JAIST Repository

https://dspace.jaist.ac.jp/

Title	溶液プロセスによるMoS_2の形成と薄膜トランジスタ応 用に関する研究						
Author(s)	金,冑男						
Citation							
Issue Date	2017-03						
Туре	Thesis or Dissertation						
Text version	ETD						
URL	http://hdl.handle.net/10119/14255						
Rights							
Description	Supervisor:徳光 永輔, マテリアルサイエンス研究科 , 博士						

Japan Advanced Institute of Science and Technology

Investigation of solution process of molybdenum disulfide for thin film transistor applications

金 胄男(Kim Joonam)

Introduction

The two dimensional (2D) materials such as graphene have attracted great attention because of high carrier mobility and outstanding mechanical property. However, the graphene has very small band-gap (< 0.7 eV)[1]. Although there is amount of work to make the band-gap for the graphene, it had been not working on. Meanwhile, other types of 2D material, transition metal dichalcogenide (TMDC) also shows great potential in nanoelectronics and optical application. In particular, atomically layered molybdenum disulfide (MoS₂) has attracted attention. When the thickness of MoS₂ is reduced from bulk to nanosheet, the bandgap (E_g) transforms from an indirect (E_g=1.2 eV) to a direct (E_g=1.8 eV)[2].

Recently, exfoliated single layer MoS_2 has been applied to transistor and excellent on/off current ratio with high carrier mobility was reported [3]. Nevertheless, most devices using the MoS_2 have been fabricated on small flake exfoliated from single crystals in order to investigate of fundamental properties. However, there are many restrictions such as small and uncontrollable flake size and extreme difficulty in the alignment for device fabrication so it limits their application in macroscopic scale devices. On the other hand, the chemical solution process is promising for large area formation of MoS_2 with simple equipment at low cost. However, there are a few researches about chemical solution processes for MoS_2 films. Moreover, almost MoS_2 synthesis is worked on the silicon dioxide (SiO₂) substrate because of thermal stability and flat surface of SiO₂ but deposited MoS_2 film have to be transferred to other substrate such as high-dielectric-constant (highk) thin film because of low dielectric constant of SiO₂ for a device. However, during transfer the MoS_2 film, problems such as film wrinkle, chemical damage by etching solution of SiO₂ must come up.

In my work, fundamental properties of solution process of MoS_2 films on high-k thin film have been investigated. In particular, MoS_2 films were fabricated on high-k films for the purpose of thin film transistor (TFT) applications.

Research Purpose

The objective of this research is to develop chemical solution process for MoS_2 thin films and to apply the solution-derived MoS_2 to thin film transistors. To achieve the TFT applications, MoS_2 films are grown on high-dielectric-constant (high-k) materials directly by chemical solution process.

Results and Discussion

The $(NH_4)_2MoS_4$ dissolved in N-methyl-2-pyrrolidone (NMP) was used for a precursor of MoS₂. To obtain well defined MoS₂ film, the coating uniformity is important and it is strongly related to the surface energy. In our work, the coating property for a precursor of MoS_2 was firstly investigated by a surface energy measurement. The estimated contact angles and calculated components of the oxide substrate are summarized in table 1. The oxide film which has relatively large γ - and small γ + of surface energy, shows good coating property. Putz et al[4]. have suggested the solution structure of $(NH_4)_2MoS_4$ dissolved in solvent, there is the network linked via $[RNH_2---H--NH_2R]$ cations, where the proton is stabilized via two NH₂ molecules, which may play an important role for coating properties. If the substrate surface has a significant amount of positive ions, it becomes difficult to deposit the films because of the Coulomb repulsive force with cations. For Si, SiO₂ and PZT, the estimated γ + values were relatively high. Hence, it is difficult for the $(NH_4)_2MoS_4$ solution to be spin-coated completely.

Substrate	Contact angle							Coating	Film state annealed at	
	water	diiodomethane	Ethylene glycol	glycerin	γs ^{LW}	γs⁺	γs	γs	state	1000 °C with sulfur
Al ₂ O ₃	33.8	38.9	32.7	-	40.2	0	54.1	40.4	good	good
HfO ₂	24.8	32.6	21.7	-	41.9	0.08	65.3	46.5	good	poor
ZrO ₂	9.7	34.2	-	15.6	42.4	0.07	64.5	46.6	good	good
Pb(Zr,Ti)O ₃	31.4	27.1	-	38	45.4	0.47	41.6	54.2	poor	-
(Bi,La) ₄ Ti ₃ O ₁₂	24.8	32.6	27	-	40.4	0.06	46.3	43.8	good	poor
LZO	23.5	28.7	1.0		44.7	0.065	54.4	48.5	good	-
NZO	34.3	35.4	19.9		41.8	0.1	47.0	47.3	good	good
ALZ	17.3	35	0.7		42.0	0.1	60.1	47.3	good	-
Si	59.7	48.8	38.1	-	35.0	0.43	22.3	41.2	poor	-
SiO ₂	47	45.1	25.1	-	37.5	0.53	33.4	45.4	poor	-

Table 1. Summary of the estimated contact angle of the test liquid, calculated surface energy components, coating state and film state annealed at 1000 °C with sulfur.

To fabricate the MoS₂ thin film, two step annealing process (1^{st} :450 °C in Ar/H₂ atmosphere, 2^{nd} : 1000 °C in Ar/S atmosphere), was applied. Among high-k materials such as HfO₂, ZrO₂ and Ti O₂, ZrO₂ system was most stable for second thermal treatment process of MoS₂. In our work, the electric properties for Nb 30% doped ZrO₂ (NZO) which has higher dielectric constant than pure ZrO₂ with same degree of leakage current, was firstly reported.

Figure 1(a) shows the Raman spectra for the MoS_2 films fabricated by source solutions with various concentrations. Two Raman peaks, E_{2g} and A_{1g} , are observed in the Raman spectra for all films. The peak position difference, which is a good trace for the thickness estimation, is plotted in figure 1(b). The peak difference of the MoS_2 film fabricated by the 0.05 mol/kg solution corresponds to a thickness of over five layers. On the other hand, a thickness of three layers was estimated for the film grown by the 0.0125 mol/kg solution. When the source solution with a concentration of 0.00625 mol/kg was used, the thickness of the film is further decreased to two mono-layers, although the Raman peak intensity becomes small.

The thin film transistors (TFT) using solution processed MoS_2 as semiconductor which was directly deposited on the NZO as gate insulator, were fabricated with channel length of 10 μ m and

width 50 μ m, respectively as shown in figure 2(a). The 0.05 mol/kg MoS₂ solution was used so the width of Raman peak in figure 2(a) was 26 cm⁻¹ (over five layers). The calculated filed effect mobility which was calculated from figure 2(b), was 0.32~0.71 cm²/Vs. and the on/off ratio was 4.5x10⁴. This value is almost the same as that reported for TFT with transferred or CVD multilayer MoS₂

Figure 1. (a) Raman spectra of MoS_2 fabricated by source solutions with various concentrations. (b) Frequency difference between the peak of the E_{2g} and A_{1g} mode as a function of the concentration of the source solution.

Figure 2(a) Plan view of metal pad for multilayer MoS_2 transistor and its Raman spectra, (b) the characteristic of (a)gate-voltage and drain current.

Reference

[1] K. Novoselov, "Graphene : Mind the gap", Nature Material, vol.6, pp.720, 2007.

[2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli and F. Wang, "Emerging Photoluminescence in Monolayer MoS₂", Nano letter, vol.10, pp.1271, 2010.

[3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti & A. Kis, "Single-layer MoS₂ transistors", Nature nanotechnology, vol.6, pp.147, 2011.

[4] J. Putz and M. A. Aegerter, "Liquid Film Deposition of Chalcogenide Thin Films", Journal of Sol-Gel Science and Technology, vol.26, pp.807, 2003.

Keywords: Solution process, High-k, MoS2, semiconductor, TFT