
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 動的解析に適したインタプリタに関する研究

Author(s) 蔡, 遠航

Citation

Issue Date 2001-03

Type Thesis or Dissertation

Text version none

URL http://hdl.handle.net/10119/1427

Rights

Description Supervisor:片山 卓也 教授, 情報科学研究科, 修士



Research On A Interpreter Suitable For Dynamic

analysis

Enkou Sai

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 2001

Keywords: dynamic analysis, interpreter, execution information, Sapid, CASE tool

platform.

There are static analysis and dynamic analysis as analysis of a source program. In

development and maintenance of software, debugging, a test, etc. of a program have an

important role and dynamic analysis is con�rmed at these. Dynamic analysis means giving

a certain input to a source program, performing it, analyzing it using the information on

the program state at the arbitrary execution step (it is called execution information).

Dynamic analysis can perform more advanced analysis with much information compared

with static analysis. For example, there are important things in the error of the software

that is hard to �nd in static analysis, such as an error about the value of a pointer. These

errors become possible discovering in dynamic analysis.

However, it is often more diÆcult to implement dynamic analyzers than to implement

static ones, since dynamic analyzers have to treat dynamic information such like stacks,

heaps, registers, in addition to abstract syntax trees and symbol tables that static ana-

lyzers treat. In the existing dynamic analyzers, the function of abstracting and modeling

this dynamic information is inadequate. The information is in a characteristic format the

dynamic analyzer has, and there is no structure to o�er the information outside. There-

fore, the reusability of this information is low. The interpreter for source programs is

implemented respectively for every dynamic analysis tool. Although implementing the

underlying interpreter is not essential when implementing dynamic analyzers, it requires

much cost.

If the execution information on the program is modeled, abstracted and then o�ered,

it will become much easier to implement dynamic analyzers. In order to store execution

information on a program, a general way is performing the program using interpretation

machines, such as a compiler or an interpreter, and storing the execution information

simultaneously with the interpretation machines.

Copyright c
 2001 by Enkou Sai

1



If a program is performed by using a compiler or an interpreter, it will perform on

the basis of dynamic information in original binary format. In this case, interpreting the

dynamic information in original binary format using the format that is di�erent for every

system, will be extra work. To eliminate this extra work, dynamic information should be

modeled, abstracted, and made easy to use in dynamic analysis. However, there are few

interpreters that o�er such dynamic information in the present condition.

On the other hand, Sapid is proposed as a �ne-grained repository for the purpose of

becoming the platform of CASE tools. This is a software repository that is made based

on a model called I-model. I-model is an E-R model that describes software on the basis

of the structure of software, and is the data structure that specialized in the C language

and modeled the static information such as the information on an abstract syntax tree

and a symbol table.

The Repository based on I-model is �ne-grained compared with a repository of module

units or that of function units. To the result analyzed by static analysis of the source

code based on this repository, the virtual machine that can direct interpret and execute

it can be created easier. This shows that Sapid is e�ective in dynamic analysis.

Sapid is provided with an interpreter named Sint of the C language. However, as

for Sint, it is insuÆcient to o�er the dynamic information at the steps of execution of a

program. It is because the modeled and abstracted execution information is not o�ered.

Therefore, Sapid is excellent in o�ering static information but it is still inadequate

for o�ering dynamic information. If program execution information is becoming storable

by using Sint, when developing a CASE tool, we can o�er analyzers that are excellent

in both of static and dynamic analysis functions, which are often required. We can also

expect labor-saving of development, data integration among CASE tools.

Thus, in case proposing and implementing an interpretation machine of the program

which is suitable for dynamic analysis, extending Sint rather than making a new interpre-

tation machine from the scratch. This can be performed labor-saving of implementation,

and it is suitable to the essence of Sapid as a CASE tool platform.

In this research, the model and APIs about execution information for dynamic analysis

were proposed. Based on it, Sint was extended to be an interpreter suitable for dynamic

analysis.

In realization of this, �rst, to make the interpreter suitable for dynamic analysis, we

took slicing and debugging for the examples. By these examples we considered the demand

matter on dynamic analysis and the advantage of treating execution information logically.

The demand matter is "the information about the value of the variable, an address, the

state of a stack, and the performed statement at each execution step is acquirable". To

model execution information, we bore "o�er a model also with high 
exibility and high

degree of abstraction" in mind and discussed the relation between the degree of abstraction

and 
exibility.

Base on these execution information was sorted out. We paid attention to next six

kinds of information: the execution step, the performed statement, the variable, and the

value of the variable, the area, and the state of the stack showing a function call relation.

We proposed a model about this execution information. Moreover, we extended both Sint

and SIP2, a library supports the dynamic analysis. By this extension, we made Sint can

2



extract and store the above-mentioned six kinds of execution information.The execution

information model consists of six classes and six kinds of relation, and we o�ered nine

APIs together with the model. By discussing the theoretical realization technique of a tool

investigating a function call relation and a variable history tool, this interpreter having a

certain validity to realize dynamic analysis tools was shown.

By realization of the interpreter proposed and implemented by this research, the logical

concept such as a variable or a stack can be directly treated now. Moreover, when

developing a CASE tool, we can o�er analyzers that are excellent in both of static and

dynamic analysis functions, which are often required. We can also expect labor-saving of

development, data integration among CASE tools.

3


