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Fast Radioactive Hotspot Localization Using a UAV

Abdullah Al Redwan Newaz, Sungmoon Jeong, and Nak Young Chong

Abstract— We address the problem of hotspot seeking in an
unknown radiation field using an Unmanned Aerial Vehicle
(UAV) with limited resources. For on-the-spot investigation
of accidental radiation releases, without a priori knowledge
on the whereabouts of the source of radiation substances
leakages, it is very difficult to navigate and return a UAV
for fast hotspot localization. We propose a novel Hexagonal
Tree (HexTree) based sampling algorithm to find such an
optimal tour path based on the appropriate measurement
locations. We make a realistic assumption on the environment,
theoretically analyze the optimality of proposed algorithm,
and numerically compare the performance with the existing
method. The proposed algorithm gives faster convergence to
the hotspot, an optimal exploration termination condition, and
more informative locations while returning to the initial position
than conventional random sampling based exploration and path
smoothing algorithms.

I. INTRODUCTION

The radiation hotspot is the zone where the level of
radiation is significantly greater than in other regions. The
formation of hotspot depends on the geometric dimension
and spatial distribution of radiation elements. The localiza-
tion of hotspot is of great importance to understand the
range of radiation effects over contaminated areas. Efficient
emergency relief and disaster recovery coordination can be
facilitated by immediate hotspot localization using unmanned
aerial vehicles (UAVs) that must be accomplished within
limited time frame. Since the UAV equipped with dedicated
sensors needs to explore over large areas, an efficient UAV
navigation algorithm is crucial for fast hotspot localization.

Hotspot seeking is similar to the extremum seeking prob-
lem which has been widely studied in robotics [1], [2], [3].
The goal is to plan an optimal path in which the UAV
can find an unknown hotspot location, while minimizing
the exploration cost. Although these approaches are often
implemented via gradient-based methods, in practice, it is
unlikely to get a significant gradient difference at every ex-
ploration step especially in large areas. Likewise, when there
is no distinct hotspot, the exploration cannot be terminated.
To cope with such problems caused by similar radiation
levels, the randomly exploring information gathering (RIG)
algorithm is a worthy candidate [4], which is computationally
efficient and ensures an asymptotically optimal solution to
achieve information gathering in continuous space with mo-
tion constraints. However, when there is a specific hotspot,
the performance of the RIG should be further improved,
leading to more efficient methods of exploration. Specially,
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the exploration performance can be evaluated using the area
coverage metric, which is the amount of sample points
required to converge to the hotspot. Furthermore, after lo-
calizing the hotspot, a UAV return path should be generated
that connects the hotspot and the UAV initial position. This
loop closure is necessary to generalize the informative path
and the measurement uncertainty assessment of the same
locations, and to stop exploring due to emergency reasons,
etc.

Thus, the hotspot localization problem is the combination
of UAV path planning, area coverage, and loop closing. We
propose a hexagonal sampling based approach that constrains
the UAV location to a finite set of hexagonal grids, and a
dynamic programming based optimal loop closing approach
controlling the trade-off between the travel cost and the
information gain. We combine these three problems to find
an effective yet efficient hotspot localization solution. We
theoretically investigate the upper bound of the sampling
path and numerically compare the efficiency of the proposed
algorithm with the existing one. The main contributions of
this paper are as follows:

1) a novel hexagon tiling based workspace decomposition,
2) efficient HexTree based sampling strategy,
3) optimal return path generation strategy, and
4) theoretical and numerical analysis.

II. RELATED WORK

In contrast to conventional path planners finding the path
between the current position and the goal position, the goal
(hotpsot) position is unknown in our case. Since the UAV
detects the hotspot only with the intensity measurement, our
problem is closely related to the active sampling, selecting
observation locations that minimize the prediction uncer-
tainty or maximizing the information gain [5], [6].

Earlier studies were concerned with the localization of
sources that do not affect one another [7]. However, the
hotspot is no longer coincident with the source position,
if the cumulative effect of sources exists. Several strategies
attempted to find the radiation hotspot generated by multiple
sources [8], [9], which can be generalized into the model-free
and model-based approaches. The model-free approaches are
extremum seeking methods, where the gradient ascending
or the maximum likelihood path is followed. They tend to
converge to local maxima [10]. In the context of model-based
approach, source seeking can be performed using either the
mutual information (MI) [11], [12] or MI gradient [13].
While such algorithms have been shown to be useful for
a range of applications, they typically rely on restrictive



assumptions on the field and do not explicitly optimize the
exploration path.

In the grid based approaches, the area is decomposed
into a finite number of rectangular cells [14]. A topographic
mapping based exploration strategy was proposed to localize
multiple sources in our earlier work [15]. Similar approaches
can be found in [16]. Probabilistic random sampling based
exploration can also be applied when the radiation fields
are considered as vector fields [17]. Even though these
aforementioned methods perform heuristically well, they
overlook the area coverage issues and the exploration was
not guaranteed to terminate optimally.

The computational complexity of the planner such as
submodular function based near optimal path planning [18],
maximum entropy sampling [19], maximum mutual informa-
tion [20] does not suit on-line implementation. Recent path
planning algorithms have focused on the generation of ap-
proximate paths with limited computation. Our work extends
these ideas to the domain of hotspot seeking in a radiation
field. Hollinger et. al. proposed three variants of the random
sampling based information gathering algorithm subject to a
budget constraint [4]. Out of their three algorithms, namely,
RIG-roadmap, RIG-graph and RIG-tree, they conclude that
the RIG-tree is the best in terms of effectiveness. In this
work, we take the hotspot seeking problem as the information
gathering problem considering a threshold value to terminate
the exploration. Focusing on the area coverage issues, we
generate a regularly spaced hexagonal grid of sampling
points. After localizing the hotspot, we propose a loop-
closing path, allowing the UAV to return back to its initial
position while visiting the informative locations. Fig. 1 shows
all the necessary steps for the proposed system.

III. PROBLEM FORMULATION

A hotspot can be generated by multiple sources with
unknown strength in a 2D area. Let xH = 〈xh, zh〉 denote
the hotspot, where the postion of it is given by xh and
the expected measurement is a positive real number, zh ∈
R+. A radiation field generated by multiple sources can be
characterized using Gaussian Mixture Model [15]. Therefore,
xH can be remotely traced by the radiation sensors mounted
on the UAV. For simplicity and without loss the generality,
we assume that the measurement of the hotspot, z, from a
remote location, x, can be given by

z (x) = zh exp

(
−||x− xh||

σ

)
, (1)

where σ is the spread of the measurement and zh is the
strength of hotspot. If we assume that measurements are
spatially distributed throughout the environment, then the
hotspot seeking in a radiation field is somewhat similar to the
informative path planning, where the planner queries the path
subject to the maximal information gain, I . Let, at time t,
the entropy of previously gathered measurements be H(z1:t)
and the entropy of measurements given the location xt be
H(z1:t|xt). The information gain is then computed by the

absolute difference of these entropies as follows

I := abs (H(z1:t)−H(z1:t|xt)) . (2)

Using this metric, one of the efficient way for path planning
is the random sampling based approach [4]. In [4], informa-
tion is gathered in two folds. Firstly, a number of sample
locations are generated in a random manner and then mea-
surements are gathered after traveling to each of them. Let n
be the set of samples at time t such that nt = {1, 2, ..., n}. A
tree τ is then constructed by iteratively sampling in neighbor
locations. Thus, the goal of an informative path planner at
time t is to find a maximal informative location around the
neighbors in such a way that

x∗t = arg max
i∈∀n∈τ

abs
(
H(z1:t)−H(z1:t|xit)

)
. (3)

If the sampling budget time T is given, the path P is then
generated by assimilating all the local best locations given
by

P =

T⋃
t

{x∗t }. (4)

However, the hotspot seeking algorithm is considered as a
goal oriented problem whereas in [4] the informative path
planning is basically a goal free problem. An informative
path planner can then find the hotspot by simply adding a
termination condition, zh, such that

P∗ =

T⋃
t

{x∗t } s.t. z (xt) < zh. (5)

The problem of hotspot seeking becomes complicated when
the information metrics for each sample location does not
vary significantly at each sampling step. In that situation,
we define the area coverage ratio as the performance index
of the planner. We assume that the target area can be fully
characterized by sampling the finite number of spatially
distributed locations. Given a target area, A ← ∀{x}, let
the sampled locations be denoted by the set, D ← ∪{∃x ∈
A}. The UAV will visit only unexplored area and when
A\D ← {}, the area would be fully covered. Let Dit+1 be
the prediction over Dit+1 given the next sampling location xit,

and c
(
xit
) ∆

=
|Di

t+1|
|A| be the area coverage ratio at exploration

time, t. Since expensive explorations are required to gather
the measurement attributes, zt, we want to minimize the area
coverage ratio at each sampling step t. Thus, our desired
hotspot directed sampling path can be expressed as follows

P∗ = min
c(xt)

max
I(xt)

∑
t
(c (xt) + ηI (xt)) s.t. z (xt) < zh, (6)

where η is a normalizing constant. Although a sampling path
is the necessary condition to localize an unknown hotspot, it
is observed that all the sampled locations are not informative.
Thus, when the UAV has to return back to its initial location,
it can visit only to the most informative locations to make an
efficient tour. In this way, we can then find the loop closure
path by visiting only the most informative locations. Let W
be the total information gain for the loop closure path, which
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Fig. 1: System Overview: The radiation field is characterized by sampling finite locations which are distributed in hexagons
manner. The hotspot localization is performed by sampling, planning and action phases. It is noteworthy that the robot not
only finds the hotspot position but also returns to the initial position while visiting the most informative locations.

can be computed by visiting all the sampled locations. Since
we already know all the sample locations x ∈ D and their
corresponding information I (x), the informativeness of each
location can be evaluated by a weight, w, as follows

w(x)
∆
=

I (x)

dist (x, x0)
, (7)

where x0 is the initial position of UAV and dist is the
function that computes the Eucledian distance. Therefore,
the optimal returning path can be obtained through avoiding
less informative locations given by

P∗opt = max
∑
x∈D

I (x)x s.t.
∑
x∈D

w(x)x <= W . (8)

In summary, the goal of this paper is to answer the
following question- given a termination threshold zh of
an unknown hotspot, xH; how to generate a tour path,
〈P∗,P∗opt〉, to quickly localize the hotspot position xt, where
z (xt) > zh ?

IV. ALGORITHM DESCRIPTIONS

We now discuss the sampling strategy that generates the
UAV trajectories toward the hotspot, minimizing the area
coverage ratio. The key idea is to use the samples over a
set of hexagonal grid points and to build a tree of possible
trajectories by extending candidate trajectories toward the
sampled points. The hexagonal grid has two benefits: it
covers more directions compared to the rectangular grid, and
is the most efficient shape that can tile the 2D plane [21].

A. Local field Sampling

We propose a HexTree based sampling strategy inspired
from the RIG-tree structure [4], where vertices in the graph

represent a tuple of location, cost, and information. Unlike
the RIG-tree, a HexTree has a fixed number (six) of children
nodes, qhex, centering at a (virtual) parent node vt. As the
name implies, the children nodes are hexagonally distributed,
and each of them is separated from its neighbors by the same
interval a, and the adjacent parents share common children
nodes depending on their locations. The root of the tree
represents the initial position. During the sampling period,
the robot visits only the children nodes and then the planning
decision is stored in the parent node. Thus, each parent node
contains the information of the local best child node.

Algorithm 1 HexTree formulation

Require: A, x0

1: Tree
2: Tree.AddRoot(x0)
3: vt ← x0

4: while not converged to hotspot do
5: qhex ← HexagonalSampling(A, vt)
6: qsort ← GetSamplePath(qhex)
7: qbest ← FindMaxInfoEdgeOnTree(Tree, qsort)
8: vt+1 ← GetNewParent(A, T ree, qhex, qbest)
9: for all i ∈ nt do

10: if zit > zh then
11: return OptimalReturnPath (tree)
12: end if
13: end for
14: end while

B. Sampling path generation
The tree structure is now under a favorable condition to

reduce the UAV exploration using radiation field properties.



We can create an incremental version of Hamiltonian path
to visit each child location, xit ∈ qhex, at most one time
and avoid redundant visits to the same location. Instead of
n number of random points, the HexTree constraints sample
points to six at sampling time t, and that some of them are
shared. In order to generate a Hamiltonian path to the current
UAV location, first, we assign a global index set J with the
index function ind. ind generates a unique index for each
node mapping the node from the position domain xit ∈ R into
the index domain ind(xit) ∈ N. We store each visited node
into J = ∪

{
ind(xit)

}
. Secondly, we compute the traveling

cost between the UAV and each new node position given by

qit.cost = dist(xit, x0)ind(xi
t)/∈J (9)

Once we compute the cost of each node, we sort all the
candidate nodes using the Hamiltonian path algorithm [22].
Thus, we find the optimal sequence to sample the local
hexagonal grid. Note that, even though we sample the area
using a regular hexagonal grid, the sample path does not need
to follow such a pattern. At each step, the UAV exploration
is ended with a candidate child location and the subsequent
sample path is generated with the evolved location.

Algorithm 2 Sampling path generation

Require: qhex
1: for ∀xit ∈ qhex do
2: if ind(xit) /∈ J then
3: qit.cost← dist(xit, x0)
4: else
5: qit.cost←∞
6: end if
7: end for
8: qsort ← HamiltonianPath(qhex)
9: return qsort

C. The next best parent

Given the sample path defined by Alg. 2, the robot travels
to each of the node location at most one time similar
to Fig. 2 and gathers the measurement attributes. Based
on the gathered information, the next best parent location
is computed using the following steps- firstly, we assign
the virtual edges for each sample location deterministically,
for instance, the virtual edges {BF,EF,EA, ...} in Fig. 2
represent the nodes {B,F,E, ..}. Secondly, we compute the
information gain for each node using Eqn. 6. Thirdly, we find
the neighbor edges around the edge of maximum information
gain. For instance, the edges HB and EF are the neighbor
edges of BF in Fig. 2. Finally, we find the intersection point
by extending those edges, i.e., G in Fig. 2. We call it the next
best parent location. Note that G is a virtual point which the
robot does not visit. It is only computed to generate the next
sample locations in a hexagonal manner.

D. The optimal return path

While the UAV iteratively seeks the hotspot location, all
the sampled locations are not likely to be informative due to

the fixed sample interval. We therefore generate an optimal
return path using the dynamic programming based Knapsack
algorithm [23]. Specifically, we constrain the travel distance
while maximizing the information gain. Since the HexTree
already tracked all the information through the sampling
step, we convert it to the Knapsack variables. The return
path abandons those locations where the measurement does
not add much important information to the field. The local
field was represented by the child node having the maximum
information gain, which was also stored in the virtual parent
node. Neglecting the distance between such a child node and
its parent node, we can easily generate the return path based
on the parent node locations only.

V. OPTIMALITY ANALYSIS

Our approach is to tile the hexagon through the sample
nodes using the area coverage strategy. Since the tiling
process involves node sharing, the redundant visit can be
avoided by generating the Hamiltonian path. However, when
the robot has to avoid the shared nodes, there can be an
increase in the path length. We will now give an upper bound
on this path length.

Definition 1: Let’s assume that ’a’ is the step length which
is required to travel to two consecutive children nodes in a
parent grid and ’n’ is the total number of parents in the tree.
An online algorithm solving the navigation problem is said
to be optimal if the total path length is bounded by a factor(
5 +
√

3
)
na

We first state a number of modest assumptions that are
required for this analysis. Next, we place a bound on the
sampled path by finding the proofs of two essential theorems.
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Fig. 2: HexTree Sampling Pattern: the red dots are the
sampled locations, the cyan lines are the sampled path. The
black lines are imaginary lines drawn for analysis and the
purple lines are drawn to determine the next parent (virtual)
location, denoted by purple dot.

Assumption 5.1: There exists at least one new child node
in each parent node to extend the tree towards the goal
position.
This assumption requires that some free space is available to
create a sample parent. Since two consecutive sample parents
share at least one edge, to make a valid sample patent at least
one new vertex is required.



Assumption 5.2: Starting with an arbitrary location, the
robot travels to each child node of a sample parent in a
Hamiltonian path manner.

We want to optimize the total length of exploration time.
Thus, this assumption leads the navigation problem to an
optimal solution. Since the adjacent parents are sharing at
least one edge- which means at least two children nodes,
traveling to all the children at most one time is helpful to
avoid the redundant visits.

Theorem 5.1: If ’n’ number of hexagons are required to
reach the goal position, there exists at least 5n edges which
are required to generate a Hamiltonian path

Proof: Given a hexagonal grid, initially, the robot can
travel to at most 6− 1 = 5 vertices to make a Hamiltonian
path. If this pattern follows, then it is straightforward to
conclude that 5n edges are required in total. However, since
two adjacent hexagonal grids share at least one edge, the
robot skips 2 vertices while travailing to all the children
nodes. From Fig. 2, we can understand that the number of
edges which is required to extend the Hamiltonian path for
the adjacent grid is 6 − 2 = 4. However, since the robot
needs to travel at least distance a to reach the adjacent grid,
which is equivalent to the length of an edge, we can then
compute the total edges as follow

4n+ n = 5n. (10)

Theorem 5.2: If ’n’ number of parents are required to
extend the tree onto the goal position and ’a’ is the distance
between the consecutive neighbors, the sampled path for the
HexTree can be extended to a

√
3(n− 1).

Proof: In the worst case, the robot travels to the farther
child node of the neighbor parent and the neighbor parent
shares only two common children. Fig. 2 shows the worst
case scenario, where the robot travels to the farthest child
node. Let’s assume that the robot is located at node A and
the goal node is denoted as B in Fig. 2. In order to compute
the worst case path distance, AC, we draw two imaginary
edges from A to B and B to C. Since a regular hexagon
comprises of six equilateral triangles, the length of BC can
be computed from the triangle BDC as follows

BC = 2
√

(a2 − a2/4) = a
√

3 (11)

And it is obvious from Fig. 2 that the length of AB is the
diameter of the hexagon, computed by

AB = 2a. (12)

Thus, using the triangle inequality theorem for the triangle
ABC, we can state that AB + BC > AC. As a result, we
can compute the upper bound of AC from Eqn. 12 and Eqn.
11 as follows

∴ AC < (a
√

3 + 2a). (13)

However, as we know from the definition that the mini-
mum travel distance between two consecutive children nodes
is a and in the worst case scenario two consecutive parents

TABLE I: Overview of parameters

Parameter Value Description

A 30m× 30m Target area size
Hstr 3000 Strength of hotspot
Hpos [ 25 20] Position of hotspot
σ [150 150] Spreading matrix
a 1m Sample step length
ξ 2900 Termination threshold

TABLE II: Algorithm performance

RIG Tree HexTree

# iterations 55 7
# samples 55 42
path len.(m) 24.849 7.865
time (s) 104.364 43.256
std. dist. (m) 10.416 0
Max path len. (km) ∞ 2.33

share at least one edge whose length is also a, thus, the
maximum length of AC can be exceeded to

∆AC = a
√

3 + 2a− a− a = a
√

3. (14)

As we can see from Fig. 2, we need at least two hexagons
to compute the length of AC, therefore, the worst case path
could be extended by the n number of hexagons as follows∑

n−1
∆AC = (n− 1)∆AC = a

√
3(n− 1). (15)

Combining the theorems and the above equations, we can
compute the final bound of the sampled path as follows∑

n−1
∆AC + 5na < a

√
3(n− 1) + 5na ≈ (5 +

√
3)na.

(16)

VI. SIMULATION RESULTS

We present results of numerical experiments with the
HexTree planner compared to the RIG-tree planner. Our
return path is also compared to the path smoothing algorithm.
Table I presents an overview of parameters used for the
experiments. Each algorithm is implemented in MATLAB
on a PC with a 3.40GHz Intel(R) Core(TM) i7 processor
and 8.0GB RAM.

A. Compared Strategies

The RIG-tree planner is in principle capable of finding the
hotspot, which is asymptotically optimal. However, it takes
a very long time to converge to the hotspot. For a single
UAV exploring over a large area, the HexTree planner is even
faster than the RIG-tree planner. To compare the performance
of both planners, we measure the total length of sampled path
and the time to converge with the same initial position, step
size, and termination condition.

Fig. 3 shows the difference between the HexTree and
RIGtree planners. The HexTree sampled path was restricted
by the hexagons, and only 7 iterations were required to
converge to the hotspot, while 55 iterations were required
for the RIG-tree. Furthermore, since the HexTree sampled



Fig. 3: Performance comparison: White dots are the sample
locations, cyan lines are the sampled path, the blue triangle
is the hotspot position, the baseline colored map is the
radiation distribution. A UAV needs to sequentially explore
each location to gather the information. The RIG tree does
not have sequential path generation characteristic, which is
why the HexTree always outperforms it.

path was sequentially optimized, we can see from Table II
that the HexTree traversed only 7.865m distance to find the
hotspot, whereas the RIG-tree traversed 24.849m. Since the
RIGtree randomly sampled the area, it required more sample
points (55) and longer time (104.364s). On the other hand,
the HexTree clearly outperformed the RIG-tree in terms of
the sample point (42) and the convergence time (43.256s).
The total distance required to reach the hotspot with the
RIG-tree varied significantly across 10 experiments, while
the HexTree remained constant. In case of the absence of
hotspot, the RIG-tree could not find any condition for which
sampling will be terminated, resulting in a sampled path of
infinite length. On the other hand, the HexTree needed only
346 iterations to completely cover the 900m2 area, resulting
in 2.33km sampled path to reach a termination point

B. Path Smoothing Vs. Optimal Return Path

The sampled path may contain locations that lead to
redundant visits in view of information gathering. Optimizing
the return path is therefore an essential post-processing step
similar to the RRT [17] path smoothing to avoid zig-zag
paths. Our focus is to find the most informative locations
considering the travel cost. As the RIG-tree does not have the
return path, we compare our return path with the RRT path
smoothing. We have performed 3 simulations with different
initial UAV positions and hotspot locations as shown in Fig.
4. Since the path smoothing finds the shortest path to the
initial position, the return path for the RIG-tree looks more
like a straight line and cannot find any informative locations
from the sampled path. Meanwhile, the proposed path finds
several locations considered as the most informative loca-

tions satisfying the travel distance constraint.
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VIII. CONCLUSION

We have proposed an online HexTree path planner for
UAV navigation to efficiently localize the radiation hotspot.
The sampled path generated by the HexTree planner was op-
timal and ensured termination of exploration. After localizing
the hotspot, a loop closing trajectory was generated from
sampled trajectories, which contained the most informative
locations considering the travel cost. Through our theoretical
analysis, we have proven the optimality of the HexTree
path and found an upper bound of path length. Since the
UAV explored a large area for spatial sampling, the HexTree
planner clearly outperformed the RIG-tree planner in terms
of the distance traveled and the convergence time. Future
work will be devoted to extending the HexTree planner to
localize multiple hotspots, and demonstrating the efficiency
of the proposed approach through real world experiments.
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