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1 Introduction

The world around us is a noisy environment. So when we hear some sound, the sound is often

mixed or destroyed by noises. However in the situation, we can understand the meaning. This is

becase we have an ability to select a target sound from other sounds, refered to \Cocktail-Party

E�ect" and to restore a missing sound , called \Illusion of Continuity" or \Phonetic Restration".

Recently, many reserchers have made a e�ort to build computer models with such abilities in

the framework of \Auditory Scene Analysis".

Aikawa et al.[1] reported that the dynamic process of perceiving frequency-modulated (FM)

tones can be described by a second order AR model. Masuda et al.[2] proposed a model

which extrapolates spectral sequencies by extending the FM-tracking model to spectral do-

main. Sakaguchi[3] also proposed a similar spectral extrapolating model which predicts and

tracks spectral peaks represented by Auditory Cortex 1 model. Those models are not enough

\Phonetic Restration" models, becase they provided only an extrapolation function, which often

gives rise to temporal discontinuity of spectral sequencies.

Hence this paper proposes a spectral interpolating model. The model algorithm is based on

Kalman �lter set a second order AR model. The interpolation is realized by estimating a series

of Line Spectral Frequencies using Kalman �lter from both time directions.

2 Spectral sequence estimetion model

2.1 a concept of the model

This study aims at interpolating spectral sequences destroyed by bursts of noise. The interpo-

lation is carried out by estimateing a series of LSFs (Line Spectral Frequencies) using Kalman

�lter. The concept of this model is illustlated in Figure 1. This model is composed of some

parts, that is, Input, Analysis , Search, Interpolation, Synthesis and Output. The following list is

a simple explanation of the processing ow.
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Figure 1: A interpolating model of spectral sequences based on Kalman �lter

Input : Enter a noisy speech into this model.

Analysis : Convert the noisy speech to LSFs.

Search : Detect portions of noise bursts directly from the speech wave by Kalman �lter.

Interpolation : Interpolate LSFs of noisy sections using RTS algorithm of Kalman �lter.

Synthesis : Convert interpolated LSFs to speech.

Output : Emit the restored speech wave.

In the following sections, Kalman �lter, Analysis, Search, Interpolation are explained in detail.

2.2 Kalman �lter

Dynamic system of Kalmn �lter is expressed as follow.

xk+1 = F kxk +Gkwk; [ state equation ] (1)

zk = Hkxk + vk; [ observation equation ] (2)
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where wk and vk are assumed to be white noise sequences described by their second-order

statistics

E[wk] = 0 (3)

E[vk] = 0 (4)

E[wkwi
T ] =

(
Qk; i = k

0; i 6= k

(5)

E[vkvi
T ] =

(
Rk; i = k

0; i 6= k

(6)

E[wkvi
T ] = 0; for all k and i (7)

and matrices F k, Gk, Hk are known.

Given Equation (1) and (2), Klaman �lter provides the linear, minimum mean-squared error

estimator of the state xk given the mesurements fz1; z2; � � � ; zkg. A commonly used form of

Kalman �lter is the following.

x̂kjk = x̂kjk�1 +Kk

h
zk �Hkx̂kjk�1

i
: estimated value of xk (8)

x̂k+1jk = F kx̂kjk : prediction value of xk (9)

Kk = P kjk�1Hk
T
h
HkP kjk�1Hk

T +Rk

i�1
: Kalman gain (10)

P kjk = P kjk�1 �KkHkP kjk�1 : estimated value of P k (11)

P k+1jk = F kP kjkF k
T +GkQkGk

T : prediction value of P k (12)

x̂0j�1 = E fx0g = �x0 : initial value of xk (13)

P 0j�1 = E

n
[x0 � �x0] [x0 � �x0]

T
o

= P x0 : initial value of P k (14)

x̂kjk is refered to as the �ltered estimation of xk and x̂k+1jk is the one-step predictor of xk+1.

Figure 2 shows a processing ow of Kalman �lter.

Compute Kalman gain:

Kk = P kjk�1Hk
T

h
HkP kjk�1Hk

T
+Rk

i�1

Predict ahead:
x̂k+1jk = F kx̂kjk

P k+1jk = F kP kjkF k
T
+GkQk

Gk
T

Update estimate with
measurement zk:

x̂kjk = x̂kjk�1 +Kk

�
zk �Hkx̂kjk�1

�

Compute error covariance
for updated estimate:

P kjk = P kjk�1 �KkHkP kjk�1

Enter initial estimate x̂0j�1 and
its error covariance P 0j�1

Figure 2: Kalman �lter loop
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2.3 Analysis

In Analysis, LSFs are computed from input noisy speech. The speech wave is analyzed by

STRAIGHT and transfered to spectral sequences. Then the spectral sequences are converted to

LSFs.

2.4 Search

In Search, the time index of burst section is estimated directly from input noisy speech by using

Kalman �lter based on a time varying AR model. In the folowing, the algorithm is described.

Speech samples Y (n) are represented using linear predictive coeÆcients Ai(n) (i = 1; � � � ; p).

Y (n) =

pX
i=1

Ai(n)Y (n� i) + V (n) (15)

The coeÆcients Ai(n) are assumed to be time variant and to obey the following stochastic

process,

Ai(n+ 1) = �Ai(n) +Wi(n) (16)

where 0 < � < 1, and Wi(n) is white noise. Then Equations of Kalman �lter are decided.

X(n+ 1) = �X(n) +W (n) (17)

Y (n) = C
t(n)X(n) + V (n) (18)

where

C
t(n) � (Y (n� 1); Y (n� 2); � � � ; Y (n� p))t (19)

X(n) � (A1(n); A2(n); � � � ; Ap(n)) (20)

W (n) � (W1(n);W2(n); � � � ;Wp(n))
t (21)

� � �Ip (22)

Now \Information carried by sequential observation" is de�ned as

i(n) =
1

2
log2

jP nj

jGnj
(23)

P n is a priori error covarience and Gn is a posteriori error covarience. Both P n and Gn are

sequentially given in recursive calculations of Kalman �lter based on Equation(17),(18). The

information i(n) indicates \unexpectedness" of observation Y (n) at time n. So the i(n) enable

to detect the section of bursts noise.

2.5 Interpolation

In Interpolation, LSFs of noisy portion are interplorated using Kalman �lter. To realize the

interpolation, RTS algorithm is adopted. RTS alogrithm is refered to \�xed-interval smoothing".

The time interval of mesurements is �xed, and then optimal estimates at all interior points are

sought. RTS algorithm consists of two steps; forward sweep and backward sweep. The forward

sweep is equivalent to recursive quations (8) - (14). With each step of the forward sweep, it is

neccessary to save x̂kjk�1; x̂kjk; P kjk�1; P kjk. These are needed for the backward sweep. After
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completing the forward sweep, the backward sweep begins with \initial" conditions x̂N jN ; PN jN

obtained as the �nal computation in the forward sweep. The recursive equations for the backward

sweep are

x̂kjN = x̂kjk +Ak

h
x̂k+1jN � x̂k+1jk

i
(24)

Ak = P kjkF
T
P

�1
k+1jk (25)

( k = N � 1; N � 2; � � � ; 0 )

With each step of the backward sweep, the estimated values by the forward sweep is updated to

yield an improved smoothed estimate, which is based on all the measurement data. This RTS

algorithm is shown in Figure 3.

After the backward sweep, LSFs except for the estimates of noisy section are replaced by LSFs

before �ltering. Then the interpolation �nishes.

Enter initial estimate x̂0j�1 and its
error covariance P 0j�1 at k = 0

Filtering results here : x̂NjN and PNjN

(initial conditions for the backward sweep)

Forward sweep

Backward sweep

0 1 2 NN � 1N � 2

Time index k

Save x̂kjk�1, x̂kjk,P kjk�1 and
P kjk with each step

Update forward sweep estimates to
yield improved estimates based on
all the measurement data

Figure 3: Processing ow of RTS alogorithm

3 Setting a second order AR model to Kalman �lter

In order to apply Kalman �lter for an interpolation of LSFs, a model which describes behavior

of a time series of LSFs is needed. In this paper, it is assumed that the model is described as a

second order AR model. And a second order AR model is set to Kalman �lter.

3.1 a second order AR model

A second order AR model is de�ned as follows.

y(n) = gx(n� 1)� �1y(n� 1)� �2y(n� 2) (26)

� = 2�
fn

fs

(27)
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�1 = �2e��� cos �
q
1� �

2 (28)

�2 = e

�2�� (29)

g = 1 + �1 + �2 (30)

where fn is the natural frequency, fs is the sampling frequency, � is the damping factor. � is

a normalized frequency between �� and �. � is a linear prediction coeÆcient. g is the gain

constant of the system.

3.2 Setting to Kalman �lter

A second order AR model is regarded as a kind of predictor. To point out this, y(n) is replaced

by x̂(n). If e(n) is assumed to be error between mesurements x(n) and estimates x̂(n), then

e(n) = x(n)� x̂(n) (31)

Equation(31) is substituted to Equation(26),

x̂(n) = gx(n� 1)� �1x̂(n� 1)� �2x̂(n� 2) (32)

x(n)� e(n) = gx(n� 1)� �1 fx(n� 1)� e(n� 1)g � �2 fx(n� 2)� e(n� 2)g (33)

x(n) � (g � �1) x(n� 1)� �2x(n� 2) + �1e(n� 1) + �2e(n� 2) (34)

Here this formula can be set to Kalman �lter,"
x(n+ 1)

x(n)

#
=

"
g � �1 ��2

1 0

# "
x(n)

x(n� 1)

#
+

"
�1 �2

0 0

# "
e(n)

e(n� 1)

#
(35)

z(n) =
h
1 0

i "
x(n)

x(n� 1)

#
+ v(n) (36)

The matrices of Equation(1),(2) are corresponding to

F =

"
g � �1 ��2

1 0

#
(37)

G =

"
�1 �2

0 0

#
(38)

H =
h
1 0

i
(39)

Subscripts of these matrices are omitted. Because these are constant at any time.

6



4 Simulation of interpolation of LSFs

4.1 Simulation data

A simulated sound data was synthesized with Klatt formant synthesizer. The sound data was

conected vowel which has three formants. The synthesis coditions are shown in Table 1 and 2.

Table 1: Synthesis conditions

Sampling frequency 8 kHz

Fundamental frequency 140 Hz

Duration time 500 ms

Band size : Formant1 80 Hz

Formant2 120 Hz

Formant3 150 Hz

Table 2: Transition of each formant

Time [ms] Formant1 [Hz] Formant2 [Hz] Formant3 [Hz]

0�100 800 1200 2500

100�300 800 ) 250 1200 ) 2500 2500 ) 3000

300�500 250 2500 3000

The tansition section (250 � 350 ms) of the sound was mixed by white noise whose SNR was

�10 dB.

4.2 Experimental conditions

Expeimental parameters are shown in Tabele 3.

Table 3: Experimental conditions

Acoustic parameter LSF (30th)

Analiysis frame length 40 ms
STRAIGHT

Analiysis frame shift 1 ms
(Analisis)

FFT frame length 1024 point

Order 15
Time variant AR model

Autoregressive parameter � = 0:95
(Serch)

Covaiance of observation noise 200

Damping factor � = 0.99
Second AR model

Natural frequency fn = 1 kHz
(Interpolation)

Sampling frequency fs = 8 kHz

� = 0:99 and fn = 1 kHz have already decided on LSFs of cleen speech.
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4.3 Result

Figure 4 shows the interpolated result. The noisy section was restored to maintain spectral

structures before and after the section.

5 Conclusion

In this paper, a method which interpolates noisy sections using Kalman �lter was proposed.

The model was able to restore a sound with noisy portion.
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Figure 4: Sound spectrogram : top) cleen speech, middle) input noisy seech, bottom) restored speech
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