
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Three types of forward pruning techniques to

apply the alpha beta algorithm to turn-based

strategy games

Author(s) Sato, Naoyuki; Ikeda, Kokolo

Citation
2016 IEEE Conference on Computational

Intelligence and Games (CIG): 1-8

Issue Date 2016-09

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/14276

Rights

This is the author's version of the work.

Copyright (C) 2016 IEEE. 2016 IEEE Conference on

Computational Intelligence and Games (CIG), 2016,

1-8. Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description



Three Types of Forward Pruning Techniques to

Apply the Alpha Beta Algorithm to Turn-Based

Strategy Games

Naoyuki Sato

Japan Advanced Institute of Science and Technology

Ishikawa, Japan

Email: satonao@jaist.ac.jp

Kokolo Ikeda

Japan Advanced Institute of Science and Technology

Ishikawa, Japan

Email: kokolo@jaist.ac.jp

Abstract—Turn-based strategy games are interesting testbeds
for developing artificial players because their rules present
developers with several challenges. Currently, Monte-Carlo tree
search variants are often utilized to address these challenges.
However, we consider it worthwhile introducing minimax search
variants with pruning techniques because a turn-based strategy is
in some points similar to the games of chess and Shogi, in which
minimax variants are known to be effective. Thus, we introduced
three forward-pruning techniques to enable us to apply alpha
beta search (as a minimax search variant) to turn-based strategy
games. This type of search involves fixing unit action orders,
generating unit actions selectively, and limiting the number of
moving units in a search. We applied our proposed pruning
methods by implementing an alpha beta-based artificial player
in the Turn-based strategy Academic Package (TUBSTAP) open
platform of our institute. This player competed against first-
and second-rank players in the TUBSTAP AI competition in
2016. Our proposed player won against the other players in five
different maps with an average winning ratio exceeding 70%.

I. INTRODUCTION

Building competitive computer game players is one of the

main themes in the field of artificial intelligence. As a result of

much research, computer players are sufficiently competent to

compete with professional human players in some traditional

board games such as chess [1], Shogi (Japanese chess) [2],

and Go [3]. On the other hand, there are games in which

computer players are weaker than human players. Turn-Based

Strategy (TBS) games constitute a genre of games that require

additional research to increase the levels of competency of

computer players.

TBS games require players to take turns moving their

pieces (known as ‘units’ in TBS) when competing against

each other in games such as chess and Shogi. However, TBS

games contain rules that complicate the development of strong

computer players.

For example, TBS games allow players to manipulate all

their pieces (units) in whatever order they prefer in each turn.

This rule provides players with a large number of possible

actions per turn, which increases the number of nodes and

edges for game tree search. Even the use of only six units,

each of which has 10 possible actions, result in 720 million

possible actions available to a player in a turn. As with other

examples, there are various game positions from which players

start their games (known as ‘maps’ in TBS) and unit types have

complex relationships to ensure competitiveness in combat.

The rules make it difficult to design state evaluation functions

with high precision and to apply supervised machine learning,

which uses the game records of expert human players.

These difficulties are frequently overcome by adopting

Monte-Carlo tree search variants for computer players in TBS

games, whereas minimax search variants such as αβ search are

rarely used. However, TBS games have basic game structures

similar to those of chess and Shogi, for which αβ search

is known to be effective. In addition, human players often

look ahead by considering sequences of consecutive actions to

decide their subsequent moves, as is the case with αβ search,

by focusing only on the plausible actions for each position.

Therefore, we tried to apply αβ search to TBS games and

evaluated the performance.

We introduced three modifications to decrease the number

of edges of the game tree in αβ search to allow us to increase

the depth of the search sufficiently to achieve the desired

performance. These modifications are as follows:

• Fixing the order in which units are allowed to move

• Applying selective unit action generation

• Limiting the number of moving units in each search

It is true that these modifications involve some risk of over-

looking important or critical moves because these techniques

are forward pruning. However, we believe that introducing an

appropriate level of this pruning would result in an enhance-

ment of the performance of artificial players in TBS games.

Especially, the use of αβ search in TBS games often does not

permit the player to look ahead by even one opponent move

(i.e., the search cannot even reach 2 ply deep) in a practical

amount of time positions without any pruning, because of the

large number of possible actions in one turn. Thus, we expect

pruning techniques to have a great effect on the performance,

especially if they are capable of increasing the search depth to

an extent that would enable them to consider the opponent’s

future actions.

This paper is organized as follows. In Sect. II, we present

work related to this research. Sect. III explains the TUBSTAP



platform we use in this research to evaluate the performance

of the proposed method. Sect. IV describes the three types

of modifications we adopt in this research. Sect. V to Sect.

VII describe preliminary experiments to assess the respective

effects of the three modifications. In Sect. VIII, we present the

experiments in which our proposed computer player competes

against a first- and second-rank player of the TUBSTAP AI

competition in 2016. We discuss some future work in Sect.

IX.

II. RELATED WORK

A. Minimax Tree Search and Pruning Techniques

Minimax tree search has been widely adopted to develop

computer players in several games such as chess and Shogi.

Sometimes developers adopted tree searches by removing

certain branches of the tree to increase the search depth Such

techniques are known as pruning, and pruning techniques are

categorized into two types: backward pruning and forward

pruning. Backward pruning is pruning that does not affect the

search result. The αβ algorithm is a well-known backward

pruning technique [20].

On the other hand, forward pruning removes some game tree

branches involving risks to affect the minimax value of the root

node. For example, in a classic pruning method shown in a

1960s chess program, tapered n-best search searches [4] only

the n best moves, which are decided by some move ordering

techniques [5]. These best moves are considered and the other

moves are pruned in the search.

More recent techniques often use the alpha/beta values in

the αβ algorithm for forward pruning. For example, futility

pruning [6] and null move pruning [7] estimate the upper/lower

bounds of evaluation values obtained by moves. In this case,

pruning discards moves with evaluation values that have little

potential to exceed the alpha value or fall below the beta value.

These techniques are used not only for chess but also for Shogi

[9], thereby making it possible to search trees deeper than 10

plies.

B. Turn-based Strategy

Considerable research has been performed on TBS games

[12] [13] [14] for the “Cid Meier’s Civilization” series [10]

or its clones. However, we consider the game system of this

series to contain many complex factors other than combat by

units, such as economy, research, and diplomacy. Thus, we

focus on TBS games of which the systems concentrates on

combat between units.

The following studies relate to TBS games of this type. A

computer player with an evolutionary computational technique

is proposed for the Advance Wars clone game [11]. A Monte-

Carlo tree search algorithm [15] and upper confidence tree

algorithm with fuzzy functions [16] were applied to the open

platform TUBSTAP [17]. In this work, we also adopt the

TUBSTAP platform for the application of our method.

Fig. 1. Screenshot of the TUBSTAP platform.

TABLE I
UNIT RELATIVE STRENGTH

Defense F A P U R I
Attack

F 55 65 0 0 0 0

A 0 0 85 115 105 105

P 0 0 55 70 75 75

U 0 0 60 75 65 90

R 70 70 15 50 45 105

I 0 0 5 10 3 55

TABLE II
LAND TYPE - PROTECTIVE EFFECT AND MOVEMENT COST

Land type Mountain Forest Plain Road Sea
[Protective Effect]

A, F 0 0 0 0 0

R, I, P, U 0.4 0.3 0.1 0 0

[Movement Cost]

A, F 1 1 1 1 1

P, U, R ∞ 2 1 1 ∞

I 2 1 1 1 ∞

III. TUBSTAP PLATFORM

TUBSTAP is an open platform for TBS game computer

players. The game system is modeled after “Famicom Wars

DS2” [18]. A screenshot of TUBSTAP is displayed in Fig. 1.

AI player competitions are held annually using the platform,

and the code produced by some of the participants and maps

that are used for the competitions are freely available.

We provide an overview of the game rules of the platform.

In each turn, each player can manipulate as many units as

they like in whatever order the player prefers. Each unit can

perform an attack action, a movement action, or an “attack

after movement” action in a turn. Attack actions reduce the

Hit-Points (HPs) value of the opponent unit at which the attack

is directed. When the HP value of a unit is reduced to zero, the

unit is excluded from the game. A player wins if the opponent

player loses all of their units.

There are six types of units in this platform. That is, Fighter

(“F”), Attack Aircraft (“A”), Panzer (“P”), Cannon (“U”),

Anti-Air Tank (“R”), and Infantry (“I”). In addition, there

are five types of land cells, that is, mountain, forest, plain,



road, and sea. Each unit type and each land type are assigned

constant values as shown in Table I and II. The values “relative

strength” and “protective effect” define the amount of damage

by attack actions. Equation 1 shows the amount of damage,

i.e., the amount by which the HP value is reduced by a unit

carrying out an attack.

damage =
(relativestrength)× (attackHP) + 70

100 + (protectiveeffect)× (defenseHP)
(1)

For example, when a unit A with seven HPs attacks an

opponent unit P with nine HPs on a forest cell, the amount of

damage unit P experiences is calculated as 85×7+70
100+3×9 (= 5).

Cells that can be reached by each unit in turn are defined as

“movable capacity” of the unit and the sum of the movement

costs the cells along the movement path impose on the unit.

The “movable capacity” of F, A, P, U, R, and I is 9, 8, 6,

6, 6, and 3, respectively. The movement cost of each land

cell is listed in Table I. A cell is reachable if the sum of the

movement costs along the movement path is less than or equal

to the unit movable capacity. Each unit cannot proceed through

cells occupied by any opponent unit, whereas each unit can

pass through cells occupied by friendly units (although, they

cannot remain on the same cell).

Each unit except U can attack an opponent unit on an

adjacent cell after one movement per turn. Attacks instantly

prompt a counter attack by the opponent unit after an attack

action. U can only attack more distant units, located in cells

found at a Manhattan distance of 2 or 3. These distant attacks

do not lead to any counter attack, but U cannot move and

attack during the same turn.

This platform serves game systems simpler than those of

existing commercial TBS games, although the platform covers

essential rules that are found in most TBS games. Thus, we

consider this platform as a suitable testbed for this research

even though success in creating strong artificial players in this

platform does not guarantee success in other TBS games.

IV. APPROACH

In this section, we explain the three modifications we adopt.

We aim to reduce the computational costs for tree search

by removing certain edges of the tree. These reductions are

important not only because they can limit the computational

time to a reasonable amount, but also because they might be

able to sufficiently extend the search depth such that it enables

them to look ahead at the opponent’s actions.

A. Fixing orders of unit to move

In TBS games, the order in which players manipulate their

units in a turn is often important. However, there are many

cases in which the difference between orders is irrelevant.

In addition, there are also cases in which the order of only

a few units affects the result (e.g., the case in which the

result is affected only by whether a unit X moves before or

after another unit Y, even though there are many other units

in the position). Therefore, we try to reduce the amount of

Fig. 2. Grouping movement actions. Only one movement action is generated
per group.

computation by forcing each player to manipulate their units

in some (or a single) fixed order.

In this work we attempted to use the fixed-order patterns

listed below for all the units that are assigned IDs(1-N)

randomly in a map.

• Forward 1, 2, 3, . . . , N .

• Backward N, (N − 1), (N − 2), . . . , 1.

• Cut-Forward (N2 + 1), (N2 + 2), . . . , N, 1, 2, 3, . . . , N2 .

Forward order with the former and the latter parts

swapped.

• Cut-Backward (N2 −1), (N2 −2), (N2 −3), ..., 1, N, (N−
1), ..., N2 . Backward order with the former and the latter

parts swapped.

Depending on the value of a parameter, our proposed player (

which appears in the following sections) might consider only

one of them, or some of them.

B. Selective unit action generation

At first we provide definitions for some of the specific terms

used in this method. Strictly speaking, there are attack actions,

movement actions, and “attack after movement” actions in

TBS games, although we include “attack after moving” in

the attack actions for convenience. Furthermore, we prune

movement actions and attack actions differently.

[Movement action]

The number of possible movement actions per unit tends

to be large. Thus, we group the movement actions of a

unit according to the attack ranges of opponent units. This

grouping procedure is illustrated in Fig. 2. Then, we select

one movement action from each group, and discard the other

actions. This approach seems to be important because other

actions in the same group only serve the same opponent units

that can attack the unit in the next turn. There are many ways

to decide which action to pick from each group; however, we

selected actions according to the priorities stated below (the

first has higher priority).

1) The extent of protection the unit can take after the

movement (the higher the better.)

2) The Manhattan distance after movement of the coordi-

nates from the center of the whole units in the map (the

shorter the better.)

If more than one candidate remains, choose only one at

random.



Fig. 3. Tree search with limited number of moving units. Instead of
performing a tree search using a large depth, repeat a shallower tree search
in which only a limited number of units can move.

[Attack action]

Similarly, we group attack actions to partially prune them.

We group the attack actions of a unit according to their target

unit (note that there can be more than one attack action from

a unit against another unit in a position). Then, we select only

one action per group, and discard the others. The action to be

chosen is selected by the number of opponent units that can

attack the unit in the next turn. The action with the least value

is selected. If there are multiple candidates, only one action is

selected at random.

C. Limiting the number of moving units

Before we start explaining the detailed issues, to avoid

confusion, we provide definitions for words used frequently

in this section.

• Unit action: Atomic action by a unit. Movement or

attack.

• Player action: A sequence of multiple unit actions that

one player can take in one turn. In case a player has

N units, their player action consists of N unit actions

(unless the player finishes the turn leaving some of their

units unmoved).

In TBS games, the number of player actions increases

exponentially according to the number of units. Given that

a player has N units on their side, each of which can take M

possible actions, a minimax tree requires N !MN leaf nodes

to look ahead of whole possible actions of the player in a turn

(i.e., search 1 ply deep). This value easily exceeds a reasonable

amount for practical use (e.g., M = 30 and N = 6 result in

about 520 billion nodes) as the value of N increases.

Therefore, we try to decrease the number of units involved

in a tree search. The procedure is illustrated in Fig. 3. We

repeat the two following operations until the whole the unit

finishes its action, (a) search the best player action by tree

search in which only a limited number of units generates

possible actions, (b) execute only the first unit action from

the obtained best player action.

This procedure is able to decrease the exponential factor in

the computation. In case each player has N units each of which

M possible unit actions can be taken, the amount of nodes

needed for a naive D-ply tree search is (N !MN )D . However,

by applying this limitation technique (only N ′ (< N ) units can

generate actions), the number of nodes becomes fewer than

N(N ′!MN
′

)D. The number of nodes decreases by a factor of
1
N
( N !
N ′!M

(N −N ′))D .

It should be considered how to select such ‘movable’ units

(i.e., units capable of generating possible unit actions in a tree

search) in this method. The measurements are as follows (the

first has a higher priority):

1) HP value of the unit. A higher value is preferred.

2) Manhattan distance from the coordinates at the center of

all the units in the map. A smaller distance is preferred.

By adopting these measurements, we ignore weak units (i.e.,

units incapable of causing a large amount of damage against

opponents and can be destroyed easily), or units further from

a hot spot. These units can be considered to be less influential

on the battle situation.

V. PRELIMINARY EXPERIMENT 1: FIXING UNIT ORDERS

In this section, we describe the experiment that was carried

out to determine the influence of the fixing order technique on

the performance. We prepared an αβ search player to which

we apply the fixing order technique. (Hereafter we refer to the

search player as the ‘proposed player’ to indicate players we

built for experiments) This player has two parameter variables:

the search depth of the game tree and the number of fixed-

order patterns adopted by the player. The performance of the

player is measured through battle trials.

A. Design: Artificial Player

The proposed player’s search depth (the number of ‘player

actions’ that need to be looked ahead) is 1 or 2. The unit

orders considered by the player are {Forward}(see section

IV-A), {Forward, Backward}, {Forward, Backward, Cut-

Forward, Cut-Backward}, or whole possible orders. The

state evaluation function adopted by our proposed player is

described in the appendix of this paper.

B. Experimental Setup

The proposed player competes against a naive UCT player

(described in [15]) that uses 10,000 playouts per unit action

generation. The maps illustrated in Fig.4 to 6 are used, and

200 matches are carried out for each map. The proposed player

moves first in 100 games, after which the other player plays

first in the next 100 games. A drawn match is counted as a

1/2 win for both players.



Fig. 4. Map X. Designed by the
authors. (F6, A7, R7, P7) for Red
player. (F10, A10, R10, P10) for Blue
player. Red player move first.

Fig. 5. Map Y. Designed by the
authors. (F10, A10, R10, P10) for
Red player. (F10, A10, R10, P10) for
Blue player. Red player move first.

Fig. 6. Map Z. (P8, U10(already enacted), I10(already enacted), I10(already
enacted), I10) for Red player. (P10, U10, I10, I10, I10) for Blue player. Red
player moves first.

C. Results

The results of the battle experiments are shown in Fig. 7 and

8. The larger the number of fixed-order patterns is, the higher

the performance tends to be. Additionally, the computation

time increased according to increasing parameter values. The

reduction in the win rate is less than 10% in most cases for

the ‘2 orders’ and ‘4 orders,’ whereas the computation times

surely decreases by a factor of more than 10 (for ‘2 orders’).

Thus, we conclude that the approach in which the order is

fixed is able to improve the efficiency.

On the other hand, there should be possible flaws in our

method. In some cases, especially the cases in which we need

to eliminate whole opponent units through a narrow path, this

pruning method might fail to find an effective move because

the correct order in which units are required to move are

overlooked.

VI. PRELIMINARY EXPERIMENT 2: SELECTIVE ACTION

GENERATION

In this section, we use experiments to verify the influence

of the selective action generation approach on performance.

A. Design: Artificial Player

We prepared an αβ search player, with/without selective

action generation. The state evaluation function used by the

player is shown in the appendix. Different from Sect. V, this

player always adopts whole orders for units to participate in

the tree search. We apply selective generation for movement

Fig. 7. Win rate against UCT player. 1-ply search. The number of unit orders
are varied. Filled/Outlined markers for matches in which proposed player
plays first/second.

Fig. 8. Win rate against UCT player. 2-ply search. The number of unit
orders are varied. Filled/Outlined markers for matches in which the proposed
player plays first/second. If the computation time exceeds the time limits (300
seconds), the plot is omitted; e.g., ‘2 orders’ in Map 2 and ‘4 orders’ in Map
3 are omitted because of the time limit.

actions, for attack actions or for both of these types of actions

and then we observe the performance and the computation

time.

B. Experimental Setup

Almost the same settings as in Sect. V are employed. The

αβ search player competes against a naive UCT-based player

with 10,000 playouts. The αβ search player’s search depth is

either 1 or 2. The options in regard to forward pruning are as

follows.

• Both: Both the movement actions and attack actions are

generated selectively.

• Move: Movement actions are generated selectively.

Whole attack actions are generated.

• Attack: Whole movement actions are generated. Attack

actions are generated selectively.

• No-Prune: No forward pruning is applied. Whole possi-

ble actions are generated.

As in Sect. V, the maps illustrated in Fig. 4 to 6 are used, and

the number of matches per each map are also the same.



Fig. 9. Win rate against UCT player. 1 ply deep. Pruning options for selective
action generation are varied. Filled/Outlined markers for matches in which the
proposed player plays first/second.

Fig. 10. Win rate against UCT player. 2 ply deep. Pruning options for selective
action generation are varied. Filled/Outlined markers for matches in which the
proposed player plays first/second. If the computation time exceeds the time
limits (300 seconds), the plot is omitted; e.g., each of the ‘No-Prune’ options
are omitted from the plot because their time limits exceed the specified value.

C. Result

The results of the battles are shown in Fig. 9 and 10. The

pruning attack actions seem to degrade the performance even

though the differences are slight in some cases. On the other

hand, pruning movement actions seem not to degrade the

performance, although this type of pruning action decreases

the computation time significantly by nearly a factor of 10.

Thus, we conclude that the approach involving selective

generation is effective in this case, because it does not result

in significant performance degradation even though it reduces

the computation time.

VII. PRELIMINARY EXPERIMENT 3: LIMITING THE

NUMBER OF MOVING UNITS

The approach described in Sect. IV-C is examined in this

section.

A. Design: Artificial Player

As in the experiments in Sect. V and VI, we prepare an αβ

search player of which the state evaluation function is provided

in the appendix. The player employs a tree search with a 1-

Fig. 11. Win rate against UCT player. 1 ply deep. The parameter value (M,
N) represents that “Only M friendly units and only N opponent units can
participate in the tree search”. Then, (1, 1), (3, 3), and (4, 4) are employed
here.

Fig. 12. Win rate against UCT player. 2 ply deep. The parameter value (M,
N) represents that “Only M friendly units and only N opponent units can
participate in the tree search”. Then, (1, 1), (3, 3), and (4, 4) are employed
here, although (4, 4) exceeded the time limit (300 seconds).

or 2-ply search in which only the limited number of units can

act.

B. Experimental Setup

The number of friendly and opponent units that can act in

the tree search performed by our player, are (1, 1), (3, 3),

and (4, 4). A naive UCT player with 10,000 playouts is the

opponent player.

We adopted maps different from those used in previous

sections, because this pruning technique allows our player to

function on larger maps. The five sample maps bundled with

TUBSTAP platform ver. 1.07 (available on the website) are

used. The number of red/blue units are (6, 6), (8, 4), (7, 7),

(5, 5), and (7, 7), respectively. The number of matches per

each map is the same as in Sect. V.

C. Results

The results are shown in Fig. 11 to 12. When the parameter

values are increased, the winning ratio and computation time

are increased. Additionally, the performance improved with

the deeper search except for the battles on map 4. The results

show that this limiting approach might harm the performance

in some cases, but it surely seems to decrease the computation

time.



TABLE III
WIN RATES AGAINST FIRST- AND SECOND-RANK AI PLAYERS (200 MATCHES FOR EACH MAP)

% wins against first-rank player “M-UCT” (with 95% C.I.)

Map-Fujiki Map-Ishitobi Map-Muto Map-Sato Map-Takahashi Averaged

Move First 90 (±5.9) 75 (±8.5) 41 (±9.6) 93 (±5.0) 66 (±9.3) 73 (±3.9)

Move Second 94 (±4.7) 65 (±9.3) 26 (±8.6) 98 (±2.7) 92 (±5.3) 75 (±3.8)

Total 92 (±3.8) 70 (±6.4) 34 (±4.2) 96 (±1.7) 79 (±3.6) 74 (±2.7)

% wins against second-rank player “DLMC-PW55” (with 95% C.I.)

Map-Fujiki Map-Ishitobi Map-Muto Map-Sato Map-Takahashi Averaged

Move First 89 (±6.1) 65 (±9.3) 82 (±7.5) 97 (±3.3) 63 (±9.5) 79 (±3.6)

Move Second 82 (±7.5) 53 (±9.8) 78 (±8.1) 97 (±3.3) 80 (±7.8) 77 (±3.7)

Total 86 (±4.8) 59 (±4.3) 80 (±3.5) 97 (±1.5) 72 (±3.9) 78 (±2.6)

VIII. EXPERIMENT: PERFORMANCE EVALUATION

Next, we assess the performance of the proposed method

against some advanced players. We prepared a player by

applying all three the modifications. The proposed player

competes against the winners of the TUBSTAP AI compe-

tition 2016 [19] we adopted as the opponent players in this

experiment.

A. Design: Artificial Player

We prepared an αβ player by employing the three forward

pruning techniques. The parameter values that were used for

pruning in the proposed player were decided by experiments

that are omitted from this paper (because of space limitations).

The parameters are:

• 2-ply deep search.

• Two fixed-order patterns for units’ actions. (Forward and

Backward in section V.)

• Each friendly unit generates pruned movement actions

and pruned attack actions as its possible actions in the

tree search.

• Each opponent unit generates no movement actions and

pruned attack actions as its possible actions in the tree

search.

• Five friendly units and 10 opponent units generate pos-

sible actions in the tree search.

B. Experimental Setup

The proposed player competes against two players on five

maps. The detailed conditions are as follows.

• Five maps are used. (These maps are the same as those

used in the GAT2016 competition and are available on

the website [19].)

• First-rank player “M-UCT” and second-rank player

“DLMC-PW55” in the GAT2016 competition as oppo-

nent players. (These players are also available on the

website.)

• Two-hundred matches per map for each opponent. One

player plays first in 100 games, and the other player plays

first in the next 100 games.

• A match that ends in a draw is counted as a 1/2 win for

both players.

• Each player uses around 10 seconds to carry out its player

action.

We also tested a player without any of the three pruning

techniques, though, the player cannot search even 1-ply deep

within one minite.

C. Results

The result of the experiment is presented in Table III.

The proposed player was significantly more competent than

the first-rank player on four out of the five maps, and was

significantly stronger against the second-rank player on all the

maps. Additionally, the averaged win rates exceeded 70 %

over the whole game against the first- and second-rank player,

respectively. Thus, we conclude that the proposed player

outperformed both of the winners of the 2016 competition.

We attribute this performance to the success of our proposed

methods in extending the search depth without negatively

affecting the precision of the tree search to any significant

extent.

IX. CONCLUSION AND FUTURE WORK

We proposed three forward-pruning techniques to apply

minimax search variants to TBS games. These methods allow

artificial players to search quicker and deeper at the risk of

overlooking some important moves.

The influence of these techniques on the respective play-

ers’performance was analyzed. These analyses showed that,

although these techniques have a slightly harmful effect on

performance, they allow the artificial player to search deeper,

thereby resulting in the enhancement of the overall perfor-

mance on the TUBSTAP platform.

Then, we introduced the techniques into an αβ search with

appropriate parameter values and created an artificial player

on the TUBSTAP platform. The experimental result showed

that the created player significantly outperformed first- and

second-rank players in the TUBSTAP AI 2016 competition.

However, we only evaluated our method on a platform of

which the rules are simpler than those of existing commercial

TBS game titles. On this platform, the benefits of using

our method (reduction of the search space) are greater than

the disadvantages (risks of overlooking critical moves). The

benefits should be assessed in other TBS game environments

because they may not be greater than the disadvantages.



Moreover, our methods have room for improvement because

they contain unsophisticated architectures. For example, the

method for selecting actions from whole legal moves is

designed roughly. In addition, our method is presently unable

to intentionally support movement actions that guard important

friendly units.

ACKNOWLEDGMENT

The authors wish to thank Muto Kohsuke and Fujiki Tsub-

asa for releasing the AI players used in this paper, ‘M-UCT’

and ‘DLMC-PW55’.

APPENDIX

A. State Evaluate Function

We prepared artificial players by using an αβ search, and

the search method needs a state evaluation function. Here,

we explain the state evaluation function adopted over all the

experiments in this paper.

A game position is scored as follows:

1) Each unit (owned by the player to move) carries out an

attack action that causes the largest damage out of all

possible attack actions. (However, these ‘possible attack

actions’ are not precisely suggested. Whether a unit can

attack another unit is roughly (and quickly) estimated

by obtaining the Manhattan distance between the two

units.)

2) Calculate the weighted sum of unit HPs as the evaluation

value. The weight values are: 1 for the turn player’s in-

fantry units, 4 for the turn player’s units except infantry,

-1 for the other player’s infantry, -4 for the other player’s

units except infantry.

REFERENCES

[1] M. Campbell, A. J. Hoane and F. Hsu, “Deep blue,” Artificial intelli-

gence, Vol.134, No.1, pp.57-83, 2002.

[2] K. Hoki and T. Kaneko, “Large-Scale Optimization for Evaluation
Functions with Minimax Search,” Journal of Artificial Intelligence

Research, Vol.49, pp.527-568, 2014.

[3] D. Silver, et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, Vol.529, No.7587, pp.484-489, 2016.

[4] R. D. Greenblatt, D. E. Eastlake III and S. D. Crocker, “The Greenblatt
Chess Program”, Fall Joint Computing Conf. Procs., pp.801-810, 1967.

[5] chessprogramming - Move Ordering, [Online]. Available:
https://chessprogramming.wikispaces.com/Move+Ordering, [Accessed:
2016-04-30].

[6] J. Schaeffer, “Experiments in search and knowledge,” Ph.D. Thesis,
Department of Computing Science, University of Waterloo, Canada,
1986.

[7] G. M. Adelson-Velskie, V. I. Arlazarov, M. V. Donskoy, “Some methods
of controlling the tree search in chess programs,” Artificial Intelligence,
Vol.6, No.4, pp.361-371, 1975.

[8] T. Romstat, An introduction to late move reductions. [Online]. Available:
http://www.glaurungchess.com/lmr.html, [Accessed: 30- Apr- 2016].

[9] K. Hoki and M. Muramatsu, “Efficiency of three forward-pruning
techniques in shogi: Futility pruning, null-move pruning, and Late Move
Reduction (LMR),” Entertainment Computing, Vol.3, No.3, pp.51-57,
2012.

[10] Sid Meier’s Civilization Beyond Earth, [Online]. Available:
https://www.civilization.com/jp/games/civilization-beyond-earth/.
[Accessed: 19- Feb- 2016].

[11] HJ. M. Bergsma and P. Spronck, “Adaptive Spatial Reasoning for Turn-
based Strategy Games,” AIIDE, Proc., pp.161-166, 2008.

[12] W. Stefan and I. Watson, “Using reinfocement learning for city site
selection in the turn-based strategy game Civilization IV,” CIG, Proc.,
pp.372-377, 2008.

[13] C. Amato and G. Shani, “High-level Reinforcement Learning in Strategy
Games,” AAMAS, Proc., pp.75-82, 2010.

[14] P. Ulam, et al., “Using Model-Based Reflection to Guide Reinforcement
Learning,” IJCAI Workshop on Reasoning, Representation, and Learning

in Computer Games, Proc., pp.107-112, 2005.
[15] T. Fujiki, K. Ikeda and V. Simin, “A platform for Turn-Based Strategy

Games, with a Comparison of Monte-Carlo Algorithms,” CIG, proc.,
pp.407-414, 2015.

[16] K. Mutoh, J. Nishino, “Cutoff Using Fuzzy Evaluation on AI of Turn-
based Strategy Games,” IPSJ-GPW, pp.54-60, 2015 (in Japanese).

[17] TUBSTAP. [Online] (in Japanese). Available:
http://www.jaist.ac.jp/is/labs/ikeda-lab/tbs eng/index.htm [Accessed: 1-
May- 2016]

[18] Nintendo, Advance Wars: Days of Ruin for Nin-
tendo DS - Nintendo Game Details. [Online].
Available: http://www.nintendo.com/games/detail/
nLeg9iJkPgq3fWBcqtpDNWUJ4IvmaQBY, [Accessed: 2- May-
2016].

[19] TUBSTAP Game AI Tournament 2016. [Online] (in Japanese). Avail-
able: http://www.jaist.ac.jp/is/labs/ikeda-lab/tbs/competition menu.htm.
[Accessed: 1- May- 2016]

[20] E. D. James and T. P. Hart, “The alpha-beta, heuristic.” Maasachusetts
Institute of Technology, 1963.


