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Abstract—In multi-task systems, different tasks work together
to achieve desired functions. To guarantee the correctness of the
functions, the tasks are required to be completed in specific
orders. Violation of such orders will lead to the systems in
unpredictable states, which may cause disasters. However, with
the continuously increasing complexity in the developments of
systems, to correctly generate the task dependency relation is
becoming a challenge. A primary problem is the requirement
specification may not be accurately and easily understood by the
developers carrying out different tasks. To solve this problem,
formal specification provides a feasible solution. However, some
difficulties (e.g., high requirement of significant abstraction and
mathematical skills) has hindered the widely usage of formal
methods. To address these difficulties, SOFL, a formal engineer-
ing methodology, has been proposed. In this paper, we propose a
method for generating task dependency relation based on SOFL
specification. This method is demonstrated through a detailed
case study of cruise control system. Moreover, we also provide a
checking algorithm to check if there exist mistakes in the SOFL
specification based on the transitivity of task dependency relation.
We believe that these works provide a firm basis for the design
of scheduling.

Keywords—scheduling, task dependency, SOFL, formal specifi-
cation, cruise control system

I. INTRODUCTION

Currently, almost all the practical systems are multi-task
systems, such as chemical and nuclear plant control, space
missions, vehicle control systems, telecommunications, and
multimedia systems. In such systems, different tasks work
together to achieve the desired functions. In order to guarantee
the correctness of the functions, the tasks are required to be
completed in specific orders. Any violation of such orders will
lead to the systems in unpredictable states, which may cause
disasters.

The execution order of tasks (i.e. schedule of tasks) is
decided by the scheduler of the system. A scheduler decides
the schedule of tasks based on its used scheduling algorithm.
Research on scheduling algorithms has been for decades. Most
of the research assumes the tasks are independent with each
other (e.g., [1, 2, 3]), which are not quite practical for real
systems. Some works (e.g., [4, 5, 6]) have considered the
task dependency relationship. These works mainly focus on
designing scheduling algorithms to schedule task set with
such dependency relation. They assume the task dependency
relation is known a prior. However, correctly generating such
dependency relation is not easy, which requires carefully ana-

lyzing the requirement specification at the stage of designing
the systems.

With the continuously increasing complexity in the devel-
opments of systems, to correctly generate the task dependency
relation is becoming a challenge. A primary problem is that
the requirement specification may not be accurately and easily
understood by the developers carrying out different tasks.
The major reason causing such problem is the notations and
languages used in the specification lack of precise syntax and
semantics. These notations and languages inevitably associate
ambiguity and may lead to misunderstanding. To solve this
problem, formal specification gives a feasible solution. With
precise constrains of semantics and syntax, formal specification
can precisely define behaviors of the system and provide a firm
basis for the next developers to design the system.

Unfortunately, there exist some difficulties in using formal
methods. For example, it requires significant abstraction and
mathematical skills; it usually costs more in time and human
effort for analysis and design [7]. These difficulties have
hindered the widely usage of formal methods. To address
these difficulties, SOFL, a formal engineering methodology,
has been proposed in [7, 8], where SOFL refers to structured-
object-based-formal language. It proposes changes to software
process, notation, methodology, and support environments for
constructing systems, which makes formal methods more
practical and acceptable. To study how SOFL can be used
to help developers generate the task dependency relation, in
this paper,

• we propose a method for generating task dependency
relation based on SOFL specification. The task depen-
dency relation is expressed by a directed graph called
task dependency graph. This method is demonstrated
through a detailed case study of cruise control system.
Through the case study, we can see that SOFL spec-
ification can effectively help developers to correctly
generate the dependency relation of tasks, which pro-
vide a firm basis for the design of scheduling.

• we provide a checking algorithm rERA to check if
there exist mistakes in the task dependency graph
based on the transitivity of task dependency relation.
If such mistakes exist, rERA can detect and fix such
mistakes. As the task dependency graph is generated
form the SOFL specification, which means the mis-
takes in the SOFL specification can also be detected
and fixed.



MSRP: 81.00 EUR

Cruise control system

Fuelsaving speed regulation: The cruise control system maintains any speed as of approx. 30 km/h. Particularly beneficial on long journeys. Once the desired
speed has been reached, the system is simply activated by operating cruise control lever. Operating the brake or clutch pedal deactivates the cruise control
system immediately.

Models:

A3 20032007
A3 20062008
A3 20092012
A3 Cabriolet 20082014
A3 Sportback 20052008
A3 Sportback 20092013
S3 20072008
S3 20092013
S3 Sportback 20092013

Fig. 1. Function buttons on the control lever of a cruise control system. (The
figure is from the home page of Audi.)

The remainder of this paper is organized as follows. We
first describe the cruise control system and gives its require-
ment specification in section II. The SOFL specification of the
cruise control system is explained in section III. In section
IV, we describe the method of generating task dependency
graph from SOFL specification. A checking algorithm for task
dependency graph based on the transitivity of task dependency
relation is explained in section V. Concluding remarks are
given in section VI.

II. CRUISE CONTROL SYSTEM

Cruise control system is a servomechanism that can main-
tain a constant vehicle speed as set by the driver. It ac-
complishes this function by measuring the vehicle speed,
comparing it to the set speed, and automatically adjusting the
throttle according to a control algorithm. It is usually used
for long drives across highways. By using the cruise control
system, drivers do not need to control the throttle pedal to
maintain the speed of vehicles, which can alleviate the fatigue
of drivers. Meanwhile, it can reduce the unnecessary change
of speed, which usually results in better fuel efficiency. With
these advantages, cruise control system has now been widely
equipped in various brands of automobiles, such as BMW,
Audi, and Volkswagen.

Cruise control systems developed by different automobile
manufacturers usually have different auxiliary functions. Fig. 1
shows the control lever of a cruise control system equipped in
an Audi automobile. A driver can activate different functions
by pressing the function buttons on the control lever. Button
ON and OFF are to turn on and turn off the system, respectively.
After system turns on, when the button SET is pressed, if the
speed of the vehicle is within a specific speed interval which is
supported by the cruise control system, the system will start to
maintain current vehicle speed until the driver presses button
OFF, or CANCEL, or steps on brake. SPEED+ and SPEED- is
used to adjust the set speed when system keeps on maintain
current vehicle speed. When SPEED+ is pressed, the set speed
will be increased, and the system will increase current speed
to the set speed and maintain the speed of vehicle at that
level. The button CANCEL can temporarily turn off the system,
meanwhile, the button RESUME can resume the system to the
moment at which the system is temporarily turned off.

A. Requirement Specification

As our objective is to investigate how to generate task
dependency relation from SOFL specification, rather than
develop a fully functional system, for simplicity, we only
consider parts of the functions. Moreover, to the consideration
of safety, a new CONFIRM button is provided.

After system turns on, the primarily functions required by a
cruise control system are as follows (as function button SET in
Fig. 1 is not considered in our design, in the following parts of
the paper, system turns on means the system stars to maintain
current vehicle speed).

1) Let the driver increase and decrease the value of the
set speed. The set speed is required within a speed
interval supported by the cruise control system. To the
consideration of safety, a confirm operation is needed
to confirm the setting.

2) Keep on maintaining the vehicle speed at the set
value.

Although above specification is very simple, it still may cause
misunderstanding. For example, the sentence “a confirm opera-
tion is needed to confirm the setting” does not clearly describe
what will happen if the confirm operation is not performed. A
designer may think that if an operation of increasing or de-
creasing is not followed by a confirm operation, the operation
will be ignored. While another designer may think that the
confirm operation is needed only when the driver has finished
the setting (maybe after pressing button SPEED+ and SPEED-
many times). In order to avoid any potential misunderstanding,
as described above, formal notation can help greatly.

III. SOFL SPECIFICATION

A SOFL specification is a hierarchical condition data flow
diagram (CDFD) that is linked with a hierarchy of specification
modules (s-modules) [8]. The CDFD comprises a set of
condition processes and describes data flows between them,
while the linked s-modules precisely defines the functionality
of the components (condition process, data flow, data store) in
the CDFD. Each condition process in the CDFD is linked with
a c-process which is defined in the s-modules and describes
functions in terms of pre and post conditions, within the
specific specification context of the module [9]. More details
about SOFL specification can refer [7] [8].

A. CDFD

The CDFD of the cruise control system is shown in Fig.
2, and the linked s-model is shown in Fig. 3. In Fig. 2, each
box surrounded by narrow borders denotes a process, such as
SET_adjust() and CRU_control(), which describes an
operation. It tasks inputs and produces outputs. Each directed
line with a labeled variable name denotes a data flow. A solid
line denotes an active data flow, while a dotted line denotes
a control data flow. The box with a number and an identifier
(e.g., temp_speed) is a data store which can be accessed
by processes. A directed line from a data store to a process
represents the process can read the data from the store, while a
directed line from a process to a data store means the process
can read, write, and update the data in the store. More details
about the components used in the CDFD can refer [8] [10].
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Fig. 2. Condition data flow diagram (CDFD) for the cruise control system.

The cruise control system comprises two primarily func-
tions: set the desired vehicle speed (through increasing or de-
creasing the set speed) and maintain the vehicle speed at the set
value. These two functions are triggered by ECU() (electronic
control unit) process. Processes with names star with SET
are for the first functions, and processes CRU_control() is
for the second function. When the system is running, process
ECU() keeps on monitoring the inputs of drivers. Different
inputs will trigger different processes to achieve different
functions. The selection of speed_up, speed_down, or
confirm denotes the corresponding function button on the
system control lever shown in Fig. 1 is pressed by the driver.

When button speed_up or speed_down is pressed,
process ECU() will generate a data flow act_adjust to
indicate which command has actually been selected, and
passes this information to process SET_adjust(). Based
on the value of act_adjust, process SET_adjust()
will trigger either processes SET_up() (speed_up is se-
lected) or SET_down() (speed_down is selected). Pro-
cess SET_up() or SET_down() first reads the value
of temp_speed from the data store, and try to update
temp_speed by increasing or decreasing it with a con-
stant value, respectively. As the cruise control system can
only run within a designed speed interval, before updat-
ing the data, process SET_up() and SET_down() will
first check if the updated value of temp_speed is within
the interval. If not, an error message will be issued. Data
temp_speed is a temporary data can be manipulated by
process SET_up() and SET_down() and only after process
SET_update() performs, the value of temp_speed can
be assigned to set_speed. After process SET_up() or
SET_down() completes the updates of temp_speed, it will
sends the completion information to process SET_update().
Process SET_update() will assign data temp_speed to
set_speed only after the confirm button is pressed. After
process SET_update() assigns the value of temp_speed
to set_speed, it will trigger process SET_control() to

control current vehicle speed current_speed to the new
set speed set_speed.

When no function button is pressed by the driver,
it means the driver does not want to adjust the set
speed and wants to maintain current vehicle speed, pro-
cess CRU_control() will be triggered by process ECU().
Process CRU_control() maintains current vehicle speed
current_speed to the value of set_speed based on a
control algorithm.

B. s-module

Compared with the specification written in natural language
given in section II-A, the functional abstraction expressed
by the CDFD is obviously more comprehensible, especially,
the dependency relations among processes can be clearly ex-
pressed. However, in order to completely define the CDFD, all
the components (conditional process, data flows, data stores)
in the CDFD must be precisely defined. To achieve this, the
CDFD is linked with a s-model shown as in Fig. 3.

In the s-module, part const shows the constant variables
used in the module. All the data flow variables, and data
stores in the CDFD are defined in the var part. Each of them
is defined in a specific data type. Keyword inv stands for
invariant and indicates the properties that must be sustained
throughout the entire specification. For example, min_sp <=
set_speed <= max_sp in part inv means the setting value
of the cruise control system must be larger than the maximum
value that supported by the system and less than the minimum
value. Function Controller() achieves the function of
speed control based on a control algorithm. At this level of
specification, the control algorithm has not been designed.

Process Init() is the initial process which performs
only one time when the system stars up. We can see that,
pre condition defines in the process Init() requires that
current_speed should be less than max_sp and larger



var

ext #current_speed: real;
\*the current_speed is an external data store that 
exists independently of the cruise control system. 
The data is read from the speed sensor equipped 
on the vehicle.*\
temp_speed, set_speed: real;
speed_up, speed_down, confirm,
col_confirm, col_cruise, col_up, col_down,
col_set: sign;
act_adjust: bool;
errMsg1, errMsg2, errMsg3: string;

c-process CRU_control

c-process CRU_control(col_cruise: sign)
ext rd set_speed: real

wr current_speed: real
post current_speed =

controller(current_speed, set_speed)
end-process;

processInit()

c-process Init

c-process Init()
pre  min_sp <= current_speed <= max_sp;
post set_speed = current_speed and

temp_speed = current_speed
end-process;

function Controller

function Controller(speed: real, desired_speed: 
real): real
== undefined /* This function operates actuators 
to control  the speed to the desired_speed based 
on a control algorithm.  A precise definition is left 
for design or implementation. */
end-function;

Inv

min_sp <= set_speed <= max_sp;
min_sp <= temp_speed <= max_sp;

c-process SET_down

c-process SET_down(col_down: sign) errMsg2:
string
ext wr temp_speed: real
post temp_speed - step_down >= min_sp and

temp_speed = temp_speed - step_down or
temp_speed - step_down < min_sp and
errMsg2 = "the setting speed is too low"

end-process;

c-process ECU

c-process ECU(speed_up: sign | speed_down: 
sign | confirm: sign | dummy: void) act_adjust: 
bool | col_confirm: sign | col_cruise: sign
post speed_up <> nil and act_adjust = true or

speed_down <> nil and act_adjust = false or
confirm <> nil and col_confirm <> nil or
bound(dummy) and col_cruise <> nil

end-process;

c-process SET_control

c-process SET_control(col_set: sign)
ext rd set_speed: real

wr current_speed: real
post current_speed =

controller(current_speed, set_speed)
end-process;

c-process SET_update

c-process SET_update(con_confirm: sign)
errMsg3: string | col_set: sign
ext rd temp_speed: real

wr set_speed: real
post min_sp <= temp_speed <= max_sp and

set_speed = temp_speed and col_set <> nil or
temp_speed < min_sp and errMsg3 = "the
setting speed is too low" or
temp_speed > max_sp and errMsg3 = "the
setting speed is too high"

end-process;

c-process SET_up

c-process SET_up(col_up: sign) errMsg1: string
ext wr temp_speed: real
post temp_speed + step_up <= max_sp and

temp_speed = temp_speed + step_up or
temp_speed + step_up > max_sp and
errMsg1 = "the setting speed is too high"

end-process;

c-process SET_adjust

c-process SET_adjust(act_adjust: bool) col_up: sign
| col_down: sign
post act_adjust = true and col_up <>nil or

act_adjust = false and col_down <> nil
end-process;

processInit()

const
min_sp: real; /* minimum value of set speed */
max_sp: real; /* maximum value of set speed */
step_up: real; /* the increased value of 
temp_speed when process SET_up performs one 
time */
step_down: real; /* the decreased value of 
temp_speed when process SET_down performs 
one time */

Fig. 3. s-module for the cruise control system.

than min_sp. This ensures that the system can star up
only when vehicle is running within the speed interval that
supported by the cruise control system.

Each processes in the CDFD is linked with a c-process. It
describes functions of the processes in terms of pre and post
conditions in which predicate logic is adopted. For example,
the post condition in c-process SET_adjust() means: if
the value of data flow variable act_adjust is true, pro-
cess SET_adjust() will trigger SET_up() by generating
control signal col_up, otherwise act_adjust with a false
value will make process SET_down() be triggered.

IV. TASK DEPENDENCY RELATION GENERATION

After the SOFL specification is given, we can generate the
task (i.e., process in SOFL specification) dependency relation
directly from the specification. The task dependency relation
can be expressed in a directed graph which is called task
dependency graph. Its formal definition is as follow.

Definition (task dependency graph) A task dependency
graph is a directed acyclic graph. G = (P,E, P0, Pe), where
P is port set of tasks, E ⊆ P×P is dependency relation (edge)
set, with (pi, pj) ∈ E, pi 6= pj , where pi, pj ∈ P . P0 ⊂ P is
the start port set, and Pe ⊂ P is the end port set.

An edge (pi, pj) in the task dependency graph means signal
generated by port pj can be issued only after port pi generates
its signal. We use pi ≺ pj to illustrate this dependency relation.
The dependency relation is transitive. That is, pi ≺ pj , pj ≺
pk =⇒ pi ≺ pk. A start port pi ∈ P0 features that ∀pj ∈ P ,
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Fig. 4. Task dependency graph for cruise control system generated from the
SOFL specification.

@pj ≺ pi, while an end port pk ∈ Pe features that ∀pj ∈
P,@pk ≺ pj .

Based on this definition, from the SOFL specification,
we can easily generate the task dependency graph. From the
CDFD shown in Fig. 2, we can see that the input ports
of process ECU() are the start port set. By checking the
corresponding c-process ECU() in s-model shown in Fig.
3, we can know that port p5 (the port index is denoted in
each process of Fig. 2) can generate signal act_adjust
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only when port p1 or p2 accepts its signal speed_up or
speed_down. This means there exist dependency relations
between port (p1, p5) and (p2, p5), that is, there exist edges
from p1 to p5 and from p2 to p5. By this method, we can get
the task dependency graph for the cruise control system. The
result is shown in Fig. 4. Note that, as either signals from port
p1 or port p2 can activate port p5 to generate its signal, we
need two disjoint tree structures to represent the dependency
relations.

In Fig. 4, there are four disjoint tree structures in the
figures (denoted with shades). Each tree structure denotes a
response of cruise control system to a specified operation of
the driver. Ports p1, p2, p3, p4 are the start ports. The signal
accepted by these ports are generated based on operations
of the driver. Ports p12, p14, p21, p16 are the end ports. After
their corresponding tasks finish running, a response of the
cruise control system to the corresponding operation of the
driver is completed. For example, if no function button is
pressed by the driver, from the bottom tree structure, we can
know that the running of task CRU_control (i.e., process
CRU_control() in Fig. 2) will start to run, which is the
corresponding response of the cruise control system.

V. CHECKING ALGORITHM

Task dependency graph is generated from SOFL specifica-
tion to characterize task execution orders. If there are mistakes
in the SOFL specification, by checking the dependency graph,
some mistakes can be found. For example, if we accidentally
define process SET_control() can be directly triggered by
the signal col_confirm generated from port p6 of process
ECU(), with this mistake, by using the method described in
section IV, we can get the task dependency graph shown in Fig.
5. The forth tree structure containing ports p3, p6, p20, p21 with
red lines are generated from the mistake. To check and correct
such mistake, we propose an algorithm called redundant Edge
Removal Algorithm (rERA). The details are described in Alg.
1.

Algorithm 1 redundant Edge Removal Algorithm (rERA)
Input: task dependency graph G = (P,E, P0, Pe)
Output: task dependency graph G′ = (P,E′, P0, Pe) without redundant edges
1: E′ := E
2: for all node pi ∈ P do
3: compute D(pi), the set of descendants nodes of task pi

4: compute C(pi), the set of child nodes of task pi

5: end for
6: for all node pi ∈ P do
7: for all pj ∈ C(pi), pk ∈ D(pi), and pj ∈ D(pk) do
8: E′ := E′\(pi, pj)
9: C(pi) := C(pi)\pj

10: end for
11: end for
12: return the optimized graph G′ = (P,E′, P0, Pe)

rERA maintains two sets for each node pi: set D(pi), the
set of descendants nodes of node pi, and set C(pi), the set
of child nodes of node pi (line 2-5). In line 7, pk ∈ D(pi)
and pj ∈ D(pk) indicate the dependency relation pi ≺ pk and
pk ≺ pj , respectively. Based on the transitivity of dependency
relation, we can get pi ≺ pj . If there exists pj ∈ C(pi), which
indicates the dependency relation pi ≺ pj , as this dependency
relation has already been indicated by other edges, the edge
(pi, pj) is a redundant edge that should be removed from edge
set E′, and the node pj should be removed from child node
set of node pi (line 8-9). Through using rERA, we can find the
mistake and get the correct task dependency graph as shown
in Fig. 4.

VI. CONCLUDING REMARKS

In multi-task systems, different tasks work together to
achieve desired functions. To guarantee the correctness of the
functions, the tasks are required to be completed in specific
orders. To correctly generate the task dependency relation,
in this paper, we propose a method based on SOFL formal
specification. Through a detailed case study of cruise control
system, we can see that the proposed method can effectively
help developers to correctly generate task dependency graph.
Moreover, we also provide a checking algorithm rERA to
check if there exist mistakes in the task dependency graph
based on the transitivity of task dependency relation. If such
mistakes exist, rERA can detect and fix such mistakes. As the
task dependency graph is generated form the SOFL specifica-
tion, which means the mistakes in the SOFL specification can
also be detected and fixed. We believe these works provide a
firm basis for the design of scheduling.
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