
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
SMT-based scheduling for multiprocessor real-time

systems

Author(s) Cheng, Zhuo; Zhang, Haitao; Tan, Yasuo; Lim, Yuto

Citation
2016 IEEE/ACIS 15th International Conference on

Computer and Information Science (ICIS): 1-7

Issue Date 2016-06-26

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/14279

Rights

This is the author's version of the work.

Copyright (C) 2016 IEEE. 2016 IEEE/ACIS 15th

International Conference on Computer and

Information Science (ICIS), 2016, 1-7. Personal

use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in

any current or future media, including

reprinting/republishing this material for

advertising or promotional purposes, creating new

collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted

component of this work in other works.

Description

SMT-based Scheduling for Multiprocessor
Real-Time Systems

Zhuo Cheng∗, Haitao Zhang†, Yasuo Tan∗, and Yuto Lim∗
∗School of Information Science, Japan Advanced Institute of Science and Technology, Japan

{chengzhuo, ytan, ylim}@jaist.ac.jp
†School of Information Science and Engineering, Lanzhou University, China

htzhang@lzu.edu.cn

Abstract—Real-time system is playing an important role in
our society. For such a system, sensitivity to timing is the central
feature of systems behaviors, which means tasks in the system
are required to be completed before their deadlines. Currently,
almost all the practical real-time systems are equipped within
multiple processors, for which the schedule synthesis to make
sure that all the tasks can be completed before their deadlines is
known to be an NP complete problem. In this paper, to solve the
scheduling problem, we propose a scheduling method based on
satisfiability modulo theories (SMT). In the method, the problem
of scheduling is treated as a satisfiability problem. The key
work is to formalize the satisfiability problem using first-order
language. After the formalization, a SMT solver (e.g., Z3, Yices)
is employed to solver such a satisfiability problem. An optimal
schedule can be generated based on a solution model returned by
the SMT solver. Moreover, in the SMT-based scheduling method,
we define the scheduling constraints as system constraints and
target constraints. Such design makes the proposed method apply
more widely compared with existing methods.

Keywords—real-time scheduling, SMT, multiprocessor

I. INTRODUCTION

Real-time system is playing an important role in our
society. For example, chemical and nuclear plant control,
space missions, flight control, autonomous driving systems,
telecommunications, and multimedia systems are all real-
time systems [1]. Sensitivity to timing is the central feature
of systems behaviors, which means tasks in the system are
required to be completed before their deadlines. Currently,
almost all the practical real-time systems are equipped within
multiple processors, for which the schedule synthesis to make
sure that all the tasks can be completed before their deadlines
is known to be an NP complete problem [4].

Many researches have been conducted to challenge this
problem. A comprehensive survey of scheduling for multipro-
cessor real-time systems can be found in [5]. For example, in
[8], the Proportionate Fair (Pfair) algorithm was introduced.
Pfair is a schedule generation algorithm which is applicable
to periodic tasksets with implicit deadlines. It is based on
the idea of fluid scheduling, where each task makes progress
proportionate to its utilization. Pfair scheduling divides the
timeline into equal length quanta or slots. Authors in [8]
showed that the Pfair algorithm is optimal for periodic tasksets
with implicit deadlines. In [9], authors extended the PFair
approach to sporadic tasksets, showing that the EPDF (earliest
pseudodeadline first) algorithm, a variant of Pfair, is optimal

for sporadic tasksets with implicit deadlines executing on two
processors, but is not optimal for more than two processors.

Some approaches focus on studying task and messages
schedule co-synthesis in switched time-triggered networks.
In [10], authors studied time-triggered distributed systems
where periodic application tasks are mapped onto different
end stations (processing units) communicating over a switched
Ethernet network. They try to solve the scheduling problem
using a MIP multi-objective optimization formulation. In [11],
authors studied the system consisting of communicating event-
and time-triggered tasks running on distributed nodes. These
tasks are scheduled in conjunction with the associated bus
messages by using dynamic and static scheduling methods,
respectively. Hitherto, most of the presented methods are either
limited to specific task model (e.g., [8, 10] limited to periodic
tasksets) or simple system architecture (e.g., [9] limited to two
processors, [11] simple bus network topologies).

In this paper, we try to solve the scheduling problem for
multiprocessor real-time systems in a more generous way,
which means the proposed method applies more wildly com-
pared with the existing methods. The main contributions of
this paper are as follows.

i) We propose a scheduling method based on satisfiabil-
ity modulo theories (SMT). In this method, the problem of
scheduling overload is treated as a satisfiability problem. The
key work is to formalize the satisfiability problem using first-
order language. We use a sat model to represent the formalized
problem. This sat model is a set of first-order logic formulas
(within linear arithmetic in the formulas) which express all
the scheduling constraints that a desired optimum schedule
should satisfy. After the sat model is constructed, a SMT solver
(e.g., Z3 [6], Yices [7]) is employed to solve the formalized
problem. An optimal schedule can be generated based on a
solution model returned by the SMT solver. The correctness
of this method and the optimality of the generated schedule
are straightforward.

ii) The proposed SMT-based scheduling method applies
more widely compared with existing methods. In the SMT-
based scheduling method, we define the scheduling constraints
as system constraints and target constraints. It means if we
want to design scheduling to achieve other objectives (e.g.,
maximizing effective processor utilization), only the target
constraint needs to be modified. Or, if we want to achieve the
same scheduling objective for another real-time system with
different system architecture (e.g., different network topolo-

gies), only the system constraints need to be modified. This
means the proposed method is flexible and sufficiently general.

The remainder of this paper is organized as follows. In
section II, we present the system model and give an example
to show the problem of scheduling for multiprocessor real-
time systems. The simple introduction of SMT and the details
of the SMT-based scheduling are described in section III.
Simulation and performance evaluation are shown in section
IV. Concluding remarks are given in section V.

II. SYSTEM MODEL

In this section, we present system model studied in this
paper. For convenience, symbols used throughout the paper
are summarized in Table I.

A. Function Poset

Function set define the functions that can be achieved
by a real-time system. Let F = {F1, F2, . . . , Fn} denote
the function set. Each function Fi ∈ F is achieved by a
corresponding series of task, represent as poset (Ti,≺), Ti 6= ∅
denotes the set of the corresponding task, and ≺ denotes the
dependency relation of tasks in Ti (the detail of the poset will
be explained in the next subsection). For real-time systems,
when functions are triggered at system time instant r, they
are required to be completed before a specific time, which is
called deadline, represented by di. Based on above analysis,
we define the function Fi = ((Ti,≺), ri, di).

Note that, unlike many researches on real-time scheduling
that set deadlines to tasks, we set deadline to the function
level rather than task level. This setting can better reflect the
reality that the deadline requirement is for functions of real-
time systems, while a function is achieved by a series of tasks
cooperated together.

B. Task Set

A multiprocessor real-time system comprises a set of tasks,
denoted by T . For each function, it is achieve by a series of
task cooperated together. Poset (Ti,≺) is used to denote such
a series of task, where Ti ⊆ T is the task set corresponding
to Fi, and Ti = {τ1, τ2, . . . , τm}, where τj ∈ Ti is a task, and
m is the number of tasks. We use τi,j to indicate task τj ∈ Ti.
We assume that, if |F| > 1,∀Ti, Tj ⊂ T , i 6= j =⇒ Ti ∩
Tj = ∅. That is, no tasks are shared by different functions 1.
The relation ≺ indicates the dependency relation between two
tasks. That is, τk, τj ∈ Ti, τk ≺ τj indicate that task τj can start
to run only after task τk has been completed. The dependency
relation is transitive. That is, τk ≺ τj , τj ≺ τl =⇒ τk ≺ τl.

Definition (start task). A start task of (Ti,≺) is such a
task τi ∈ Ti that starts earliest of all the tasks in Ti, that is,
∀τj ∈ Ti, i 6= j =⇒ τi ≺ τj .

Definition (end task). A end task of (Ti,≺) is such a task
τi ∈ Ti that starts latest of all the tasks in Ti, that is, ∀τj ∈
Ti, i 6= j =⇒ τj ≺ τi.

1Note that, this assumption is for concise expression. In real systems, if
task τk ∈ T is used by function Fi and Fj , we can use two tasks τik and
τjk , to represent τk used in function Fi and Fj , respectively.

TABLE I. SYMBOLS AND DEFINITIONS

Symbol Definition
t system time instant
δ network precision
F set of functions of a real-time system
Fi ∈ F function of a real-time system, i is the index of the function
ri triggered time instant of function Fi

di deadline of function Fi

T set of all the tasks in the real-time systems
Ti ⊆ T set of tasks corresponding to function Fi

τj ∈ T task, j is index of the task
cj computation cost of τj
mj migration cost of τj from a processor to another one
τsi start task of task poset (Ti,≺)
τei end task of task poset (Ti,≺)
P set of processors
pa ∈ P processor, where a is the index of the processor
psa speed of processor pa
TSa ⊆ T task set that can be completed by processor pa
N ⊆ P × P set of network channels
na→b ∈ N network channel from processor pa to pb
nsa→b speed of na→b

Without losing generality, we assume that there is one start
task and one end task of (Ti,≺), and use τsi and τei to indicate
the start task and end task of task poset (Ti,≺), respectively
2. Each task has two parameters, τj = (cj ,mj), where j is
the index of the task. cj is the required computation cost,
which means the number of time slots (ticks of processor)
needed by a unit speed processor to complete task τj ; and mj

is the required migration cost for task τj migrating from a
processor to another one. We use the parameter mj combined
with parameters of network (the details will be explained later)
to calculated the overheads of migrating tasks.

C. Processor Set

In multiprocessor real-time systems, different processors
are used to execute tasks. We use P = {p1, p2, . . . , pl}
to denote the set of processors, where l is the number of
processors. Each processor pa is a 2-tuple, pa = (psa, TSa),
where a is the index of the processor. psa is the speed of the
processor. When task τi running on processor pa, the number
of time slots needed for processor pa to complete task τi,
represented by task completion tcia:

tcia =
ci
psa

(1)

TSa is the task set that can be completed by processor pa. This
parameter is for heterogeneous systems, as in such systems,
processors have different architectures, some tasks can only be
executed on some specific processors. If TSa = ∅, it means
processor pa cannot be used to execute any task in the system.

Processors have independent local clocks, they are syn-
chronized with each other in the time domain through syn-
chronization protocol. The maximum difference between the
local clocks of any two processors in the networked systems

2To express a function with many starts (end) tasks, we can set a virtual
task, with empty operation, start before all the starts tasks (start after all the
end task) to be the start (end) task.

τ1

τ2

τ3

τ5

τ4

τ6

(4,8)

(2,8) (12,4)

(4,16)

(2,4)

(2,4)

p1

Task Poset ()
Processor Set (P) and

Network Channel Set (N)

p2 p3

(2,{τ1,τ2,τ3,τ4,τ5,τ6})

(2,{τ2,τ3,τ4,τ5,τ6}) (4,{τ1,τ3,τ4,τ5})

ns1->2=4

,T

Function F=((),1,11),T
Network precision δ=1

ns3->1=1

ns2->1=4 ns1->3=1

ns3->2=2

ns2->3=2

Fig. 1. An example of scheduling for multiprocessor real-time systems

is called network precision (also called synchronization jitter)
which is a global constant. We denote the network precision
with δ.

D. Network Channel Set

In multiprocessor real-time systems, processors are con-
nected through network channels. We useN ⊆ P×P to denote
the set of network channel. na→n ∈ N denotes the network
channel from processor pa to pb, where pa, pb ∈ P, a 6= b.
Since we consider bi-directional network channel, we have
∀na→b ∈ N =⇒ nb→a ∈ N . We use nsa→b to represent the
speed of na→b.

When the data of the computed result of task τi migrates
from processor pa to pb

3, the time slots spent on network
channel, represented by tmi

a→b, can be calculated as:

tmi
a→b =

mi

nsa→b
(2)

Based on tmi
a→b, we can get the time instant that processor

pb receives the data of task τi migrating from processor pa
through network channel na→b, represented by ria→b, as

ria→b = sia→b + tmi
a→b + δ (3)

where, sia→b is the start time of τi migrating through network
channel na→b, and δ is the network precision.

E. Assumptions & Example

Applied to this system model, we require that all the
parameters of the functions and tasks are known a prior.
This requirement makes the model become a generalization
of the widely studied period task model, in which all the
tasks in the system are released periodically. This means our
method applies more broadly than other methods which are
specified on period task model. To guarantee a certain level of
determinacy, in this paper, task preemption is not allowed.

To illustrate the defined system model, an exam-
ple of scheduling for multiprocessor real-time systems is
shown in Fig. 1. In this example, there are three pro-
cessors p1, p2, p3 in the system. These processors are

3For conciseness, we say “task τi migrates from processor pa to pb” to
mean “the data of the computed result of task τi migrates from processor pa
to pb” in the reset of the paper.

Target

Scheduler

Task

system

schedule

System
Constraints

Target
Constraints

SAT Model

/\

SMT Solver (e.g., Z3)

Fig. 2. Overview of the SMT-based scheduling method

connected with each other through six network channels
n1→2, n2→1, n1→3, n3→1, n2→3, n3→2. The network precision
δ is 1. In the system, a function F = ((T,≺), 1, 11) is
waiting to be executed on the processors. The task poset of the
function is (T,≺) which consists of six tasks. Task dependency
relations are described in a directed acyclic graph. An edge
starting from task τi to task τj represented by a dotted line
denotes a dependency relation τi ≺ τj .

To design scheduling for this kind of system, the schedule
synthesis is known to be an NP complete problem. In order to
solver such problem, we propose a scheduling method based on
satisfiability modulo theories (SMT). The details are described
in the next section.

III. SMT-BASED SCHEDULING

A. Satisfiability Modulo Theories

Satisfiability modulo theories (SMT) checks the satisfia-
bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
or bit-vectors [2]. A first-order logic formula uses variables
as well as quantifiers, functional and predicate symbols, and
logic operators [3]. A formula F is satisfiable, if there is
an interpretation that makes F true. For example, formula
∃a, b ∈ R, (b > a + 1.0) ∧ (b < a + 1.1), where R is
real number set, is satisfiable, as there is an interpretation,
a 7→ −1.05, b 7→ 0, that makes F true. On the contrast, a
formula F is unsatisfiable, if there does not exist an interpre-
tation that makes F true. For example, if we define ∃a, b ∈ Z,
where Z is integer set, the formula (b > a+1.0)∧(b < a+1.1)
will be unsatisfiable.

For a satisfiability problem that has been formalized by
first-order logic formulas, a SMT solver (e.g., Z3, Yices) can
be employed to solver such a problem. If all the logic formulas
are satisfiable, SMT solver returns the result sat and a solution
model which is an interpretation for all the variables defined
in the formulas that makes the formulas true. For the case
∃a, b ∈ R, the model is: a 7→ −1.05, b 7→ 0. If there is
an unsatisfiable logic formula, SMT solver returns the result
unsat with an empty model, for the case ∃a, b ∈ Z.

B. Overview of the SMT-based Scheduling

The overview of the SMT-based scheduling is illustrated in
Fig. 2. In a real-time system, a schedule (execution order of

tasks) is generated by a scheduler. The problem of scheduling
can be treated as a satisfiability problem.

In order to use SMT to solve this satisfiability problem,
the key work is to formalize the problem using first-order
language. We use a sat model to represent the formalized
problem. This sat model is the set of first-order logic formulas
(within linear arithmetic in the formulas) which expresses
all the constraints that the desired schedule should satisfy.
There are two kinds of constraints: system constraints and
target constraints. System constraints are based on the specific
system. For example, if two tasks run on a processor, a
schedule should make sure that the execution of these two tasks
cannot have overlap in time domain. Target constraint is based
on the scheduling target. Specific to this paper, the desired
schedule should make all the functions meet their deadlines
(completed before deadlines).

After the sat model is constructed, it can be inputted into
a SMT solver (e.g., Z3). A solution model will be returned by
the SMT solver. This solution model gives an interpretation
for all the variables defined in the sat model, and under
the interpretation, all the logic formulas in the sat model
are evaluated as true. It means the satisfiability problem
represented by the sat model is solved, and based on this
interpretation, the desired schedule can be generated.

C. Scheduling Constraints

This subsection describes all the constraints expressed in
the sat model.

System Constraints

1) Constraint on start execution time of functions: Task
set Ti corresponding to function Fi can start to run only after
the function is triggered. That is, the start execution time of
the start task of the poset (Ti,≺) should be larger than the
triggered time of function Fi.

∀Fi ∈ F , ∀pa ∈ P
sτsia ≥ ri

where symbol sτsia denotes the start execution time of task τsi
on processor pa.

2) Constraint on start time of task migration: If a task τi
migrates from processor pa to processor pb through network
channel na→b, it means i): task τi has been completed by
processor pa; ii): τi has migrated to processor pa from another
processor. For the first case, task τi can start to migrate after it
has been completed, and for the second case, task τi can start
to migrate after it has already migrated to processor pa.

∀τi ∈ T , ∀na→b ∈ N ,∃nc→a ∈ N
(sia→b ≥ sia + tcia) ∨ (sia→b ≥ ric→a)

where symbol sia→b denotes the start time of task τi migrating
through network channel na→b, sia denotes the start execution
time of task τi on processor pa.

3) Constraint on task dependency: For processor pa, if
τi ≺ τj , task τj can start to run only after τi has been
completed. Similar to the constraints on start time of task
migration, there are two cases. i): task τi has been completed
by processor pa; ii): task τi has migrated to processor pa from

Algorithm 1 Schedule Synthesis
Input: function set F , task set T , processor set P , network set N
Output: schedule S
1: A := Assert(F, T ,P,N)
2: M := CallSMTSolver(A)
3: if M = ∅ then
4: return UNFEASIBLE
5: end if
6: return S := GenSch(M)

Algorithm 2 GenSch()
Input: solution model M
Output: schedule S
1: S := ∅
2: for all Fi ∈ F do
3: sort task set Ti, such that 〈τ1, τ2, . . . , τn〉 is a permutation with τj1 ⊀ τj2

for 1 ≤ j1 < j2 ≤ n, where n is the number of tasks in Ti

4: determine s1a based on constraint 7, S := S ∪ {s1a}
5: for all τj ∈ Ti\τ1 do
6: determine sja based on constraints 2 and 3

S := S ∪ {sja}
7: if τj has migration among processors then
8: determine sjb→c based on constraints 2 and 3

S := S ∪ {sjb→c}
9: end if

10: end for
11: end for
12: return S

another processor. For the first case, τj can start to run after
τi has been completed, and for the second case, τj can start
to run after τi has already migrated to processor pa.

∀τi, τj ∈ T , ∀pa ∈ P,∃nb→a ∈ N
τi ≺ τj =⇒ (sja ≥ sia + tcia) ∨ (sja ≥ rib→a)

4) Constraint on processors: A processor can execute only
one task at a time. This is interpreted as: there is no overlap
of the execution time of any two tasks.

∀τi, τj ∈ T , i 6= j, ∀pa ∈ P
(sia ≥ sja + tcja) ∨ (sja ≥ sia + tcia)

5) Constraint on network channels: A network channel can
transfer data of only one task at a time. That is, there is no
overlap of the migration time of any two tasks on a network
channel.

∀τi, τj ∈ T , i 6= j, ∀na→b ∈ N
(sia→b ≥ sja→b + tmj

a→b) ∨ (sja→b ≥ s
i
a→b + tmi

a→b)

6) Constraint on heterogeneous processors: In heteroge-
neous systems, processors have different architectures, some
tasks can only be executed on some specific processors. For
tasks that cannot be executed on some processors, the start
execution time of the tasks in such processors are set to +∞,
which means the tasks will never start to run on these specific
processors.

∀pa ∈ P, ∀τi ∈ T − TSa
sia = +∞

Target Constraints

7) Constraint on deadlines of functions: For every trig-
gered function, the desired schedule should make sure that the
function can be completed before its deadline.

∀Fi ∈ F , ∃pa ∈ P
sτeia + tcτeia ≤ di

where symbol sτeia is the start execution time of task τei on
processor pa, and tcτeia is the number of time slots needed for
processor pa to complete task τei.

D. Schedule Synthesis

After all the constraints are defined, we now can employ
SMT solver to generate the desired schedule. The process
of schedule synthesis is summarized in Alg. 1. Function
A := Assert(F , T ,P,N) (line 1) interprets the constraints
defined in section III-C as assertions (boolean formulas that
can be inputted into a SMT solver) based on the system
model. The variables of these boolean formulas are the start
time of task execution on processor, sja, and start time of
task migration through network, sjb→c, for ∀fi ∈ F ,∀τj ∈
Ti,∀pa ∈ P,∀nb→c ∈ N . Function CallSMTSolver(A) (line
2) calls a SMT solver to find a solution model M for A,
which contains the interpretation for all the variables sja and
sjb→c defined in the set of assertions A. If the solution model
does not exist (M = ∅) (line 3), message UNFEASIBLE will be
returned (line 4), which means there does not exist a schedule
can make all the functions meet their deadlines. Otherwise,
if the solution model exists (M 6= ∅), based on M, function
GenSch(M) generates the desired schedule S which can make
all the functions meet their deadlines (line 6).

Alg. 2 describes the details of function GenSch(). It returns
the schedule S which is a set of variables selected from the
solution model M. M contains the interpretation for all the
variables sja and sjb→c defined in the set of assertions A. As
the exist of existential quantifier ∃, in constraints 2, 3, and
7, we need to further select sja and sjb→c that can form the
desired schedule. For example, in constraint 7, we should find
which processor (i.e., to determine the value of processor index
a) can make the logical formula ∀Fi ∈ F , sτeia + tcτeia ≤ di
evaluate as true. After these judgments, we can determine
sja and sjb→c that can form the desired schedule. For each
function Fi, GenSch() first sorts its corresponding task set Ti,
such that 〈τ1, τ2, . . . , τn〉 is a permutation with τj1 ⊀ τj2 for
1 ≤ j1 < j2 ≤ n (line 3). Follow this sorted order, the first
task τ1 is the end task τei of function Fi. Based on constraint
7, the value of processor index a can be determined. That is,
we can determine s1a (i.e., sτeia) (line 4). For other tasks in
Ti, as τj1 ⊀ τj2 for 1 ≤ j1 < j2 ≤ n, after the value of
s1a is determined, based on constraints 2 and 3, the values of
sja and sjb→c (for tasks migrating among processors) can be
determined (line 5-10).

E. Scheduling Results

Recall the example shown in Fig. 1. Based on the schedule
synthesis shown in Alg. 1, we can get the solution model M
which defines the values of the start time of task execution
on processor, sja, and the start time of task migration through
network, sjb→c, for ∀fi ∈ F ,∀τj ∈ Ti,∀pa ∈ P,∀nb→c ∈ N .
From the model M, through function GenSch() as shown in

P3

P2

P1

Time
1 3 5 7 92 4 6 8

τ1

10 11

τ2 τ3 τ5 τ6

τ1 τ4

τ1 migrates from p1 to p2 through
network n1->2

τ4 migrates from p3 to p2 through
network n3->2

Fig. 3. The scheduling result for example shown in Fig. 1 by using the
proposed SMT-based scheduling

Alg. 2, we can get the scheduling result as shown in Fig.
3. This scheduling sequence can make the function meet its
deadline. Some characteristics of this scheduling sequence
should be noticed:

• Task τ1 has been executed on processor p1 from system
time t = 1 to t = 3, and it has also been executed on
processor p3 from system time t = 2 to t = 3. This
means, the SMT-based scheduling method can handle the
parallel execution of tasks, and can make a task repeatedly
run on different processors when such repeated execution
is necessary.

• Task τ2 runs on processor p2 from t = 6 to t = 7.
Although task τ2 needs the computed results from com-
pleting task τ1, such computed results can not only be
obtained by completing task τ1 on processor p2 itself,
but also can be obtained by transferring the computed
results from other processor that has completed task τ1.
Specified to this example, at system time t = 6, processor
p2 gets the computed results of task τ1 from processor p1.

IV. SIMULATION & EVALUATION

In this section, we present the results of simulations
which are conducted to study the performance of the SMT-
based scheduling method. We have implemented a prototype
tool for the proposed SMT-based scheduling based on the
system model, constraints formulation, and schedule synthesis
described above. The underlying SMT solver employed by the
tool is Z3, which is a state-of-the art SMT solver.

A. Simulation Settings

The metric used to evaluate the scheduling performance
is: simulation runtime which denotes the time of the SMT-
based scheduling method scheduling all the input tasks. The
input functions are generated according to uniform distribution
with arriving rate λ which represents the number of tasks that
arrive in the system per 100 time units. Note that, parameter λ
can be used to adjust system workload. The numbers of tasks
within a function are randomly generated, and the average
value is approximate 6. The dependency relation of the tasks is
randomly assigned. For each task τj , cj and mj vary in [1 18].
The assignments of deadlines of functions di are according
to the equation: di = ri + bsfi ∗ Cic, where Ci is the total
computation cost of all the tasks in the function, and sfi is
the slack factor that indicates the tightness of task deadline,
for each function, sfi varies in [0.3 3]. For the network

10 12 15 17 20
0

10

20

40

80

function number: 50
10 12 15 17 20

0

10

20

40

80

function number: 100
10 12 15 17 20

0

10

20

40

80

function number: 200

Fig. 4. Simulation runtime (y-axis, in second) of the SMT-based scheduling for systems with 3 processors (The x-axis is the values of λ.)

10 12 15 17
0

3

6

9

12

15

18

function number: 50
10 12 15 17

0

3

6

9

12

15

18

function number: 100
10 12 15 17

0

3

6

9

12

15

18

function number: 200

Fig. 5. Simulation runtime (y-axis, in second) of the SMT-based scheduling for systems with 4 processors (The x-axis is the values of λ.)

channels, we consider a mesh topology (all the processors are
connected with each other through network channels) in the
simulation, and the network speed varies in [1 6]. There are
many parameters that can affect the simulation runtime. We
mainly study the impacts of the number of functions, number
of processors, and the parameter λ. The time-out for each
experiment is set to 10 minutes after which the scheduling
problem is deemed unfeasible. All the simulations are run on
a 64bit 4-core 2.5 GHz Intel Xeon E3 PC with 32GB memory.

B. Evaluation

The simulation results are shown in Fig. 4 and Fig. 5. The
values shown in the figures are the average value of running
simulation 100 times. Fig. 4 shows the results for systems
with three processors. For 50 functions, when λ is in interval
[10 17], the simulation runtimes are from 2 to 4 seconds, and
the difference of the runtimes is not obvious. However, when λ
increases to 20, the simulation runtime increases to 31 second,
which is quite a big increase. Moreover, we also conduct
simulations for λ with 25, and the simulation is time-out (over
10 min). This is because, with different λ, the system workload
condition is different. With bigger value of λ, more functions
(more tasks) are waiting to be executed on processors at a
time. As described in section III-C, the scheduling constraints
Constraint on processors and Constraint on network channels,
need to guarantee that no overlap of the execution time of any
two tasks on a processor and no overlap of the migration time
of any two tasks on a network channel. The increasing number

of waiting tasks will need much more calculation for the SMT
solver.

For example, when λ is 10, the average numbers of tasks
waiting to be executed at a time is 6. For these 6 tasks, SMT
will conduct calculation to find a solution model. As the total
input number of tasks is 300 (total number of input functions is
50), such SMT calculation will be conducted about 50 (300/6)
times. When λ is 20, the the average numbers of tasks waiting
to be executed at a time is 100, although the times for SMT
to conduction calculation is only 6, but for 100 tasks, the
calculation for SMT to find a solution model is much more
complicated, which results in a long time calculation.

Fig. 5 shows the results for systems with four processors.
Compared with Fig. 4, the results for λ = 20 are not shown
in the Fig. 5, as when λ = 20, the simulation is time-out.
Form this we can know that the number of processors can
also obviously affect the SMT calculation in addition to λ.
When increasing the value of the total input function number,
the simulation time increases in proportion. For example, in
Fig. 5, with a certain λ, the simulation time for 100 total input
functions is twice as the time for 50 total input functions. This
is consistent with our previous analysis that the total input
number of functions decide the times of the SMT calculations
to find a solution model for all the input functions.

V. CONCLUDING REMARKS

In this paper, to solve the scheduling problem for multipro-
cessor real-time systems, a SMT-based scheduling method is

proposed. In the method, the problem of scheduling is treated
as a satisfiability problem. After using first-order language
to formalize the satisfiability problem, a SMT solver is em-
ployed to solver such a problem. An optimal schedule can
be generated based on a solution model returned by the SMT
solver. The correctness of this method and the optimality of its
generated schedule are straightforward. Moreover, in the SMT-
based scheduling method, we define the scheduling constraints
as system constraints and target constraints. Such design
makes the proposed method apply more widely compared with
existing methods.

For the future work, in order to study the performance
of the SMT-based scheduling method in a real application,
we would like to implement the proposed method in a real
multiprocessor real-time system.

REFERENCES

[1] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9, pp. 1250–
1258, Apr. 2009.

[2] C. Barrett, R. Sebastiani, R. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” Handbook of Satisfiability, vol. 185. IOS Press, 2009.

[3] L.d. Moura N. Bjrner, “Satisfiability Modulo Theories: An Appetizer,”
Formal Methods: Foundations and Applications, vol. 5902, pp. 23–26,
2009.

[4] S.S. Craciunas and R.S. Oliver, “SMT-based Task- and Network-level
Static Schedule Generation for Time-Triggered Networked Systems,”
Proc. 22th Int. Conf. on Real-Time Networks and Systems, NY, USA,
pp. 45–54, October, 2014.

[5] R.I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 5, pp. 35:1–
35:44, Oct. 2011.

[6] L. Moura and N. Bjrner, “Z3: an efficient SMT solver,” Proc. 14th Int.
Conf. on Tools and Algorithms for the Construction and Anal. of Syst.,
Budapest, Hungary, LNCS 4963, pp. 337–340, Springer-Verlag, 2008.

[7] B. Dutertre, “Yices 2.2,” Proc. 26th Int. Conf. on Comput. Aided
Verification, Vienna, Austria, LNCS 8559, pp. 737–744, Springer In-
ternational Publishing, 2014.

[8] S.K. Baruah, N. Cohen, G. Plaxton, and D. Varvel, “A notion of fairness
in resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[9] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” Proc. of
the Euromicro Conference on Real-Time Systems, 2000.

[10] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task- and
network-level schedule co-synthesis of Ethernet-based time-triggered
systems,” Proc. of ASP-DAC, 2014.

[11] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems,” Proc. of CODES,
2002.

