of VMApache and OSApacheContainer is a
requirement of OSApache. Each node, relationship, capability, and requirement has a type,
such as VirtualMachine, HostedOn, and so on. Types are main functionalities of TOSCA
that enable reusability of topology descriptions.

TOSCA assumes two main technical roles, namely a type architect and an application archi-
tect. In a typical scenario, type architects define and provide several types of those elements and
an application architect uses them to define a topology of a cloud system. The type architect
also defines operations of node types, such as creating, starting, stopping, or deleting nodes,
and of relationship types, such as attaching relationships. A system operation of a cloud system
is implemented as an invocation sequence of the type operations, which can be decided in two
kinds of manners. One is an imperative manner in which the application architect uses a process
modeling language to define a plan that explicitly invokes these type operations. Another is a
declarative one in which the application architect only defines a topology and a TOSCA tool
will automatically invoke appropriate type operations based on the defined topology. Naturally,
the declarative manner is a main target of OASIS TOSCA because it promotes more abstract
and reusable descriptions of topologies.

1OASIS TOSCA TC has published the committee draft of a simple profile for a YAML-based language. [22]

13

Figure 2.6: An Example of TOSCA topology

<TopologyTemplate>

<NodeTemplate id="VMApache" name="VM for Apache"

type="VirtualMachine">

<Capabilities>

<Capability id="VMApacheOS" name="OS"

type="OperatingSystemContainerCapability"/>

</Capabilities> </NodeTemplate>

<NodeTemplate id="OSApache" name="OS for Apache"

type="OperatingSystem">

<Requirements>

<Requirement id="OSApacheContainer" name="Container"

type="OperatingSystemContainerRequirement"/>

</Requirements>

<Capabilities>

<Capability id="OsApacheSoftware" name="Software"

type="SoftwareContainerCapability"/>

</Capabilities> </NodeTemplate>

<RelationshipTemplate id="OSApacheHostedOnVMApache"

name="hosted on" type="HostedOn">

<SourceElement ref="OSApacheContainer"/>

<TargetElement ref="VMApacheOS"/>

</RelationshipTemplate>

...

</TopologyTemplate>

Figure 2.7: A Topology Template of TOSCA

14

In this dissertation, behavior of topologies means when and which type operations should
be invoked in automation. It is important to notice that behavior of a topology is decided by
types of included nodes and relationships. We also say behavior of a type to mean that the
conditions and results of invoking its type operations, which is defined by a type architect.
Usually, different types of nodes are provided by different vendors and so specified by different
type architects. An application architect is responsible for behavior of a topology whereas type
architects are responsible for behavior of their defined types.

15

Chapter 3

Preliminaries of CafeOBJ

CafeOBJ [4] is a formal specification language that is one of the state-of-the-art algebraic
specification languages and a member of the OBJ [13] language family, such as Maude [19].
CafeOBJ specifications are executable by regarding equations and transition rules in them as
left-to-right rewrite rules, and this executability can be used for interactive theorem proving.

3.1 Modules and Equations
Basic units of specifications in CafeOBJ are modules. A module1 consists of declarations of
module importations, sorts, sub-sort relations, operators, variables, equations and transition
rules, some of which may be omitted. Conventionally, names of modules, sorts, and variables
are capitalized while names of operators including constants start with lower case letters or use
punctuation symbols.

Modules may have parameters and are called parameterized modules if so. An example of
parameterized modules is as follows 2:

module! SET(X :: TRIV) {

-- Module Importation

protecting(NAT)

-- Sorts, Sub-sort Relations

[Elt.X < Set]

-- Operators

op empty : -> Set {constr}

op _ _ : Set Set -> Set {constr assoc comm idem id: empty}

op #_ : Set -> Nat

op _U_ : Set Set -> Set

pred _\in_ : Elt.X Set

op _A_ : Set Set -> Set

op __ : Set Set -> Set

1CafeOBJ modules can be classified into tight modules and loose modules. Roughly speaking, a tight module
denotes a unique model, while a loose module denotes a class of modules. Those are declared with module! and
module* respectively.

2In CafeOBJ , a comment starts with -- or ** to the end of the line.

16

pred subset : Set Set

-- Variables

vars S S1 S2 : Set

vars E E1 : Elt.X

-- Equations

-- for =

eq ((E S1) = (E S2)) = (S1 = S2) .

-- for empty

eq ((E S) = empty) = false .

-- for #_

eq # empty = 0 .

eq # (E S) = 1 + (# S) .

-- for _U_

eq S1 U S2 = S1 S2 .

-- for _\in_

eq E \in empty = false .

eq E \in (E S) = true .

ceq E \in (E1 S) = E \in S if not(E = E1) .

-- for _A_

eq empty A S2 = empty .

eq (E S1) A (E S2) = E (S1 A S2) .

ceq (E S1) A S2 = S1 A S2 if not(E \in S2) .

-- for __

eq empty \\ E = empty .

eq (E S) \\ E = S .

ceq (E1 S) \\ E = (E1 (S \\ E)) if not (E = E1) .

-- for subset

eq subset(empty,S) = true .

eq subset((E S1),S2) = E \in S2 and subset(S1,S2) .

}

This module specifies generic sets and has one parameter X constrained by the built-in module
TRIV in which one sort Elt is only declared as follows:

module* TRIV {

[Elt]

}

The sort is referred by Elt.X and used for elements in SET. The built-in module NAT in which
natural numbers are specified is imported with protecting. Modules also can be imported
with extending and using; protectingmeans that elements of the imported modules should
not be added nor collapsed; extendingmeans that they can only be added but not be collapsed;
and using means they can be added and collapsed.

One sort Set is declared and it is also declared that Elt.X is a sub-sort of Set. This is
why an element is also a singleton set that only consists of the element. An operator without
arguments is a constant and an operator which is not defined by any equations is a constructor.
The operator empty is a constant of Set and the juxtaposition operator is a constructor
of Set, where an underscore is the place where an argument is put. It is also specified that the
juxtaposition operator is associative, commutative, and idempotent and has empty as its identity.

17

Operators are defined with equations. The first equation specifies that # empty equals 0, and
the second one specifies that # (E S) equals 1 + (# S). Those two equations define operator
that counts the number of the elements in a given set. Operators U , \in , A , \\ , and
subset are defined which mean union(∪), membership(∈), intersection(∩), difference(\), and
inclusion(⊆) of sets respectively. Note that “pred Op : Sort1 Sort2” is an abbreviation for
“op Op : Sort1 Sort2 -> Bool.”

Parameterized modules can be instantiated together with modules as actual parameters
through views. Let us consider the following module as an actual parameter of Set:

module! SERVICE {

protecting(NAT)

[LocalState Service]

ops closed open ready : -> LocalState {constr}

op sv : Nat LocalState -> Service {constr}

}

in which two sorts are declared. A term of sort LocalState represents a local state of a service
and there are three constants of local states (closed, open, and ready). A term of sort Service
represents a service which has a form sv(n,lst)where n is some natural number as an identifier
and lst is one of local states. SET can be instantiated as SV-SET as follows:

module! SV-SET {

protecting(

SET(SERVICE{sort Elt -> Service})

* {sort Set -> SvSet,

op empty -> empSvSet})

}

What follows SERVICE, namely {sort Elt -> Service}, is a view used here saying that Elt is
replaced with Service in the instantiation of SET with SERVICE. What follows * is renaming.
Set and empty are renamed as SvSet and empSvSet, respectively. Other operators are used
without renaming. The instantiated SET with SERVICE in which Set and empty are renamed
as mentioned is imported with protecting in SV-SET. In this case, SET is called a template
module and TRIV is called a parameter module. Note that a template module is not always a
parameterized module. Template modules with no parameters will be explained in Section 5.1.

Command open make a given module, SV-SET in this case, available.

open SV-SET .

reduce #(sv(1,closed) sv(2,open)) . -- to 2.

op svs : -> SvSet .

reduce #(sv(1,closed) svs) = # svs + 1 . -- to true.

close

In SV-SET, (sv(1,closed) sv(2,open)) is a term of sort SvSet and represents a set of ser-
vices consists of two elements. Thereby, #(sv(1,closed) sv(2,open)) is a term of Nat which
reduces to 2 using equations of SET as left-to-right rewrite rules. When svs is a term of
sort SvSet, (sv(1,closed) svs) is also a term of sort SvSet which represents a set of ser-
vices including at least one closed service where svs represents the rest of the set. Thus,
#(sv(1,closed) svs) reduces to # svs + 1.

18

3.2 Transition Rules
Let us consider the following module:

module! UPDATE {

using(SV-SET)

[State]

op < _ > : SvSet -> State {constr}

var SVS : SvSet

var N : Nat

trans [c2o]:

< sv(N,closed) SVS > => < sv(N,open) SVS > .

ctrans [o2r]:

< sv(N,open) SVS > => < sv(N,ready) SVS >

if # SVS > 0 .

}

Module UPDATE specifies a state machine. We say a “global state” as a state of the state machine
in order to avoid the confusion with local states of services. A ground term of sort State
represents a global state consisting of a set of services, where the set { < svs > | svs is a ground
term of SvSet} represents the state space. Two transition rules, labeled by c2o and o2r, define
the state transition over the global states. Transition rule c2o specifies that a closed service
appearing in a global state is changed to open, and o2r specifies that an open service is changed
to ready if there is at least one other service, where ctrans means “conditional trans”.

Command select is similar to open except that it does not allow to declare new sorts,
operators, equations, and so on. Command execute makes CafeOBJ try to apply transition
rules until no one can be applied.

select UPDATE .

execute < sv(1,closed) sv(2,open) > .

-- to < sv(1,ready) sv(2,ready) > .

execute < sv(1,closed) > .

-- to < sv(1,open) > .

Rule c2o makes state < sv(1,closed) sv(2,open) > transit to < sv(1,open) sv(2,open) >
then rule o2r makes transit it to < sv(1,ready) sv(2,open) > and successively makes it tran-
sit to < sv(1,open) sv(2,open) >. On the other hand, only rule c2o can be applied to global
state < sv(1,closed) > because it has only one element.

3.2.1 Formalization of State Machines in CafeOBJ

This section summarizes the formal definitions of state machines in CafeOBJ . Please refer to
[10] for detailed definitions.

Definition 1 [transition rule] Let State be a sort of global states, l and r terms of sort State,
and let c be a term of sort Bool, then a triple R = [l, r, c] is called a transition rule and repre-
sented as “ctrans l => r if c .” (or “trans l => r .” when c is true).

19

Definition 2 [transition] Let St be a set of global states (i.e. ground terms of sort State), and
let Rule be a set of transition rules, then a pair of global states (S , S ′) ∈ Tr ⊆ St × St is called
a transition specified by Rule iff there exists a transition rule R = [l, r, c] ∈ Rule and some
ground substitution σ such that S = lσ, S ′ = rσ, and cσ reduces to true. We also say R
can be applied to S and say S ′ is a next state of S.

Definition 3 [state machine] Let Rule be a set of transition rules, then a state machine is a triple
(St,Tr, In) where St is a set of global state, Tr ⊆ St × St is a set of transitions specified by Rule,
and In ⊆ St. An element of In is called an initial state.

Definition 4 [transition sequence] Let (St,Tr, In) be a state machine, then a transition sequence
is a sequence of global states (S0, S1, . . . , Sn) where each adjacent pair (Si, Si+1) ∈ Tr.

Notation 1 [Sα, αS , αβ] Let S be a global state, and let α = (S0, S1, . . . , Sn) be a transi-
tion sequence, then Sα is the transition sequence such that Sα = (S , S0, S1, . . . , Sn). αS is
the transition sequence such that αS = (S0, S1, . . . , Sn, S). Let α = (S0, S1, . . . , Sn) and β =
(Sn+1, Sn+2, . . . , Sn+m) be transition sequences, then αβ is the transition sequence such that αβ =
(S0, S1, . . . , Sn, Sn+1, Sn+2, . . . , Sn+m).

Definition 5 [reachable] Let (St,Tr, In) be a state machine, then a global state S ∈ St is
reachable iff there exists a transition sequence (S0, S1, . . . , Sn) where S0 ∈ In and S = Sn. Note
that S0 ∈ In is reachable because (S0) is a transition sequence with n = 0.

Definition 6 [invariant] Let (St,Tr, In) be a state machine, then a global state predicate p is an
invariant iff p(S) = true holds for any reachable global state S.

3.3 Search Predicates
What is called search predicates can be used to conduct reachability analysis for such state
machines specified in CafeOBJ :

pred _=(*,1)=>+_ : State State

pred _=(*,1)=>+_if_suchThat_{_} : State State Bool Bool Info

Let us consider the following code fragment:

select UPDATE .

reduce < sv(1,closed) sv(2,open) > =(*,1)=>+ < SVS > . -- to true.

reduce < sv(3,closed) sv(4,ready) > =(*,1)=>+ < SVS > . -- to true.

reduce < sv(5,open) > =(*,1)=>+ < SVS > . -- to false.

By reducing the term in the code fragment, CafeOBJ finds any next states of the given global
state, such as < sv(1,open) sv(2,open) >3. The first reduction returns true because both tran-
sition rules are applicable. The second one also returns true but only rule c2o is applicable. The
third one returns false.

CafeOBJ can find next states of a given global state such that some conditions hold in those
next states. Let us consider the following code fragment4:

3*, 1, and + specify the range of search. If 2 is used instead of *, CafeOBJ tries to find at most two next states.
If 3 is used instead of 1, CafeOBJ finds all of the global states reachable from the given global state with at most
three state transitions. If * is used instead of +, CafeOBJ also includes the given global state as a search target.
Only =(*,1)=>+ is used in this dissertation.

4Since the final part of the reduce sentence, { true }, is for debugging, please ignore it.

20

open UPDATE .

pred anyOpen : SvSet .

eq anyOpen(sv(N,open) SVS) = true .

var CC : Bool .

reduce

< sv(1,closed) sv(2,open) > =(*,1)=>+ < SVS > if CC

suchThat CC implies anyOpen(SVS) { true } . -- to true.

The reduction returns true in which CafeOBJ finds any next states of the given global state such
that at least one open service is appearing. In this case, transition rule c2o makes such next
state. Note that when the conditional search predicate tries a transition rule, it binds the rule’s
condition to Boolean variable CC placed at if clause. The suchThat clause uses CC to check
anyOpen(SVS) only when the rule is applied.

On the other hand, when we want to check some condition holds in all of the possible next
states, we need some trick. The following code fragment checks whether all of the possible next
states of global state < sv(1,closed) sv(2,open) > include at least one open services:

reduce not (

< sv(1,closed) sv(2,open) > =(*,1)=>+ < SVS > if CC

suchThat not ((CC implies anyOpen(SVS)) == true) { true }) .

-- to false.

This style of coding is we call the double negation idiom because it returns true when it CAN-
NOT find any next states of the given global state such that NO open service is appearing. The
reduction proceeds as follows:

1. Try to match LHS of c2o to the given global state.

2. Also try to match the rule’s condition (i.e. true because the rule is unconditional) to CC
and the substituted RHS (i.e. < sv(1,open) sv(2,open) >) to < SVS >.

3. Evaluate the substituted suchThat clause which reduces to false
because anyOpen(sv(1,open) sv(2,open)) reduces to true.

4. Then, continuing the search to find a next state where the suchThat clause holds, try to
match LHS of o2r to the given global state, the condition (i.e. # SVS > 0) to CC, and the
substituted RHS (i.e. < sv(2,ready) sv(1,closed) >) to < SVS >.

5. Evaluate the substituted suchThat clause which reduces to true because sv(2,ready)
sv(1,closed) does not include any open services.

6. Then the search predicate returns true and the whole term reduces to false.

This means that there is a next states of global state < sv(1,closed) sv(2,open) >which does
not include any open services; that is global state < sv(1,closed) sv(2,ready) >.

Note that this is a typical example where we need == true. In CafeOBJ , term1 == term2
reduces to true if both terms are reduced to be the same term and to false otherwise. On the
other hand, term1 = term2 reduces to true iff term1 == term2 reduces to true. The following
code fragment shows difference between = and == .

reduce anyOpen(sv(1,closed)) = true .

-- no reduction occurs.

reduce anyOpen(sv(1,closed)) == true .

-- reduce to false.

21

In this case, CafeOBJ cannot decide anyOpen(SVS) does or does not hold because the definition
of anyOpen is incomplete and thus the first reduction above can reduce to neither true nor
false. The second one using == true reduces to false, which is the reason why suchThat
clause in the double negation idiom works as we intended.

3.3.1 Formalization of Search Predicates
This section describes the search predicates more formally.

Definition 7 [unconditional search predicate] Let Rule be a set of transition rules, and let S and
S ′ be terms of sort State. The unconditional search predicate, FS (S , S ′) is represented as “S
=(*,1)=>+ S ′” and holds iff there exists a transition rule R = [l, r, c] ∈ Rule and a substitution
σ such that Sσ = lσ holds, S ′σ = rσ holds, and cσ reduces to true.

Definition 8 [conditional search predicate] Let Rule be a set of transition rules, S and S ′

terms of sort State, and CC and B terms of sort Bool. The conditional search predicate,
CFS (S , S ′,CC, B) is represented as “S =(*,1)=>+ S ′ if CC suchThat B { debug in f o }”
and holds iff there exists a transition rule R = [l, r, c] ∈ Rule and a substitution σ such that
Sσ = lσ holds, S ′σ = rσ holds, CCσ = cσ holds, and Bσ reduces to true. B typically has a
form “CC implies p(S , S ′)” where p(S , S ′) is a predicate of global states.

3.4 Verification by Proof Scores
A proof score is an executable specification in CafeOBJ such that if executed as expected, then
the desired theorem is proved [11]. Verification by proof scores is an interactive developing
process to think through meaning of the specification that is very important aspect of developing
trusted systems.

For example, let us verify that in module UPDATE there should be a next state of global state
S when at least two services included in S are not ready.

module! ProofUPDATE {

protecting(UPDATE)

-- Theorem to be proved.

pred theorem : Nat LocalState Nat LocalState SvSet

vars N N1 N2 : Nat

vars Lst1 Lst2 : LocalState .

var SVS : SvSet

var SS : State

eq theorem(N1,Lst1,N2,Lst2,SVS)

= ((Lst1 == ready) = false and (Lst2 == ready) = false)

implies < sv(N1,Lst1) sv(N2,Lst2) SVS > =(*,1)=>+ SS .

-- Axiom of Nat

eq (1 + N > 0) = true .

-- Arbitrary constants.

22

ops st1 st2 : -> LocalState

ops n1 n2 : -> Nat

op svs : -> SvSet

}

Module ProofUPDATE gets ready for verification; it defines the theorem to be proved and de-
clares several arbitrary constants. Note that we require an axiom for natural numbers which
says that the successor of a natural number is always greater than 0.

Firstly, we begin with the most general case where all the aruguments of theorem are
arbitrary constants:

-- The most general case.

open ProofUPDATE .

reduce theorem(n1,st1,n2,st2,svs) . -- to false.

close

This case is too general for CafeOBJ to find any next states. We should split the case into cases
which collectively cover the general case. There are three case; (1) both services are closed, (2)
both services are open, and (3) one service is closed and another is open. The following is a
proof score for the three cases.

-- Case 1: Both services are closed.

open ProofUPDATE .

eq st1 = closed .

eq st2 = closed .

reduce theorem(n1,st1,n2,st2,svs) . -- to true.

close

-- Case 2: Both services are open.

open ProofUPDATE .

eq st1 = open .

eq st2 = open .

reduce theorem(n1,st1,n2,st2,svs) . -- to true.

close

-- Case 3: A closed service and an open service.

open ProofUPDATE .

eq st1 = closed .

eq st2 = open .

reduce theorem(n1,st1,n2,st2,svs) . -- to true.

close

Verification is successfully done because all of the cases collectively covering the most general
case are proved.

3.5 Constructor-based Inductive Theorem Prover (CITP)
As described above, interactive theorem proving is a systematic process to split general cases
into collectively covering cases until all of the cases are specific enough to be proved. Thereby, a
proof score should be written more carefully when case splitting becomes deeper. It sometimes

23

causes to carelessly forget some cases to be proved. In fact, it may take considerable time to
convince that the three cases in the previous section collectively cover all of the cases.

In order to assist to develop proof scores which are more systematic and easier to understand,
CafeOBJ provides CITP method consisting of several special commands. The following is a
list of part of CITP commands5:

• :goal { eq term = true . }
Define the goal to be proved and let it be the current case. Multiple goal equations can be
specified.

• :ctf { eq LHS = RHS . }
Split the current case into two cases adding eq LHS = RHS . to one case and
eq (LHS = RHS) = false . to another.

• :csp { eq LHS1 = RHS1 . eq LHS2 = RHS2 }
Split the current case into cases adding eq LHSi = RHSi . to each case.

• :apply (rd)
Reduce the goal in the current case.

• :def name = :ctf { . . . }
:def name = :csp { . . . }
Name the case splitting tactic.

• :apply (name1 name2)

Combine named case splitting tactics. When tactic name1 splits an case into n cases and
tactic name2 splits into m cases, the current case is split into totally n × m cases. It can
also specify tactic rd, i.e. :apply (n1 n2 rd), which means reducing the goal in every
split case.

• :init [label] by { substitution }
Introduce a labeled lemma proven by other proof scores. substitution specifies how to
unify the lemma to the current case. Detailed examples will be explained in Chapter 6.

• describe proof
Describe the proof tree consisting of split cases. Proven cases are shown by “*” marks.

• show proof
Summarize the proof tree consisting of split cases. Proven cases are shown by “*” marks.

The following is a proof score of CITP version of the example in the previous section:

select ProofUPDATE .

:goal {

eq theorem(n1,st1,n2,st2,svs) = true .

}

:def csp-st1 = :csp {

eq st1 = closed .

eq st1 = open .

5As its name suggests, CITP has capability to automatically produce inductive goals based on constructors,
however we use it only for management of proof trees in this dissertation.

24

eq st1 = ready .

}

:def csp-st2 = :csp {

eq st2 = closed .

eq st2 = open .

eq st2 = ready .

}

:apply (csp-st1 csp-st2 rd)

describe proof

Firstly, the goal to be proved should represent the most general case where all the aruguments
of theorem are arbitrary constants. Then, since class LocalState has only three constants
(closed, open , and ready) as constructors in module UPDATE, there are three cases where
st1 (and also st2) is one of the three constants in each of cases. Thereby the combination of
case splitting for st1 and st2 collectively covers all of the cases.

The final command, describe proof, describes the proof tree as follows:

==> root*

-- context module: #Goal-root

-- targeted sentence:

eq theorem(n1, st1, n2, st2, svs) = true .

[csp-st1] 1*

-- context module: #Goal-1

-- assumption

eq [csp-st1]: st1 = closed .

-- targeted sentence:

eq theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 1-1*

-- context module: #Goal-1-1

-- assumptions

eq [csp-st1]: st1 = closed .

eq [csp-st2]: st2 = closed .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 1-2*

-- context module: #Goal-1-2

-- assumptions

eq [csp-st1]: st1 = closed .

eq [csp-st2]: st2 = open .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 1-3*

-- context module: #Goal-1-3

-- assumptions

eq [csp-st1]: st1 = closed .

eq [csp-st2]: st2 = ready .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st1] 2*

-- context module: #Goal-2

-- assumption

25

eq [csp-st1]: st1 = open .

-- targeted sentence:

eq theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 2-1*

-- context module: #Goal-2-1

-- assumptions

eq [csp-st1]: st1 = open .

eq [csp-st2]: st2 = closed .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 2-2*

-- context module: #Goal-2-2

-- assumptions

eq [csp-st1]: st1 = open .

eq [csp-st2]: st2 = open .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 2-3*

-- context module: #Goal-2-3

-- assumptions

eq [csp-st1]: st1 = open .

eq [csp-st2]: st2 = ready .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st1] 3*

-- context module: #Goal-3

-- assumption

eq [csp-st1]: st1 = ready .

-- targeted sentence:

eq theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 3-1*

-- context module: #Goal-3-1

-- assumptions

eq [csp-st1]: st1 = ready .

eq [csp-st2]: st2 = closed .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 3-2*

-- context module: #Goal-3-2

-- assumptions

eq [csp-st1]: st1 = ready .

eq [csp-st2]: st2 = open .

-- discharged sentence:

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

[csp-st2] 3-3*

-- context module: #Goal-3-3

-- assumptions

eq [csp-st1]: st1 = ready .

eq [csp-st2]: st2 = ready .

-- discharged sentence:

26

eq [RD]: theorem(n1, st1, n2, st2, svs) = true .

This means that the most general case (root) is split into three cases (1, 2, and 3) using
csp-st1 each of which is also split into three case (for example, 1-1, 1-2, and 1-3) using
csp-st2. “*” marks show all of the cases are successfully proved.

27

Chapter 4

Theorem Proving Framework

The theorem proving framework proposed by this dissertation aims to facilitate interactive proof
development by allowing proof developers to devote their time to thinking through meaning of
their own specifications and specific reasons why the specifications have some desired proper-
ties rather than reinventing how to construct proof scores or proving many specific versions of
some common lemmas, thereby reducing overall development time. By doing so, the frame-
work is expected to raise the skill level of novice proof developers and to enable a number of
engineers to efficiently develop the proof score for a practical scale problem.

The framework supports developers using mainly two means to reuse proof developments.
Firstly, it provides a procedure how to develop proof scores to verify leads-to properties as well
as invariant properties of cloud orchestration specifications. For every such property, there are
several proof goals all of which should reduce to true. A proof score for each property consists
of proof case trees each of which corresponds to one of the proof goal. The root of a proof case
tree represents the most general case of the proof goal. When the goal does not reduce to true in
the root case, it should be split into more concrete sub-cases which collectively cover the root
case. Such case splitting should be continued until all the leaf cases reduce to true and then the
proof goal is verified. The proof development procedure provided by the framework prescribes
what kind of set of proof goals should be sufficient to verify invariant and leads-to properties of
specifications and guides how to split cases to develop proof case trees. The procedure supports
proof developers to make the specific proof goals for their own specifications and to proceed
case splitting until all the goals reduce to true.

Secondly, the framework provides many reusable lemmas that are commonly used in the
course of verification for invariant and leads-to properties of cloud orchestration specifications.
The provided lemmas are already proved in a general level of abstraction and can be reused
simply by renaming included general terms to some specific ones without reproving. The rea-
son why the framework can provide such a proof development procedure and reusable lemmas
for the specific problem domain, cloud orchestration in our case, is because it makes specific
specifications adopt a general structure and behavior model for the domain and its representa-
tion. Proof developers can describe such specifications only by instantiating logical templates
provided by the framework and adding small specific part of codes.

The reusable entities provided by the framework are four kinds of logic templates, a lot of
general predicates/operators included in the templates, and a lot of lemmas about such predi-
cates/operators which are proved in the general level of abstraction. The framework also pro-
vides general sufficient conditions to verify invariant and leads-to properties of cloud orchestra-
tion specifications and provides a procedure to develop proof trees whose goals are the sufficient

28

conditions.
The rest of this chapter describes the general structure and behavior model and its represen-

tation. The reusable entities provided by the framework will be described in Chapter 5 and the
proof development procedure will be described in Chapter 6.

4.1 Structure Models and Representations
Cloud Orchestration is automation of operations such as set-up, scale-out, scale-in, or shutdown
of cloud systems. In order to verify correctness of an automated operation of a cloud system,
we need to model the structure of the target cloud system and the behavior of the operation. We
say “model” to mean abstractly and formally specifying the structure and behavior. A specified
model is represented by a formal specification language, namely CafeOBJ in this dissertation.

CloudFormation models a structure of a cloud system simply as a set of resources on IaaS
platform of AWS. The model is called a template which is represented by JSON as illustrated
in Fig. 2.1. A resource has an identifier and a type and includes several properties which may
depend on other resources.

On the other hand, TOSCA’s model of a cloud system is more structured to manage any
types of cloud resources, as well as inside VMs, and any types of operations such as scale-out,
scale-in, shutdown, and so on. A TOSCA’s model, called a topology, is represented by XML as
illustrated in Fig 2.7. A topology consists of a set of nodes and a set of relationships between
nodes. A node has several capabilities and requirements. A relationship relates a requirement
of a source node to a capability of a target node.

In order to cover many different kinds of models of cloud system structures, our framework
provides a generic model of a cloud system structure which consists of several classes of objects.
For example, in the case of CloudFormation, a cloud system consists of two classes (resource
and property) of objects whereas TOSCA models that a cloud system consists of four classes
(node, relationship, capability, and requirement). For a while, we explain our framework using
the simple CloudFormation template shown in Fig. 2.1 and the case of TOSCA topologies will
be explained in Chapter 7.

An object has a type1, an identifier(ID), a local state, and possibly links to other objects. In
the case of the example shown in Fig. 2.1, a resource object whose type is AWS::EC2::Instance
has its ID as MyInstance. The type of MyEIP resource is AWS::EC2::EIP. MyEIP has a property
but its ID is hidden and we assume it is MyEIP::InsID since its parent is MyEIP and its type
is InstanceId. MyEIP::InsID has a link to MyInstance. Local states of objects are used for
automation of operations, which will be explained in Section 4.2.

An object belongs to a class and thus a class is a set of objects. We assume this set consists
of countably infinite objects each of which has its fixed ID and type. Local states or links of
objects may be dynamically changed. A class specifies the set of possible types, the set of
possible local states of its objects. A class also specifies how its objects link to other objects.

Users of the framework should design representations of the system models in CafeOBJ lan-
guage. A class should be represented as a CafeOBJ module that defines a sort of its objects, a
constructor of the sort, a set of literals of types, and a set of literals of local states. An object is
represented as a ground constructor term of the sort.

1Do not think a type is that of programming languages which is called sort in CafeOBJ . A type is just an
attribute of an object. We use the term because both CloudFormation and TOSCA use it.

29

For the example shown in Fig. 2.1, three objects may be represented as the following ground
terms:

res(ec2Instance, myInstance, initial)

res(ec2Eip, myEIP, initial)

prop(instanceId,myEIP::InsID,notready,myEIP,myInstance)

Although the user of the framework can freely design the representation of objects, typically
the constructor name represents the class of the object (res, prop), the first argument is its
type (ec2Instance, ec2Eip, instanceId), the second is its identifier (myInstance, myEIP,
myEIP::InsID)2, and the third is its local state. The fourth argument of the property object
represents a link to its parent, myEIP, and the fifth represents that the property depends on
myInstance. The example of CafeOBJ modules representing resource and property classes
will be shown in Chapter 5. Note that a link is represented by an identifier of the linked object
in our framework.

4.2 Behavior Models and Representations
The framework models the behavior of an automated operation of a cloud system as a state
transition system in which a set of transition rules of states specifies the behavior. We say a
global state as a state of the state machine in order to avoid the confusion with local states of
objects. A global state is a finite set of objects each of which is included in some class. A
transition rule makes a global state transit to another global state where local states or links of
some objects are changed.

In the case of a template of CloudFormation, a global state consists of finite number of
resources and their properties. CloudFormation tries to start all of the resources according to the
dependency specified by the template. In this dissertation, we use a very simple behavior model
of CloudFormation as an example; a local state of a resource is firstly initial and becomes started
but a dependent resource can be started after all of the resources it depends become started.
The dependency is specified such that a property linking some resource is firstly notready and
becomes ready when the linked resource is started and a resource can be started when all of its
properties become ready. Figure 4.1 illustrates the model where solid arrows show changes of
local states and dashed arrows show transition rules.

Figure 4.1: Simple Behavior Model of CloudFormation

2In this dissertation, we often use an identifier to designate an object which has the identifier for the sake of
brevity.

30

A global state is represented in CafeOBJ as a ground constructor term of sort State, which
is typically a tuple of sets of objects, each of the sets is a finite subset of a class. In the case of
CloudFormation, sort State is defined as a pair of a set of resources and a set of properties as
follows:3

module! STATE {

protecting(LINKS)

[State]

op <_,_> : SetOfResource SetOfProperty -> State {constr}

}

The global state shown in Fig. 2.1 is represented as follows:

open STATE .

-- Constants

ops ec2Instance ec2Eip : -> RSTypeLt .

ops myInstance myEIP : -> RSIDLt .

ops myEIP::InsID : -> PRIDLt .

op instanceId : -> PRTypeLt .

op s0 : -> State .

eq s0 =

< (res(ec2Instance, myInstance, initial)

res(ec2Eip, myEIP, initial)),

(prop(instanceId, myEIP::InsID, notready, myEIP, myInstance)) >

The behavior is modeled and represented by a set of two transition rules as follows:

module! STATERules {

protecting(STATEfuns)

-- Variables

vars IDRS IDRRS : RSID

var IDPR : PRID

var TRS : RSType

var TPR : PRType

var SetRS : SetOfResource

var SetPR : SetOfProperty

-- Start an initial resource

-- if all of its properties are ready.

ctrans [R01]:

< (res(TRS,IDRS,initial) SetRS), SetPR >

=> < (res(TRS,IDRS,started) SetRS), SetPR >

if allPROfRSInStates(SetPR,IDRS,ready) .

-- Let a not-ready property be ready

-- if its referring resource is started.

trans [R02]:

< (res(TRS,IDRRS,started) SetRS),

(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR) >

3Module LINKS and several sorts of constants will be explained in the next chapter.

31

=> < (res(TRS,IDRRS,started) SetRS),

(prop(TPR,IDPR,ready ,IDRS,IDRRS) SetPR) > .

}

Predicate allPROfRSInStates(SetPR,IDRS,ready) checks a set of properties SetPR whether
every property of resource IDRS is ready, which will be explained in Section 5.2. Thus, rule
R01 means that an initial resource becomes started when all of its properties are ready.
The LHS of rule R02 includes a resource and a property. The second link of the property is
the identifier of the resource, which means the property refers the resource. Thereby, rule R02
means that a notready property becomes ready when it refers a started resource.

4.3 Simulation of Models
CafeOBJ provides execute command to execute a state machine trying to apply transition
rules as long as possible.

open STATERules .

-- Constants

ops ec2Instance ec2Eip : -> RSTypeLt .

ops myInstance myEIP : -> RSIDLt .

ops myEIP::InsID : -> PRIDLt .

op instanceId : -> PRTypeLt .

op s0 : -> State .

eq s0 =

< (res(ec2Instance, myInstance,initial)

res(ec2Eip,myEIP,initial)),

(prop(instanceId,myEIP::InsID,notready,myEIP,myInstance)) > .

execute s0 .

-- will be produced

-- < (res(ec2Instance, myInstance,started)

-- res(ec2Eip,myEIP,started)),

-- (prop(instanceId,myEIP::InsID,ready,myEIP,myInstance)) > .

The followings are part of log messages of the execution above, which shows that firstly rule
R01 makes myInstance transit from initial to ready, then R02 makes myEIP::InsID transit
from notready to ready, and finally R01 makes myEIP transit from initial to started.

...

1>[2] apply trial #1

-- rule: ctrans [R01]:

(< (res(TRS,IDRS,initial) SetRS) , SetPR >)

=> (< (res(TRS,IDRS,started) SetRS) , SetPR >)

if allPROfRSInStates(SetPR,IDRS,ready)

{ IDRS |-> myInstance,

TRS |-> ec2Instance,

SetRS |-> res(ec2Eip,myEIP,initial),

SetPR |-> prop(instanceId,myEIP::InsID,notready,myEIP,myInstance)

}

...

32

1>[19] match success #1

1<[19] (< (res(ec2Eip,myEIP,initial) res(ec2Instance,myInstance,initial)),

(prop(instanceId,myEIP::InsID,notready,myEIP,myInstance)) >)

--> (< (res(ec2Instance,myInstance,started) res(ec2Eip,myEIP,initial)),

(prop(instanceId,myEIP::InsID,notready,myEIP,myInstance)) >)

1>[20] rule: trans [R02]:

(< (res(TRS,IDRRS,started) SetRS),

(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR) >)

=> (< (res(TRS,IDRRS,started) SetRS),

(prop(TPR,IDPR,ready,IDRS,IDRRS) SetPR) >)

{ IDPR |-> myEIP::InsID,

TPR |-> instanceId,

IDRS |-> myEIP,

SetPR |-> empPR,

IDRRS |-> myInstance,

TRS |-> ec2Instance,

SetRS |-> res(ec2Eip,myEIP,initial)

}

1<[20] (< (res(ec2Eip,myEIP,initial) res(ec2Instance,myInstance,started)),

(prop(instanceId,myEIP::InsID,notready,myEIP,myInstance)) >)

--> (< (res(ec2Instance,myInstance,started) res(ec2Eip,myEIP,initial)),

(prop(instanceId,myEIP::InsID,ready,myEIP,myInstance)) >)

1>[21] apply trial #1

...

1>[42] match success #1

1<[42] (< (res(ec2Eip,myEIP,initial) res(ec2Instance,myInstance,started)),

(prop(instanceId,myEIP::InsID,ready,myEIP,myInstance)) >)

--> (< (res(ec2Eip,myEIP,started) res(ec2Instance,myInstance,started)),

(prop(instanceId,myEIP::InsID,ready,myEIP,myInstance)) >)

(< (res(ec2Instance,myInstance,started) res(ec2Eip,myEIP,started)),

(prop(instanceId,myEIP::InsID,ready,myEIP,myInstance)) >):State

33

Chapter 5

General Templates and Predicate
Libraries

The framework uses the template mechanism of CafeOBJ to provide a general way to model
cloud orchestration, predefined predicate libraries, and proved lemmas together with their proof
scores.

5.1 Template Modules of Objects
Template module OBJECTBASE defines nine sorts and more than ten operators/predicates of
objects, which generally and minimally defines what an object is in a class. The template can
be instantiated and imported in a module for each class of objects, where the imported sorts
and operators can be used just by renaming appropriately. For the example shown in Fig. 2.1,
following module RESOURCE describes specifications of the resource class for CloudFormation1.

module! RESOURCE {

-- Instantiation of Template

extending(OBJECTBASE

* {sort Object -> Resource,

sort ObjIDLt -> RSIDLt,

sort ObjID -> RSID,

sort ObjTypeLt -> RSTypeLt,

sort ObjType -> RSType,

sort ObjStateLt -> RSStateLt,

sort ObjState -> RSState,

sort SetOfObject -> SetOfResource,

sort SetOfObjState -> SetOfRSState,

op empObj -> empRS,

op empState -> empSRS,

op existObj -> existRS,

op existObjInStates -> existRSInStates,

op uniqObj -> uniqRS,

op #ObjInStates -> #ResourceInStates,

op getObject -> getResource,

1OBJECTBASE is a template with no parameter and is used to instantiate a new module and to rename predefined
sorts/operators.

34

op allObjInStates -> allRSInStates,

op allObjNotInStates -> allRSNotInStates,

op someObjInStates -> someRSInStates}

)

-- Constructor

-- res(RSType, RSID, RSState) is a Resource.

op res : RSType RSID RSState -> Resource {constr}

-- Variables

var TRS : RSType

var IDRS : RSID

var SRS : RSState

-- Selectors

eq type(res(TRS,IDRS,SRS)) = TRS .

eq id(res(TRS,IDRS,SRS)) = IDRS .

eq state(res(TRS,IDRS,SRS)) = SRS .

-- Local States

ops initial started : -> RSStateLt {constr}

}

The following is a list of nine sorts predefined by template module OBJECTBASE:

• Object (renamed as Resource in this case)
Sort for objects themselves.

• ObjIDLt (as RSIDLt)
Subsort of ObjID for identifier literals. A literal is a constant for which OBJECTBASE
predefines a special equality predicate such that = is exactly the same as == .

• ObjID (as RSID)
Sort for identifiers of objects.

• ObjTypeLt (as RSTypeLt)
Subsort of ObjType for type literals.

• ObjType (as RSType)
Sort for types of objects.

• ObjStateLt (as RSStateLt)
Subsort of ObjState for local state literals.

• ObjState (as RSState)
Sort for local states of objects.

• SetOfObject (as SetOfResource)
Soft for sets of objects.

• SetOfObjState (as SetOfRSState)
Sort for sets of local states of objects.

35

The following is a list of part of operators predefined by template module OBJECTBASE
whereas argument obj is an object, id is an identifier of an object, seto is a set of objects, and
setls is a set of local states of objects:

• empObj (renamed as empRS in this case)
Constant representing an empty set of objects.

• empState (as empSRS)
Constant representing an empty set of local states of objects.

• existObj (as existRS)
Predicate used as existObj(seto,id) which holds iff some object with identifier id is
included in seto;
∃o ∈ seto : id(o) = id.

• existObjInStates (as existRSInStates)
Predicate used as existObjInStates(seto,id,setls) which holds iff some object with
identifier id is included in seto and its local state is included in setls;
∃o ∈ seto : (id(o) = id ∧ state(o) ∈ setls).

• uniqObj (as uniqRS)
Predicate used as uniqObj(seto) which holds iff the identifier of each object is unique in
seto;
∀o, o′ ∈ seto : (o , o′ → id(o) , id(o′)).

• #ObjInStates (as #ResourceInStates)
Operator used as #ObjInStates(setls,seto) which returns the number of objects in seto
whose local states are included in setls.

• getObject (as getResource)
Operator used as getObject(seto,id) which returns an object in seto whose identifier is
id.

• allObjInStates (as allRSInStates)
Predicate used as allObjInStates(seto,setls) which holds iff the local states of all the
objects in seto are included in setls;
∀o ∈ seto : state(o) ∈ setls.

• allObjNotInStates (as allRSNotInStates)
Predicate used as allObjNotInStates(seto,setls) which holds iff the local states of all
the objects in seto are not included in setls;
∀o ∈ seto : state(o) < setls.

• someObjInStates (as someRSInStates)
Predicate used as someObjInStates(seto,setls) which holds iff there exists an objects in
seto whose local state is included in setls;
∃o ∈ seto : state(o) ∈ setls.

The module importing the instantiated template can extend it to freely define a constructor
of objects and local state literals. In this case, module RESOURCE defines a constructor (res) of

36

sort Resource whose arguments are a type, an identifier, and a local state of the resource. It
also defines two local state literals, initial and started, of a resource.

In addition, the module should implement three selector operators, type, id, and state,
each of which takes a resource as an argument and returns the type, the identifier, and the
local state of the resource respectively and OBJECTBASE uses them to implement the predefined
general operators2.

Similarly, following module PROPERTY specifies the property class for the example shown
in Fig. 2.1.

module! PROPERTY {

protecting(RESOURCE)

-- Instantiation of Template

extending(OBJECTBASE

* {sort Object -> Property,

sort ObjIDLt -> PRIDLt,

sort ObjID -> PRID,

sort ObjTypeLt -> PRTypeLt,

sort ObjType -> PRType,

sort ObjStateLt -> PRStateLt,

sort ObjState -> PRState,

sort SetOfObject -> SetOfProperty,

sort SetOfObjState -> SetOfPRState,

op empObj -> empPR,

op empState -> empSPR,

op existObj -> existPR,

op existObjInStates -> existPRInStates,

op uniqObj -> uniqPR,

op #ObjInStates -> #PropertyInStates,

op getObject -> getProperty,

op allObjInStates -> allPRInStates,

op allObjNotInStates -> allPRNotInStates,

op someObjInStates -> somePRInStates}

)

-- Constructor

-- prop(PRType, PRID, PRState, RSID, RSID) is a Property.

op prop : PRType PRID PRState RSID RSID -> Property {constr}

-- Variables

var TPR : PRType

var IDPR : PRID

var SPR : PRState

vars IDRS1 IDRS2 : RSID

-- Selectors

op parent : Property -> RSID

op refer : Property -> RSID

eq type(prop(TPR,IDPR,SPR,IDRS1,IDRS2)) = TPR .

2OBJECTBASE declares and uses these operators and so RESOURCE only should define them by equations.

37

eq id(prop(TPR,IDPR,SPR,IDRS1,IDRS2)) = IDPR .

eq state(prop(TPR,IDPR,SPR,IDRS1,IDRS2)) = SPR .

eq parent(prop(TPR,IDPR,SPR,IDRS1,IDRS2)) = IDRS1 .

eq refer(prop(TPR,IDPR,SPR,IDRS1,IDRS2)) = IDRS2 .

-- Local States

ops notready ready : -> PRStateLt {constr}

}

Module PROPERTY imports module RESOURCE using protecting because a property object
links to its parent resource and also links to its referring resource.

Module PROPERTY defines a constructor (prop) of sort Property whose arguments are a
type, an identifier, a local state, and links of the property. As noted before, a link is represented
by an identifier of the linked object. It also defines two local state literals, notready and ready,
of a property.

In addition to the mandatory selectors (type, id, and state), module PROPERTY declares
and defines two more selectors, parent and refer, each of which returns a parent resource
and a referring resource of the property respectively.

5.2 Template Modules for Links
In addition to the operators provided by template module OBJECTBASE, two template mod-
ules OBJLINKMANY2ONE and OBJLINKONE2ONE provide many predefined operators/predicates
for links between objects. Representing object structures by using links, instead of nesting
structures, enables the framework to be easily applied to any kinds of model structures and to
effectively provide a predefined set of operators/predicates.

A template module OBJLINKMANY2ONE takes one parameter module of a class whose object
links to another object. In order to provide predefined operators for links, the template module
assumes that the parameter module defines eleven specific sorts and five specific operators.
For example, it assumes that a parameter module defines Object as a sort for linking objects,
LObject as a sort for linked objects, link as a selector of Objectwhich returns the identifier of
linked object, and so on. When the actual parameter module defines those sorts and operators
with the different names from ones assumed, CafeOBJ allows to specify correspondence of
the names. In the case of CloudFormation, the sort for linking objects is Property, the sort
for linked objects is Resource, and the selectors are parent and refer defined by module
PROPERTY. The following module LINKS imports OBJLINKMANY2ONE twice for both kinds of
links specifying the correspondence of the names:

module! LINKS {

-- A Property links to its parent Resource

extending(OBJLINKMANY2ONE(

PROPERTY {sort Object -> Property,

sort ObjID -> PRID,

sort ObjType -> PRType,

sort ObjState -> PRState,

sort SetOfObject -> SetOfProperty,

sort SetOfObjState -> SetOfPRState,

sort LObject -> Resource,

sort LObjID -> RSID,

38

sort LObjState -> RSState,

sort SetOfLObject -> SetOfResource,

sort SetOfLObjState -> SetOfRSState,

op link -> parent,

op empLObj -> empRS,

op existLObj -> existRS,

op existLObjInStates -> existRSInStates,

op getLObject -> getResource}

)

* {op hasLObj -> hasParent,

op getXOfZ -> getRSOfPR,

op getZsOfX -> getPRsOfRS,

op getZsOfXInStates -> getPRsOfRSInStates,

op getXsOfZs -> getRSsOfPRs,

op getXsOfZsInStates -> getRSsOfPRsInStates,

op getZsOfXs -> getPRsOfRSs,

op getZsOfXsInStates -> getPRsOfRSsInStates,

op allZHaveX -> allPRHaveRS,

op allZOfXInStates -> allPROfRSInStates,

op ifOfXThenInStates -> ifOfRSThenInStates,

op ifXInStatesThenZInStates -> ifRSInStatesThenPRInStates}

)

-- A Property links to its referring Resource

extending(OBJLINKMANY2ONE(

PROPERTY {sort Object -> Property,

sort ObjID -> PRID,

sort ObjType -> PRType,

sort ObjState -> PRState,

sort SetOfObject -> SetOfProperty,

sort SetOfObjState -> SetOfPRState,

sort LObject -> Resource,

sort LObjID -> RSID,

sort LObjState -> RSState,

sort SetOfLObject -> SetOfResource,

sort SetOfLObjState -> SetOfRSState,

op link -> refer,

op empLObj -> empRS,

op existLObj -> existRS,

op existLObjInStates -> existRSInStates,

op getLObject -> getResource}

)

* {op hasLObj -> hasRefRS,

op getXOfZ -> getRRSOfPR,

op getZsOfX -> getPRsOfRRS,

op getZsOfXInStates -> getPRsOfRRSInStates,

op getXsOfZs -> getRRSsOfPRs,

op getXsOfZsInStates -> getRRSsOfPRsInStates,

op getZsOfXs -> getPRsOfRRSs,

op getZsOfXsInStates -> getPRsOfRRSsInStates,

39

op allZHaveX -> allPRHaveRRS,

op allZOfXInStates -> allPROfRRSInStates,

op ifOfXThenInStates -> ifOfRRSThenInStates,

op ifXInStatesThenZInStates -> ifRRSInStatesThenPRInStates}

)

}

The following is a list of eleven sorts assumed by module OBJLINKMANY2ONE:

• Object (actually named as Property in this case)
Sort for linking objects.

• ObjID (as PRID)
Sort for identifiers of linking objects.

• ObjType (as PRType)
Sort for types of linking objects.

• ObjState (as PRState)
Sort for local states of linking objects.

• SetOfObject (as SetOfProperty)
Sort for sets of linking objects.

• SetOfObjState (as SetOfPRState)
Sort for sets of local states of linking objects.

• LObject (as Resource)
Sort for linked objects.

• LObjID (as RSID)
Sort for identifiers of linked objects.

• LObjState (as RSState)
Sort for local states of linked objects.

• SetOfLObject (as SetOfResource)
Sort for sets of linked objects.

• SetOfLObjState (as SetOfRSState)
Sort for sets of local states of linked objects.

The following is a list of five operators assumed by module OBJLINKMANY2ONE whereas
argument obj is a linking object, lid is an identifier of a linked object, setlo is a set of linked
objects, and setlls is a set of local states of linked objects:

• link (actually named as parent and refer in this case)
Selector used as link(obj) which returns the identifier of the object linked by obj.

• empLObj (as empRS)
Constant representing an empty set of linked objects.

40

• existLObj (as existRS)
Predicate used as existLObj(setlo,lid) which holds iff a linked object with identifier lid
is included in setlo;
∃lo ∈ setlo : id(lo) = lid.

• existLObjInStates (as existRSInStates)
Predicate used as existLObjInStates(setlo,lid,setlls) which holds iff a linked object
with identifier lid is included in setlo and its local state is included in setlls;
∃lo ∈ setlo : (id(lo) = lid ∧ state(lo) ∈ setlls).

• getLObject (as getResource)
Operator used as getLObject(setlo,lid) which returns an object in setlo whose identifier
is lid.

Note that LINKS imports OBJLINKMANY2ONE twice but only selector link is specified differ-
ently, parent and refer, and others are the same.

Many operators/predicates between linking (Z) and linked (X) objects are provided. In this
case, each of them is twice renamed differently. The following is a list of part of operators
predefined by template module OBJLINKMANY2ONE whereas argument obj is a linking object,
seto is a set of linking objects, setls is a set of local states of linking objects, lobj is a linked
object, lid is an identifier of a linked object, setlo is a set of linked objects, and setlls is a set of
local states of linked objects:

• hasLObj (renamed as hasParent and hasRefRS in this case)
Predicate used as hasLObj(obj,setlo) which holds iff the object linked by obj is included
in setlo;
∃lo ∈ setlo : id(lo) = link(obj).

• getXOfZ (as getRSOfPR and getRRSOfPR)
Operator used as getXOfZ(setlo,obj) which returns an object linked by obj and included
in setlo. When there is no such object in setlo, what it returns is undefined.

• getZsOfX (as getPRsOfRS and getPRsOfRRS)
Operator used as getZsOfX(seto,lobj) which returns a subset seto each of whose element
object links to lobj.

• getZsOfXInStates (as getPRsOfRSInStates and getPRsOfRRSInStates)
Operator used as getZsOfXInStates(seto,lobj,setls) which returns a subset of seto each
of whose element object links to lobj and is in one of local states of setls.

• getXsOfZs (as getRSsOfPRs and getRRSsOfPRs)
Operator used as getXsOfZs(setlo,seto) which returns a subset of setlo each of whose
element object is linked by some object included in seto.

• getXsOfZsInStates (as getRSsOfPRsInStates and getRRSsOfPRsInStates)
Operator used as getXsOfZsInStates(setlo,seto,setlls) which returns a subset of setlo
each of whose element object is linked by some object included in seto and is in one of
local states of setlls.

41

• getZsOfXs (as getPRsOfRSs and getPRsOfRRSs)
Operator used as getZsOfXs(seto,setlo) which returns a subset of seto each of whose
element object links to some object included in setlo.

• getZsOfXsInStates (as getPRsOfRSsInStates and getPRsOfRRSsInStates)
Operator used as getZsOfXsInStates(seto,setlo,setls) which returns a subset of seto
each of whose element object links to some object included in setlo and is in one of local
states of setls.

• allZHaveX (as allPRHaveRS and allPRHaveRRS)
Predicate used as allZHaveX(seto,setlo) which holds iff every object included in seto has
objects linked by it which are included in setlo;
∀o ∈ seto,∃lo ∈ setlo : id(lo) = link(o).

• allZOfXInStates (as allPROfRSInStates and allPROfRRSInStates)
Predicate used as allZOfXInStates(seto,lid,setls) which holds iff every object included
in seto whose link is lid is in one of locals state in setls;
∀o ∈ seto : (link(o) = lid → state(o) ∈ setls).

• ifOfXThenInStates (as ifOfRSThenInStates and ifOfRRSThenInStates)
Predicate used as ifOfXThenInStates(obj,lid,setls) which holds iff the link of obj is not
lid or the local state of obj is included in setls;
link(obj) = lid → state(obj) ∈ setls.

• ifXInStatesThenZInStates
(as ifRSInStatesThenPRInStates and ifRRSInStatesThenPRInStates)
Predicate used as ifXInStatesThenZInStates(setlo,setlls,seto,setls)which holds iff ev-
ery object included in setlo whose local sate is included in setlls is linked by objects
included in seto each of which is in one of local states in setls;

∀lo ∈ setlo : (state(lo) ∈ setlls→
∀o ∈ seto : (link(o) = id(lo)→ state(o) ∈ setls)).

Similarly module OBJLINKONE2ONE provides predicates for one to one relationships be-
tween objects, which will be explained in Section 7.1.1.

5.3 Proved Lemmas for Predefined Predicates
In the course of verification, a lot of lemmas about predefined predicates are commonly re-
quired. The framework provides many typical lemmas which are already proved in a general
level of abstraction and can be used for any instantiated predicates without individual reproving.
Most of proved lemmas provided together with proof scores written in CafeOBJ .

5.3.1 Basic Lemmas
Lemma 1 (Implication Lemma) Let A and B be Boolean terms in CafeOBJ , then “A implies
B” is equivalent to “A and B = A .”

A lemma typically has a form A → B. When using this to prove a goal, we may write a proof
score in CafeOBJ as follows:

42

reduce (A implies B) implies goal .

However, this style is somewhat inconvenient. Remember that CITP method tries to prove a
fixed set of goals in many cases. If several lemmas are effective to different cases, we should
use a complicated goal set such as:

:goal {

eq (A1 implies B1) and (A2 implies B2) ... implies goal1 = true .

eq (A1 implies B1) and (A2 implies B2) ... implies goal2 = true .

...

}

This style is not only complicated but also very expensive to execute. CafeOBJ internally rep-
resents a logical formula in the algebraic normal form (ANF), in which a formula represented
as ANDed terms are XORed. For example, formula (A implies B) implies goal is repre-
sented as A xor B xor goal xor (A and B) xor (A and goal) xor (A and B and goal).
The ANF of a goal would become exponentially long along with the number of lemmas.

Using the Implication Lemma, we can define lemmas in an independent style from goals as
follows:

eq (A1 and B1) = A1 .

eq (A2 and B2) = A2 .

...

:goal {

eq goal1 = true .

eq goal2 = true .

...

}

Lemma 2 (Set Predicate Lemma) Let S be a set of object, P a predicate of an object, allObjP
a predicate of a set of objects where allObjP(S) holds iff P(O) holds for every object O in S.
Then, if allObjP(S) does not hold, then there exists an object O’ and a set S’ of objects such
that S=(O’ S’) holds and P(O’) does not hold3.

Corollary 1 Let S be a set of object, P a predicate of an object, someObjP a predicate of a set
of objects where someObjP(S) holds iff P(O) holds for some object O in S. Then, if someObjP(S)
holds, then there exists an object O’ and a set S’ of objects such that S=(O’ S’) holds and
P(O’) holds.

Since a cloud system structure is modeled as a collection of several classes of objects, proof is
often split into two cases where all the elements in a certain set of objects do or do not satisfy a
certain condition. For example, since the condition of rule R01 is allPROfRSInStates(SetPR,
IDRS,ready), proof is split into two cases; all the properties of resource IDRS are or are not
ready.

Template module OBJECTBASE predefines a general predicate allObjP that uses an object
predicate P and checks if P(O) holds for every object O in a given set of objects. Similarly
it predefines a general predicate someObjP. Here, it is important to note that many predicates
provided by the template modules are ones instantiated from allObjP or someObjP.

3Many proved lemmas including the Set Predicate Lemma are proved using the mathematical induction about
constructors. Therefor, the user should not additionally define constructors of predefined sorts.

43

For example, allZOfXInStates is instantiated from allObjP where P(O) holds iff O is in
one of given local states whenever it links to a given linked object. As explained in Section 5.2,
allPROfRSInStates is renamed from allZOfXInStates and thus the Set Predicate Lemma
can be used to split cases where the condition of rule R01 does or does not hold as follows:

:csp {

eq allPROfRSInStates(setPR,idRS,ready) = true .

eq setPR = (PR’ setPR’) .

}

Note that in this case, PR’ should be a property whose parent is resource idRS but is not ready
(i.e. is notready). Thus, it can be represented as prop(tpr,idPR,notready,idRS,idRRS)
where tpr, idPR, and idRRS are arbitrary constants. Then, the following case splitting col-
lectively covers all of the cases:

:csp {

eq allPROfRSInState(setPR,idRS,ready) = true .

eq setPR = (prop(tpr,idPR,notready,idRS,idRRS) setPR’) .

}

For another example, since existRS is instantiated from someObjP, a typical case splitting
code is as follows:

:csp {

eq existRS(setRS,idRS) = false .

eq setRS = (res(trs,idRS,srs) setRS’) .

}

5.3.2 Lemmas for Link Predicates
The framework provides many proved lemmas for predefined predicates provided by
OBJLINKMANY2ONE and OBJLINKONE2ONE. This section describes two of them with example
usages.

Lemma 3 (Many-2-One Lemma 07) Let S X be a set of linking objects, S Z a set of linked
objects, St X a set of local states of linking objects, St Z a set of local states of linked ob-
jects, and let SX be a local state of linking object where SX is not included in St X. Then,
allObjInStates(S X,St) implies ifXInStatesThenZInStates(S X,St X,S Z,St Z).

This lemma is represented in CafeOBJ as follows4:

vars B1 B2 : Bool

pred (_when _) : Bool Bool { prec: 64 r-assoc }

eq (B1 when B2)

= B2 implies B1 .

var S_X : SetOfLObject

var S_Z : SetOfObject

var SX : LObjState

var St_X : SetOfLObjState

4prec: 64means the operator precedence of when is 64 (very low) and r-assocmeans it is right associative.

44

var St_Z : SetOfObjState

pred m2o-lemma07 : SetOfLObject LObjState SetOfLObjState

SetOfObject SetOfObjState

eq m2o-lemma07(S_X,SX,St_X,S_Z,St_Z)

= allObjInStates(S_X,SX) implies

ifXInStatesThenZInStates(S_X,St_X,S_Z,St_Z)

when not (SX \in St_X) .

In the course of verification of the transition rule set in Section 4.2, we need an invariant which
says that every started parent resource has ready properties only. It is represented as follows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

pred inv-ifRSStartedThenPRReady : State

eq inv-ifRSStartedThenPRReady(< SetRS,SetPR >)

= ifRSInStatesThenPRInStates(SetRS,started,SetPR,ready) .

In order to show the invariant property of inv-ifRSStartedThenPRReady, we need a lemma
which says that if all of the resources are initial then inv-ifRSStartedThenPRReady
holds. The lemma could be defined as follows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

pred lemma1 : SetOfResource SetOfProperty

eq lemma1(SetRS,SetPR) =

allRSInStates(SetRS,initial) implies

ifRSInStatesThenPRInStates(SetRS,started,SetPR,ready) .

Although this lemma may be intuitively true, a typical pitfall of developing proof scores is
regarding some lemma as intuitive and skipping to prove it, which often results in leaving
critical errors in specifications. However, recalling that we get allRSInStates by renaming
allObjInStates and similarly ifRSInStatesThenPRInStates by renaming
ifXInStatesThenZInStates, this lemma can be obtained by renaming m2o-lemma07 as fol-
lows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

pred m2o-lemma07-renamed : SetOfResource SetOfProperty

eq m2o-lemma07-renamed(SetRS,SetPR)

= allRSInStates(SetRS,initial) implies

ifRSInStatesThenPRInStates(SetRS,started,SetPR,ready)

when not (initial \in started) .

Since not (initial \in started) is true, the when clause can be omitted. This is why we use
when instead of implies assuming it will be omitted when renamed. Using the Implication
Lemma, this lemma can be define as follows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

eq [m2o-lemma07]:

(allRSInStates(SetRS,initial) and

ifRSInStatesThenPRInStates(SetRS,started,SetPR,ready))

= allRSInStates(SetRS,initial) .

45

Lemma 4 (Many-2-One Lemma 11) Let S X be a set of linking objects, S Z a set of linked
objects, St X a set of local states of linking objects, St Z a set of local states of linked objects,
and Z and Z’ linked objects where Z and Z’ are identical (i.e. whose identifiers, links, and types
are the same) and only their local states are different5. Then, if the local state of Z’ is included
in St Z, ifXInStatesThenZInStates(S X,St X,(Z S Z),St Z) implies
ifXInStatesThenZInStates(S X,St X,(Z’ S Z),St Z).

This lemma is represented in CafeOBJ as follows:

vars O1 O2 : Object

pred changeObjState : Object Object

eq changeObjState(O1,O2)

= (id(O1) = id(O2)) and

(link(O1) = link(O2)) and

(type(O1) = type(O2)) .

vars Z Z’ : Object

var S_X : SetOfLObject

var S_Z : SetOfObject

var St_X : SetOfLObjState

var St_Z : SetOfObjState

pred m2o-lemma11 : Object Object SetOfLObject SetOfLObjState

SetOfObject SetOfObjState

eq m2o-lemma11(Z,Z’,S_X,St_X,S_Z,St_Z)

= ifXInStatesThenZInStates(S_X,St_X,(Z S_Z),St_Z) implies

ifXInStatesThenZInStates(S_X,St_X,(Z’ S_Z),St_Z)

when (state(Z’) \in St_Z) and changeObjState(Z,Z’) .

In order to show the invariant property of inv-ifRSStartedThenPRReady above, we also
need another lemma which says that inv-ifRSStartedThenPRReady keeps to hold when rule
R02 is applied and makes a property transit from notready to ready. The lemma could be
defined as follows:

vars IDRS IDRRS : RSID

var IDPR : PRID

var TPR : PRType

var SetRS : SetOfResource

var SetPR : SetOfProperty

pred lemma2 : SetOfResource PRType PRID RSID RSID SetOfProperty

eq lemma2(SetRS,TPR,IDPR,IDRS,IDRRS,SetPR)

= ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR),ready)

implies

ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR, ready,IDRS,IDRRS) SetPR),ready) .

Again this lemma may be intuitively true because its antecedent part requires that some proper-
ties should be ready and one specific property with identifier IDPR changes its local state from
notready to ready. And again this lemma can also be obtained by renaming m2o-lemma11
as follows:

5Exactly speaking, Z and Z’ are terms of CafeOBJ representing when the same object in the model is in the
different local states.

46

vars IDRS IDRRS : RSID

var IDPR : PRID

var TPR : PRType

var SetRS : SetOfResource

var SetPR : SetOfProperty

pred m2o-lemma11-renamed : SetOfResource PRType PRID

RSID RSID SetOfProperty

eq m2o-lemma11-renamed(SetRS,TPR,IDPR,IDRS,IDRRS,SetPR) =

= ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR),ready)

implies

ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR, ready,IDRS,IDRRS) SetPR),ready)

when (state(prop(TPR,IDPR,ready,IDRS,IDRRS)) \in ready) and

changeObjState(prop(TPR,IDPR,notready,IDRS,IDRRS),

prop(TPR,IDPR, ready,IDRS,IDRRS)) .

The when clause reduces to true and can be omitted. Using the Implication Lemma, this lemma
can be define as follows:

vars IDRS IDRRS : RSID

var IDPR : PRID

var TPR : PRType

var SetRS : SetOfResource

var SetPR : SetOfProperty

eq [m2o-lemma11]:

(ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR),ready)

and

ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR, ready,IDRS,IDRRS) SetPR),ready))

=

ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR),ready) .

5.3.3 Cyclic Dependency Lemma
A rule typically produces dependency of objects. For example, rule R01 in Section 4.2 makes
myEIP transit from initial to started when its property myEIP::InsID is ready, which
means myEIP depends on myEIP::InsID. Similarly, rule R02 makes property myEIP::InsID
depend on its referring resource myInstance.

If such dependency is cyclic it should be troublesome because there may be a situation
where each of objects in the cycle is waiting for its dependent object and no rule is applicable to
any of them. Such situation is called a deadlock. For example, if myInstance had a property
referring myEIP, then these two resources would be mutually dependent and no transition rule
could be applied.

In order to start transitions and reach a desired final state, a cloud system should not include
such cyclic dependency. Verification of the system requires (1) to formalize that the dependency
is acyclic, (2) to prove the invariant property of the acyclicness, and (3) to prove that when
acyclic there exists at least one applicable transition rule and the state machine continues to

47

transit. The framework provides a template module to formalize acyclicness of dependency for
(1) and a lemma that guarantees existence of applicable rules for (3). It also provides several
common techniques and proved lemmas for (2).

Formalization of Dependency and Acyclicness

This section will describe a formal definition of cyclic dependency and show examples using the
CloudFormation example case shown in Fig. 2.1 and transition rules R01 and R02 in Section 4.2.

Notation 2 [X ∈ C] Let C be a class of objects in a cloud system, and let X be an object the
system consisting of, then we denote X ∈ C when X is of C.

Notation 3 [st(X, S)] Let S be a global state of a cloud system, and let X be an object in S, then
st(X, S) is the local state of X in the context of S.

Definition 9 [can make an object transit] Let R = [l, r, c] be a transition rule, C a class of
objects, S a global state, and X an object of C. We say R can make X transit in S iff there exists
a ground substitution σ such that S = lσ, cσ reduces to true, and st(X, lσ) , st(X, rσ). We also
say R can make X transit from st(X, lσ) to st(X, rσ) in S. Let s and s′ be local states of C, then
we say R can make an object of C transit form s to s′ iff there exists a global state S such that R
can make an object of C transit form s to s′ in S.

Definition 10 [pre-transit local state set] Let R be a transition rule, and C a class of objects,
then the pre-transit local state set of R for C, denoted prels(R,C), is the set of local states of C
where s ∈ prels(R,C) iff there exists some local state s′ of C such that R can make an object of
C transit from s to s′.

For example, if st(myInstance, S) is initial then R01 can make myInstance transit from initial
to started in S and thus prels(R01, Resource) is { initial }. Note that a transition rule can
make objects of more than one classes transit.

Notation 4 (S [X/s]) Let S be a global state, C a class of objects, X an object of C in S, and s a
local state of C, then S [X/s] is the global state such that:

• S [X/s] consists of the identical objects (i.e. identifiers and types are the same) as S,

• each link of objects in S [X/s] is the same as S, and

• st(X, S [X/s]) = s and ∀X′ , X : st(X′, S [X/s]) = st(X′, S).

This notation can specify more than one objects such that S [X1/s1, X2/s2, . . .]. Let Σ be a set
of pairs of an object and a local state, Σ = { (X1, s1), (X2, s2), . . . }, then we denote S [Σ] as
S [X1/s1, X2/s2, . . .].

Let S0 be the following global state:

< (res(ec2Instance, myInstance, initial)

res(ec2Eip, myEIP, initial)),

(prop(instanceId, myEIP::InsID, notready, myEIP, myInstance)) >

48

Let us denote an object by its identifier and let Σ0 be a set of pairs of an object and a local state
such that Σ0 = { (myInstance,started), (myEIP::InsID,ready)}, then S0[Σ0] is the following
global state:

< (res(ec2Instance, myInstance, started)

res(ec2Eip, myEIP, initial)),

(prop(instanceId, myEIP::InsID, ready, myEIP, myInstance)) >

Definition 11 [depends on] Let S be a global state, X and X′ objects in S, and R a transi-
tion rule where R cannot make X transit in S. We say X depends on X′ in S w.r.t. R, denoted
depR(X, X′, S), iff there exists a set Σ of pairs of an object and a local state such that Σ includes
a pair whose first element is X′, R can make X transit in S [Σ], and Σ is minimal. Here we say
“minimal” to mean that there exists no subset Σ′ of Σ such that R can make X transit in S [Σ′].
We also say X depends on X′ in S, denoted dep(X, X′, S), when there exists some transition rule
R such that depR(X, X′, S).

For example, rule R01 can make myEIP transit from initial to started in S0[Σ0], however,
there is a subset of Σ0 such that ΣR01 = {(myEIP:InsID,ready)} where rule R01 can make
myEIP transit also in S0[ΣR01]. Thereby, myEIP depends only on myEIP:InsID but not on
myInstance in S0 w.r.t. R01. Similarly, when ΣR02 = {(myInstance,started)}, rule R02 can
make myEIP::InsID transit from notready to ready in S0[ΣR02] and thus myEIP::InsID
depends on myInstance in S0 w.r.t. R02.

Definition 12 [depending set] Let X be an object, R a transition rule, and S a global state, then
the depending set of X in S, denoted DS (X, S), is recursively defined as (1) if X depends on
some other object X′ in S then X′ is included in DS (X, S), i.e. ∀X′ : (dep(X, X′, S) → X′ ∈
DS (X, S)), and (2) if X′ ∈ DS (X, S) and X′ depends on some other object X′′ in S then X′′ is
included in DS (X, S), i.e. ∀X′, X′′ : (X′ ∈ DS (X, S) ∧ dep(X′, X′′, S)→ X′′ ∈ DS (X, S)).

Definition 13 [no cyclic dependency] Let C be a class, X an object of C, and S a global state.
We say X is in no cyclic dependency in S, denoted noCycle(X, S), iff X itself is not included in
DS (X, S). We also say there is no cyclic dependency of C in S, denoted noCycleC(S), iff all of
the objects of C in S are in no cyclic dependency in S.

For example, DS (myEIP, S0) = { myEIP::InsID, myInstance } because myEIP depends on
myEIP::InsID in S0 w.r.t. R01 and myEIP::InsID depends on myInstance in S0 w.r.t. R02.
Since the depending set of myEIP does not include myEIP itself, myEIP is in no cyclic depen-
dency in S0, and there is no cyclic dependency of Resource in S0.

Lemma 5 (Cyclic Dependency Lemma) Let S be a global state, R a transition rule, and C a
class of objects. If there is no cyclic dependency of C in S and there exists some object X of C
in S whose local state is included in prels(R,C), then there exists some object O of C in S such
that the local state of O is included in prels(R,C) and the depending set of O includes no object
of C whose local state is included in prels(R,C), i.e.:

noCycleC(S) ∧ ∃X ∈ C : (st(X, S) ∈ prels(R,C))→
∃O ∈ C : (st(O, S) ∈ prels(R,C) ∧

∀O′ ∈ C : (O′ ∈ DS (O, S)→ st(O′, S) < prels(R,C)))

49

Proof: Let CR be a set of objects of C in S whose local states are included in prels(R,C), i.e.
CR = { O | O ∈ C ∧ st(O, S) ∈ prels(R,C) }. CR is not empty because it includes X. If every
object O in CR has at least one object O′ ∈ CR ∩ DS (O, S) then there should be some object
O in CR such that O ∈ DS (O, S) because DS is transitive and CR is finite. However, it means
there is cyclic dependency of C in S. □

For example, let S0 be a global state shown above, then there is no cyclic dependency of
Resource in S0 and there exists myEIP whose local state is initial. Thereby, the Cyclic De-
pendency Lemma ensures that there exists a Resource object whose local state is initial and
whose depending set includes no initial Resource objects, which is myInstance.

Focusing on One Class

When using the Cyclic Dependency Lemma, we can usually focus on one class of objects. In
the CloudFormation example case, we can focus on Resource objects and not on Property
objects; we should consider no cyclic dependency of only Resource objects and existence of a
Resource object whose local state is in prels(R01,Resource), i.e. is initial. The following
is a modified version of the formalization focusing on one class.

Definition 14 [depending set of the same class as] Let C be a class , X an object of C, R a
transition rule, and S a global state, then the depending set of the same class as X in S, denoted
DSC(X, S), is defined as DSC(X, S) = { X′ ∈ C | X′ ∈ DS (X, S) }

Lemma 6 Let C be a class, X an object of C, and S a global state. If X itself is not included in
DSC(X, S), then X is in no cyclic dependency of C in S.

Corollary 2 Let S be a global state, R a transition rule, and C a class of objects. If there is
no cyclic dependency of C in S and there exists some object X of C in S whose local state is
included in prels(R,C), then there exists some object O of C in S such that the local state of
O is included in prels(R,C) and DSC(O, S) includes no object whose local state is included in
prels(R,C); typically DSC(O, S) is empty.

Definition 15 [dependency chain] Let X1, X2, . . . , Xn be objects, and S a global state, then
the dependency chain in S, denoted dc([X1, X2, . . . , Xn], S), is defined as ∀i ∈ [1, n − 1] :
dep(Xi, Xi+1, S).

For example, since myEIP depends on myEIP::InsID and it in turn depends on myInstance
in S0, there is a dependency chain in S0, dc([myEIP,myEIP::InsID,myInstance], S0).

Definition 16 [directly depending set of the same class as] Let C be a class of objects, X an ob-
ject of C, and S a global state. The directly depending set of the same class as X in S, denoted
DDSC(X, S), is defined as { X′ | ∃dc([X, X1, . . . , Xn, X′], S)∧ X′ ∈ C ∧∀i ∈ [1, n] : Xi < C }. We
also say X directly depends on X′ in S when X′ ∈ DDSc(X, S).

When X and X′ are objects of C, X′ ∈ DDSC(X) means that there exists a dependency chain
in which the first object is X, the last object is X′, and every object between X and X′ is not
of C. For example, DDSC(myEIP, S0) = { myInstance } since there is a dependency chain
dc([myEIP,myEIP::InsID,myInstance], S0).

50

Corollary 3 Let S be a global state, R a transition rule, and C a class of objects. If there is
no cyclic dependency of C in S and there exists some object X of C in S whose local state is
included in prels(R,C), then there exists some object O of C in S such that the local state of O
is included in prels(R,C) and DDSC(O, S) includes no object whose local state is included in
prels(R,C); typically DDSC(O, S) is empty.

Using a Template Module to Represent noCycleC

Using the formalization of cyclic dependency explained above, the framework provides a pred-
icate, noCycleC(S), which checks there is no cyclic dependency in the given global state S.
Predicate noCycleC is defined by a template module, CYCLEPRED and a parameter module,
PRMCYCLE:

module* PRMCYCLE {

[Object < SetOfObject]

op empObj : -> SetOfObject

op _ _ : SetOfObject SetOfObject -> SetOfObject

op _\in_ : Object SetOfObject -> Bool

[State]

op getAllObjInState : State -> SetOfObject

op DDSC : Object State -> SetOfObject

}

module! CYCLEPRED(P :: PRMCYCLE) {

var O : Object

vars V OS : SetOfObject

var S : State

pred noCycleC : State

pred noCycleC : Object State

pred noCycleC : SetOfObject SetOfObject State

eq noCycleC(S)

= noCycleC(getAllObjInState(S),empObj,S) .

eq noCycleC(O,S)

= noCycleC(O,empObj,S) .

eq noCycleC(empObj,V,S)

= true .

eq noCycleC((O OS),V,S)

= if O \in V then false else noCycleC(DDSC(O,S),(O V),S) fi

and noCycleC(OS,V,S) .

}

Parameter module PRMCYCLE requires five operator parameters three of which can be defined
just by using template module OBJECTBASE. The user of the framework should appropriately
define getAllObjInState and DDSC because they are specific to each problem. Given a
global state S, operator getAllObjInState(S) should return the set of all the objects of the

51

specific class we focus; that is the resource class in the CloudFormation example case. Opera-
tor DDSC(O,S) should return the directly depending set of the same class as the given object O
in the given global state S.

Using these operators, template module CYCLEPRED defines predicate noCycleC. Given
a global state S, predicate noCycleC(S) transitively visits objects in directly depending sets
DDSC(O,S) and checks not to find any objects already visited.

In the CloudFormation example case, getAllObjInState and DDSC can be defined as
follows:

module! STATECyclefuns {

protecting(STATE)

var RS : Resource

var SetRS : SetOfResource

var SetPR : SetOfProperty

op getAllRSInState : State -> SetOfResource

eq getAllRSInState(< SetRS,SetPR >) = SetRS .

op DDSC : Resource State -> SetOfResource

eq DDSC(RS,< SetRS,SetPR >)

= if state(RS) = initial then

getRRSsOfPRsInStates(SetRS,

getPRsOfRSInStates(SetPR,RS,notready),

initial)

else empRS fi .

}

Remember that rule R01 can make an initial resource transit when all of its properties are
ready and that rule R02 can make a notready property when its parent is started. As
explained in Section 5.2, getPRsOfRSInStates(SetPR,RS,notready) returns a set of properties
which are included in the set SetPR of properties, whose parents are the resource RS, and whose
local states are notready. And getRRSsOfPRsInStates(SetRS,setPR,initial) returns a set
of resources which are included in the set SetRS of resources, which are referred by one of the
properties in the set setPR, and whose local states are initial. Thereby, DDSC(X, S) can be
defined by combining these operators.

Using getAllRSInState and DDSC as parameters template module CYCLEPRED can be
instantiated as follows:

extending(CYCLEPRED(

STATECyclefuns {sort Object -> Resource,

sort SetOfObject -> SetOfResource,

op empObj -> empRS,

op getAllObjInState -> getAllRSInState})

* {op noCycleC -> noRSCycle}

)

Resource, SetOfResource, empRS, and getAllRSInState are specified as actual parameters
where DDSC is not specified because the name is the same as the formal parameter. noCycleC
is renamed as noRSCycle.

52

Lemmas for Proving the Invariant Property of Acyclicness

In order to use the Cyclic Dependency Lemma, the user of the framework should prove the
invariant property of noCycleC, especially should prove that noCyclec(S) → noCycleC(S ′) for
any global state S and any possible next state S ′ of S. Although such proof is specific to
each problem, there are several common techniques and the framework provides several proved
lemmas for them.

It is often the case where a transition rule decreases dependencies between objects when
it is applied. For example, when rule R01 is applied to a global state, it makes a resource
object transit from initial to started. If the resource object is referred by some notready
property object, then the property depends on the resource in the global state w.r.t. R02 and
does not depend on it in the next state. Similarly, when rule R02 is applied, it makes a property
object transit from notready to ready and the dependency between the property and its parent
resource disappears. Thereby, when these rules are applied, the depending sets will become
smaller than in the previous global states.

Lemma 7 (Depending Subset Lemma) Let S and S ′ be global states and X an object in both
of them. If DS (X, S ′) ⊆ DS (X, S), then noCycle(X, S)→ noCycle(X, S ′).

Proof: noCycle(X, S) means that X < DS (X, S), which implies that X < DS (X, S ′) because
DS (X, S ′) ⊆ DS (X, S). □

Corollary 4 Let C be a class of objects and let S and S ′ be global states. If DSC(X, S ′) ⊆
DSC(X, S) for all objects X of C in S, then noCycleC(S)→ noCycleC(S ′).

Corollary 5 Let C be a class of objects and let S and S ′ be global states. If DDSC(X, S ′) ⊆
DDSC(X, S) for all objects X of C in S, then noCycleC(S)→ noCycleC(S ′).

Lemma 8 (Many-2-One Lemma 24) Let S X be a set of linking objects, S Z a set of linked
objects, St X a set of local states of linking objects, and let X and X’ be linking objects where
X and X’ are identical and only their local states are different Then, if the local state of X’
is not included in St X, getXsOfZsInStates((X’ S X),S Z,St X) is a subset of or equal to
getXsOfZsInStates((X S X),S Z,St X)).

This Many-2-One Lemma 24 is represented in CafeOBJ as follows:

vars X X’ : LObject

var S_X : SetOfLObject

var S_Z : SetOfObject

var St_X : SetOfLObjState

pred m2o-lemma24 : LObject LObject SetOfLObject

SetOfObject SetOfLObjState .

eq m2o-lemma24(X,X’,S_X,S_Z,St_X)

= subset(getXsOfZsInStates((X’ S_X),S_Z,St_X),

getXsOfZsInStates((X S_X),S_Z,St_X))

when id(X) = id(X’) and not state(X’) \in St_X .

In the CloudFormation example case, in order to show the invariant property of noRSCycle, the
corollary of the Depending Subset Lemma ensures that we should only prove that DDSC becomes
a subset of itself when rule R01 or R02 is applied. It then requires another lemma which says
that getRRSsOfPRsInStates becomes a subset of itself when rule R01 is applied and makes a
resource transit from initial to started. The lemma could be defined as follows:

53

var IDRS : RSID

var TRS : RSType

var SetRS : SetOfResource

var SetPR : SetOfProperty

pred lemma3 : RSType RSID SetOfResource SetOfProperty

eq lemma3(TRS,IDRS,SetRS,SetPR)

= subset(getRRSsOfPRsInStates((res(TRS,IDRS,started) SetRS),

SetPR,initial),

getRRSsOfPRsInStates((res(TRS,IDRS,initial) SetRS),

SetPR,initial) .

As explained in Section 5.2, getRRSsOfPRsInStates is renamed from getXsOfZsInStates
and thus this lemma can be obtained by renaming m2o-lemma24 as follows:

vars RS RS’ : Resource

var SetRS : SetOfResource

var SetSRS : SetOfRSState

var SetPR : SetOfProperty

ceq [m2o-lemma24]:

subset(getRRSsOfPRsInStates((RS’ SetRS),SetPR,SetSRS),

getRRSsOfPRsInStates((RS SetRS),SetPR,SetSRS))

= true

if id(RS) = id(RS’) and not state(RS’) \in SetSRS .

In the other cases, systems are intentionally designed to have some constraints to avoid
cyclic dependencies. For example, if a system is constrained to have no cyclic chains of links of
objects, then there should be no cyclic dependency in the system no matter how the local states
of the objects transit. Since the purpose of such constraints is to simplify complicated controls
of dependencies of objects, it is typically easier to check the constraints than to use noCycleC

defined above.

Notation 5 [rel(X, X′, S)] Let S be a global state, and let X and X′ be objects in S. When there
is some relationship r between X and X′, we denote it as r(X, X′, S). Note that “X depends on
X′ in S ” is one of such relationships.

Definition 17 [directly relating set] Let S be a global state, X an object in S, and r a relationship
of objects. Then, the directly relating set of X in S w.r.t. r, denoted DRSr(X, S), is defined as
DRSr(X, S) = { X′ | r(X, X′, S) }.

Definition 18 [relating set] Let X be an object, S a global state, and r a relationship of objects,
then the relating set of X in S w.r.t. r, denoted RSr(X, S), is recursively defined as (1) ∀X′ :
(r(X, X′, S) → X′ ∈ RSr(X, S)), and (2) ∀X′, X′′ : (X′ ∈ RSr(X, S) ∧ r(X′, X′′, S) → X′′ ∈
RSr(X, S)).

Definition 19 [no cyclic relationship] Let X be an object, S a global state, and r a relationship
of objects, then we say X is in no cyclic relationship in S w.r.t. r, denoted noCycler(X, S), iff X
itself is not included in RSr(X, S).

Lemma 9 Let C is a class, X an object of C, S a global state, and r a relationship of objects. If
DDSc(X, S) is a subset of DRSR(X, S) for all X in S, then noCycler(X, S) implies noCyclec(X, S)
for all X, i.e.:

∀X : DDSc(X, S) ⊆ DRSr(X, S)→ ∀X : (noCycler(X, S)→ noCycleC(X, S))

54

Proof: DDSc(X, S) ⊆ DRSr(X, S) means that DSc(X, S) ⊆ RSr(X, S). Thereby, if noCyclec(X, S)
does not holds, then X ∈ DSC(X, S) and X ∈ RSr(X, S), which is a contradiction. □

This lemma allows the user of the framework to define DDSC implementing some simpler
relationship r instead of the true DDSC and use noCycleC defined by using the DDSC instead of
the true noCyclec. For example, when we adopt the constraint of no cyclic chains of links in the
CloudFormation example case, DDSC can be simply defined as follows:

var RS : Resource

var SetRS : SetOfResource

var SetPR : SetOfProperty

eq DDSC(RS,< SetRS,SetPR >)

= getRRSsOfPRs(SetRS,getPRsOfRS(SetPR,RS)) .

However noCycleC defined by using the simpler DDSC above is not the true noCycleC, we can
use the Cyclic Dependency Lemma if we can prove the invariant property of noCycleC.

55

Chapter 6

Verification Procedure of Leads-to
Properties

The framework provides an overall verification procedure for a kind of liveness properties,
leads-to properties adopted from UNITY logic [5], as well as invariant properties. The proce-
dure assists users of the framework to systematically think and develop proof scores for verifi-
cation of cloud orchestration.

A typical property of an automated system setup operation, which we want to verify, is that
the operation surely brings a cloud system to a global state where all of its resources are started.
We say “surely” to mean that the system always reaches some final state from any initial states.
This kind of reachability is one of the most important properties of practical automation of
cloud systems.

Futatsugi [10] defines leads-to property based on transition sequences of state machines and
proposes a set of sufficient conditions for it as follows:

Definition 20 [p leads-to q] Let TS = (St,Tr, In) be a state machine, p and q predicates of
St, StR ⊆ St the set of reachable states of TS , and Θ the set of transition sequences of TS , then
p leads-to q defined as follows:

∀Sα ∈ Θ : (S ∈ StR ∧ p(S) ∧ ∀S ′ ∈ Sα : ¬q(S ′)
→ ∃T ∈ St,∃β ∈ Θ : (q(T) ∧ SαβT ∈ Θ))

Lemma 10 Let p0, p, and q be predicates of St: (p0 → p) ∧ (p leads-to q)→ p0 leads-to q.

Lemma 11 (sufficient conditions for leads-to) Let TS = (St,Tr, In) be a state machine, p and
q predicates of St, inv an invariant of TS , and m a natural number function of St, then the
following three conditions1 are sufficient for (p leads-to q) to hold2.

1However Futatsugi [10] proposes four conditions, we have discussed and concluded that they can be rearranged
into three conditions.

2Definition 20 of (p leads-to q) includes the case where there is an infinite transition sequence α∞ =
(S0, S1, . . .) such that predicate q never holds in α∞, ∀Si ∈α∞ :¬q(Si), but any prefix of α∞ reaches a state where q
holds, ∀αi= (S0, . . . , Si),∃T ∈St,∃β∈Θ : (q(T) ∧ SαiβT ∈ Θ)). However, leads-to may be defined in a narrower
sense where no such infinite transition sequence is allowed. Here, we call the former as weak-leads-to and the latter
as strong-leads-to. The set of conditions proposed by Lemma 11 is sufficient to both meanings of leads-to because
the properly decreasing natural number function, m, ensures that transition sequences never become infinite while
keeping q not to hold. In the rest of this dissertation, we mean (p leads-to q) as (p strong-leads-to q).

56

∀(S , S ′) ∈ Tr : ((inv(S) ∧ p(S) ∧ ¬q(S))→ (p(S ′) ∨ q(S ′)))
∀(S , S ′) ∈ Tr : ((inv(S) ∧ p(S) ∧ ¬q(S))→ (m(S) > m(S ′)))

∀S ∈ St : ((inv(S) ∧ p(S) ∧ ¬q(S))→ ∃S ′ ∈ St : (S , S ′) ∈ Tr)

Let the automation of a setup operation be modeled as a state machine TS = (St,Tr, In)
specified by sort State and a set of transition rules, and let Fn ⊆ St be a set of expected final
states, reachability we want to verify is formalized as (init leads-to f inal) where init and f inal
are predicates for a given global state S such that init(S) holds iff S ∈ In and f inal(S) holds iff
S ∈ Fn.

The lemma 10 ensures that what we should do is to find a state predicate p such that (init →
p) and p satisfies the sufficient conditions for (p leads-to f inal). However such p is specific to
the individual problem, one of the most typical and general ones is that p(S) means that “S has
a next state,” i.e. “S will transit.” When a state machine has such general p, it always continues
to transit until it reaches a final state.

Definition 21 [continuous predicate] The continuous predicate, cont, is the predicate which
holds iff there exists some next state of a given state. Let TS = (St,Tr, In) be a state machine,
then ∀S ∈ St : cont(S) iff ∃S ′ ∈ St : (S , S ′) ∈ Tr.

Lemma 12 (sufficient conditions for init leads-to f inal) Let TS = (St, Tr, In) be a state ma-
chine, inv a conjunction of some state predicates and m a natural number function of St, then
the following five conditions are sufficient for (init leads-to f inal) to hold.

∀S ∈ St : (init(S)→ cont(S)) (1)
∀(S , S ′) ∈ Tr : ((inv(S) ∧ ¬ f inal(S))→ (cont(S ′) ∨ f inal(S ′))) (2)
∀(S , S ′) ∈ Tr : ((inv(S) ∧ ¬ f inal(S))→ (m(S) > m(S ′))) (3)

∀S ∈ St : (init(S)→ inv(S)) (4)
∀(S , S ′) ∈ Tr : (inv(S)→ inv(S ′)) (5)

Proof: Let p in the “sufficient conditions for leads-to” lemma be cont, then ∀(S , S ′) ∈ Tr :
p(S) = true holds and ∀S ∈ St : (p(s)→ ∃S ′ ∈ St : (S , S ′) ∈ Tr). □

Condition (1) means an initial state should be a continuing state, i.e. it should start transi-
tions. Condition (2) means transitions continue until f inal(S ′) holds. Condition (3) implies that
m(S) keeps to decrease properly while f inal(S) does not hold. Since m(S) is a natural num-
ber, it should stop to decrease in finite steps and the state machine should get to state S ′ where
cont(S ′) does not hold and f inal(S ′) does hold, because condition (2) ensures that transitions
would still continue if cont(S ′) does hold. Here, m is called a state measuring function. When
condition (4) and (5) hold, each state predicate included in inv is called an invariant.

The rest of this chapter explains the verification procedure for five sufficient conditions
above using the CloudFormation example case and the case of TOSCA topologies will be ex-
plained in Chapter 7.

57

6.1 Procedure: Definition of Predicates
Step 0-1: Define init and f inal.
In the CloudFormation example case, predicates init(S) and f inal(S) can be represented by
CafeOBJ as follows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

var S : State

pred init : State

eq init(< SetRS,SetPR >)

= wfs(< SetRS,SetPR >) and

noRSCycle(< SetRS,SetPR >) and

allRSInStates(SetRS,initial) and

allPRInStates(SetPR,notready) .

pred final : State

eq final(< SetRS,SetPR >)

= allRSInStates(SetRS,started) .

pred wfs : State

eq wfs(S)

= wfs-atLeastOneRS(S) and

wfs-uniqRS(S) and wfs-uniqPR(S) and

wfs-allPRHaveRS(S) and wfs-allPRHaveRRS(S) .

pred wfs-atLeastOneRS : State

eq wfs-atLeastOneRS(< SetRS,SetPR >) = not (SetRS = empRS) .

pred wfs-uniqRS : State

eq wfs-uniqRS(< SetRS,SetPR >) = uniqRS(SetRS) .

pred wfs-uniqPR : State

eq wfs-uniqPR(< SetRS,SetPR >) = uniqPR(SetPR) .

pred wfs-allPRHaveRS : State

eq wfs-allPRHaveRS(< SetRS,SetPR >) = allPRHaveRS(SetPR,SetRS) .

pred wfs-allPRHaveRRS : State

eq wfs-allPRHaveRRS(< SetRS,SetPR >) = allPRHaveRRS(SetPR,SetRS) .

Among conditions explicitly composing init(S), one referring to no local states of objects and
being expected to be an invariant is called a wfs (well-formed state) and we usually gather
them and define predicate wfs as a conjunction of them. The reason why we need several
wfs predicates is because representing a global state as a tuple of sets of objects is too general
to represent structural constraints, such as identifiers should be unique, there is no dangling
link, and so on. Each structural constraint is typically represented as a wfs and should be an
invariant. In addition, do not forget to include noCycleC in the init predicate when using the
Cyclic Dependency Lemma.

58

Step 0-2: Define cont.
Since cont(S) means that state S has at least one next state, it can be specified as follows using
the unconditional search predicate of CafeOBJ :

vars S SS : State

eq cont(S) = (S =(*,1)=>+ SS) .

Step 0-3: Define m.
We should find a natural number function that properly decreases in transitions. If we can model
a cloud system as a state machine where every transition rule changes at least one local state of
an object and there is no loop transition, then the measuring function, m, can be easily defined
as the weighted sum of counting local states of all the classes of objects. Suppose that local
states of class C are st0

C, st1
C, . . . , stnc

C and they are straightforward, that is, there is no backward
transition, then m can be

∑
C
∑

0≤k≤nC
#stk

C × (nc − k) where #stk
C is the number of objects of class

C whose local state is stk
C. For the CloudFormation example case, m can be defined as follows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

op m : State -> Nat

eq m(< SetRS,SetPR >)

= (#ResourceInStates(initial,SetRS) * 1)

+ (#ResourceInStates(started,SetRS) * 0)

+ (#PropertyInStates(notready,SetPR) * 1)

+ (#PropertyInStates(ready,SetPR) * 0) .

When a rule makes an object of class C transit from state sk
c to stk+1

C , #stk
C decreases by 1 and

#stk+1
C increases by 1 so that m(S ′) = m(S) − (nc − k) + (nc − k − 1) = m(S) − 1 holds.
When the state machine has a rule without changing any local states of objects, m should

include an additional term that decreases when the rule is applied. But, instead, we recommend
introducing some local state representing whether the rule is already applied or not yet.

When there is a loop transition, m should include an additional term that properly decreases
whenever a loop occurs. The simplest approach is to introduce an object whose local state is a
loop counter.

Step 0-4: Define inv.
Invariants other than wfs predicates are usually recognized to be necessary in the course of
proving conditions (1) to (5) above and are introduced by the user of the framework. For exam-
ple, the CloudFormation example case requires an invariant inv-ifRSStartedThenPRReady
as explained in Section 5.3.

Predicate inv is a conjunction of all the invariants, however, the straightforward representa-
tion is not so efficient. CafeOBJ needs to internally maintain long ANDed terms and to spend
much processing time. Fortunately, there is more efficient representation. Since the sufficient
conditions (2), (3), and (5) include inv in their antecedent parts, it is enough to know whether
each invariant does or does not reduce to false. Thereby, we can define inv such that it reduces
to false when one of invariants reduces to false as follows:

var S : State

pred inv : State

-- wfs-*:

59

ceq inv(S) = false if not wfs-atLeastOneRS(S) .

ceq inv(S) = false if not wfs-allPRHaveRS(S) .

ceq inv(S) = false if not wfs-allPRHaveRRS(S) .

-- inv-*:

ceq inv(S) = false if not inv-ifRSStartedThenPRReady(S) .

Note that only three of six wfs predicates are used to define inv, since they directly take some
roles in proofs.

As to sufficient conditions (4) and (5), inv is also included in their consequent parts, which
case will be explained in Section 6.5.

Step 0-5: Prepare for using the Cyclic Dependency Lemma.
When using the Cyclic Dependency Lemma, we firstly introduce an object which is in one of
the pre-transit local state set of a transition rule and then we claim that DDSC of the object
includes no object in the pre-transit local state set.

CITP method used a :init command to introduce a lemma on the way of proofs. The
lemma should be defined in the non-execute mode and be labeled in advance. The :init
command is used to specify the labeled lemma and the appropriate substitution of variables.

In the CloudFormation example case, we will introduce an initial resource and claim that
every resource in DDSc of the resource is not initial. The following conditional equation is
defined in advance and means that there is a contradiction when DDSC of the specified resource
includes any initial resource.

-- The Cyclic Dependency Lemma ensures

-- an initial resource whose DDSC includes no initial resourecs.

var T : RSType

var IDRS : RSID

var S : State

ceq [Cycle :nonexec]:

true = false

if someRSInStates(DDSC(res(T, IDRS, initial),S),initial) .

Cycle is the label of this lemma and :nonexec means that this lemma is executed only when
it is introduced by a :init command and variables T, IDRS, and S are substituted. The usage
of an :init command will be described in the next section.

Step 0-6: Prepare arbitrary constants.
Proof scores for the sufficient conditions require many arbitrary constants. We say such con-
stants as proof constants. In order to make the proof score be easy to understand, proof constants
are consistently named and declared. The following shows the definitions of proof constants for
the CloudFormation example case:

ops idRS idRS’ idRS1 : -> RSIDLt

ops idRRS idRRS’ idRRS1 : -> RSIDLt

ops idPR idPR’ idPR1 : -> PRIDLt

ops sRS sRS’ sRS’’ sRS’’’ : -> SetOfResource

ops sPR sPR’ sPR’’ sPR’’’ : -> SetOfProperty

ops trs trs’ trs’’ trs’’’ : -> RSType

ops tpr tpr’ tpr’’ tpr’’’ : -> PRType

ops srs srs’ srs’’ srs’’’ : -> RSState

60

ops spr spr’ spr’’ spr’’’ : -> PRState

op stRS : -> SetOfRSState

op stPR : -> SetOfPRState

6.2 Procedure: Proof of Sufficient Condition (1)
The verification procedure is basically a process to repeat three actions; (1) pick up an unproved
case which is then called the current case, (2) split the current case into cases which collectively
cover the current case, (3) try to reduce the split cases to true.

Step 1-0: Define a predicate to be proved.
Predicate initcont to represent condition (1) can be defined as follows:

var S : State

pred initcont : State .

eq initcont(S) = init(S) implies cont(S) .

Step 1-1: Begin with the most general case.
In the most general case for proof of condition (1), the global state consists of proof constants
every of which represents an arbitrary set of objects of each class. For the CloudFormation
example case, the most general case is as follows where sRS and sPR are proof constants for a
set of resources and properties respectively:

:goal {eq initcont(< sRS, sPR >) = true .}

This case is too general to judge whether the condition does or does not hold. Thereby, no
reduction occurs.

Step 1-2: Consider which rule can be applied to the global state in the current case. The rule is
referred to as the current rule.
One of the main benefits of interactive proof development is that thinking through meaning of
the specification leads to deep understanding of it. If the developer of proofs cannot find the first
applied rule, it means insufficient understanding of the specification. For the CloudFormation
example case, the first rule is R01.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.
Since LHS of rule R01 requires the global state to have at least one initial resource, the
current case is split into three more cases, i.e. no resource, at least one initial or started
resource. In the following proof score, trs, idRS, and sRS’ are proof constants for a type of
the resource, an identifier of the resource, and a set of resources respectively.

:csp {

eq sRS = empRS .

eq sRS = (res(trs,idRS,srs) sRS’) .

}

-- Case 1: When there is no resource:

:apply (rd) -- 1

-- Case 2: When there is a resource:

-- The state of the resource is initial or started.

61

:csp {

eq srs = initial .

eq srs = started .

}

-- Case 2-1: When the resource is initial:

... -- More case splitting needed.

-- Case 2-2: When the resource idRS is started:

:apply (rd) -- 2-2

Note that res(trs,idRS,srs) represents an arbitrary resource. The goal of Case 1 is proved
because wfs-atLeastOneRS(S) does not hold and thus init(S) does not hold. The goal of
Case 2-2 is also proved because allRSInStates(SetRS,initial) does not hold. Only Case
2-1 remains unproved and it then becomes the current case.

Step 1-4: Split the current case into cases where the condition of the current rule does or does
not hold.
Since the condition of rule R01 requires all the properties of the initial resource are ready,
Case 2-1 is split into two more cases; all the properties are or are not ready. As explained in
Section 5.3, the Set Predicate Lemma ensures that these cases are represented as follows where
tpr, idPR, idRRS, and sPR’ are proof constants for a type of the property, an identifier of the
property, an identifier of a resource referred by the property, and a set of properties respectively:

-- Case 2-1: When the resource is initial:

-- The condition of R01 is allPROfRSInStates(sPR,idRS,ready) .

:csp {

eq allPROfRSInStates(sPR,idRS,ready) = true .

eq sPR = (prop(tpr,idPR,notready,idRS,idRRS) sPR’) .

}

-- Case 2-1-1: When all properties of the resource are ready.

:apply (rd) -- 2-1-1

-- Case 2-1-2: When there is a not-ready property of the resource:

... -- More case splitting needed.

Note that prop(tpr,idPR,notready,idRS,idRRS) represents an arbitrary notready property
whose parent is idRS. In Case 2-1-1, rule R01 can be applied, which means cont(S) holds.
Only Case 2-1-2 remains unproved.

Step 1-5: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.
In Case 2-1-2, property idPR has a link to a resource with identifier idRRS. Thereby, it is
split into three more cases; a resource with identifier idRRS does not exist, does exist and it is
initial or started. The nonexistence can be represented as predefined predicate existObj
(renamed to existRS in this case) does not hold. Case 2-1-2 is split into the following three
cases.

-- Case 2-1-2: When there is a not-ready property of the resource:

-- The resource referred by the property does or does not exist.

:csp {

eq existRS(sRS’,idRRS) = false .

eq sRS’ = (res(trs’,idRRS,srs’) sRS’’) .

62

}

-- Case 2-1-2-1: When the referred resource does not exist:

:apply (rd) -- 2-1-2-1

-- Case 2-1-2-2: When the referred resource exists:

-- The state of the resource is initial or started.

:csp {

eq srs’ = initial .

eq srs’ = started .

}

-- Case 2-1-2-2-1: When the resource idRRS is initial:

... -- More consideration needed.

-- Case 2-1-2-2-2: When the resource idRRS is started:

:apply (rd) -- 2-1-2-2-2

The goal of Case 2-1-2-1 is proved because wfs-allPRHaveRRS(S) does not holds and the goal
of Case 2-1-2-2-2 is proved because allRSInStates(SetRS,initial) does not holds. Only
Case 2-1-2-2-1 remains unproved.

Step 1-6: When falling in a cyclic situation, use the Cyclic Dependency Lemma.
Since noRSCycle is included in the init condition and the resource idRS is initial, the
Cyclic Dependency Lemma ensures there exists some initial resource RS such that no re-
source in DDSC(RS,S) is initial. Recalling that we chose idRS as an arbitrary initial re-
source in Step 1-3, we can assume that resource idRS itself is such RS and can claim that there
is a contradiction when its DDSC includes any initial resource using a :init command as
follows:

-- Case 2-1-2-2-1: When the resource idRRS is initial:

-- The Cyclic Dependency Lemma rejects this case.

:init [Cycle] by {

T:RSType <- trs;

IDRS:RSID <- idRS;

S:State <- < sRS, sPR >;

}

:apply (rd) -- 2-1-2-2-1

The :init command substitutes variable T and IDRSwith the type and identifier of the resource
and S with the global state. It has the same effect as adding the following equation into the
current case:

ceq true = false

if someRSInStates(DDSC(res(trs, idRS, initial),< sRS, sPR >),

initial) .

Since DDSC of the resource includes resource res(trs’,idRRS,initial), there is a contradic-
tion and the goal of this case is proved.

The following is the result of a “show proof” command, which shows that goals of all of
the split cases are proved and thus condition (1) is proved.

root*

[csp] 1*

[csp] 2*

[csp] 2-1*

63

Figure 6.1: Verification Procedure for Condition (1)

[csp] 2-1-1*

[csp] 2-1-2*

[csp] 2-1-2-1*

[csp] 2-1-2-2*

[csp] 2-1-2-2-1*

[csp] 2-1-2-2-2*

[csp] 2-2*

Figure 6.1 summarizes the procedure.

6.3 Procedure: Proof of Sufficient Condition (2)
Step 2-0: Define a predicate to be proved.
Using the double negation idiom in Section 3.3, predicate contcont for condition (2) can be
defined as follows:

vars S SS : State

var CC : Bool

pred ccont : State State

eq ccont(S,SS)

= inv(S) and not final(S) implies cont(SS) or final(SS) .

pred contcont : State

64

eq contcont(S)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC implies ccont(S,SS)) == true)

{ true }) .

Step 2-1: Begin with the cases each of which matches to LHS of each rule.
Since condition (2) checks every possible next state of a given state S, we only need to prove
the cases each of which matches to each rule. For the CloudFormation example case, we can
begin with two cases for two rules as follows, which are too general:

-- Goal of Condition (2) for rule R01

:goal {

eq contcont(< (res(trs,idRS,initial) sRS), sPR >) = true .

}

-- Goal of Condition (2) for rule R02

:goal {

eq contcont(< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

The rest of this section describes the procedure for condition (2) using the case of rule R01
as an example. The case of rule R02 will be explained in Section 6.6.

Step 2-2: Split the current case for a rule into cases where the condition of the rule does or does
not hold.
Since the condition of rule R01 requires all the properties of the initial resource are ready,
the root case is split into two cases; all the properties are or are not ready.

-- The condition of R01 does or does not hold for the resource of idRS.

:ctf {

eq allPROfRSInStates(sPR,idRS,ready) = true .

}

-- Case 1: When the condition of R01 holds:

... -- More case splitting needed

-- Case 2: When the condition of R01 does not hold:

:apply (rd) -- 2

Remember that in Step 1-4 explained above, we used a :csp command for case splitting based
on the condition of rule R01 because we need more consideration for the negative case. In Step
2-2, we can simply use a :ctf command, since Case 2 has no next state and its goal can be
proved. Thereby, only Case 1 remains unproved.

Step 2-3: Split the current case into cases where predicate f inal does or does not hold in the
next state.
In Case 1, rule R01 makes an initial resource transit to started and the next state becomes
a final state if all other resources included the set sRS of resources are already started. Other-
wise there is at least one other initial resource. Using the Set Predicate Lemma, we can split
the case as follows where trs’, idRS’, and sRS’ are proof constants for a type of the resource,
an identifier of the resource, and a set of resources respectively:

65

-- Case 1: When the condition of R01 holds for the resource of idRS:

-- All of the other resources are or are not started.

:csp {

eq allRSInStates(sRS,started) = true .

eq sRS = (res(trs’,idRS’,initial) sRS’) .

}

-- Case 1-1: When all of the other resources are started:

:apply (rd) -- 1-1

-- Case 1-2: When there is an initial resource:

... -- More case splitting needed

The goal of Case 1-1 is proved because the next state is final. Case 1-2 remains unproved.

Step 2-4: Similarly as Step 1-2, consider which rule can be applied to the next state. The rule
is referred to as the current rule.
Since the next state in Case 1-2 includes an initial resource with identifier idRS’, rule R01
can be applied to it.

Step 2-5: Similarly as Step 1-3, split the current case into cases which collectively cover the
current case and the next state of one of the split cases matches to LHS of the current rule.
In this example, the next state of the current case already matches to LHS of rule R01.

Step 2-6: Similarly as Step 1-4, split the current case into cases where the condition of the
current rule does or does not hold in the next state.
Again the Set Predicate Lemma can be used similarly as Step 1-4 as follows:

-- Case 1-2: When there is an initial resource:

:csp {

eq allPROfRSInStates(sPR,idRS’,ready) = true .

eq sPR = (prop(tpr,idPR,notready,idRS’,idRRS) sPR’) .

}

-- Case 1-2-1: When all of properties of the resource idRS’ are ready.

:apply (rd) -- 1-2-1

-- Case 1-2-2: When at least one of properties is not-ready.

-- Because sPR is redefined,

-- allPROfRSInStates(sPR,idRS,ready) should be claimed again.

:set(normalize-init,on)

:init (ceq B1:Bool = true if not B2:Bool .) by {

B1:Bool <- allPROfRSInStates(sPR,idRS,ready) ;

B2:Bool <- allPROfRSInStates(sPR,idRS,ready) == true ;

}

:set(normalize-init,off)

... -- More consideration needed.

The goal of Case 1-2-1 is proved. Case 1-2-2 remains unproved and this is somewhat trouble-
some for CafeOBJ system.

Remember that in Step 2-2 we already introduced an equation which claims that every prop-
erty of the resource idRS in the set of properties sPR is ready. Here in Case 1-2-2, we need
to define that sPR has a notready property idPR (consequently its parent should not be the re-
source idRS) and the rest of properties are included in the set sPR’. This breaks the confluence

66

property of equations; when reducing the term allPROfRSInStates(sPR,idRS,ready), it re-
duces to true if CafeOBJ firstly uses the equation introduced in Step 2-2. But if CafeOBJ firstly
uses the equation introduced here, it reduces to allPROfRSInStates(sPR’,idRS,ready) and
what we hope is the former. However we should not break the confluence property, it is a trade-
off between the ideal and the consistent case splitting manner. What is more important is to keep
proof scores independent from the reduction strategy of CafeOBJ system. To do so, we have
to write the proof score such as it does nothing when allPROfRSInStates(sPR,idRS,ready)
reduces to true but otherwise it claims that the term reduces to true, which is the meaning of the
:init command above.

The command :set(normalize-init,on) means that substituted variables should be re-
duced to normal forms when the equation is introduced by the :init command; its default
option is off. When the variable B1 reduces to true, B2 also reduces to true and the equation
to be introduced becomes “ceq true = true if not true .” which has no meaning because
the condition part never holds. When B1 reduces to allPROfRSInStates(sPR’,idRS,ready),
B2 reduces to false and thus the equation to be introduced becomes as follows, which we want
to claim:

ceq allPROfRSInStates(sPR’,idRS,ready) = true if not false .

Step 2-7: Similarly as Step 1-5, when there is a dangling link, split the current case into cases
where the linked object does or does not exist.
In Case 1-2-2, a property has a link to a resource with identifier idRRS. Thereby, it is split into
three more cases; a resource with identifier idRRS does not exist, does exist and it is initial
or started. The nonexistence can be represented as predefined predicate existRS does not
hold. Case 1-2-2 is split into the following three cases:

-- Case 1-2-2: When at least one of properties is not-ready.

... -- Consideration above needed.

-- The resource referred by the property does or does not exist.

:csp {

eq existRS(sRS’,idRRS) = false .

eq sRS’ = (res(trs’’,idRRS,srs’’) sRS’’) .

}

-- Case 1-2-2-1: When the referred resource does not exist:

:apply (rd) -- 1-2-2-1

-- Case 1-2-2-2: When the referred resource exists:

-- The state of the resource is initial or started.

:csp {

eq srs’’ = initial .

eq srs’’ = started .

}

-- Case 1-2-2-2-1: When the resource idRRS is initial:

... -- More consideration needed.

-- Case 1-2-2-2-2: When the resource idRRS is started:

:apply (rd) -- 1-2-2-2-2

The goal of Case 1-2-2-1 is proved because wfs-allPRHaveRRS(S) does not holds and then
inv(S) does not hold as described in Section 6.1. The goal of Case 1-2-2-2-2 is also proved
because the notready property idPR refers the started resource and so rule R02 is applicable
in the next state. Only Case 1-2-2-2-1 remains unproved.

67

Step 2-8: Similarly as Step 1-6, when falling in a cyclic situation, use the Cyclic Dependency
Lemma.
If the invariant property of noRSCycle is proved, we can use the Cyclic Dependency Lemma
in any reachable state. In Case 1-2-2-2-1, there is an initial resource idRS’ and so the
lemma ensures there exists some initial resource RS such that no resource in DDSC(RS,S) is
initial. Recalling that we chose idRS’ as an arbitrary initial resource in Step 2-3, we can
assume that itself is such RS and can claim that there is a contradiction when its DDSC includes
any initial resource using a :init command as follows:

-- The Cyclic Dependency Lemma rejects this case.

:init [Cycle] by {

T:RSType <- trs’;

IDRS:RSID <- idRS’;

S:State <- < (res(trs,idRS,initial) sRS), sPR >;

}

:apply (rd) -- 1-2-2-2-1

The goal of this case is proved by the contradiction.
The following is the result of a “show proof” command, which shows that goals of all of

the split cases are proved and thus condition (2) for rule R01 is proved:

root*

[ctf] 1*

[csp] 1-1*

[csp] 1-2*

[csp] 1-2-1*

[csp] 1-2-2*

[csp] 1-2-2-1*

[csp] 1-2-2-2*

[csp] 1-2-2-2-1*

[csp] 1-2-2-2-2*

[ctf] 2*

Figure 6.2 summarizes the procedure for each transition rule.

6.4 Procedure: Proof of Sufficient Condition (3)
Since the antecedent part of condition (3) is equivalent to (2), the proof procedure of (3) is
almost the same as of (2).

Step 3-0: Use natural number axioms.
Since the standard sort Nat of CafeOBJ does not have enough information to deduce natural
number expressions, the framework provides several axioms to be used for proof of condi-
tion (3). The following is one of those axioms to be used for the CloudFormation example:

var N : Nat

eq (1 + N) > N = true .

Step 3-1: Define a predicate to be proved.
Using the double negation idiom in Section 3.3, predicate mesmes for condition (3) can be
defined as follows:

68

Figure 6.2: Verification Procedure for Condition (2) for each rule

69

vars S SS : State

var CC : Bool

pred mmes : State State .

eq mmes(S,SS)

= inv(S) and not final(S) implies m(S) > m(SS) .

pred mesmes : State .

eq mesmes(S)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC implies mmes(S,SS)) == true)

{ true }) .

Step 3-2: Begin with the cases each of which matches to LHS of each rule.
Step 3-3: Split the current case for a rule into cases where the condition of the rule does or does
not hold.

For the CloudFormation example case, we can begin with two cases for two rules. Since
rule R01 is conditional, the general case should be split into two cases according to Step 3-3.
Then, the goals of totally three cases can be proved and thus condition (3) is proved as follows:

-- Goal of Condition (3) for rule R01

:goal {

eq mesmes(< (res(trs,idRS,initial) sRS), sPR >) = true .

}

-- The condition of R01 does or does not hold for S.

:ctf {

eq allPROfRSInStates(sPR,idRS,ready) = true .

}

-- Case 1: When the condition of R01 holds:

:apply (rd) -- 1

-- Case 1: When the condition of R01 does not hold:

:apply (rd) -- 2

-- Goal of Condition (3) for rule R02

:goal {

eq mesmes(< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

:apply (rd) -- goal

6.5 Procedure: Proof of Sufficient Condition (4) & (5)
Since predicate inv typically is a conjunction of many predicates, it is better to prove each of
them separately. Suppose inv(S) = inv1(S) ∧ inv2(S) ∧ · · · ∧ invn(S), then we can separately
prove the invariant property of each invk(S) since the followings hold:

∀S ∈ S t : (∀k : init(S)→ invk(S))→ (init(S)→ inv(S))

∀(S , S ′) ∈ Tr : (∀k : inv(S)→ invk(S ′))→ (inv(S)→ inv(S ′))

70

The rest of this section describes the proof procedure for three typical kinds of invariants in
the CloudFormation example case.

Proof of Invariants for Local State Constraints

The most typical kind of invariants other that well-formed state predicates is for constraints
about local states of objects. For example, inv-ifRSStartedThenPRReady says that every
started parent resource has ready properties only. It is defined by using a predefined predi-
cate ifXInStatesThenZInStates (renamed as ifRSInStatesThenPRInStates). Since the
framework provides many lemmas for predefined predicates, it is easy to prove the invariant
property of such a predicate.

Step 4-0: Define a predicate to be proved.
Predicate initinv for condition (4) can be defined as follows:

vars S : State

pred invK : State

pred initinv : State

eq initinv(S) = init(S) implies invK(S) .

eq invK(S) = inv-ifRSStartedThenPRReady(S) .

Step 4-1: Instantiate proved lemmas for predefined predicates.
As described in Section 5.3.2, proved lemma m2o-lemma07 can be instantiated and used for
proof of condition (4) as follows:

var SetRS : SetOfResource

var SetPR : SetOfProperty

-- Instantiating m2o-lemma07:

-- eq m2o-lemma07(S_X,SX,St_X,S_Z,St_Z)

-- = allObjInStates(S_X,SX) implies

-- ifXInStatesThenZInStates(S_X,St_X,S_Z,St_Z)

-- when not (SX \in St_X) .

eq [m2o-lemma07]:

(allRSInStates(SetRS,initial) and

ifRSInStatesThenPRInStates(SetRS,started,SetPR,ready))

= allRSInStates(SetRS,initial) .

Step 4-2: Begin with the most general case.
The most general case is as follows where sRS and sPR are proof constants for a set of resources
and properties respectively:

:goal {

eq initinv(< sRS,sPR >) = true .

}

:apply (rd) -- goal

The instantiated proved lemma is effective enough to prove the most general goal.

Step 5-0: Define a predicate to be proved.
Using the double negation idiom, predicate invinv for condition (5) can be defined as follows:

71

vars S SS : State

var CC : Bool

pred iinv : State State .

eq iinv(S,SS) = inv(S) and invK(S) implies invK(SS) .

pred invinv : State

eq invinv(S)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC implies iinv(S,SS)) == true)

{ true }) .

eq invK(S) = inv-ifRSStartedThenPRReady(S) .

However inv(S) includes invk(S), the antecedent part of iinv(S) doubly specifies invK(S). This
is because inv(S) is defined only to reduce to false when one of invK(S) reduces to false as
described in Section 6.1.

Step 5-1: Instantiate proved lemmas for predefined predicates.
Rule R02 increases ready properties which has intuitively no effect on
inv-ifRSStartedThenPRReady. As explained in Section 5.3.2, proved lemma m2o-lemma11
ensures it and can be used for proof of condition (5) as follows:

vars IDRS IDRRS : RSID

var IDPR : PRID

var TPR : PRType

var SetRS : SetOfResource

var SetPR : SetOfProperty

-- Instantiating m2o-lemma11:

-- eq m2o-lemma11(Z,Z’,S_X,St_X,S_Z,St_Z)

-- = ifXInStatesThenZInStates(S_X,St_X,(Z S_Z),St_Z)

-- implies ifXInStatesThenZInStates(S_X,St_X,(Z’ S_Z),St_Z)

-- when (state(Z’) \in St_Z) and changeObjState(Z,Z’) .

eq [m2o-lemma11]:

(ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR),ready)

and

ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR, ready,IDRS,IDRRS) SetPR),ready))

=

ifRSInStatesThenPRInStates

(SetRS,started,(prop(TPR,IDPR,notready,IDRS,IDRRS) SetPR),ready) .

Step 5-2: Begin with the cases each of which matches to LHS of each rule.
Step 5-3: Split the current case for a rule into cases where the condition of the rule does or does
not hold.

We can begin with two cases for two rules. Since rule R01 is conditional, the general case
should be split into two cases according to Step 5-3. The first case should be split into more
two cases where the set of properties is or is not empty. Then, the goals of all four cases can be
proved and thus condition (5) is proved as follows:

72

-- Goal of Condition (5) for rule R01

:goal {

eq invinv(< (res(trs,idRS,initial) sRS), sPR >) = true .

}

:ctf {

eq allPROfRSInStates(sPR,idRS,ready) = true .

}

-- Case 1: When the condition of R01 holds:

:ctf {

eq sPR = empPR .

}

-- Case 1-1: sPR is empty.

:apply (rd) -- 1-1

-- Case 1-2: sPR is not empty.

:apply (rd) -- 1-2

-- Case 2: When the condition of R01 does not hold:

:apply (rd) -- 2

-- Goal of Condition (5) for rule R02

:goal {

eq invinv(< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

:apply (rd) -- goal

Proof of Invariants for Structural Constraints

We should prove all of the wfs predicates as invariants, however, they are included in init and
so we only need to prove condition (5) for each of them. Most of them check some structural
constraints of the cloud systems, which should usually keep to hold when some transition rule
changes a local state only and does not change any links of some object. When a wfs predicate is
defined using predefined predicates, it is easy to prove the invariant property of the wfs because
the framework provides many lemmas for the predefined predicates.

Here we use wfs-allPRHaveRS as an example to show the procedure.

Step 5-0: Define a predicate to be proved.

var S : State

eq invK(S) = wfs-allPRHaveRS(S) .

Step 5-1: Instantiate proved lemmas for predefined predicates.
Since wfs-allPRHaveRS uses the predefined predicate allZHaveX, the proved lemma
m2o-lemma05 can be instantiated and used for proof of condition (5) as follows:

var IDRS : RSID

var TPR : PRType

var SetRS : SetOfResource

var SetPR : SetOfProperty

-- Instantiating m2o-lemma05:

-- eq m2o-lemma05(X,X’,S_Z,S_X)

-- = allZHaveX(S_Z,(X S_X)) implies allZHaveX(S_Z,(X’ S_X))

73

-- when id(X) = id(X’) .

eq [m2o-lemma05]:

(allPRHaveRS(SetPR,(res(TRS,IDRS,initial) SetRS))

and allPRHaveRS(SetPR,(res(TRS,IDRS,started) SetRS)))

= allPRHaveRS(SetPR,(res(TRS,IDRS,initial) SetRS)) .

Step 5-2: Begin with the cases each of which matches to LHS of each rule.
Step 5-3: Split the current case for a rule into cases where the condition of the rule does or does
not hold.

-- Goal of Condition (5) for rule R01

:goal {

eq invinv(< (res(trs,idRS,initial) sRS), sPR >) = true .

}

:ctf {

eq allPROfRSInStates(sPR,idRS,ready) = true .

}

-- Case 1: When the condition of R01 holds:

:apply (rd) -- 1

-- Case 2: When the condition of R01 does not hold:

:apply (rd) -- 2

-- Goal of Condition (5) for rule R02

:goal {

eq invinv(< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

:apply (rd) -- goal

Proof of noCycleC as an Invariant

We should prove the invariant property of noCycleC(S) in order to use the Cyclic Depen-
dency Lemma, however, it is included in init and thus we only need to prove condition (5)
for noCycleC. The Depending Subset Lemma in Section 5.3 ensures that we should prove that
∀(S , S ′) ∈ Tr,∀X ∈ C : DDSC(X, S ′) ⊆ DDSC(X, S) instead of condition (5).

Step 5-0: Define a predicate to be proved.

vars S SS : State

var CC : Bool

var RS : Resource

-- When subset(DDSC(RS,SS),DDSC(RS,S)) holds for all RS,

-- noRSCycle(S) implies noRSCycle(SS),

pred invnoRSCycle : Resource State

eq invnoRSCycle(RS,S)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC implies subset(DDSC(RS,SS),DDSC(RS,S))) == true)

{ true }) .

Step 5-1: Instantiate proved lemmas for predefined predicates.
As described in Section 5.3, the proved lemma m2o-lemma24 and set-lemma12 can be instan-
tiated and used for proof as follows:

74

var S : State

vars RS RS’ : Resource

var SetRS : SetOfResource

var SetSRS : SetOfRSState

var SetPR : SetOfProperty

-- Instantiating set-lemma12:

-- eq set-lemma12(S) = subset(S,S) .

eq [set-lemma12]:

subset(SetRS,SetRS) = true .

-- Instantiating m2o-lemma24:

-- eq m2o-lemma24(X,X’,S_X,S_Z,St_X)

-- = subset(getXsOfZsInStates((X’ S_X),S_Z,St_X),

getXsOfZsInStates((X S_X),S_Z,St_X))

-- when id(X) = id(X’) and not state(X’) \in St_X .

ceq [m2o-lemma24]:

subset(getRRSsOfPRsInStates((RS’ SetRS),SetPR,SetSRS),

getRRSsOfPRsInStates((RS SetRS),SetPR,SetSRS))

= true

if id(RS) = id(RS’) and not state(RS’) \in SetSRS .

Step 5-2: Begin with the cases each of which matches to LHS of each rule.
Step 5-3: Split the current case for a rule into cases where the condition of the rule does or does
not hold.

The following is a proof score for DDSC(X, S ′) ⊆ DDSC(X, S) for rule R01:

:goal {

eq invnoRSCycle(x,< (res(trs,idRS,initial) sRS), sPR >) = true .

}

:ctf {

eq allPROfRSInStates(sPR,idRS,ready) = true .

}

-- Case 1: When the condition of R01 holds:

:ctf {

eq x = res(trs,idRS,initial) .

}

-- Case 1-1: X is the resource with identifier idRS.

:apply (rd) -- 1-1

-- Case 1-2: X is not the resource with identifier idRS.

:ctf {

eq state(x) = initial .

}

-- Case 1-2-1: The resource is initial.

:apply (rd) -- 1-2-1

-- Case 1-2-2: The resource is not initial.

:apply (rd) -- 1-2-2

-- Case 2: When the condition of R01 does not hold:

:apply (rd) -- 2

75

Additionally two :ctf commands are required to split Case 1 into three more cases since the
considering global state explicitly includes a resource with identifier idRS. The three cases are
where the considering resource x is the resource idRS (Case 1-1), is not idRS and is initial
(Case 1-2-1), and is neither idRS nor initial (Case 1-2-2).

The following is a proof score for DDSC(X, S ′) ⊆ DDSC(X, S) for rule R02:

:goal {

eq invnoRSCycle(x,

< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

:ctf {

eq x = res(trs,idRRS,started) .

}

-- Case 1: X is the resource with identifier idRRS.

:apply (rd) -- 1

-- Case 2: X is not the resource with identifier idRRS.

:ctf {

eq state(x) = initial .

}

-- Case 2-1: The resource is initial.

:ctf {

eq id(x) = idRS .

}

-- Case 2-1-1: The identifier of X is idRS.

:apply (rd) -- 2-1-1

-- Case 2-1-2: The identifier of X is not idRS.

:apply (rd) -- 2-1-2

-- Case 2-2: The resource is not initial.

:apply (rd) -- 2-2

Similarly, additional case splitting is required since the considering global state includes two
identifiers of resources. We need to consider cases where x is or is not idRS or idRRS.

6.6 A Lemma for Using Cyclic Dependency Lemma
Let us return to proof of condition (2) for rule R02.

Step 2-1: Begin with the cases each of which matches to LHS of each rule.

-- Goal of Condition (2) for rule R02

:goal {

eq contcont(< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

Step 2-2: Split the current case for a rule into cases where the condition of the rule does or does
not hold.
Rule R02 is unconditional.

76

Step 2-3: Split the current case into cases where predicate f inal does or does not hold in the
next state.
If all of the other resources are started, the next state is final. But it is not the case because we
know a notready property has an initial parent resource.
Step 2-7: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.

-- The parent resource of the property does or does not exist.

:csp {

eq existRS(sRS,idRS) = false .

eq sRS = (res(trs’,idRS,srs’) sRS’) .

}

-- Case 1: When the parent resource of the property does not exist:

:apply (rd) -- 1

-- Case 2: When the parent resource of the property exists:

-- The parent resource is initial or started.

:csp {

eq srs’ = initial .

eq srs’ = started .

}

-- Case 2-1: When the parent resource is initial:

... -- More consideration needed.

-- Case 2-2: When the parent resource is started:

:apply (rd) -- 2-2

Case 2-1 for rule R02 is the same situation as Case 1-2 for R01 where there is an initial re-
source in the next state and the Cyclic Dependency Lemma ensures there exists some initial
resource RS such that no resource in DDSC(RS,S) is initial. Thus, here we need to write
almost the same proof score as of Case 1-2 for R01. In addition, since we choose an arbitrary
initial resource in Case 1-2 for R01, we can assume itself is the resource RS which the Cyclic
Dependency Lemma ensures to exist. In this case, however, the initial resource we have is
a parent of the property which rule R02 make transit. It means that we should consider two
similar cases where the resource RS is the parent resource or another arbitrary resource. We
might have to repeat almost the same proof totally three times.

Thereby, it is wise to define a lemma and use it in the similar cases. The lemma claims that
if there is an initial resource in a global state then there exists a transition rule applicable to
the global state. It can be proved similar to the proof of condition 1 as follows.
Step 1-0: Define a predicate to be proved.

vars B1 B2 : Bool

pred (_when _) : Bool Bool { prec: 64 r-assoc }

eq (B1 when B2)

= B2 implies B1 .

var S: State

pred invcont : State

eq invcont(S)

= cont(S) = true

when inv(S) .

77

Step 1-1: Begin with the most general case.

:goal {eq invcont(< (res(trs, idRS, initial) sRS), sPR >) = true .}

Step 1-2: Consider which rule can be applied to the global state in the current case. The rule is
referred to as the current rule.
The applicable transition may be R01 because the global state includes an initial resource.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.
The global state already matches to LHS of RO1.

Step 1-4: Split the current case into cases where the condition of the current rule does or does
not hold.

:csp {

eq allPROfRSInStates(sPR,idRS,ready) = true .

eq sPR = (prop(tpr,idPR,notready,idRS,idRRS) sPR’) .

}

-- Case 1: When all of or properties of the resource idRS are ready:

:apply (rd) -- 1

Step 1-5: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.

-- Case 2: When at least one of properties of the resource idRS is notready.

-- The resource referred by the property does or does not exist.

:csp {

eq existRS(sRS,idRRS) = false .

eq sRS = (res(trs’,idRRS,srs) sRS’) .

}

-- Case 2-1: When the resource referred by the property does not exist:

:apply (rd) -- 2-1

-- Case 2-2: When the resource referred by the property exists:

Step 1-2: Consider which rule can be applied to the global state in the current case.
In this case, the transition rule to be applied may be R02 because the global state includes a
property.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.

-- The state of the resource is initial or started.

:csp {

eq srs = initial .

eq srs = started .

}

Step 1-6: When falling in a cyclic situation, use the Cyclic Dependency Lemma.

-- Case 2-2-1: When the resource idRRS is initial:

-- The Cyclic Dependency Lemma rejects this case.

78

:init [Cycle] by {

T:RSType <- trs;

IDRS:RSID <- idRS;

S:State <- < (res(trs,idRS,initial) sRS), sPR >;

}

:apply (rd) -- 2-2-1

-- Case 2-2-2: When the resource idRRS is started:

:apply (rd) -- 2-2-2

Thus, all of the cases are successfully proved and we can assume that cont(S) holds for any
global state S which include an initial resource.

Assuming that inv holds, this lemma can be used as follows:

var IDRS : RSID

var TRS : RSType

var SetRS : SetOfResource

var SetPR : SetOfProperty

eq cont(< (res(TRS,IDRS,initial) SetRS), SetPR >) true .

Then, the proof of the sufficient condition (2) for rule R02 becomes very simple as follow:

-- Goal of Condition (2) for rule R02

:goal {

eq contcont(< (res(trs,idRRS,started) sRS),

(prop(tpr,idPR,notready,idRS,idRRS) sPR) >) = true .

}

-- The parent resource of the property does or does not exist.

:csp {

eq existRS(sRS,idRS) = false .

eq sRS = (res(trs’,idRS,srs’) sRS’) .

}

-- Case 1: When the parent resource of the property does not exist:

:apply (rd) -- 1

-- Case 2: When the parent resource of the property exists:

-- The parent resource is initial or started.

:csp {

eq srs’ = initial .

eq srs’ = started .

}

-- Case 2-1: When the parent resource is initial:

:apply (rd) -- 2-1

-- Case 2-2: When the parent resource is started:

:apply (rd) -- 2-2

6.7 Recommended Module Structure
The framework provides a recommended module structure which the user can adopt when de-
veloping proof scores for verifying the property (init leads-to f inal). Using the recommended
structure results in proof scores which are consistent and easier to understand. Figure 6.3 depicts

79

Figure 6.3: Recommended Module Structure

the recommended module structure whereas each box represents a module and each dashed ar-
row represents a “protecting” or “extending” import of another module. An italic name means
a template module.

The following list describes the role and content of each module:

• OBJECTCLASSn
Module for each class of objects. This class should be named as representing the class
appropriately. The name usually consists of upper case letters because the same name
will be capitalized and used for the sort of the class. The contents of this module is as
follows:

1. Protecting import the modules of other classes which this class links.

2. Extending import the template module OBJECTBASE and rename predefined sorts
and operators for the class.

3. Define the constructor of the class.

4. Define literals of the type and local state of the class.

5. Define the selectors of the class.

6. Define operators that are specific to the class if any.

• LINKS
Module for links between objects.

1. Protecting import the modules of classes of links.

2. Extending import the template modules OBJLINKONE2ONE and OBJLINKMANY2ONE,
and rename predefined sorts and operators for links between objects.

80

• STATE
Module for global states.

1. Protecting import LINKS.

2. Define sort State for representing global states. A global state is usually repre-
sented as a tuple of sets of objects, each of the sets is a finite subset of a class.

• STATECyclefuns
Module for preparing to use the Cyclic Dependency Lemma.

1. Protecting import STATE.

2. Define operator getAllObjInState.

3. Define operator DDSC.

• STATEfuns
Module for defining many kinds of operators for global states.

1. Protecting import STATE.

2. Extending import the template module CYCLEPRED with STATECyclefuns as a pa-
rameter module, and rename predefined operator noCycleC.

3. Define wfs predicates.

4. Define predicates init, final, and wfs.

5. Define operators required to implement standard predicates above if any.

• STATERules
Module for transition rules.

1. Protecting import STATEfuns.

2. Define transition rules.

• ProofBase
Module for common definitions to prove five sufficient conditions.

1. Protecting import STATERules.

2. Define invariant predicates.

3. Define predicate cont.

4. Define operator m.

5. Define predicate inv such that it reduces to false when one of invariants reduces to
false.

6. Define problem specific lemmas if any.

7. Prepare proof constants.

• ProofInitCont
Module for proving sufficient condition (1).

1. Protecting import ProofBase.

81

2. Define predicate initcont.

3. Define problem specific lemmas if any.

• ProofContCont
Module for proving sufficient condition (2).

1. Protecting import ProofBase.

2. Define predicate contcont.

3. Define problem specific lemmas if any.

• ProofMeasure
Module for proving sufficient condition (3).

1. Protecting import ProofBase.

2. Define predicate mesmes.

3. Define axioms of Nat.

4. Define problem specific lemmas if any.

• ProofInv
Module for common definitions for proving sufficient condition (4) and (5).

1. Protecting import ProofBase.

2. Define predicates invK, initinv, and invinv.

• Proofinv-* Proofwfs-*
Module for proving each invariant.
The name of this module is usually Proof+name o f invariant.

1. Protecting import ProofInv.

2. Define predicates invK to be the invariant.

3. Define lemmas if necessary.

6.8 Considerations on Sound Proof Scores

6.8.1 Usage of Equivalent Operator ==
As described in Section 3.3, term1 == term2 reduces to true if both terms are reduced to be the
same term and to false otherwise. On the other hand, term1 = term2 reduces to true iff term1
== term2 reduces to true. This means that there is a case where term1 == term2 reduces to
false and term1 = term2 does not so. Thus the users should not carelessly use == operator
because it may lead unintended results.

The framework recommends using == operator only in the following three cases:

1. As equal operator = for literals:
Three of sorts provided by the framework, such as ObjIDLt, ObjTypeLt and ObjStateLt,
are to represent literals. A literal is a constant for which the framework predefines a
special equality predicate such that = is exactly the same as == . Since a Boolean

82

term “literal1 = literal2” always reduces to false, the users should not write such Boolean
terms in their proof scores.

2. In the double negation idiom:
As described in Section 3.3, the double negation idiom uses “ == true” to stop the
search when there is a next state where the specified condition cannot reduce to either
true or false.

3. To keep the confluence property in the case splitting:
The following set of three equations are not confluent because p(s) reduces to true when
equation (2) is used but it also reduces to p(s’) when equation (3) is firstly used:

pred p : SetOfObject

eq p(O:Object S:SetOfObject) = p(S) . -- (1)

ops s s’ : -> SetOfObject

op o : -> Object

eq p(s) = true . -- (2)

eq s = (o s’) . -- (3)

As described in Section 6.3, this situation sometimes occurs when being guided by the
proof procedure of the framework. For example, in the current case, p(s) matches to
the condition part of a transition rule and the case should be split into two more cases
where set of object s, is or not is empty. While we may avoid this situation by changing
the order of the case splitting guided by the framework, it requires careful considerations
and results in proof scores difficult to understand and maintain. Thus, we decided to
recommend writing proof codes which explicitly ensure the confluent property as follows:

:set(normalize-init,on)

:init (ceq B1:Bool = true if not B2:Bool .) by {

B1:Bool <- p(s) ;

B2:Bool <- p(s) == true ;

}

:set(normalize-init,off)

When CafeOBJ processes as p(s) reduces to true, the :init command introduces the
following meaningless equation:

ceq true = true if not true .

Otherwise, when p(s) reduces to p(s’), it introduces the following desired equation:

ceq p(s’) = true if not false .

83

6.8.2 Usage of Search Predicates
When the behavior model is not coherent, search predicates may not be able to search all pos-
sible transitions. Coherence means that, given a global state term S, for any next state S R of S
such that some transition rule R makes S transit to S R, if S reduces to S ′ then there exists some
rule R′ which makes S ′ transit to S R′ such that both S R and S R′ reduce to the same global state
term S ∗ [19]. Otherwise, there may be two different next states of S and a search predicate can
search only one of them depending on whether transition rules or equations are used firstly.

In general, it is difficult to keep behavior model coherent. However, if the users of the frame-
work go along with the following three rules, then search predicates can search next states of the
given global state terms without depending on the order to use transition rules and equations:

1. A global state term included in the top goal of a proof should be a ground constructor
term which consists of the constructors declared in the structure model and fresh proof
constants, e.g., < sRS,sPR >.

2. When a current case is split and an equation is introduced whose LHS is a proof constant
in the current goal, RHS of the equation should be a ground constructor term which
consists of the constructors declared in the structure model and fresh proof constants,
e.g., eq sRS = (res(trs’,idRS,srs’) sRS’) . Moreover, any pair of equations in a
proof case does not define the same proof constant.

3. A global state term included in LHS or RHS of a transition rule should be a constructor
term, e.g., < (res(TRS,IDRS,started) SetRS), SetPR >.

Let the goal and proof constants in a proof case and transition rules in the model follow the
above rules. We say a term as a ground semi-constructor term iff it consists of only the con-
structors declared in the structure model and proof constants. We also say a ground term has a
canonical form iff it reduces to a single term regardless of the order in which the equations are
applied.

Lemma 13 Let c be a constructor whose arity is n and let ground terms gi, 1 ≤ i ≤ n have
canonical forms. Then, ground term c(g1, . . . , gn) has a canonical form.

Lemma 14 A ground semi-constructor term in a proof case has a canonical form.

Proof: Let a, b be proof constants in the proof case and let a > b mean that there is an equation
whose LHS is a and RHS includes b in the proof case, then > is a partial order of proof constants
assuming that they follow the above rules. This lemma can be proved using the mathematical
induction about the partial order.
Base case: When the ground semi-constructor term does not include any defined proof con-

stants, it is a ground constructor term and it always reduces to itself.
Induction case: Let a be a defined proof constant and let us assume that any ground semi-

constructor term, including proof constants all of which are less than a, has a canonical
form. Let T be a ground semi-constructor term whose included proof constants are less
than a or a itself. Any subterm of T except a has a canonical form because of the in-
duction hypothesis. The equation which defines a rewrites term a to its RHS which has
a canonical form because of the induction hypothesis. The lemma 13 guarantees that a
term consisting of a constructor which has a as its argument has a canonical form. Thus,
all subterms of T have canonical forms and T itself does so. □

84

Lemma 15 Let global state term S be a ground semi-constructor term and R a transition rule
which makes S transit to next state S R. If S reduces to S ′ then R also makes S ′ transit to S ′R

such that both S R and S ′R reduce to the same global state term S ∗.

Proof: Let LHS of R be CL(V1, . . . ,Vn) where CL is a context with n holes and Vi, 1 ≤ i ≤ n,
are variables placed in the holes. Similarly, let RHS of R be CR(V1, . . . ,Vn) although context CR

may have less than n holes in which case several Vi’s are omitted. When R makes S transit to S R,
each variable Vi matches to some subterm ti of S, i.e. S = CL(t1, . . . , tn), thus S R = CR(t1, . . . , tn).
Let ti reduce to t∗i , then S ′ = CL(t∗1, . . . , t

∗
n) because it is the canonical form of S. Similarly S R

has a canonical form S ∗ = CR(t∗1, . . . , t
∗
n). On the other hand, LHS CL(V1, . . . ,Vn) matches to

S ′ = CL(t∗1, . . . , t
∗
n) where each Vi matches to t∗i and thus R makes S ′ transit to S ∗. □

When the goal and proof constants in a proof case and transition rules in the model follow
the above three rules, the global state given to the search predicates is always a ground semi-
constructor term. Then Lemma 15 ensures that the result of the search does not depend on the
order to use transition rules and equations.

6.8.3 Usage of the Double Negation Idiom
It should be noted that the double negation idiom always returns true when there is no next state.
The typical pitfall is to give the idiom a global state term which does not match to any LHS and
condition of transition rules. Since the idiom is used for the sufficient conditions (2) (3) and (5),
the users of the framework should carefully check the goal of proofs especially in Step 2-1, 2-2,
3-2, 3-3, 5-2, and 5-3.

A simple but effective way to check this pitfall is to temporally remove the inner “not” in
the double negation idiom and see that the goal does not reduce to true. If the goal reduces to
true regardless of whether the inner condition is or is not denied, it means that there is no next
state of the given global state.

85

Chapter 7

Applying the Framework to TOSCA
Specifications

This chapter describes how to use our framework to define behavior of TOSCA types and to
verify that a specified topology can correctly automate to set up the cloud system.

7.1 Structure Model of TOSCA Templates
A TOSCA topology models a cloud system that it consists of four classes of objects correspond-
ing to the four main kinds of elements of a topology, i.e. nodes, relationships, capabilities, and
requirements. There is an additional object, a message pool, to represent messaging between
resources inside of different VMs because they cannot communicate directly. The message pool
is simply a bag of messages, which abstracts implementations of messaging.

There are several domain specific constraints of the structure:

1. A node should be hosted on at most one other node.

2. A relationship should not relate a capability and a requirement of the same node.

3. A local relationship should relate a capability and a requirement of the nodes hosted on
the same virtual machine.

4. A remote relationship should relate a capability and a requirement of the nodes hosted on
the different virtual machines.

5. We assume that types of capabilities and requirements are the same as relationships that
link them in this dissertation for the sake of simplicity.

7.1.1 Representation of the Example Structure Model
Let us use a typical example where four node types and three relationship types in Fig. 2.6
participate in automation of a setup operation. There are nine nodes of four types, nine capa-
bilities, nine requirements, and nine relationships of three types. An initial global state may be
represented in CafeOBJ as the following ground term:

< (node(VM, VMApache, initial)

node(OS, OSApache, initial)

86

node(MW, ApacheWebServer, initial)

node(SC, CRMApp, initial)

node(SC, PhpModule, initial)

node(VM, VMMySQL, initial)

node(OS, OSMySQL, initial)

node(MW, MySQL, initial)

node(SC, CRMDB, initial)),

(cap(hostedOn, VMApacheOS, closed, VMApache)

cap(hostedOn, OSApacheSoftware, closed, OSApache)

cap(hostedOn, ApacheWebServerWebapps, closed, ApacheWebServer)

cap(hostedOn, ApacheWebServerModules, closed, ApacheWebServer)

cap(dependsOn, PhpModulePhpApps, closed, PhpModule)

cap(hostedOn, VMMySQLOS, closed, VMMySQL)

cap(hostedOn, OSMySQLSoftware, closed, OSMySQL)

cap(hostedOn, MySQLDatabases, closed, MySQL)

cap(connectsTo, CRMDBClients, closed, CRMDB)),

(req(hostedOn, OSApacheContainer, unbound, OSApache)

req(hostedOn, ApacheWebServerContainer, unbound, ApacheWebServer)

req(dependsOn, CRMAppPhpRuntime, unbound, CRMApp)

req(connectsTo, CRMAppDatabase, unbound, CRMApp)

req(hostedOn, CRMAppContainer, unbound, CRMApp)

req(hostedOn, PhpModuleContainer, unbound, PhpModule)

req(hostedOn, OSMySQLContainer, unbound, OSMySQL)

req(hostedOn, MySQLContainer, unbound, MySQL)

req(hostedOn, CRMDBContainer, unbound, CRMDB)),

(rel(hostedOn, OSApacheHostedOnVMApache,

VMApacheOS, OSApacheContainer)

rel(hostedOn, ApacheHostedOnOSApache,

OSApacheSoftware, ApacheWebServerContainer)

rel(hostedOn, CRMAppHostedOnApache,

ApacheWebServerWebapps, CRMAppContainer)

rel(hostedOn, PhpModuleHostedOnApache,

ApacheWebServerModules, PhpModuleContainer)

rel(dependsOn, CRMAppDependsOnPhpModule,

PhpModulePhpApps, CRMAppPhpRuntime)

rel(hostedOn, OSMySQLHostedOnVMMySQL,

VMMySQLOS, OSMySQLContainer)

rel(hostedOn, MySQLHostedOnOSMySQL,

OSMySQLSoftware, MySQLContainer)

rel(hostedOn, CRMDBHostedOnMySQL,

MySQLDatabases, CRMDBContainer)

rel(connectsTo, CRMAppConnectsToCRMDB,

CRMDBClients, CRMAppDatabase)),

empMsg >

The constructor name represents the class of the object (node, cap, req, rel), the first argument
is its type (VM, hostedOn, and so on), the second is its identifier (VMApache, VMApacheOS, and
so on), and the third is its local state. The fourth argument of the capability or requirement
object represents a link to its parent. The fourth and fifth arguments of the relationship object
represent links to its corresponding capability and requirement respectively. The last term,

87

empMsg, represents an empty message pool.
The representation of these four classes can be easily defined using the template module

OBJECTBASE provided by the framework. Module NODE for the node class is as follows:

module! NODE {

-- Instantiation of Template

extending(OBJECTBASE

* {sort ObjIDLt -> NDIDLt,

sort ObjID -> NDID,

sort ObjTypeLt -> NDTypeLt,

sort ObjType -> NDType,

sort ObjStateLt -> NDStateLt,

sort ObjState -> NDState,

sort Object -> Node,

sort SetOfObject -> SetOfNode,

sort SetOfObjState -> SetOfNDState,

op empObj -> empND,

op empState -> empSND,

op existObj -> existND,

op existObjInStates -> existNDInStates,

op uniqObj -> uniqND,

op #ObjInStates -> #NodeInStates,

op getObject -> getNode,

op allObjInStates -> allNDInStates,

op allObjOfTypeInStates -> allNDOfTypeInStates,

op allObjNotInStates -> allNDNotInStates,

op someObjInStates -> someNDInStates})

-- Constructor

-- node(NDType, NDID, NDState) is a Node.

op node : NDType NDID NDState -> Node {constr}

-- There are four typical node types.

ops VM OS MW SC : -> NDTypeLt {constr}

-- Variables

var TND : NDType

var IDND : NDID

var SND : NDState

-- Selectors

eq type(node(TND,IDND,SND)) = TND .

eq id(node(TND,IDND,SND)) = IDND .

eq state(node(TND,IDND,SND)) = SND .

-- Local States

ops initial created started : -> NDStateLt {constr}

-- Predicate for Local States

pred isCreated : NDState

eq isCreated(initial) = false .

eq isCreated(created) = true .

88

eq isCreated(started) = true .

}

The types of nodes are VM (virtual machine), OS (operating system), MW (middleware), and SC
(software component). The local states of nodes are initial, created, and started. Among
them, created and started are isCreated.

In addition to the predefined predicates/operators explained in Section 5.2, module NODE
instantiates a predicate concerning the node types, allObjOfTypeInStates, described as fol-
lows whereas argument seto is a set of linking objects, setls is a set of local states of linking
objects, and ty is a type of an object:

• allObjOfTypeInStates (renamed as allNDOfTypeInStates)
Predicate used as allObjOfTypeInStates(seto,ty,setls) which holds iff every object of
type ty in seto is in one of local states of setls;
∀o ∈ seto : type(o) = ty→ state(o) ∈ setls.

Since a capability links to its parent node, module CAPABILITY for its class protecting
includes NODE as follows:

module! CAPABILITY {

protecting(NODE)

-- Instantiation of Template

extending(OBJECTBASE

* {sort ObjIDLt -> CPIDLt,

sort ObjID -> CPID,

sort ObjTypeLt -> CPTypeLt,

sort ObjType -> CPType,

sort ObjStateLt -> CPStateLt,

sort ObjState -> CPState,

sort Object -> Capability

sort SetOfObject -> SetOfCapability,

sort SetOfObjState -> SetOfCPState,

op empObj -> empCP,

op empState -> empSCP,

op existObj -> existCP,

op existObjInStates -> existCPInStates,

op uniqObj -> uniqCP,

op #ObjInStates -> #CapabilityInStates,

op getObject -> getCapability,

op allObjInStates -> allCPInStates,

op allObjOfTypeInStates -> allCPOfTypeInStates,

op allObjNotInStates -> allCPNotInStates,

op someObjInStates -> someCPInStates})

-- Constructor

-- cap(CPType, CPID, CPState, NDID) is a Capability of a Node

op cap : CPType CPID CPState NDID -> Capability {constr}

-- Variables

var TCP : CPType

89

var IDCP : CPID

var SCP : CPState

var IDND : NDID

-- Selectors

op node : Capability -> NDID

eq type(cap(TCP,IDCP,SCP,IDND)) = TCP .

eq id(cap(TCP,IDCP,SCP,IDND)) = IDCP .

eq state(cap(TCP,IDCP,SCP,IDND)) = SCP .

eq node(cap(TCP,IDCP,SCP,IDND)) = IDND .

-- Local States

ops closed open available : -> CPStateLt {constr}

-- Predicate for Local States

pred isActivated : CPState

eq isActivated(closed) = false .

eq isActivated(open) = true .

eq isActivated(available) = true .

}

Note that node is a selector for a link to the parent node of the capability. The local states
of capabilities are closed, open, and available. Among them, open and available are
isActivated.

Since a requirement also links to its parent node, module REQUIREMENT for its class pro-
tecting includes NODE as follows:

module! REQUIREMENT {

protecting(NODE)

-- Instantiation of Template

extending(OBJECTBASE

* {sort ObjIDLt -> RQIDLt,

sort ObjID -> RQID,

sort ObjTypeLt -> RQTypeLt,

sort ObjType -> RQType,

sort ObjStateLt -> RQStateLt,

sort ObjState -> RQState,

sort Object -> Requirement,

sort SetOfObject -> SetOfRequirement,

sort SetOfObjState -> SetOfRQState,

op empObj -> empRQ,

op empState -> empSRQ,

op existObj -> existRQ,

op existObjInStates -> existRQInStates,

op uniqObj -> uniqRQ,

op #ObjInStates -> #RequirementInStates,

op getObject -> getRequirement,

op allObjInStates -> allRQInStates,

op allObjOfTypeInStates -> allRQOfTypeInStates,

op allObjNotInStates -> allRQNotInStates,

op someObjInStates -> someRQInStates})

90

-- Constructor

-- req(RQType, RQID, RQState, NDID) is a Requirement of a Node

op req : RQType RQID RQState NDID -> Requirement {constr}

-- Variables

var TRQ : RQType

var IDRQ : RQID

var IDND : NDID

var SRQ : RQState

-- Selectors

op node : Requirement -> NDID

eq type(req(TRQ,IDRQ,SRQ,IDND)) = TRQ .

eq id(req(TRQ,IDRQ,SRQ,IDND)) = IDRQ .

eq state(req(TRQ,IDRQ,SRQ,IDND)) = SRQ .

eq node(req(TRQ,IDRQ,SRQ,IDND)) = IDND .

-- Local States

ops unbound waiting ready : -> RQStateLt {constr}

}

Note that node is a selector for a link to the parent node of the requirement. The local states of
requirements are unbound, waiting, and ready.

Since a relationship links to both of its corresponding capability and requirement, module
RELATIONSHIP for its class protecting includes CAPABILITY and REQUIREMENT as follows:

module! RELATIONSHIP {

protecting(CAPABILITY + REQUIREMENT)

-- Instantiation of Template

extending(OBJECTBASE

* {sort ObjIDLt -> RLIDLt,

sort ObjID -> RLID,

sort ObjTypeLt -> RLTypeLt,

sort ObjType -> RLType,

sort ObjStateLt -> RLStateLt,

sort ObjState -> RLState,

sort Object -> Relationship,

sort SetOfObject -> SetOfRelationship,

sort SetOfObjState -> SetOfRLState,

op empObj -> empRL,

op existObj -> existRL,

op uniqObj -> uniqRL})

-- Constructor

-- rel(RLType, RLID, CPID, RQID) is a Relationship

op rel : RLType RLID CPID RQID -> Relationship {constr}

-- There are three typical relationship types.

ops hostedOn dependsOn connectsTo : -> RLTypeLt {constr}

91

-- Types of capabilities and requirements are the same as relationships

[RLType < CPType RQType]

-- Variables

var TRL : RLType

var IDRL : RLID

var IDCP : CPID

var IDRQ : RQID

-- Selectors

op cap : Relationship -> CPID

op req : Relationship -> RQID

eq type(rel(TRL,IDRL,IDCP,IDRQ)) = TRL .

eq id(rel(TRL,IDRL,IDCP,IDRQ)) = IDRL .

eq cap(rel(TRL,IDRL,IDCP,IDRQ)) = IDCP .

eq req(rel(TRL,IDRL,IDCP,IDRQ)) = IDRQ .

-- Predicate for Locality

pred isLocalRL : Relationship

eq isLocalRL(rel(hostedOn,IDRL,IDCP,IDRQ)) = true .

eq isLocalRL(rel(dependsOn,IDRL,IDCP,IDRQ)) = true .

eq isLocalRL(rel(connectsTo,IDRL,IDCP,IDRQ)) = false .

}

Sort RLType is declared as a subsort of CPType and RQType which means types of relationships
can be used as types of capabilities and requirements. The types of relationships are hostedOn,
dependsOn, and connectsTo. Among them, hostedOn and dependsOn are isLocal. Note
that cap and req are selectors for links to the corresponding capability and requirement respec-
tively of the relationship.

Predefined predicates and operators for links between objects also can be easily instantiated
using the template modules OBJLINKMANY2ONE and OBJLINKONE2ONE as follows:

module! LINKS {

protecting(NODE + CAPABILITY + REQUIREMENT + RELATIONSHIP)

-- Instantiation of Template

-- A many-to-one link from a capability to its parent node

extending(OBJLINKMANY2ONE(

CAPABILITY {sort Object -> Capability,

sort ObjID -> CPID,

sort ObjType -> CPType,

sort ObjState -> CPState,

sort SetOfObject -> SetOfCapability,

sort SetOfObjState -> SetOfCPState,

sort LObject -> Node,

sort LObjID -> NDID,

sort LObjState -> NDState,

sort SetOfLObject -> SetOfNode,

sort SetOfLObjState -> SetOfNDState,

op getLObject -> getNode,

op existLObj -> existND,

92

op empLObj -> empND,

op link -> node,

op existLObjInStates -> existNDInStates})

* {op getXOfZ -> getNDOfCP,

op getZsOfX -> getCPsOfND,

op getZsOfTypeOfX -> getCPsOfTypeOfND,

op getZsOfXInStates -> getCPsOfNDInStates,

op getZsOfTypeOfXInStates -> getCPsOfTypeOfNDInStates,

op getXsOfZs -> getNDsOfCPs,

op getXsOfZsInStates -> getNDsOfCPsInStates,

op getZsOfXs -> getCPsOfNDs,

op getZsOfXsInStates -> getCPsOfNDsInStates,

op getZsOfTypeOfXsInStates -> getCPsOfTypeOfNDsInStates,

op allZHaveX -> allCPHaveND,

op allZOfXInStates -> allCPOfNDInStates,

op allZOfTypeOfXInStates -> allCPOfTypeOfNDInStates,

op ifXInStatesThenZInStates -> ifNDInStatesThenCPInStates,

op ifXInStatesThenZOfTypeInStates

-> ifNDInStatesThenCPOfTypeInStates}

)

-- Instantiation of Template

-- A many-to-one link from a requirement to its parent node

extending(OBJLINKMANY2ONE(

REQUIREMENT {sort Object -> Requirement,

sort ObjID -> RQID,

sort ObjType -> RQType,

sort ObjState -> RQState,

sort SetOfObject -> SetOfRequirement,

sort SetOfObjState -> SetOfRQState,

sort LObject -> Node,

sort LObjID -> NDID,

sort LObjState -> NDState,

sort SetOfLObject -> SetOfNode,

sort SetOfLObjState -> SetOfNDState,

op getLObject -> getNode,

op existLObj -> existND,

op empLObj -> empND,

op link -> node,

op existLObjInStates -> existNDInStates})

* {op getXOfZ -> getNDOfRQ,

op getXsOfZs -> getNDsOfRQs,

op getXsOfZsInStates -> getNDsOfRQsInStates,

op getZsOfX -> getRQsOfND,

op getZsOfTypeOfX -> getRQsOfTypeOfND,

op getZsOfXInStates -> getRQsOfNDInStates,

op getZsOfTypeOfXInStates -> getRQsOfTypeOfNDInStates,

op getZsOfXs -> getRQsOfNDs,

op getZsOfXsInStates -> getRQsOfNDsInStates,

op getZsOfTypeOfXsInStates -> getRQsOfTypeOfNDsInStates,

93

op allZHaveX -> allRQHaveND,

op allZOfXInStates -> allRQOfNDInStates,

op allZOfTypeOfXInStates -> allRQOfTypeOfNDInStates,

op ifXInStatesThenZInStates -> ifNDInStatesThenRQInStates,

op ifXInStatesThenZOfTypeInStates

-> ifNDInStatesThenRQOfTypeInStates}

)

-- Instantiation of Template

-- A one-to-one link from a relationship to its capability

extending(OBJLINKONE2ONE(

RELATIONSHIP {sort Object -> Relationship,

sort ObjID -> RLID,

sort ObjType -> RLType,

sort ObjState -> RLState,

sort SetOfObject -> SetOfRelationship,

sort SetOfObjState -> SetOfRLState,

sort LObject -> Capability,

sort LObjID -> CPID,

sort LObjState -> CPState,

sort SetOfLObject -> SetOfCapability,

sort SetOfLObjState -> SetOfCPState,

op getLObject -> getCapability,

op existLObj -> existCP,

op empLObj -> empCP,

op link -> cap,

op existLObjInStates -> existCPInStates})

* {op existX -> existCP,

op getXOfY -> getCPOfRL,

op getXsOfYs -> getCPsOfRLs,

op getXsOfYsInStates -> getCPsOfRLsInStates,

op getYOfX -> getRLOfCP,

op getYsOfXs -> getRLsOfCPs,

op getYsOfXsInStates -> getRLsOfCPsInStates,

op uniqX -> uniqCP,

op YOfXInStates -> RLOfCPInStates,

op ifXInStatesThenYInStates -> ifCPInStatesThenRLInStates,

op ifYInStatesThenXInStates -> ifRLInStatesThenCPInStates,

op allYHaveX -> allRLHaveCP,

op allXHaveY -> allCPHaveRL,

op onlyOneYOfX -> onlyOneRLOfCP}

)

-- Instantiation of Template

-- A one-to-one link from a relationship to its relationship

extending(OBJLINKONE2ONE(

RELATIONSHIP {sort Object -> Relationship,

sort ObjID -> RLID,

sort ObjType -> RLType,

sort ObjState -> RLState,

94

sort SetOfObject -> SetOfRelationship,

sort SetOfObjState -> SetOfRLState,

sort LObject -> Requirement,

sort LObjID -> RQID,

sort LObjState -> RQState,

sort SetOfLObject -> SetOfRequirement,

sort SetOfLObjState -> SetOfRQState,

op getLObject -> getRequirement,

op existLObj -> existRQ,

op empLObj -> empRQ,

op link -> req,

op existLObjInStates -> existRQInStates})

* {op existX -> existRQ,

op getXOfY -> getRQOfRL,

op getXsOfYs -> getRQsOfRLs,

op getXsOfYsInStates -> getRQsOfRLsInStates,

op getYOfX -> getRLOfRQ,

op getYsOfXs -> getRLsOfRQs,

op getYsOfXsInStates -> getRLsOfRQsInStates,

op uniqX -> uniqRQ,

op YOfXInStates -> RLOfRQInStates,

op ifXInStatesThenYInStates -> ifRQInStatesThenRLInStates,

op ifYInStatesThenXInStates -> ifRLInStatesThenRQInStates,

op allYHaveX -> allRLHaveRQ,

op allXHaveY -> allRQHaveRL,

op onlyOneYOfX -> onlyOneRLOfRQ}

)

}

Links from capabilities to their parent nodes and from requirements to their parent nodes are
many-to-one, whereas links from relationships to their corresponding capabilities and require-
ments are one-to-one.

In addition to the predefined predicates/operators explained in Section 5.2, module LINKS
uses OBJLINKMANY2ONE to instantiate several operators concerning object types. The following
is a list of such operators whereas argument seto is a set of linking objects, setls is a set of local
states of linking objects, lobj is a linked object, lid is an identifier of a linked object, setlo is a
set of linked objects, setlls is a set of local states of linked objects, and ty is a type of an object:

• allZOfTypeOfXInStates
(renamed as allCPOfTypeOfNDInStates and allRQOfTypeOfNDInStates)
Predicate used as allZOfTypeOfXInStates(seto,ty,lid,setls)which holds iff every object
included in seto whose type is ty and whose link is lid is in one of locals state in setls;
∀o ∈ seto : (type(o) = ty ∧ link(o) = lid → state(o) ∈ setls).

• getZsOfTypeOfX (as getCPsOfTypeOfND and getRQsOfTypeOfND)
Operator used as getZsOfTypeOfX(seto,ty,lobj) which returns a subset seto each of
whose element object is of type ty and links to lobj.

• getZsOfTypeOfXInStates
(as getCPsOfTypeOfNDInStates and getRQsOfTypeOfNDInStates)

95

Operator used as getZsOfTypeOfXInStates(seto,tylobj,setls) which returns a subset of
seto each of whose element object is of type ty, links to lobj, and is in one of local states
of setls.

• getZsOfTypeOfXsInStates
(as getCPsOfTypeOfNDsInStates and getRQsOfTypeOfNDsInStates)
Operator used as getZsOfTypeOfXsInStates(seto,ty,setlo,setls) which returns a subset
of seto each of whose element object is of type ty, links to some object included in setlo,
and is in one of local states of setls.

• ifXInStatesThenZOfTypeInStates
(as ifNDInStatesThenCPOfTypeInStates and ifNDInStatesThenRQOfTypeInStates)
Predicate used as ifXInStatesThenZOfTypeInStates(setlo,ty,setlls,seto,setls) which
holds iff every object included in setlo whose type m is ty and whose local sate is in-
cluded in setlls is linked by objects included in seto each of which is in one of local states
in setls;

∀lo ∈ setlo : (type(lo) = ty ∧ state(lo) ∈ setlls→
∀o ∈ seto : (link(o) = id(lo)→ state(o) ∈ setls)).

Module LINKS also uses OBJLINKONE2ONE to instantiate many predicates/operators. The
following is a list of such operators whereas argument obj is a linking object, seto is a set of
linking objects, setls is a set of local states of linking objects, lobj is a linked object, lid is an
identifier of a linked object, setlo is a set of linked objects, and setlls is a set of local states of
linked objects:

• existX (renamed as existCP and existRQ)
Predicate used as existX(seto,lid) which holds iff some object whose link is lid is in-
cluded in seto;
∃o ∈ seto : link(o) = lid.

• getXOfY (as getCPOfRL and getRQOfRL)
Operator used as getXOfY(setlo,obj) which returns an object linked by obj and included
in setlo.

• getXsOfYs (as getCPsOfRLs and getRQsOfRLs)
Operator used as getXsOfYs(setlo,seto) which returns a subset of setlo each of whose
element object is linked by some object included in seto.

• getXsOfYsInStates (as getCPsOfRLsInStates and getRQsOfRLsInStates)
Operator used as getXsOfYsInStates(setlo,seto,setlls) which returns a subset of setlo
each of whose element object is linked by some object included in seto and is in one of
local states of setlls.

• getYOfX (as getRLOfCP and getRLOfRQ)
Operator used as getYOfX(seto,lobj) which returns an object which included in seto and
whose link is lobj.

• getYsOfXs (as getRLsOfCPs and getRLsOfRQs)
Operator used as getYsOfXs(seto,setlo) which returns a subset of seto each of whose
element object links to some object included in setlo.

96

• getYsOfXsInStates (as getRLsOfCPsInStates and getRLsOfRQsInStates)
Operator used as getYsOfXsInStates(seto,setlo,setls) which returns a subset of seto
each of whose element object links to some object included in setlo and is in one of local
states of setls.

• uniqX (as uniqCP and uniqRQ)
Predicate used as uniqX(seto) which holds iff the link of each object is unique in seto;
∀o, o′ ∈ seto : (o , o′ → link(o) , link(o′)).

• YOfXInStates (as RLOfCPInStates and RLOfRQInStates)
Predicate used as YOfXInStates(seto,lid,setls) which holds iff an object included in seto
whose link is lid is in one of locals state in setls;
∃o ∈ seto : (link(o) = lid ∧ state(o) ∈ setls).

• ifXInStatesThenYInStates
(as ifCPInStatesThenRLInStates and ifRQInStatesThenRLInStates)
Predicate used as ifXInStatesThenYInStates(setlo,setlls,seto,setls)which holds iff ev-
ery object included in setlo whose local sate is included in setlls is linked by an object
included in seto which is in one of local states in setls;
∀lo ∈ setlo : (state(lo) ∈ setlls→ ∃o ∈ seto : (link(o) = id(lo) ∧ state(o) ∈ setls)).

• ifYInStatesThenXInStates
(as ifRLInStatesThenCPInStates and ifRLInStatesThenRQInStates)
Predicate used as ifYInStatesThenXInStates(seto,setls,setlo,setlls)which holds iff ev-
ery object included in seto whose local sate is included in setls links to an object included
in setlo which is in one of local states in setlls;
∀o ∈ seto : (state(o) ∈ setls→ ∃lo ∈ setlo : (link(o) = id(lo) ∧ state(lo) ∈ setlls)).

• allYHaveX (as allRLHaveCP and allRLHaveRQ)
Predicate used as allYHaveX(seto,setlo) which holds iff every object included in seto has
an object linked by it which is included in setlo;
∀o ∈ seto,∃lo ∈ setlo : id(lo) = link(o).

• allXHaveY (as allCPHaveRL and allRQHaveRL)
Predicate used as allXHaveY(setlo,seto) which holds iff every object included in setlo
has an object which links to it and is included in seto;
∀lo ∈ setlo,∃o ∈ seto : id(lo) = link(o).

• OnlyOneYOfX (renamed as onlyOneRLOfCP and onlyOneRLOfRQ)
Predicate used as OnlyOneYOfX(seto,lid) which holds iff only one object whose link is lid
is included in seto;
∃o ∈ seto : link(o) = lid ∧ (∀o′ ∈ seto : o , o′ → link(o) , link(o’)).

A global state of the TOSCA structure models includes one additional object, a message
pool. There are two kinds of messages, open messages and available messages, which will be
explained in the next section. The representation of the messages is defined as follows:

module! MSG {

protecting(LINKS)

[Msg]

-- An open message

97

op opMsg : CPID -> Msg {constr}

-- An available message

op avMsg : CPID -> Msg {constr}

vars IDCP1 IDCP2 : CPID

eq (opMsg(IDCP1) = opMsg(IDCP2))

= (IDCP1 = IDCP2) .

eq (avMsg(IDCP1) = avMsg(IDCP2))

= (IDCP1 = IDCP2) .

eq (opMsg(IDCP1) = avMsg(IDCP2))

= false .

}

An open message (and also an available message) has an argument of the identifier of a capa-
bility. Open messages are equal to each other iff they have the same capability identifier, which
is similar to available messages. An open message and an available message are never equal to
each other.

The representation of a global state is defined by sort State as a tuple consisting of a set
of nodes, a set of capabilities, a set of requirements, a set of relationships, and a message pool
as follows whereas parameterized module BAG defines generic bags similarly to module SET
explained in Section 3.1:

module! STATE {

protecting(LINKS)

protecting(BAG(MSG {sort Elt -> Msg})

* {sort Bag -> PoolOfMsg,

op empty -> empMsg})

[State]

op <_,_,_,_,_> : SetOfNode SetOfCapability SetOfRequirement

SetOfRelationship PoolOfMsg -> State {constr}

}

In addition to the instantiated operators from the predefined ones, it requires to define sev-
eral problem specific operators in module STATEfuns. There are three kinds of them; (1) to
represent invariants for the consistency between messages and local states of objects, (2) to
represent invariants for the consistency between capabilities and requirements connected by re-
lationships, and (3) to represent other problem specific constraints. All of these operators can
be easily implemented by combining predefined operators.

The following is a list of such operators whereas argument setCP is a set of capabilities,
setRQ is a set of requirements, setRL is a set of relationships, node is a node, cap is a capability,
req is a requirement, rel is a relationship, setlCP is a set of local states of capabilities, setlRQ
is a set of local states of requirements, and pool is a message pool1:

• allHostedOnCPInStates (categorized as (3) above)
Predicate used as allHostedOnCPInStates(setCP,setlCP) which holds iff every capabil-
ity included in setCP whose type is hostedOn is in one of locals state in setlCP;
∀cap ∈ setCP : (type(cap) = hostedOn→ state(cap) ∈ setlCP).

1Note that here we do not distinguish between an object and its identifier for the sake of brevity.

98

• allHostedOnRQInStates (categorized as (3))
Predicate used as allHostedOnRQInStates(setRQ,setlRQ) which holds iff every require-
ment included in setRQ whose type is hostedOn is in one of locals state in setlRQ;
∀req ∈ setRQ : (type(req) = hostedOn→ state(req) ∈ setlRQ).

• allHostedOnRQOfNDInStates (categorized as (3))
Predicate used as allHostedOnRQOfNDInStates(setRQ,node,setlRQ) which holds iff ev-
ery requirement included in setRQ whose type is hostedOn and whose parent is node is
in one of locals state in setlRQ;
∀req ∈ setRQ : (type(req) = hostedOn ∧ node(req) = node→ state(req) ∈ setlRQ).

• getCPOfRQ (categorized as (2))
Operator used as getCPOfRQ(setCP,setRL,req) which returns the corresponding capabil-
ity of req by firstly finding the corresponding relationship of req in setRL and then finding
the corresponding capability of the relationship in setCP.

• getRQOfCP (categorized as (2))
Operator used as getRQOfCP(setRQ,setRL,cap) which returns the corresponding require-
ment of cap by firstly finding the corresponding relationship of cap in setRL and then
finding the corresponding requirement of the relationship in setRQ.

• allRLHaveSameTypeCPRQ (categorized as (3))
Predicate used as allRLHaveSameTypeCPRQ(setRL,setCP,setRQ) which holds iff every
relationship included in setRL has the corresponding capability included in setCP and
the corresponding requirement included in setRQ and those three objects has the same
type;
∀rel ∈ setRL :

(∀cap ∈ setCP : cap(rel) = cap→ type(rel) = type(cap)) ∧
(∀req ∈ setRQ : req(rel) = req→ type(rel) = type(req)).

• allRLNotInSameND (categorized as (3))
Predicate used as allRLNotInSameND(setRL,setCP,setRQ)which holds iff every relation-
ship included in setRL has the corresponding capability included in setCP and the corre-
sponding requirement included in setRQ and their parent nodes are not the same;
∀rel ∈ setRL,∃cap ∈ setCP,∃req ∈ setRQ :
cap(rel) = cap ∧ req(rel) = req ∧ node(cap) , node(req).

• getHostedOnRQOfND (categorized as (3))
Operator used as getHostedOnRQOfND(setRQ,node) which returns the hostedOn require-
ment in setRQ whose parent is node.

• getHostedOnRQsOfNDInStates (categorized as (3))
Operator used as getHostedOnRQsOfNDInStates(setRQ,node,setlRQ) which returns the
set of hostedOn requirements in setRQ whose parent is node and whose local state is in
setlRQ.

• VMOfND (categorized as (3))
Operator used as VMOfND(node,setND,setCP,setRQ,setRL) which returns the VM node
which hosts node; precisely, the operator recursively traverses hostedOn requirements,

99

relationships, and capabilities starting from node and returns the first found VM node in-
cluding node itself.

• VMOfCP (categorized as (3))
Operator used as VMOfCP(cap,setND,setCP,setRQ,setRL) which returns the VM node
which hosts the parent node of cap.

• VMOfRQ (categorized as (3))
Operator used as VMOfRQ(req,setND,setCP,setRQ,setRL) which returns the VM node
which hosts the parent node of req.

• allRLHoldLocality (categorized as (3))
Predicate used as allRLHoldLocality(setRL,setND,setCP,setRQ) which holds iff every
relationship included in setRL satisfies the locality constraint, which means that if the
type of a relationship is local, it should be between a capability and a requirement of the
nodes hosted on the same virtual machine, while if the type is not local (i.e. remote), it
should be between a capability and a requirement of the nodes hosted on the different
virtual machines.

• allNDHaveAtMostOneHost (categorized as (3))
Predicate used as allNDHaveAtMostOneHost(setND,setRQ) which holds iff every node
included in setND has 0 or 1 hostedOn requirement included in setRQ.

• ifOpenMsgThenCPInStates (categorized as (1))
Predicate used as ifOpenMsgThenCPInStates(pool,setCP,setlCP) which holds iff every
open message included in pool has the corresponding capability which is included in
setCP and whose local state is in setlCP;
∀msg ∈ pool : (isOpen(msg)→

(∃cap ∈ setCP : cap(msg) = cap ∧ state(cap) ∈ setlCP)).

• ifAvailableMsgThenCPInStates (categorized as (1))
Predicate used as ifAvailableMsgThenCPInStates(pool,setCP,setlCP) which holds iff
every available message included in pool has the corresponding capability which is in-
cluded in setCP and whose local state is in setlCP;
∀msg ∈ pool : (isAvail(msg)→

(∃cap ∈ setCP : cap(msg) = cap ∧ state(cap) ∈ setlCP)).

• ifCPInStatesThenRQInStates (categorized as (2))
Predicate used as ifCPInStatesThenRQInStates(setCP,setlCP,setRQ,setlRQ,setRL)
which holds iff every capability included in setCP whose local sate is included in
setlCP has the corresponding requirement included in setRQ whose local state is in
setlRQ;
∀cap ∈ setCP : (state(cap) ∈ setlCP→

∃rel ∈ setRL, req ∈ setRQ :
(cap(rel) = cap ∧ req(rel) = req ∧ state(req) ∈ setlRQ)).

• ifConnectsToCPInStatesThenRQInStatesOrOpenMsg (categorized as (1) (2))
Predicate used as ifConnectsToCPInStatesThenRQInStatesOrOpenMsg(setCP,setlCP,
setRQ,setlRQ,setRL,pool) which holds iff every connectsTo capability in setCP whose
local sate is included in setlCP has the corresponding requirement included in setRQ

100

whose local state is in setlRQ or has the corresponding open message included in pool;
∀cap ∈ setCP : (type(cap) = hostedOn ∧ state(cap) ∈ setlCP→

(∃rel ∈ setRL, req ∈ setRQ :
(cap(rel) = cap ∧ req(rel) = req ∧ state(req) ∈ setlRQ)) ∨

∃msg ∈ pool : cap(msg) = cap ∧ isOpen(msg)).

• ifConnectsToCPInStatesThenRQInStatesOrAvailableMsg (categorized as (1) (2))
Predicate used as ifConnectsToCPInStatesThenRQInStatesOrAvailableMsg(setCP,
setlCP,setRQ,setlRQ,setRL,pool)which holds iff every connectsTo capability included
in setCP whose local sate is included in setlCP has the corresponding requirement in-
cluded in setRQ whose local state is in setlRQ or has the corresponding available mes-
sage included in pool;
∀cap ∈ setCP : (type(cap) = hostedOn ∧ state(cap) ∈ setlCP→

(∃rel ∈ setRL, req ∈ setRQ :
(cap(rel) = cap ∧ req(rel) = req ∧ state(req) ∈ setlRQ)) ∨

∃msg ∈ pool : cap(msg) = cap ∧ isAvail(msg)).

7.2 Behavior Model of TOSCA Templates
The framework models the behavior of an automated system operation as a state machine in
which a set of transition rules of global states specifies the behavior. As described in Sec-
tion 2.3, the behavior of a topology of TOSCA is decided by the behavior of types of nodes
and relationships included in the topology. Here, we propose to model the behavior of a type
as a set of transition rules each of which is called an invocation rule and specifies when a type
operation can be invoked and how it changes the local state of a node or relationship of the type.

As described in Section 2.3, type operations and their invocation rules should be defined by
type architects. When an application architect defines a topology, the set of all invocation rules
of included node/relationship types collectively composes a state machine which specifies the
whole behavior of the topology.

In the example of Fig. 2.6, we assume that behavior of four node types is the same focusing
on when a node is created and started because they are the most essential for setup operations.

On the other hand, behavior of relationship types usually varies according to their nature;
they may be in the IaaS layer or in the inside of VM layer, “local” or “remote”, “immediate”
or “await”. Three relationship types of this example typically cover the variation. A HostedOn
relationship is one between resources in the IaaS layer. It is “immediate”, i.e. it can be estab-
lished as soon as the target node is created. Each of DependsOn and ConnectsTo relationships
is between resources inside of VMs and is “await”, i.e. it should wait for the target node to
be started. A DependsOn relationship is “local” in the same VM, while a ConnectsTo is “re-
mote” to a different VM and should use some messages to notice the states of its capability to
its requirement. We assume that a state of a relationship is a pair of the states of its capabil-
ity and requirement in this dissertation for the sake of simplicity. Thereby, an operation of a
relationship type changes the state of its capability or requirement.

Behavior of these types is depicted in Fig. 7.1. A solid arrow represents a state transition of
each object caused by a type operation and a dashed arrow represents an invocation of a type
operation or a message sending.

There are twelve invocation rules; two of them are for node operations, two are for oper-
ations of HostedOn relationship, four are for DependsOn, and four are for ConnectsTo. The

101

Figure 7.1: Typical Behavior of Relationship Types

followings are their detailed definitions explained in natural language:

Initial States: Every node is initially in a local state named as initial, every capability of the
node is closed, and every requirement is unbound.

Invocation Rule of Node Type Operations:

• CREAT E operation can be invoked if all of the HostedOn requirements of the node
are ready and changes the local state of the node from initial to created.

• S T ART operation can be invoked if all of the requirements are ready and changes
the local state from created to started.

Invocation Rule of Operations of HostedOn Relationship Type:

• CAPAVAILABLE operation can be invoked if the target node is already created,
i.e. created or started and changes the local state of its capability from closed to
available.

• REQREADY operation can be invoked if its capability is available and changes the
local state of the requirement from unbound to ready.

Invocation Rule of Operations of DependsOn Relationship Type:

• CAPOPEN operation can be invoked if the target node is already created. It changes
the local state of its capability from closed to open.

• CAPAVAILABLE operation can be invoked if the target node is started and changes
the local state of its capability from open to available.

• REQWAIT ING operation can be invoked if its capability is already activated, i.e.
open or available, and the source node is created. It changes the local state of its
requirement from unbound to waiting.

102

• REQREADY operation can be invoked if its capability is available and changes the
local state of its requirement from waiting to ready.

Invocation Rule Operations of ConnectsTo Relationship Type:

• CAPOPEN operation can be invoked if the target node is already created. It changes
the local state of its capability from closed to open and also issues an open message
of the capability to the message pool.

• CAPAVAILABLE operation can be invoked if the target node is started. It changes
the local state of its capability from open to available and also issues an available
message of the capability to the message pool.

• REQWAIT ING operation can be invoked if it finds an open message of its capabil-
ity and the source node is created. It changes the local state of its requirement from
unbound to waiting.

• REQREADY operation can be invoked if it finds an available message of its capa-
bility and changes the local state of its requirement from waiting to ready.

7.2.1 Representation of the Example Behavior Model
Each of twelve rules explained in English above is more formally represented by a transition
rule of CafeOBJ as follows:

module! STATERules {

protecting(STATEfuns)

-- Variables

var TND : NDType

vars IDND IDND1 IDND2 : NDID

var IDCP : CPID

var IDRQ : RQID

var IDRL : RLID

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var SCP : CPState

var MP : PoolOfMsg

-- CREATE Operation for Node Type

ctrans [R01]:

< (node(TND,IDND,initial) SetND), SetCP, SetRQ, SetRL, MP >

=> < (node(TND,IDND,created) SetND), SetCP, SetRQ, SetRL, MP >

if allHostedOnRQOfNDInStates(SetRQ,IDND,ready) .

-- START Operation for Node Type

ctrans [R02]:

< (node(TND,IDND,created) SetND), SetCP, SetRQ, SetRL, MP >

=> < (node(TND,IDND,started) SetND), SetCP, SetRQ, SetRL, MP >

if allRQOfNDInStates(SetRQ,IDND,ready) .

103

-- CAPAVAILABLE Operation for HostedOn Relationship Type

ctrans [R03]:

< SetND, (cap(hostedOn,IDCP,closed, IDND) SetCP), SetRQ, SetRL, MP >

=> < SetND, (cap(hostedOn,IDCP,available,IDND) SetCP), SetRQ, SetRL, MP >

if isCreated(state(getNode(SetND,IDND))) .

-- REQREADY Operation for HostedOn Relationship Type

trans [R04]:

< SetND, (cap(hostedOn,IDCP,available,IDND1) SetCP),

(req(hostedOn,IDRQ,unbound,IDND2) SetRQ),

(rel(hostedOn,IDRL,IDCP,IDRQ) SetRL), MP >

=> < SetND, (cap(hostedOn,IDCP,available,IDND1) SetCP),

(req(hostedOn,IDRQ,ready, IDND2) SetRQ),

(rel(hostedOn,IDRL,IDCP,IDRQ) SetRL), MP > .

-- CAPOPEN Operation for DependsOn Relationship Type

ctrans [R05]:

< SetND, (cap(dependsOn,IDCP,closed,IDND) SetCP), SetRQ, SetRL, MP >

=> < SetND, (cap(dependsOn,IDCP,open, IDND) SetCP), SetRQ, SetRL, MP >

if isCreated(state(getNode(SetND,IDND))) .

-- CAPAVAILABLE Operation for DependsOn Relationship Type

ctrans [R06]:

< SetND, (cap(dependsOn,IDCP,open, IDND) SetCP), SetRQ, SetRL, MP >

=> < SetND, (cap(dependsOn,IDCP,available,IDND) SetCP), SetRQ, SetRL, MP >

if state(getNode(SetND,IDND)) = started .

-- REQWAITING Operation for DependsOn Relationship Type

ctrans [R07]:

< SetND, (cap(dependsOn,IDCP,SCP,IDND1) SetCP),

(req(dependsOn,IDRQ,unbound,IDND2) SetRQ),

(rel(dependsOn,IDRL,IDCP,IDRQ) SetRL), MP >

=> < SetND, (cap(dependsOn,IDCP,SCP,IDND1) SetCP),

(req(dependsOn,IDRQ,waiting,IDND2) SetRQ),

(rel(dependsOn,IDRL,IDCP,IDRQ) SetRL), MP >

if state(getNode(SetND,IDND2)) = created and isActivated(SCP) .

-- REQREADY Operation for DependsOn Relationship Type

trans [R08]:

< SetND, (cap(dependsOn,IDCP,available,IDND1) SetCP),

(req(dependsOn,IDRQ,waiting,IDND2) SetRQ),

(rel(dependsOn,IDRL,IDCP,IDRQ) SetRL), MP >

=> < SetND, (cap(dependsOn,IDCP,available,IDND1) SetCP),

(req(dependsOn,IDRQ,ready, IDND2) SetRQ),

(rel(dependsOn,IDRL,IDCP,IDRQ) SetRL), MP > .

-- CAPOPEN Operation for ConnectsTo Relationship Type

ctrans [R09]:

< SetND, (cap(connectsTo,IDCP,closed,IDND) SetCP),

104

SetRQ, SetRL, MP >

=> < SetND, (cap(connectsTo,IDCP,open, IDND) SetCP),

SetRQ, SetRL, (opMsg(IDCP) MP) >

if isCreated(state(getNode(SetND,IDND))) .

-- CAPAVAILABLE Operation for ConnectsTo Relationship Type

ctrans [R10]:

< SetND, (cap(connectsTo,IDCP,open, IDND) SetCP),

SetRQ, SetRL, MP >

=> < SetND, (cap(connectsTo,IDCP,available,IDND) SetCP),

SetRQ, SetRL, (avMsg(IDCP) MP) >

if state(getNode(SetND,IDND)) = started .

-- REQWAITING Operation for ConnectsTo Relationship Type

ctrans [R11]:

< SetND, SetCP,

(req(connectsTo,IDRQ,unbound,IDND) SetRQ),

(rel(connectsTo,IDRL,IDCP,IDRQ) SetRL),

(opMsg(IDCP) MP) >

=> < SetND, SetCP,

(req(connectsTo,IDRQ,waiting,IDND) SetRQ),

(rel(connectsTo,IDRL,IDCP,IDRQ) SetRL), MP >

if state(getNode(SetND,IDND)) = created .

-- REQREADY Operation for ConnectsTo Relationship Type

trans [R12]:

< SetND, SetCP,

(req(connectsTo,IDRQ,waiting,IDND) SetRQ),

(rel(connectsTo,IDRL,IDCP,IDRQ) SetRL),

(avMsg(IDCP) MP) >

=> < SetND, SetCP,

(req(connectsTo,IDRQ,ready, IDND) SetRQ),

(rel(connectsTo,IDRL,IDCP,IDRQ) SetRL), MP > .

}

7.3 Verification of TOSCA Templates
This section presents the verification of the liveness property of setup operations of the TOSCA
models consisting of four node types, three relationship types, and twelve transition rules.
As described in Chapter 6, reachability of setup operations of cloud systems is formalized as
(init leads-to f inal) and there are five sufficient conditions for it.

7.3.1 Definition of Predicates
Step 0-1: Define init and f inal.
The initial and final states of the TOSCA models are represented in CafeOBJ as follows:

module! STATEfuns {

protecting(STATE)

105

...

-- Many operator definitions explained in Section 7.1.1

..

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var MP : PoolOfMsg

var S : State

pred init : State

eq init(< SetND,SetCP,SetRQ,SetRL,MP >)

= not (SetND = empND) and (MP = empMsg) and

wfs(< SetND,SetCP,SetRQ,SetRL,MP >) and

noNDCycle(< SetND,SetCP,SetRQ,SetRL,MP >) and

allNDInStates(SetND,initial) and

allCPInStates(SetCP,closed) and

allRQInStates(SetRQ,unbound) .

pred final : State

eq final(< SetND,SetCP,SetRQ,SetRL,MP >)

= allNDInStates(SetND,started) .

pred wfs : State

eq wfs(S)

= wfs-uniqND(S) and wfs-uniqCP(S) and

wfs-uniqRQ(S) and wfs-uniqRL(S) and

wfs-allCPHaveND(S) and wfs-allRQHaveND(S) and

wfs-allCPHaveRL(S) and wfs-allRQHaveRL(S) and

wfs-allRLHaveCP(S) and wfs-allRLHaveRQ(S) and

wfs-allRLHaveSameTypeCPRQ(S) and

wfs-allRLNotInSameND(S) and

wfs-allRLHoldLocality(S) and

wfs-allNDHaveAtMostOneHost(S) .

pred wfs-uniqND : State

eq wfs-uniqND(< SetND,SetCP,SetRQ,SetRL,MP >)

= uniqND(SetND) .

...

-- Similar fourteen definitions of wfs-*.

...

}

As described in Section 5.3.3, we need to define operators DDSC and getAllObjInState in
order to use the Cyclic Dependency Lemma in the verification. Section 5.3.3 also describes two
techniques to prove the invariant property of noCycle(X, S). One is to design each transition
rule to decrease dependencies between objects when it is applied. Section 6.5 shows example
proofs using this technique.

Another technique used in this chapter is to design the system having a simpler constraint
where some relationship between objects have no cyclic chains. Recalling Lemma 9, we can de-

106

fine DDSC to implement some simpler relationship r instead of the true DDSC and use noCycleC
defined by using r instead of the true noCyclec. Module STATECyclefuns defines an example
of such DDSC:

module! STATECyclefuns {

protecting(UtilFuns)

var ND : Node

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var MP : PoolOfMsg

op getAllNDInState : State -> SetOfNode

eq getAllNDInState(< SetND,SetCP,SetRQ,SetRL,MP >) = SetND .

op DDSC : Node State -> SetOfNode

eq DDSC(ND,< SetND,SetCP,SetRQ,SetRL,MP >)

eq DDSC(ND,< SetND,SetCP,SetRQ,SetRL,MP >)

= getNDsOfCPs(SetND,

getCPsOfRLs(SetCP,

getRLsOfRQs(SetRL,

getRQsOfND(SetRQ,ND)))) .

}

Since this DDSC firstly finds the corresponding requirements of the given node, then finds the
corresponding capabilities of the requirements, and finally finds and returns the parents of the
capabilities, the true DDSC is obviously a subset of this DDSC. Moreover this DDSC does not refer
local states of objects and twelve transition rules of the example behavior model never change
links of objects. It means that DDSC(X,S) for any reachable global state S from an initial state
S0 is the same as DDS(X,S0) and noCycleC defined by using DDSC is an invariant. noCycleC
can be defined using template module CYCLEPRED as follows:

module! STATEfuns {

protecting(STATE)

...

-- Other definitions explained above.

...

extending(CYCLEPRED(

STATECyclefuns {sort Object -> Node,

sort SetOfObject -> SetOfNode,

op empObj -> empND,

op getAllObjInState -> getAllNDInState})

* {op noCycleC -> noNDCycle}

)

}

Step 0-2: Define cont. Step 0-3: Define m.

module! ProofBase {

107

protecting(STATERules)

vars S SS : State

eq cont(S) = (S =(*,1)=>+ SS) .

Step 0-3: Define m.

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var MP : PoolOfMsg

op m : State -> Nat

eq m(< SetND,SetCP,SetRQ,SetRL,MP >)

= (#NodeInStates(initial,SetND) * 2)

+ (#NodeInStates(created,SetND) * 1)

+ (#NodeInStates(started,SetND) * 0)

+ (#CapabilityInStates(closed, SetCP) * 2)

+ (#CapabilityInStates(open, SetCP) * 1)

+ (#CapabilityInStates(available,SetCP) * 0)

+ (#RequirementInStates(unbound,SetRQ) * 2)

+ (#RequirementInStates(waiting,SetRQ) * 1)

+ (#RequirementInStates(ready, SetRQ) * 0) .

Step 0-4: Define inv.

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var MP : PoolOfMsg

var S : State

pred inv-ifNDInitialThenRQUnboundReady : State

eq inv-ifNDInitialThenRQUnboundReady(< SetND,SetCP,SetRQ,SetRL,MP >)

= ifNDInStatesThenRQInStates(SetND,initial,SetRQ,(unbound ready)) .

...

-- Many similar definitions of invariants.

-- 3 invariants are defined using predefined predicates.

-- 9 invariants are defined using problem specific predicates.

...

pred inv : State

-- wfs-*:

ceq inv(S) = false if not wfs-uniqND(S) .

...

-- Similar fourteen definitions for wfs-*.

...

-- inv-*:

ceq inv(S) = false if not inv-ifNDInitialThenRQUnboundReady(S) .

...

108

-- Similar eleven definitions for inv-*.

...

Step 0-5: Prepare for using the Cyclic Dependency Lemma.
For the CloudFormation example, the Cyclic Dependency Lemma is required to use for only
one transition rule, R01. For the TOSCA example, however, there are two transition rules, R01
and R02which cause cyclic situations in the verification. Thus, we need to define two lemmas in
advance. One of them means that there is a contradiction when DDSC of the specified initial
resource includes any initial resources. Another means that there is a contradiction when
DDSC of the specified created resource includes any created resources. They are defined as
the following two conditional equations:

ceq [CycleR01 :nonexec]:

true = false

if someNDInStates(DDSC(node(T:NDType,I:NDID,initial),S:State),initial) .

ceq [CycleR02 :nonexec]:

true = false

if someNDInStates(DDSC(node(T:NDType,I:NDID,created),S:State),created) .

Step 0-6: Prepare proof constants.

ops idND idND’ idND1 idND2 idND3 : -> NDIDLt

ops idCP idCP’ idCP1 idCP2 idCP3 : -> CPIDLt

ops idRQ idRQ’ idRQ1 idRQ2 idRQ3 : -> RQIDLt

ops idRL idRL’ idRL1 idRL2 idRL3 : -> RLIDLt

ops sND sND’ sND’’ sND’’’ : -> SetOfNode

ops sCP sCP’ sCP’’ sCP’’’ : -> SetOfCapability

ops sRQ sRQ’ sRQ’’ sRQ’’’ : -> SetOfRequirement

ops sRL sRL’ sRL’’ sRL’’’ : -> SetOfRelationship

ops tnd tnd’ tnd’’ tnd’’’ : -> NDType

ops trl trl’ trl’’ trl’’’ : -> RLType

ops snd snd’ snd’’ : -> NDState

ops scp scp’ scp’’ : -> CPState

ops srq srq’ srq’’ : -> RQState

op stND : -> SetOfNDState

op stCP : -> SetOfCPState

op stRQ : -> SetOfRQState

ops mp mp’ : -> PoolOfMsg

op msg : -> Msg

}

7.3.2 Lemmas for Using Cyclic Dependency Lemma
As described in Section 6.6, it is wise to define lemmas for using the Cyclic Dependency Lemma
and use them in the similar cases. For this TOSCA example, two similar lemmas are required.
One lemma claims that if there is an initial node in a reachable global state then there exists
a transition rule applicable to the global state. Here we refer to it as the initial-cont lemma. It

109

can be proved as follows:

Step 1-0: Define a predicate to be proved.
Module ProofInitialCont defines the predicate as invcont. Note that we can only consider
the case where inv(S) holds because S is a reachable global state.

module! ProofInitialCont {

protecting(ProofBase)

vars B1 B2 : Bool

pred (_when _) : Bool Bool { prec: 64 r-assoc }

eq (B1 when B2)

= B2 implies B1 .

var S: State

pred invcont : State

eq invcont(S)

= cont(S) = true

when inv(S) .

}

Step 1-1: Begin with the most general case.

select ProofInitialCont .

:goal {

eq invcont(< (node(tnd, idND, initial) sND), sCP, sRQ, sRL, mp >)

= true .

}

Step 1-2: Consider which rule can be applied to the global state in the current case.
The applicable rule may be R01 because the global state includes an initial node.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.
The global state already matches to LHS of RO1.

Step 1-4: Split the current case into cases where the condition of the current rule does or does
not hold.

:csp {

eq allHostedOnRQOfNDInStates(sRQ,idND,ready) = true .

eq sRQ = (req(hostedOn,idRQ,unbound,idND) sRQ’) .

eq sRQ = (req(hostedOn,idRQ,waiting,idND) sRQ’) .

}

-- Case 1: When all of the hostedOn requirements are ready:

:apply (rd) -- 1

-- Case 2: When there is an unbound hostedOn requirement of the node:

... -- More consideration needed.

-- Case 3: When there is a waiting hostedOn requirement of the node:

:apply (rd) -- 3

110

Only Case 2 remains unproved and it then becomes the current case.

Step 1-2: Consider which rule can be applied to the global state in the current case.
The applicable rule may be R04 because the global state in Case 2 includes an unbound
hostedOn requirement.

Step 1-5: When there is a dangling link, split the case into cases where the linked object does
or does not exist.

-- Case 2: When there is an unbound hostedOn requirement of the node:

:csp {

eq onlyOneRLOfRQ(sRL,idRQ) = false .

eq sRL = (rel(hostedOn,idRL,idCP,idRQ) sRL’) .

}

-- Case 2-1: When the relationship of requirement idRQ does not exist:

:apply (rd) -- 2-1

-- Case 2-2: When the relationship of requirement idRQ exists:

:csp {

eq existCP(sCP,idCP) = false .

eq sCP = (cap(hostedOn,idCP,scp,idND’) sCP’) .

}

-- Case 2-2-1: When the capability of the relationship does not exist:

:apply (rd) -- 2-2-1

-- Case 2-2-2: When the capability of the relationship exists:

:ctf {

eq idND’ = idND .

}

-- Case 2-2-2-1: When the node of capability idCP is

-- the same of requiement idRQ:

:apply (rd) -- 2-2-2-1

-- Case 2-2-2-2: When the node of capability idCP is not

-- the same of requiement idRQ:

... -- More consideration needed.

Only Case 2-2-2-2 remains unproved.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.

-- Case 2-2-2-2: When the node of capability idCP is not

-- the same of requiement idRQ:

:csp {

eq scp = closed .

eq scp = open .

eq scp = available .

}

-- Case 2-2-2-2-1: When the capability of idCP is closed:

... -- More consideration needed.

-- Case 2-2-2-2-2: When the capability of idCP is open:

:apply (rd) -- 2-2-2-2-2

-- Case 2-2-2-2-2: When the capability of idCP is avialable:

111

:apply (rd) -- 2-2-2-2-3

Only Case 2-2-2-2-1 remains unproved.

Step 1-2: Consider which rule can be applied to the global state in the current case.
The applicable rule may be R03 because the global state in Case 2-2-2-2-1 includes an unbound
hostedOn requirement.

Step 1-5: When there is a dangling link, split the case into cases where the linked object does
or does not exist.

-- Case 2-2-2-2-1: When the capability of idCP is closed:

:csp {

eq existND(sND,idND’) = false .

eq sND = (node(tnd’,idND’,snd’) sND’) .

}

-- Case 2-2-2-2-1-1: When the node of the capability of idCP does not exist:

:apply (rd) -- 2-2-2-2-1-1

-- Case 2-2-2-2-1-2: When the node of the capability of idCP exists:

... -- More consideration needed.

Only Case 2-2-2-2-1-2 remains unproved.

Step 1-4: Split the current case into cases where the condition of the current rule does or does
not hold.

-- Case 2-2-2-2-1-1: When the node of the capability of idCP does not exist:

:csp {

eq snd’ = initial .

eq snd’ = created .

eq snd’ = started .

}

-- Case 2-2-2-2-1-2-1: When the node of idND’ is initial:

... -- More consideration needed.

-- Case 2-2-2-2-1-2-2: When the node of idND’ is created:

:apply (rd) -- 2-2-2-2-1-2-2

-- Case 2-2-2-2-1-2-3: When the node of idND’ is started:

:apply (rd) -- 2-2-2-2-1-2-3

Only Case 2-2-2-2-1-2-1 remains unproved.

Step 1-6: When falling in a cyclic situation, use the Cyclic Dependency Lemma.

-- Case 2-2-2-2-1-2-1: When the node of idND’ is initial:

:init [CycleR01] by {

T:NDType <- tnd;

I:NDID <- idND;

S:State <- < (node(tnd,idND,initial) sND), sCP, sRQ, sRL, mp >;

}

:apply (rd) -- 2-2-2-2-1-2-1

112

Thus, all of the cases are successfully proved and we can assume that cont(S) holds for any
reachable global state S which include an initial node.

Another similar lemma claims that if there is a created node in a global state then there
exists a transition rule applicable to the global state. Here we refer to it as the created-cont
lemma. It can be proved as follows:

Step 1-0: Define a predicate to be proved.
Module ProofCreatedCont imports predicate invcont from module ProofInitialCont
and additionally introduces the initial-cont lemma proved just above because the proof of this
lemma uses it. Note that the when clause is omitted from the initial-cont lemma because inv(S)
holds for any reachable global state S.

module! ProofCreatedCont {

protecting(ProofInitialCont)

var T : NDType

var I : NDID

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var M : PoolOfMsg

-- This proof uses the initial-cont lemma.

eq cont(< (node(T, I, initial) SetND),

SetCP, SetRQ, SetRL, M >) = true .

}

Step 1-1: Begin with the most general case.

select ProofCreatedCont .

:goal {

eq invcont(< (node(tnd, idND, created) sND), sCP, sRQ, sRL, mp >)

= true .

}

Step 1-2: Consider which rule can be applied to the global state in the current case.
The applicable rule may be R02 because the global state includes a created node.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.
The global state already matches to LHS of RO2.

Step 1-4: Split the current case into cases where the condition of the current rule does or does
not hold.

:csp {

eq allRQOfNDInStates(sRQ,idND,ready) = true .

eq sRQ = (req(trl,idRQ,unbound,idND) sRQ’) .

eq sRQ = (req(trl,idRQ,waiting,idND) sRQ’) .

}

-- Case 1: When all of the requirements are ready:

113

:apply (rd) -- 1

-- Case 2: When there is an unbound requirement of node idND:

... -- More consideration needed.

-- Case 3: When there is a waiting requirement of node idND:

... -- More consideration needed.

Both Case 2 and 3 remain unproved. Let Case 2 be the current state.

Step 1-2: Consider which rule can be applied to the global state in the current case.
The applicable rule may be R04, R07, or R11 because the global state in Case 2 includes an
unbound requirement and the applicable rule depends on its type.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.

-- Case 2: When there is an unbound requirement of node idND:

:csp {

eq trl = hostedOn .

eq trl = dependsOn .

eq trl = connectsTo .

}

-- Case 2-1: When the type of requirement idRQ is hostedOn:

:apply (rd) -- 2-1

-- Case 2-2: When the type of requirement idRQ is dependsOn:

... -- More consideration needed.

-- Case 2-3: When the type of requirement idRQ is connectsTo:

... -- More consideration needed.

Case 2-1 is not a reachable global state because a node never becomes created when one of its
hostedOn requirement is unbound, which makes inv(S) reduce to false. Thus, Case 2-2 and
2-3 remains unproved. Let Case 2-2 be the current case.

Step 1-5: When there is a dangling link, split the case into cases where the linked object does
or does not exist.

-- Case 2-2: When the type of requirement idRQ is dependsOn:

:csp {

eq onlyOneRLOfRQ(sRL,idRQ) = false .

eq sRL = (rel(dependsOn,idRL,idCP,idRQ) sRL’) .

}

-- Case 2-2-1: When the relationship of requirement idRQ does not exist:

:apply (rd) -- 2-2-1

-- Case 2-2-2: When the relationship of requirement idRQ exists:

:csp {

eq existCP(sCP,idCP) = false .

eq sCP = (cap(dependsOn,idCP,scp,idND’) sCP’) .

}

-- Case 2-2-2-1: When the capability of the relationship does not exist:

:apply (rd) -- 2-2-2-1

-- Case 2-2-2-2: When the capability of the relationship exists:

114

:ctf {

eq idND’ = idND .

}

-- Case 2-2-2-2-1: When the node of capability idCP is

-- the same of requiement idRQ:

:apply (rd) -- 2-2-2-2-1

-- Case 2-2-2-2-2: When the node of capability idCP is not

-- the same of requiement idRQ:

... -- More consideration needed.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.

-- Case 2-2-2-2-2: When the node of capability idCP is not

-- the same of requiement idRQ:

:csp {

eq scp = closed .

eq scp = open .

eq scp = available .

}

-- Case 2-2-2-2-2-1: When capability idCP is closed:

... -- More consideration needed.

-- Case 2-2-2-2-2-2: When capability idCP is open:

:apply (rd) -- 2-2-2-2-2-2

-- Case 2-2-2-2-2-3: When capability idCP is available:

:apply (rd) -- 2-2-2-2-2-3

Case 2-2-2-2-2-2 and 2-2-2-2-2-2 are proved because R07 is applicable. Thus, only Case 2-2-
2-2-2-1 remains unproved.

Step 1-2: Consider which rule can be applied to the global state in the current case.
The applicable rule may be R05 because the global state in Case 2-2-2-2-2-1 includes an closed
dependsOn capability.

Step 1-5: When there is a dangling link, split the case into cases where the linked object does
or does not exist.

-- Case 2-2-2-2-2-1: When capability idCP is closed:

:csp {

eq existND(sND,idND’) = false .

eq sND = (node(tnd’,idND’,snd’) sND’) .

}

-- Case 2-2-2-2-2-1-1: When the node of capability idCP does not exist:

:apply (rd) -- 2-2-2-2-2-1-1

-- Case 2-2-2-2-2-1-2: When the node of capability idCP exists:

... -- More consideration needed.

Case 2-2-2-2-2-1-2 remains unproved.

Step 1-4: Split the current case into cases where the condition of the current rule does or does
not hold.

115

-- Case 2-2-2-2-2-1-2: When the node of capability idCP exists:

:csp {

eq snd’ = initial .

eq snd’ = created .

eq snd’ = started .

}

-- Case 2-2-2-2-2-1-2-1: When node idND’ is initial:

:apply (rd) -- 2-2-2-2-2-1-2-1

-- Case 2-2-2-2-2-1-2-2: When node idND’ is created:

:apply (rd) -- 2-2-2-2-2-1-2-2

-- Case 2-2-2-2-2-1-2-3: When node idND’ is started:

:apply (rd) -- 2-2-2-2-2-1-2-3

Note that Case 2-2-2-2-2-1-2-1 is proved by the initial-cont lemma, Case 2-2-2-2-2-1-2-2 and
2-2-2-2-2-1-2-3 are proved because R05 is applicable. Thus, Case 2-2 is proved and Case 2-3
reminds unprove. Case 2-3 is split into totally 21 cases all of which are proved similarly as split
cases of Case 2-2.

Similarly Case 3 is split into totally 33 cases two of which require to use the Cyclic Depen-
dency Lemma for rule R02. One of them is the following Case 3-2-2-2-2-2-2-2:

-- Case 3: When there is a waiting requirement of node idND:

...

-- Case splitting proceeds similarly as Case 2.

...

-- Case 3-2-2-2-2-2-2-2: When the node of idND’ is created:

-- The global state in this case is

-- < (node(tnd,idND,created) node(tnd’,idND’,created) sND’),

-- (cap(dependsOn,idCP,open,idND’) sCP’),

-- (req(dependsOn,idRQ,waiting,idND) sRQ’),

-- (rel(dependsOn,idRL,idCP,idRQ) sRL’),

-- mp >

:init [CycleR02] by {

T:NDType <- tnd;

I:NDID <- idND;

S:State <- < (node(tnd,idND,created) sND), sCP, sRQ, sRL, mp >;

}

:apply (rd) -- 3-2-2-2-2-2-2-2

...

In this case, node idND is created and directly depends on node idND’which is also created.
The Cyclic Dependency Lemma claims this global state is not reachable and this case is proved.

Another case is very similar to one above; the relationship type is not dependsOn but
connectsTo as follows:

-- Case 3-3-2-1-2-2-2-2-2: When the node of idND’ is created:

-- The global state in this case is

-- < (node(tnd, idND, created) node(tnd’, idND’, created) sND’),

-- (cap(connectsTo, idCP, open, idND’) sCP’),

-- (req(connectsTo, idRQ, waiting, idND) sRQ’),

-- (rel(connectsTo, idRL, idCP, idRQ) sRL’),

-- mp >

116

:init [CycleR02] by {

T:NDType <- tnd;

I:NDID <- idND;

S:State <- < (node(tnd,idND,created) sND), sCP, sRQ, sRL, mp >;

}

:apply (rd) -- 3-3-2-1-2-2-2-2-2

...

All other cases are successfully proved and we can assume that cont(S) holds for any reach-
able global state S which include a created node.

7.3.3 Proof of Sufficient Condition (1)
Step 1-0: Define a predicate to be proved.
The proof of condition (1) requires to use the initial-cont lemma:

module! ProofInitCont {

protecting(ProofBase)

var S : State

var T : NDType

var I : NDID

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var M : PoolOfMsg

-- Predicate to be proved.

pred initcont : State .

eq initcont(S) = init(S) implies cont(S) .

-- initial-cont lemma:

eq cont(< (node(T, I, initial) SetND),

SetCP, SetRQ, SetRL, M >) = true .

}

Step 1-1: Begin with the most general case.

select ProofInitCont .

:goal {eq initcont(< sND, sCP, sRQ, sRL, mp >) = true .}

Step 1-2: Consider which rule can be applied to the global state in the current case.
The first rule is R01.

Step 1-3: Split the current case into cases which collectively cover the current case and one of
which matches to LHS of the current rule.
Since LHS of rule R01 requires the global state to have at least one initial node, the case is
split into four more cases, i.e. no node, at least one initial, created, or started node.

:csp {

eq sND = empND .

117

eq sND = (node(tnd,idND,snd) sND’) .

}

-- Case 1: When there is no node:

:apply (rd) -- 1

-- Case 2: When there is a node:

-- The state of the node is initial, created, or started.

:csp {

eq snd = initial .

eq snd = created .

eq snd = started .

}

:apply (rd) -- 2-1

:apply (rd) -- 2-2

:apply (rd) -- 2-3

Case 2-1 is proved by the initial-cont lemma. In other cases, init(S) does not hold for the global
state S. Thus, sufficient condition (1) is proved.

7.3.4 Proof of Sufficient Condition (2)
Step 2-0: Define a predicate to be proved.
The proof of condition (2) requires to use both of the initial-cont lemma and the created-cont
lemma:

module! ProofContCont {

protecting(ProofBase)

vars S SS : State

var CC : Bool

var T : NDType

var I : NDID

var SetND : SetOfNode

var SetCP : SetOfCapability

var SetRQ : SetOfRequirement

var SetRL : SetOfRelationship

var M : PoolOfMsg

-- Predicate to be proved.

pred ccont : State State

pred contcont : State

eq ccont(S,SS)

= inv(S) and not final(S) implies cont(SS) or final(SS) .

eq contcont(S)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC implies ccont(S,SS)) == true)

{ true }) .

-- initial-cont lemma:

eq cont(< (node(T, I, initial) SetND),

SetCP, SetRQ, SetRL, M >)

= true .

118

-- created-cont lemma:

eq cont(< (node(T, I, created) SetND),

SetCP, SetRQ, SetRL, M >)

= true .

}

Step 2-1: Begin with the cases each of which matches to LHS of each rule.
The followings are cases for twelve transition rules:

select ProofContCont .

-- Goal of Condition (2) for rule R01

:goal {

eq contcont(< (node(tnd,idND,initial) sND), sCP, sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R02

:goal {

eq contcont(< (node(tnd,idND,created) sND), sCP, sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R03

:goal {

eq contcont(< sND, (cap(hostedOn,idCP,closed,idND) sCP), sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R04

:goal {

eq contcont(< sND,

(cap(hostedOn,idCP,available,idND) sCP),

(req(hostedOn,idRQ,unbound,idND’) sRQ),

(rel(hostedOn,idRL,idCP,idRQ) sRL), mp >)

= true .

}

-- Goal of Condition (2) for rule R05

:goal {

eq contcont(< sND, (cap(dependsOn,idCP,closed,idND) sCP), sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R06

:goal {

eq contcont(< sND, (cap(dependsOn,idCP,open,idND) sCP), sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R07

:goal {

119

eq contcont(< sND,

(cap(dependsOn,idCP,scp,idND) sCP),

(req(dependsOn,idRQ,unbound,idND’) sRQ),

(rel(dependsOn,idRL,idCP,idRQ) sRL), mp >)

= true .

}

-- Goal of Condition (2) for rule R08

:goal {

eq contcont(< sND,

(cap(dependsOn,idCP,available,idND) sCP),

(req(dependsOn,idRQ,waiting,idND’) sRQ),

(rel(dependsOn,idRL,idCP,idRQ) sRL), mp >)

= true .

}

-- Goal of Condition (2) for rule R09

:goal {

eq contcont(< sND, (cap(connectsTo,idCP,closed,idND) sCP), sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R10

:goal {

eq contcont(< sND, (cap(connectsTo,idCP,open,idND) sCP), sRQ, sRL, mp >)

= true .

}

-- Goal of Condition (2) for rule R11

:goal {

eq contcont(< sND, sCP,

(req(connectsTo,idRQ,unbound,idND) sRQ),

(rel(connectsTo,idRL,idCP,idRQ) sRL),

(opMsg(idCP) mp) >)

= true .

}

-- Goal of Condition (2) for rule R12

:goal {

eq contcont(< sND, sCP,

(req(connectsTo,idRQ,waiting,idND) sRQ),

(rel(connectsTo,idRL,idCP,idRQ) sRL),

(avMsg(idCP) mp) >)

= true .

}

The rest of this section describes the proof of condition (2) for rule R06 as an example.

select ProofContCont .

-- Goal of Condition (2) for rule R06

:goal {

120

eq contcont(< sND, (cap(dependsOn,idCP,open,idND) sCP), sRQ, sRL, mp >)

= true .

}

Step 2-7: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.

:csp {

eq existND(sND,idND) = false .

eq sND = (node(tnd,idND,snd) sND’) .

}

-- Case 1: The node of capability idCP does not exist:

:apply (rd) -- 1

-- Case 2: The node of capability idCP exists:

Step 2-2: Split the current case for a rule into cases where the condition of the rule does or does
not hold.

:csp {

eq snd = initial .

eq snd = created .

eq snd = started .

}

-- Case 2-1: The node is initial:

:apply (rd) -- 2-1

-- Case 2-2: The node is created:

:apply (rd) -- 2-2

-- Case 2-3: The node is started:

Note that Case 2-1 and 2-2 are proved by the initial-cont lemma and the created-cont lemma
respectively.

Step 2-3: Split the current case into cases where predicate f inal does or does not hold in the
next state.
We know that f inal never holds in the next state of this case.

Step 2-4: Consider which rule can be applied to the next state.
Since the next state in Case 2-3 includes an available dependsOn capability with identifier
idCP, rule R08 can be applied to it.

Step 2-7: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.

:csp {

eq onlyOneRLOfCP(sRL,idCP) = false .

eq sRL = (rel(trl,idRL,idCP,idRQ) sRL’) .

}

-- Case 2-3-1: There is not a corresponding relationship:

:apply (rd) -- 2-3-1

-- Case 2-3-2: There is a corresponding relationship:

121

Step 2-5: Split the current case into cases which collectively cover the current case and the next
state of one of the split cases matches to LHS of the current rule.
LHS of rule R08 requires the type of the corresponding relationship to be dependsOn.

:csp {

eq trl = hostedOn .

eq trl = dependsOn .

eq trl = connectsTo .

}

-- Case 2-3-2-1: The relationship is hostedOn:

:apply (rd) -- 2-3-2-1

-- Case 2-3-2-2: The relationship is dependsOn:

... -- More consideration needed.

-- Case 2-3-2-3: The relationship is connectsTo:

:apply (rd) -- 2-3-2-3

Only Case 2-3-2-2 remains unproved.

Step 2-7: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.

-- Case 2-3-2-2: The relationship is dependsOn:

:csp {

eq existRQ(sRQ,idRQ) = false .

eq sRQ = (req(trl’,idRQ,srq,idND’) sRQ’) .

}

-- Case 2-3-2-2-1: There is not a corresponding requirement:

:apply (rd) -- 2-3-2-2-1

-- Case 2-3-2-2-2: There is a corresponding requirement:

... -- More consideration needed.

Only Case 2-3-2-2-2 remains unproved.

Step 2-5: Split the current case into cases which collectively cover the current case and the next
state of one of the split cases matches to LHS of the current rule.
LHS of rule R08 requires the type of the corresponding requirement to be dependsOn and the
local state of it to be waiting.

-- Case 2-3-2-2-2: There is a corresponding requirement:

:csp {

eq trl’ = hostedOn .

eq trl’ = dependsOn .

eq trl’ = connectsTo .

}

-- Case 2-3-2-2-2-1: The requirement is hostedOn:

:apply (rd) -- 2-3-2-2-2-1

-- Case 2-3-2-2-2-2: The requirement is dependsOn:

:csp {

eq srq = unbound .

eq srq = waiting .

eq srq = ready .

}

122

-- Case 2-3-2-2-2-2-1: The requirement is unbound:

... -- More consideration needed.

-- Case 2-3-2-2-2-2-2: The requirement is waiting:

:apply (rd) -- 2-3-2-2-2-2-2

-- Case 2-3-2-2-2-2-3: The requirement is ready:

:apply (rd) -- 2-3-2-2-2-2-3

-- Case 2-3-2-2-2-3: The requirement is connectsTo:

:apply (rd) -- 2-3-2-2-2-3

Only Case 2-3-2-2-2-2-1 remains unproved.

Step 2-4: Consider which rule can be applied to the next state.
Since the next state in Case 2-3-2-2-2-2-1 includes an unbound dependsOn requirement with
identifier idRQ, rule R07 can be applied to it.

Step 2-7: When there is a dangling link, split the current case into cases where the linked object
does or does not exist.

-- Case 2-3-2-2-2-2-1: The requirement is unbound:

:csp {

eq existND(sND’,idND’) = false .

eq sND’ = (node(tnd’,idND’,snd’) sND’’) .

}

-- Case 2-3-2-2-2-2-1-1: The node of requirement idRQ does not exist:

:apply (rd) -- 2-3-2-2-2-2-1-1

-- Case 2-3-2-2-2-2-1-2: The node of requirement idRQ exists:

... -- More consideration needed.

Only Case 2-3-2-2-2-2-1-2 remains unproved.

Step 2-5: Split the current case into cases which collectively cover the current case and the next
state of one of the split cases matches to LHS of the current rule.
The global state already matches to LHS of RO7.

Step 2-6: Split the current case into cases where the condition of the current rule does or does
not hold in the next state.

-- Case 2-3-2-2-2-2-1-2: The node of requirement idRQ exists:

:csp {

eq snd’ = initial .

eq snd’ = created .

eq snd’ = started .

}

-- Case 2-3-2-2-2-2-1-2-1: The node is initial:

:apply (rd) -- 2-3-2-2-2-2-1-2-1

-- Case 2-3-2-2-2-2-1-2-2: The node is created:

:apply (rd) -- 2-3-2-2-2-2-1-2-2

-- Case 2-3-2-2-2-2-1-2-3: The node is started:

:apply (rd) -- 2-3-2-2-2-2-1-2-3

All of the cases are successfully proved.

123

7.3.5 Proof of Sufficient Condition (3)
Step 3-0: Use natural number axioms.
The framework provides a module, NATAXIOM, which defines several natural number axioms to
be used for proof of condition (3). Module ProofMeasure should protecting import NATAXIOM
as well as ProofBase:

module! ProofMeasure {

protecting(ProofBase)

protecting(NATAXIOM)

Step 3-1: Define a predicate to be proved.

vars S SS : State

var CC : Bool

var N : Nat

pred mmes : State State .

eq mmes(S,SS)

= inv(S) and not final(S) implies m(S) > m(SS) .

pred mesmes : State .

eq mesmes(S)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC implies mmes(S,SS)) == true)

{ true }) .

}

Step 3-2: Begin with the cases each of which matches to LHS of each rule.
Here we show the proof of condition (3) for rule R06 as an example:

-- Goal of Condition (3) for rule R06

select ProofMeasure .

:goal {

eq mesmes(< sND, (cap(dependsOn,idCP,open,idND) sCP), sRQ, sRL, mp >)

= true .

}

Step 3-3: Split the current case for a rule into cases where the condition of the rule does or does
not hold.

:ctf {

eq state(getNode(sND,idND)) = started .

}

:apply (rd) -- 1

:apply (rd) -- 2

Condition (3) for other rules can be similarly proved.

7.4 Evaluation
Table 7.1 shows the number of proved goals and split cases to verify the liveness property of
setup operations of the TOSCA models consisting of four node types, three relationship types,

124

and twelve transition rules. Condition (1) requires only one goal and 6 cases whereas (2) and (3)
require 12 goals each of which is for each of 12 transition rules. Condition (4) also requires 12
goals for each of 12 invariants and (5) requires 144 goals for each combination of 12 invariants
and 12 rules. We need 25 problem specific lemmas each of which requires one goal. The
verification consists of totally 206 goals which are split into 918 cases.

Table 7.1: Number of goals and cases
targets goals (1 goal for each of ?) cases
Condition (1) 1 (condition) 6
Condition (2) 12 (12 rules) 115
Condition (3) 12 (12 rules) 30
Condition (4) 12 (12 invariants) 18
Condition (5) 144 (12 rules × 12 invariants) 443
Lemmas 25 (25 lemmas) 306
Total 206 918

Rate of Reuse

Table 7.2 shows the reuse rate of entities provided by the framework.

Table 7.2: Reuse rate of entities provided by the framework
entities total reused defined reuse rate
Sorts 37 37 0 100%
Operators 218 142 76 65%
Lemmas 38 13 25 34%

We need 37 sorts to represent the TOSCA structure models and all of them can be just
instantiated and renamed from predefined sorts provided by the framework.

We also need totally 218 predicates/operators not including definitions of proof constants.
104 of them can be just instantiated and renamed form predefined operators. 11 predicates, such
as initcont, contcont, and so on, are the same as in proofs of the CloudFormation example
and so can be copied from them. 27 state predicates are simple wrappers of other predicates,
such as wfs-* and inv-*.

Thereby, 76 operators are problem specific ones. 23 of them are constructors including
local state and type literals. 15 operators are selectors such as id, type, state, and ones for
links. The framework requires users to define 8 operators, i.e. init, final, wfs, inv, m, invK,
getAllNDInState, and DDSC.

Remaining 30 operators are truly problem specific, however almost all of them can be eas-
ily defined combining predefined operators and can be written in only several code lines. As
described in Section 7.1.1, there are three kinds of them:

• Check the consistency between messages and local states of objects, e.g. if there is an
available message then the corresponding capability should be available. Currently, the
framework provides no functionality to support messaging mechanisms.

125

• Check the consistency between capabilities and requirements connected by relationships.
The framework provides many operators and lemmas for links but does not provide those
for chains of links.

• Check other problem-specific constraints, e.g. every node should be hosted on exactly
one VM node.

The proofs of the TOSCA example need 38 lemmas, 13 of which are already proved by
the framework in a general level of abstraction. Reminding 25 lemmas are required to prove
condition (4) and (5) for invariants about three kinds of problem specific operators described
above.

Size of Codes

Table 7.3 shows the number of lines of codes we write to very the leads-to property. The “po-
tential” column shows the potential number of lines if we write proofs not using the framework.

Table 7.3: Lines of Codes
written potential reduce rate

Model 598 1784 66%
Structure 527 1713 69%
Behavior 71 71 0%

Proofs 3991 4516 12%

The representation of the TOSCA model in CafeOBJ consists of about 600 lines of codes
not including comment lines. About 530 lines of codes represent the structure model and 70
lines represent twelve rules. We estimate that the size of the structure model representation is
30% compared to when we would code it without using the framework, whereas the size of the
behavior model (transition rules) is the same.

The size of codes for proofs is essentially the same as when not using the framework because
reusable codes for proofs are 13 proved lemmas provided by the framework.

Consistent Structure of Proof

In addition to promoting reuse of abstract entities and lemmas, time and efforts to develop
proofs is radically reduced. Of course, it is mainly because this is our second experience of the
same problem, whereas the previous proof scores did not have any unified policies of splitting
and so were very difficult to understand even for us. The framework makes the new proof scores
become much clear, especially those of conditions (2)(3)(5) which should be proved for each of
twelve trans rules.

The recommended module structure also helps to make proof scores easier to understand.
We can instantly find the place where something is defined and can instantly imagine which
parts of the proof may be affected when something is modified.

Similarly as application frameworks of software development, our framework not only pro-
vides reusable entities to reduce the size of codes of proof but also assists users how to design
the models and how to systematically think and develop proofs, which brings high productivity
by minimizing development efforts and high maintainability by consistent structure of models
and proofs.

126

Chapter 8

Related Work and Conclusion

8.1 Related Work
Reuse of Abstract Proofs

There are very few existing researches on reuse of proofs. Abrial, J. and Hallerstede, S. [1]
proposed the generic instantiation approach for reuse of Event-B development. The idea of the
generic instantiation is that it is a sufficient condition to prove instantiated axioms in order to
reuse proofs of a generic machine and its refined machines. In more detail, let M and C be a
generic machine and a context respectively where M sees C. Let s, c, and P(s, c) be collections
of sets, constants, and axioms defined by C respectively. Similarly, let N and D be a concrete
machine and a context where N sees D. Let t, d, and Q(t, d) be collections of sets, constants,
and axioms defined by D respectively. Let M′ be a machine instantiated from M where s and
c are renamed as S (t, d) and C(t, d). Suppose that M′ refines N and sees D. Then, proving
Q(t, d)→ P(S (t, d),C(t, d)) is a sufficient condition in order to reuse invariants and theorems of
M and also of its refined machines without reproving them.

Silva, R. and Butler, M. J. [29] proposed to use theorem proving to ensure the sufficient con-
dition. Using the functionality to rename elements (Refactory plug-in) and compose machines
(Shared Event Composition plug-in) of the Rodin platform, they defined a way of instantiating
generic machines and generating the sufficient condition as a theorem of the concrete machine
whose proof obligation will be ensured by Rodin’s theorem prover.

Tikhonova, U., et al. [32] applied this idea to verify LACE DSL programs for controlling
lithography machines. They implemented transformation from LACE programs to Event-B
specifications which are composed by instantiated machines from general ones, however, the
generated theorems are too large for the automatic provers of Rodin to discharge. They say that
they do not expect their average user to prove these theorems using interactive provers, as it
requires knowledge of propositional calculus and understanding of proof strategies. Instead of
theorem proving, they employed evaluation of structural properties predicates in the animation
plug-in of Rodin.

Although reusing abstract entities by renaming and composing is a similar approach to our
framework, Silva, R. and Butler, M. J. did not provide any actually reusable entities whereas our
framework provides general templates, libraries, lemmas, and a procedure reusable in a specific
domain. Tikhonova, U., et al. applied the idea to the domain of the lithography machine control,
however, they did not reuse generally proved properties to prove the instantiated specifications.

127

Formal Approach for Cloud Orchestration

Salaün, G., et al. [9, 27, 28] designed a system setup protocol and demonstrated to verify a live-
ness property of the protocol using their model checking method. Although their setup protocol
is essentially the same as the behavior model of our TOSCA example in this dissertation, there
are four main differences.

Firstly, they proved one specific protocol whereas this dissertation proposes a general way
to specify, represent, and verify behavior of cloud orchestration and also shows that it can be
effectively applied to a model of standard specification language as a non-trivial case study.

Secondly, their protocol is based on a specific implementation which challenges distributed
management of cloud resources while current popular implementations, e.g. CloudFormation,
use centralized management. On the other hand, our model is rather abstract without assuming
distributed or centralized implementations.

Thirdly, they used model checking while we use theorem proving. They checked about
150 different models of system including from four to fifteen components in which from 1.4
thousand to 1.4 million transitions are generated and checked. They found a bug of their speci-
fication because checked models fortunately included error cases. The model checking method
can verify correctness of checked models and so they should include all of the boundary cases.
In our formalization, the specification itself is verified by interactive theorem proving in which
all of the boundary cases are necessary in consideration in a systematic way. It achieves struc-
tural and deep understanding that is required to develop trusted systems.

Finally, they called a function to check the acyclicness of resource dependency whenever a
transition occurs whereas our framework provides formalization, a template module, and lem-
mas to prove the invariant property of the acyclicness.

Dependency Management between Internal Resources

CloudFormation and OpenStack Heat can manage resources on the IaaS layer, however, they
support to manage dependencies between resources in VMs. For example, suppose a software
component (SC1) on a VM (VM1) can be activated only after waiting for activation of another
component (SC2) on another VM (VM2), CloudFormation requires a pair of special purpose re-
sources, namely, WaitCondition and WaitConditionHandle. VM1 should be declared to depend
on the WaitCondition resource. The corresponding WaitConditionHandle resource provides a
URL that should be passed to the script for initializing VM2. When SC2 is successfully acti-
vated, the script sends a success signal to the URL, which causes the WaitCondition become
active and then creation of dependent VM1 starts. This style of management includes several
problems. Firstly, it forces complicated and troublesome coding of operations. Secondly, al-
though only SC1 should wait for SC2, all the other components on VM1 are also forced to wait.
This causes unnecessary slowdown of system creation. Thirdly, it tends to make cyclic depen-
dencies. Suppose SC2 should also wait for another component SC3 on VM1. Although the
dependency among components, SC1, SC2, and SC3 is acyclic, the dependency between VMs is
cyclic. This may be solved by splitting VM1 to two VMs, one is for SC1 and another is for SC3,
but it causes increased cost and delayed creation. Our formalization can manage any types of
resources and solve this kind of problems in a smarter way because it can manage finer grained
dependencies, which is shown as invocation rules described in Section 7.2.

128

Next Version of OASIS TOSCA

OASIS TOSCA TC currently discusses the next version (v1.1) to define a standard set of nodes,
relationships, and operations [22]. It is planned to use state machines to describe behavior of
the standard operations, which is a similar approach as ours. However, the usage is limited to
clarify the descriptions of the standard and the way for type architects to define behavior of their
own types is out of the scope of standardization. We provide a way to specify behavior of types
and show that it can be used for verification.

8.2 Future Issues
While more than six seventh of operators and one third of lemmas for the TOSCA example
can be easily defined using predefined operators and proved lemmas, several extensions of our
framework are desired to further reduce problem specific coding and proving. The general
formalization for messaging mechanism and chains of links is required.

CloudFormation provides a default roll back mechanism when an operation failure occurs
but it requires manual operations when the roll back also fails. On the other hand, the current
version of TOSCA does not manage operation failures and it focuses on declaratively defining
expected configurations of cloud systems. A possible future extension of TOSCA may be to
define alternative configurations in failure cases, which our formalization can be extended to
handle.

In this dissertation, we explain our framework using examples of system setup operations of
cloud systems because cloud orchestration tools currently focus on them. However, TOSCA is
designed to be used for any types of system operations such as scale-out and scale-in. One of the
main difficulties to specify scaling operations is that they dynamically change the structure of
cloud systems, for which our framework should be extended from two points of view. Firstly,
some additional guidance is required to design state measuring functions, especially for the
case of scale-out where the number of resources in the system will increase. Secondly, while
the user of our framework is left responsible for proving the invariant property of noCycleC, it
may be not a trivial work as to dynamic structure. Some constraint should be introduced in the
cloud system structure to keep acyclicness of dependency. One possible solution is to assume
a partial order of types of objects and to allow transition rules to produce dependency only in
the descending order. Two techniques to prove the invariant property of noCycleC described in
Section 5.3.3 will be also effective for the solution.

Although the framework focuses on leads-to properties, which is one of the main contribu-
tion of this dissertation, safety properties are of another category of important properties that
automated system operations should have. The framework also supports to verify invariant
properties which may represent various safety properties of cloud orchestration, however, the
proof procedure of the framework should be extended to guide verification of typical safety
properties of this domain.

Finally, the case study shows the high reuse rate of the abstract entities and proved lemmas
provided by the framework, however, its high productivity and maintainability is based on the
subjective evaluation of the author. An objective bench marking by novice proof engineers is
necessary.

129

8.3 Conclusion
A general formalization of declarative cloud orchestration is proposed and a framework is pro-
vided for interactive developing proof scores. The framework provides (1) a general way to
formalize specifications of different kinds of cloud orchestration tools and (2) a procedure for
how to verifying leads-to properties, as well as invariant properties, of formalized specifica-
tions. It also provides (3) general templates and libraries of formal descriptions for specifying
orchestration of cloud systems and (4) proved lemmas for general predicates of the libraries to
be used for verification.

The framework has been applied to the verification of specifications of AWS CloudForma-
tion and also of OASIS TOSCA. The provided procedure systematically assists the verification
process and makes its generic part be routine work whose efforts are reduced by the provided
logic templates and predicate libraries. As a result, a verification engineer can concentrate
on the work specific to the individual problem, which brings high productivity by minimizing
development efforts and high maintainability by consistent structure of models and proofs.

A related work applied their model checking method to a typical problem in the domain
of cloud orchestration, in which many of finite-state systems were checked. Our framework
is more general to be applied to different kinds of models in the domain and to be used for
interactive theorem proving which can verify systems of arbitrary many number of states in a
significantly systematic way.

An example of usage of our formalization shows a general way to manage dependencies of
cloud resources which is a smarter one than that of the most popular tool, AWS CloudFormation.

It is also demonstrated that the framework can be used to specify, represent, and verify the
behavior models of the standard specification language, OASIS TOSCA, of cloud orchestration
where the standard has not yet provided any ways to do so.

The major contributions of this dissertation are that (1) it introduces the idea of frameworks
from software development to proof development which results in high productivity and high
maintainability of proofs and (2) it shows that the framework can be effectively applied to a
non-trivial problem, that is, to specify, represent, and verify the behavior models of the standard
specification language of cloud orchestration.

All of the CafeOBJ codes of the framework and example proof scores in this dissertation
can be downloaded at https://github.com/yuki-yoshida/JAIST.

130

https://github.com/yuki-yoshida/JAIST

Bibliography

[1] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instantia-
tion of discrete models: Application to event-b. Fundam. Inform., 77(1-2):1–28, 2007.

[2] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach, N. W. Schirmer, A. Starostin, and
A. Tsyban. Balancing the load: Leveraging semantics stack for systems verification.
Journal of Automated Reasoning: Special Issue on Operating Systems Verification, 42(2-
4):389–454, 2009.

[3] Amazon Web Services. AWS CloudFormation - Infrastructure as Code & AWS Resource
Provisioning. http://aws.amazon.com/cloudformation/, Accessed: 2016-06-10.

[4] CafeOBJ. CafeOBJ Algebraic Specification and Verification. https://cafeobj.org/,
Accessed: 2016-06-10.

[5] K. Mani Chandy and Jayadev Misra. Parallel program design - a foundation. Addison-
Wesley, 1989.

[6] Chef Software Inc. Chef |IT Automation for speed and awesomeness. https://www.
chef.io/chef/, Accessed: 2016-06-10.

[7] Clark Evans, Brian Ingerson, Oren Ben-Kiki. YAML Ain ’t Markup Language (YAML)
Version 1.2. http://www.yaml.org/spec/1.2/spec.html, Accessed: 2016-11-05.

[8] Manuel Aguilar Cornejo, Hubert Garavel, Radu Mateescu, and Noel De Palma. Specifica-
tion and verification of a dynamic reconfiguration protocol for agent-based applications.
In New Developments in Distributed Applications and Interoperable Systems, IFIP TC6 /
WG6.1 Third International Working Conference on Distributed Applications and Interop-
erable Systems, September 17-19, 2001, Kraków, Poland, pages 229–242, 2001.

[9] Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, and Noel De Palma. Self-
configuration of distributed applications in the cloud. In 2013 IEEE Sixth International
Conference on Cloud Computing, pages 668–675, 2011.

[10] Kokichi Futatsugi. Generate & check method for verifying transition systems in cafeobj.
In Software, Services, and Systems, LNCS 8950, pages 171–192. Springer, 2015.

[11] Kokichi Futatsugi, Daniel Găină, and Kazuhiro Ogata. Principles of proof scores in
CafeOBJ. In Theoretical Computer Science, volume 464, pages 90–112. Elsevier, 2012.

[12] German Federal Ministry of Education and Research (BMBF). The Verisoft Project.
http://www.verisoft.de, Accessed: 2017-01-02.

131

http://aws.amazon.com/cloudformation/
https://cafeobj.org/
https://www.chef.io/chef/
https://www.chef.io/chef/
http://www.yaml.org/spec/1.2/spec.html
http://www.verisoft.de

[13] Joseph Goguen. OBJ Family/ OBJ3 CafeOBJ Maude Kumo FOOPS Eqlog. http://
cseweb.ucsd.edu/˜goguen/sys/obj.html, Accessed: 2016-06-10.

[14] David Heinemeier Hansson. Ruby On Rails. http://rubyonrails.org/, Accessed:
2016-06-09.

[15] Internet Engineering Task Force (IETF). The JavaScript Object Notation (JSON) Data
Interchange Format. https://tools.ietf.org/html/rfc7159, Accessed: 2016-03-
26.

[16] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009, pages 207–220, 2009.

[17] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour analysis of software
architectures. In Software Architecture, TC2 First Working IFIP Conference on Software
Architecture (WICSA1), 22-24 February 1999, San Antonio, Texas, USA, pages 35–50,
1999.

[18] Yukihiro Matsumoto. Ruby Programming Language. https://www.ruby-lang.org/,
Accessed: 2016-11-05.

[19] Maude. The maude system. http://maude.cs.uiuc.edu/, Accessed: 2016-06-10.

[20] Netflix. Chaos Monkey. https://github.com/Netflix/SimianArmy/wiki/

Chaos-Monkey, Accessed: 2016-12-31.

[21] OASIS. TOSCA - Topology and Orchestration Specification for Cloud Applications Ver-
sion 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.
pdf, Accessed: 2016-06-10.

[22] OASIS. TOSCA Simple Profile in YAML Version 1.0. http://docs.

oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/

TOSCA-Simple-Profile-YAML-v1.0-cs01.pdf, Accessed: 2016-06-15.

[23] Object Management Group. Business Process Model & Notation - Resource Page. http:
//www.omg.org/bpmn/index.htm, Accessed: 2016-11-13.

[24] Puppet. Puppet - The shortest path to better software. https://puppet.com/, Accessed:
2016-06-10.

[25] Red Hat Inc. Ansible is Simple IT Automation. http://www.ansible.com/, Accessed:
2016-06-10.

[26] Emily Reinhold. Rewriting uber engineering: The opportunities microservices provide,
2016. https://eng.uber.com/building-tincup/, Accessed: 2016-04-20.

[27] Gwen Salaün, Fabienne Boyer, Thierry Coupaye, Noel De Palma, Xavier Etchevers, and
Olivier Gruber. An experience report on the verification of autonomic protocols in the
cloud. Innovations in Systems and Software Engineering, 9(2):105–117, 2013.

132

http://cseweb.ucsd.edu/~goguen/sys/obj.html
http://cseweb.ucsd.edu/~goguen/sys/obj.html
http://rubyonrails.org/
https://tools.ietf.org/html/rfc7159
https://www.ruby-lang.org/
http://maude.cs.uiuc.edu/
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.pdf
http://www.omg.org/bpmn/index.htm
http://www.omg.org/bpmn/index.htm
https://puppet.com/
http://www.ansible.com/
https://eng.uber.com/building-tincup/

[28] Gwen Salaün, Xavier Etchevers, Noel De Palma, Fabienne Boyer, and Thierry Coupaye.
Verification of a self-configuration protocol for distributed applications in the cloud. In
Assurances for Self-Adaptive Systems, LNCS 7740, pages 60–79. Springer, 2013.

[29] Renato Silva and Michael J. Butler. Supporting reuse of event-b developments through
generic instantiation. In Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, De-
cember 9-12, 2009. Proceedings, pages 466–484, 2009.

[30] JaeSeung Song, Tiejun Ma, and Peter Pietzuch. Towards automated verification of au-
tonomous networks: A case study in self-configuration. In Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2010 8th IEEE International Con-
ference on, pages 582–587. IEEE, 2010.

[31] The OpenStack project. Heat - OpenStack. https://wiki.openstack.org/wiki/
Heat, Accessed: 2016-06-10.

[32] Ulyana Tikhonova, Maarten Manders, Mark van den Brand, Suzana Andova, and Tom
Verhoeff. Applying model transformation and event-b for specifying an industrial DSL.
In Proceedings of the 10th International Workshop on Model Driven Engineering, Ver-
ification and Validation MoDeVVa 2013, co-located with 16th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2013), Miami, Florida,
October 1st, 2013., pages 41–50, 2013.

[33] Guido van Rossum. Python Software Foundation. https://www.python.org/, Ac-
cessed: 2016-11-05.

[34] Emil Vassev, Mike Hinchey, and Aaron J. Quigley. Model checking for autonomic systems
specified with ASSL. In First NASA Formal Methods Symposium - NFM 2009, Moffett
Field, California, USA, April 6-8, 2009., pages 16–25, 2009.

133

https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://www.python.org/

Publications

[1] Hiroyuki YOSHIDA, Kazuhiro OGATA, and Kokichi FUTATSUGI, Formalization and
Verification of Declarative Cloud Orchestration, Formal Methods and Software Engineer-
ing - 17th International Conference on Formal Engineering Methods, ICFEM 2015, Pro-
ceedings, Lecture Notes in Computer Science 9407, pp 33-49, Springer, Paris, France,
November 3-5, 2015

134

	Abstract
	Acknowledgments
	Introduction
	Correctness of Automated Operations of Cloud Systems
	Theorem Proving Framework for Cloud Orchestration
	Formal Verification of System Behavior
	Standard Specification Language of Cloud Orchestration

	Cloud Orchestration
	AWS CloudFormation
	Puppet, Chef, and Ansible
	OASIS TOSCA

	Preliminaries of CafeOBJ
	Modules and Equations
	Transition Rules
	Formalization of State Machines in CafeOBJ

	Search Predicates
	Formalization of Search Predicates

	Verification by Proof Scores
	Constructor-based Inductive Theorem Prover (CITP)

	Theorem Proving Framework
	Structure Models and Representations
	Behavior Models and Representations
	Simulation of Models

	General Templates and Predicate Libraries
	Template Modules of Objects
	Template Modules for Links
	Proved Lemmas for Predefined Predicates
	Basic Lemmas
	Lemmas for Link Predicates
	Cyclic Dependency Lemma

	Verification Procedure of Leads-to Properties
	Procedure: Definition of Predicates
	Procedure: Proof of Sufficient Condition (1)
	Procedure: Proof of Sufficient Condition (2)
	Procedure: Proof of Sufficient Condition (3)
	Procedure: Proof of Sufficient Condition (4) & (5)
	A Lemma for Using Cyclic Dependency Lemma
	Recommended Module Structure
	Considerations on Sound Proof Scores
	Usage of Equivalent Operator _ == _
	Usage of Search Predicates
	Usage of the Double Negation Idiom

	Applying the Framework to TOSCA Specifications
	Structure Model of TOSCA Templates
	Representation of the Example Structure Model

	Behavior Model of TOSCA Templates
	Representation of the Example Behavior Model

	Verification of TOSCA Templates
	Definition of Predicates
	Lemmas for Using Cyclic Dependency Lemma
	Proof of Sufficient Condition (1)
	Proof of Sufficient Condition (2)
	Proof of Sufficient Condition (3)

	Evaluation

	Related Work and Conclusion
	Related Work
	Future Issues
	Conclusion

	Publications

