
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Detection and Labeling of Bad Moves for Coaching

Go

Author(s) Ikeda, Kokolo; Viennot, Simon; Sato, Naoyuki

Citation
IEEE Conference on Computational Intelligence and

Games (CIG2016): 1-8

Issue Date 2016-09

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/14266

Rights

This is the author's version of the work.

Copyright (C) 2016 IEEE. IEEE Conference on

Computational Intelligence and Games (CIG2016),

2016, 1-8. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future

media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description



1

Detection and Labeling of Bad Moves for
Coaching Go

Kokolo Ikeda1, Simon Viennot1, and Naoyuki Sato1

1School of Information Science, JAIST, Japan

Abstract:
The level of computer programs has now reached professional strength for many games, even for the game of Go

recently. A more difficult task for computer intelligence now is to create a program able to coach human players, so
that they can improve their play. In this paper, we propose a method to detect and label the bad moves of human
players for the game of Go. This task is challenging because even strong human players only agree at a rate of around
50% about which moves should be considered as bad. We use supervised learning with features largely available in
many Go programs, and we obtain an identification level close to the one observed between strong human players.
Also, an evaluation by a professional player shows that our method is already useful for intermediate-level players.

I. INTRODUCTION

Computer programs to play games have improved a
lot this last decade, with the use of machine-learning
and Monte-Carlo Tree Search (MCTS). The last success
was the defeat of a professional Go player by AlphaGo
in 2016[6], by using a combination of deep convolutional
neural networks and MCTS. The strength of other pro-
grams for the game of Go is now expected to increase
quickly, so we can consider that creating a strong Go
program is not as challenging as before.

However, there are still other difficult and interesting
problems for computer intelligence in the area of games,
especially the game of Go. A first one is the creation
of entertaining programs. Computer programs are still
too frequently boring for human players, because they
tend to use similar strategies repeatedly. Another inter-
esting problem is the ability to coach human players, by
showing them their mistakes, and explaining them how
to improve.

For entertainment or coaching purposes, programs
need some new abilities usually not considered when
strength is the only target. For example, for entertaining
humans, a control of the position is needed, so that both
players keep a reasonable chance of winning. It can be
achieved with intentionally gentle - but natural - moves.
The thinking time used for each move or the resign
timing are also important. For coaching humans, bad
moves need to be detected, and some explanation is also
needed, either with figures, text or speech.

kokolo@jaist.ac.jp
sviennot@jaist.ac.jp
satonao@jaist.ac.jp

In this research, we consider the problem of coaching
Go players. In the case of the game of Go, it is frequent
for human players to review their own games with a
stronger player and seek advice about which moves were
bad. So, an ideal coaching computer program should
be able to detect the bad moves, to label them with
the type of mistake, and finally to give a more detailed
explanation. Also, a figure showing a better move with
its consequences would be useful. In this research, we
consider only the problem of detecting and labeling the
bad moves.

Deciding which moves should be considered as bad is
a challenging task. In a preliminary experiment, we asked
strong players to show the bad moves in game records
of intermediate-level players. The strong players only
agreed at a rate of around 50%. Also, we will show that a
naive approach like using only the drop of winning ratio
from the point of view of a strong computer program
does not work well. Many bad moves from the point
of view of humans are locally non-optimal moves (for
example a bad shape), but the loss in terms of winning
chances is in fact small. In this paper, we propose to use
machine-learning to address this problem.

In Section II, we give some more details about coach-
ing Go, and how it is usually done between humans.
In Section III, we discuss some related work. Then, in
Section IV, we describe our approach based on super-
vised machine learning. Section V describes our main
experiments, with a machine learning for detecting bad
moves, and a separate machine learning for labeling
them. The result is evaluated with a professional Go
player.



Fig. 1. Complete process for helping players to correct their bad moves.

II. COACHING GO

Go is an ancient game, especially popular in Asia,
with a rich variety of sub-problems and strategies. For
this reason, many Go players find their satisfaction not
just in playing the game, but in trying to improve their
play and becoming stronger.

There are many ways to improve at the game of Go,
such as replaying professional games, solving local life
and death problems (tsumego), or reading books about
common tactics and patterns. But it is often considered
that one of the best way to improve is to play a game
with a stronger player, and to review the game with him.

Coaching Go (Shido-Go in Japanese) is a special type
of game, where amateur players pay some professional
or semi-professional player to play and review a game.
There is a strong demand from amateur players for such
games, but it can be expensive. Also, intermediate-level
players are often reluctant to invest the money or the
time in such coaching games, because they feel that their
level is still too low for that. If a computer player could
perform the same kind of coaching, it would be of great
help for many amateur players, especially from beginner
to intermediate level.

We surveyed in Go clubs in Japan how strong players
teach intermediate-level players about their bad moves.
It usually follows the process shown in Figure 1. First,
a bad move is detected (1). Some reason (2) is given on
why it is a bad move. We call this step “labeling” in
this paper. Then, a more detailed explanation is given on
what happened as a result (3) of the bad move. Finally,
a better move is shown, with the expected best variation
(4).

In this paper, we address only the first two steps, i.e.
the detection of bad moves, and the labeling with some

“reason”. Our goal in the future is to create a computer
program able to perform all 4 steps.

III. RELATED WORK

Entertaining and coaching players is a developing
area of research on board games. In 2013, Ikeda et al.
(authors of this paper) proposed a computer Go program
able to entertain players by using various strategies and
controlling the board position [3]. In 2015, Kameko et al.
used machine-learning to generate comments in natural
language about Shogi positions [4]. Also in 2015, Ikeda
et al. (authors of this paper) used machine-learning to
learn the natural language names usually used by humans
to refer to moves in the game of Go [5]. This is an
important part for a coaching Go program, since moves
are usually refered by shape names and not by coordinate
positions in the game of Go. For example, in Figure 1,
A7 is called “Hane”.

IV. APPROACH

The ultimate goal of our research is to make a
coaching computer player who plays gently against hu-
man players, corrects bad moves and explains how to
think/play. It would encourage human players to continue
playing while their skills are improving. As a first step
towards this goal, we try (1) to detect bad moves from a
game record and (2) to associate an explanation label to
each bad move. Then, the computer player could ouput
something like “The 17th move at D4 was not good,
because the local shape is bad. D5 is better.”

The definition of “bad move” is not trivial. If the set
of best moves can be defined and calculated, though
theoretically it is possible, it may be possible to say
that the other moves are all bad moves. However, for

2



coaching intermediate players, usually only fairly bad
moves are pointed out because such players will be
confused or depressed if too many moves are corrected.

For selecting fairly bad moves, it will be effective
to refer to the “winning ratio” computed by computer
players. Now, we assume that White is played by an
MCTS player, and Black is played by an intermediate
human player. An MCTS program calculates not only
the next best move but also many statistics such as the
expected winning probability (winning ratio). When the
ratio for White is increased, for example from 30% to
50%, it means that Black played a fairly bad move which
loses a big advantage, 20%. Usually, a Black move which
loses 20% winning ratio should be pointed out, before
any other move that loses only 2%.

But it should be noted that winning ratio will be not
sufficient to select bad moves for effective coaching.
Human teachers often point out and correct some kind of
bad moves even when the loss of winning ratio is not so
serious. One example is shown in Fig. 2. The shape of
Black move A is bad, and B should be played. We think
almost all Go teachers will point out this move, even
if the difference of winning ratio of A and B is only
about 1− 2%. To detect such a move, “shape goodness”
should be computed and referred. Another example can
be considered in end games. Assume that Black is almost
surely winning, and the territory advantage is 12 points.
When Black played a bad move which loses 4 points,
it will be pointed out, even if the winning ratio is only
slightly changed from 99% to 98%. To detect such a
move, “territory advantage” should be computed and
referred. So, we calculate and use several values as
input features, for accurate detection of bad moves. The
employed features are explained in V-A.

The detection and labeling of bad moves are done
seperately. The whole procedure is as follows:

1) Many handicap games are done. Game records are
collected.

2) Bad moves are selected by strong human players,
with only 5 to 10 moves selected per game.

3) Also, one type (why the move is bad) is labeled on
each bad move, from some candidates.

4) Many features are calculated by a computer pro-
gram, for each move. We obtain a set of items
(feature1, feature2, ..., bad/good, type).

5) A supervised learning is executed by using all items
where “bad/good” is the output. The result is the
“detection system”.

6) Another supervised learning is executed by using
“bad” items where type is the output. The result is
the “labeling system”.

Fig. 2. An example of bad shape, A is bad, B is good. This A will
be pointed though the loss of winning ratio is not so big.

V. EXPERIMENTS

In this section, we show four series of experiments.
The brief content is as follows:

1) Preliminary experiment to show that the winning
ratio is not a sufficient feature for detecting bad
moves

2) Learning of bad move detection system, and com-
parison with human’s decision

3) Learning of bad move labeling system, and compar-
ison with human’s decision

4) Evaluation of the detection and labeling systems by
a professional player

A. Preparation

As described at the end of Section IV, we need to
gather many handicap games, to let strong human players
select bad moves and label them, and to calculate many
feature values for each move. We employed our computer
Go program “Nomitan”. It is ranked 3d on the KGS
server, which is not so strong, but not so weak. First, we
asked 8 intermediate-level human players (from about 7k
to 1d) to play against Nomitan, using a 13 × 13 board
and with 2 to 4 handicap stones, as they want. Totally,
108 games were collected.

Next, we asked three strong human players (about 4d
to 7d on KGS) to select bad Black moves and select a
type label for each bad move. It was requested to ignore
bad White moves, and to select about 5 to 10 bad moves
per game. A type label for each bad move is a brief
reason explaining why the move is bad. It was selected
from the following 10 candidates. Since some types were
rarely labeled, they are integrated into 5 groups.

3



• Group-1
– Local shape is bad.

• Group-2
– Gain is small.
– The move is too defensive or fearing a risk, then

the gain is small.
• Group-3

– The move is far from the hot area.
– The move is far from the hot area, White stones

should be attacked.
– The move is far from the hot area, Black stones

should be defended.
• Group-4

– The player seems to do a reading mistake (i.e. a
tactical error when considering what happens a
few moves ahead).

• Group-5
– The move is too passive. It seems to be only

responsive to the last White move.
– The move helped White stones to be stronger.
– Other reasons.

For 102 in 108 games (set denoted by G102), only one
of the three human players did this selection and type
labeling of the bad moves. For 6 games (set denoted by
Gcommon6), 244 Black moves, all of the three human
players did this work. This allows us to compare the
selection result between humans. For example, Table I
shows the difference in bad move selection between two
strong players A and B.

TABLE I
BAD MOVE SELECTION BY STRONG PLAYERS A AND B

B good B bad
A good 180 27
A bad 24 13

Out of 244 moves, player A selected 37 moves as bad
moves, but only 13 of these 37 moves are also selected
by player B. This result shows that bad move detection
is not a simple work even for strong human players.

Totally, 4836 Black moves were collected from 108
games. For each of these moves, we calculated 29 feature
values to be referred in supervised learning. Here, some
important features are explained, and the other ones are
explained in Appendix A. Please note that such features
are not specific to our program. They can be easily
calculated by most MCTS programs.

• handi, the number of handicap stones.
• move, the number of moves played.
• wrbefore, wrafter, wrdiff, expected winning ratio

before the move, after the move, and its difference.

• trbefore, trafter, trdiff, expected territory advan-
tage before the move, after the move, and its differ-
ence.

• shaperate, shapelog, shape goodness calculated by
Bradley-Terry model [2], relative value and absolute
log value.

• dist1b, Euclidean distance between the actual Black
move and the estimated best move.

• ownbefore, ownafter, owndiff, ownership of the
position before the move, after the move, and its
difference. High ownership means that the area is
occupied by Black, i.e. the Black stones in the area
are strong, or the White stones in the area are weak.

B. Preliminary Experiments: feature selection for
good/bad detection

In this section, binary supervised learning experiments
about “detection system” are shown, to prove that many
features should be used for detecting bad moves accu-
rately.

We have 3963 good move instances and 873 bad move
instances. Since such unbalance among the numbers of
instances is not preferable in classification, 2000 good
move instances are randomly removed in this experiment.
Since there are a lot of candidate methods for binary
classification, we employ Multilayer Perceptron in a free
machine learning platform, Weka version 3.6.11 [1].

For evaluating the performance, the F-measure, the
mixed value of precision and recall, is used. For example,
in the case of Table I, if we assume that the decision of
B is always true, the precision of A about bad moves
is 13

24+13 = 0.351, the recall of A about bad moves is
13

27+13 = 0.325, and the F-measure about bad moves is
2·0.351·0.325
0.351+0.325 = 0.338.

When only wrdiff (how the winning ratio is changed
by a Black move) is used as the input, the F-measures
are 0.812/0.299/0.654 (F-measure about good moves / F-
measure about bad moves / weighted average for good
and bad moves). These values are the averages of 10-
folding validation. It is not strange that the F-measure
about good moves is better than that about bad moves,
because the number of good move instances (1963) is
still bigger than the number of bad move instances (873).

We tried to improve the performance by adding other
features. Table II shows the result. By adding one or two
features, the total F-measure is increased by 0.008 to
0.031. It is clear that shape goodness and territory advan-
tage should be considered for accurate detection. Maybe
it is interesting to see that move or wrbefore/wrafter
fairly improve the performance. This is because usually
bad moves in early stage frequently affect the game

4



consequence, and bad moves after losing game (for
example winning ratio is under 30%) are not pointed
by human coaches.

Finally, when using 9 features wrdiff, wrbefore,
wrafter, shapelog, trdiff, trbefore, trafter, move, own-
diff, the F-measure about bad moves is significantly
improved from 0.299 to 0.444. We can conclude that,
not only the winning ratio, but also many other features
are needed for an accurate detection of bad moves.

TABLE II
GOOD/BAD DETECTION RESULTS. USED FEATURES AND

F-MEASURES

features F-measures gain
wrdiff only 0.812/0.299/0.654 -
+wrbefore, wrafter 0.815/0.361/0.675 0.021
+shaperate 0.814/0.326/0.664 0.010
+shapelog 0.812/0.357/0.672 0.018
+trdiff 0.809/0.381/0.677 0.023
+trbefore, trafter 0.817/0.389/0.685 0.031
+handi 0.810/0.333/0.663 0.009
+move 0.812/0.378/0.678 0.024
+dist1b 0.813/0.322/0.662 0.008
+owndiff 0.812/0.330/0.664 0.010
+8 features 0.826/0.444/0.709 0.055

C. Machine-Learning for Detection

In Section V-B, we observed that 8 additional features
are effective to improve the detection accuracy, and there
10-folding self validation is used. In this section, the
learning set and the test set are manually separated,
and the performance for test data is compared to the
performance between human strong players.

As shown in Table I, decisions are fairly different from
each other, even among strong players. Table III shows
F-measures of each player for another player, we can see
A for B is relatively far, B for C is relatively similar. The
simple averages are 0.892/0.435/0.820. We try to achieve
these values by machine learning.

TABLE III
F-MEASURES OF GOOD/BAD DETECTION

F-measures
player A for B 0.876/0.338/0.794
player B for C 0.907/0.525/0.844
player C for A 0.895/0.442/0.821
average 0.892/0.435/0.820
MP for player A,B,C 0.875/0.409/0.800

Gcommon6 is used as the test set, including 609 good
moves and 117 bad moves. G102 is used as the training
set, including 3354 good moves and 756 bad moves.
In order to balance the numbers of good moves and
bad moves, we clone each bad moves of the training

set from one to three, then 3354 good moves and 2268
bad move instances are used for training. We think this
cloning method is better for obtaining a good detection
system than deleting 2000 good moves, but it should
be noted that 10-folding self validation becomes unfair
when using this cloning method, then another way was
used in Section V-B.

Multilayer Perceptron (MP) in Weka is used, and the
same 9 features shown in Section V-B are referred. The
achieved F-measures were 0.875/0.409/0.800. They are
slightly worse than the average among strong human
players, but better than those of player A for B. We can
guess that the decisions (detected bad moves) are not so
strange compared to those from strong human players.

D. Machine-Learning for Labeling

The second step is to label a type on each detected bad
move. We have totally 873 labelled (bad move) instances,
the numbers of instances of 5 groups are 228, 228, 212,
98 and 107.

Like the experiments shown in Section V-B, we did
some preliminary experiments to select a classification
method and select the referred features. After compar-
ing several methods available in Weka, such as J4.8,
LADTree, SMO or Multilayer Perceptron, we selected
“Logistic” as the classification method.

The total F-measure (averaged by 10-folding self val-
idation) is 0.406 when using the full set of 29 features.
We tried to improve the F-measure by removing some
features to avoid overfitting. In almost all cases the F-
measure is decreased by removing features, this suggests
that more complex features are effective in the labeling
system compared to the detection system. The F-measure
is slightly increased when removing some of 7 features,
and finally the F-measure is 0.434 when removing all the
7 fearures.

Next, as in the experiments shown in Section V-C,
we separated 873 instances in a learning set and a test
set, and compared the F-measure to that among human
players. The learning set contains 756 instances from
G102, which are selected as bad moves. The test set
contains 69 instances from Gcommon6, which are selected
as bad moves, by two or three of strong human
players A,B,C. 48 instances of Gcommon6 are selected
as bad moves by only one of the three players, then it is
impossible to compare whether the labeled types are the
same or different.

The total F-measure among human players is shown in
Table IV. The averaged F-measure is 0.483, which means
that two players frequently gave different labels to a bad
move. The achieved F-measure by Logistic is 0.499, this

5



is better than the average. Since the number of test set is
only 69, we think this is just a lucky case. In fact, when
using other sophisticated classifiers, the F-measure is
only in the range from 0.35 to 0.42. The labeling system
(the second step classification) will be more difficult than
the detection system (the first step classification), because
the number of output classes is bigger, 5 instead of 2,
and because the size of the learning set is smaller, 756
instead of 4110. We guess the performance will be fairly
improved when increasing the size of the learning set.

TABLE IV
F-MEASURES OF BAD MOVE TYPE LABELING

F-measure
player A for B 0.482
player B for C 0.436
player C for A 0.531
average 0.483
Logistic for player A,B,C 0.499

E. Evaluation by a Professional Player
In Sections V-C and V-D, mainly F-measure values are

used for evaluation, and they are compared to the average
F-measure between strong human players. However, F-
measures cannot evaluate whether terrible decisions exist
or not, for example “a really bad move is not detected”
or “the definitely-best move is detected as a bad move”.
Then, an absolute evaluation by a professional player is
done.
Gcommon6 are the games that all three strong human

players select bad moves and label their types. At the
first, the detection system (Multilayer Perceptron) em-
ployed in Section V-C was used for Gcommon6, then
46 bad moves were selected. Next, the labeling system
(Logistic) employed in Section V-D was used for these
bad moves, then we obtained 6 game records where bad
moves are selected and labeled. A game labeled by our
method is shown in Appendix B.

Totally 24 game records were sent to a 6d professional
player in a blind manner, and we asked him to give a
score for each game record, about (1) How well the bad
move detection is done, and (2) How reasonable the type
labeling is done. The scoring criterion we asked was as
follows:

• 100 points: at the same quality of human profes-
sional coaches

• 90 points: at the same quality of human 6d amateur
coaches

• 70 points: there are some problems, but still suffi-
ciently valuable for intermediate players.

• 50 points: there are many or serious problems, then
not so valuable even for intermediate players.

Table V shows the points given for (1) bad move
detection, and Table VI shows the points given for (2)
type labeling. The average scores of players A, B and C
are similar, about 80 points, but individual scores are not
so stable, from 60 points to 100 points. Please note that
90 points are not achieved even though they are about
6d amateur players. The average scores of our systems
are worse than that of strong human players, by about
6 points, but better in some games. Total average 74.2
and 76.7 are not bad, clearly better than 70 points level,
“sufficiently valuable for intermediate players”.

We consider that our method is promising or even
already useful, and we can expect the performance to
improve if we collect more games as training data.

TABLE V
EVALUATION SCORES BY A PROFESSIONAL, FOR BAD MOVE

DETECTION

handicap 4 stones 3 2 stones
game ID 1 2 3 4 5 6 average
player A 75 60 90 85 90 90 81.7
player B 90 75 80 75 75 90 80.8
player C 80 85 90 65 85 80 80.8
our method 70 70 80 75 70 80 74.2

TABLE VI
EVALUATION SCORES BY A PROFESSIONAL, FOR TYPE LABELING

handicap 4 stones 3 2 stones
game ID 1 2 3 4 5 6 average
player A 70 70 80 90 80 90 80.0
player B 90 75 80 70 75 100 81.7
player C 95 95 70 70 90 85 84.2
our method 70 70 90 80 70 80 76.7

VI. CONCLUSION AND FUTURE WORK

Since strong computer players can be implemented
for many games, entertaining and/or coaching computer
players have become a new target of computer intelli-
gence. In this paper, we design a system for detecting
and labeling bad moves played by human players, in
the game of Go. It was shown that these works are not
simple nor easy, there was around 50% mismatch even
among strong human players, and many input features
are needed for making adequate decisions. We collected
4110 moves labeled by strong players, calculated 22
features, and employed two-step supervised learning. The
qualities of detection and labeling were evaluated by a
professional Go player, it was shown that both of them
were clearly at a useful level, though slightly worse than
the level of strong human players.

As future work, the number of learning data should
be increased because these supervised learning problems

6



are a difficult task. Many features are needed and then
much learning data is needed to avoid overfitting. Also,
we want to try other tasks for coaching. Especially in
the case of correcting bad moves in the game of Go,
it is preferred after detection and labeling to explain
the result of each bad move, and to show the best
move with its consequence. Playing various games with
an understanding of abstract concepts is now not such
a difficult task for computer intelligence, but coaching
human players with an explanation of such abstract
concepts is still a challenging task.

REFERENCES

[1] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993

[2] Remi Coulom, “Computing Elo Ratings of Move Patterns in the
Game of Go”, ICGA Workshop, (2007)

[3] Kokolo Ikeda and Simon Viennot, “Production of Various Strate-
gies and Position Control for Monte-Carlo Go - Entertaining
human players”, Proceedings of the 2013 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 145-152 (2013)

[4] Hirotaka Kameko, Shinsuke Mori and Yoshimasa Tsuruoka,
“Learning a Game Commentary Generator with Grounded Move
Expressions”. Proceedings of the 2015 IEEE Conference on Com-
putational Intelligence and Games (CIG), pp. 177-184 (2015)

[5] Kokolo Ikeda, Simon Viennot and Takanari Shishido, “Machine-
Learning of Shape Names for the Game of Go”, 14th International
Conference Advances in Computer Games, (2015)

[6] David Silver, Aja Huang et al. “Mastering the game of go with
deep neural networks and tree search”. Nature, 529(7587) pp. 484-
489 (2016)

APPENDIX A.

In Section V-A, 14 of 29 features are explained. Here
the other 15 features are briefly explained. Please note
that the additional cost for calculating these 29 features
for each Black move is not so expensive in fact, because
almost all feature values can be calculated within the
procedure that the program decides the White move.

• trstdbefore, trstdafter, trstddiff, standard devia-
tion of territory advantages, before/after the move
and its difference. They are calculated with trbe-
fore, trafter, trdiff, and representing how unclear
the game result is.

• dist01, dist02, dist21, dist0b, dist2b, Euclidean
distances between two of { the last White move (0),
the next White move (2), the actual Black move (1),
and the estimated best move (b) }.

• own2before, own2after, own2diff, averaged own-
ership of Black stones on 3 × 3 area neighboring
the Black move. Values before/after the move, and
its difference.

• bdecav, wdecav, average ownership decreasements
of all Black/White stones, by the next White move.
When bdecav is high, it means Black stones are

weaken by the next White move, because of losing
chance to defend.

• bdec30, wdec30, the number of Black/White stones
which their ownerships are decreased by 0.3, by the
next White move.

In this paper, 7 of them, own2before, own2after,
own2diff, dist0b, dist2b, bdecav, bdecav were removed
after a test described in Section V-D and not used in
the last evaluation. However, if more learning set and/or
stronger program can be used, it may be better to use
these 7 and more features.

APPENDIX B.
Figure 3 shows the 1st to 54th moves of game-

3, evaluated in Section V-E. In fact, the Black player
resigned after White 77, but only 54 moves are shown
for readability. The bad moves detected by our method,
and comments by the professional are as follows:

• 8th, group-1 (bad shape). OK.
• 14th, group-1. OK.
• 18th, group-1. OK.
• 24th. This move is not good, but not detected.
• 30th, group-3 (far from hot area). This move is not

so bad and another type would be better.
• 32nd, group-3. OK.
• 38th, group-1. This move is not so bad.
• 46th, group-1. Another type will be better.
• 54th. This move is fairly bad, but not detected.
• anyway, detection and labeling are at a useful level.

Fig. 3. Game-3 labeled by our method, up to the 54th move.

7


