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Abstract

In this thesis, we provide new computational bases for modal logic of multi-agent com-
munication. One of the most important aspects of multi-agent communication is changes
of agent’s knowledge or belief [11]. Nowadays, such changes are well-discussed in terms of
modal logic, as dynamic epistemic logic (DEL) [40]. Since DEL provides strong bases to
handle agent’s knowledge (or belief), development of such bases is an important subject
for further studies. In order to obtain such bases, we focus on the following issues in this
thesis.

The first issue is about the ordinary model-theoretic approach to Kripke semantics of
modal logic. For some situation, we should be careful for, e.g., calculation of the truth
of □p at a ‘dead-end’ world where we cannot access any world. Since some conditions or
necessary operations might be implicit in the proof of semantic properties, we sometimes
might overlook them under the model-theoretic approach. To cover such a point, we
propose to use a linear algebraic reformulation of Kripke semantics based on Fitting’s
approach [8]. His approach allows us to capture behaviors of the standard semantics in
terms of Boolean matrix calculation explicitly. We show a matrix representation of Kripke
semantics and its relevant properties, and also connect our argument to capture restricted
form of quantifications in first-order logic.

The second issue is a deficiency of studies of proof theory for dynamic logic of relation
changers (DLRC). DLRC is a recent approach to DEL and provides a general frame-
work to capture many dynamic operators of DEL in terms of relation changing operation
written by programs in propositional dynamic logic (PDL). However, the proof theory
for DLRC is not well-studied except the sound and complete Hilbert-style axiomatiza-
tion [39, 25]. Therefore, we propose the cut-free labelled sequent calculus for DLRC. We
show that our sequent calculus is equipollent with the above Hilbert-style axiomatization.

The third issue is about the integration of the notion of structures among agents
into DEL. When we study multi-agent communication system, we can naturally assume
the existence of communication channels between agents such as phone numbers and
email address. However, when we try to integrate such a notion of structures into DEL,
we cannot avoid facing some problems, e.g., the decidability of resultant logic(s) and
management of many indices, such as agent IDs and names of the possible worlds in our
syntax and its semantics. Therefore, we propose to implement the above notion as a
constant symbol, then we can define decidable and semantically complete doxastic logic
with communication channels and dynamic operators. Moreover, we also propose a linear
algebraic reformulation of these. Based on the framework of DLRC, we reformulate our
proposed semantics in terms of Boolean matrices. In order to reformulate our semantics,
we also provide matrix representation of programs in PDL.

KeyWords: Modal logic; Dynamic logic of relation changers; Linear al-
gebraic reformulation of Kripke semantics; Labelled sequent
calculus; Channel based agent communication
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Chapter 1

Introduction

1.1 Background and Motivation

The aim of this thesis is to provide new computational tools of modal logic and its
extensions, i.e., dynamic epistemic logics, in the context of multi-agent communication.
One of the most important aspects of multi-agent communication is changes of agent’s
knowledge or belief [11]. Nowadays, such changes are well-discussed in terms of modal
logic, as dynamic epistemic logic (DEL) [40].

Modal logic has its origin in the study of necessity and possibility by Aristotle, and the
modern systematic approach to this logic was investigated by Lewis and Langford [23].
Then, the modern semantical approach to modal logic was established by Kripke [21].1

Since his semantics can cover various modal logics, nowadays it is called Kripke semantics.
A key idea of his semantics can be summarized as follows. Let us consider a relational
structure consists of a set W of possible worlds and an accessibility relation R ⊆ W ×W .
If we have such a structure, we can define the truth condition of a formula A with the
modal operator □ which reflects the notion of necessity as follows:

□A is true at a world w ∈ W iff A is true at all possible worlds R-accessible from w.

Similarly, we can also define the truth condition of the dual modal operator ♢ of □ which
reflects the notion of possibility as follows:

♢A is true at a world w ∈ W iff A is true at some possible worlds R-accessible from w.

Studies of DEL can be regarded as a recent approach to multi-agent communication
on the modal logic bases. DEL is known as a large family of logics that extend modal
logic (in particular, epistemic logic) with dynamic operators. Such operators allow us
to capture changes of agent’s knowledge or belief over Kripke semantics (or its variant).
For example, Plaza proposed public announcement logic (PAL) [32] which is a variant of
DEL, and it has a public announcement operator. Using this operator, we can capture
how an agent’s knowledge change after a piece of information is publicly announced to all
the agents in terms of changes (or updates) of a relational structure in Kripke semantics.

Since the above approaches in DEL provide strong bases to handle agent’s knowledge
(or belief), development of these bases is an important subject for further studies, e.g.,

1We note that similar approach was also proposed by Tarski and Jónsson [18, 17].

1



Chapter 1. Introduction

theoretical studies of mathematical logic and practical applications of artificial intelli-
gence. Furthermore, some of the above bases will be important teaching topics for an
education of future students. It is similar to the ordinary teaching topics of mathematical
logic such as the truth-table calculation of propositional logic, etc.

This thesis is a challenge to find and provide candidates of such bases in terms of
modal logic of multi-agent communication. To provide such bases, this thesis focuses on
the following three questions.

Firstly, let us consider the ordinary model-theoretic approach to Kripke semantics.
When we study Kripke semantics of modal logic, we often use the model-theoretic ap-
proach. Based on the model-theoretic definition of Kripke semantics, we can prove various
semantic properties over Kripke semantics, e.g., the validity of a given formula. However,
there are some cases that we have to prove a given property(s) very carefully, e.g., the
truth of □p at a ‘dead-end’ world where we cannot access any world.

(Q1) What is the effective approach(es) to overcome such situation?

Secondly, let us see a recent study of proof theory for DEL. As a recent approach to
DEL, van Benthem and Liu proposed dynamic logic of relation changers (DLRC) [39, 25].
Their study provides a general framework to capture many dynamic operators of DEL in
terms of relation changing operation written by programs in propositional dynamic logic
(PDL). In addition, they also provided the sound and complete Hilbert-style axiomati-
zation for DLRC. However, except this axiomatization, proof theory for DLRC is not
well-studied.

(Q2) What kind of proof theory except Hilbert-style axiomatization can be provided to
DLRC?

Thirdly, let us consider logical studies of DEL for multi-agent communication system.
When we study (practical) multi-agent communication system, we can naturally assume
the existence of communication channels between agents such as phone numbers or e-mail
address [4, 13, 31, 20]. However, when we integrate such a notion among agents intoDEL,
we need to face some problems, e.g., the decidability of resultant logic(s) and management
of many indices, such as agent IDs and names of the possible worlds in our syntax and
its semantics.

(Q3) In order to overcome these issues on handling many indices, what kind of ap-
proach(es) can we take?

In the remaining of this chapter, let us see these matters in detail and why it is important
for us to solve these questions.

1.1.1 Semantical Study for Modal Logic

Traditionally, we usually use the model-theoretic approach to study Kripke semantics of
modal logic, and it is obviously important bases for many of us. So far, many semantic
properties over Kripke semantics are studied by this approach. Some properties of modal
logic are rather easy to understand for many of us since we can explain Kripke semantics

2



1.1. Background and Motivation

Figure 1.1: Example of Kripke Model

on a graphical representation of a Kripke model (see Figure 1.1). For example, we can
calculate the truth value of a formula over a graphical representation of a Kripke model
visually. Under this approach, however, there are some cases that we have to prove some
properties very carefully. For example, they may include the truth of □p at a ‘dead-
end’ world where we cannot access any world, and the verification of the Euclideanness
property (wRv and wRu jointly imply vRu, for all w, v, u). To show the truth of □p
at the dead-end world, we need to consider when the implication is vacuously true. We
sometimes might overlook such a case during our proof. In addition, the verification of
Euclideanness of a given frame might be the similar case. We need to check whether
the frame satisfies the condition of Euclideanness very carefully because v and u in the
above condition are possibly the same. If the cardinality of the domain of the model
is larger, such checking might be more involved. What we can observe is that some
conditions or necessary operations might be implicit in the proof of semantic properties,
and we sometimes might overlook them under the model-theoretic approach. We might
also face the similar situation to show a more general properties of modal logic such as
the soundness for Kripke semantics, etc.

1.1.2 Proof Theoretical Study for Dynamic Epistemic Logic

As we mentioned, DEL models changes of agent’s knowledge and belief over Kripke
semantics, and public announcement logic (PAL) is one of such well-studied variants.
PAL has a public announcement operator [!A] whose intuitive meaning is ‘after the

announcement that A, delete every non-A world from the domain of a Kripke model.’
As a result, all links to the non-A world is also deleted from the model. We may also
consider a variant of the public announcement operator, namely, the link-cutting public
announcement operator, which keeps the original domain but changes the given accessi-
bility (relation) alone. The link-cutting idea for public announcements was proposed and
employed in the context of update semantics by Gerbrandy and Groeneveld [12], doxastic
logic by van Ditmarsch et al. [40], preference logic and dynamic logic of relation changers
(DLRC) by van Benthem and Liu [39, 25]. As for the study by van Benthem and Liu,
the link-cutting idea is used to upgrade agent’s preferences. Their preference logic has the
preference modality [a] of agent a, and it is used to describe what is better2 to the agent.

2In their preference logic, the notion of better-ness for preference is supported by a binary preference
relation (i.e., reflexive and transitive relation) over worlds. Common notions of preference play between
propositions, but their approach emphasizes comparisons of worlds rather than propositions.

3



Chapter 1. Introduction

In particular, a formula [a]A reads ‘A is true at every world that is the agent a considers
as least as good as the current world.’ In this logic, dynamic operators can be regarded
as preference upgrade operators. For example, the link-cutting operator for public an-
nouncements is defined as a preference upgrade operator and called the link-cutting public
update operator. Intuitively, the update operator means ‘after the announcement that A,
remove all the links between A-worlds and non-A worlds from a given model.’ More-
over, the update operator becomes an instance of relation changers in DLRC. Relation
changers can be specified by programs in propositional dynamic logic (PDL) [14] without
the iteration operator ∗. We may also write many other types of dynamic operators by
programs, e.g., the link-adding operator. To acquire such a technically general result, we
note that a set of agents in preference logic is regarded as a set of atomic programs.

There are several studies on proof theory of DELs. The first Hilbert-style system
of PAL is proposed by Plaza [32]. There is another Hilbert-style system of PAL which
is provided by Wang and Cao [41]. Labelled tableau calculus for PAL is provided by
Balbiani et al. [3] and its generalized version for non-normal PAL is given by Ma et
al. [26]. The labelled formalism is also employed in sequent calculi for PAL such as
[28, 2]. In addition, Frittella et al. [9] also proposed a sequent calculus for DEL based on
display calculus which enjoys Belnap-style cut elimination. As for PDL, several cut-free
sequent calculi are also proposed in [6, 16, 27]. Finally, Hilbert-style axiomatization for
DLRC is provided by van Benthem and Liu [39, 25].

DLRC provides a general framework to capture many dynamic operators of DEL.
It seems that DLRC can cover a broader range of DEL. However, in contrast to its
potential, the proof theory forDLRC is not well-studied except the above axiomatization.

1.1.3 Logical Study for Multi-agent Communication

When we study multi-agent communication system, it forces us to manage an existence
of communication channels between agents, such as phone numbers or e-mail addresses,
although ordinary modal logic for the multi-agent system does not consider the notion
of a channel. However, we can naturally assume the existence of such channels between
agents, e.g., in [4, 13, 31, 20]. Communicability in those agents can be represented in a
directed graph, where a vertex is an agent and an edge a channel.

There are several studies integrating the notion of structure among agents into DEL.
Seligman et al. [35] proposed a two-dimensional modal logic which can handle both agents’
knowledge and a friendship relation between agents. Based on the two-dimensional frame-
work, Sano and Tojo [33] implemented the idea of communication channel in terms of a
modal operator and studied belief changes of agents, where they raised the following
requirements:

(R1) An effect of an informing action is restricted to some specified agents determined
by communication channels.

(R2) An existence of communication channel between agents depends on a given situation,
i.e., it is not constant or rigid for all situations.

One of the deficiencies of the two dimensional framework is that it is still unknown
whether the resulting logics in [35, 33] are decidable, i.e., whether we can effectively test
if a given formula is a theorem of a given logic. Another deficiency is a better formalism
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or notion for handling many indices such as agent IDs, names of possible worlds in our
syntax and its semantics. When we study modal logic (or DEL) for multi-agent system,
we need to manage such indices even if we do not consider the notion of channels.

1.2 Our Proposals

In the previous section, we have seen the background of our questions. In this section, we
present our proposals to solve such questions. Our solutions provide new bases of modal
logic of multi-agent communication.

1.2.1 Linear Algebraic Semantics for Modal Logic and Dynamic
Logic of Relation Changers (Chapters 3 and 4)

As for a solution of our question (Q1) described in Section 1.1.1, we propose to use
Fitting’s linear algebraic approach to Kripke semantics [8]. A key idea of his approach is
to represent an accessibility relation R by a Boolean square matrix and a valuation V (p) of
an atomic variable p by a Boolean column vector, provided the cardinality of the domain
is finite.3 As a result, we may compute the truth set of a formula by calculations over
Boolean matrices. For example, the truth set of ♢p is calculated by the multiplication of
the square matrix of R and the vector of V (p). Moreover, we may also verify the frame
property of a given frame by the calculation of matrices. Since these calculations are
based on the truth-table calculation of propositional logic, we can regard the calculations
as an extended version of truth-table calculation. As a result, we can handle conditions
such as a given model and operations during our proof explicitly. In addition, we may
replace operations over the quantifications and the binary relation of first-order logic by
the truth-table calculation of propositional logic and elementary calculations over Boolean
matrices of linear algebra. Moreover, this extension allows us to calculate some restricted
forms of quantifications (in Kripke semantics) without bound variables of first-order logic.

In connection with our question (Q2), we also propose to extend this approach to
capture DLRC [39, 25]. Based on the above result, we extend the linear algebraic re-
formulation of Kripke semantics of modal logic to handle relation changers of DLRC
that allows us to capture many dynamic operators of DEL in terms of relation changing
operation(s). In addition, we can show the soundness theorem of the known Hilbert-style
axiomatization of DLRC [39, 25] in terms of Boolean matrices. As a result, we can write
and capture the proof of the soundness by simple equations over Boolean matrices.

Here, in order to clarify the position of our linear algebraic approach to Kripke se-
mantics in this thesis, we summarize the other previous works as follows. Liau [24]
introduced Boolean matrix operations for multiple agents’ belief reasoning, revision, and
fusion. Based on the matrix representation of belief states, he proposed a belief logic and
its algebraic semantics. Similarly, Fusaoka et al. [10] introduced real-valued matrix oper-
ation for qualitative belief change in a multi-agent system. Based on the above studies,
Tojo [37] proposed notions of Boolean matrices and vectors for the simultaneous informing

3We note that this assumption is often justified because most of the well-known modal logics, for
example, KT, S4 and S5, enjoy the finite model property, i.e., A is the theorem of a modal logic Λ iff A
is valid for all finite models for the logic Λ.

5



Chapter 1. Introduction

action with communication channels. He showed that the notions of matrices could rep-
resent a public announcement [32] and a consecutive message passing. It can be regarded
as an application of the linear algebraic approach to multi-agent communication. Then,
Hatano et al. extended Tojo’s idea to provide rigorous definitions in [15]. They proposed
a decidable and semantically complete multi-agent doxastic logic with communication
channels and its dynamic extensions with two informing action operators. With the help
of van Benthem and Liu’s idea of relation changer [39, 25], their dynamic operators can
be regarded as program terms in propositional dynamic logic. Afterward, they provided
a linear algebraic reformulation of the proposed semantics. In addition, a supporting
software based on the above idea is also provided. Our proposal here expands Hatano
et al.’s work [15] into DLRC. In connection with spatial logics and linear algebra, we
refer to a survey by van Benthem and Bezhanishvili [38]. In the survey, they mentioned
connections between modal logic and linear algebra over vector spaces Rn. Different from
our approach, they did not provide Kripke semantics in terms of Boolean matrices.

Finally, we comment a relevant study by Berghammer and Schmidt [5] to ours in
terms of relational algebra. They proposed a relational algebraic approach to investigate
finite models of non-classical logics such as multi-modal logics with common knowledge
operators and computational tree logic. They interpret the logics in relation algebra with
transitive closures whose representation is based on Boolean matrices. They also present
applications of their tool RELVIEW based on the above idea for finite model checking tasks,
e.g., the muddy children puzzles.

Their study seems very close to ours, although their approach is different from ours
since they simply used Boolean matrices as an input and output interface to their com-
putation system and did not compute the matrices directly.4 For example, they defined
a ‘composition’ of two Boolean square matrices which corresponds to two accessibility
relations by a componentwise relational composition, although we define it by a multi-
plication of Boolean matrices. Another difference is that, in this thesis, we have more
uniform list of the matrix representation of frame properties than that of Berghammer
and Schmidt [5] and two types of correspondence between modal axioms and their matrix
representations.

1.2.2 Cut-free Labelled Sequent Calculus for Dynamic Logic of
Relation Changers (Chapter 4)

As for a solution of our question (Q2) explained in Section 1.1.2, we propose the cut-free
labelled sequent calculus for DLRC. Similarly to [28, 2], our sequent calculus employs
labelled formalism based on Kripke semantics, but it is extended to cover the notion
of programs of PDL. This is because we can capture behaviors of semantic objects
such as the truth of a formula at a certain world and links of an accessibility relation
by corresponding syntactic objects explicitly. Labelled expressions are the most basic
component of labelled sequent calculus. For example, for PDL [27], labelled expressions
consist of:

x : A xRαy x = y

4Relations can be represented by Boolean matrices [34], although ordinary works of relational formal-
ization do not employ such representation, e.g., a study of relational formalization of non-classical logics
by Orlowska [30].
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where x and y are variables, and α is a program of PDL. We emphasize that these
components are syntactic objects. An expression x : A means that ‘A formula A holds
at state x,’ xRy means that ‘there is a link from x to y of program α,’ and x = y means
that ‘state x equals state y.’ Based on these components, we can define labelled sequent
calculus for PDL. The above feature allows us to analyze behaviors of syntactic proof
corresponding to some semantic proof of the validity of a formula explicitly. We extend
the above approach to handle relation changers of DLRC. In order to assure adequacy
of our calculus, we have to show the soundness and completeness of our proof system. As
a result, we will show that our sequent calculus is equipollent with the known sound and
complete Hilbert-style system of DLRC [39, 25].

1.2.3 Linear Algebraic Semantics for Multi-agent Communica-
tion (Chapter 5)

As for a solution of our question (Q3) described in Section 1.1.3, we propose to implement
the notion of communication channel as a constant symbol cab whose reading is ‘there is
a channel from agent a to agent b,’ instead of a channel as a modal operator. Based
on this approach, we can define decidable and semantically complete doxastic logic with
communication channels and dynamic operators. As for dynamic operators, we implement
two instances of relation changers [39, 25] whose effect is restricted to some specified
agents determined by communication channels, i.e., these operators satisfy requirement
(R1) described in Section 1.1.3.

Moreover, in order to handle many indices appears in our proposed logic effectively,
we propose a linear algebraic representation of these. That is, with the help of the
framework of DLRC [39, 25], we reformulate our semantics of the above doxastic logic
and its dynamic extensions in terms of boolean matrices. In order to reformulate our
semantics, we also provide a matrix representation of a program in PDL. Finally, we
present matrix calculation algorithms for these operators.

We note that this proposal can be regarded as an application of the idea of the lin-
ear algebraic approach to DLRC (cf. Section 1.2.1) and integration of the notion of
communication channels into DEL (this section).

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces background needed
in the rest of the thesis. Note that this chapter does not contain our original works.
Section 2.1 recalls (multi-) modal logic which is a fundamental basis of the other log-
ics presented in this thesis. We introduce syntax, Kripke semantics, frame definability,
Hilbert-style axiomatization and the completeness theorem of modal logic. Section 2.2
also recalls definitions and notions of PDL and its iteration-free fragment. We use this
fragment as a basis of DLRC in the later of this thesis. Section 2.3 reviews PAL as
a reference of dynamic approach to modal logic. Finally, Section 2.4 introduces basic
notions and properties of Boolean matrices for our linear algebraic semantics.

Chapter 3 concerns linear algebraic semantics for modal logic. First, we review the
ordinary approach to study modal logic in Section 3.1. Second, we describe a matrix rep-
resentation of Kripke semantics and its relevant properties, and also connect our argument
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to the concept of quantification in first-order logic in Section 3.2.
Chapter 4 studies both linear algebraic semantics and cut-free labelled sequent calculus

for dynamic logic of relation changers. We provide our syntax and semantics for DLRC
in Section 4.1. In Section 4.2, we present our linear algebraic reformulation of Kripke
semantics for DLRC. We establish the soundness theorem in terms of Boolean matrices
(Section 4.2.2). Then, we describe our sequent calculus GDLRC from a labelled formalism
for that in Section 4.3 . In this section, we establish the following two theorems; all
theorems of HDLRC are derivable in GDLRC (Theorem 4.11) and our sequent calculus
enjoys the cut elimination theorem (Theorem 4.19). In Section 4.3.4, we also establish
that our sequent calculus is sound for Kripke semantics (Theorem 4.23). Finally, we
conclude that our sequent calculus is equipollent with the Hilbert-style axiomatization
HDLRC (Corollary 4.24).

Chapter 5 investigates an extended instance of DLRC that deals with multi-agent
communication. First, we introduce a static logic of agents’ belief equipped with the
notion of channel between agents in Section 5.1. In this section, we establish the fol-
lowing theorems; all the valid formulas on all the finite Kripke models for our syntax is
completely axiomatizable (Theorem 5.11) and our proposed axiomatization is decidable
(Theorem 5.12). In order to deal with changes of agents’ belief via a communication
channel, Section 5.2 provides two dynamic operators to our syntax of static logic with
sets of reduction axioms. Moreover, for a better formalism for handling these semantics
efficiently, we consider a linear algebraic representation of these. Following the idea ex-
plained in Chapter 4, we reformulate our proposed semantics of the doxastic static logic
and its dynamic extensions in terms of boolean matrices in Section 5.3. With the help
of [39, 25], we can regard our two dynamic operators as programs in PDL and also re-
formulates the semantics of two operators in terms of Boolean matrices. Finally, we use
our boolean matrix reformulation to define algorithms for checking agent’s belief at a
given world and for rewriting a given Kripke model by one of our dynamic operators in
Section 5.4.
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Chapter 2

Preliminaries

This chapter introduces technical background that is needed in this thesis. In Section 2.1,
we recall (multi-) modal logic as a starting point of our studies. We introduce syntax,
Kripke semantics, frame definability, Hilbert-style axiomatization and the completeness
theorem of modal logic. Then, in Section 2.2, we also recall propositional dynamic logic
and its iteration free fragment. Besides syntax and Kripke semantics, we briefly review
the sound and complete Hilbert-style axiomatizations of them. In Section 2.3, we review
public announcement logic. Since PAL is based on epistemic logic, we define Kripke
semantics over epistemic models. We also introduce the sound and complete Hilbert-style
axiomatization for PAL. Finally, in Section 2.4, we introduce basic notions and properties
of Boolean matrices for our linear algebraic semantics.

2.1 Modal logic

2.1.1 Syntax and Kripke Semantics

First of all, we recall the ordinary multi-modal logic. Amodal language LML consists of the
following vocabulary: a countably infinite set PROP of (atomic) propositional variables,
Boolean connectives ¬,→, and a finite set MOD of modal operators. If the cardinality of
MOD is 1, we say that the language LML is mono-modal; otherwise multi-modal. A set
FormML of formulas of the language LML are defined as follows:

FormML ∋ A ::= p | ¬A | (A → A) | □A

where p ∈ PROP and □ ∈ MOD. We will omit the parentheses whenever convenient. In
addition, we introduce abbreviations for the conjunction ∧, the disjunction ∨, the logical
equivalence ↔, the truth ⊤, the falsity ⊥, and the dual operator ♢ of □ as follows:

A ∨B := (¬A) → B, A ∧B := ¬(A → ¬B),
⊤ := A → A, ⊥ := ¬⊤,
♢A := ¬□¬A, A ↔ B := (A → B) ∧ (B → A).

A formula □A stands for ‘it is necessary that A holds,’ and ♢A stands for ‘it is possible
that A holds.’ We use Γ,Σ to denote a set of formulas. Then, the conjunction of all
formulas in a finite set Γ is denoted by

∧
Γ where

∧
Γ := ⊤ if Γ = ∅.

A (Kripke) frame F is a tuple (W, (R□)□∈MOD) where W is a non-empty set, called the
domain of F, and each R□ ⊆ W × W is a binary relation on W , called an accessibility
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relation. The elements of the domain of a frame are called possible worlds, states, etc. Let
F = (W, (R□)□∈MOD) be a frame. We use the notation |F| to mean the domain W of F.
Then, we also use the infix notation wR□v to mean wR□v. If the domain W of F is a finite
set, we say that F is a finite frame. And if we talk about mono-modal language, we simply
denote a frame by (W,R) and the following definitions for our semantics are defined over
such R. A (Kripke) model M is a tuple (F, V ) where F is a frame and V : PROP → P(|F|)
is a valuation function which assigns a subset of the domain |F| of F to an atomic variable.
Given any model M = (F, V ), the domain |F| of M is also denoted by |M|.

Given any model M = (W, (R□)□∈MOD, V ), any possible world w ∈ W , and any
formula A, the satisfaction relation M, w |= A (read: A is true at w in M) is defined as
follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬A iff M, w ̸|= A,
M, w |= A → B iff M, w |= A implies M, w |= B,
M, w |= □A iff for all v ∈ W : wR□v implies M, v |= A.

By definition, the satisfaction relations for ∧, ∨, ↔, ⊤, ⊥, and ♢ are derived as follows:

M, w |= A ∧B iff M, w |= A and M, w |= B,
M, w |= A ∨B iff M, w |= A or M, w |= B,
M, w |= A ↔ B iff M, w |= A is equivalent to M, w |= B,
M, w |= ⊤,
M, w ̸|= ⊥,
M, w |= ♢A iff for some v ∈ W : wR□v and M, v |= A.

The truth set JAKM is defined by JAKM = {w ∈ W | M, w |= A }. By definition, we can
obtain the following:

JpKM := V (p),J¬AKM := W \ JAKM,JA → BKM := W \ JAKM ∪ JBKM,J□AKM := {w ∈ W | wRv implies v ∈ JAKM for all v ∈ W }.

The notion of validity is defined over the various levels of semantical structure as follows:

• A is valid in a model M (notation: M |= A) if M, w |= A for all worlds w ∈ W .

• A is valid in a frame F (notation: F |= A) if (F, V ) |= A for all valuations V for F.

• Γ is valid in a frame F (notation: F |= Γ) if F |= A for all A ∈ Γ.

• A is valid in a class M of models (notation: M |= A) if M |= A for all M ∈ M.

• A is valid in a class F of frames (notation: F |= A) if F |= A for all F ∈ F.

In connection with the validity of a formula and the truth set of that, the following
proposition holds:

Proposition 2.1. Given any model M and any formula A,

M |= A ↔ B iff JAKM = JBKM.
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2.1.2 Frame Definability

Given a set Γ of formulas of FormML, the frame class F is defined by Γ if for all frames F,

F |= Γ iff F ∈ F.

For simplicity, if the set Γ is the singleton {A }, we say that the frame class F is defined
by A (or A defines F). We also say that the frame class F is (modally) definable if there
exists some set Γ such that F is defined by Γ.

What kind of class(es) of frames are defined by which formulas? In modal logic,
we can consider various conditions over an accessibility relation R□ for a given frame
(W, (R□)□∈MOD). For example, Table 2.1 shows the well-known (frame) conditions on an
accessibility relation and their names. These conditions are also known as frame properties
since their names and conditions are also used in the level of frames. For example, given
a frame (W, (R□)□∈MOD), if each accessibility relation R□ is reflexive, we also say that the
frame (W, (R□)□∈MOD) is reflexive. Then, we can consider about classes of frames which
satisfy these frame properties. It is known that such classes are defined by well-known
formulas as shown in the next proposition.

Proposition 2.2. Each formulas listed in Table 2.1 defines a class of all frames which
satisfy the corresponding frame property.

Table 2.1: Correspondence between Frame Properties and Formulas

Name Frame Condition Formula
Reflexive ∀w(wRw) T□ □p → p
Symmetric ∀w, v(wRv implies vRw) B□ p → □♢p
Transitive ∀w, v, u(wRv&vRu imply wRu) 4□ □p → □□p
Serial ∀w∃v(wRv) D□ □p → ♢p
Euclidean ∀w, v, u(wRv&wRu imply vRu) 5□ ♢p → □♢p

Definition 2.3 (Lemmon-Scott Formulas [22, 7]). Let k, l,m, n ∈ ω. Given any formula
A, □nA is inductively defined by □0A := A and □n+1A := □□nA. Similarly, ♢nA is also
defined by ♢0A := A and ♢n+1A := ♢♢nA. Then, the Lemmon-Scott formulas G(k,l,m,n)

are defined as follows:
♢k□lp → □m♢np.

From the Lemmon-Scott formulas, we can obtain every formulas listed in Table 2.1 as
shown in Table 2.2.

Definition 2.4 (Lemmon-Scott Property). Let k, l,m, n ∈ ω. Given any binary relation
R, Rn is inductively defined by wR0v iff w = v and Rn+1 = Rn ◦ R where ◦ is the
relational composition. The Lemmon-Scott property C(k,l,m,n) is defined as follows:

∀u, v, w((wRkv&wRmu) implies ∃x(vRlx&uRnx)).

Proposition 2.5. Let k, l,m, n ∈ ω. The Lemmon-Scott formulas G(k,l,m,n) define a class
of all frames which satisfy the Lemmon-Scott property C(k,l,m,n).
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Table 2.2: Instances of the Lemmon-Scott Formulas

Formulas k l m n
T□ □p → p 0 1 0 0
B□ p → □♢p 0 0 1 1
4□ □p → □□p 0 1 2 0
D□ □p → ♢p 0 1 0 1
5□ ♢p → □♢p 1 0 1 1

Table 2.3: Hilbert-style Axiomatization HK

(Taut) All instances of propositional tautologies
(K□) □(A → B) → (□A → □B) (□ ∈ MOD)
(MP) From A and A → B, infer B
(Nec□) From A, infer □A (□ ∈ MOD)

2.1.3 Hilbert-style Axiomatization HKΣ and Completeness

In Table 2.3, we show the Hilbert-style system HK. The axioms and rules in Table 2.3 are
given as schemes. Schemes are rules standing for infinitely many instances. For example,
K□ □(p → q) → (□p → □q) (where p, q ∈ PROP and □ ∈ MOD) is a possible instance of
the scheme (K□) □(A → B) → (□A → □B), (□ ∈ MOD). In order to distinguish names
of schemes from those of instance, we use the bold font with parenthesis for schemes,
e.g., (K□) is a name of scheme □(A → B) → (□A → □B) (□ ∈ MOD), and use the
normal font for an instance on propositional variables, e.g., K□ is a name of instance
□(p → q) → (□p → □q). In what follows, we consider a more general version of HK
which consists of axioms and rules of HK with additional axiom schemes.

Definition 2.6. Let □ ∈ MOD. Axiom schemes based on T□, B□, 4□, D□ and 5□ are
defined as follows:

(T□) □A → A
(B□) A → □♢A
(4□) □A → □□A
(D□) □A → ♢A
(5□) ♢A → □♢A

Table 2.4: Various Systems of HKΣ

Name Axiom Schemes Σ
HK ∅
HKT { (T□) | □ ∈ MOD }
HS4 { (T□), (4□) | □ ∈ MOD }
HS5 { (T□), (4□), (5□) | □ ∈ MOD }
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Definition 2.7. Let Σ ⊆ {T□,B□, 4□,D□, 5□ | □ ∈ MOD }. Then, let also Σ ⊆ {(T□), (B□),
(4□), (D□), (5□) | □ ∈ MOD} be the finite set of axioms schemes corresponding to Σ. The
Hilbert-style system HKΣ is an axiomatic extension of HK that is the system HK extended
with Σ.

Based on HKΣ, we can obtain a variety of systems that contain additional schemes
in Σ defined the above. In Table 2.4, we show the well-known systems and their names
as examples.

Definition 2.8. A derivation in HKΣ is a finite sequence of formulas which consist
of an instance of an axiom or the result of applying an inference rule to formulas that
occur earlier. If a formula A occurs in the last of a derivation in HKΣ, we say that A is
derivable (or is a theorem) in HKΣ and denote ⊢HKΣ A. Given a set Γ∪{A } ⊆ FormML

of formulas, if there exists some finite subset Γ′ ⊆ Γ such that ⊢HKΣ (
∧

Γ′) → A, we say
that A is derivable from Γ in HKΣ and denote Γ ⊢HKΣ A.

A derivation in HKΣ in what follows, we regard Σ ⊆ {T□,B□, 4□,D□, 5□ | □ ∈ MOD}
till end of this section.

Theorem 2.9 (Soundness). Let Σ ⊆ {T□,B□, 4□,D□, 5□ | □ ∈ MOD } and FΣ be the
class of all frames defined by Σ (cf. Proposition 2.2). For all A ∈ FormML,

if ⊢HKΣ A, then FΣ |= A.

Definition 2.10. Given Γ ⊆ FormML. We say that Γ is HKΣ-inconsistent if Γ ⊢HKΣ ⊥
and that Γ is HKΣ-consistent if Γ is not HKΣ-inconsistent, i.e., Γ ̸⊢HKΣ ⊥. Then, Γ
is maximal if A ∈ Γ or ¬A ∈ Γ for all A ∈ ML. Γ is a maximally HKΣ-consistent set
(notation: HKΣ-MCS ) if Γ is HKΣ-consistent and maximal.

Proposition 2.11. Let Γ be any HKΣ-MCS.

1. Γ ⊢HKΣ A iff A ∈ Γ.

2. if A ∈ Γ and ⊢HKΣ A → B, then B ∈ Γ.

3. ¬A ∈ Γ iff A ̸∈ Γ.

4. A → B ∈ Γ iff A ̸∈ Γ or B ∈ Γ.

Lemma 2.12 (Lindenbaum’s Lemma). If Γ is any HKΣ-consistent set, then there exists
an HKΣ-MCS Γ+ such that Γ ⊆ Γ+.

Definition 2.13. For an axiomatic extension HKΣ, the canonical model MHKΣ =
(WHKΣ, (RHKΣ

□ )□∈MOD, V
HKΣ) is defined by:

• WHKΣ := {Γ | Γ is an HKΣ-MCS }, i.e., WHKΣ is the set of all HKΣ-MCSs.

• ΓRHKΣ
□ ∆ iff □A ∈ Γ implies A ∈ ∆ for all formulas A.

• Γ ∈ V HKΣ(p) iff p ∈ Γ.

Lemma 2.14. Given any HKΣ-MCS Γ,

if □A ̸∈ Γ, then {¬A } ∪ {B | □B ∈ Γ } ̸⊢HKΣ ⊥.
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Lemma 2.15 (Truth Lemma). Let Γ be any HKΣ-MCS. For all A ∈ FormML,

MHKΣ,Γ |= A iff A ∈ Γ.

Lemma 2.16. Let MHKΣ = (WHKΣ, (RHKΣ
□ )□∈MOD, V

HKΣ) be the canonical model for an
axiomatic extension HKΣ. For all A ∈ FormML,

if ̸⊢HKΣ A, then MHKΣ ̸|= A.

Proof. Suppose that ̸⊢HKΣ A. By supposition of ̸⊢HKΣ A, {¬A } is HKΣ-consistent, i.e.,
{¬A } ̸⊢HKΣ ⊥. By Lemma 2.12, there exists an HKΣ-MCS Γ such that {¬A } ⊆ Γ. By
Lemma 2.15, we obtain MHKΣ,Γ |= ¬A, i.e., MHKΣ,Γ ̸|= A, as desired. □

Lemma 2.17. Let MHKΣ = (WHKΣ, (RHKΣ
□ )□∈MOD, V

HKΣ) be the canonical model for an
axiomatic extension HKΣ.

ΓRHKΣ
□ ∆ iff A ∈ ∆ implies ♢A ∈ Γ for all A.

Lemma 2.18. Given the canonical model MHKΣ = (WHKΣ, (RHKΣ
□ )□∈MOD, V

HKΣ) for an
axiomatic extension HKΣ,

1. If ⊢HKΣ □A → A for all formulas A, then RHKΣ
□ is reflexive.

2. If ⊢HKΣ A → □♢A for all formulas A, then RHKΣ
□ is symmetric.

3. If ⊢HKΣ □A → □□A for all formulas A, then RHKΣ
□ is transitive.

4. If ⊢HKΣ □A → ♢A for all formulas A, then RHKΣ
□ is serial.

5. If ⊢HKΣ ♢A → □♢A for all formulas A, then RHKΣ
□ is Euclidean.

Theorem 2.19 (Completeness). Let Σ ⊆ {T□,B□, 4□,D□, 5□ | □ ∈ MOD } and FΣ be
the class of frames defined by Σ. For all A ∈ FormML,

if FΣ |= A, then ⊢HKΣ A.

Proof. By contraposition. Our goal is to show that if ̸⊢HKΣ A, then F ̸|= A for some
F ∈ FΣ. Suppose that ̸⊢HKΣ A. It suffices to construct a counter model (F, V ) such that
(F, V ), w ̸|= A for some w ∈ |F|. By our supposition and Lemma 2.16, we get MHKΣ ̸|= A,
i.e., (WHKΣ, (RHKΣ

□ )□∈MOD, V
HKΣ) ̸|= A. It suffices to show (WHKΣ, (RHKΣ

□ )□∈MOD) ∈ FΣ.
Since FΣ is the class of all frames which satisfy each frame property corresponding to each
formula of Σ, our goal is to show that (WHKΣ, (RHKΣ

□ )□∈MOD) satisfies each frame property
corresponding to each formula of Σ. This is already shown by Lemma 2.18.

□

2.2 Propositional Dynamic Logic

2.2.1 Syntax and Kripke Semantics

This section reviews the syntax and the semantics of regular propositional dynamic logic
(PDL) [14] and its iteration-free fragment. We extend multi-modal logic to handle the
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Table 2.5: Reading of Programs

Program Reading
α ∪ β ‘choose either α or β nondeterministically

and execute the chosen one.’
α; β ‘execute α, then execute β.’
?A ‘test A, proceed if A is true, fail otherwise.’
α∗ ‘execute α a nondeterministically

chosen finite number of times (zero or more).’

notion of programs that allows us to capture changes in dynamic systems. Therefore, this
logic is an important basis for dynamic logic of relation changers to handle dynamics of
agent’s knowledge (or belief). Besides PROP, let AP = { a, b, . . . } be a finite set of atomic
programs. In addition to the propositional connectives, the language LPDL of (regular)
propositional dynamic logic has the following operators: the (sequential) composition ;,
the nondeterministic choice ∪, the iteration ∗, the test ?, and the necessity [α] for program
α. The operators ; ,∪, ∗ and ? are called program constructors. We regard a finite setMOD
as { [a] | a ∈ AP }. A sets FormPDL of formulas and PR of programs over the language
LPDL are defined by simultaneous induction as follows:

FormPDL ∋ A ::= p | ¬A | (A → A) | [α]A
PR ∋ α ::= a | α ∪ α | α;α |?A | α∗

where p ∈ PROP and a ∈ AP. A formula [α]A stands for ‘after executing α, it is necessary
that A.’ Then, readings of programs are shown in Table 2.5.

We introduce abbreviations for the conjunction ∧, the disjunction ∨, the logical equiv-
alence ↔, the truth ⊤ and the falsity ⊥ as did in Section 2.1.1 and also introduce the
dual operator ⟨α⟩ of [α] by ⟨α⟩A := ¬[α]¬A. In addition, we can write some standard
programming constructs by definitional abbreviation. For example,

if A then α else β
def⇔ (?A;α) ∪ (?¬A; β),

while A do α
def⇔ (?A;α)∗;¬A.

We also define PDL− as iteration-free (or star-free) fragment of PDL. That is, the
language LPDL− and FormPDL− does not contain ∗ and [α∗]A, respectively. In what
follows, we regard definitions for PDL− are also provided by those for PDL except ∗.

The semantics of PDL comes from that of modal logic (cf. Section 2.1.1). A model
M is a tuple (W, (Ra)a∈AP, V ) where W is a non-empty set of states, Ra ⊆ W ×W is an
accessibility relation of atomic program a, and V : Prop → P(W ) is a valuation function.

Given any model M = (W, (Ra)a∈AP, V ), any state w ∈ W , and any formula A, the

15
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satisfaction relation M, w |= A is defined by simultaneous induction as follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬A iff M, w ̸|= A,
M, w |= A → B iff M, w |= A implies M, w |= B,
M, w |= [α]A iff for all v ∈ W : wRαv implies M, v |= A,
wRα∪βv iff wRαv or wRβv,
wRα;βv iff for some u ∈ W : wRαu and uRβv,
wR?Av iff w = v and M, w |= A,
wRα∗v iff for some 0 ≤ n,wRαnv,

where αn is n-fold composition of program α defined inductively by:

α0 := ?⊤,
αn+1 := α;αn.

The truth set JAKM is defined by JAKM = {w ∈ W | M, w |= A }. Then, we can obtain
the following: JpKM := V (p),J¬AKM := W \ JAKM,JA → BKM := (W \ JAKM) ∪ JBKM,J[α]AKM := {w ∈ W | JαKM(w) ⊆ JAKM },JaKM := Ra,Jα ∪ βKM := JαKM ∪ JβKM,Jα; βKM := JαKM ◦ JβKM,J?AKM := { (w, v) | w = v and w ∈ JAKM },Jα∗KM := JαKnM for some 0 ≤ n.

where R◦S is the relational composition of R with S, i.e., (w, v) ∈ R◦S iff (w, u) ∈ R and
(u, v) ∈ S for some u ∈ W , JαKM(w) := { v ∈ W | (w, v) ∈ JαKM }, and JαKnM is defined
by JαK0M := J?⊤KM and JαKn+1

M := JαKM ◦ JαKnM. The notion of validity is almost identical
to that of modal logic (see Section 2.1.1) where Kripke model M is extended to handle
(W, (Ra)a∈AP, V ). Except for this point, the notion of validity is also defined over the
various levels of semantical structure, as in Section 2.1.1.

2.2.2 Hilbert-style Axiomatization HPDL

Table 2.6 shows the sound and complete Hilbert-style axiomatization HPDL [14]. Simi-
larly to HKΣ, axioms and rules are given as schemes (cf. Section 2.1.3). Then, the sound
and complete axiomatization HPDL− is the result of dropping axioms ([∗]) and (Ind[α])
from HPDL. Definitions of a derivation in HPDL (or HPDL−) and theorem in HPDL
(or HPDL−) are provided by the same manner as in HKΣ in Section 2.1.3. We denote
A is a theorem in HPDL (or HPDL−) by ⊢HPDL A (or ⊢HPDL− A).

Here, we state the soundness and the completeness of HPDL as follows.

Theorem 2.20. Let A be a formula in FormPDL and M be the class of all models.

M |= A iff ⊢HPDL A.
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It is known that the completeness of HPDL can be shown by filtration technique
with nonstandard Kripke frame. The readers are referred to [14] for the details. It is
also known that the soundness and completeness also hold for HPDL−. Since HPDL−

becomes important in this thesis, we review the completeness of HPDL− in the remaining
of this section. We can show the completeness of HPDL− by the method of the canonical
model (cf. Section 2.1.3). Let Γ ⊆ FormPDL− . We use the same manner in Section 2.1.3
to define the consistency (Γ is HPDL−-consistent), the maximality (Γ is maximal), and
a maximally consistent set (Γ is a maximally HPDL−-consistent set).

Definition 2.21. For HPDL−, the canonical model MHPDL−
= (WHPDL−

, (RHPDL−

a )a∈AP, V
HPDL−

)
is defined by:

• WHPDL−
:= {Γ | Γ is an HPDL−-MCS }.

• ΓRHPDL−

a ∆ iff [a]A ∈ Γ implies A ∈ ∆ for all formulas A.

• Γ ∈ V HPDL−
(p) iff p ∈ Γ.

In addition to Proposition 2.11 in terms of HPDL−, we need the following proposition.

Proposition 2.22. Let Γ be any HPDL−-MCS.

1. [α ∪ β]A ∈ Γ iff [α]A ∈ Γ and [β]A ∈ Γ.

2. [α; β]A ∈ Γ iff [α][β]A ∈ Γ.

3. [?B]A ∈ Γ iff (B → A) ∈ Γ.

Lemma 2.12 (Lindenbaum’s Lemma) also holds in terms of HPDL−.

Lemma 2.23 (Lindenbaum’s Lemma). If Γ is any HPDL−-consistent set, then there
exists an HPDL−-MCS Γ+ such that Γ ⊆ Γ+.

Then, we extend Lemma 2.15 (Truth Lemma) to handle programs in PDL− as follows.

Lemma 2.24 (Truth Lemma). Let Γ be any HPDL−-MCS.

1. MHPDL−
,Γ |= A iff A ∈ Γ for all A ∈ FormPDL−.

2. RHPDL−

α = SHPDL−

α for all α ∈ PR, where ΓSHPDL−

α ∆ iff [α]A ∈ Γ implies A ∈ ∆
for all A ∈ FormPDL−.

Theorem 2.25. Let A be a formula in FormPDL− and M be the class of all models.

M |= A iff ⊢HPDL− A.

Proof. Since the soundness is easy to establish, we focus on the completeness with respect
to the class of all models. We show the completeness by contraposition. Our goal is to
show that if ̸⊢HPDL− A, then M ̸|= A. With the help of the canonical model for HPDL−

and Lemmas 2.23 and 2.24, we can show that if ̸⊢HPDL− A, then MHPDL− ̸|= A (i.e.,
M ̸|= A) by the same argument of Lemma 2.16 in terms of HPDL−. □
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Table 2.6: Hilbert-style Axiomatization HPDL

(Taut) All instances of propositional tautologies
(K[α]) [α](A → B) → ([α]A → [α]B)
([∪]) [α ∪ β]A ↔ [α]A ∧ [β]A
([; ]) [α; β]A ↔ [α][β]A
([?]) [?B]A ↔ (B → A)
([∗]) A ∧ [α][α∗]A ↔ [α∗]A
(Ind[α]) A ∧ [α∗](A → [α]A) → [α∗]A
(MP) From A and A → B, infer B
(Nec[α]) From A, infer [α]A

2.3 Public Announcement Logic

2.3.1 Syntax and Kripke Semantics

Public announcement logic (PAL) [32] is a variant of dynamic epistemic logics (DELs)
that models changes of agent’s knowledge and belief over Kripke semantics. This section
reviews the syntax and the semantics of PAL. We introduce the logic based on the
standard epistemic logic of knowledge. Besides PROP, let G be a finite set of agents.
In addition to the propositional connectives, the language LPAL of public announcement
logic consists of the following operators: knowledge operators [Ka] (a ∈ G) and public
announcement operator [!A]. Then, we regard a finite set MOD as { [Ka] | a ∈ G }. A
set FormPAL of formulas of the language LPAL is defined by simultaneous induction as
follows:

FormPAL ∋ A ::= p | ¬A | (A → A) | [Ka]A | [!A]A,

where p ∈ PROP and a ∈ G. The knowledge operators [Ka] comes from epistemic logic.
Formulas [Ka]A and [!B]A stand for ‘agent a knows that A,’ and ‘after the truthful
announcement that B, A holds.’ We introduce defined abbreviations for the conjunction
∧, the disjunction ∨, the logical equivalence ↔, the truth ⊤ and the falsity ⊥ as did in
Section 2.1.1 and also introduce the dual operator ⟨Ka⟩ of [Ka] by ⟨Ka⟩A := ¬[Ka]¬A.

In PAL, we use Kripke model M = (W, (Ra)a∈G, V ), but all the accessibility relations
Ra(a ∈ G) satisfy reflexivity, transitivity and symmetric, i.e., each Ra is the equivalence
relation. Such a definition of the model comes from the semantics of epistemic logic,
and the model is called an epistemic model. In what follows, we denote the equivalence
relation Ra by ∼a, and the model by (W, (∼a)a∈G, V ) explicitly. We also use infix notation
w ∼a v to mean (w, v) ∈∼a.

Given any epistemic model M = (W, (∼a)a∈G, V ), any state w ∈ W , and any formula
A, the satisfaction relation M, w |= A is defined as follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬A iff M, w ̸|= A,
M, w |= A → B iff M, w |= A implies M, w |= B,
M, w |= [Ka]A iff for all v ∈ W,w ∼a v implies M, v |= A,
M, w |= [!B]A iff M, w |= B implies M!B, w |= A,
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where M!B = (W !B, (∼!B
a )a∈G, V

!B) is defined by:

W !B := JBKM = {w ∈ W | M, w |= B },
∼!B

a := ∼a ∩ JBKM × JBKM,
V !B(p) := V (p) ∩ JBKM.

The notion of validity is defined over various levels of semantic structure, as shown in Sec-
tion 2.1.1. The difference is that we are using epistemic model. Namely, every accessibility
relation is defined as an equivalence relation.

2.3.2 Hilbert-style Axiomatization HPAL

The sound and complete Hilbert-style system HPAL is shown in Table 2.7 [40].1 From
Table 2.7, we can find axiom schemes T[Ka], 4[Ka] and 5[Ka]. These axioms come from
axiom schemes T, 4 and 5 that we explained in Section 2.1.2 (cf. Table 2.1), but they
are bit extended to handle knowledge operators [Ka] (a ∈ G). Hence, we can regard the
system HPAL as an axiomatic extension of HS5 in terms of knowledge operators [Ka]
(a ∈ G). We use the same manner in Section 2.1.3 to define a derivation and a theorem
in HPAL. Then, we denote A is a theorem in HPAL by ⊢HPAL A.

In what follows of this section, we review the standard argument of completeness in
PAL that was shown in [40].

Definition 2.26. The translation t : FormPAL → FormML for PAL is defined by:

t(p) = p,
t(¬A) = ¬t(A),
t(A → B) = t(A) → t(B),
t([Ka]A) = [Ka]t(A),
t([!A]p) = t(A → p),
t([!A]¬B) = t(A → ¬[!A]B),
t([!A](B → C)) = t([!A]B) → t([!A]C),
t([!A][Ka]B) = t(A → [Ka][!A]B),
t([!A][!B]C) = t([!(A ∧ [!A]B)]C).

Lemma 2.27. Given any formula A ∈ FormPAL,

⊢HPAL A ↔ t(A).

Theorem 2.28. Let A be a formula in FormPAL and F be the class of frames defined by
{T[Ka], 4[Ka], 5[Ka] | a ∈ G and [Ka] ∈ MOD } (see also Table 2.1). Then, let M be the class
of models which consists of models (F, V ) for all frames F ∈ F and all valuations V .

M |= A iff ⊢HPAL A.

Proof. We divide our proof into the soundness part (the direction from right to left) and
the completeness part (from left to right) as follows.

Soundness part We show that if ⊢HPAL, then M |= A for all A. One can easily check
that each axiom in HPAL is valid in the class M of all epistemic models and each
rule in HPAL preserves the validity in M.

1There are another Hilbert-style axiomatization for PAL [41] which does not use recursion axioms.
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Table 2.7: Hilbert-style Axiomatization HPAL

(Taut) All instances of propositional tautologies
(K[Ka]) [Ka](A → B) → ([Ka]A → [Ka]B)
(T[Ka]) [Ka]A → A
(4[Ka]) [Ka]A → [Ka][Ka]A
(5[Ka]) ¬[Ka]A → [Ka]¬[Ka]A
([!]pr) [!A]p ↔ (A → p)
([!]¬) [!A]¬B ↔ (A → ¬[!A]B)
([!] →) [!A](B → C) ↔ ([!A]B → [!A]C)
([!][Ka]) [!A][Ka]B ↔ (A → [Ka][!A]B)
([!][!]) [!A][!B]C ↔ [!A ∧ [!A]B]C
(MP) From A and A → B, infer B
(Nec[Ka]) From A, infer [Ka]A

Completeness part We show that if M |= A, then ⊢HPAL A for all A. We can reduce
the completeness of HPAL to that of HS5 (cf. Theorem 2.19 in Section 2.1.3) in
terms of knowledge operators [Ka] (a ∈ G). Fix any formula A and suppose that
M |= A. By the soundness part and Lemma 2.27, we get M |= A ↔ t(A). Then,
by this and our assumption of M |= A, we obtain that M |= t(A). By this and the
completeness of HS5 (Theorem 2.19) in terms of knowledge operators [Ka] (a ∈ G),
we have that ⊢HS5 t(A). Since HPAL is an axiomatic extension of HS5, we also have
that ⊢HPAL t(A). Finally, by Lemma 2.27 and ⊢HPAL t(A), we obtain ⊢HPAL A.

□

2.4 Boolean Matrix

Mathematical operations and some properties of Boolean matrices are slightly different
from real-valued matrices. For example, the inverse operation of multiplication seems
not well-defined,2 and the addition of the same matrices satisfies idempotence, i.e., the
resultant matrix of the addition is equal to the original one.

Throughout this paper, we use the symbol M , to denote a Boolean matrix, i.e., each
element of the matrix belongs to the set { 0, 1 }. We use the symbol M as a superscript M

with a symbol or expressions (e.g., XM and (X + Y )M) to denote a matrix representation
of them. If the representing matrix is clear from the context, we omit ‘M ’ from such ‘XM ’
and just write ‘X’. Moreover, M(m× n) means the set of all (Boolean) m× n matrices,
where m and n are the numbers of rows and columns, respectively. In the usual sense,
1× n and m× 1 matrices are called Boolean row vector and column vector, respectively.
Let M be an m × n matrix, 1 ≤ i ≤ m and 1 ≤ j ≤ n. M(i, j) denotes the element in
the i-th row and j-th column entry. Moreover, E, 0 and 1 denote the unit square matrix

2The inverse operation of the Boolean addition, i.e., subtraction is not well-defined over Boolean
values. Consequently, subtraction for a Boolean matrix cannot make sense.
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(E(i, j) = 1 if i = j; 0 otherwise), complete matrix (1(i, j) = 1 for all i and j), and zero
matrix (0(i, j) = 0 for all i and j), respectively.3

The Boolean operations of addition ‘+’, multiplication ‘·’ and complement ‘−’ for
the element of Boolean matrices correspond to the logical operations of ‘∨’, ‘∧’ and ‘¬’,
respectively. These operations are also defined to the level of matrices. Let M,M1,M2 ∈
M(m×n). For all i and j, the complement M , the addition M1+M2 and the conjunction
M1 ∧M2 are defined by:

M(i, j) := M(i, j),
(M1 +M2)(i, j) := M1(i, j) +M2(i, j),
(M1 ∧M2)(i, j) := M1(i, j) ·M2(i, j).

Given any M1 ∈ M(m× l) and any M2 ∈ M(l× n), the multiplication M1M2 of matrices
is defined by:

(M1M2)(i, j) =
∑

1≤k≤n
(M1(i, k) ·M2(k, j)).

The transposition tM is defined as: tM(i, j) = M(j, i) for all i and j. In the below,
we summarize basic properties of addition, multiplication and transposition of Boolean
matrices.

Proposition 2.29. For any M ∈ M(m× n),

1. M = M +M .

2. M = EM .

3. M = 0+M .

4. M = 1 ∧M .

5. 0 = M ∧M .

6. 0 = 0 ∧M .

7. 1 = M +M .

8. 1 = 1+M .

Proposition 2.30. For any N1, N2 ∈ M(l ×m) and M1,M2,M3 ∈ M(m× n),

1. M = t(t(M)).

2. t(M1 +M2) =
tM1 +

tM2.

3. t(M1M2) =
tM2

tM1.

4. M1 +M2 = M2 +M1.

5. M1 ∧M2 = M2 ∧M1.

6. (M1 +M2) ∧M3 = (M1 ∧M3) + (M2 ∧M3).

3Dimensions of those matrices depend on the context.
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7. N1 ∧ (M1 +M2) = (N1 ∧M1) + (N1 ∧M2).

8. (N1 +N2) ∧M1 = (N1 ∧M1) + (N2 ∧M1).

9. M1 ∧M2 = M1 +M2.

10. M1 +M2 = M1 ∧M2.

One can easily notice that the last two items of the above proposition are the well-
known fact of De Morgan’s law. These facts will be used in Section 3.2.2 to show some
propositions of frame properties in matrix representation. For a more general introduction
to Boolean matrix theory, see [19].
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Linear Algebraic Semantics for
Modal Logic

In this chapter, we present linear algebraic reformulation of Kripke semantics. In Sec-
tion 3.1, we recall the ordinary model-theoretic approach to Kripke semantics of modal
logic. Next, in Section 3.2, we present a matrix representation of Kripke semantics and
its relevant properties, and also connect our argument to the concept of quantification in
first-order logic.

3.1 The Model-theoretic Approach to Kripke Seman-

tics

In order to explain the idea of linear algebraic approach to Kripke semantics of modal logic
shortly, we will stick with mono-modal language in this chapter (see also Section 2.1.1).
As for syntax, we use a finite set PROP of propositional variables and a set MOD = {♢ }
of a modal operator ♢. Then, we define a set FormML of formulas as follows:

FormML ∋ A ::= p | ¬A | (A ∨ A) | ♢A

where p ∈ PROP and ♢ ∈ MOD. For simplicity, we omit ♢ ∈ MOD till the end of this
chapter. As for semantics, we use the simple notation (W,R) for any Kripke frame and
(W,R, V ) for any Kripke models. Hence, definitions of the satisfaction relation M, w |=
A and the validity are also provided with respect to the above frames and models (cf.
Section 2.1.1).

In order to compare calculations of the ordinary model-theoretic approach with that
of our linear algebraic approach later, let us recall the model-theoretic approach with the
following example which demonstrates the ordinary way to calculate the truth value of a
formula.

Example 3.1. Recall Figure 1.1 of Section 1.1.1, i.e., we define the model M by:

W = {w1, w2, w3 },
R = {(w1, w1), (w1, w2), (w1, w3), (w2, w2), (w3, w3)},

V (p) = {w2 }.
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By definition, it is clear that ♢p is true at w1 and w2, i.e., M, w1 |= ♢p and M, w2 |= ♢p,
respectively. The proof of M, w1 |= ♢p by the model-theoretic approach is proceed as
follows. Let us rewrite our goal M, w1 |= ♢p by definition as:

For some v ∈ W (w1Rv and M, v |= p).

By the clause for propositional variable, this is equivalent to:

For some v ∈ W (w1Rv and v ∈ V (p)).

By definition, V (p) = {w2 }. In order to obtain our goal, it suffices to know if (w1, w2) ∈
R. Since this trivially holds, we conclude M, w1 |= p, as required.

In this example, we used the notion of the existential quantification in our proof. Using
our linear algebraic approach, we can show M, w1 |= ♢p without such a notion. In other
words, the above model-theoretic proof can be represented by a simple calculation over
Boolean matrices. We will see the details in Example 3.3 (Section 3.2.1).

3.2 Linear Algebraic Reformulation of Kripke Seman-

tics

3.2.1 Kripke Semantics in Matrices

In this section, we establish a connection between Kripke semantics and its matrix rep-
resentation with the help of Fitting’s idea [8]. Regarding a possible world as a vertex
and a tuple (v, u) in an accessibility relation as a directed edge, a frame (W,R) forms a
directed graph. If the set of possible worlds is finite, the graph can be represented by a
finite adjacency matrix 1 with boolean values, i.e., Boolean matrix. In order to focus our
discussion on such matrices, we use the following convention.

Convention 3.2. In what follows in this chapter, we restrict our attention to the finite
Kripke models.

Informally, Fitting’s idea of reformulation of Kripke semantics can be summarized as
follows: An accessibility relation (or frame) forms a directed graph and can be represented
by a Boolean matrix. A valuation of a proposition (or a truth set of formula) can also be
represented by a Boolean (column) vector. Then, propositional connectives correspond to
Boolean operations over Boolean vectors, and ♢ operator corresponds to the multiplication
of a Boolean matrix and a vector.

Example 3.3. Recall a Kripke model M = (W,R, V ) in Example 3.1 (see also Figure 3.1).
A Boolean vector which represents the truth set of ♢p can be obtained by a multiplication
of the matrix corresponding to R and the column vector corresponding to V (p):1 1 1

0 1 0
0 0 1

01
0

 =

11
0

 .

1Let V = { v1, . . . , vn } and E ⊆ V ×V , we can form a finite directed graph (V,E). Then the adjacency
matrix of E is a n× n square matrix such that its component M(i, j) = 1 if there is an edge from vertex
i to vertex j, and 0 otherwise.
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Figure 3.1: Kripke Model and its Boolean Matrix Representation

The resultant vector exactly corresponds to the truth set J♢pKM = {w1, w2 } in Exam-
ple 3.1.

We also emphasize that the calculation of the semantics can be regarded as an extension
of truth-table calculation. A truth value of ♢p at w1 is computed by a multiplication of
the row vector corresponding to w1 row of the square matrix of R and the column vector
of V (p): [

1 1 1
] 01

0

 = 1.

The resultant value also corresponds to the result of M, w1 |= ♢p in Example 3.1.

Now, let us introduce our linear algebraic reformulation of Kripke semantics in full
detail. Let F = (W,R) be a (finite) Kripke frame and suppose that the cardinality of
W is m and W = {w1, w2, . . . , wm }. A matrix representation of an accessibility relation
RM ∈ M(m×m) is defined by

RM(i, j) =

{
1 if (wi, wj) ∈ R,

0 if (wi, wj) ̸∈ R.

Intuitively, a row of the matrix means ‘from’ world and a column means ‘to’ world. In
order to obtain a matrix representation of Kripke model, it suffices to consider a valuation
function in terms of Boolean matrices. Given a Kripke model M = (F, V ) and an atomic
proposition p ∈ Prop, a matrix representation of V (p) is defined to be a column vector
V (p)M ∈ M(m× 1) such that

V (p)M(i) =

{
1 if wi ∈ V (p),

0 if wi ̸∈ V (p).

The semantic clauses of each formula A can be defined by the computation over the
column vector(s) ∥A∥M ∈ M(m× 1) inductively as follows:

∥p∥M := (V (p))M ,

∥¬A∥M := ∥A∥M,
∥A ∨ A∥M := ∥A∥M + ∥A∥M,
∥♢A∥M := RM∥A∥M,

where p ∈ Prop. For simplicity, we drop the subscript ‘M’ from ∥A∥M if the underlying
model is clear from the context. We say that A is valid on M if ∥A∥M = 1. Note that we
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Chapter 3. Linear Algebraic Semantics for Modal Logic

may extend our syntax and semantics to a multi-modal language. Let G be a finite set of
indices. For syntax, we use ♢a (Boxa) operator in multi-modal language instead of ♢ (□)
operator and the other operators are the same as mono-modal language. For semantics,
an accessibility relation R is replaced by (Ra)a∈G, where Ra ⊆ W ×W , and their matrix
representation becomes RM

a . Therefore, ∥♢aA∥ := RM
a ∥A∥. In order to focus our

attention on elementary properties of linear algebraic reformulation of Kripke semantics,
we will not treat the multi-modal extension in this chapter. Instead, in Chapter 4, we
will explain linear algebraic approach to dynamic logic of relation changers that is based
on multi-modal language, i.e., propositional dynamic logic without iteration operator.

Proposition 3.4. Given any finite Kripke model M and any formula A of FormML,

(JAKM)M = ∥A∥M.

Example 3.5. Let RM be a 2× 2 matrix, p ∈ Prop and V (p)M be a 2× 1 matrix. Let us
write

RM :=

[
r11 r12
r21 r22

]
and V (p)M :=

[
x
y

]
.

Then,
∥□p∥ = ∥¬♢¬p∥ = ∥♢¬p∥

= RM∥¬p∥ = RMV (p)M

=

[
r11 r12
r21 r22

] [
x
y

]
=

[
r11 r12
r21 r22

] [
x
y

]
=

[
r11x+ r12y
r21x+ r22y

]
=

[
(r11 + x) · (r12 + y)
(r21 + x) · (r22 + y)

]
.

Thus far, we have explained our linear algebraic reformulation of Kripke semantics.
From Examples 3.3 and 3.5, we can observe that calculations of the truth set of a formula
are based on truth-table calculation of propositional logic. Indeed, if we focus on propo-
sitional connectives and restrict the cardinality of the domain to 1, a matrix calculation
of the truth set of a formula is essentially the same as the truth-table calculation of the
formula. In this sense, we may regard matrix calculations of the truth set of a formula as
an extended version of truth-table calculation of propositional logic. In the next section,
we will explain that another type of an extended truth-table calculation, namely, the
verification of frame properties in terms of Boolean matrices.

3.2.2 Modal Axioms in Matrices

In order to discuss various frame properties, we now explain that relational union and
composition can be defined by matrix addition and multiplication as follows: given two
binary relations R, S ⊆ W ×W ,

(R ∪ S)M = RM + SM , (R ◦ S)M = RMSM

where R◦S = { (w, v) | (w, u) ∈ R and (u, v) ∈ S for some u ∈ W }. From an educational
perspective, the reader may wonder if we should teach relation algebra after introducing
our linear algebraic approach to modal logic since these operations are originally from
Tarski’s relation algebra [36]. However, this is not the case. Even if our target students
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3.2. Linear Algebraic Reformulation of Kripke Semantics

do not have prior knowledge of relational composition and union, we can introduce these
operations just as the corresponding operations to matrix addition and multiplication.
Therefore, we may even introduce the notions from Tarski’s relation algebra based on
Boolean matrices.

In addition to the above correspondences, the following equivalences will be helpful in
proving correspondence between modal formulas and their matrix representations (e.g.,
Proposition 3.11 in Section 3.2.2).

Proposition 3.6. Given any R, S ⊆ W ×W ,

R ⊆ S iff S = R ∪ S iff SM = RM + SM .

Now we can reformulate well-known frame properties in terms of Boolean matrices.

Proposition 3.7. Every frame property listed in Table 3.1 can be reformulated in terms
of Boolean matrix with elementary matrix calculations as in the Table 3.1 where 1 means
a column vector of all 1s.

Table 3.1: Frame Properties and Their Matrix Representations

Name Frame Condition Formula Matrix Reformulation
Reflexive ∀w(wRw) T □p → p R = R+E
Symmetric ∀w, v(wRv implies vRw) B p → □♢p R = tR (or R = tR+R)
Transitive ∀w, v, u(wRv&vRu imply wRu) 4 □p → □□p R = RR+R
Serial ∀w∃v(wRv) D □p → ♢p RtR = RtR+ E (or 1 = R1)2

Euclidean ∀w, v, u(wRv&wRu imply vRu) 5 ♢p → □♢p R = tRR+R

We can verify the five frame properties of a given frame in Table 3.1 in terms of
Boolean matrices.

Example 3.8. Recall a matrix representation of an accessibility relation R in Exam-
ple 3.1. For simplicity, we regard R as a square matrix of the relation. We can verify
whether R satisfies certain frame properties listed in Table 3.1 by the computation over
matrices. For example, let us check whether R satisfies transitivity. By R = RR+R, i.e.,1 1 1

0 1 0
0 0 1

 =

1 1 1
0 1 0
0 0 1

1 1 1
0 1 0
0 0 1

+

1 1 1
0 1 0
0 0 1



=

1 1 1
0 1 0
0 0 1

 .

2 What we found is a more general result than [5]. Their seriality is described by L ⊆ R;L where R
is an accessibility relation, L denotes the universal relation, and R;L denotes the relational composition
of R with L. The corresponding matrix representation of their seriality is L = RL where L and R are
unit square matrix of a relation. If the cardinality of the domain is 2, we can describe their seriality by
[11] = R [11] = [R1, R1].
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Hence, we may conclude that R satisfies transitivity. In a similar manner, we can also
check whether R satisfies the other properties. Since R = R+E and 1 = R1, R satisfies
reflexivity and seriality, respectively. However, by R ̸= tR, E ̸= tRR+E and R ̸= tRR+R,
this R does not satisfy symmetricity, and Euclideanness, respectively. Finally, we may
conclude that the model satisfies reflexivity, seriality, and transitivity.

Note that the verification of frame properties in Example 3.8 can also be regarded as
an extended truth-table calculation. This is because each verification of frame property
in Example 3.8 is based on Boolean matrix calculation.

Next, we will establish well-known implications among frame properties in terms of
Boolean matrices. In addition, we also show an ordinary proof for comparison.

Proposition 3.9. Reflexivity and Euclideanness jointly imply symmetry, i.e., R = R+E
and R = tRR +R jointly imply R = tR.

Proof. Firstly, we observe that if R is reflexive, then the transposition tR is also reflexive,
i.e., tR = tR + E. Secondly, we rewrite the equation of reflexivity, as follows:

R = R +E (by reflexivity)
= (tRR +R) +E (by Euclideanness)
= (tR +E)R +E
= tRR +E (by reflexivity of tR).

Afterward, we get tR = tRR + E by transposing both sides. Since both R and tR are
equal to tRR +E, we finally obtain R = tR. □

For comparison, we show an ordinary proof with quantifiers as follows. We show that for
any w, v ∈ W , wRv implies vRw. Fix any w, v such that wRv. By reflexivity, wRw. By
Euclideanness, we obtain vRw from wRv and wRw, as desired.

Proposition 3.10. Reflexivity and Euclideanness jointly imply transitivity, i.e., R =
R +E and R = tRR +R jointly imply R = RR +R.

Proof. We rewrite the equation of Euclideanness as follows.

R = tRR +R (by Euclideanness)
= RR +R (by Proposition 3.9).

□

We also show an ordinary proof with quantifiers as follows. We show that for any w, v, u ∈
W , wRv and vRu imply wRu. Fix any w, v such that wRv and vRu. By symmetry
(Proposition 3.9), vRw. By Euclideanness, we obtain wRu from vRw and vRu.

In the above ordinary proofs, we had to select the appropriate variables for every
application of the conditions of the frame properties. The selection of variables might
sometimes be a cause of an error in the proof. On the other hand, we did not need to
worry about the selection of variables in the above linear algebraic proofs.

In order to establish a relationship between modal axioms and frame properties, we
follow the idea of Lemmon-Scott axioms or Geach axioms [22, 7]. Namely, we show
that there are at least two types of correspondence between modal axioms and their
corresponding matrix representations in the Table 3.1. For simplicity, we are omitting
superscript M and regard R as a square matrix.
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Proposition 3.11. Let n,m, l, k ∈ N and p ∈ Prop. For all frames F = (W,R),

F |= ♢k□lp → □m♢np iff (tR)mRk +Rn(tR)l = Rn(tR)l.

Proof. Here R−1 denotes the inverse relation of R. We observe that t(RM) = (R−1)
M
.

Fix any frame F = (W,R).

F |= ♢k□lp → □m♢np,
iff F |= (♢−1)m♢k□lp → ♢np,
iff F |= (♢−1)m♢kp → ♢n(♢−1)lp,
iff (R−1)m ◦Rk ⊆ Rn ◦ (R−1)l,
iff (R−1)m ◦Rk ∪Rn ◦ (R−1)l = Rn ◦ (R−1)l.

This is equivalent to (tR)mRk +Rn(tR)l = Rn(tR)l. □

Using the above proposition, we can obtain matrix representations of reflexivity, sym-
metricity, transitivity, seriality, and Euclideanness in Table 3.1. In addition, we can obtain
another matrix representation of seriality, i.e., 1 = R1, by the following proposition.

Proposition 3.12. Let m ∈ N, p ∈ Prop and 1 be a vector of all 1s. For all frames
F = (W,R),

F |= □mp → ♢mp iff Rm1 = 1.

Proof. Fix any frame F = (W,R).

F |= □mp → ♢mp iff F |= ♢m¬p ∨ ♢mp,
iff F |= ♢m(¬p ∨ p),
iff F |= ♢m⊤ ↔ ⊤,
iff Rm1 = 1.

□

3.2.3 Quantifications in Matrices

So far we have explained the matrix reformulation of Kripke semantics in modal logic.
Now we begin to extend this approach to capture the behaviors of a universal quantifier
∀ and an existential quantifier ∃ in first-order logic.

Let us consider the case of the universal (or full) relation, i.e., R = W × W . Then,
the semantic clauses of □ and ♢ becomes:

M, w |= □A iff ∀v ∈ W (wRv implies M, v |= A),
M, w |= ♢A iff ∃v ∈ W (wRv and M, v |= A).

Since R is the universal relation, wRv trivially holds. This implies that these clauses are
not restricted by the accessibility relation R. Namely, the clauses can be regarded as:

M, w |= □A iff ∀v ∈ W (M, v |= A),
M, w |= ♢A iff ∃v ∈ W (M, v |= A).

In this sense, we may regard the semantic clauses for □ and ♢ of modal logic as the ones
for ∀ and ∃ of first-order logic, respectively.

We can establish a similar argument in terms of Boolean matrices. In the sense of the
matrices, the universal relation R becomes the complete square matrix 1. As a result,
computations of ∥♢p∥ and ∥□p∥ come to reflect the above argument.
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Example 3.13. Let W = {w1, w2, w3 }, R be the universal relation and V (p) = {w2 }.
Since there exists a world w2 such that p holds, ♢p also holds at every world, i.e.,

∥♢p∥ := RM∥p∥ = RMV (p)M =

1 1 1
1 1 1
1 1 1

01
0

 =

11
1

 .

However, since p does not hold at w1 and w3, □p does not hold at every world, i.e.,

∥□p∥ := RM∥p∥ = RMV (p)M =

1 1 1
1 1 1
1 1 1

10
1

 =

00
0

 .

Now, let us visualize the distinction between ∃∀ and ∀∃ of first-order logic by matrix
representation. Let us consider the situation where ∃y∀xR(x, y), that is, there is some
world y from which all the other worlds are accessible. Then, it means that the y-column
is filled with 1s. This observation implies that the property of ∃y∀xR(x, y) is expressed
in terms of Boolean matrix as (tR)1 ̸= 1. In the similar way, in case ∀x∃yR(x, y), that is,
for each row there must be at least one 1 (see Table 3.2). Thus, the property ∀x∃yR(x, y)
of seriality is expressed in terms of Boolean matrix as: R1 = 1.

Table 3.2: Example of Nested Quantifications in terms of Matrices (in 3× 3).
∃y∀xR(x, y) ∀x∃yR(x, y)1 0 1

1 0 1
1 0 1

 0 1 0
0 0 1
1 0 1



Then, we also establish “∃∀ implies ∀∃” in term of matrices.

Proposition 3.14. (tR)1 ̸= 1 implies R1 = 1.

Proof. Let R be an n× n matrix. Let us write

R :=

 r11 · · · r1n
...

. . .
...

rn1 · · · rnn

 .

We show the contrapositive implication and so assume R1 ̸= 1. Now, the goal is to show
(tR)1 = 1. The assumption implies that [ri1 · · · rin] =

t0 for some 1 ≤ i ≤ n. Fix such
i. Then, [ri1 · · · rin] = [ri1 · · · rin] =

t1. Since

tR :=

 r11 · · · rn1
...

. . .
...

r1n · · · rnn


(tR)1 = 1 holds by [ri1 · · · rin] =

t1. □
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Chapter 4

Computational Tools for Dynamic
Logic of Relation Changers

In this chapter, we provide cut-free labelled sequent calculus for dynamic logic of relation
changers (DLRC). In Section 4.1, we provide our syntax, semantics and Hilbert-style
axiomatization HDLRC forDLRC. Afterward, in Section 4.2, we present linear algebraic
reformulation of Kripke semantics for DLRC. We show the soundness of HDLRC for
Kripke semantics in terms of Boolean matrices (Section 4.2.2). In Section 4.3, we present
our sequent calculus GDLRC from a labelled formalism for that. In this section, we
establish that all theorems of HDLRC are derivable in GDLRC (Theorem 4.11) and
our sequent calculus enjoys the cut elimination theorem (Theorem 4.19). Finally, in
Section 4.3.4, we establish the soundness of GDLRC for Kripke semantics (Theorem 4.23)
and conclude our sequent calculus is equipollent with the Hilbert-style axiomatization
HDLRC (Corollary 4.24).

4.1 Dynamic Logic of Relation Changers

4.1.1 Syntax and Kripke Semantics

Our syntax of the language LDLRC of dynamic logic of relation changer (DLRC) is
based on that of the star-free fragment of propositional dynamic logic (PDL−, see also
Section 2.2). Besides the propositional connectives, modal operators for programs and
and the program constructors of PDL−, the language LDLRC contains the next operators
for relation changers: [r] and :=. Given a countably infinite set Atom of propositional
variables and a finite set AP of atomic programs, we define the set FormDLRC of formulas,
the set PR of programs, and the set RC of relation changers by simultaneous induction as
follows:

FormDLRC ∋ A ::= p | ¬A | A → A | [α]A | [r]A
PR ∋ α ::= a | α ∪ α | α;α |?A
RC ∋ r ::= (a := α)a∈AP

where p ∈ Prop and a ∈ AP.
As we noted in Section 1.1.2, we regard each agent’s preference as an atomic program.

Therefore, we use the same reading of a formula [α]A and programs as in Section 2.2
(see also Table 2.5). Note that a relation changer r can be regarded as a function from
AP to PR. Hence, when r = (a := αa)a∈AP, we may use the notation r(a) to mean αa.
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Then a formula [r]A reads ‘After changing an accessibility relation for each programs a
by αa, A holds.’ For example, we may consider the following relation changer: given
a set AP = { a, b, c } of atomic programs, we set r = (a := a, b := c, c := b) and so
r(a) = a, r(b) = c and r(c) = b. The intended meaning of this [r] is that an accessibility
relation of the program a is not changed, accessibility relations of b and c is overwritten
(or exchanged) by relations of the (original) programs c and b, respectively.

Let us define Kripke semantics with our syntax. As in PDL− (cf. Section 2.2), a
model M is a tuple (W, (Ra)a∈AP, V ) where W is a non-empty set of possible worlds (or
states), Ra ⊆ W × W is an accessibility relation, and V : Prop → P(W ) is a valuation
function.

Given any model M = (W, (Ra)a∈AP, V ) and any possible world w ∈ W , the satisfac-
tion relation M, w |= A is defined by simultaneous induction as follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬A iff M, w ̸|= A,
M, w |= A → B iff M, w |= A implies M, w |= B,
M, w |= [α]A iff M, v |= A for all v with wRαv,
wRα∪βv iff wRαv or wRβv,
wRα;βv iff wRαu and uRβv for some u ∈ W,
wR?Av iff w = v and M, w |= A,
M, w |= [r]A iff Mr, w |= A,

where Mr = (W, (Rr
a)a∈AP, V

r) and Rr
a and V r are defined as:

• Rr
a := Rr(a) = Rαawhen r = (a := αa)a∈AP,

• w ∈ V r(p) iff w ∈ V (p).

As we described in our syntax, Rr
a is changed (or redefined) by that of a (new) pro-

gram r(a) (= αa). On the other hand, V r(p) is not changed by a relation changer r
since V r(p) is defined by the original V (p). The truth set JAKM is defined by JAKM =
{w ∈ W | M, w |= A }. By definition, we can derive the same truth sets for ¬, →, [α], ∪,
;, and ? as in PDL− (see also Sections 2.2). Then, the truth set for a relation changer is
derived by: J[r]AKM := JAKMr

where Mr is the model M changed by the relation changer r that is defined in the above.
The notion of the validity is provided over the above models and frames, as in the ordinary
modal logic (cf. Section 2.1.1).

Example 4.1. Here we show two examples of relation changers which were originally
presented in [39, 25].1 The first one is a relation changer for the link-cutting public
update operator [†A], as we described in Section 1.1.2. Each accessibility relation of the
updated model M†A is defined as follows: for all a ∈ AP,

R†A
a := { (u, v) ∈ Ra | M, u |= A iff M, v |= A }

1The original definitions of atomic programs for these operators are defined as agent’s preferences, and
if we follow the original definition, we have to introduce additional frame properties to our logic. But,
in order to make our story simple, we regard atomic programs semantically as ordinary binary relations.
Thus, we do not assume any frame property since an accessibility relation might be changed arbitrarily
by a dynamic operator.
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The corresponding relation changer can be described as follows:

r†A = (a := (?A; a; ?A) ∪ (?¬A; a; ?¬A))a∈AP

The second one is a relation changer for a suggestion operator [♯A]. Intuitively, the
suggestion operator removes all links from A-worlds to non-A worlds from the original
model M. Each accessibility relation of the updated model M♯A is defined as follows: for
all a ∈ AP,

R♯A
a := Ra \ { (u, v) | M, u |= A and M, v |= ¬A }.

The corresponding relation changer is given as follows:

r♯A = (a := (?¬A; a) ∪ (a; ?A))a∈AP

4.1.2 Hilbert-style Axiomatization HDLRC

In Table 4.1, we explicitly provide sound and complete Hilbert-style axiomatization HDLRC
of dynamic logic of relation changers from [39, 25]. We note that the axioms from (Taut)
to ([?]) and the rules (MP) and (Nec[α]) in this table come from Hilbert-style axiom-
atization HPDL−. Therefore, the axioms from ([r]p) to ([r][?]) and the rule (Nec[r]) in
this table are the additional items to HPDL−. A derivation in HDLRC is a sequence of
formulas which consist of an instance of an axiom or the result of applying an inference
rule to formulas that occur earlier. If a formula A occurs in the last of a derivation, we
say A is derivable in HDLRC (or is a theorem of that) and denote ⊢HDLRC A. The height
of a derivation of A is defined as the length of a sequence of the derivation of that.

Definition 4.2. The translation t : FormDLRC → FormPDL− is defined by:

t(p) = p,
t(¬A) = ¬t(A),
t(A → B) = t(A) → t(B),
t([a]A) = [a]t(A),
t([α ∪ β]A) = t([α]A) ∧ t([β]A),
t([α; β]A) = t([α][β]A),
t([?B]A) = t(B) → t(A),
t([r]p) = p,
t([r]¬A) = ¬t([r]A),
t([r](A → B)) = t([r]A) → t([r]B),
t([r][a]A) = [r(a)]t([r]A),
t([r][α ∪ β]A) = t([r][α]A) ∧ t([r][β]A),
t([r][α; β]A) = t([r][α][β]A),
t([r][?B]A) = t([r]B) → t([r]A),
t([r][r′]A) = t([r]t([r′]A)).

Remark that this translation reflects the idea of ‘inside-out’ strategy. That is, we start
rewriting the innermost occurrences of [r].

Lemma 4.3. Given any formula A ∈ FormDLRC,

⊢HDLRC A ↔ t(A).
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Fact 4.4 ([39, 25]). Let A be a formula in FormDLRC and M be the class of all models.

M |= A iff ⊢HDLRC A.

Proof. Soundness part We show that if ⊢HDLRC A then M |= A for all A. One can
easily check that each axiom in HDLRC is valid in the class M of all models and
each rule in HDLRC preserves the validity in M.

Completeness part We show that if M |= A, then ⊢HDLRC A for all A. We can reduce
the completeness of HDLRC to that of HPDL− (cf. Theorem 2.25). Fix any
formula A and suppose that M |= A. By the soundness part and Lemma 4.3, we
get M |= A ↔ t(A). Then, by this and our assumption of M |= A, we obtain that
M |= t(A). By this and the completeness of HPDL− (Theorem 2.25), we have that
⊢HPDL− t(A). Since HDLRC is an axiomatic extension of HPDL−, we also have
that ⊢HDLRC t(A). Finally, by this and Lemma 4.3, we obtain ⊢HDLRC A.

□

Table 4.1: Hilbert-style Axiomatization HDLRC

(Taut) All instances of propositional tautologies
(K[α]) [α](A → B) → ([α]A → [α]B)
([∪]) [α ∪ β]A ↔ [α]A ∧ [β]A
([; ]) [α; β]A ↔ [α][β]A
([?]) [?B]A ↔ (B → A)
([r]p) [r]p ↔ p
([r]¬) [r]¬A ↔ ¬[r]A
([r] →) [r](A → B) ↔ ([r]A → [r]B)
([r][a]) [r][a]A ↔ [r(a)][r]A
([r][∪]) [r][α ∪ β]A ↔ [r][α]A ∧ [r][β]A
([r][; ]) [r][α; β]A ↔ [r][α][β]A
([r][?]) [r][?B]A ↔ [r](B → A)
(MP) From A and A → B, infer B
(Nec[α]) From A, infer [α]A
(Nec[r]) From A, infer [r]A

Proposition 4.5. Let HDLRC− be the Hilbert-style axiomatization defined by all axioms
and all inference rules of HDLRC without axioms ([r][∪]), ([r][; ]) and ([r][?]). Then, all
theorems of HDLRC are derivable in HDLRC−.

Proof. We show that axiom schemes ([r][∪]), ([r][; ]) and ([r][?]) are derivable in HDLRC
without them. Here, we only sketch the proof for the case of axiom ([r][∪]), since the
other two cases are shown similarly. First, we can derive the distribution of [r] over the
conjunction ∧, i.e., [r](A ∧ B) ↔ [r]A ∧ [r]B, by axioms ([r] →) and ([r]¬). Moreover, we
can also derive the distribution of [r] over the logical equivalence ↔ by the distribution of
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[r] over ∧ and axiom ([r] →). Then, by axiom ([∪]) and inference rule (Nec[r]), we have
[r]([α ∪ β] ↔ [α]A ∧ [β]A), which implies axiom ([r][∪]) by the derived distribution of [r]
over ↔ and ∧. □

4.2 Linear Algebraic Semantics for Dynamic Logic of

Relation Changers

4.2.1 Relation Changers in Matrices

As we noted in Section 3.2.1, we can extend our linear algebraic reformulation of Kripke
semantics to handle multi-modal language. In this section, we define such an extension
for DLRC that is based on PDL−.

Let M = (W, (Ra)a∈AP, V ) be a (finite) Kripke model where the cardinality of the
domain W is m, i.e., W = {w1, w2, . . . , wm }. Then, we define matrix representations for
an accessibility relation Ra and the valuation V (p) as did in Section 3.2.1. Suppose that
RM

a ∈ M(m×m) and V (p)M ∈ M(m×m). We inductively associate with each formula
A of FormDLRC with a column vector ∥A∥M ∈ M(m× 1) as follows:

∥p∥M := (V (p))M ,

∥¬A∥M := ∥A∥M,

∥A → B∥M := ∥A∥M + ∥B∥M,

∥[α]A∥M := ∥α∥M∥A∥M,
∥a∥M := RM

a ,
∥α ∪ β∥M := ∥α∥M + ∥β∥M,
∥α; β∥M := ∥α∥M∥β∥M,

∥?A∥M :=

{
1 if i = j and ∥A∥M(i) = 1,

0 otherwise,

∥[r]A∥M := ∥A∥Mr .

It follows that:
∥A ∨ A∥M := ∥A∥M + ∥A∥M,
∥A ∧ A∥M := ∥A∥M ∧ ∥A∥M,
∥⟨α⟩A∥M := ∥α∥M∥A∥M,
∥⊤∥M := 1M,
∥⊥∥M := 0M,

where 1M (or 0M) is the column vector 1 (or 0) under the model M. As we noted in
Section 3.2.1, we may drop the subscript ‘M’ from ∥A∥M if the underlying model is clear
from the context. We say that A is valid in M if ∥A∥M = 1M.

Proposition 4.6. Let M be any finite Kripke model.

1. (JAKM)M = ∥A∥M for any formula A ∈ FormDLRC.

2. (JαK)MM = ∥α∥M for any program α ∈ PR.

Proposition 4.7. Given any finite Kripke model M and any formula A,

∥A ↔ B∥M = 1M iff (JAKM)M = (JBKM)M iff ∥A∥M = ∥B∥M.
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4.2.2 Soundness of HDLRC for Kripke Semantics in Matrices

In this section, we establish the soundness of DLRC for Kripke semantics (Fact 4.4) using
our linear algebraic approach.

Proof. To show the soundness of HDLRC for Kripke semantics, our goal is to show that

(1) all axioms in HDLRC are valid in M,

(2) all inference rules in HDLRC preserve the validity in M.

We show our goal by linear algebraic reformulation of Kripke semantics of DLRC. In
what follows, we restrict our attention to the finite domain size first. However, we will
see that our proof does not rely on the finiteness of the domain size. Hence, at the end
of our proof, we may take the domain size to utmost limit, i.e., infinite domain size.

Case of axiom (Taut)
Since it is trivial, we skip this case.

Case of axiom (K[α])
We show that M |= [α](A → B) → ([α]A → [α]B) Fix any M ∈ M.
Our goal is to show that:

∥[α](A → B) → ([α]A → [α]B)∥ = 1.

This is shown by:

∥[α](A → B) → ([α]A → [α]B)∥ = ∥[α](A → B)∥+ ∥([α]A → [α]B)∥
= ∥[α](A → B)∥+ (∥[α]A∥+ ∥[α]B)∥)

= ∥α∥∥A → B∥+ (∥α∥∥A∥+ ∥α∥∥B∥)
= ∥α∥(∥A → B∥+ ∥A∥) + ∥α∥∥B∥
= ∥α∥(∥A → B∥ ∧ ∥A∥) + ∥α∥∥B∥
= ∥α∥((∥A∥+ ∥B∥) ∧ ∥A∥) + ∥α∥∥B∥
= ∥α∥((∥A∥ ∧ ∥A∥) + (∥B∥ ∧ ∥A∥)) + ∥α∥∥B∥
= ∥α∥(0+ (∥B∥ ∧ ∥A∥)) + ∥α∥∥B∥
= ∥α∥((∥B∥+ ∥A∥)) + ∥α∥∥B∥
= (∥α∥(∥B∥+ ∥α∥∥A∥)) + ∥α∥∥B∥
= 1+ ∥α∥∥A∥
= 1

Case of axiom ([∪])
We show that M |= [α ∪ β]A ↔ [α]A ∧ [β]A. Fix any M ∈ M. By Proposition 4.7,
it suffices to show that:

∥[α ∪ β]A∥ = ∥[α]A ∧ [β]A∥.
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This is shown by:

∥[α ∪ β]A∥ = ∥α ∪ β∥∥A∥
= (∥α∥+ ∥β∥)∥A∥
= ∥α∥∥A∥+ ∥β∥∥A∥
= ∥α∥∥A∥ ∧ ∥β∥∥A∥
= ∥[α]A ∧ [β]A∥

Case of axiom ([; ])
We show that M |= [α; β]A ↔ [α][β]A. Fix any M ∈ M. By Proposition 4.7, it
suffices to show that:

∥[α; β]A∥ = ∥[α][β]A∥.
This is shown by:

∥[α; β]A∥ = ∥α; β∥∥A∥
= ∥α∥∥β∥∥A∥

= ∥α∥∥β∥∥A∥
= ∥α∥∥[β]A∥
= ∥[α][β]A∥

Case of axiom ([?])
We show that M |= [?B]A ↔ (B → A). Fix any M ∈ M. Let n be the cardinality
of the (finite) domain of M. By Proposition 4.7, it suffices to show that:

∥[?B]A∥ = ∥B → A∥.

This is shown by:

∥[?B]A∥ = ∥?B∥∥A∥

=


r11 0 · · · 0
0 r22 · · · 0
...

...
. . .

...
0 0 · · · rnn



a1
a2
...
an



=


r11
r22
...

rnn

 ∧


a1
a2
...
an


= ∥B∥ ∧ ∥A∥
= ∥B∥+ ∥A∥
= ∥B → A∥

Case of axiom ([r]p)
We show that M |= [r]p ↔ p. Fix any M ∈ M. By Proposition 4.7, it suffices to
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show that:

∥[r]p∥M = ∥p∥M.

This is shown by:
∥[r]p∥M = ∥p∥Mr

= V r(p)M

= V (p)M

= ∥p∥M

Case of axiom ([r]¬)
We show that M |= [r]¬A ↔ ¬[r]A. Fix any M ∈ M. By Proposition 4.7, it suffices
to show that:

∥[r]¬A∥M = ∥¬[r]A∥M.

This is shown by:
∥[r]¬A∥M = ∥¬A∥Mr

= ∥A∥Mr

= ∥[r]A∥M
= ∥¬[r]A∥M

Case of axiom ([r] →)
We show that M |= [r](A → B) ↔ ([r]A → [r]B). Fix any M ∈ M. By Proposi-
tion 4.7, it suffices to show that:

∥[r](A → B)∥M = ∥[r]A → [r]B∥M.

This is shown by:

∥[r](A → B)∥M = ∥A∥Mr + ∥B∥Mr

= ∥[r]A∥M + ∥[r]B∥M
= ∥[r]A → [r]B∥M

Case of axiom ([r][a])
We show that M |= [r][a]A ↔ [r(a)][r]A. Fix any M ∈ M. By Proposition 4.7, it
suffices to show that:

∥[r][a]A∥M = ∥[r(a)][r]A∥M.

This is shown by:
∥[r][a]A∥M = ∥[a]A∥Mr

= ∥a∥Mr∥A∥Mr

= ∥r(a)∥M∥[r]A∥M
= ∥[r(a)][r]A∥M

Case of axiom ([r][∪])
We show that M |= [r][α ∪ β]A ↔ [r][α]A ∧ [r][β]A. Fix any M ∈ M. By Proposi-
tion 4.7, it suffices to show that:

∥[r][α ∪ β]A∥M = ∥[r][α]A ∧ [r][β]A∥M.
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This is shown by:

∥[r][α ∪ β]A∥M = ∥[α ∪ β]A∥Mr

= ∥[α]A∥Mr ∧ ∥[β]A∥Mr

= ∥[r][α]A∥M ∧ ∥[r][β]A∥M
= ∥[r][α]A ∧ [r][β]A∥M

Case of axiom ([r][; ])
We show that M |= [r][α; β]A ↔ [r][α][β]A. Fix any M ∈ M. By Proposition 4.7, it
suffices to show that:

∥[r][α; β]A∥M = ∥[r][α][β]A∥M.

This is shown by:
∥[r][α; β]A∥M = ∥[α; β]A∥Mr

= ∥[α][β]A∥Mr

= ∥[r][α][β]A∥M

Case of axiom ([r][?])
We show that M |= [r][?B]A ↔ [r](B → A). Fix any M ∈ M. By Proposition 4.7,
it suffices to show that:

∥[r][?B]A∥M = ∥[r](B → A)∥M.

This is shown by:
= ∥[r][?B]A∥M
= ∥B → A∥Mr

= ∥[r](B → A)∥M

Case of inference rule (MP)
We show that if M |= A and M |= A → B, then M |= B. Fix any M ∈ M.
Suppose that M |= A and M |= A → B, i.e., ∥A∥ = 1 and ∥A∥+ ∥B∥ = 1.
Our goal is to show that M |= B, i.e., ∥B∥ = 1. This is trivial since:

1 = ∥A∥+ ∥B∥
= 1+ ∥B∥
= 0+ ∥B∥
= ∥B∥

Here is another proof that can capture the meaning of our assumptions:

1 ∧ 1 = ∥A∥ ∧ ∥A → B∥
= ∥A∥ ∧ (∥A∥+ ∥B∥)
= (∥A∥ ∧ ∥A∥) + (∥A∥ ∧ ∥B∥)
= (1 ∧ 0) + (1 ∧ ∥B∥)
= ∥B∥ = 1

Case of inference rule (Nec[α])
We show that if M |= A, then M |= [α]A. Fix any M ∈ M.
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Suppose that M |= A, i.e., ∥A∥ = 1. We show that M |= [α]A, i.e., ∥[α]A∥ = 1.
This is shown by:

∥[α]A∥ = ∥α∥∥A∥
= ∥α∥1
= ∥α∥0
= 0 = 1

Case of inference rule (Nec[r])
We show that if M |= A, then M |= [r]A. Suppose that M |= A, i.e., ∥A∥M = 1M

for any model M ∈ M. We show that M |= [r]A, i.e., ∥[r]A∥M = 1M for any model
M ∈ M. Fix any M ∈ M. Our goal is to show that:

∥[r]A∥M = 1M,
i.e., ∥A∥Mr = 1Mr .

This is trivial by our assumption.

□

Remarkably, our linear algebraic approach to the soundness allows us to capture semantic
proofs like syntactic way.

4.3 Labelled Sequent Calculus for Dynamic Logic of

Relation Changers

4.3.1 Labelled Sequent Calculus GDLRC

In this section, we introduce the labelled formalism for our sequent calculus. Let Var =
{x, y, z, . . . } be a countably infinite set of variables and L = (r1, r2, . . . , rn) be a (possibly
empty) finite list of relation changers. If L is empty, we use ε to denote such an empty
list. We may regard the list of relation changers as a history or a stack of that. Suppose
that ML, w |= A is already defined, then

M(L,r), w |= A iff ML, w |= [r]A.

Given variables x, y ∈ Var, a list L of relation changers, a formula A ∈ Form and a
program α ∈ PR, we define labelled expressions by:

φ ::= x :L A | xRL
α y | x = y

We say that x :L A is a labelled formula, xRL
α y is a relational atom and x = y is an

equality atom. A labelled formula x :L A means that ‘after the successive updates of
relation changers in L, A holds at state x,’ a relational atom xRL

α y means that ‘after
the successive updates of relation changers in L, there is a link of program α from x to
y,’ and an equality atom means that ‘state x equals to state y.’ We note that labelled
expressions are counterparts of objects in Kripke semantics. Namely, given a model
M = (W, (Ra)a∈AP, V ) and if we regard w, v ∈ W as counterparts of x, y ∈ Var, a labelled
formula x :L A corresponds to the satisfaction relation ‘ML, w |= A,’ a relational atom
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xRL
α y corresponds to a link ‘wRL

αv’ and an equality atom x = y corresponds to an
equality ‘w = v,’ respectively. Let Γ and ∆ be multisets of labelled expressions. We
define a labelled sequent Γ ⇒ ∆ by a pair (Γ,∆) of labelled expressions, whose reading is
‘if all of Γ hold, then some of ∆ holds.’ Based on these definitions, we define our labelled
sequent calculus GDLRC by all initial sequents and all inference rules in Table 4.2. We
also define the labelled sequent calculus GDLRC− by GDLRC without the cut rule. In
order to refer both left and right rules shortly, we also use simple notation of the rule
name without L and R, e.g., (at) means both (Lat) and (Rat) rules. The multisets Γ, ∆
etc. in each inference rule in GDLRC are called the context. In the lower sequent of each
inference rule, the labelled expression(s) not in the context is called the principal labelled
expression(s). A derivation D in GDLRC is inductively defined as a finite tree generated
by initial sequents and inference rules in Table 4.2. A labelled sequent in the root node
of D is called the end sequent. The height of a derivation D is defined as the maximum
length of branches in D from the end sequent of that to an initial sequent. We say that
Γ ⇒ ∆ is derivable in GDLRC (notation: ⊢GDLRC Γ ⇒ ∆) if there exists a derivation D
in GDLRC whose end sequent is Γ ⇒ ∆. A formula A is a theorem of GDLRC if the
labelled sequent ⇒ x :ε A is derivable in GDLRC for all x ∈ Var. These definitions are
also used for GDLRC−.

Remark that all syntactic objects in the labelled sequent calculus GDLRC are finite,
e.g., labelled expressions, sequents and derivations. We may regard GDLRC as a formal-
ized version of Kripke semantics of DLRC. The crucial difference between the ordinary
Kripke semantics and its formalized version is this finiteness.

Definition 4.8. The length ℓ of formulas p ∈ Prop and A,B ∈ Form, programs a ∈ AP
and α, β ∈ PR, a relation changer r ∈ RC, and labelled expressions are defined as follows:

ℓ(p) = 1,
ℓ(¬A) = ℓ(A) + 1,
ℓ(A → B) = ℓ(A) + ℓ(B) + 1,
ℓ([α]A) = ℓ(α) + ℓ(A) + 1,
ℓ([r]A) = ℓ(r) + ℓ(A) + 1,
ℓ(a) = 1,
ℓ(α; β) = ℓ(α) + ℓ(β) + 1,
ℓ(α ∪ β) = ℓ(α) + ℓ(β) + 1,
ℓ(?A) = ℓ(A) + 1,
ℓ(ε) = 0,
ℓ(r) = Σa∈APℓ(αa) where r = (a := αa)a∈AP,
ℓ(L) = Σn

i=0ℓ(ri) where L = (r0, . . . , rn),
ℓ(x :L A) = ℓ(L) + ℓ(A),
ℓ(xRL

α y) = ℓ(L) + ℓ(α),
ℓ(x = y) = 0.

Proposition 4.9. Let p ∈ Prop, A ∈ Form, a ∈ AP, r ∈ RC and x, y ∈ Var.

(i) ℓ(x :ε [r]A) > ℓ(x :r A).

(ii) ℓ(x :r p) > ℓ(x :ε p).

(iii) ℓ(xRr
a y) > ℓ(xRε

r(a) y).
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Table 4.2: Gentzen-style Sequent Calculus GDLRC
(Initial sequents)

x :L A ⇒ x :L A xRL
α y ⇒ xRL

α y x = y ⇒ x = y

(Structural rules)

Γ ⇒ ∆
Γ ⇒ ∆, φ

(Rw) Γ ⇒ ∆
φ,Γ ⇒ ∆

(Lw)
Γ ⇒ ∆, φ, φ
Γ ⇒ ∆, φ

(Rc)
φ, φ,Γ ⇒ ∆
φ,Γ ⇒ ∆

(Lc)

(Logical rules)
x :L A,Γ ⇒ ∆

Γ ⇒ ∆, x :L ¬A
(R¬) Γ ⇒ ∆, x :L A

x :L ¬A,Γ ⇒ ∆
(L¬)

x :L A1,Γ ⇒ ∆, x :L A2

Γ ⇒ ∆, x :L A1 → A2

(R →)
Γ ⇒ ∆, x :L A1 x :L A2,Γ ⇒ ∆

x :L A1 → A2,Γ ⇒ ∆
(L →)

xRL
α y,Γ ⇒ ∆, y :L A

Γ ⇒ ∆, x :L [α]A
(R[α])†

Γ ⇒ ∆, xRL
α y y :L A,Γ ⇒ ∆

x :L [α]A,Γ ⇒ ∆
(L[α])

†: y does not appear in the lower sequent.

Γ ⇒ ∆, x :(L,r) A

Γ ⇒ ∆, x :L [r]A
(R[r])

x :(L,r) A,Γ ⇒ ∆

x :L [r]A,Γ ⇒ ∆
(L[r])

(Program rules)

Γ ⇒ ∆, xRL
αi
y

Γ ⇒ ∆, xRL
α1∪α2

y
(R∪)i∈{ 1,2 }

xRL
α1

y,Γ ⇒ ∆ xRL
α2

y,Γ ⇒ ∆

xRL
α1∪α2

y,Γ ⇒ ∆
(L∪)

Γ ⇒ ∆, xRL
α1

z Γ ⇒ ∆, z RL
α2

y

Γ ⇒ ∆, xRL
α1;α2

y
(R; )

xRL
α1

z, z RL
α2

y,Γ ⇒ ∆

xRL
α1;α2

y,Γ ⇒ ∆
(L; )‡

‡: z does not appear in the lower sequent.

Γ ⇒ ∆, x = y Γ ⇒ ∆, x :L A

Γ ⇒ ∆, xRL
?A y

(R?)
x = y,Γ ⇒ ∆

xRL
?A y,Γ ⇒ ∆

(L?1)
x :L A,Γ ⇒ ∆

xRL
?A y,Γ ⇒ ∆

(L?2)

(Equality rules)

Γ ⇒ ∆, x = y Γ ⇒ ∆, x :L p

Γ ⇒ ∆, y :L p
(= at)

x = x,Γ ⇒ ∆
Γ ⇒ ∆

(= ref)

Γ ⇒ ∆, x = y y = x,Γ ⇒ ∆
Γ ⇒ ∆

(= sym)
Γ ⇒ ∆, x = y Γ ⇒ ∆, y = z x = z,Γ ⇒ ∆

Γ ⇒ ∆
(= tra)

Γ ⇒ ∆, x = y Γ ⇒ ∆, xRL
a z y RL

a z,Γ ⇒ ∆

Γ ⇒ ∆
(= rel1)

Γ ⇒ ∆, x = y Γ ⇒ ∆, z RL
a x z RL

a y,Γ ⇒ ∆

Γ ⇒ ∆
(= rel2)
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(Relation changer rules)

Γ ⇒ ∆, x :L p

Γ ⇒ ∆, x :(L,r) p
(Rat)

x :L p,Γ ⇒ ∆

x :(L,r) p,Γ ⇒ ∆
(Lat)

Γ ⇒ ∆, xRL
r(a) y

Γ ⇒ ∆, xR
(L,r)
a y

(Rrel)
xRL

r(a) y,Γ ⇒ ∆

xR
(L,r)
a y,Γ ⇒ ∆

(Lrel)

(Cut rule)
Γ ⇒ ∆, φ φ,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
(Cut)

Proof.

(i) The length of the left side is:

ℓ(x :ε [r]A) = ℓ(r) + ℓ(A) + 1.

The right side is:
ℓ(x :r A) = ℓ(r) + ℓ(A).

Therefore, ℓ(r) + ℓ(A) + 1 > ℓ(r) + ℓ(A).

(ii) The length of the left side is:

ℓ(x :r p) = ℓ(r) + ℓ(p),
= ℓ(r) + 1.

The right side is:
ℓ(x :ε p) = ℓ(p),

= 1.

Since ℓ(r) > 0, we obtain ℓ(r) + 1 > 1.

(iii) The length of the left side is:

ℓ(xRr
a y) = ℓ(r) + ℓ(a),

= ℓ(r) + 1.

The right side is:
ℓ(xRε

r(a) y) = ℓ(αa).

Since ℓ(r) ≥ ℓ(αa), we obtain ℓ(r) + 1 > ℓ(αa).

□

4.3.2 All theorems of HDLRC are derivable in GDLRC

Lemma 4.10. For any n ∈ N and any list L ∈ (RC)∗ of relation changers,

(i) if ℓ(x :L A) ≤ n, then ⊢GDLRC x = y, x :L A ⇒ y :L A for any x, y ∈ Var and any
A ∈ Form.
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(ii) if ℓ(xRL
α y) ≤ n, then ⊢GDLRC x = y, y RL

α z ⇒ xRL
α z for any x, y, z ∈ Var and any

α ∈ PR.

Proof. The proofs of (i) and (ii) are done simultaneously by induction on n ∈ N. First,
we show base cases for both (i) and (ii).

Basis for (i) where x :L A is of the form x :ε p (p ∈ Prop):

x = y ⇒ x = y
x = y, x :ε p ⇒ x = y

(Lw)
x :ε p ⇒ x :ε p

x = y, x :ε p ⇒ x :ε p
(Lw)

x = y, x :ε p ⇒ y :ε p
(= at)

Basis for (ii) where xRL
α y is of the form xRε

a y (a ∈ AP):
First, we construct the following derivation D.

y = x ⇒ y = x

y = x, y Rε
a z ⇒ xRε

a z, y = x
(w)

y Rε
a z ⇒ y Rε

a z

y = x, y Rε
a z ⇒ xRε

a z, y R
ε
a z

(w)
xRε

a z ⇒ xRε
a z

xRε
a z, y = x, y Rε

a z ⇒ xRε
a z

(w)

y = x, y Rε
a z ⇒ xRε

a z
(= rel1)

Next, we obtain the following derivation by D.

x = y ⇒ x = y

x = y, y Rε
a z ⇒ xRε

a z, x = y
(w) D

y = x, x = y, y Rε
a z ⇒ xRε

a z
(Lw)

x = y, y Rε
a z ⇒ xRε

a z
(= sym)

Next, we show inductive steps for both (i) and (ii).

Case (i-a) where x :L A is of the form x :L ¬B:

x = y ⇒ x = y

x = y, y :L B ⇒ x :L B, x = y
(w)

.... D

y = x, y :L B ⇒ x :L B

y = x, x = y, y :L B ⇒ x :L B
(Lw)

x = y, y :L B ⇒ x :L B
(= sym)

x = y, x :L ¬B ⇒ y :L ¬B
(¬)

where D is obtained by induction hypothesis.

Case (i-b) where x :L A is of the form x :L A1 → A2:

x = y ⇒ x = y

y :L A1, x = y ⇒ x :L A1, x = y
(w)

.... D1

y = x, y :L A1,⇒ x :L A1

y = x, y :L A1, x = y ⇒ x :L A1

(Lw)

y :L A1, x = y ⇒ x :L A1

(= sym)

y :L A1, x = y ⇒ y :L A2, x :L A1

(Rw)

.... D2

x :L A2, x = y ⇒ y :L A2

x :L A2, y :L A1, x = y ⇒ y :L A2

(Lw)

y :L A1, x = y, x :L A1 → A2 ⇒ y :L A2

(L →)

x = y, x :L A1 → A2 ⇒ y :L A1 → A2

(R →)

where D1 and D2 are obtained by induction hypothesis.
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Case (i-c) where x :L A is of the form x :L [α]B:

.... D

y RL
α z, x = y ⇒ xRL

α z

y RL
α z, x = y ⇒ z :L B, xRL

α z
(Rw)

z :L B ⇒ z :L B

z :L B, y RL
α z, x = y ⇒ z :L B

(w)

y RL
α z, x = y, x :L [α]B ⇒ z :L B

(L[α])

x = y, x :L [α]B ⇒ y :L [α]B
(R[α])

where D is obtained by induction hypothesis.

Case (i-d) where x :L A is of the form x :L [r]B:

.... D

x = y, x :(L,r) A ⇒ y :(L,r) A

x = y, x :L [r]B ⇒ y :L [r]B
([r])

where D is obtained by induction hypothesis. Note that ℓ(x :(L,r) A) < ℓ(x :L [r]A).

Case (i-e) where x :L A is of the form x :(L,r) p:

.... D
x = y, x :ε p ⇒ y :ε p

x = y, x :L p ⇒ y :L p
(at)

x = y, x :(L,r) p ⇒ y :(L,r) p
(at)

where D is obtained by induction hypothesis.

Case (ii-a) where y RL
α z is of the form y RL

α1∪α2
z:

.... D1

x = y, y RL
α1

z ⇒ xRL
α1

z

x = y, y RL
α1

z ⇒ xRL
α1∪α2

z
(R∪)

.... D2

x = y, y RL
α2

z ⇒ xRL
α2

z

x = y, y RL
α2

z ⇒ xRL
α1∪α2

z
(R∪)

x = y, y RL
α1∪α2

z ⇒ xRL
α1∪α2

z
(L∪)

where D1 and D2 are obtained by induction hypothesis.

Case (ii-b) where y RL
α z is of the form y RL

α1;α2
z:

.... D

x = y, y RL
α1

w ⇒ xRL
α1

w

x = y, y RL
α1

w,w RL
α2

z ⇒ xRL
α1

w
(Lw)

w RL
α2

z ⇒ w RL
α2

z

x = y, y RL
α1

w,w RL
α2

z ⇒ w RL
α2

z
(Lw)

x = y, y RL
α1

w,w RL
α2

z ⇒ xRL
α1;α2

z
(R; )

x = y, y RL
α1;α2

z ⇒ xRL
α1;α2

z
(L; )

where D is obtained by induction hypothesis.
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Case (ii-c) where y RL
α z is of the form y RL

?A z:
First, we construct the following derivation D1.
x = y ⇒ x = y

x = y, y = z ⇒ x = z, x = y (w)
y = z ⇒ y = z

x = y, y = z ⇒ x = z, y = z (w)
x = z ⇒ x = z

x = z, x = y, y = z ⇒ x = z (Lw)

x = y, y = z ⇒ x = z (= tra)

Second, we also construct the following derivation D2.

x = y ⇒ x = y

x = y, y :L A ⇒ x :L A, x = y
(w)

.... D3

y = x, y :L A ⇒ x :L A

y = x, x = y, y :L A ⇒ x :L A
(Lw)

x = y, y :L A ⇒ x :L A
(= sym)

where D3 is obtained by induction hypothesis. Finally, we obtain the following
derivation by D1 and D2.

D1

x = y, y RL
?A z ⇒ x = z

(L?1)
D2

x = y, y RL
?A z ⇒ x :L A

(L?2)

x = y, y RL
?A z ⇒ xRL

?A z
(R?)

Case (ii-d) where y RL
α z is of the form y R

(L,r)
a z:

.... D

x = y, y RL
r(a) z ⇒ xRL

r(a) z

x = y, y R
(L,r)
a z ⇒ xR

(L,r)
a z

(rel)

where D is obtained by induction hypothesis.

□
Theorem 4.11. For any A ∈ Form and any x ∈ Var, if ⊢HDLRC A, then ⊢GDLRC⇒ x :ε A.

Proof. We show our goal by induction of the height of the derivation of A in HDLRC.
Here, we show only the cases of inference rule (MP) and axioms and rules for relation
changers of HDLRC listed in Table 4.1, i.e., the axioms from ([r]p) to ([r]?) and the rule
(Nec[r]) in the table. In the following, we show the base cases.

Case of axiom ([r]p)

x :ε p ⇒ x :ε p
x :r p ⇒ x :ε p

(Lat)

x :ε [r]p ⇒ x :ε p
(L[r])

⇒ x :ε [r]p → p
(R →)

x :ε p ⇒ x :ε p
x :ε p ⇒ x :r p

(Rat)

x :ε p ⇒ x :ε [r]p
(R[r])

⇒ x :ε p → [r]p
(R →)

⇒ x :ε [r]p ↔ p
(R∧)

Case of axiom ([r]¬)

x :r A ⇒ x :r A
x :ε [r]A ⇒ x :r A

(L[r])

x :r ¬A ⇒ x :ε ¬[r]A (¬)

x :ε [r]¬A ⇒ x :r ¬[r]A (L[r])

⇒ x :ε [r]¬A → ¬[r]A (R →)

x :r A ⇒ x :r A
x :r A → x :ε [r]A

(R[r])

x :ε ¬[r]A ⇒ x :r ¬A (¬)

x :ε ¬[r]A ⇒ x :ε [r]¬A (R[r])

⇒ x :ε ¬[r]A → [r]¬A (R →)

⇒ x :ε [r]¬A ↔ ¬[r]A (R∧)
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Case of axiom ([r] →)

x :r A ⇒ x :r A
x :r A ⇒ x :r B, x :r A

(Rw) x :r B ⇒ x :r B
x :r B, x :r A ⇒ x :r B

(Lw)

x :r A → B, x :r A ⇒ x :r B
(L →)

x :ε [r](A → B), x :ε [r]A ⇒ x :ε [r]B
([r])

x :ε [r](A → B) ⇒ x :ε [r]A → [r]B
(R →)

⇒ x :ε [r](A → B) → ([r]A → [r]B)
(R →)

x :r A ⇒ x :r A
x :r A ⇒ x :r B, x :r A

(Rw) x :r B ⇒ x :r B
x :r B, x :r A ⇒ x :r B

(Lw)

x :r A → B, x :r A ⇒ x :r B
(L →)

x :ε [r](A → B), x :ε [r]A ⇒ x :ε [r]B
([r])

x :ε [r](A → B) ⇒ x :ε [r]A → [r]B
(R →)

⇒ x :ε ([r]A → [r]B) → [r](A → B)
(R →)

⇒ x :ε [r](A → B) ↔ ([r]A → [r]B)
(R∧)

Case of axiom ([r][a])
The direction from left to right is shown as follows.

xRε
r(a) y ⇒ xRε

r(a) y

xRε
r(a) y ⇒ xRr

a y
(Rrel)

xRε
r(a) y ⇒ y :r A, xRr

a y
(Rw)

y :r A ⇒ y :r A

y :r A, xRε
r(a) y ⇒ y :r A

(Lw)

xRε
r(a) y, x :r [a]A ⇒ y :r A

(L[a])

xRε
r(a) y, x :r [a]A ⇒ y :ε [r]A

(R[r])

x :r [a]A ⇒ x :ε [r(a)][r]A
(R[r(a)])

x :ε [r][a]A ⇒ x :ε [r(a)][r]A
(L[r])

⇒ x :ε [r][a]A → [r(a)][r]A
(R →)

The direction from right to left is shown as follows.

xRε
r(a) y ⇒ xRε

r(a) y

xRr
a y ⇒ xRε

r(a) y
(Lrel)

xRr
a y ⇒ y :r A, xRε

r(a) y
(Rw)

xRr
a y, x :ε [r(a)][r]A ⇒ y :r A

(L[r(a)])

y :r A ⇒ y :r A

y :ε [r]A ⇒ y :r A
(L[r])

y :ε [r]A, xRr
a y ⇒ y :r A

(Lw)

x :ε [r(a)][r]A ⇒ x :r [a]A
(R[a])

x :ε [r(a)][r]A ⇒ x :ε [r][a]A
(R[r])

⇒ x :ε [r(a)][r]A → [r][a]A
(R →)

Case of axiom ([r][∪])
The direction from left to right is shown as follows. First, we construct the following
derivation D1

xRr
α y ⇒ xRr

α y

xRr
α y ⇒ xRr

α∪β y
(R∪)

xRr
α y ⇒ y :r A, xRr

α∪β y
(Rw)

y :r A ⇒ y :r A

y :r A, xRr
α y ⇒ y :r A

(Lw)

xRr
α y, x :r [α ∪ β]A ⇒ y :r A

(L[α ∪ β])

x :r [α ∪ β]A ⇒ x :r [α]A
(R[α])

x :r [α ∪ β]A ⇒ x :ε [r][α]A
(R[r])
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Second, we also construct the following derivation D2.

xRr
β z ⇒ xRr

β z

xRr
β z ⇒ xRr

α∪β z
(R∪)

xRr
β z ⇒ z :r A, xRr

α∪β z
(Rw) z :r A ⇒ z :r A

z :r A, xRr
β z ⇒ z :r A

(Lw)

xRr
β z, x :r [α ∪ β]A ⇒ z :r A

(L[α ∪ β])

x :r [α ∪ β]A ⇒ x :r [β]A
(R[β])

x :r [α ∪ β]A ⇒ x :ε [r][β]A
(R[r])

Finally, we obtain the following derivation by D1 and D2.

D1 D2

x :r [α ∪ β]A ⇒ x :ε [r][α]A ∧ [r][β]A
(R∧)

x :ε [r][α ∪ β]A ⇒ x :ε [r][α]A ∧ [r][β]A
(L[r])

⇒ x :ε [r][α ∪ β]A → [r][α]A ∧ [r][β]A
(R →)

The direction from right to left is shown as follows.

xRr
α y ⇒ xRr

α y

xRr
α y ⇒ y :r A, xRr

α y
(Rw)

y :r A ⇒ y :r A

y :r A, xRr
α y ⇒ y :r A

(Lw)

xRr
α y, x :r [α]A ⇒ y :r A

(L[α])

xRr
α y, x :ε [r][α]A ⇒ y :r A

(L[r])

xRr
α y, x :ε [r][α]A ∧ [r][β]A ⇒ y :r A

(L∧)

x :r βy ⇒ x :r βy

x :r βy ⇒ y :r A, x :r βy
(Rw)

y :r A ⇒ y :r A

y :r A, x :r βy ⇒ y :r A
(Lw)

x :r βy, x :r [β]A ⇒ y :r A
(L[β])

x :r βy, x :ε [r][β]A ⇒ y :r A
(L[r])

x :r βy, x :ε [r][α]A ∧ [r][β]A ⇒ y :r A
(L∧)

xRr
α∪β y, x :ε [r][α]A ∧ [r][β]A ⇒ y :r A

(L∪)

x :ε [r][α]A ∧ [r][β]A ⇒ x :r [α ∪ β]A
(R[α ∪ β])

x :ε [r][α]A ∧ [r][β]A ⇒ x :ε [r][α ∪ β]A
(R[r])

⇒ x :ε [r][α]A ∧ [r][β]A → [r][α ∪ β]A
(R →)

Case of axiom ([r][; ])
The direction from left to right is shown as follows.

xRr
α y ⇒ xRr

α y

xRr
α y, y R

r
β z ⇒ xRr

α y
(Lw)

y Rr
β z ⇒ y Rr

β z

xRr
α y, y R

r
β z ⇒ y Rr

β z
(Lw)

xRr
α y, y R

r
β z ⇒ xRr

α;β z
(R; )

xRr
α y, y R

r
β z ⇒ z :r A, xRr

α;β z
(Rw)

z Rr
A ⇒ z Rr

A

z Rr
A, xR

r
α y, y R

r
β z ⇒ z Rr

A

(Lw)

xRr
α y, y R

r
β z, x :r [α; β]A ⇒ z :r A

(L[α; β])

xRr
α y, x :r [α; β]A ⇒ y :r [β]A

(R[β])

x :r [α; β]A ⇒ x :r [α][β]A
(R[α])

x :ε [r][α; β]A ⇒ x :ε [r][α][β]A
([r])

⇒ x :ε [r][α; β]A → [r][α][β]A
(R →)
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The direction from right to left is shown as follows.

xRr
α z ⇒ xRr

α z

xRr
α z, z R

r
β y ⇒ y :r A, xRr

α z
(w)

z Rr
β y ⇒ z Rr

β y

z Rr
β y ⇒ y :r A, z Rr

β y
(Rw)

y :r A ⇒ y :r A

y :r A, z :r [β]A ⇒ y :r A
(Lw)

z :r [β]A, z Rr
β y ⇒ y :r A

(L[β])

z :r [β]A, xRr
α z, z R

r
β y ⇒ y :r A

(Lw)

xRr
α z, z R

r
β y, x :r [α][β]A ⇒ y :r A

L[α]

xRr
α;β y, x :r [α][β]A ⇒ y :r A

(L; )

x :r [α][β]A ⇒ x :r [α; β]A
(R[α; β])

x :ε [r][α][β]A ⇒ x :ε [r][α; β]A
([r])

⇒ x :ε [r][α][β]A → [r][α; β]A
(R →)

Case of axiom ([r][?])
The direction from left to right is shown as follows.

x = x ⇒ x = x
⇒ x = x (= Ref)

x :r B ⇒ x :r A, x = x
(Lw) x :r B ⇒ x :r B

x :r B ⇒ x :r A, x :r B
(Rw)

x :r B ⇒ x :r A, xRr
?B x

(R?) x :r A ⇒ x :r A
x :r A, x :r B ⇒ x :r A

(Lw)

x :r B, x :r [?B]A ⇒ x :r A
(L[?B])

x :r [?B]A ⇒ x :r B → A
(R →)

x :ε [r][?B]A ⇒ x :ε [r](B → A)
([r])

⇒ x :ε [r][?B]A → [r](B → A)
(R →)

The direction from right to left is shown as follows.

x :r B ⇒ x :r B
x :r B ⇒ y :r A, x :r B

(Rw)

xRr
?B y ⇒ y :r A, x :r B

(L?2)

Lemma 4.10....
x :r A, x = y ⇒ y :r A

x :r A, xRr
?B y ⇒ y :r A

(L?1)

xRr
?B y, x :r B → A ⇒ y :r A

(L →)

x :r B → A ⇒ x :r [?B]A
(R[?B])

x :ε [r](B → A) ⇒ x :ε [r][?B]A
([r])

⇒ x :ε [r](B → A) → [r][?B]A
(R →)

In the inductive step, we show the cases of inference rules in HDLRC. Here, we show
only the case of inference rules (MP) and (Nec[r]).

Case of inference rule (MP):
Fix any x ∈ Var. Suppose derivations D1 for ⇒ x :ε A → B and D2 for ⇒ x :ε A.
We show that there is a derivation of ⇒ x :ε B. This is shown by:

.... D1

⇒ x :ε A → B
x :ε B ⇒ x :ε B

.... D2

⇒ x :ε A
x :ε A → B ⇒ x :ε B

(L →)

⇒ x :ε B
(Cut)
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Case of inference rule (Nec[r]):
Fix any x ∈ Var and any r ∈ RC. Suppose a derivation D of ⇒ x :ε A. Our goal
is to show the derivation D′ of ⇒ x :ε [r]A. Using rule (R[r]) in GDLRC we can
obtain the derivation D′ by D where r is inserted into the head of the list of relation
changers of each node in D.

□

4.3.3 Cut Elimination of GDLRC

Definition 4.12. Let w, x, y, z ∈ Var, A ∈ Form, α ∈ PR, L ∈ (RC)∗ and φ be a sequent.
A substitution φ[y/x] (the result of substituting x in φ uniformly with y) is defined by:

z[y/x] ≡

{
y if z = x

z if z ̸= x

(z :L A)[y/x] ≡ z[y/x] :L A
(w RL

α z)[y/x] ≡ w[y/x]RL
α z[y/x]

(w = z)[y/x] ≡ w[y/x](= z[y/x])

A substitution Γ[y/x] is also defined by:

Γ[y/x] = {φ[y/x] | φ ∈ Γ }.

Lemma 4.13. If ⊢GDLRC Γ ⇒ ∆ by a derivation D, then ⊢GDLRC Γ[y/x] ⇒ ∆[y/x] by a
derivation D′ where the height of D is equal to the height of D′.

Definition 4.14 (Extended cut rule). Let m,n ≥ 0 and φ be a labelled expression.

Γ ⇒ ∆, φm φn,Σ ⇒ Π
Γ,Σ ⇒ ∆,Π

(Ecut)

We say that φ is a Ecut labelled expression.

We define GDLRC∗ as GDLRC− with the rule of (Ecut).

Definition 4.15 (Ecut-bottom form for GDLRC∗). A derivation D in GDLRC∗ is
Ecut-bottom form if it has the following form:

... DL

Γ ⇒ ∆, φm rule(DL)

... DR

φn,Σ ⇒ Π
rule(DR)

Γ,Σ ⇒ ∆,Π
(Ecut)

where rule(D) is the last applied rule of a given derivation D and there are no-application
of (Ecut) in DL nor DR.

Definition 4.16. Let D be a derivation in GDLRC∗ who has the Ecut-bottom form. The
weight and the complexity of D is defined by:

w(D) = |DL|+ |DR| (≥ 2) where | · | is the number of nodes as a tree,
c(D) = ℓ(φ) where φ is the labelled expressions in D.
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Definition 4.17. Let c(D) = i and w(D) = j.

(i, j) ≥ (i′, j′) iff i = i′ and j ≥ j′.

Lemma 4.18. For any Ecut-bottom form D in GDLRC∗, there is a derivation D′ in
GDLRC− such that the end sequent of D is equal to that of D′.

Proof. The proof is shown by the method of Ono and Komori [29]. Since D is the Ecut-
bottom form in GDLRC∗, it has the following form:

... DL

Γ ⇒ ∆, φm rule(DL)

... DR

φn,Σ ⇒ Π
rule(DR)

Γ,Σ ⇒ ∆,Π
(Ecut)

Let c(D) = i (≥ 0) and w(D) = j (≥ 2). We show the proof by double induction
on (c(D), w(D)). Our goal is to obtain a derivation D′ in GDLRC− such that the end
sequent of D is equal to that of D′. Our proof is organized as follows: first, we consider
the cases where m = 0 (for φm) or n = 0 (for φn) in D. Since we can easily show such
cases by (Lw) and (Rw), we skip them. Second, we consider the cases where m > 0 and
n > 0 in D. These cases can be divided into the following five sub cases.

(1) At least one of rule(DL) and rule(DR) is an initial sequent.

(2) At least one of rule(DL) and rule(DR) is a structural rule.

(3) At least one of rule(DL) and rule(DR) is a logical rule, a program rule, or a relation
changer rule where the cut labelled expression is not principal.

(4) Both rule(DL) and rule(DR) are logical rules, program rules, or relation changer
rules for the same connectives where the cut labelled expression is principal for both
rules.

(5) At least one of rule(DL) and rule(DR) is an equality rule where the cut labelled
expression is not principal.

For case (5), the equality rule (= at) can be regarded as a right rule, but we do not have
any corresponding left rule for that. In addition, there is no principal labelled expression in
the other equality rules. Therefore we do not need to consider the case of ‘both rule(DL)
and rule(DR) are equality rules where the cut labelled expression is principal for both
rules.’

Now, let us see the proof for each cases. We skip cases (1) and (2) since they are
rather easy.

Case (3):
Suppose that at least one of rule(DL) and rule(DR) is a logical rule, a program
rule, or a relation changer rule where the cut labelled expression is not principal.
Here, we only show the sub cases for the logical rule (R[r]) and the relation changer
rules (Rat) and (Rrel).
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Case (3-1) where rule(DL) is (R[r]):
The Ecut-bottom form of this case can be written as follows:

.... DL′

Γ ⇒ ∆, x :(L,r) A,φm

Γ ⇒ ∆, x :L [r]A,φm
(R[r])

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, x :L [r]A
(Ecut)

We can transform the above derivation into the following one:

.... DL′

Γ ⇒ ∆, x :(L,r) A,φm

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, x :(L,r) A
(Ecut)

Γ,Σ ⇒ ∆,Π, x :L [r]A
(R[r])

Since ℓ(x :L [r]A) > ℓ(x :(L,r) A) (cf. Proposition 4.9 (i)), the complexity of the
above transformed derivation is less than that of the original one. Therefore,
we can obtain a derivation for Γ,Σ ⇒ ∆,Π, x :L [r]A in GDLRC− by induction
hypothesis.

Case (3-2) where rule(DL) is (Rat):
The Ecut-bottom form of this case can be written as follows:

.... DL′

Γ ⇒ ∆, x :L p, φm

Γ ⇒ ∆, x :(L,r) p, φm
(Rat)

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, x :(L,r) p
(Ecut)

We can transform the above derivation into the following one:

.... DL′

Γ ⇒ ∆, x :L p, φm

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, x :L p
(Ecut)

Γ,Σ ⇒ ∆,Π, x :(L,r) p
(Rat)

Since ℓ(x :(L,r) p) > ℓ(x :L p) (cf. Proposition 4.9 (ii)), the complexity of the
above transformed derivation is less than that of the original one. Therefore,
we can obtain a derivation for Γ,Σ ⇒ ∆,Π, x :(L,r) p in GDLRC− by induction
hypothesis.

Case (3-3) where rule(DL) is (Rrel):
The Ecut-bottom form of this case can be written as follows:

.... DL′

Γ ⇒ ∆, xRL
r(a) y, φ

m

Γ ⇒ ∆, xR
(L,r)
a y, φm

(Rrel)
.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, xR
(L,r)a
y

(Ecut)
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We can transform the above derivation into the following one:

.... DL′

Γ ⇒ ∆, xRL
r(a) y, φ

m

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, xRL
r(a) y

(Ecut)

Γ,Σ ⇒ ∆,Π, xR
(L,r)
a y

(Rrel)

Since ℓ(xR
(L,r)
a y) > ℓ(xRr

r(a) y) (cf. Proposition 4.9 (iii)), the complexity of the
above transformed derivation is less than that of the original one. Therefore,
we can obtain a derivation for Γ,Σ ⇒ ∆,Π, xR

(L,r)a
y in GDLRC− by induction

hypothesis.

Case (4):
Suppose that both rule(DL) and rule(DR) are logical rules, program rules, or
relation changer rules for the same connectives where the cut labelled expression is
principal for both rules. Here, we only show the sub cases for the logical rules of
([r]) and relation changer rules of (rel) and (at).

Case (4-1) where rule(DL) is (R[r]) and rule(DR) is (L[r]):
The Ecut-bottom form of this case can be written as follows:

.... DL′

Γ ⇒ ∆, x :(L,r) A, (x :L [r]A)m−1

Γ ⇒ ∆, (x :L [r]A)m
(R[r])

.... DR′

(x :L [r]A)n−1, x :(L,r) A,Σ ⇒ Π

(x :L [r]A)n,Σ ⇒ Π
(L[r])

Γ,Σ ⇒ ∆,Π
(Ecut)

From this derivation, we can construct the following derivation D′
1:

.... DL′

Γ ⇒ ∆, x :(L,r) A, (x :L [r]A)m−1

.... DR′

(x :L [r]A)n−1, x :(L,r) A,Σ ⇒ Π

(x :L [r]A)n,Σ ⇒ Π
(L[r])

Γ,Σ ⇒ ∆,Π, x :(L,r) A
(Ecut)

Similarly, we can also construct the following derivation D′
2:

.... DL′

Γ ⇒ ∆, x :(L,r) A, (x :L [r]A)m−1

Γ ⇒ ∆, (x :L [r]A)m
(R[r])

.... DR′

(x :L [r]A)n−1, x :(L,r) A,Σ ⇒ Π

x :(L,r) A,Γ,Σ ⇒ ∆,Π
(Ecut)

Since the weight of the Ecut-bottom form in D′
1 and D′

2 are smaller than
the original one, we can obtain derivations for Γ,Σ ⇒ ∆,Π, x :(L,r) A and
x :(L,r) A,Γ,Σ ⇒ ∆,Π in GDLRC− by induction hypothesis. Then, by D′

1

and D′
2, we can transform the original derivation into the following one:

D′
1 D′

2

Γ,Γ,Σ,Σ ⇒ ∆,∆,Π,Π
(Ecut)

Γ,Σ ⇒ ∆,Π
(c)
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Since ℓ(x :L [r]A) > ℓ(x :(L,r) A) (cf. Proposition 4.9 (i)), the complexity of the
above transformed derivation is less than that of the original one. Therefore, we
can obtain a derivation for Γ,Σ ⇒ ∆,Π in GDLRC− by induction hypothesis.

Case (4-2) where rule(DL) is (Rat) and rule(DR) is (Lat)):
The Ecut-bottom form of this case can be written as follows:

.... DL′

Γ ⇒ ∆, x :L p, (x :(L,r) p)m−1

Γ ⇒ ∆, (x :(L,r) p)m
(Rat)

.... DR′

(x :(L,r) p)n−1, x :L p,Σ ⇒ Π

(x :(L,r) p)n,Σ ⇒ Π
(Lat)

Γ,Σ ⇒ ∆,Π
(Ecut)

From this derivation, we can construct the following derivation D′
1:

.... DL′

Γ ⇒ ∆, x :L p, (x :(L,r) p)m−1

.... DR′

(x :(L,r) p)n−1, x :L p,Σ ⇒ Π

(x :(L,r) p)n,Σ ⇒ Π
(Lat)

Γ,Σ ⇒ ∆,Π, x :L p
(Ecut)

Similarly, we can also construct the following derivation D′
2:

.... DL′

Γ ⇒ ∆, x :L p, (x :(L,r) p)m−1

Γ ⇒ ∆, (x :(L,r) p)m
(Rat)

.... DR′

(x :(L,r) p)n−1, x :L p,Σ ⇒ Π

x :L p,Γ,Σ ⇒ ∆,Π
(Ecut)

Since the weight of the Ecut-bottom form in D′
1 and D′

2 are smaller than
the original one, we can obtain derivations for Γ,Σ ⇒ ∆,Π, x :L p and x :L

p,Γ,Σ ⇒ ∆,Π in GDLRC− by induction hypothesis. Then, by D′
1 and D′

2,
we can transform the original derivation into the following one:

D′
1 D′

2

Γ,Γ,Σ,Σ ⇒ ∆,∆,Π,Π
(Ecut)

Γ,Σ ⇒ ∆,Π
(c)

Since ℓ(x :(L,r) p) > ℓ(x :L p) (cf. Proposition 4.9 (ii)), the complexity of the
above transformed derivation is less than that of the original one. Therefore, we
can obtain a derivation for Γ,Σ ⇒ ∆,Π in GDLRC− by induction hypothesis.

Case (4-3) where rule(DL) is (Rrel) and rule(DR) is (Lrel):
The Ecut-bottom form of this case can be written as follows:

.... DL′

Γ ⇒ ∆, xRL
r(a) y, (xR

(L,r)
a y)m−1

Γ ⇒ ∆, (xR
(L,r)
a y)m

(Rrel)

.... DR′

(xR
(L,r)
a y)n−1, xRL

r(a) y,Σ ⇒ Π

(xR
(L,r)
a y)n,Σ ⇒ Π

(Lrel)

Γ,Σ ⇒ ∆,Π
(Ecut)

54



4.3. Labelled Sequent Calculus for Dynamic Logic of Relation Changers

From this derivation, we can construct the following derivation D′
1:

.... DL′

Γ ⇒ ∆, xRL
r(a) y, (xR

(L,r)
a y)m−1

.... DR′

(xR
(L,r)
a y)n−1, xRL

r(a) y,Σ ⇒ Π

(xR
(L,r)
a y)n,Σ ⇒ Π

(Lrel)

Γ,Σ ⇒ ∆,Π, xRL
r(a) y

(Ecut)

Similarly, we can also construct the following derivation D′
2:

.... DL′

Γ ⇒ ∆, xRL
r(a) y, (xR

(L,r)
a y)m−1

Γ ⇒ ∆, (xR
(L,r)
a y)m

(Rrel)
.... DR′

(xR
(L,r)
a y)n−1, xRL

r(a) y,Σ ⇒ Π

xRL
r(a) y,Γ,Σ ⇒ ∆,Π

(Ecut)

Since the weight of the Ecut-bottom form in D′
1 and D′

2 are smaller than
the original one, we can obtain derivations for Γ,Σ ⇒ ∆,Π, xRL

r(a) y and

xRL
r(a) y,Γ,Σ ⇒ ∆,Π in GDLRC− by induction hypothesis. Then, by D′

1

and D′
2, we can transform the original derivation into the following one:

D′
1 D′

2

Γ,Γ,Σ,Σ ⇒ ∆,∆,Π,Π
(Ecut)

Γ,Σ ⇒ ∆,Π
(c)

Since ℓ(xR
(L,r)
a y) > ℓ(xRr

r(a) y) (cf. Proposition 4.9 (iii)), the complexity of the
above transformed derivation is less than that of the original one. Therefore, we
can obtain a derivation for Γ,Σ ⇒ ∆,Π in GDLRC− by induction hypothesis.

Case (5):
Suppose that at least one of rule(DL) and rule(DR) is an equality rule where
the cut labelled expression is not principal. Here, we only show the sub cases for
equality rules (= at) and (= ref).

Case (5-1) where rule(DL) is (= at):
The Ecut-bottom form can be written as follows:

.... DL′
1

Γ ⇒ ∆, x = y, φm

.... DL′
2

Γ ⇒ ∆, x :L p, φm

Γ ⇒ ∆, y :L p, φm
(= at)

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, y :L p
(Ecut)

From this derivation, we can construct the following derivation D′
1:

.... DL′
1

Γ ⇒ ∆, x = y, φm

.... DR

φn,Σ ⇒ Π
Γ,Σ ⇒ ∆,Π, x = y

(Ecut)
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Similarly, we can also construct the following derivation D′
2:

.... DL′
2

Γ ⇒ ∆, x :L p, φm

.... DR

φn,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π, x :L p
(Ecut)

Since the weight of the Ecut-bottom form in D′
1 and D′

2 are smaller than the
original one, we can obtain derivations for Γ,Σ ⇒ ∆,Π, x = y and Γ,Σ ⇒
∆,Π, x :L p in GDLRC− by induction hypothesis. By D′

1 and D′
2, we can

transform the original derivation into the following one:

D′
1 D′

2

Γ,Σ ⇒ ∆,Π, y :L p
(= at)

Since the transformed derivation does not contain (Ecut), we can obtain a
derivation for Γ,Σ ⇒ ∆,Π, y :L p in GDLRC−.

Case (5-2) where rule(DL) is (= ref):
The Ecut-bottom form can be written as follows:

.... DL′

x = x,Γ ⇒ ∆, φm

Γ ⇒ ∆, φm (= ref)
.... DR

φn,Σ ⇒ Π
Γ,Σ ⇒ ∆,Π

(Ecut)

We can transform the above derivation into the following one:

.... DL′

x = x,Γ ⇒ ∆, φm

.... DR

φn,Σ ⇒ Π
x = x,Γ,Σ ⇒ ∆,Π

(Ecut)

Γ,Σ ⇒ ∆,Π
(= ref)

Since the weight of the Ecut-bottom form in the above transformed derivation
is smaller than the original one, we can obtain a derivation for Γ,Σ ⇒ ∆,Π in
GDLRC− by induction hypothesis.

□
Theorem 4.19 (Cut Elimination). For any multisets Γ and ∆ of labelled expressions, if
⊢GDLRC Γ ⇒ ∆, then ⊢GDLRC− Γ ⇒ ∆.

Proof. Since (Cut) is a special form of (Ecut), we have that if ⊢GDLRC Γ ⇒ ∆, then
⊢GDLRC∗ Γ ⇒ ∆. Thus, it suffices to show that if ⊢GDLRC∗ Γ ⇒ ∆, then ⊢GDLRC− Γ ⇒ ∆.
Let D be a derivation for Γ ⇒ ∆ in GDLRC∗. Since GDLRC∗ contains (Ecut), D might
contain some Ecut-bottom forms. If D does not contain (Ecut), it is trivial. Therefore,
we suppose that D contains some Ecut-bottom forms. Now, let us focus on the nearest
uppermost occurrence of Ecut-bottom form D′ from an initial sequent in D. If we apply
Lemma 4.18 to this D′, we can get a derivation D′′ in GDLRC− whose initial sequent is
the same as that of D′ in GDLRC∗. If we replace such D′ in D by D′′, we can eliminate
an occurrence of (Ecut) from D. Similarly, if we repeat the above procedure to each
uppermost occurrence of Ecut-bottom form in D, we can obtain a derivation for Γ ⇒ ∆
that does not contain (Ecut), therefore ⊢GDLRC− Γ ⇒ ∆. □
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4.3.4 Soundness of GDLRC for Kripke Semantics

To show the soundness of labelled sequent calculus GDLRC for Kripke semantics, we
need to give a semantic interpretation of labelled expressions in terms of Kripke semantics.
Thus, we lift our Kripke semantics to labelled expressions by an assignment function for
variables.

Definition 4.20. Let M = (W, (Ra)a∈AP, V ) be a model. We say f : Var → W is an
assignment on M. Given any model M and any assignment f on M, we define M, f |= φ
by:

M, f |= x :L A iff ML, f(x) |= A,
M, f |= xRL

α y iff f(x)RL
αf(y),

M, f |= x = y iff f(x) = f(y).

Definition 4.21. A labelled sequent Γ ⇒ ∆ holds in M under f (notation: M, f |= Γ ⇒
∆) if, whenever M, f |= γ for all γ ∈ Γ, M, f |= δ for some δ ∈ ∆. We say that Γ ⇒ ∆
is valid in a model M (notation: M |= Γ ⇒ ∆) if M, f |= Γ ⇒ ∆ for any assignment f
on M. We also say that Γ ⇒ ∆ is valid in a class M of models (notation: M |= Γ ⇒ ∆)
if M |= Γ ⇒ ∆ for all models M ∈ M.

Lemma 4.22. Let Mall be a class of all models. For any multisets Γ and ∆ of labelled
expressions,

if ⊢GDLRC Γ ⇒ ∆, then Mall |= Γ ⇒ ∆.

Proof. Let φ be a labelled expression. We show the proof by induction on the height n
of a derivation of Γ ⇒ ∆ in GDLRC. Since the base case for initial sequents is trivial,
we skip it. Then, for inductive steps, we show only the cases for ([α]), ([r]), (;), (at), and
(rel).

Case where the last applied rule of our derivation is (L[α]):
Suppose that Mall |= Γ ⇒ ∆, xRL

α y and Mall |= y :L A,Γ ⇒ ∆. We show that
Mall |= x :L [α]A,Γ ⇒ ∆, i.e., M, f |= x :L [α]A,Γ ⇒ ∆ for all M and all f on M.
Fix any M = (W, (Ra)a∈AP, V ) and f such that M, f |= x :L [α]A and M, f |=
γ for all γ ∈ Γ. Our goal is to show that

M, f |= δ for some δ ∈ ∆.

By induction hypothesis, we have M, f |= Γ ⇒ ∆, xRL
α y. Since M, f |= γ for all

γ ∈ Γ, it follows that M, f |= δ for some δ ∈ ∆ or M, f |= xRL
α y. If M, f ̸|= xRL

α y,
we immediately obtain our goal. Hence, we consider the case where M, f |= xRL

α y,
i.e., f(x)RL

αf(y). By definition of M, f |= x :L [α]A and f(x)RL
αf(y), we get

ML, f(y) |= A, i.e., M, f |= y :L A. By induction hypothesis, we have M, f |= y :L

A,Γ ⇒ ∆, which implies our goal.

Case where the last applied rule of our derivation is (R[α]):
Suppose that Mall |= xRL

α y,Γ ⇒ ∆, y :L A where y does not appear in Γ,∆ nor
x :L [α]A. We show that Mall |= Γ ⇒ ∆, x :L [α]A, i.e., M, f |= Γ ⇒ ∆, x :L

[α]A for all M and all f on M. Fix any M = (W, (Ra)a∈AP, V ) and f such that
M, f |= γ for all γ ∈ Γ. Our goal is to show that M, f |= δ for some δ ∈ ∆
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or M, f |= x :L [α]A. Suppose that M, f ̸|= δ for all δ ∈ ∆. We show that
M, f |= x :L [α]A, i.e., if f(x)RL

αv, then ML, v |= A for all v ∈ W . Fix any v ∈ W
such that f(x)RL

αv. Our goal is to show that ML, v |= A. Define a new assignment
function f ′ : Var → W by

f ′(z) =

{
v if z = y,

f(z) otherwise.

Since f ′(y) is equal to v, it suffices to show that ML, f ′(y) |= A. Since y does not
appear in Γ nor ∆, our suppositions implies M, f ′ |= γ for all γ ∈ Γ and M, f ′ ̸|=
δ for all δ ∈ ∆. Since x ̸= y and f(x)RL

αv, we have f ′(x)RL
αf

′(y), i.e., M, f ′ |=
xRL

α y. By induction hypothesis, we have M, f ′ |= xRL
α y,Γ ⇒ ∆, y :L A, which

implies M, f ′ |= y :L A.

Case where the last applied rule of our derivation is (L[r]):
Suppose that Mall |= x :(L,r) A,Γ ⇒ ∆. We show that Mall |= x :L [r]A,Γ ⇒ ∆,
i.e., M, f |= x :L [r]A,Γ ⇒ ∆ for all M and all f on M. Fix any M and f such
that M, f |= x :L [r]A and M, f |= γ for all γ ∈ Γ. Our goal is to show that
M, f |= δ for some δ ∈ ∆. Since M, f |= x :L [r]A, we have M, f |= x :(L,r) A. By
induction hypothesis, we have M, f |= x :(L,r) A,Γ ⇒ ∆, which implies our goal.

Case where the last applied rule of our derivation is (R[r]):
Suppose that Mall |= Γ ⇒ ∆, x :(L,r) A. We show that Mall |= Γ ⇒ ∆, x :L [r]A,
i.e., M, f |= Γ ⇒ ∆, x :L [r]A for all M and all f on M. Fix any M and f such
that M, f |= γ for all γ ∈ Γ. Our goal is to show that M, f |= δ for some δ ∈ ∆ or
M, f |= x :L [r]A. Suppose that M, f ̸|= δ for all δ ∈ ∆. Our goal is to show that
M, f |= x :L [r]A, i.e.,

ML, f(x) |= [r]A,
i.e., M(L,r), f(x) |= A,
i.e., M, f |= x :(L,r) A.

By induction hypothesis, we have M, f |= Γ ⇒ ∆, x :(L,r) A. Since M, f |= γ
for all γ ∈ Γ, it follows that M, f |= δ for some δ ∈ ∆ or M, f |= x :(L,r) A. If
M, f |= x :(L,r) A, we immediately obtain our goal. Hence we consider the case
where M, f |= δ for some δ ∈ ∆, but it contradicts to our supposition.

Case where the last applied rule of our derivation is (L;):
Suppose that Mall |= xRL

α1
z, z RL

α2
y,Γ ⇒ ∆ where z does not appear in Γ,∆ nor

xRL
α1;α2

y. We show that Mall |= xRL
α1;α2

y,Γ ⇒ ∆, i.e., M, f |= xRL
α1;α2

y,Γ ⇒
∆ for all M and all f on M. Fix any M = (W, (Ra)a∈AP, V ) and f . Suppose
that M, f |= γ for all γ ∈ Γ and M, f |= xRL

α1;α2
y, i.e., f(x)RL

α1;α2
f(y), i.e.,

f(x)RL
α1
m and mRL

α2
f(y) for some m ∈ W . Our goal is to show that

M, f |= δ for some δ ∈ ∆.

Define a new assignment function f ′ : Var → W by

f ′(w) =

{
m if w = z,

f(w) otherwise.
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Since f ′(z) is equal to m, it suffices to show that M, f ′ |= δ for some δ ∈ ∆.
Since f(x)RL

α1
m and mRL

α2
f(y) for some m ∈ W , it follows that f ′(x)RL

α1
f ′(z) and

f ′(z)RL
α2
f ′(y), i.e., M, f ′ |= xRL

α1
z and M, f ′ |= z RL

α2
y. Since M, f |= γ for all

γ ∈ Γ and z does not appear in Γ, we get M, f ′ |= γ for all γ ∈ Γ. By induction
hypothesis, we have M, f ′ |= xRL

α1
z, z RL

α2
y,Γ ⇒ ∆, which implies our goal.

Case where the last applied rule of our derivation is (R;):
Suppose that Mall |= Γ ⇒ ∆, xRL

α1
z and Mall |= Γ ⇒ ∆, z RL

α2
y. We show that

Mall |= Γ ⇒ ∆, xRL
α1;α2

y, i.e., M, f |= Γ ⇒ ∆, xRL
α1;α2

y for all M and all f on M.
Fix any M = (W, (Ra)a∈AP, V ) and f such that M, f |= γ for all γ ∈ Γ. Our goal is
to show that M, f |= δ for some δ ∈ ∆ or M, f |= xRL

α1;α2
y, i.e.,

f(x)RL
α1;α2

f(y),
i.e., f(x)RL

α1
w and wRL

α2
f(y) for some w ∈ W.

By induction hypothesis, we have M, f |= Γ ⇒ ∆, xRL
α1

z, which implies M, f |= δ
for some δ ∈ ∆ or M, f |= xRL

α1
z. If M, f |= δ for some δ ∈ ∆, we immedi-

ately obtain our goal. Hence, we consider the case where M, f |= xRL
α1

z. Since
M, f ̸|= δ for all δ ∈ ∆, we get M, f |= xRL

α1
z, i.e., f(x)RL

α1
f(z). Similarly, by

induction hypothesis, we have M, f |= Γ ⇒ ∆, z RL
α2

y, which implies f(z)RL
α2
f(y).

By f(x)RL
α1
f(z) and f(z)RL

α2
f(y), we obtain our goal.

Case where the last applied rule of our derivation is (Lat):
Suppose that Mall |= x :L p,Γ ⇒ ∆. We show that Mall |= x :(L,r) p,Γ ⇒ ∆, i.e.,
M, f |= x :(L,r) p,Γ ⇒ ∆ for all M and all f on M. Fix any M = (W, (Ra)a∈AP, V )
and f such that M, f |= x :(L,r) p and M, f |= γ for all γ ∈ Γ. Our goal is to show
that M, f |= δ for some δ ∈ ∆. Then,

M, f |= x :(L,r) p iff M(L,r), f(x) |= p,
iff f(x) ∈ V (L,r)(p),
iff f(x) ∈ V L(p),
iff ML, f(x) |= p,
iff M, f |= x :L p.

So, M, f |= x :L p. By induction hypothesis, we have M, f |= x :L p,Γ ⇒ ∆, which
implies our goal.

Case where the last applied rule of our derivation is (Rat):
Suppose that Mall |= Γ ⇒ ∆, x :L p. We show that Mall |= Γ ⇒ ∆, x :(L,r) p, i.e.,
M, f |= Γ ⇒ ∆, x :(L,r) p for all M and all f on M. Fix any M = (W, (Ra)a∈AP, V )
and f such that M, f |= γ for all γ ∈ Γ. Our goal is to show that M, f |= δ for
some δ ∈ ∆ or M, f |= x :(L,r) p, i.e.,

M(L,r), f(x) |= p,
i.e., f(x) ∈ V (L,r)(p),
i.e., f(x) ∈ V L(p),
i.e., M, f |= x :L p.

By induction hypothesis, we have M, f |= Γ ⇒ ∆, x :L p, which implies our goal.
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Case where the last applied rule of our derivation is (Lrel)

Suppose that Mall |= xRL
r(a) y,Γ ⇒ ∆. We show that Mall |= xR

(L,r)
a y,Γ ⇒ ∆, i.e.,

M, f |= xR
(L,r)
a y,Γ ⇒ ∆ for all M and all f on M. Fix any M = (W, (Ra)a∈AP, V )

and f such that M, f |= xR
(L,r)
a y and M, f |= γ for all γ ∈ Γ. Our goal is to show

that M, f |= δ for some δ ∈ ∆. Then,

M, f |= xR
(L,r)
a y iff f(x)R

(L,r)
a f(y),

iff f(x)RL
r(a)f(y),

iff M, f |= xRL
r(a) y.

So, M, f |= xRL
r(a) y. By induction hypothesis, we have M, f |= xRL

r(a) y,Γ ⇒ ∆,
which implies our goal.

Case where the last applied rule of our derivation is (Rrel):

Suppose that Mall |= Γ ⇒ ∆, xRL
r(a) y. We show that Mall |= Γ ⇒ ∆, xR

(L,r)
a y, i.e.,

M, f |= Γ ⇒ ∆, xR
(L,r)
a y for all M and all f on M. Fix any M = (W, (Ra)a∈AP, V )

and f such that M, f |= γ for all γ ∈ Γ. Our goal is to show that M, f |= δ for

some δ ∈ ∆ or M, f |= xR
(L,r)
a y, i.e.,

f(x)R
(L,r)
a f(y),

i.e., f(x)RL
r(a)f(y),

i.e., M, f |= xRL
r(a) y.

By induction hypothesis M and f , we have M, f |= Γ ⇒ ∆, xRL
r(a) y, which implies

our goal.

□

Theorem 4.23 (Soundness). If ⊢GDLRC−⇒ x :ε A for all x ∈ Var, then A is valid on all
models.

Proof. Suppose ⊢GDLRC−⇒ x :ε A for all x ∈ Var. We show that A is valid on all models,
i.e., M, w |= A for all M = (W, (Ra)a∈AP, V ) and w ∈ W . Fix any M and w ∈ W . Define
a new assignment function f ′ : Var → W by f ′(y) = w if y = x; f ′(y) = v otherwise.
By Lemma 4.22, we get that if ⊢GDLRC Γ ⇒ ∆, then M, f ′ |= Γ ⇒ ∆ for any multisets
of Γ and ∆ of labelled expressions. Since ⊢GDLRC−⇒ x :ε A for all x ∈ Var, we get
M, f ′ |=⇒ x :L A which implies M, w |= A. □

Finally, by Fact 4.4 and our Theorems 4.11-4.23, we obtain the following corollary.

Corollary 4.24. Given any formula A, the following are equivalent:

(i) A is valid on all Kripke models,

(ii) ⊢HDLRC A,

(iii) ⊢GDLRC⇒ x :ε A for all x ∈ Var,

(iv) ⊢GDLRC−⇒ x :ε A for all x ∈ Var.
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Proof. Firstly, the direction from (i) to (ii) is established by Fact 4.4 (HDLRC is sound
and complete). Secondly, the direction from (ii) to (iii) is shown by Theorem 4.11 (all
theorems of HDLRC are derivable in GDLRC). Thirdly, the direction from (iii) to (iv)
is shown by Theorem 4.19 (cut-elimination holds for GDLRC). Finally, the direction
from (iv) to (i) is shown by Theorem 4.23 (GDLRC is sound for Kripke semantics). □
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Chapter 5

Linear Algebraic Semantics for
Multi-agent Communication

In this chapter, we try to combine idea of the linear algebraic approach to DLRC (Chap-
ter 4) with integration of the notion of communication channels into DEL. First, we
integrate the notion of the channels into DEL. In Section 5.1, we introduce a static
logic of agents’ belief equipped with the notion of channel between agents and establish
that all the valid formulas on all the finite Kripke models for our syntax is completely
axiomatizable (Theorem 5.11). We also show that our proposed axiomatization is decid-
able (Theorem 5.12). In Section 5.2, in order to deal with changes of agents’ belief via
communication channel, we provide two dynamic operators to our syntax of static logic
with sets of reduction axioms. Afterward, we introduce extension of our linear algebraic
approach. In Section 5.3, with the help of the idea of DLRC [39], we reveal that we
can regard our two dynamic operators as programs in PDL− and also reformulates the
semantics with two operators in terms of Boolean matrices. Finally, in Section 5.4, we
present algorithms for checking agent’s belief at a given world and for rewriting a given
Kripke model using our Boolean matrix reformulation.

5.1 Doxastic Logic with Communication Channels

5.1.1 Syntax and Semantics

Doxastic logic is a variant of epistemic logic that concerns agent’s beliefs rather than
knowledges (for epistemic logic of knowledge, see also Section 2.3). In this section, we
introduce the doxastic logic with the notion of communication channels between agents
(for short, MLc). Let PROP be a finite set of propositional variables and G be a fixed
finite set of agents. Besides the propositional connectives, the language LMLc contains
the following operators: belief operators [Ba] (a ∈ G) and channel constants cab (a, b ∈ G).
We regard a finite set MOD as { [Ba] | a ∈ G }. Then, a set FormMLc of formulas of the
language LMLc is inductively defined as follows:

FormMLc ∋ A ::= p | cab | ¬A | A ∨B | [Ba]A

where p ∈ PROP, a, b ∈ G and [Ba] ∈ MOD. We introduce the defined abbreviations for
propositional connectives ∧,→,↔ as in Section 2.1.1 and the dual operator ⟨Ba⟩ of [Ba]
by ⟨Ba⟩A := ¬[Ba]¬A. cab stands for ‘there is a communication channel from a to b.’

62



5.1. Doxastic Logic with Communication Channels

Then, [Ba]p and ⟨Ba⟩A stand for ‘agent a believes that p’ and for ‘agent a considers it
possible that A,’ respectively.

Next, let us provide Kripke semantics with our syntax. In this logic, we extend a
standard Kripke model with a set of (communication) channels. That is, a model M is
a tuple (W, (Ra)a∈G, (Cab)a,b∈G, V ) where W is a non-empty set of worlds, Ra ⊆ W ×W ,
Cab ⊆ W is a channel relation such that Caa = W for all a ∈ G, and V : Prop → P(W ) is
a valuation function. Note that we require Caa = W for all a ∈ G in order to capture our
notion of communication channel. A frame (denoted by F, etc.) is the result of dropping
a valuation function from a model, as usual.

Given any model M, any world w ∈ W , and any formula A, we define the satisfaction
relation M, w |= A inductively as follows:

M, w |= p iff w ∈ V (p),
M, w |= cab iff w ∈ Cab,
M, w |= ¬A iff M, w ̸|= A,
M, w |= A ∨B iff M, w |= A or M, w |= B,
M, w |= [Ba]A iff for all v ∈ W : wRav implies M, v |= A.

The truth set JAKM is defined by JAKM = {w ∈ W | M, w |= A }. The notion of the validity
is also provided with respect to the above frames and models as in Section 2.1.1.

Proposition 5.1. For any a ∈ G, caa is always valid in any Kripke model M.

Proof. Fix any a ∈ G, any M and any w ∈ |M|. We show M, w |= caa, i.e., w ∈ Caa. By
definition, Caa = |M| and it follows that w ∈ Caa. □

Example 5.2. Let G = { a, b }. Define M (see Figure 5.1) by:

W = {w1, w2, w3 },
Ra = { (w1, w1), (w1, w2), (w1, w3), (w2, w2), (w3, w3) },
Rb = W ×W,
V (p) = {w2 },
Cab = {w1, w2 },
Cba = ∅,
Caa = Cbb = W.

Agent a believes p in w2 and ¬p in w3, but he/she is not sure of p or ¬p in w1. On the
other hand, agent b does not believe p nor ¬p at all the worlds. There are channels from
a to b in w1 and w2, but there is no channel between them in w3.

5.1.2 Hilbert-style Axiomatization HKc

In Table 5.1, we present the sound and complete Hilbert-style axiomatization HKc . We
can regard the system HKc as an axiomatic extension of HKΣ in terms of belief operators
[Ba] (a ∈ G). Therefore, we use the same manner in Section 2.1.3 to define a derivation
and theorem in HKc . Then, we denote A is a theorem in HKc by ⊢HKc A. Similarly to
HKΣ, we can show the completeness of HKc by the method of the canonical model (cf.
Section 2.1.3), where the model is extended with a set of channels. We can also use the
same manner in Section 2.1.3 to define a maximally consistent set (HKc-MCS, we also
use the word HKc-consistent in what follows).
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Chapter 5. Linear Algebraic Semantics for Multi-agent Communication

Figure 5.1: Accessibility Relations of Agents a and b.

Table 5.1: Hilbert-style Axiomatization HKc of Static Logic

(Taut) A, A is a tautology
(K[B]) [Ba](A → B) → ([Ba]A → [Ba]B) (a ∈ G)
(Selfchn) caa (a ∈ G)
(MP) From A and A → B, infer B
(Nec[B]) From A, infer [Ba]A (a ∈ G)

Definition 5.3. For the axiomatic extension HKc, the canonical model MHKc =
(WHKc, (R

HKc
a )a∈G, (C

HKc

ab )a,b∈G, V
HKc ) is defined by:

• WHKc := {Γ | Γ is an HKc-MCS }.

• ΓR
HKc
a ∆ iff [Ba]A ∈ Γ implies A ∈ ∆ for all formulas A.

• Γ ∈ C
HKc

ab iff cab ∈ Γ.

• Γ ∈ V HKc (p) iff p ∈ Γ.

Lemma 2.12 (Lindenbaum’s Lemma) also holds in terms of HKc .

Lemma 5.4 (Lindenbaum’s Lemma). If Γ is any HKc-consistent set, then there exists
an HKc-MCS Γ+ such that Γ ⊆ Γ+.

Then, we can show the following equivalence as in Lemma 2.15 (Truth Lemma).

Lemma 5.5 (Truth Lemma). Given any formula A and any HKc-MCS Γ,

MHKc ,Γ |= A iff A ∈ Γ.

Proof. This is shown by induction on A. We only show the case for A ≡ cab. Our goal is
to show that:

MHKc ,Γ |= cab iff cab ∈ Γ,

i.e., Γ ∈ C
HKc

ab iff cab ∈ Γ,
i.e., cab ∈ Γ iff cab ∈ Γ.

This is trivial. One can show that the remaining cases by the same manner as in
Lemma 2.15. □
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5.1. Doxastic Logic with Communication Channels

Proposition 5.6. Let (WHKc, (R
HKc
a )a∈G, (C

HKc

ab )a,b∈G, V
HKc ) be the canonical model. For

all a ∈ G,
CHKc

aa = WHKc .

Proof. Since caa is always valid in any Kripke model (Proposition 5.1), this is trivial by
definition. □

In order to show the completeness of HKc , it is important to restrict our attention
to the finite Kripke models. This is because our linear algebraic reformulation of Kripke
semantics is based on finite matrix. Hence, we use filtration technique to obtain the
completeness of HKc with respect to finite models.

Definition 5.7. Given any formulas A in FormMLc, we define the subformulas Sub(A) :
FormMLc → P(FormMLc) by:

Sub(p) := { p },
Sub(cab) := { cab },
Sub(¬A) := Sub(A) ∪ {¬A },
Sub(A ∪B) := Sub(A) ∪ Sub(B) ∪ {A ∪B },
Sub([Ba]A) := Sub(A) ∪ { [Ba]A }.

We also define Sub(·) for the set Γ of formulas as follows:

Sub(Γ) :=
∪
A∈Γ

Sub(A).

We say that the set Γ of formulas is closed under taking subformulas if Sub(A) ⊆ Γ for
all formulas A ∈ Γ.

Definition 5.8. Let M = ckripke be a model and Γ be a finite set of formulas that is
closed under taking subformulas. Without loss of generality, we can assume that caa ∈ Γ
for all agents a occurring in Γ (otherwise, we can just add caas to Γ for all as occurring
in Γ where note that the number of such as is finite since G is finite). We define the
equivalence relation ∼Γ on W by:

w ∼Γ v iff (M, w |= A iff M, v |= A)for all A ∈ Γ.

We define the equivalence class of w ∈ W with respect to ∼Γ by:

[w] := { v ∈ W | w ∼Γ v }.

Definition 5.9 (Filtration). Let M = ckripke be a model and Γ be a finite set of formulas
that is closed under taking subformulas. The model MΓ := (W Γ, (RΓ

a )a∈AG, (C
Γ
ab)a,b∈G, V

Γ)
is a filtration of M through Γ if it satisfies the following conditions:

• W Γ := W/ ∼Γ = { [w] | w ∈ W }.

• [w]RΓ
a [w

′] iff w′Rav
′ for some w′ ∈ [w] and v′ ∈ [v].

• [w] ∈ CΓ
ab iff w ∈ Cab.

• [w] ∈ V Γ(p) iff w ∈ V (p).
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Chapter 5. Linear Algebraic Semantics for Multi-agent Communication

Remark that CΓ
aa always holds, since we assumed that caa ∈ Γ for all as occurring in Γ.

Remark also that the size of W Γ is less than or equal to 2#Γ, hence finite.

Theorem 5.10 (Filtration Theorem). Let M = (W, (Ra)a∈G, (Cab)a,b∈G, V ) be a model
and Γ be a finite set of formulas that is closed under taking subformulas. For any w ∈ W
any formulas A ∈ Γ,

M, w |= A iff MΓ, [w] |= A.

Theorem 5.11. Let A be a formulas in FormMLc and M be the class of all finite Kripke
models.

M |= A iff ⊢HKc A.

Proof. Since the soundness is easy to establish, we focus on the completeness with respect
to the class of all finite Kripke models. We establish the completeness of HKc with respect
to finite models by contraposition and the technique of filtration. Our goal is to show that
if ̸⊢HKc A, then M ̸|= A. With the help of the canonical model for HKc and Lemmas 5.4
and 5.5, we can obtain that MHKc ̸|= A by the same argument of Lemma 2.16 in terms
of HKc . Since the domain of the canonical model MHKc is infinite, we use the filtration
technique to boil the model down to a finite model. By Theorem 5.10 (Filtration Theorem)
to MHKc ̸|= A, we obtain (MHKc )Γ, [w] ̸|= A, i.e., M ̸|= A.

□

Theorem 5.12. HKc is decidable.

Proof. By Theorem 5.12, we have that if ̸⊢HKc A, then there exists a model M such that
M ̸|= A, i.e., the model M is a finite counter model. Since we can recursively check if
a given finite model satisfies the condition Caa = W for all agents a ∈ G (note that G
is finite), we can construct an effective procedure generating all the finite Kripke models
and checking if A is falsified at some point of a finite model. Together with an effective
procedure of enumerating all the theorems of HKc , we obtain the decision procedure of
Theoremhood of HKc . □

5.2 Dynamic Operators for Channel Communication

This section introduces two dynamic operators which allows us to talk about agents’ belief
changes in terms of informing action. The first dynamic operator (semi-private announce-
ment) specifies both the sender and the receiver, but the second operator (introspective
announcement via channel) just specified the sender agents and we need to calculate the
receivers of the information via communication channels.

5.2.1 Semi-private Announcement

One of the most well-known dynamic operators is public announcement operator [32]
(see also Section 2.3), but our operator of this section differs from it by the following
requirement:

(R3) Our introducing operators are semi-private or non-public announcements to some
specific agents. We assume that an agent a can send a message to an agent b only
when there is a channel from a to b.
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5.2. Dynamic Operators for Channel Communication

Table 5.2: Hilbert-style Axiomatization HKc[ ·↓ab ]

In addition to all the axioms and rules of HKc , we add:
[A↓ab ]p ↔ p,
[A↓ab ]ccd ↔ ccd,
[A↓ab ]¬B ↔ ¬ [A↓ab ]B,
[A↓ab ](B ∨ C) ↔ [A↓ab ]B ∨ [A↓ab ]C,
[A↓ab ][Bc]B ↔ [Bc][A↓ab ]B (c ̸= b)
[A↓ab ][Bb]B ↔ ((cab ∧ [Ba]A) → [Bb](A → [A↓ab ]B))∧

(¬(cab ∧ [Ba]A) → [Bb][A↓ab ]B)
(Nec[A↓ab ]) From B, infer [A↓ab ]B

When an agent informs one of the other agents of something, our basic assumption is that
we need a (context-dependent) channel between those agents. The notion of channel was
formalized as channel propositions cab.

Let us denote our intended dynamic operator by [A↓ab ], whose reading is ‘after the
agent a informs the agent b of the message A via channel’. Our intended reading of
[A↓ab ]B is ‘after the agent a informs the agent b to A, B’. Then, we expand our syntax
LMLc with a dynamic operator [A↓ab ]. Let us call such the logic based on our expanded
syntax by MLc[ ·↓ab ] and denote the set of all formulas of MLc[ ·↓ab ] by FormMLc[ ·↓a

b
]
. Given

any Kripke model M = (W, (Ra)a∈G, (Cab)a,b∈G, V ) and any world w ∈ W , we define the
satisfaction relation of [A↓ab ]B by:

M, w |= [A↓ab ]B iff MA↓ab , w |= B

where MA↓ab = (W, (R
A↓ab
c )c∈G, (Cab)a,b∈G, V ) and (R

A↓ab
c )c∈G is defined as:

• If c = b, then for all x ∈ W ,

R
A↓ab
b (x) :=

{
Rb(x) ∩ JAKM if M, x |= [Ba]A ∧ cab,

Rb(x) otherwise.

• If c ̸= b, then R
A↓ab
c := Rc.

Semantically speaking, [A↓ab ] restricts b’s attention to the A’s worlds if there is a channel
from the agent a to b and agent a believes A. Otherwise, the action [A↓ab ] will not change
b’s belief.

In Table 5.2, we present the Hilbert-style system HKc[ ·↓ab ] for MLc[ ·↓ab ]. Since we can
regard the system HKc[ ·↓ab ] as an axiomatic extension of HKc , we use the same manner in
Section 5.1.2 to define a derivation and a theorem in HKc[ ·↓ab ]. We denote A is a theorem
in HKc[ ·↓ab ] by ⊢HKc[ ·↓a

b
]
A.

67



Chapter 5. Linear Algebraic Semantics for Multi-agent Communication

Definition 5.13. The translation t : FormMLc[ ·↓a
b
]
→ FormMLc for MLc[ ·↓ab ] is defined by:

t(p) = p,
t(cab) = cab,
t(¬A) = ¬t(A),
t(A ∨B) = t(A) ∨ t(B),
t([Ba]A) = [Ba]t(A),
t([A↓ab ]p) = p,
t([A↓ab ]ccd) = ccd,
t([A↓ab ]¬B) = ¬t([A↓ab ]B),
t([A↓ab ](B ∨ C)) = t([A↓ab ]B) ∨ t([A↓ab ]C),
t([A↓ab ][Bc]B) = [Bc]t([A↓ab ]B), (c ̸= b)
t([A↓ab ][Bb]B) = ((cab ∧ [Ba]t(A)) → [Bb](t(A) → t([A↓ab ]B)))∧

(¬(cab ∧ [Ba]t(A)) → [Bb]t([A↓ab ]B)),
t([A↓ab ][A↓cd]B) = t([A↓ab ]t([A↓cd]B)).

Lemma 5.14. Given any formula A ∈ FormMLc[ ·↓a
b
]
,

⊢HKc[ ·↓a
b
]
A ↔ t(A).

Theorem 5.15. Let A be a formulas in FormMLc[ ·↓a
b
]
and M be the class of all finite

Kripke models.
M |= A iff ⊢HKc[ ·↓a

b
]
A.

Proof. We divide our proof into the soundness part (the direction from right to left) and
the completeness part (from left to right) as follows.

Soundness part We show that if ⊢HKc[ ·↓a
b
]
, then M |= A for all A. One can easily check

that each axiom in HKc[ ·↓ab ] is valid in the class M of all finite models and each rule
in HKc[ ·↓ab ] preserves the validity in M.

Completeness part We show that if M |= A, then ⊢HKc[ ·↓a
b
]
A for all A. We can reduce

the completeness of HKc[ ·↓ab ] to that of HKc (cf. Theorem 5.11). Fix any formula
A and suppose that M |= A. By the soundness part and Lemma 5.14, we get
M |= A ↔ t(A). Then, by this and our assumption of M |= A, we get M |= t(A).
By this and the completeness of HKc (Theorem 5.11), we have that ⊢HKc t(A).
Since HKc[ ·↓ab ] is an axiomatic extension of HKc , we also have that ⊢HKc[ ·↓a

b
]
t(A).

Finally, by Lemma 5.14 and ⊢HPAL t(A), we obtain ⊢HPAL A.

□

Example 5.16. In Example 5.2, we obtain the truth of [p↓ab ][Bb]p at w2, i.e., ‘after agent
a informs agent b of the message A via channel, agent b comes to believe p’ in w2. Figure
5.2 is the updated model of M by [p↓ab ]. On the other hand, agent a does not have any
channel to b in w3, and so, the accessible worlds from w3 will be unchanged even after
the update of M by [p↓ab ]. Therefore, [p↓ab ][Bb]p is false at w3. Similarly, agent a does
not believe ¬p in w1, i.e., [Ba]¬p fails in w1, and so, the informing action [p↓ab ] will not
change the accessible worlds from w1.
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Figure 5.2: Updated Accessibility Relation of Agent b.

5.2.2 Introspective Announcement

In the dynamic operator [B↓ab ], we specified a and b as the sender and the receiver of the
information A, respectively. Even so, we may consider the situation where more than one
agents, say a and b, send a piece of information to the other agents, and who will receive
the information may change, depending on communication channels between agents. In
this sense, we do not specify the receivers in advance here. Rather, we calculate the
receivers of the information from the senders and the communication channels.

Let us denote such a dynamic operator by [A↓H] (H ⊆ G) whose reading is ‘after a
group H of agents sends a piece A of information via communication channels’. Then, we
expand our syntax LMLc with a dynamic operator [A↓H] (H ⊆ G). Let us call the logic
based on our expanded syntax by MLc[ ·↓H] and denote the set of all formulas of MLc[ ·↓H]
by FormML

c[ ·↓H]
. Given any Kripke model M = (W, (Ra)a∈G, (Cab)a,b∈G, V ) and any world

w ∈ W , we define the satisfaction relation of [A↓H]B by:

M, w |= [A↓H]B iff MA↓H , w |= B,

where MA↓H = (W, (RA↓H
a )a∈G, (Cab)a,b∈G, V ) and RA↓H

a is defined as follows: for all w ∈ W ,

RA↓H
a (w) :=

{
Ra(w) ∩ JAKM if M, w |= [Bb]A ∧ cba for some b ∈ H,

Ra(w) otherwise.

Definition 5.17. The translation t : FormML
c[ ·↓H]

→ FormMLc for MLc[ ·↓H] is defined by:

t(p) = p,
t(cab) = cab,
t(¬A) = ¬t(A),
t(A ∨B) = t(A) ∨ t(B),
t([Ba]A) = [Ba]t(A),
t([A↓H]p) = p,
t([A↓H]cab) = cab,
t([A↓H]¬B) = ¬t([A↓H]B),
t([A↓H](B ∨ C)) = t([A↓H]B) ∨ t([A↓H]C),
t([A↓H][Ba]B) = (

∨
b∈H (cba ∧ [Bb]t(A)) → [Ba](t(A) → t([A↓H]B)))

∧(¬
(∨

b∈H(cba ∧ [Bb]t(A))
)
→ [Ba]t([A↓H]B)),

t([A↓H][B↓I]C) = t([A↓H]t([B↓I]C)).

69



Chapter 5. Linear Algebraic Semantics for Multi-agent Communication

Table 5.3: Hilbert-style Axiomatization HKc[ ·↓H]

In addition to all the axioms and rules of HKc , we add:
[A↓H]p ↔ p,
[A↓H]cab ↔ cab,
[A↓H]¬B ↔ ¬[A↓H]B,
[A↓H](B ∨ C) ↔ [A↓H]B ∨ [A↓H]C,
[A↓H][Ba]B ↔ (

∨
b∈H (cba ∧ [Bb]A) → [Ba](A → [A↓H]B))

∧(¬
(∨

b∈H(cba ∧ [Bb]A
)
) → [Ba][A↓H]B)

(Nec[A↓H]) From B, infer [A↓H]B

Lemma 5.18. Given any formula A ∈ FormML
c[ ·↓H]

,

⊢HK
c[ ·↓H]

A ↔ t(A).

Theorem 5.19. Let A be a formulas in FormML
c[ ·↓H]

and M be the class of all finite

Kripke models.
M |= A iff ⊢HK

c[ ·↓H]
A.

Proof. With the help of the translation for HKc[ ·↓H] and Lemma 5.18, we can show the
completeness for HKc[ ·↓H] over the class M of all the finite Kripke models by the same
argument of Theorem 5.15. □

Example 5.20. In Example 5.2, let H = { a } be a group of senders. Then, when we
focus on the world w2, we can calculate the receivers by the calculation just before this
example and specify the receivers as { a, b }, since there is a channel from a to b in w2

and a believes p in w2. So, we obtain the truth of [p↓H][Bb]p at w2, i.e., ‘after the group
of agent H sends a piece p of information via communication channel, agent b comes to
believe p’ in w2. Moreover, the updated model of M by [p↓H] is the same as Figure 5.2.

However, when we change the group of senders to H′ = { b }, agent b does not believe
p in w2 (i.e., [Bb]p is false in w2), and so, the accessible worlds from w2 will be unchanged
even after the update of M by [p↓H′

]. Therefore, [p↓H′
][Bb]p is still false at w2.

5.3 Linear Algebraic Semantics for Channel Commu-

nication

5.3.1 Syntax and Semantics

Given a Kripke model M with a domain W = {w1, . . . , wm }, we may easily rewrite
semantic clauses of [A↓ab ] and [H↓A] in terms of matrix such as:

∥[A↓ab ]B∥M := ∥B∥
M

A↓a
b
,

∥[A↓H]B∥M := ∥B∥
MA↓H ,

where ∥[A↓ab ]B∥M and ∥[A↓H]B∥M are matrices in M(m × 1). In general, it is not so
clear whether we can capture processes of changing the given model M by dynamic
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operators of DEL in terms of operations over matrices. However, in the semantics of
[A↓ab ] and [A ↓H] (H ⊆ G), we keep the domain of a model, channel relations, and a
valuation for propositional variables but redefine the accessibility relation (Ra)a∈G. In
this sense, we may say that those operations are relation changers of DLRC [39, 25].
As we explained in Chapter 4, DLRC provides a general framework of changing agents’
accessibility relations in terms of programs of PDL−. In addition, we have provided linear
algebraic reformulation of Kripke semantics for DLRC. Therefore, if we extend our linear
algebraic reformulation of that to handle the notion of communication channels, we can
capture processes of changing M to MA↓ab and MA↓H in terms of operations over matrices.

In what follows of this section, we expand our syntax LMLc with terms of PDL− first.
Then, we explain the main idea of van Benthem and Liu [39, 25] to regard our dynamic
operators [A↓ab ] and [H↓A] as relation changers. Let us call the logic of PDL−-extension
of LMLc by PDLc−. We define the set FormPDLc− of formulas, the set PR of programs by
simultaneous induction as follows:

FormPDLc− ∋ A ::= p | cab | ¬A | A ∨ A | [α]A
PR ∋ α ::= a | (α ∪ α) | (α;α) |?A

where p ∈ PROP and a, b ∈ G. Note that we regard a as an atomic program (for agent
a). Here, [a] corresponds to the previous belief operator [Ba]. So, in what follows, we also
write [Ba] for [a], if no confusion arises from the context.

Given any model M = (W, (Ra)a∈G, (Cab)a,b∈G, V ), any world w ∈ W , and any formula
A ∈ FormPDLc− , the satisfaction relation M, w |= A is naturally obtained from that of
MLc and PDL− (see also Sections 5.1 and 2.2). It follows that:

JpKM := V (p),JcabKM := Cab,J¬AKM := W \ JAKM,JA ∨BKM := JAKM ∪ JBKM,J[α]AKM := {w ∈ W | JαKM(w) ⊆ JAKM },JaKM := Ra,Jα ∪ α′KM := JαKM ∪ Jα′KM,Jα;α′KM := JαKM ◦ Jα′KM,J?AKM := { (w, v) | w = v and w ∈ JAKM },

where JαKM(w) := { v ∈ W | (w, v) ∈ JαKM }.
Recall that if relation changing operations are written in terms of programs generated

from atomic programs by the composition ;, the union ∪ and the test ?A, then we can
automatically generate the set of reduction axioms (as in Tables 5.2 and 5.3) to assure the
completeness of DLRC (see also Section 4.1). Let us suppose that our relation changer
for a relation Ra (= JaKM) is written in terms of a program αa (a ∈ G). Then, we may
use the notation [(a := αa)a∈G] to mean our dynamic operator which changes an original
relation Ra into a new relation R′

a via αa for all agents a ∈ G. Then, our key equivalence
for generating the reduction axioms takes the following form:

[(a := αa)a∈G][b]A ↔ [αb][(a := αa)a∈G]A.

where we generalize van Benthem and Liu’s equivalence [39] for a single agent to multi-
agents.
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Table 5.4: Hilbert-style Axiomatization HPDL−
c

(Taut) All instances of propositional tautologies
(K[α]) [α](A → B) → ([α]A → [α]B)
([∪]) [α ∪ β]A ↔ [α]A ∧ [β]A
([; ]) [α; β]A ↔ [α][β]A
([?]) [?B]A ↔ (B → A)
(Selfchn) caa (a ∈ G)
(MP) From A and A → B, infer B
(Nec[α]) From A, infer [α]A

Example 5.21. In the semantics of [A↓ab ], we have rewritten the accessibility relations

(Ra)a∈G into the new ones (R
A↓ab
a )a∈G. We may reformulate the semantics in terms of

binary relations.

• Let c = b. Then, R
A↓ab
c := (Rc ∩ Jcac ∧ [Ba]AK× JAK) ∪ (Rc ∩ J¬(cac ∧ [Ba]A)K×W ).

• Let c ̸= b. Then, R
A↓ab
c := Rc.

Then, the corresponding relation changer agent b to [A↓ab ] is the following programs. When
c = b,

αb := (?(cab ∧ [Ba]A); b; ?A)∪?(¬(cab ∧ [Ba]A); b).

If we employ the previous definitional abbreviation, we may write αb as:

αb := if cab ∧ [Ba]A then b; ?A else b.

When c ̸= b, the relation changer for agent c for [A↓ab ] is: αc := c. Then, we may regard
[A↓ab ] as [(a := αa)a∈G].

Example 5.22. Let a be any agent. The corresponding relation changer to [A↓H] is the
following program term.

αA↓H
b := (?B; b; ?A) ∪ (?¬B; b) ,

where B :=
∨

a∈H(cab ∧ [Ba]A). By the previous definitional abbreviation, we may write

αA↓H
b as:

αA↓H
b := if

(∨
a∈H

(cab ∧ [Ba]A)
)

then b; ?A else b.

Then, we may regard [A↓H] as [(a := α′
a)a∈G].

5.3.2 Relation Changers for Channel Communication in Matri-
ces

Now, let us reformulate the semantics of PDLc− with our dynamic operators [A↓ab ] and
[A↓H] (H ⊆ G) in terms of Boolean matrices. First, let us recall a matrix representation
of the ordinary (multi-agent) Kripke model as follows (cf. Sections 2.4 and 3.2.1). Let
M = (W, (Ra)a∈G, V ) be a Kripke model where the cardinality of the domain W is m,
i.e.,W = {w1, w2, . . . , wm }. We define matrix representations RM

a and V M(p) for an
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accessibility relation Ra and the valuation V (p) as did in Section 3.2.1, respectively. Based
on these definition, let us provide a matrix representation of the Kripke model (or frame)
with the notion of communication channels. Since our model (W, (Ra)a∈G, (Cab)a,b∈G, V )
(with the cardinality of the domain W is m) is extended with a channel relation Cab ⊆ W
(a, b ∈ G) and the definition of Cab is similar to that of the valuation V (p) ⊆ W , we can
naturally obtain a matrix representation CM

ab ∈ M(m×1) (= a column vector) as follows.

CM
ab (i) =

{
1 if wi ∈ Cab,

0 if wi ̸∈ Cab.

Now it is ready to rewrite Kripke semantics to our syntax in terms of matrix. Given
any finite Kripke model M = (W, (Ra)a∈G, (Cab)a,b∈G, V ). Suppose that RM

a ∈ M(m×m)

and V (p)M ∈ M(m×m). We inductively associate each formula A of FormPDLc− except
cab with a column vector ∥A∥M ∈ M(m × 1) as did in Section 4.2.1. Then, we also
associate the formula cab with a column vector ∥cab∥M ∈ M(m× 1) as follows:

∥cab∥M := CM
ab .

Proposition 5.23. Let A and B be formulas. Then, J?(A ∧B)K = J?A; ?BK. Therefore,
∥?(A ∧B)∥ = ∥?A; ?B∥.

Example 5.24. Let us see whether our matrix representation of model update for semi-
private announcement works on Example 5.2. As is the same as in Example 5.16, we
consider the update by [p↓ab ]. There are channel between agent a and b, and agent a

believes that p at w2. By Proposition 5.23, the first part of a matrix calculation of R
A↓ab
b

becomes:
∥?(cab ∧ [Ba]p)∥RM

b ∥?p∥ = ∥?cab∥∥?[Ba]p∥RM
b ∥?p∥

=

1 0 0
0 1 0
0 0 0

0 0 0
0 1 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 0
0 1 0
0 0 0

 =

0 0 0
0 1 0
0 0 0


Then, the remaining part of R

A↓ab
b becomes:

∥?¬(cab ∧ [Ba]p)∥RM
b

=

1 0 0
0 0 0
0 0 1

1 1 1
1 1 1
1 1 1

 =

1 1 1
0 0 0
1 1 1


Then, we combine both results to obtain updated relation R

A↓ab
b of agent b as:

∥RA↓ab
b ∥ = ∥?(cab ∧ [Ba]p)∥RM

b ∥?p∥+ ∥?¬(cab ∧ [Ba]p)∥RM
b

=

0 0 0
0 1 0
0 0 0

+

1 1 1
0 0 0
1 1 1

 =

1 1 1
0 1 0
1 1 1


This coincides with the result of Example 5.16 (see Figure 5.2)
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Example 5.25. Let us also see whether our matrix representation of model update for
introspective announcement via channels works on Example 5.2. As in the same as Ex-
ample 5.20, we consider the effect of [p↓H] over M of Example 5.2. Let H = { a } be the
group of senders and focus on agent b. Then,

JAK = J∨
k∈H

(ckb ∧ [Bk]p)K = Jcab ∧ [Ba]pK = {w2 }.

That is, the group H of senders can send to b the piece of information p at w2 alone.

Thus, the first part of our matrix representation of the updated relation RA↓H
b is:

∥?A∥RM
b ∥?p∥ =

0 0 0
0 1 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 0
0 1 0
0 0 0

 =

0 0 0
0 1 0
0 0 0


Then, the second part of RA↓H

b becomes:

∥?¬A∥RM
b =

1 0 0
0 0 0
0 0 1

1 1 1
1 1 1
1 1 1

 =

1 1 1
0 0 0
1 1 1


By combining these results, we obtain:

∥RA↓H
b ∥ = ∥?A∥RM

b ∥?p∥+ ∥?¬A∥RM
b

=

0 0 0
0 1 0
0 0 0

+

1 1 1
0 0 0
1 1 1

 =

1 1 1
0 1 0
1 1 1


which is the same result as Example 5.20 for agent b.

5.4 Algorithms for Channel Communication in Ma-

trices

This section introduces two naive algorithms. One of them calculates the truth value
of a formula [Ba]p and the other one calculates the relation updates by [p↓ab ]. For both
algorithms, we assume that an input model M = (W, (Ra)a∈G, (Cab)a,b∈G, V ) is represented
in terms of a boolean matrix. For simplicity, we do not care about the recursive calculation
of the given formula A. We have implemented these algorithms into our software that is
described in Appendix A.3.

Algorithm 1 Calculation of ∥[Ba]p∥(i)
procedure is-believed-at

input M, wi ∈ W , a ∈ G, p ∈ PROP

∥[Ba]p∥ := RM
a V (p)M

return True if ∥[Ba]p∥(i) ̸= 0; False otherwise
end procedure

Here we comment just on Algorithm 2. In order to update an accessibility relation
of agent b, the algorithm loops to find agent b. If the algorithm finds him/her, a model
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Algorithm 2 Calculation of [p↓ab ]
procedure semi-private-announcement

input M, a, b ∈ G, p ∈ PROP
for c ∈ G do

if c = b then
X := Test(CM

ab )
Y := Test(∥[Ba]p∥)
Z :=Test(V (p)M )

(R
p↓ab
b )

M
:= XY RM

b Z +XY RM
b

else

(R
p↓ab
c )

M
:= Rc

M

end if
end for
return Mp↓ab = (W, (R

p↓ab
a )a∈G, (C)a,b∈G, V )

end procedure

updating procedure (for a single agent) will be started, otherwise it just put R
p↓ab
c = Rc. At

the beginning of the updating procedure, the algorithm generates test matrices through
Test function where an input of the function is a column vector. The function enumerates
the elements of the input vector in the diagonal components of an output matrix, and
fills 0 in the non-diagonal components of the matrix. Then, the algorithm calculates the
updated accessibility relation of agent b in terms of boolean matrix. Note that ∥?¬A∥
can be calculated as ∥?A∥. Finally, the algorithm returns the updated model Mp↓ab .

75



Chapter 6

Conclusions and Further Directions

6.1 Conclusions

As we explained in our introduction, the aim of this thesis is to provide new computational
tools of modal logic of multi-agent communication. To achieve this goal, we have focused
on three questions (Q1) - (Q3) (Section 1.1), and studied them. We can summarize our
answers for these questions and technical contributions in the following three items:

(A1) Linear Algebraic Semantics for Modal Logic(s) and DLRC:
As for our solutions to question (Q1), we have studied a linear algebraic approach
to Kripke semantics of modal logic in Chapter 3. Based on Fitting’s linear algebraic
reformulation of Kripke semantics of modal logic [8], we can represent an accessibility
relation R by a Boolean matrix, and a valuation V (p) of an atomic variable p by a
Boolean column vector, provided the cardinality of the domain is finite. Then we
can calculate the truth set of a formula by calculations over these matrices.

For this basis, we have added a linear algebraic reformulation of frame properties
and shown some basic facts of that. In order to obtain the frame properties in terms
of Boolean matrices, we have shown two types of correspondence between matrix
reformulation of frame properties and corresponding modal axioms (Propositions
3.11 and 3.12). These correspondences allow us to capture all of the five well-
known frame properties, i.e., reflexivity, symmetricity, transitivity, seriality and
Euclideanness, in terms of Boolean matrices (Proposition 3.7). In addition, we can
verify these frame properties of a given frame by calculations over Boolean matrices
(Example 3.8) and can show implication among them (Proposition 3.9 and 3.10).

We have also shown a method to capture some restricted form of quantifications (in
Kripke semantics) without bound variables of first-order logic by Boolean matrices.
If we consider the case of the universal relation R = W ×W in Kripke semantics,
we may regard the semantic clauses of ♢ and □ of modal logic as those of ∀ and ∃
of first-order logic. Based on this idea, we can capture the distinction between ∃∀
and ∀∃ of first-order logic by matrix representation (Proposition 3.14).

In addition, in connection with question (Q2), we have also proposed linear algebraic
reformulation of Kripke semantics for DLRC [39, 25] in Chapter 4. Based on the
result for (Q1), we extend our approach to handle relation changers of DLRC that
allows us to capture many dynamic operators of DEL in terms of relation changing
operation(s). We have shown the soundness theorem of the known Hilbert-style
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axiomatization of DLRC [39, 25] in terms of Boolean matrices (Section 4.2.2). As
a result, we can write and capture various proof of semantic properties of Kripke
semantics by simple calculations over Boolean matrices. These are our main results
of this thesis.

(A2) Cut-free Labelled Sequent Calculus for DLRC:
As for our solution to question (Q2), we have studied a labelled sequent calculus
for dynamic logic of relation changers in Chapter 4. Based on labelled formal-
ism for Kripke semantics of DLRC, we have defined our labelled sequent calculus
(with the cut rule, Table 4.2). We have shown that all theorems of the known
Hilbert-style system of this logic [39, 25] are also theorems of our sequent calculus
(Theorem 4.11). Then, with the help of the method of Ono and Komori [29], we
have shown that cut-elimination theorem for our sequent calculus (Theorem 4.19).
In addition, we have also shown that our sequent calculus also holds soundness for
Kripke semantics (Theorem 4.23) since we have defined equivalence between the
ordinary Kripke semantics and labelled expressions of our calculus by the notion of
assignment function. Finally, we have obtained that our sequent calculus is equipol-
lent with the above sound and complete Hilbert-style axiomatization of this logic
(Corollary 4.24) [39, 25].

(A3) Linear Algebraic Semantics for Multi-agent Communication:
As for our solution to question (Q3), we have studied an approach to integrate the
notion of communication channels into DEL in Chapter 5. We have introduced
the static doxastic logic with communication channels (where we always assume
self-channel on all agents) with the complete axiomatization Kc that is also decid-
able (Theorems 5.11 and 5.12). Then, we have also extended such static logic with
two dynamic operators [A↓ab ] (semi-private announcement) and [A↓H ] (introspective
announcement) with reduction axioms (so extensions of both of them enjoy com-
pleteness results, Theorems 5.15 and 5.19). A key feature of our dynamic operators
are non-public, i.e., effects of announcements are restricted to some specified agents
determined by communication channels.

Moreover, in order to handle many indices that appear in our proposed logic(s)
effectively, we have also studied linear algebraic representation of these. We have
provided PDL-extension (without the iteration operator) of the above logic since
we can define our dynamic operators as relation changers written in programs of
PDL [39]. Finally, we have provided matrix reformulation of Kripke semantics of
PDL-extension including communication channels, program constructors of PDL
and our two dynamic operators (Example 5.3.2). Then, in order to show the basic
idea for practical implementation, we have introduced two algorithms (Section 5.4).
One of them calculates the truth value of a formula [Ba]p (Algorithm 1) and the
other one calculates relation updates by [p↓ab ] (Algorithm 2).

6.2 Further Directions

A further direction of our linear algebraic approach will be to use a similar approach
to investigate the other types of modal logics. We may expand our mono-modal syntax
into multi-modal one to cover, e.g., description logic [1] and dynamic epistemic logic [40].
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As for description logic, a family of roles (say “has a child”) generates both box-type
and diamond-type modal operators. Therefore, we can capture the semantics of these
operators by a set of the corresponding adjacency Boolean matrices to the roles. We can
also cover some topics of dynamic epistemic logics [40] by our approach, where multi-modal
operators are employed for describing agents’ knowledge or beliefs (see also Chapter 5).

Another direction of our approach will be to handle the infinite norm of matrices. If
we extend our approach to handle such matrices, we can show the soundness theorem for
Kripke semantics by Boolean matrices without the limitation of the finiteness of matrices
(cf. Section 4.2.2). In addition, if we free from such a limitation, it might be possible to
prove the completeness theorem of modal logics via the soundness theorem on matrices.

In connection with our study of labelled sequent calculus GDLRC, we are planning
to provide a direct proof of completeness of that without the cut rule. In particular, there
must be a semantic proof of cut elimination. In addition, we can also consider another
complete Hilbert-style axiomatization for DLRC by the method of Wang and Cao [41].
The method was used to obtain the complete axiomatization for PAL without reduction
axioms. Is it possible to apply their method to obtain the complete axiomatization for
DLRC without reduction axioms?

As for the variant of GDLRC, we may consider restricted version of ours, e.g., the
intuitionistic labelled system, or extended version of that, e.g., the labelled system with
the iteration operator ∗. In order to investigate such extensions or restrictions effectively,
implementation of theorem prover might also be helpful to obtain rules or conditions for
that.
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Appendix A

Linear Algebraic Approach to Teach
Modal Logic

In this appendix, we investigate our linear algebraic approach for educational purpose. In
Section A.2, we explain which teaching topics of modal logics can be taught to students
using our approach and how we can teach such topics. In Section A.3, we present our
supporting software to avoid involved calculations on matrices. Finally, in Section A.6,
we report our teaching experiment based on our linear algebraic approach.

A.1 Introduction

Modal logics are often taught to students as one of the advanced topics after propositional
logic and first-order logic. This is because Kripke semantics of modal logics relies on
knowledge of quantification and the binary relation of first-order logic and model theory.
In particular, the notions of existential quantification and universal quantification are
used to define the semantics of ♢ and □ operators over the Kripke model, respectively.
Moreover, quantifications are also used to define the conditions of frame properties, e.g.,
reflexivity, i.e., for all w, wRw holds (wRv stands for ‘there is a link from w to v’). In
general, the notion of quantification and the binary relation of first-order logic are taught
to students in a course of mathematical logic that contains such topics. Such a course
are often provided by, for example, the departments of philosophy, computer science,
and mathematics. Hence, the ordinary target students of a course on modal logic are
usually assumed to belong to such departments. They assumed to have already learned
the syntactic notions of quantification and a binary relation of first-order logic and the
model-theoretic explanation of that.

So far, many topics of Kripke semantics are taught to students by the model-theoretic
approach. However, as we mentioned in Section 1.1.1, this approach might confuse our
students. For example, teaching the topics of the truth of □p at a ‘dead-end’ world and
the verification of the Euclideanness property are such candidates. In addition, if the
cardinality of the domain of the model is larger, the situation for our students might be
more involved.

As for a solution of this problem, we propose to use Fitting’s linear algebraic ap-
proach to Kripke semantics [8] for education. Based on our technical contribution (A1)
(see also Chapter 3), we may replace required prior knowledge of the quantifications and
binary relation of first-order logic by the truth-table calculation of propositional logic and
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elementary calculations of Boolean matrices of linear algebra. We can teach many elemen-
tary topics of Kripke semantics for modal logics by calculations over Boolean matrices.
We will explain how to teach modal logic using our approach in Section A.2. In this
appendix, our target students are those who have prior knowledge of both linear algebra
and propositional logic. In general, they are first or second year undergraduate students
at the departments of computer science, electrical engineering, and physics. They might
not be familiar with first-order logic.

We claim that our linear algebraic approach is helpful to students who have prior
knowledge of both linear algebra and propositional logic. Using our approach, they can
learn modal logics based on their acquired knowledge without prior knowledge of first-
order logic. Moreover, ordinary target students, who have already learned first-order
logic, may deepen their understanding of the subject from a different perspective. In
order to support our approach for educational purpose, we show our supporting software
in Section A.3. In addition, in order to test our approach and obtain feedbacks from
students, we held a small seminar to teach elementary topics of modal logic in terms of
our approach. We will explain these results in Section A.6, and will also show our lecture
material in Appendix B.

A.2 Teaching Topics on Modal Logic by Linear Al-

gebraic Approach

When we teach modal logics to students, the following topics are often covered:

1. Syntax: how to read modal operators, how to define formulas, the dual definition
of modal operators, and the distinction between nested modalities.

2. Kripke semantics: a graphical representation of a Kripke model, the satisfaction
relation, how to compute the truth value of a formula at a world, the validity and
the satisfiability of a given formula, a counter-model construction, frame properties
(reflexivity, symmetricity, transitivity, seriality and Euclideanness), and the corre-
spondence between frame properties and formulas (T, B, D, 4 and 5).

3. Proof theory: Hilbert-style systems, tableau methods, natural deductions, sequent
calculi, extensions by modal axioms (T, B, D, 4 and 5).

4. Possible further topics: bisimulation, finite model property, and decidability, com-
plexity, soundness and completeness theorem of modal logics.

Here we focus our attention on elementary topics of items 1-3. For item 1, we should teach
how to read modal operators at first. We introduce □ and ♢ operators and teach how to
read them, i.e., we read □ as ‘it is necessary that’ and ♢ as ‘it is possible that.’ Then,
we also teach the other readings of modal operators. For example, we read □ operator as
‘it is believed that’ in doxastic logic, ‘it is known that’ in epistemic logic, ‘it is obligatory
that’ in deontic logic, ‘it will always be the case that’ and ‘it has always been the case
that’ in temporal logic. Afterward, we should teach how to write a formula of modal logic
by a BNF grammar. If ♢ operator is contained in the syntax, then we can define the other
□ operator as the dual of the operator ♢, e.g., □p := ¬♢¬p. In addition, we should also
teach the distinction between nested modalities, e.g., □□p, □♢p and ♢□p. In connection
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with epistemic logic, we also teach what the positive introspection (□p → □□p) and the
negative introspection (¬□p → □¬□p) mean. The positive introspection stands for ‘If
agent knows, he/she knows what he/she knows’, and negative introspection stands for ‘If
agent do not know, he/she knows that he/she do not know.’

For item 2, in order to teach Kripke semantics, we use the model-theoretic approach.
A good point of modal logic is that we can calculate the truth value of a formula over a
graphical representation of a Kripke model visually. However, such graphical approach
sometimes might not work well, e.g., a calculation of the truth value of the formula □p at
the ‘dead-end’ world where we cannot access any world. In such a case, we should follow
the definition of the satisfaction. We often give a brief introduction to the above five frame
properties by the graphical approach intuitively, and then we explain frame conditions of
a frame property by the model-theoretic approach rigorously. We also explain well-known
implications among the frame properties, e.g., reflexivity and Euclideanness jointly imply
transitivity (cf. Section 3.2.2). Afterward, we should explain correspondence between
frame properties and valid formulas, e.g., a frame satisfies Euclideanness if and only if 5
(♢p → □♢p) is valid on the frame.

For proof theory of item 3, we should introduce the basic proof system first. For exam-
ple, the Hilbert-style base system is defined by propositional tautology, the distribution
axiom for □ operator, (□(p → q) → (□p → □q)), modus ponens (from A and A → B,
we may infer B), and the necessitation rule for □ operator (from A, we may infer □A).
In addition, we also teach what a proof of the theorem is and what the notion of theorem
on the base system is.

Next, we should teach additional well-known modal axioms, i.e., T, B, D, 4, and 5.
From these five axioms, we also teach that we can consider 32 different combinations of the
axioms, but we can reduce them substantially to 15 combinations. By the 15 combinations
of axioms, we can determine 15 different modal logics. For example, we can determine
HKT, HKD, HK45, HS4, and HS5. Thereafter, we explain some extensions of the base
system. For example, if we add the axioms T, B, and 4 to the above Hilbert-style base
system, it becomes Hilbert-style system for HS5.

Our linear algebraic approach can cover some of the above topics. In particular, many
topics of Kripke semantics (item 2) and soundness of proof theory (item 3) can be covered.
But the topics of syntax (item 1) and proof theory (item 3) cannot be covered. We assume
that our target students have prior knowledge of propositional logic and linear algebra,
and so our approach might be effective for them. In the following sections, we compare
the ordinary model-theoretic approach with our linear algebraic approach.

• In Section A.4.1, we start with a calculation of the truth value of a formula. We
also explain how we can verify the validity of a formula on a model in Section A.4.2.

• In Section A.5.1, we explain how to verify frame properties of a frame. In this
section, we also mention that we can check whether the frame satisfies reflexivity,
seriality, and symmetricity at a glance by the form of a matrix of an accessibility
relation.

• In Section A.5.2, we explain how to show the correspondence between frame prop-
erties and valid formulas.

For each section, we also explain how to use our software for educational purposes. Finally,
in Section A.6, we explain our teaching experiment and feedbacks from students.
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A.3 Supporting Software to Teach Modal Logic

In Section 3.2.2, we regarded a calculation of the truth set of a formula and the verification
of frame properties listed in Table 3.1 as an extended truth-table calculation, i.e., a
computation on Boolean matrices. However, similarly to the case of the ordinary model-
theoretical approach, we have to give more efforts to compute matrices if the length of a
given formula becomes longer or the dimension of a matrix becomes bigger. Such efforts
might be required when lecturers provide exercises or prepare teaching materials. If we
wish to avoid such efforts on calculations, we had better to implement some supporting
tools. In this section, we introduce our supporting software to overcome this issue. We
provide an overview and a short instruction on our software in the remaining sections.

We have implemented a supporting software based on our linear algebraic reformula-
tion of Kripke semantics by JavaTM 8 programming language and opened for the public.1

The features of our software can be summarized as follows:

1. We can edit a matrix representation of a Kripke model by a graphical user interface
easily.

2. A computation program of the truth set of a formula on a model is provided. We
can obtain a Boolean vector representation of the truth set of the formula written
in TEX style, e.g., ‘p Yland q.’2 From this vector, we can obtain a truth value of
the formula for each world and also verify the validity of the formula on the model.3

3. A verification program of frame properties is also provided. We can verify all frame
properties listed in Table 3.1 at once.

4. A visualization program is provided. By the program, and we can obtain a graphical
representation of a Kripke model via Graphviz.4

The provided programs might be helpful for educational purposes. For example, lecturers
can use our software to design exercises and lecture materials. In addition, students can
use our software to study modal logics by themselves. Notice that unlike RELVIEW tool [5],
if we know how to input a formula and a model into our software, we can work with modal
logic by our software without any more preparation. RELVIEW tool is designed to solve
computation tasks of relation algebra. In order to work with modal logic by RELVIEW

tool, we need to provide definitions of formulas and semantics of modal operators based
on relational operations to RELVIEW tool by the internal language of it. For example,
we need to define □ operator by box(S, v) = - (S * -v) where S is a matrix for an
accessibility relation, v is a vector for valuation and the operators - and * are relational
complementation and composition, respectively. However, in the context of the efficiency
of computation tasks, we do not claim any superiority of our program over RELVIEW.

1http://cirrus.jaist.ac.jp:8080/soft/bc.
2As a matter of practical convenience, there are insert buttons of a proposition, logical connectives,

and modal axioms at the next to the parameter box of the calculator. Hence, we can input the above
vocabulary of modal logic written in TEX style into the parameter box easily.

3 We note that our software was originally introduced in [15] to support computation tasks for dynamic
logic of multi-agent communication.

4http://www.graphviz.org/
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Figure A.1: Overview of Our Implementation

Figure A.1 shows a sample of the graphical user interface of our software.5 The
interface is divided into two parts. The left side of the interface is an editor for Kripke
model, and the right side is a calculator for the computation tasks that we mentioned in
the above list of features.

A Kripke model editor allows us to manage a model easily. The design of the editor
reflects our approach; namely, we can input the model into the editor by the matrix
representation of the model. A general workflow to input the parameters of the model is
described as follows:

1. Input the cardinality of possible worlds and propositions into corresponding param-
eter boxes.

2. Input 0 or 1 into each component of matrices for relations, and valuations.6

As a matter of practical convenience, each component of matrices works as either a button
or a text field. We may either switch the values of matrices 0 and 1 by clicking the
component or enter a truth value to the component directly. Each component turns to
blue if it has the value 1, white if 0. The colored matrices are helpful since these matrices
allow us to recognize some (frame) properties of matrices at a glance (see Section A.5.1).
In addition, there are buttons E, 0, 1, and Rand to set the values of each matrix as unit
square matrix, zero matrix, complete matrix and randomly generated matrix, respectively.

Once parameters are entered to the editor side, we can use the calculator side to solve
several computation tasks. The calculator has functions which solve tasks of the following
kind:

5Displaying parameters are corresponding to the formula and the model in Example 3.1.
6Matrices of channels are used to define communication channels among agents in [15]. In this chapter,

we leave the matrix to 1, i.e., the unit square matrix, and this stands for ‘every agent has communication
channels each other’ (cf. Figure A.1). Since this is out of focus of the present chapter, we can ignore this
matrix.
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1. Visualization of a Kripke model.

2. Computation of the truth set of a formula.

3. Verification of frame properties listed in Table 3.1 of a frame

The function for visualizing a Kripke model can be executed by clicking Visualize button
on the calculator. With the help of ‘Graphviz’, the function yields and saves a picture
of the graphical representation of the model under appropriate directory. Afterward, our
software displays the picture on the screen. We will explain details and applications of the
other two functions for educational purposes in the following Section A.4 (computation of
a truth set of a formula) and Section A.5 (verification of frame properties), respectively.

A.4 Computation of Truth Sets and Validity

One of the most basic topics of Kripke semantics for modal logic is to calculate the truth
value of a formula at a given world. In connection with this topic, we have the following
topics which should be taught to students:

• The truth value of a formula at a given world

• The validity and the invalidity of a formula on a model

In this section, we explain to follow the above topics.

A.4.1 Truth Value of Formula at World

In modal logic, the truth value of a formula is computed at each possible world. In
general, we explain to students how the truth value of a formula is computed by the
ordinary model-theoretic approach as in Example 3.1 (Section 3.1). If a given formula is
simple and the domain of a given model is small, we can calculate the truth value of a
formula visually. This is one of the best points of modal logic. In this approach, we firstly
draw a picture of a graphical representation of a Kripke model, and next we calculate the
truth value of a formula on the picture.

For example, let us consider a Kripke model M1 by W = {w1, w2, w3 }, R = {(w1, w1),
(w1, w2), (w1, w3), (w2, w2)}, and V (p) = W (see Figure A.2). In the model, □p is true at
every world. In order to teach the truth of □p at a given world on a model visually, we
often use the graphical representation of a Kripke model such as a picture of the modelM1

shown in the left side of the Figure A.2. By tracing the links of an accessibility relation
from w1 and w2, students can obtain the truth value of □p at w1 and w2, respectively.
However, the graphical approach is intuitive but sometimes misleading. For example,
some students might be confused how to obtain the truth value of the formula □p at w3.
This is because the world w3 is a ‘dead-end,’ i.e., a world where we cannot access any
world, and so we cannot find any link to the other worlds from the picture. In such a
case, we should use the ordinary model-theoretic approach. By the explanation of this
approach, students eventually understand why □p trivially holds at w3. Namely, our goal
is to show: for all v ∈ W, w3Rv implies M1, v |= A. But, by definition of R, there are
no world v ∈ W such that w3Rv. Therefore, the above implication is vacuously true, and
we can conclude that □p trivially holds at w3. However, this proof might be unnatural
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Figure A.2: The World w3 is Now ‘Dead-end’

for some students. In such case, we may also explain the proof by the negation of an
assumption. Namely, we assume that M1, w3 ̸|= □p. Then this is equivalent to:

it is not the case that for all v ∈ W, w3Rv implies M1, v |= A,
iff for some v ∈ W, it is not the case that w3Rv implies M1, v |= A,
iff for some v ∈ W, w3Rv and M1, v ̸|= A.

Hence, we obtain w3Rv for some v ∈ W . But there is no world v ∈ W such that w3Rv by
definition of R, a contradiction. Therefore, the graphical approach sometimes might not
work well, and the model-theoretic approach gives us the more rigorous explanation. How-
ever, we need to rely on the notion of ‘vacuously hold’ or the argument by contradiction
in this approach.

On the other hand, if we employ our linear algebraic approach to obtain the truth
value of the above formula, we do not need to rely on such notions explicitly. As we
mentioned in Section 3.2.1, we can compute the truth value of a formula by an extended
truth-table calculation, i.e., a Boolean matrix calculation. In order to teach how to obtain
the truth value of □p at w3 by our approach, at first we should show the following matrix
representations of R and V (p) to students:

RM :=

1 1 1
0 1 0
0 0 0

 , V (p)M :=

11
1

 .

Then, we can teach the computation of the truth set of □p by:

∥□p∥ = RMV (p)M =

1 1 1
0 1 0
0 0 0

11
1

 =

1 1 1
0 1 0
0 0 0

00
0

 =

00
0

 =

11
1

 .

Afterward, we can extract the computation of w3 from the above computation as:[
0 0 0

] [
1
]
=
[
0 0 0

] [
0
]
=
[
0
]
=
[
1
]
.

We may also explain that the truth value of □p eventually must be true at the dead-end

world since
[
0 0 0

] [
x
]
(where x is a truth value of p at the dead-end world) always returns
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1. As we can see above, we can compute the truth set of a formula using our approach
easily. On the other hand, in order to obtain the truth set of a formula, in the ordinary
model-theoretic approach we need to calculate the truth value of the formula for every
world.

Furthermore, we may use our software to obtain the truth set of a formula quickly. Our
software provides a function to compute the truth set of a formula. Inputs of the function
are matrices of a Kripke model and a formula written in TEX style, e.g., ‘p Yland q.’ An
output is a vector corresponding to the desired truth set. We can compute the truth set
of a given formula by clicking the button Truths on the calculator. If the computation
procedure finishes successfully, a resultant vector appears on a terminal window. See
the bottom side of the Figure A.2. We can find the vector ∥□p∥ = 1 of the truth set.
We can also find the more involved computation result in the bottom right side of the
figure, i.e., the vector ∥♢(□p → □□p)∥ = t

[
110
]
of the truth set. Since the function

yields intermediate computation results, it can be helpful for educational purposes. For
example, students can use this function for their self-study. Lecturers can also use this
function to provide exercises and write lecture materials. In addition, we can obtain the
following solutions from the vector of the truth set of a formula:

1. the truth value of a formula at a world.

2. the validity of a formula on a model.

That is, if the n-th component of the vector is 1, the formula is true at n-th world (item
1). In the right side of the Figure A.2, we can find the truth value 1 of a formula □p
at the row of w3 of the vector. If the vector is filled with 1, the formula is valid on a
model (item 2). Otherwise, the formula is invalid on the model. For the validity and the
invalidity, we explain them in Section A.4.2.

A.4.2 Validity and Invalidity of Formula on Model

In connection with the topic of the truth value of a formula, the validity of a formula on
a model is another important topic which should be taught to students. This is because
the notion of the validity of a formula is used to explain the notions of a counter-model
to a formula, the satisfiability of a formula on a model, and the correspondence between
frame properties and (valid) formulas.

In the ordinary model-theoretic approach, we explain that a formula is valid on a
model if the formula is true at every world. For example, let us recall the model M1

which we used in Section A.4.1 (see also Figure A.2) and verify whether the formula □p
is valid on the model. After the calculation of the truth value of the formula □p for each
world, we obtain □p is true at every world, and can conclude that □p is valid on the
model M1. During the above calculation, we have to repeat the similar argument.

In the linear algebraic approach, we may explain that a formula is valid if a vector
of the truth set of a formula is 1, in other words, the vector does not contain 0. For
example, through the calculation of the truth set ∥□p∥ on the above model M1, we
obtain the vector 1. Therefore, we can conclude that the formula □p is valid on the
model. Let us suppose a model M′

1 by the model M1 where V (q) = {w2 }. We can also
show that ♢(p ∨ q) ↔ ♢p ∨ ♢q is valid on M′

1. It suffices to show J♢(p ∨ q)K = J♢p ∨ ♢qK
(cf. Section 2.1.1). Since

∥♢(p ∨ q)∥ = RM(V (p)MV (q)M) = (RMV (p)M) + (RMV (q)M) = ∥♢p ∨ ♢q∥,
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we obtain ∥♢(p ∨ q)∥ = ∥♢p ∨ ♢q∥, i.e., J♢(p ∨ q)K = J♢p ∨ ♢qK, therefore the commu-
tativity of ♢ over disjunction is reduced to the distributivity of matrix multiplication.
Moreover, we can also show J♢⊥K = J⊥K by ∥♢⊥∥ = RM0 = 0 = ∥⊥∥.

From the notion of the validity of a formula on a model, we should also teach in-
validity of that on the model. That is, a formula is invalid on a model if the for-
mula is not valid on the model. In other words, there is some world such that a for-
mula is not true. For example, let us define a model M2 by W = {w1, w2, w3 }, R =
{ (w1, w1), (w1, w2), (w1, w3), (w2, w2), (w3, w3) } and V (p) = {w2 }. The model is the same
as the model that we explained in Example 3.1 (Section 3.1). Then, the formula □p is no
longer valid on the model M2 since □p is false at w1 and w3. Therefore, □p is invalid on
the model M2. In the model-theoretic approach, we need to find such worlds w1 or w3 by
the calculation of the truth value of the formula for each world. Although in the linear
algebraic approach, we only need to find 0 in the vector of the truth set of the formula,
i.e., 1 1 1

0 1 0
0 0 1

01
0

 =

1 1 1
0 1 0
0 0 1

10
1

 =

10
1

 =

01
0

 .

Since the vector of the truth set contains 0, we can conclude that the formula □p is invalid
on the model M2. If we use our software, we can check the validity of a formula easily.
As we mentioned in Section A.4.1, we can compute the truth set of a formula on a model,
and from the resultant vector we can check the validity of the formula on the model. For
example, in Figure A.2, the resultant vector of the truth set of the formula □p does not
contain 0. Therefore, the formula is valid on the model of the figure.

From the invalidity of a formula, we may also explain that a model is a counter-model
to the formula. We say that a model M is a counter-model to a formula A if A is invalid
on the model M. For example, the above model M2 is a counter-model to the formula □p.
Of course we can investigate the validity of a formula on the larger model easily. Such
investigation can be a good exercise to some students who want to study finite model
checking.

A.5 Verification of Frame Properties

As we mentioned in Section A.4, the truth value of a formula is determined for each
possible world. In particular, if the formula contains modal operators, the resultant
truth value is affected by the properties of a given accessibility relation. Therefore, it is
important to explain topics of various properties of frames to students. In this section,
we explain the following topics that should be taught to students:

1. The verification of frame properties of a given frame.

2. The validity of a formula on a frame which satisfies one of the frame properties
listed in Table 3.1.

A.5.1 Frame Properties on Frame

After giving a brief introduction to frame properties of a frame visually, we should explain
how to verify them. The ordinary approach to teach the verification of frame properties
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Figure A.3: The Frame Satisfies Seriality, Transitivity and Euclideanness

is to use both the visual and the model-theoretic approach. For example, let us define
a frame F by W = {w1, w2 }, R = { (w1, w2), (w2, w2) } (see Figure A.3). The frame F
satisfies seriality, transitivity and Euclideanness. Since the cardinality of the accessibility
relation as a set is enough small, we can use the graphical approach to explain that
the frame satisfies the above frame properties. If we show a graphical representation
of the frame to students, they might easily realize that the frame satisfies seriality and
transitivity. However, it might be difficult to realize if the frame satisfies Euclideanness.
In such case, we should switch our explanation to the model-theoretic approach. When
we show the frame satisfies Euclideanness, we should check whether the frame satisfies the
frame condition of the frame property, i.e., wRv and wRu imply vRu for any w, v, u ∈ W .
By definition of the accessibility relation R, we have the following implications:

• w1Rw2 and w1Rw2 imply w2Rw2 (w = w1, v = w2, u = w2).

• w2Rw2 and w2Rw2 imply w2Rw2 (w = w2, v = w2, u = w2).

The other implications, e.g., w1Rw1 and w1Rw1 imply w1Rw1 (w = w1, v = w1, u = w1),
trivially hold since the antecedent of the implication is false by definition of R. Therefore,
we can conclude that the frame F satisfies wRv and wRu imply vRu for any w, v, u ∈ W ,
i.e., Euclideanness.

If we teach how to verify the frame properties of a frame by our linear algebraic
approach, we should show the verification of matrix reformulation of a frame property.
Similarly to Example 3.8 (Section 3.2.2), we can explain the verification of Euclideanness
of the above frame F by R = tRR +R, i.e.,[

0 1
0 1

]
=

[
0 0
1 1

] [
0 1
0 1

]
+

[
0 1
0 1

]

=

[
0 0
0 1

]
+

[
0 1
0 1

]
=

[
0 1
0 1

]
.

In addition, we may also mention that the more simplified method to verify some frame
properties of a frame. We can check whether a given frame satisfies reflexivity, seriality,
and symmetricity by the form of a matrix of an accessibility relation of the frame. This is
because if the frame satisfies the above three properties, then the matrix of an accessibility
relation has the following features:

• Reflexivity: every diagonal component of the matrix consist of 1.
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Figure A.4: How to Satisfy both Transitivity and Seriality by Adding an Edge?

• Seriality: every row contains at least one occurrence of 1.

• Symmetricity: a matrix is a mirror image in the diagonal line.

For example, we can recognize that the matrix R of F in Figure A.3 satisfies seriality but
not reflexivity and symmetricity at a glance.

We may also teach the above matrix computation with our software, which has a
function to verify every frame properties listed in Table 3.1 (Section 3.2.2). An input
parameter of the function is a matrix of an accessibility relation of a frame, and an output
is a list of the verification results of each property. After entering the input parameters, it
is ready to verify the property. If the dimension of the matrix of an accessibility relation
is enough small, we can also use the simplified method to verify some frame properties as
we mentioned before. Since the color of each component is blue if it is 1, we can easily
recognize whether the matrix satisfies the above features of frame properties. For example,
see the matrix of RM at the center of Figure A.3. We can observe that the matrix actually
satisfies seriality since every row contains a blue component, i.e., 1. If we wish to use the
function of verification of frame properties, we can execute it by clicking the button Frame

Property on the calculator. If the function finishes successfully, a resultant list will be
displayed in a terminal window (see right side of Figure A.3). In the list, if the given
frame satisfies a frame property, 1 appears at the right side of the name of the property,
otherwise, 0 appears. In addition, the name of the modal axiom also appears at the next
to the name of the corresponding frame property. At the right side of the Figure A.3, we
can see that the frame satisfies seriality, transitivity and Euclideanness.

Since we can easily manipulate an input matrix of a model by the model editor and
obtain the result of the verification of frame properties of the model quickly, for example,
we can design or solve the following exercises.

Example A.1. Suppose a model of Figure A.4 which satisfies transitivity.

1. In order to satisfy both transitivity and seriality, which edge should we add to the
model? (answer: add an edge from w3 to itself.)

2. In order to satisfy Euclideanness, how should we modify the model? (answer: delete
every edge from the model.)

3. How to remove every frame property from the model by one edge deletion? (answer:
delete an edge from w1 to w3.)
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If we try to compute possible solutions of the above exercises without supporting tools,
we have to compute frame conditions with various changes over and over again. Therefore,
our software might be helpful to avoid such efforts.

A.5.2 Frame Properties and Valid Formulas

In this section, we focus our attention on the modal axioms T, B, D, 4 and 5. If we
know whether a given frame satisfies some properties, we can determine which formulas
are valid. For example, each frame property listed in Table 3.1 (Section 3.2.2) has the
corresponding formula. If a model satisfies seriality, then the corresponding formula D
(□p → ♢p) is valid on the model. In order to explain the correspondence between frame
properties and valid formulas, we use both verification of the validity of a formula on a
model in Section A.4.2 and of frame properties of a frame in Section A.5.1.

For example, let us recall the frame F of previous Section A.5.1, and define a model
M3 by F and V (p) = W (see Figure A.3). The model satisfies seriality, transitivity, and
Euclideanness. In addition, the formulas D (□p → ♢p) for seriality, 4 (□p → □□p) for
transitivity and 5 (♢p → □♢p) for Euclideanness are valid on the model M3, respectively.
In order to teach the the correspondence between frame properties and valid formulas
smoothly, the above properties are sometimes provided as an assumption. Otherwise, we
should start to explain from the verification of all frame properties listed in Table 3.1 of
the frame F. In this example, we suppose that the above properties are given. Then,
we can start our explanation from the verification of the validity of the above formulas.
To make our discussion simpler, we focus our attention on the validity of the formula
5 (♢p → □♢p) only. Under the model-theoretic approach, we have to check the truth
value of the formula 5 for each world. Through the similar discussion in Section A.4.2,
we can eventually conclude that the formula 5 is valid on the model M3. Similarly, we
may explain the validity of the formula by our linear algebraic approach. By

∥♢p → □♢p∥ = ∥♢p∥+ ∥□♢p∥
= RMV (p)M +RM(RMV (p)M)

=

[
01
01

] [
1
1

]
+

[
01
01

]([
01
01

] [
1
1

])

=

[
1
1

]
+

[
01
01

] [
1
1

]
=

[
0
0

]
+

[
0
0

]
=

[
1
1

]
,

we can conclude that the formula 5 is valid on the model M3. In a similar manner, we
can also verify whether the formulas 4 (□p → □□p) and D (□p → ♢p) are valid on the
model, respectively. However, we need to give the effort to calculate matrices, thus we
may use our software to check the validity of the formulas quickly.

We should also explain that if a formula which defines a frame property is not valid,
then the corresponding frame property is not satisfied in the frame of the model. Remark
that we still focus on the axioms T, B, D, 4 and 5. For example, let us define a model
M4 by W = {w1, w2 }, R = { (w1, w2) } and V (p) = W (see Figure A.5). Then the
frame of the model M4 does not satisfy seriality and Euclideanness since the formulas D
(□p → ♢p) and 5 (♢p → □♢p) are no longer valid on the model M4, respectively. To
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Figure A.5: The Formula 5 (♢p → □♢p) is Invalid and the Frame Does Not Satisfy
Euclideanness

Figure A.6: Which Frame Properties are Satisfied on the Frame?

show that the frame does not satisfy Euclideanness, we should find a link which violates
the frame condition of the frame property. By the ordinary model-theoretic approach, we
can find that the following implication does not hold: w1Rw2 and w1Rw2 imply w2Rw2

(w := w1, v := w2, u := w2). Therefore, the frame does not satisfy Euclideanness. The
result is also the same in the linear algebraic approach by R ̸= tRR +R, i.e.,[

0 1
0 0

]
̸=

[
0 0
1 0

] [
0 1
0 0

]
+

[
0 1
0 0

]

=

[
0 0
0 1

]
+

[
0 1
0 0

]
=

[
0 1
0 1

]
.

The above calculation seems easy but it takes a bit of our time. Hence, we may use our
software to verify which frame properties are satisfied on the frame quickly.

At the end, for example, we can design the following exercise with the help of our
software.

Example A.2. Let us define a Kripke model by W = {w1, w2, w3 }, R = {(w1, w1),
(w1, w3), (w2, w3), (w3, w1), (w3, w3)} and V (p1) = {w1 } (see Figure A.6).

1. Enumerate satisfying frame properties (listed in Table 3.1). (answer: the frame
satisfies seriality and Euclideanness.)

2. Verify whether the formula 5 (♢p1 → □♢p1) is valid on the model. (answer: 5 is
valid on the model.)
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Figure A.7: Our Lecture Material and Questionnaire Form

3. Let us delete an edge from w3 to w1. Afterward, verify again the formula 5 on the
model. (answer: 5 is invalid on the model.)

4. Verify whether the frame satisfies Euclideanness. (answer: the frame does not satisfy
Euclideanness.)

When we teach modal logic, we sometimes need to consider involved exercises as above.
With the help of some supporting tools, we can avoid our efforts by hand and eliminate
human errors from our teaching materials.

A.6 Feedbacks from Students

In order to obtain feedbacks from students, we have held a small seminar to teach elemen-
tary topics of modal logic using our approach. The participants of this seminar were 15
graduate students from our university. For reference, we have opened our lecture material
and feedbacks from students for the public (see also Figure A.7 and Appendix B).7 In the
lecture, we taught the following topics to the students:

1. Truth-table calculation of propositional logic, how to read modal operators, how to
define formulas, and the dual-definition of modal operators.

2. A graphical representation of Kripke model, linear algebraic reformulation of Kripke
semantics, and computation of truth sets and validity of a given formula on a model.

3. Matrix representation of the five frame properties in Table 3.1 (reflexivity, sym-
metricity, transitivity, seriality and Euclideanness), verification of them, and the
correspondence between these frame properties and formulas (T, B, D, 4 and 5).

These topics are selected from teaching topics explained in Sections A.2, A.4 and A.5.
We used Examples 3.1, 3.3 and 3.8, and examples of the truth value of a formula □p

7http://cirrus.jaist.ac.jp:8080/soft/ttl
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Figure A.8: Prior Knowledge of Students and Their Preferred Approaches

at a dead-end world in Section A.4.1 and the verification of Euclideanness property in
Section A.5.1. In order to compare our linear algebraic approach with the ordinary model-
theoretic approach, we also provide a short explanation of the model-theoretic approach
for each topic. Finally, we demonstrated our supporting software.

After the seminar, we have conducted a survey using a questionnaire form (see the
right side of Figure A.7). The questionnaire form consists of the following items:

1. Past and current affiliation, past and current major of research and subjects which
he/her has ever learned.

2. Levels of understanding of the topics and his/her intriguing topics.

3. Preferred approach to learn modal logic.

4. Effectiveness of our approach and supporting software to learn modal logic.

We have collected 15 completed questionnaire forms, and the results and opinions can
be summarized as follows. For item 1, we found that 14 students have already learned
linear algebra, and 6 students have never learned first-order logic (see the left diagram of
Figure A.8).8 In what follows, we regard the latter 6 students (i.e., one-third of the par-
ticipants) as our target students since we taught truth-table calculation at the beginning
of the seminar. For item 2, most of our students answered that they could understand
the topics of the seminar (see the left graph of Figure A.9). In particular, the topic of the
verification of frame properties using matrices attracts the interest of 12 students (see the
right graph of Figure A.9). For item 3, the results were different from our expectation.
Our approach was bit preferred than the model-theoretic approach; 7 students preferred
to use linear algebraic approach, 5 students preferred to use the model-theoretic approach
and 3 students preferred to use both approaches (see the right diagram of Figure A.8). In
particular, 5 students of our target preferred the linear algebraic approach. Their opinion
is that simple matrix calculations allow them to understand the elementary notion of

8In the questionnaire, we also asked a question that whether students know modal logic and set theory.
As a result, we found that 6 students and 4 students have already learned modal logic and set theory,
respectively. Since these students also have already learned first-order logic, we have merged them into
the same group of students who know first-order logic in the left diagram of Figure A.8.
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Figure A.9: Interesting Topics to Students

Figure A.10: Effectiveness of Our Teaching Approach and Software to Learn Modal Logic

modal logic since they are not familiar with set theory and felt difficult to understand
the model-theoretic treatment of Kripke semantics. This result indicates that our target
students could learn elementary part of modal logic using our approach. On the other
hand, 7 students who have already learned first-order logic were divided into two groups;
4 students preferred model-theoretic approach and 3 students preferred both approaches.
But these 7 students also answered that they could deepen their understanding of modal
logic from the linear algebraic perspective (see the left graph of Figure A.10). For item
4, most of our students are agreed that our approach is effective to learn modal logic (see
the center graph of Figure A.10). They also answered that our software can be helpful
to their study since they wished to avoid involved calculation of matrices (see the right
graph of Figure A.10).

As a result, students eventually got a positive impression to learn modal logic using
our approach. The above feedbacks indicate that our approach must be efficient for both
our target students and those who have already learned first-order logic. The result
also indicates that our approach has the potential of expanding the range of our target
students. For example, in Japan, many high-school students learn basic calculations of
real-valued matrices. Therefore, we may teach elementary topics of modal logic and graph
theory to advanced high school students in terms of matrices.
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A.7 Concluding Remarks

In this chapter, we have also investigated educational applications based on our technical
contributions. We can summarize our results as following two items.

Teaching Modal Logic from The Linear Algebraic Viewpoint:
In connection with our technical contribution (A1), we have also studied a linear
algebraic approach to teach modal logic to students in Chapter 3. Based on our
linear algebraic approach, we can teach many elementary topics of Kripke semantics
for modal logics by simple calculations over Boolean matrices. Our target students
are those who have prior knowledge of linear algebra and propositional logic. They
can learn modal logics based on their acquired knowledge without learning first-
order logic. In addition, students who have already learned first-order logic, can
also deepen their understanding of the subject from a different perspective. In or-
der to claim this, we have explained which topics of modal logics can be taught to
students using our approach and why the approach is helpful for educational pur-
poses (Appendix A.2). Finally, we have taught some elementary topics of modal
logic to our students using our approach, and collected feedbacks from them (Ap-
pendix A.6). The feedbacks indicates that our approach must be efficient for both
our target students and the ordinary target students of a course of modal logic.

Supporting Software and Algorithms for Linear Algebraic Semantics:
In connection with our technical contributions (A1) and (A3), we have developed a
supporting software based on our linear algebraic reformulation of Kripke semantics
for modal logic (Appendix A.3). Our software allows us to manipulate a matrix
representation of Kripke model easily and to solve computation tasks such as the
calculation of truth set of a formula, verification of frame properties of a given frame,
or visualization of Kripke model. In addition to modal logic, our software also sup-
ports to handle PDL-extension of doxastic logic with communication channels and
semi-private announcement operator. Since we have opened our software including
source code for the public, it might be helpful for education or further studies.
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Linear Algebraic Semantics for Modal Logic

Ryo Hatano

B.1 Modal Logic

B.1.1 Syntax

A modal language L is composed of the following vocabulary:

• A finite set PROP = { p, q, r, . . . } of propositional letters.

• Boolean connectives ¬,∨.

• diamond operator ♢.

A set of formulas of L is inductively defined as follows:

A ::= p | ¬A | (A ∨ A) | ♢A (p ∈ PROP).

• A formula ♢A stands for ‘it is possible that A.’

• A formula □A := ¬♢¬A, stands for ‘it is necessary that A.’

• We also introduce the Boolean connectives ∧,→ as usual abbreviations.

Logic ♢p □p (= ¬♢¬p)
Modal Logic it is possible that it is necessary that
Deontic Logic it is permitted that it is obligatory that
Doxastic Logic it is considered as possible that it is believed that
Epistemic Logic it is considered as possible that it is known that
Temporal Logic it will be the case that it will always be the case that

it was the case that it has always been the case that
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B.1.2 Kripke Semantics

A Kripke model M is a tuple (W,R, V ) where:

• W is a non-empty set of possible worlds, called domain.

• R ⊆ W ×W is an accessibility relation.

• V : PROP → P(W ) is a valuation function.

A frame is the result of dropping a valuation function from a model, i.e., (W,R). Given
any model M = (W,R, V ) and any possible world w ∈ W , the satisfaction relation
M, w |= A is defined inductively as follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬A iff M, w ̸|= A,
M, w |= A ∨B iff M, w |= A or M, w |= B,
M, w |= ♢A iff for some v ∈ W,wRv and M, v |= A.

• A truth set JAKM is defined by JAKM = {w ∈ W | M, w |= A }.

• A is valid on a model M if M, w |= A for all worlds w ∈ W .� �
Example B.1. We define a Kripke model M by:

W = {w1, w2, w3 },
R = {(w1, w1), (w1, w2), (w1, w3), (w2, w2), (w3, w3)},

V (p) = {w2 }.

It is clear that ♢p is true at w1 (and w2), i.e., M, w1 |= ♢p.

Proof. (The ordinary model-theoretic approach) By

M, w1 |= ♢p iff For some v ∈ W (w1Rv and M, v |= p),
iff For some v ∈ W (w1Rv and v ∈ V (p)),
iff For some v ∈ W (w1Rv and v ∈ {w2 }),

it suffices to know if (w1, w2) ∈ R. Trivial. □� �
B.2 Linear Algebraic Semantics

B.2.1 Boolean Matrix

Here, we use the symbol M , to denote a Boolean matrix, i.e., each element of the matrix
belongs to the set { 0, 1 }.

• The superscript M with a symbol or expressions (e.g., XM and (X + Y )M) denotes
a matrix representation of them.

• M(m× n) denotes the set of all (Boolean) m× n matrices, where m and n are the
numbers of rows and columns, respectively.
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• M(i, j) denotes the element in the i-th row and j-th column entry.

• The Boolean operations of ‘+’, ‘·’ and ‘−’ for the component of Boolean matrices
correspond to the logical operations of ‘∨’, ‘∧’ and ‘¬.’

Let M,M1,M2 ∈ M(m× n),M3 ∈ M(m× l) and M4 ∈ M(l × n).

tM(i, j) := M(j, i),

M(i, j) := M(i, j),
(M1 +M2)(i, j) := M1(i, j) +M2(i, j),
(M3M4)(i, j) :=

∑
1≤k≤n(M3(i, k) ·M4(k, j)).

B.2.2 Kripke Semantics in Matrices

Let M = (W,R, V ) be a Kripke model and W = {w1, w2, . . . , wm }. Matrix representa-
tions of an accessibility relation RM ∈ M(m × m) and a valuation V (p)M ∈ M(m × 1)
are defined by

RM(i, j) =

{
1 if (wi, wj) ∈ R,

0 if (wi, wj) ̸∈ R.
V (p)M(i) =

{
1 if wi ∈ V (p),

0 if wi ̸∈ V (p).

The semantic clauses of each formula A can be defined by the computation over matrices
inductively as follows:

∥p∥ := (V (p))M (p ∈ Prop),

∥¬A∥ := ∥A∥,
∥A ∨B∥ := ∥A∥+ ∥B∥,
∥♢A∥ := RM∥A∥.

� �
Example B.2. Recall a Kripke model M = (W,R, V ) in Example B.1. A Boolean
vector of the truth set of ♢p is obtained by

∥♢p∥ = RM∥V (p)∥ =

1 1 1
0 1 0
0 0 1

01
0

 =

11
0

 .

� �� �
Exercise 1. Let us define a Kripke model M = (W,R, V ) by:

W = {w1, w2, w3 },
R = { (w1, w1), (w1, w2), (w1, w3), (w2, w2) },

V (p) = W.

1. Calculate the truth set of ♢♢p → ♢p (Hint: p → q := ¬p ∨ q).

2. Calculate the truth set of □p.

3. Calculate the truth set of □p → □□p.� �
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B.3 Frame Properties in Matrix

B.3.1 Verification of Frame Properties

Every frame property listed in Table B.1 can be reformulated in terms of Boolean matrix,
where 1 and E denotes a complete vector (1(i, 1) = 1 for all i) and a unit square matrix
(E(i, j) = 1 if i = j; 0 otherwise), respectively.

Table B.1: Frame Properties and Corresponding Valid Formulas
Name Frame Condition Formula Matrix Reformulation

Reflexive ∀w(wRw) T □p → p R = R+E
Symmetric ∀w, v(wRv implies vRw) B p → □♢p R = tR (or R = tR+R)
Transitive ∀w, v, u(wRv&vRu imply wRu) 4 □p → □□p R = RR+R
Serial ∀w∃v(wRv) D □p → ♢p R(tR) = R(tR) + E (or 1 = R1)
Euclidean ∀w, v, u(wRv&wRu imply vRu) 5 ♢p → □♢p R = tRR+R

� �
Example B.3. Recall an accessibility relation R in Example B.1, and let us regard
R as a square matrix of the relation. Let us check whether R satisfies reflexivity. By
R = R +E, i.e., 1 1 1

0 1 0
0 0 1

 =

1 1 1
0 1 0
0 0 1

+

1 0 0
0 1 0
0 0 1



=

1 1 1
0 1 0
0 0 1

 .

Hence, R satisfies reflexivity.� �
We can also check whether a given frame satisfies reflexivity, seriality, and symmetricity
by the form of a matrix of an accessibility relation of the frame.

• Reflexivity: every diagonal component of the matrix consist of 1.

• Seriality: every row contains at least one occurrence of 1.

• Symmetricity: a matrix is a mirror image in the diagonal line.

� �
Exercise 2. Let us also use an accessibility relation R in Example B.1.

1. Verify whether R satisfies symmetricity, transitivity, seriality and Euclideanness
by matrix reformulation of frame properties.

2. Verify again whether R satisfies reflexivity, seriality and symmetricity by the
form of matrix.� �
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B.3.2 Correspondence between Frame Properties and Valid For-
mulas

• If a frame F satisfies a frame property in Table B.1, then the corresponding formula
is valid on a model (F, V ).

• If a formula which defines a frame property is not valid on a model (F, V ), then the
corresponding frame property in Table B.1 does not satisfy in the frame F.
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