
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Scheduling overload for real-time systems using

SMT solver

Author(s) Cheng, Zhuo; Zhang, Haitao; Tan, Yasuo; Lim, Yuto

Citation

2016 17th IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing

(SNPD): 189-194

Issue Date 2016-05-30

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/14283

Rights

This is the author's version of the work.

Copyright (C) 2016 IEEE. 2016 17th IEEE/ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 2016, 189-

194. Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

Scheduling Overload for Real-Time Systems
using SMT Solver

Zhuo Cheng∗, Haitao Zhang†, Yasuo Tan∗, and Yuto Lim∗
∗School of Information Science, Japan Advanced Institute of Science and Technology, Japan

{chengzhuo, ytan, ylim}@jaist.ac.jp
†School of Information Science and Engineering, Lanzhou University, China

htzhang@lzu.edu.cn

Abstract—In a real-time system, tasks are required to be
completed before their deadlines. Due to heavy workload, the
system may be in overload condition under which some tasks
may miss their deadlines. To alleviate the degrees of system
performance degradation cased by the missed deadline tasks,
the design of scheduling is crucial. Many design objectives can
be considered. In this paper, we focus on maximizing the total
number of tasks that can be completed before their deadlines.
A scheduling method based on satisfiability modulo theories
(SMT) is proposed. In the method, the problem of scheduling is
treated as a satisfiability problem. The key work is to formalize
the satisfiability problem using first-order language. After the
formalization, a SMT solver (e.g., Z3, Yices) is employed to
solver such a satisfiability problem. An optimal schedule can
be generated based on a solution model returned by the SMT
solver. The correctness of this method and the optimality of the
generated schedule are straightforward. The time efficiency of the
proposed method is demonstrated through various simulations.
To the best of our knowledge, it is the first time introducing SMT
to solve overload problem in real-time scheduling domain.

Keywords—real-time scheduling, SMT, overload, satisfiability
problem

I. INTRODUCTION

Real-time system is playing an important role in our
society. For example, chemical and nuclear plant control, space
missions, flight control, telecommunications, and multimedia
systems are all real-time systems [1]. In such a system,
sensitivity to timing is the central feature of system behaviors,
which means, tasks in the system are required to be completed
before their deadlines. The execution order of the tasks (i.e.,
schedule) is set by a scheduler. Under normal workload
conditions, a scheduler with a proper scheduling policy can
make all the tasks complete before their deadlines (i.e., meet
their deadlines). However, in practical environment, system
workload may vary widely because of dynamic changes of
work environment. Once system workload becomes too heavy
so that there does not exist a feasible schedule can make all the
tasks meet their deadlines, we say the system is overloaded.

When overload problem happens, it is important to mini-
mize the degrees of system performance degradation cased by
the missed deadline tasks. A system that panics and suffers
a drastic fall in performance when a problem happens, is
likely to contribute to this problem, rather than help solve
it [2]. To achieve this target, the design of scheduling is
crucial, as different scheduling policies will lead to different
degrees of performance degradation. Many objectives for the

design of scheduling policies described in [3, 4] can be
considered. For example, (i) maximizing effective processor
utilization, (ii) maximizing obtained values of completed tasks,
(iii) maximizing total number of tasks that meet deadlines.
The first two objectives are frequently adopted and studied
in literature (e.g., [5, 6, 7]). Compared with them, the last
one is rarely studied, and it is reasonable upon the application
that when a missed deadline task corresponds to a disgruntled
customer, and the aim is to keep as many customers satisfied as
possible [2]. Research on this objective is still at preliminary
stage. This motivates our work. In this paper, we focus on
designing scheduling for overloaded real-time systems with
uniprocessor. Our objective is to maximize the total number
of tasks that meet their deadlines. The main contributions of
this paper are:

i) We propose a scheduling method based on satisfiabil-
ity modulo theories (SMT). In this method, the problem of
scheduling overload is treated as a satisfiability problem. The
key work is to formalize the satisfiability problem using first-
order language. We use a sat model to represent the formalized
problem. This sat model is a set of first-order logic formulas
(within linear arithmetic in the formulas) which express all
the scheduling constraints that a desired optimum schedule
should satisfy. After the sat model is constructed, a SMT solver
(e.g., Z3 [13], Yices [14]) is employed to solve the formalized
problem. An optimal schedule can be generated based on a
solution model returned by the SMT solver. The correctness
of this method and the optimality of the generated schedule
are straightforward. We also conduct various simulations to
evaluate the time efficiency of the proposed method. The
simulation results demonstrate that the SMT-based scheduling
method is more time efficient compared with some well-
known algorithms. To the best of our knowledge, it is the first
time introducing SMT to solve overload problem in real-time
scheduling domain.

ii) In the SMT-based scheduling method, we define the
scheduling constraints as system constraints and target con-
straints. It means if we want to design scheduling to achieve
other objectives (e.g., maximizing effective processor utiliza-
tion), only the target constraint needs to be modified. Or
if we want to achieve the same scheduling objective for
another real-time system with different system architecture
(e.g., multiprocessor), only the system constraints need to be
modified. This means the proposed method is flexible and
sufficiently general.

The remainder of this paper is organized as follows. In

TABLE I. SYMBOLS AND DEFINITIONS

Symbol Definition
t system time instant
T set of real-time tasks
τi real-time task, τi ∈ T , where i is index of the task
ri the request time instant of τi
ci the required execution time of τi
rci the remaining execution time of τi
di the deadline of τi
fi,j the j-th indivisible fragment of τi
fi,e the last indivisible fragment of τi
si,j the start execution time of fi,j
ci,j the required execution time of fi,j

1

2

2

3

2

t t

Fig. 1. Example for underloaded & overloaded

section II, we present the system model and give the research
background. The details of the SMT-based scheduling are
described in section III. Simulation and performance evaluation
are shown in section IV. Section V summarizes the related
works. Conclusions are given in section VI.

II. SYSTEM MODEL, DEFINITION & BACKGROUND

A. System Model

We adopt the general firm-deadline model proposed in [7].
The “firm-deadline” means only tasks completed before their
deadlines are considered valuable, and any task missed its
deadline is worthless to system. A real-time system comprises
a set of real-time tasks waiting to execute. These tasks request
processor to execute when they arrive in the system. Each task
τi is a 3-tuple τi = (ri, ci, di), where i is the index of a task, ri
is the request time instant, ci is the required execution time,
and di is the deadline. A reasonable task should meet that
ri + ci ≤ di. Symbol rci represents remaining execution time
of task τi. Initially, it equals to ci. After τi has been executed
for δ (δ ≤ ci) time slots, rci = ci − δ. If rci = 0, it means τi
has been completed. Symbol T ={τ1, τ2, . . . , τn} denotes the
set of tasks comprised in the system, where n is the number
of tasks.

To allow task preemption, for all tasks in T , task τi is
defined as consisting of a series of indivisible fragment (atomic
operation), denoted by τi : (f1, f2, . . . , fm), where m = |τi|
is the number of fragments in task τi

1. fi,j denotes the j-
th fragment of τi. For convenient, we use fi,e to denote
the last fragment of task τi. We use si,j to represent the
start execution time of fi,j . Symbol ci,j denotes the required
execution time of fj in τi, and for ∀fj ∈ τi,

∑
ci,j = ci.

1The proposed SMT-based scheduling can also deal with condition that task
preemption is prohibited, by just constraining every tasks consisting only one
indivisible fragment.

For 1 ≤ i < m, fi+1 can start to run only when fi has
been completed. A successfully completed task τi means fi,e
has been allocated ci,e time slots in time interval [ri, di). A
task τi should be discarded at system time t, if it features
rci > di − t. For convenience, symbols used throughout the
paper are summarized in Table I.

Applied to this task model, we require all the parameters of
the tasks are known a prior. This requirement makes the task
model become a generalization of the widely studied period
task model, in which all the tasks in the system are released
periodically. This means our method applies more broadly
than other methods dealing with overload problem which are
specified on period task model.

B. Definition

In a real-time system, scheduler can use different schedule
to schedule task set T .

When there exists a schedule can make all tasks meet
their deadlines, the system is underloaded, and the task set is
feasible. On the contrast, when there does not exist a schedule
can make all the tasks meet their deadlines, the system is
overloaded, and the task set is infeasible (ref. [1]).

An example in Fig. 1 is used to elaborate this definition.
As shown in Fig. 1 (a), at t = 0, T ′ = {τ1, τ2}, where
T ′ is the set of tasks that have arrived in the system (not
includes tasks that have been successfully completed or missed
deadlines). Using earliest deadline first (EDF) algorithm to
schedule T ′ can make all tasks meet their deadlines, where
EDF first schedules the task with the earliest deadline. Thus,
the system is underloaded, and the task set T ′ is feasible.
EDF algorithm proposed in literature [10] has been proven as
an optimal scheduling algorithm on uniprocessor. That is, if
using EDF to schedule a task set cannot make all tasks meet
their deadlines, no other algorithms can. Thus, EDF scheduling
algorithm can be used to tell if a task set is feasible.

After system passed a time unit, at t = 1. As shown in
Fig. 1 (b), τ1 has been successfully completed, and a new task
τ3 arrives in the system. At that time, T ′ = {τ2, τ3}. Using
EDF to schedule T ′ can only make τ3 meet its deadline. Task
τ2 should be discarded at t = 2, as rc2 > d2 − t, where
d2 = 3, rc2 = 2. Thus, the system is overloaded, and the task
set T ′ is infeasible.

C. Background

1) Three Representative Scheduling Algorithms: There are
many scheduling algorithms used in various real-time systems.
In this subsection, we study three widely used scheduling
algorithms: shortest remaining time first (SRTF), EDF, and
least laxity first (LLF). Through an example described in Fig.
2, we can study their performance when system is overloaded.
In the example, the lengths of all the indivisible fragments in
all the tasks are set to one.

Scheduling results: (i): SRTF first schedules the task with
the shortest remaining execution time. The scheduling se-
quence is (τ3, τ1, τ1, τ4, τ1). By this sequence, τ4 and τ1 can
be completed sequentially. (ii): EDF first schedules the task
with the earliest deadline. The result of scheduling sequence
is (τ2, τ2, τ2, τ2, τ2, τ4). It can complete τ4 and τ2 sequentially.

LLF

EDF

SRTF

t

discards τ3

discards τ3 discards τ1

discards τ2 discards τ3

discards τ1

τ1= (1,3,7)
τ2= (0,5,5)
τ3= (0,4,6)
τ4= (3,1,8)

0 2 4 6 81 3 5 7

Fig. 2. Performance of scheduling algorithms

(iii): LLF first schedules the task with the least laxity. For τi,
the laxity li is computed as li = di − rci − t. It can complete
tasks τ2 and τ4 sequentially with the same scheduling sequence
generated by EDF.

All of the three scheduling algorithms achieve two as
the number of task completion. We wonder if it is the
maximum value. For this simple example with only four
tasks, we can enumerate all the schedule to find the max-
imum number of task completion. An optimal schedule is
(τ3, τ3, τ3, τ3, τ1, τ1, τ1, τ4) which can complete three tasks τ3,
τ1, and τ4 sequentially. Based on the analysis above, through
this example, we can see that, for overloaded real-time system,
a new scheduling method is needed. This motives our work.
A SMT-based scheduling method is proposed in section III.

2) Satisfiability Modulo Theories (SMT): Satisfiability
modulo theories checks the satisfiability of logic formulas
in first-order formulation with regard to certain background
theories like linear integer arithmetic or bit-vectors [11]. A
first-order logic formula uses variables as well as quantifiers,
functional and predicate symbols, and logic operators [12]. A
formula F is satisfiable, if there is an interpretation that makes
F true. For example, formula ∃a, b ∈ R, (b > a+1.0)∧ (b <
a + 1.1), where R is real number set, is satisfiable, as there
is an interpretation, a 7→ −1.05, b 7→ 0, that makes F true.
On the contrast, a formula F is unsatisfiable, if there does
not exist an interpretation that makes F true. For example,
if we define ∃a, b ∈ Z, where Z is integer set, the formula
(b > a+ 1.0) ∧ (b < a+ 1.1) will be unsatisfiable.

For a satisfiability problem that has been formalized by
first-order logic formulas, a SMT solver (e.g., Z3, Yices) can
be employed to solver such a problem. If all the logic formulas
are satisfiable, SMT solver returns the result sat and a solution
model which contains an interpretation for all the variables
defined in the formulas that makes the formulas true. For the
case ∃a, b ∈ R, the model is: a 7→ −1.05, b 7→ 0. If there is
an unsatisfiable logic formula, SMT solver returns the result
unsat with an empty model, for the case ∃a, b ∈ Z.

III. SMT-BASED SCHEDULING

A. Overview of the SMT-based Scheduling

The overview of the SMT-based scheduling is illustrated
in Fig. 3. In a real-time system, a schedule (execution order
of tasks) is generated by a scheduler. When overload problem
happens, under the specific system and scheduling target, the
scheduling problem can be treated as a satisfiability problem.

Target

Scheduler

Task

system

schedule

System
Constraints

Target
Constraints

SAT Model

/\

SMT Solver (e.g., Z3)

Fig. 3. Overview of the SMT-based scheduling method

In order to use SMT to solve this satisfiability problem,
the key work is to formalize the problem using first-order
language. We use a sat model to represent the formalized
problem. This sat model is a set of first-order logic formulas
(within linear arithmetic in the formulas) which express all
the constraints that a desired optimum schedule should satisfy.
There are two kinds of constraints: system constraints and
target constraints. System constraints are based on the specific
system. For example, for uniprocessor, a schedule should make
sure that the execution of two tasks cannot have overlap in time
domain. Target constraints are based on the scheduling target.
Specific to this paper, a desired optimum schedule should
achieve the maximum number of task completion.

After the sat model is constructed, it can be inputted into
a SMT solver (e.g., Z3). A solution model will be returned by
the SMT solver. This solution model gives an interpretation
for all the variables defined in the sat model, and under
the interpretation, all the logic formulas in the sat model
are evaluated as true. It means the satisfiability problem
represented by the sat model is solved, and based on this
interpretation, a desired optimum schedule can be generated.

B. Scheduling Constraints

This subsection describes all the constraints expressed in
the sat model.

System Constraints

1) Constraint on start execution time of tasks: As a task
can only start to execute after it requests to run, the start time
of the first fragment of a task should be larger than the request
time instant ri.

∀τi ∈ T
si,1 ≥ ri

2) Constraint on start time of different fragments: The
series of fragments consisted in a task should be execute
sequentially. Therefore, a fragment of a task can start to
run only when its previous fragments of the task have been
completed.

∀τi ∈ T ,∀fa, fb ∈ τi
b > a =⇒ si,b ≥ si,a + ci,a

Algorithm 1 Schedule Synthesis
Input: task set T
Output: schedule S
1: A := Assert(T , |T |)
2: M := CallSMTSolver(A)
3: if M 6= ∅ then
4: return S based on model M
5: end if
6: start := 1, end := |T |
7: while true do
8: mid := start+ b(end− start)/2c
9: A := Assert(T ,mid)

10: M := CallSMTSolver(A)
11: if M = ∅ then
12: end := mid− 1
13: else
14: A′ := Assert(T ,mid+ 1)
15: M′ := CallSMTSolver(A′)
16: if M′ 6= ∅ then
17: start := mid+ 1
18: else
19: return S based on model M
20: end if
21: end if
22: end while

3) Constraint on processor: A processor can execute only
one fragment at a time. This is interpreted as: there is no
overlap of the execution time of any fragments of any different
tasks.

∀τi, τj ∈ T , i 6= j, ∀fa ∈ τi, ∀fb ∈ τj
(si,a ≥ sj,b + cj,b) ∨ (sj,b ≥ si,a + ci,a)

4) Constraint on task dependency: In practical system,
tasks usually have dependency relation with each other. For
example, task τj may require the computed result of τi, thus,
τj can start to run only after τi has been completed. We denote
such dependency relation as τi ≺ τj .

∀τi, τj ∈ T
τi ≺ τj =⇒ (sj,1 ≥ si,e + ci,e)∧
(si,e + ci,e > di =⇒ sj,1 = +∞)

This formula expresses that any two tasks that have depen-
dency relation τi ≺ τj , the first fragment of task τj can start to
run only when the last fragment of task τi has been completed.
As the series of fragments consisted in a task are executed
sequentially, this formula can make sure that task τj starts to
run only after τi has been completed. Moreover, if task τi has
not been successfully completed, task τj cannot start to run.

Target Constraints

5) Constraint on scheduling target: A successfully com-
pleted task τi should be completed before its deadline. As
all the fragments consisted in a task run sequentially, this con-
straint can be interpreted as: the last fragment of a successfully
completed task should be completed before its deadline. Let n
be the number of successfully completed tasks, and its initial
value is set to be 0.

∀τi ∈ T
if (si,e + ci,e ≤ di)

n := n+ 1

end

Let symbol sn denote the maximum number of tasks in T that
can be successfully completed, and obviously, sn ≤ |T |. The

t

τ1= (1,3,7)
τ2= (0,5,5)

τ3= (0,4,6)
τ4= (3,1,8)

0 2 4 6 81 3 5 7

discards τ2

discards τ2

with

without

 2 4

 2 4

Fig. 4. Results by using the SMT-based scheduling method for the example
shown in Fig. 2

constraints on scheduling target can be expressed as:

n = sn

C. Schedule Synthesis

After all the constraints are defined, now we can employ
a SMT solver to generate a desired schedule. The process
of schedule synthesis is summarized in Alg. 1. Function
Assert(T , |T |) (line 1) interprets the constraints defined in
section III-B as assertions (boolean formulas that can be in-
putted into a SMT solver) with |T | as the maximum number of
successfully completed tasks (i.e., set sn := |T | in constraint
on scheduling target). The variables of these boolean formulas
are the start time si,j for ∀τi ∈ T ,∀fj ∈ τi. Function
CallSMTSolver(A) (line 2) calls a SMT solver to find a
solution model for A. If such a model does exist, it will be
returned by the function, otherwise, an empty model will be
returned.

We first set sn := |T | in constraint on scheduling target,
that is to expect all the tasks in T can be successfully
completed. If this expectation can be satisfied, which means
overload problem does not happen, modelM will be returned.
As M contains all the values of si,j , for ∀τi ∈ T ,∀fj ∈ τi,
we can extract the start execution time of all the fragments of
all the tasks, which means the schedule S can be generated
(line 1-5).

When overload problem happens, tasks in T cannot all
be successfully completed. This condition is indicated by an
empty model returned by function CallSMTSolver(A), which
means constraint on scheduling target cannot be satisfied.
We need to decrease the setting value of sn. To achieve
the maximum number of task completion means to find the
maximum value of sn with which there exists a solution model.
We use binary search to find the maximum value of sn (line
6–22). With the maximum value of sn, a solution model can
be returned by function CallSMTSolver(A). Meanwhile, with
sn := sn+1, CallSMTSolver(A) will return an empty model.
This is the criterion to judge if the value of sn is the maximum
value. When we get the solution modelM with the maximum
value sn, based on M, the schedule S can be generated (line
19).

Through the procedure of the schedule synthesis, we can
make sure that the maximum value of sn is found. Meanwhile,
as all the constraints of a desired optimum schedule have been
satisfied, which means S can achieve the maximum number
of task completion. This has demonstrated the optimality of

100 200 300

0.8

0.85

0.9

0.95

1

λ = 14

SMT−based
Baseline Alg.

100 200 300

0.8

0.85

0.9

0.95

1

λ = 12

SMT−based

Baseline Alg.

100 200 300

0.8

0.85

0.9

0.95

1

λ = 10

SMT−based

Baseline Alg.

7%

5.3%5.2%

7.6%

7.2%

4.4%

3.1%3.2%2.1%

Fig. 5. Success ratio of the SMT-based scheduling and the baseline algorithms (The x-axis is the total number of input tasks, and the y-axis is the success
ratio.)

100 200 300
0

0.5

1

1.5

2

λ = 14

SMT−based

Baseline Alg.

100 200 300
0

0.5

1

1.5

2

λ = 12

SMT−based

Baseline Alg.

100 200 300
0

0.5

1

1.5

2

λ = 10

SMT−based

Baseline Alg.

54.5%

46.8%

30%

87.9%

93.9%

93.7% 98.6%94.4%

99.4%

Fig. 6. Runtime (in second) of the SMT-based scheduling and the baseline algorithms (The x-axis is the total number of input tasks, and the y-axis is the
simulation runtime.)

the schedule generated by the proposed SMT-based scheduling
method.

D. Scheduling Results

Recall the example shown in Fig. 2. In this example,
T = {τ1, τ2, τ3, τ4}. Based on the schedule synthesis shown
in Alg. 1, we can get the solution model M which defines
the values of si,j for ∀τi ∈ T ,∀fj ∈ τi. The model is
as follows: s1,1 = 4, s1,2 = 5, s1,3 = 6, s2,1 = 8, s2,2 =
9, s2,3 = 10, s2,4 = 11, s2,5 = 12, s3,1 = 0, s3,2 = 1, s3,3 =
2, s3,4 = 3, s4,1 = 7. Based on this model, as shown in Fig.
4 (without τ1 ≺ τ4), we can get the scheduling sequence
S = (τ3, τ3, τ3, τ3, τ1, τ1, τ1, τ4) (as τ2 cannot be successfully
completed, it should not be included in S). This scheduling
sequence can complete three tasks τ3, τ1, and τ4 consequently,
which is the maximum number of task completion for T .

If we add a task dependency relation τ2 ≺ τ4, we can
get the model: s1,1 = 1, s1,2 = 2, s1,3 = 6, s2,1 = 7, s2,2 =
8, s2,3 = 9, s2,4 = 10, s2,5 = 11, s3,1 = 0, s3,2 = 3, s3,3 =
4, s3,4 = 5, s4,1 = 12. Based on this model, as shown in
Fig. 4 (with τ2 ≺ τ4), we can get the scheduling sequence
S = (τ3, τ1, τ1, τ3, τ3, τ3, τ1). This scheduling sequence can
complete two tasks τ3 and τ1 consequently, which is also
the maximum number of task completion for T with the
dependency relation τ2 ≺ τ4.

IV. SIMULATION & EVALUATION

In this section, we present the results of simulations
which are conducted to study the performance of the SMT-
based scheduling method. We have implemented a prototype
tool for the proposed SMT-based scheduling based on the

system model, constraints formulation, and schedule synthesis
described above. The underlying SMT solver employed by the
tool is Z3, which is a state-of-the art SMT solver. Three well
known algorithms: SRTF, EDF, and LLF are adopted as the
baseline algorithms.

A. Simulation Settings

The metrics used to evaluate the scheduling performance
are: i) success ratio, which denotes the ratio of input tasks that
have been completed before their deadlines; and ii) simulation
runtime, which denotes the time of the corresponding schedul-
ing methods scheduling all the input tasks. The input tasks are
generated according to uniform distribution with arriving rate λ
which represents the number of tasks that arrive in the system
per 100 time units. As the workload can be changed by λ, the
attributes of tasks in our simulations are given a simple setting.
For each task τi, ci varies in [1 13]. The assignment of di is
according to the equation: di = ri + sfi ∗ ci, where sfi is the
slack factor that indicates the tightness of task deadline. For
each task τi, sfi varies in [1 4].

In a well-defined system, usually the length of system
overload time is not long, and the degree of system overload
is not serious. If a system is under overload condition for a
long time or the degree of the system overload is very serious,
it means the capacity of the system is not enough to handle
its work. Based on this observation, we set the values of λ as
14, 12, and 10 to represent different degrees of system overload
conditions. The input total number of tasks are set as 100, 200,
and 300 to represent different lengths of system overload time.
All the simulations are run on a 64bit 4-core 2.5 GHz Intel
Xeon E3 PC with 32GB memory.

B. Evaluation

The simulation results are shown in Fig. 5 and Fig. 6. The
values shown in the figures are the average value of running
simulation 100 times. As the performance of the three baseline
algorithms are almost the same (their differences are within
1%) in terms of both the success ratio and the simulation
runtime, we use the line Baseline Alg. to denote the baseline
algorithms in Fig. 5 and Fig. 6. The percentage numbers
shown in the figures are the percentage of the performance
improvement by using the SMT-based scheduling method
compared with the baseline algorithms.

For successful ratio, through the analysis in section III,
the SMT-based scheduling can achieve the optimum result.
As shown in Fig. 5, the values of success ratio for the SMT-
based scheduling are larger than the baseline algorithms under
all the combinations of λ and total number of input tasks.
For simulation runtime, the performance of the SMT-based
scheduling method is also the best among all the methods.
From Fig. 6, it can be seen that the value of simulation runtime
for the SMT-based scheduling is much smaller than it for the
baseline algorithms, and the improvement is quite obvious.
This has demonstrated the time efficiency of the SMT-based
scheduling method.

V. RELATED WORK

In the literature on real-time systems, several scheduling
algorithms have been proposed to deal with the overload
problem. A scheduling algorithm called DMB (dynamic misses
based) was proposed in [8]. It is capable of dynamically
changing the importance of tasks for adjusting their timing
faults rate (ratio of tasks that missed deadlines). The main
goal of DMB is to allow the prediction of timing faults
during system overload. In [9], the problem of selecting tasks
for rejection in an overloaded system is considered. Random
criticality values are assigned to tasks. The goal is to schedule
all of the critical tasks and make sure that the weight of rejected
non-critical tasks is minimized. Compared to these works,
we study the systems in which tasks are equally important.
Therefore, the methods of scheduling tasks based on their
importance cannot be applied.

Some approaches focus on providing less stringent guar-
antees for temporal constraints. The elastic task model (ETM)
proposed in [6] aims at increasing task periods to handle over-
load in adaptive real-time control systems. In ETM, periodic
tasks are able to change their execution rate to provide different
qualities of service. Authors in [7] introduced skippable tasks
which are allowed to miss deadlines occasionally. Each task is
assigned to a skip parameter which represents the tolerance
of this task to miss deadline. A scheduling algorithm was
proposed to adjust the system workload such that tasks adhere
to their timing and skip constraints. Compared to these works,
the parameters of tasks in our system are set a priory, and
the system workload is decided by outside environment. Thus,
the methods of adjusting system workload or changing tasks’
parameters are not suitable.

In [2], authors studied some special cases of overloaded
systems. They impose certain constraints on the values of task
attributes. For example, under a special case equal to request
times, all tasks have the same request time. Compared to this

work, our proposed SMT-based scheduling only requires the
request times of all tasks are known in advanced rather have the
same value, which means our method is much more practical
than the methods studied in [2].

VI. CONCLUSION

In this paper, to solve the overload problem of real-time
systems, a SMT-based scheduling method is proposed. In the
method, the problem of scheduling is treated as a satisfiability
problem. After using first-order language to formalize the
satisfiability problem, a SMT solver is employed to solver such
a problem. An optimal schedule can be generated based on a
solution model returned by the SMT solver. The correctness of
this method and the optimality of its generated schedule are
straightforward. Through various simulations, the simulation
results demonstrate that the SMT-based scheduling method
is more time efficient compared with the well-know baseline
algorithms.

REFERENCES

[1] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9, pp. 1250–
1258, Apr. 2009.

[2] S.K. Baruah, J. Haritsa, and N. Sharma, “On-line scheduling to max-
imize task completions,” Proc. 15th IEEE Real-Time Syst. Symp., San
Juan, Puerto Rico, pp. 228–236, Dec. 1994.

[3] A. Burns, “Scheduling hard real-time systems: a review,” Software Eng.
J., vol. 6, no. 3, pp. 116–128, May 1991.

[4] S.K. Baruah and J.R. Haritsa, “Scheduling for overload in real-time
systems,” IEEE Trans. Comput., vol. 46, no. 9, pp. 1034–1039, Sept.
1997.

[5] P. Mejia-Alvarez, R. Melhem, D. Mosse, and H. Aydin “An incremen-
tal server for scheduling overloaded real-time systems,” IEEE Trans.
Comput., vol. 52, no. 10, pp. 1347–1361, Oct. 2003.

[6] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” Proc. 19th IEEE Real-Time Syst. Symp., Madrid, Spain,
pp. 286–295, Dec. 1998.

[7] A. Marchand, M. Chetto, “Dynamic scheduling of periodic skippable
tasks in an overloaded real-time system,” Proc. 6th IEEE/ACS Int. Conf.
on Comput. Syst. and Applicat., Doha, Qatar, pp. 456–464, Apr. 2008.

[8] C. Tres, L.B. Becker, and E. Nett, “Real-time tasks scheduling with
value control to predict timing faults during overload,” Proc. 10th IEEE
Int. Symp. on Object and Component-Oriented Real-Time Distributed
Computing, Santorini Island, Greece, pp. 354–358, May 2007.

[9] S. Hwang, C.M. Chen, and A.K. Agrawala, “Scheduling an overloaded
real-time system,” Proc. 15th IEEE Int. Phoenix Conf. on Comput. and
Commun., Arizona, USA, pp. 22–28, Mar. 1996.

[10] C.L. Liu and J.W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp.
40–61, Jan. 1973.

[11] C. Barrett, R. Sebastiani, R. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” Handbook of Satisfiability, vol. 185. IOS Press, 2009.

[12] L.d. Moura N. Bjrner, “Satisfiability Modulo Theories: An Appetizer,”
Formal Methods: Foundations and Applications, vol. 5902, pp. 23–26,
2009.

[13] L. Moura and N. Bjrner, “Z3: an efficient SMT solver,” Proc. 14th Int.
Conf. on Tools and Algorithms for the Construction and Anal. of Syst.,
Budapest, Hungary, LNCS 4963, pp. 337–340, Springer-Verlag, 2008.

[14] B. Dutertre, “Yices 2.2,” Proc. 26th Int. Conf. on Comput. Aided
Verification, Vienna, Austria, LNCS 8559, pp. 737–744, Springer In-
ternational Publishing, 2014.

