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Abstract—This paper proposes a system to convert neutral
speech to emotional with controlled intensity of emotions. Most
of previous researches considering synthesis of emotional voices
used statistical or concatenative methods that can synthesize
emotions in categorical emotional states such as joy, angry,
sad, etc. While humans sometimes enhance or relieve emotional
states and intensity during daily life, synthesized emotional
speech in categories is not enough to describe these phenomena
precisely. A dimensional approach which can represent emotion
as a point in a dimensional space can express emotions with
continuous intensity. Employing the dimensional approach to
describe emotion, we conduct a three-layered model to estimate
displacement of the acoustic features of the target emotional
speech from that of source (neutral) speech and propose a
rule-based conversion method to modify acoustic features of
source (neutral) speech to synthesize the target emotional speech.
To convert the source speech freely and easily, we introduce
two methods to parameterize dynamic features in prosody, that
is, Fujisaki model for f0 contour and target prediction model
for power envelope. Evaluation results show that subjects can
perceive intended emotion with satisfactory order of emotional
intensity and naturalness. This fact means that this system not
only has the ability to synthesize emotional speech in category but
also can control the order of emotional intensity in dimensional
space even in the same emotion category.

I. INTRODUCTION

Speech processing is widely studied in the area of human-
computer interaction (HCI). Some popular applications such
as Speech to Speech Translation system (S2ST) and story
teller system have already bring convenience to human daily
life. Convensional S2ST system and story teller system take
linguistic information into consideration only, which lose the
appealing of non-linguistic information such as emotion, and
para-linguistic information such as emphasis. This fact brings
an interesting research topic: emotional speech synthesis
(ESS).

ESS [1] has greatly facilitated the advancement of HCI [2].
Nowadays, there are many techniques to synthesize emotional
speech, which can mainly be divided into, those that take the
concatenative approach[3] [4] with huge-scale training cor-
pora, such as unit selection, and those that take the statistical
approach, such as the hidden Markov model (HMM) [5] [6]
and Gaussian mixture model (GMM) [7]. These techniques
can synthesize emotional speech with an acceptable quality
when emotion is represented in clear categories such as

anger, happiness and sadness. In actual daily life, however,
humans sometimes relieve or reinforce a variety of emotional
expressions depending on the situation [8]. In such cases, a
small number of discrete categories cannot sufficiently mimic
the actual emotions expressed in real life. When emotional
intensity is considered as continuous, both concatenative and
statistical approaches require a huge database for training in
spite of the difficulty of collecting human response to hear
emotional speech. Therefore, our objective with this work is
to convert neutral speech into a desired emotional speech with
controlled emotional intensity.

In order to represent emotion on a continuously-valued scale
rather than categorically, researchers have already proposed a
two-dimensional emotion space, spanned by two attributes,
valance and activation, to represent emotion as a point in
a valence and activation (V-A) space [9] [10]. To obtain
synthesized emotional speech from the position on the V-A
space, two steps are required: estimation step, which is used
to estimate displacement of acoustic features from that of the
source (neutral) speech according to the position in the V-
A space and modification step, which is used to convert the
source (neutral) speech with the estimated displacement of the
acoustic features to any intended emotional speech.

An emotion conversion system has already been proposed
by the authors in [11] [12]. Huang and Akagi [14] proposed
a three-layered model proposed, with reference to the concept
of the Branswikian lens model [13], which is based on the
belief that humans perceive emotion not directly from acoustic
features, some semantic primitives, such as fast, bright, and so
on also play an important role [14]. Following the hypothesis
that human production of emotion is completely opposite of
human perception, the opposite three-layered model as Huang
and Akagi [14] is contucted to estimation part. The input of
the model is the position in V-A space and the outputs are the
estimated displacement of acoustic features that can give the
impression represented by the position in V-A space. The ac-
curacy of the estimated displacements of the acoustic features
was suitable to use for converting neutral speech. However,
F0 and power envelope cannot be controlled continuously in
[12] and the modified speech gives only limited impressions,
although a modification step was implemented for converting
acoustic features themselves directly into the target speech.



In this paper, we study methods for controlling the two
main dynamic features in prosody. The target prediction model
[15] [16] for power envelope and the Fujisaki model [17]
for F0 contour are conducted to parameterize the acoustic
features of neutral speech. From the relationship between
the extracted acoustic values of source (neutral) speech and
estimated displacement of the acoustic features in the first
step, we convert the parameter values to reproduce the power
envelope and F0 contour in order to synthesize emotional
speech. The key -point of the method is that both contours
are parameterized. Evaluation results from several listening
tests show that subjects can perceive emotion with satisfactory
order of emotion intensity and naturalness, which means that
this system not only can synthesize emotion in category but
also has the ability to control the emotion intensity in massive
scale.

II. SCHEME OF EMOTION CONVERSION SYSTEM

The emotion conversion system that converts neutral speech
into emotional ones represents emotion in the V-A space. It
requires two steps: estimation and modification. As shown in
Fig.1, in the estimation step, the inputs are the expected V-
A values and the outputs are estimated displacements of the
acoustic features from the source (neutral) speech. The esti-
mation step is structured using the three-layered model, which
consists of the acoustic features at the top layer, semantic
primitives at the middle layer, and V-A space at the bottom
layer [14]. An adaptive -network-based fuzzy inference system
(ANFIS) [18] based on fuzzy logic is utilized as the connection
among the three layers. From an emotion corpus, the two
evaluated dimension values, and the 17 evaluated semantic
primitives, are collected via listening tests and the 21 acoustic
features are extracted to use for training ANFIS1 and ANFIS2.
ANFIS1 estimates the values of semantic primitives from the
position in V-A space and ANFIS2 estimates the displacement
of the acoustic features with the estimated values of semantic
primitives. In the modification step, acoustic features are
extracted from the source (neutral) speech using STRAIGHT
[19] and parameter values are obtained using the proposed pa-
rameterization methods. Considering the relationship between
the estimated displacements of the acoustic features in the first
step and the extracted acoustic features of neutral speech in the
second step, the parameterized acoustic features are modified.
Applying STRAIGHT, we can resynthesize emotional speech
using the modified acoustic features.

III. ESTIMATION OF DISPLACEMENT OF ACOUSTIC
FEATURES

In order to obtain the estimated displacements of the acous-
tic features from the given positions in the V-A space, we need
to conduct an estimation procedure. The three-layered model
is the structure and ANFIS is the connection of the estimation
step.

A. The elements of the system
179 utterances from the Fujitsu database are used for

training the system. The Fujitsu database contains five different

emotional states: neutral, happy, sad, hot anger, and cold anger
that are uttered by one professional female speaker.

The three-layered model has a structure of the estimation
procedure. The concept of the three-layered model [14] fol-
lows the human perception mechanism, which is based on
the belief from Brunswik’s Lenz Model [13] that humans
perceive emotion not directly from academic acoustics such as
F0 and power envelope but from a series of adjective words.
The three-layered model is constructed within this emotional
speech conversion system. At the top of the three-layered
model, we extracted 21 acoustic features using STRAIGHT
from the neutral speech in [12], which contains acoustic fea-
tures related to 4 F0, 4 power envelope, 5 spectrum, 3 duration
and 5 voice quality. We selected 17 semantic primitives (bright,
dark, high, low, strong, weak, calm, unstable, well-modulated,
monotonous, heavy, clear, noisy, quiet, sharp, fast, and slow )
in [14] because these semantic primitives can express emotion
in a balanced way. The V-A space is located at the bottom
layer, which consists of activation (from calm to excited) and
valence (from negative to positive). The values of the V-A
space and semantic primitives are obtained by carrying out
listening tests.

B. Estimation procedure

Following the work in [12], ANFIS is used to connect
the three-layered model. As shown in Fig. 1, two kinds of
ANFISs are built. ANFIS1 is trained when given the evaluated
valence and activation values as inputs and evaluated semantic
primitives as outputs. The inputs of ANFIS2 are the estimated
semantic primitives and the outputs are the displacements of
the extracted acoustic features from that of source (neutral)
speech. During the estimation procedure, when given the
expected values of valence and activation, ANFIS1 gives the
estimated values of the semantic primitives and ANFIS2 ac-
quire estimated displacement of acoustic features when given
the values of estimated semantic primitives from ANFIS1 as
inputs.

IV. MODIFYING ACOUSTIC FEATURES

The estimated displacement of the acoustic features are then
used to synthesize emotional speech. In [12], the acoustic
features related to F0 and power envelope cannot be controlled
continuously so that the modified speech gives only limited
impressions. In this study, the target prediction model and the
Fujisaki model are applied for controlling the power envelope
and F0.

A. Target prediction model for power envelope

A target prediction model [15] [16] can predict the stable
power target in each short-term interval. When the power
envelope is approximated by a 2nd-order critically damped
system, the model can estimate the target power envelope
using short-term power sequences without being given the
onset positions of the power transition. Inputting the origi-
nal power envelope (the green line in Fig. 5) to the target
prediction model, the estimated target of power envelope (the



Fig. 1. Scheme of emotion conversion system.

Fig. 2. The input (green line) and output (blue line) of target prediction model.
The red line is the stepwise function for which output of target prediction
(blue line) is partially averaged with in the black dashed time points for
every phoneme

blue line in Fig. 5) can be obtained as output. The onset
point T1i and ending point T2i of the ith phoneme from the
original power envelope are segmented manually as shown in
Fig. 5 with the black dashed line. From the estimated target
of power envelope, we calculate the average amplitude Aqi of
the ith phoneme. It means that we change the estimated power
envelope to the stepwise function (the red line in Fig. 5) using
T1i, T2i and Aqi. They are inputs of Eq. 1 that using 2nd-
order critically damped system to reproduce power envelope.
By controlling T1i and T2i, time duration of power envelope
can be controlled. Using Aqi, we can control the magnitude of
the power envelope. And Gb(t) represents the step response
function.

e2y(t) =
I∑

i=1

Aqi[Gb(t− T1i)−Gb(t− T2i)]. (1)

B. Fujisaki model for F0 contour

The Fujisaki model is a mathematical model represented by
the sum of phrase components, accentual components, and the
base line (Fb). The F0 contour can be expressed by

lnF0(t) = lnFb+
I∑

i=1

ApiGpi(t− T0i)

+

J∑
j=1

Aaj{Gaj(t− T1j)−Gaj(t− T2j)}, (2)

Gpi(t) =

{
α2
i t exp(−αit), t ≥ 0

0, t < 0,
(3)

Gaj(t)

{
min[1− (1 + βjt) exp(−βjt), γ], t ≥ 0

0, t < 0.
(4)

where Gp(t) represents the impulse response function of the
phrase control mechanism and Ga(t) represents the step re-
sponse function of the accent control mechanism. The symbols
in these equations forecast
Fb: baseline value of fundamental frequency,
I: number of phrase commands,
J : number of accent commands,
Api: magnitude of the ith phrase command,
Aaj : amplitude of the jth accent command,
T0i: timing of the ith phrase command,
T1j : onset of the jth accent command,
T2j : end of the jth accent command,
α: natural angular frequency of the phrase control mecha-

nism,
β: natural angular frequency of the accent control mecha-

nism,
γ: relative ceiling level of accent components.



Fig. 3. Procedure of the modification step.

Many researchers have utilized the Fujisaki model, and the
work of Mixdorff [20] is adopted in this paper, where α =
1.0/s and β = 20/s.

Through controlling five parameters, Fb, Api, Aaj , T0i, T1j ,
T2j , we can reproduce the F0 contour into the desired shape.

C. Modification procedure

Extracted acoustic features including the F0 and the power
envelope from the source (neutral) speech were modified
according to the estimated displacement of the 21 acoustic
features in step 1.

The modification procedure is shown in Fig. 3. The mod-
ification procedure can be divided into three steps. First, the
duration information of every phoneme is segmented manually.
We modify the duration related acoustic features. In this step,
we modify T1i and T2i for power envelope modification in
the target prediction model and modify T0i, T1j and T2j for
the F0 contour modification in the Fujisaki model. Second,
we obtain the modified Fb, Api, Aaj using the estimated
displacements of the acoustic features from that of the neutral
speech. We apply the Fujisaki model to obtain the modified
F0 contour. Then we modify the spectral tilt by formant
shift. STRAIGHT is used to synthesize speech utilizing the
modified duration, F0 contour and spectral sequence. Third, by
modifying the amplitude Aqi in each phoneme, we acquire the
modified power envelope using a 2nd-order critically damped
system. The modified power envelope is applied to the speech
synthesized in the second step. Then, the final synthesized
speech can be obtained. In Fig. 4, the original power envelope
(red line) and modified power envelope (blue line) with the
position (VA:-0.6,0.6), anger voice are shown. And the original
(dashed) and modified (solid) F0 trajectory of happy voice are
present in Fig. 4.

Fig. 4. The original power envelope (red) and modified power envelope (blue)

Fig. 5. Original F0 trajectory of a neutral speech (dashed) and modified F0
of synthesized speech (solid).

V. EVALUATION

A. Listening Test

In order to verify whether the synthesized speech can be
well perceived by humans, we carried out subjective listening
tests in which subjects evaluated the synthesized speech in the
V-A space.

1) Subjects and Stimuli: In the listening test, four Japanese
subjects (four males, mean 26 years old) with normal hearing
ability gave evaluations on three aspects: activation, valence
and naturalness. On the basic of the listening test in [12],
76 stimuli were synthesized in valence and activation space
represented by dashed line in Fig. 6. The 76 stimuli contains
25 voices of joy, anger and sad in the 1st, 2nd and 3rd quadrant
in V-A space and one neutral voice.

2) Procedure: Subjects were asked to listen to the stim-
uli presented through an audio interface (FIREFACE UCX,
Syntax Japan) and headphones (HDA200, SENNHEISER) in
a soundproof room. The original sound pressure level was 64
dB.

For valence and activation, subjects listened to all stimuli
twice. This was done so that they could acquire an impression
of the whole stimulus the first time and then evaluate one
dimension from -2 to 2. Valence and activation needed to
be done separately in order to avoid conceptual confusion.
Valence and activation were evaluated using 40 scales (Va-
lence: Left [Very Negative], Right [Very Positive]; Activation:
Left [Very Calm], Right [Very Excited]: range −2 ∼ 2 in
increments of 0.1). Subjects evaluated these scales using a



Fig. 6. The intended with dashed line and obtained results from listening test
with solid line in valence and activation space.

Fig. 7. The intended intensity and the obtained intensity in valence and acti-
vation space (the rectangles are the intended intensity and the quadrilaterals
are the obtained intensity).

graphic user interface. During the listening test, subjects could
listen to the stimulus as many times as they wanted.

For naturalness, all synthesized voices were presented once
before subjects gave evaluations. The scale of evaluations was
divided into five levels from bad to excellent (1 ∼ 5). Subjects
gave evaluations according to original speech spoken by a
human whose naturalness is excellent.

B. Results

1) Emotion Perception: The evaluated positions in the
valence and activation space are shown in Fig. 6 with solid
line in each quadrant. Here, the dashed line are the inputs of
the system and the solid lines are the evaluated results from
subjects in the listening test (LT). The dashed lines are what we
want, and the solid lines are what we actually obtained from
the listening test. In Fig. 6, the oval is calculated using average
and standard deviation in each quadrant. In Fig. 6, it shows
that the category of emotion can be perceived by subjects
especially for happy and sad emotion. In Fig. 7, 12 stimuli
with either largest or smallest value of valence or activation
are chosen to represent the intended and obtained intensity of
emotion in each quadrant. The yellow line shows directions
from the intended positions to obtained positions and the

Fig. 8. The mean opinion score for each quadrant.

rectangles are the intended intensity and the quadrilaterals are
the obtained intensity from the listening test in the V-A space.
Among the 12 stimuli, 9 stimuli give the same tendency of
emotion intensity as intended, the larger intended valence and
activation, the larger perceived valence and activation. This
fact confirms this system can not only synthesize emotional
speech with intended category but also can convert neutral
speech to emotional ones with the same tendency of emotion
intensity. However, the value of valence from the rest of the 3
points are not perceived as intended order which influences the
whole shape of each emotion intensity. Therefore, controlling
valence still need more work in the future.

2) Naturalness: The evaluation of the naturalness of syn-
thesized speech is shown in Fig. 8. The mean opinion score of
each quadrant is calculated separately. From these results, we
can see that all naturalness scores are above or near 2, which
means not bad. The excellent synthesized speech in terms of
naturalness was joy, with anger as second. According to the
subjects, the reason why sadness was not good is because the
duration of sad speech was long but the interval in each phrase
was not obvious. Therefore, the synthesized speech seemed
like machine-like. Therefore, more precise control of duration
ratios between voiced and unvoiced periods is needed to be
researched.

VI. CONCLUSIONS

In this paper, we proposed a method of modeling acoustic
features for an emotional voice conversion system. The three-
layered model and ANFIS are utilized as the structure and
connection in the estimation procedure. The target prediction
model and the Fujisaki model in the modification procedure
can satisfactorily parameterize the power envelope and F0
contours continuously. Results of the listening test show that
applying target prediction model and Fujisaki model, the
conversion system for emotion can convert neutral speech to
emotional ones not only with the same category, but also can
controlling the order of emotion intensity in a large scale.
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