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Chapter 1

Introduction

In 1958, Kurt G�odel [5] suggested an interpretation of intuitionistic arithmetic in a

quanti�er-free theory of functionals of �nite type, an interpretation which has since come

to be known as G�odel0s Dialectica interpretation.

First G�odel Dialectica interpretation was introduced to provide a consistency proof

for intuitionistic arithmetic by elementary logic by an interpretation of an arithmetical

statement by a quanti�er-free formula in a theory of objects of �nite type.

The Dialectica interpretation reduces HA to a theory T , where HA is intuitionistic

�rst-order arithmetic \Heyting Arithmetic" and T is a quanti�er-free theory of computable

�nite-type functionals, which is de�ned by schemata for explicit de�nition and a natural

extension of primitive recursion to �nite types, and are therefore called primitive recursive

functionals of �nite type. Atomic formulas of T are term equations : t� =� s
� or t = s,

where � is type. Axioms are initial sequents of HA, de�nition formulas of functionals and

axioms of equality for each type. Inference rules are propositional logic and its induction

rule.

G�odel tried to extend T to the system of intuitionistic higher type arithmetic. This

higher type arithmetic is called HA!. We can get HA! from T by adding each type

quanti�ers and rules (or from HA by putting type to each function symbols and variables)

.

Let A be any formula of HA!. We associate its Dialectica interpretation AD, which

is a formula of the form

AD
� 9~Y 8 ~XA(~Y ; ~X),

where A is a quanti�er-free formula of HA!.

Then G�odel's main result is as follows:

if A and AD are provable in HA!, then there exists

a primitive recursive functional f such that 8 ~XA(f( ~X); ~X) is provable in HA!.

Specially,

if A is provable in HA and AD is provable in HA! , then there exists

a primitive recursive function f such that 8~xA(f(~x); ~x) is provable in HA!.

4



This is called functional interpretation.

On the other hand, Troelstra[10] used an other method of realizability for same purpose

in 1973.

First realizability by numbers was introduced by Kleene in 1945 as a semantics for

intuitionistic arithmetic. A notion \n kr P" (n realizes P ) means \a number n has a

property P" . In other words, \there is a number n such that P is true". This realizability

is called Kleene realizability.

Realizability used by Troelstra for computable functionals is modi�ed realizability.

This was �rst introduced and used by Kreisel in 1959. Modi�ed realizability in its abstract

form provides interpretations the various HA!-versions into themselves. One of main re-

sults by Kreisel is that Markov's principle is not validated by modi�ed realizability, where

Markov's principle is the form of \::9xA! 9xA". Modi�ed realizability transform each

formula A to ~xmr A (~x modi�ed realizes A). Then a notion ~xmr A means \a list of

terms ~x makes A true in HA!" . In other words, \there is a list of terms ~x such that A

is true in HA!".

Troelstra used the systems HA! same as G�odel . He proved two theorems. One is that

if 8~x9yA(~x; y) is a theorem of HA!, then there exists a primitive recursive functional f

and a term ~t such that 8~x(~t(~x)mr A(~x; f(~x))) is a theorem of HA!. Another is that if

8~x[~t(~x)mr A(~x; f(~x))] is a theorem of HA!, then 8~xA(~x; f(~x)) is a theorem of HA!.

G�odel and Troelstra proved the relations computable functionals and logical arith-

metics HA, HA!. So we consider logical arithmetic which is related to polynomial time

computable functionals.

Arithmetic for polynomial time computable functionals was �rst suggested by Stephan

A. Cook[3] in 1975. This system is called PV (\Polynomially veri�able"). Cook patterned

after Skolem's equational theory of primitive recursive arithmetic. Whereas Skolem's

system has a function symbol for each primitive recursive function, PV has one for each

polynomial time computable function. This system is logic free.

Cook's motivation for PV came from two general sources. One is the basic open

problem in complexity theory of whether P equals NP , where P is a class of polynomial

time computable functions (or a class based on deterministic Turing machine) and NP is

a class based on nondeterministic Turing machine. His approach is to try to show they

are not equal, by trying to show that the set of tautologies is not in NP (of course its

complement is in NP ). The second motivation comes from constructive mathematics. A

constructive proof of, say, a statement 8xA must provide an e�ective means of �nding

a proof of A for each value of x, but nothing is said about how long this proof is as a

function of x. If the function is exponential or super exponential, then for short values of

x the length of the proof of the instance of A may exceed the number of electrons in the

universe. Thus one can question the sense in which our original \constructive\ provides

a method of verifying 8xA for such values of x.

In 1985, Buss[1] introduced a system S1
2 of arithmetic based on classical �rst order

predicate calculus. One of non-logical axioms of S1
2 is thirty-two BASIC axioms. BASIC

axioms are axioms for function symbols and predicate symbols. Another of non-logical

axioms of S1
2 is �

b+
1 � PIND axiom scheme which is the form of
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[A(0) ^ 8x(A(b1
2
xc))]! A(x),

where A is a �b+
1 -formula.

Buss's main theorem is that

if

(1) 8~x(9y � t)A(~x; y)

(2) 8~x8y8z[A(~x; y) ^ A(~x; z)! y = z]

are provable in S1
2 then a function f which satis�es 8~xA(~x; f(~x)) is

a polynomial time computable function, where A(~x; y) is a �b+
1 formula.

De�nition of �b+
1 formula is in Chapter 2.

In 1986 Buss[2] developed an intuitionistic version IS 1
2B of S1

2 . This is an extension

of earlier work on the classical Bounded Arithmetic and was �rst conjectured by Stephan

Cook. IS 1
2B contains polynomial hierarchy functionals of �nite type. Buss proved relation

for polynomial time computable functions and arithmetic same as S1
2 . But de�nition of

IS 1
2B is complicated. One of complicated de�nition is a de�nition of axioms of IS 1

2B.

Non-logical axioms of IS 1
2B are follows.

(1) If A and B are H�b

1-formulas and (A!B) is theorem of S1
2 ,

then (A!B) is axiom of IS 1
2B.

(2) H�b

1-PIND axiom scheme

Axiom (1) is too complicated to use IS 1
2B for inference. Another of complicated de�nition

is a de�nition of a class of polynomial time computable functions. Buss used a de�nition of

a class of polynomial time computable function by p-types, 2P

1 -functionals and extended

2
P

1 -functionals.

Therefore Cook[4] developed an another intuitionistic version IS 1
2 in 1993. Cook

cleared upper two problems. Axioms and rules of inference in IS 1
2 is simple. And Cook

used Cobham's function algebra as a de�nition of a class of polynomial time computable

functions.

The system HA for computable functions and the system IS 1
2, IS

1
2B for polynomial

time computable functions are based on intuitionistic logic. Especially although the class

of polynomial time already has an arithmetic of classical logic version S1
2 , the intuitionistic

logic version is considered. Why intuitionistic logic not classical logic? We answer by two

examples of di�erence between classic logic and intuition principle logic. The 1st example

is as follows. In classical logic, in order to prove A _ B, there are two methods, where A

and B are formulas. One is to prove A or B. Another is to prove that if assume :A^:B

6



then arise contradiction. In intuitionistic logic, in order to prove A _ B, there is only a

method. It is to prove A or B. Another method which is to prove that if assume :A^:B

then arise contradiction is not allowed. The 2st example is as follows. In classical logic,

in order to prove 9xA(x), there are two methods. One is to �nd x such that A(x) is true.

Another is to prove that if assume 8x:A(x) then arise contradiction. In intuitionistic

logic, in order to prove 9xA(x), there is only a method. It is to to �nd x such that A(x) is

true. Another method which is to prove that if assume 8x:A(x) then arise contradiction

is not allowed. That is, it means that the proof based on intuitionistic logic had proved

concrete existence in �nite. Therefore it is necessary to prove on intuitionistic logic.

The aim of this thesis is the establishment of the system about \feasibly constructive

proof ". Constructive proof is to algorithm and feasibly constructive proof is to polynomial

time algorithm. In Chapter 2, �rst we de�ne the system S1
2 , IS

2
1 and IS 2

1B. And we

compare IS 2
1 with IS

2
1B. Finally we prove that IS

1
2 has same properties as IS

2
1B. In Chapter

3, �rst we de�ne the Cook's system PV . And we prove that all of initial functions of IS 2
1

are de�nable in PV . But for this proof we need 206 de�nes, derived rules and theorems.

In Chapter 4, �rst we introduce intuitionistic predicate logic into PV . We call this system

IPV. And main theorem in this chapter is to prove that IPV is a conservative extension

of IS 2
1. In Chapter 5, we introduce the typed �-calculus. This carries out the role of T for

HA. We de�ne types. In Chapter 6, �rst we introduce higher types into PV . And adding

a constant R. We call this system PV !. Main theorem of this chapter is to prove that

PV ! is a conservative extension of PV . In Chapter 7, �rst we introduce intuitionistic

many-sorted predicate logic into PV !. Main theorem of this chapter is to prove that

IPV ! is a conservative extension of IPV. In Chapter 8, �rst we de�ne realizability for

IPV !. Main theorem of this chapter is to prove same as Buss's main theorem for IPV !.

In Chapter 9, �rst we de�ne Dialectica interpretation for IPV !. Next, we prove (MP )

and A $ AD are equivalent over IPV !. This chapter has two main theorems. One is

same as realizability to prove same as Buss's main theorem for IPV !. Another is to prove

that IS 2
1 is equivalent to IS 2

1B.

Note that, in this thesis, we follow the notations and the de�nitions in Cook [4] .
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Chapter 2

The System IS
1

2

In 1985 Buss [1] introduced a system S1
2 of arithmetic based on classical �rst order predi-

cate calculus. system S1
2 is very closely related to the computational complexity classes of

the polynomial time hierarchy and use the language 0; S;+; �;#; jxj; b1
2
xc and � ; where

The # function is de�ned so that x#y = 2jxj�jyj. The # function was �rst introduced

Nelson, and it is evident that the # function has essentially the same growth rate as

the !1-function. Buss proved that de�nable functions in his system are precisely the

polynomial time computable functions.

In a later paper [2] Buss developed an intuitionistic version IS1
2B of S1

2 . This is an

extension of earlier work on the classical Bounded Arithmetic and was �rst conjectured

by Stephan Cook. IS1
2B contains polynomial hierarchy functionals of �nite type. But

de�nition of IS1
2B is complicated. Therefore Cook [4] developed an another intuitionistic

version IS1
2 in 1993. We de�ne the system IS1

2 , IS
1
2B and S1

2 in next two sections.

2.1 Syntax and Rules of Natural Deduction

Notation 2.1.1

(1) � is syntactic identity.

(2)
d

� is de�nitional equality.

(3) S[t/x] is the result of substituting t for free occurrences of x in S, after changing

bound variables in S to avoid clashes. (S can be a term or formula.)

De�nition 2.1.2 A language of IS1
2 , IS

1
2B and S1

2 consist of the following symbols.

(1) propositional connectives ; _, ^, !

(2) quanti�ers ; 8, 9

(3) equality predicate ; =

(4) constant ; 0
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(5) variables ; x; y; z; � � �

(6) one-place function symbols ; Sx, jxj, b1
2
xc

(7) two-place function symbols ; x + y, x � y, x]y

(8) two-place predicate ; x � y

De�nition 2.1.3

1
d

� S0 :A
d

� (A! (0 = 1))

2
d

� SS0 A$ B
d

� (A! B) ^ (B ! A)

De�nition 2.1.4 Terms are de�ned inductively as follows.

(1) 0 is term,

(2) Variables are terms,

(3) If t1 and t2 are terms, then St1, jt1j, b
1
2
t1c, t1 + t2, t1� t2 and t1 ] t2 are terms,

(4) Terms are only those expressions obtained by (1)-(3).

De�nition 2.1.5 Formulas are de�ned inductively as follows.

(1) If t1 and t2 are terms, then t1 = t2 and t1 � t2 are formulas. These formulas are

called atomic formula.

(2) If A and B are formulas, then A _B, A ^ B and A! B are formulas.

(3) If A is formula and x is a variable, then 8xA, 9xA are formulas.

(4) Formulas are only those expressions obtained by (1)-(3).

De�nition 2.1.6 Free occurrence and bounded occurrence are de�ned inductively as

follows.

(1) Every occurrence of a variable in an atomic formula is free.

(2) Every occurrence of a variable in B _C, in B ^C or in B ! C is free if and only

if the corresponding occurrence in B or C is free.

(3) Every occurrence of a variable in B _ C, B ^ C or in B ! C is bounded if and

only if the corresponding occurrence in B or C is bounded.

(4) Every occurrence of the variable x in 8xA and 9xA is bounded. The occurrence of

the other variables in 8xA and 9xA are the same as the corresponding occurrences

in A.
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De�nition 2.1.7 A[t=x] is de�ned inductively as follows.

(1) If A is atomic formula (s1=s2, s1 � s2), then A[t/x] means s1[t=x] = s2[t=x] and

s1[t=x] � s2[t=x].

(2) If A is B �C (where � is any of \_", \^" or \!" ), then A[t=x] is B[t=x] �C[t=x].

(3) If A is 8zB or 9zB,then

(a) if x is z, A[t=x] means A.

(b) else if x is not z, then

i. if z is not contained in t, then A[t=z] means 8z(B[t=x]) and 9z(B[t=x]).

ii. else A[t=x] means 8u((B[u=z])[t=x]) and 9u((B[u=z])[t=x]) (where u is

not contained in A and t).

De�nition 2.1.8 subformula is de�ned inductively as follows.

(1) A is subformula of A.

(2) If A is B�C (where � is _, ^ or!), then the subformulas of A are the subformulas

of A and of B.

(3) If A is 8zB or 9zB, then the subformulas of A are the subformulas of B.

De�nition 2.1.9 Let A be a formula and t be a term not containing x.

We de�ne bounded quantifier as follows:

(9x � t)A
d

� 9x(x � t ^ A)

(8x � t)A
d

� 8x(St � x _ A)

We de�ne sharply bounded quantifier as follows:

(9x � jtj)A
d

� 9x(x � jtj ^ A)

(8x � jtj)A
d

� 8x(Sjtj � x _ A)

De�nition 2.1.10 hierarchy of bounded formulas is de�ned as follows.

(1) �b

0 = �b

0 is the set of formulas all of whose quanti�ers are sharply bounded.

(2) �b

k+1 is de�ned inductively by ;

(a) �b

k
� �b

k+1 ;

(b) If A is in �b

k+1 then so are (9x � t)A, (8x � jtj)A ;

(c) If A and B are in �b

k+1, so are A _B, A ^ B ;

(d) If A is in �b

k+1 and B is in �b

k+1, then :B and B ! A are in �b

k+1 ;

(3) �b

k+1 is de�ned inductively by

10



(a) �b

k
� �b

k+1 ;

(b) If A is in �b

k+1 then so are (8x � t)A and (9x � jtj)A ;

(c) If A and B are in �b

k+1, so are A _B, A ^ B ;

(d) If A is in �b

k+1 and B is in �b

k+1, then :B and B ! A are in �b

k+1 ;

(4) �b

k+1 and �b

k+1 are the smallest sets which satisfy (1)-(3).

De�nition 2.1.11

(1) A formula is positive if it contains no occurrence of !.

(2) A formula is in H�b

1 if all subformula of A are in �b

1.

(3) A formula is in �b+
1 if it is both positive and in �b

1.

De�nition 2.1.12 NJ , NK and Identity Rules(IR) are de�ned as follows.

(1) NJ is given by the following rules of inference :

[A] [A] [B]
...

...
...

B
A!B

(! I)
A A!B

B
(! E)

A_B C C
C

(_E)
?

A
(?)

A
A_B

(_I)
B

A_B
(_I)

A B
A^B

(^I)
A^B
A

(^E)
A^B
B

(^E)

A(x)
...

A(x)

8xA(x)
(8I)

8xA(x)

A(t)
(8E)

A(t)

9xA(x)
(9I)

9xA(x) B

B
(9E)

where [A] and [B] are hypothesis which we may cancel from proof, and in (8I) the

variable x may not occur free in any hypothesis on which A(x) depends, and in

(8E) and (9I) t is free for x, and in (9E) x is not free in B, or in a hypothesis of

the subderivation of B, other than A(x).

(2) NK is given by the following rules of inference adding NJ :

[:A]
...
?

A
(RAA)
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(3) IR is given by the following rules of inference :

x=x
(IR1)

x=y
y=x

(IR2)
x=y y=z

x=z
(IR3)

x=y A
A[y=x]

(IR4).

2.2 De�nition of IS1
2, IS

1
2B and S

1
2

De�nition 2.2.1 BASIC axioms are de�ned as follows.

(1) x = Sx! 0 = 1

(2) 0 � x

(3) x � y ! (x = y _ Sx � y)

(4) (x � y ^ y � z)! x � z

(5) (x � y ^ y � x)! x = y

(6) x � y _ y � x

(7) j0j = 0

(8) S0 � x! j2 � xj = S(jxj)

(9) jS(2 � x)j = S(jxj)

(10) x � y ! jxj � jyj

(11) jx]yj = S(jxj � jyj)

(12) 1]1 = 2

(13) x]y = y]x

(14) jxj = juj+ jvj ! x]y = (u]y) � (v]y)

(15) x+ 0 = x

(16) x+ Sy = S(x+ y)

(17) (x+ y) + z = x+ (y + z)

(18) x+ y � x + z $ y � z

(19) x � 1 = x

(20) x � (y + z) = (x � y) + (x � z)

(21) x = (b1
2
xc + b1

2
xc) _ x = S(b1

2
xc + b1

2
xc)
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De�nition 2.2.2 We de�ne some induction axioms as follows.

(1) �b+
1
�PIND axiom scheme :

[A(0) ^ 8x(A(b1
2
xc))]! A(x)

where A is a �b+
1 -formula.

(2) H�b+
1
�PIND axiom scheme :

[A(0) ^ 8x(A(b1
2
xc))]! A(x)

where A is a H�b+
1 -formula.

(3) �b+
1
� LIND axiom scheme :

[A(0) ^ 8x(A(x)! A(Sx))]! A(jxj)

where A is a �b+
1 -formula.

De�nition 2.2.3 Let � be set of axiom schemes and rules of inference. If formula A is

deduced from �, then we write � ` A

De�nition 2.2.4

(1) Axioms and Rules of Inference for IS1
2

Rules of Inference

(1) NJ

Non-Logical Axioms

(1) BASIC axioms

(2) �b+
1 {PIND axiom scheme

(2) Axioms and Rules of Inference for S1
2

Rules of Inference

(1) NK

Non-Logical Axioms

(1) BASIC axioms

(2) �b+
1 {PIND axiom scheme

(3) Axioms and Rules of Inference for IS1
2B

Rules of Inference

(1) NJ

Non-Logical Axioms

(1) If A and B are H�b

1-formulas and (A! B) is theorem of S1
2 ,

then (A! B) is axiom of IS1
2B.

(2) H�b

1{PIND axiom scheme
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2.3 Equivalence of IS1
2 and IS

1
2B

A purpose of this section is to prove the theorem \ H�b

1� PIND scheme is derivable in

IS1
2". This theorem is useful of proof that IS1

2 and IS
1
2B are equivalent. This proof is in

section 9.

De�nition 2.3.1 We associate with each formula A of IS1
2 two positive formula POS(A)

and NEG, the positive and negative transforms of A.

(1) For A atomic :

POS(A) = A NEG(x = y) = (Sx � y _ Sy � x)

NEG(x � y) = (Sy � x)

(2) POS(A! B) = NEG(A) _ POS(B)

NEG(A! B) = POS(A) ^NEG(B)

(3) POS(A ^B) = POS(A) ^ POS(B)

NEG(A ^B) = NEG(A) _NEG(B)

(4) POS(8xA) = 8xPOS(A)

NEG(8xA) = 9xNEG(A)

(5) POS(A _B) = POS(A) _ POS(B)

NEG(A _B) = NEG(A) ^NEG(B)

(6) POS(9xA) = 9xPOS(A)

NEG(9xA) = 8xNEG(A)

This transforms take away \!" from the formula A. After all POS(A) and NEG don't

contain \!".

Lemma 2.3.2 IS1
2 ` (POS(A)! A) ^ (NEG(A)! :A)

(proof) We prove by induction on the complexity of A.

(1) A is atomic.

POS(A)! A is obvious. Therefore we need to prove Sx � y! (x = y ! (0 = 1))

and Sy � x ! (x � y ! (0 = 1)), which follow easily from the BASIC axioms 1,

2, 4, 5, 15, 16, 18, via the theorem x � x + y and its corollary x � Sx.

For the remaining cases, assume that IS1
2 ` (POS(B) ! B) ^ (NEG(B) ! :B)

and IS1
2 ` (POS(C)! C) ^ (NEG(C)! :C), where B and C are formulas.

(2) A � (B ! C), (B ^ C), (8xB), (B _ C) and (9xB).

For each case, we can prove by hypothesis and intuitionistic logic.

14



Lemma 2.3.3 IS1
2 ` x = y _ :(x = y)

(proof) By BASIC axioms 3 and 6, IS1
2 ` x = y _ NEG(x = y). The result follows by

IS1
2 ` NEG(x = y)! :(x = y)(from lemma 1.3.2).

Lemma 2.3.4 IS1
2 ` 2 � x = x + x

(proof)

By �b+
1 �PIND. The basis requires BASIC axioms 2,5,15,18,19 and 20. The induction

step is based on axiom 21 and requires the theorem 1 + x = Sx, which again uses �b+
1 �

PIND based on axiom 21.

If we use BASIC axiom n (n is 1 to 21) then we abbreviate (B.n).

Lemma 2.3.5 IS1
2 ` x = 0 _ jxj = S(jb1

2
xcj)

(proof)

By (B:8),

IS1
2 ` 2 � b1

2
xc = x! (S0 � b

1
2
xc ! jxj = S(jb1

2
xcj)). � � � � � � (α).

By (B:9); (IR4) and (!),

IS1
2 ` S(2 � b

1
2
xc) = x! (S0 � b

1
2
xc ! jxj = S(jb1

2
xcj)). � � � � � � (β).

By (α),(β) and (B:21)

IS1
2 ` S0 � b

1
2
xc ! jxj = S(jb1

2
xcj). � � � � � � (γ).

Hence

IS1
2 ` S0 � b

1
2
xc ! (x = 0 _ jxj = S(jb1

2
xcj)).

By 0 � b
1
2
xc(B:2) and 0 � b

1
2
xc ! (0 = b

1
2
xc _ S0 � b

1
2
xc)(B:3)

IS1
2 ` 0 = b

1
2
xc _ S0 � b

1
2
xc.

By 0 = b
1
2
xc ! 0 = x

IS1
2 ` 0 = x _ S0 � b

1
2
xc. � � � � � � (δ)

By (γ) and (δ)

IS1
2 ` x = 0 _ jxj = S(jb1

2
xcj).

Lemma 2.3.6 The scheme of �b+
1 � LIND is provable in IS1

2 .

(proof) Let formula A(x) be any formula which satis�es IS1
2 ` A(0)^8x(A(x) ! A(Sx))

and formula B(x) be A(jxj). By IS1
2 ` A(0) and (B.7), IS1

2 ` A(j0j). Therefore

IS1
2 ` B(0). � � � � � � (α)

By 8x(A(x)! A(Sx)),

IS1
2 ` A(jb

1
2
ycj)! A(S(jb1

2
ycj)).

By S(jb1
2
ycj) = jyj;

IS1
2 ` S(jb

1
2
ycj) = y ! (A(jb1

2
ycj)! A(jyj))

By y = 0; b1
2
0c; (IR4) and (! E) � � � � � � (β)

IS1
2 ` y = 0! (A(jb1

2
ycj)! A(jyj)) � � � � � � (γ).

By (β),(γ) and (y = 0 _ S(jb1
2
ycj) = y) (lemma 1.3.5)

15



IS1
2 ` (A(jb1

2
ycj)! A(jyj)).

By de�nition of B(x)

IS1
2 ` (B(b1

2
yc)! B(y)). � � � � � � (δ)

By (α),(δ) and �b+
1 � PIND

IS1
2 ` 8y(B(y)).

By de�nition of B(x)

IS1
2 ` 8x(A(jxj)).

Therefore

IS1
2 ` A(0) ^ 8x(A(x)! A(Sx))! 8xA(jxj).

Lemma 2.3.7 If A is �b

0 formula then IS
1
2 ` POS(A) _NEG(A).

(proof) We prove by induction on the complexity of A.

(1) A � (x = y)

By lemma 2:3:3.

(2) A � (x � y)

We need to prove x � y _ Sy � x. By (B:3),y � x! x � y _ Sy � x. By this and

x � y ! x � y _ Sy � x, (x � y _ y � x) ! x � y _ Sy � x. By this and (B:6),

x � y _ Sy � x.

For the remaining cases, assume that IS1
2 ` POS(B)_NEG(B), IS

1
2 ` POS(C)_

NEG(C) and IS1
2 ` POS(E(x)) _ NEG(E(x)), where A, B and E(x) are �b

0

formulas. And de�ne formula D(x) as Sjtj � x, where x is a variable and t not

contained x and y. Then since D(x) is atomic, IS1
2 ` POS(D(x)) _NEG(D(x)).

(3) A � (B ^ C)

We need to prove POS(B ^ C) _NEG(B ^ C), i:e:

(POS(B) ^ POS(C)) _ (NEG(B) _NEG(C)).

By hypothesis,

` POP (B) _ (NEG(B) _NEG(C)) and ` POS(C) _ (NEG(B) _NEG(C)).

By POS(B) _ (NEG(B) _NEG(C)),

` POS(C)! [(POS(B) ^ POS(C)) _ (NEG(B) _NEG(C))].

Hence

` (NEG(B) _NEG(C))! [(POS(B) ^ POS(C)) _ (NEG(B) _NEG(C))].

By POS(C) _ (NEG(B) _NEG(C)),

` (POS(B) ^ POS(C)) _ (NEG(B) _NEG(C)).

(4) A � (B _ C)

We need to prove POS(B _ C) _NEG(B _ C), i:e:

(POS(B) _ POS(C)) _ (NEG(B) ^NEG(C)).

By hypothesis,

` (POP (B) _NEG(C)) _NEG(B) and ` (POP (B) _NEG(C)) _NEG(C).

By (POP (B) _NEG(C)) _NEG(B),
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` NEG(C)! [(POP (B) _NEG(C)) _ (NEG(B) ^NEG(C))].

Hence

` (POP (B) _NEG(C))! [(POP (B) _NEG(C)) _ (NEG(B) ^NEG(C))].

By (POP (B) _NEG(C)) _NEG(C),

` (POP (B) _NEG(C)) _ (NEG(B) ^NEG(C)).

(5) A � (B ! C)

We need to prove POS(B ! C) _NEG(B ! C), i:e:

(NEG(B) _ POS(C)) _ (POS(B) ^NEG(C)).

By hypothesis,

` (NEG(B) _ POS(C)) _ POS(B) and ` (NEG(B) _ POS(C)) _NEG(C).

By (NEG(B) _ POS(C)) _ POS(B),

` NEG(C)! [(NEG(B) _ POS(C)) _ (POS(B) ^NEG(C))].

Hence

` (NEG(B) _ POS(C))! [(NEG(B) _ POS(C)) _ (POS(B) ^NEG(C))].

By (NEG(B) _ POS(C)) _NEG(C),

` (NEG(B) _ POS(C)) _ (POS(B) ^NEG(C))

(6) A � (8x � jtj)E(x)

We need to prove POS((8x � jtj)E(x)) _NEG((8x � jtj)E(x)), i:e:

8x[POS(D(x)) _ POS(E(x))] _ 9x[NEG(D(x)) ^NEG(E(x))].

By hypothesis,

` [POS(D(y))_ POS(E(y))] _ [NEG(D(y)) ^NEG(E(y))].

Hence

` [POS(D(y))_ POS(E(y))] _ 9x[NEG(D(x)) ^NEG(E(x))].

Therefore

` 8x[POS(D(y)) _ POS(E(y))]_ 9x[NEG(D(x)) ^NEG(E(x))].

(7) A � (9x � jtj)E(x)

We need to prove POS((9x � jtj)E(x)) _NEG((9x � jtj)E(x)), i:e:

9x[POS(D(x)) ^ POS(E(x))] _ 8x[NEG(D(x)) _NEG(E(x))].

By hypothesis,

` [POS(D(x)) ^ POS(E(x))] _ [NEG(D(x)) _NEG(E(x))].

Hence

` 9x[POS(D(x)) ^ POS(E(x))] _ x[NEG(D(x)) _NEG(E(x))].

Therefore

` 9x[POS(D(x)) ^ POS(E(x))] _ 8x[NEG(D(x)) _NEG(E(x))].

Corollary 2.3.8 If A is �b

0 formula then IS
1
2 ` A _ :A.

(proof) By POS(A) ! A;NEG(A) ! :A (lemma 2:3:2) and POS(A) _ NEG(A)

(Lemma 2:3:7).
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Corollary 2.3.9 If A is �b

0 formula then IS
1
2 ` (A$ POS(A)) ^ (:A$ NEG(A)).

(proof) By lemma 2:3:2, IS1
2 ` (POS(A)! A) ^ (NEG(A)! :A).

By POS(A) _NEG(A), POS(A)! A and NEG(A)! :A,

` A _NEG(A) and ` POS(A) _ :A.

By POS(A) _ :A,

` A! POS(A).

By A _NEG(A),

` :A! NEG(A).

Lemma 2.3.10 If A is H�b

1 formula then IS
1
2 ` A$ POS(A).

(proof)We prove by induction on the complexity of A.

(1) A 2 �b

0

By Corollary. 2:3:9.

(2) A 2 �b

0

By �b

0 = �b

0, same as (1).

(3) A � (B ! C)

Then B must be in �b

0. Therefore let B be in �b

0 and C be in H�b

1 which satis�es

IS1
2 ` C ! POS(C). We need to prove (B ! C)! POS(B ! C), i:e:

(B ! C)! (NEG(B) _ POS(C)).

By B 2 �b

0 and cor. 2:3:9,

IS1
2 ` :B ! NEG(B) and IS1

2 ` B _ :B.

By (B ! C) and (B _ :B),

IS1
2 ` (B ! C)! (:B _ C).

By (:B _ C), (:B ! NEG(B)) and C ! POS(C),

IS1
2 ` (:B _ C)! (NEG(B) _ POS(C)).

By (B ! C)! (:B _ C) and (:B _ C)! (NEG(B) _ POS(C)),

IS1
2 ` (B ! C)! (NEG(B) _ POS(C)).

For the remaining cases, assume that IS1
2 ` (B ! POS(B)) ^ (C ! POS(C)),

where B and C are H�b

1 formulas.

(4) A � (B ^ C) and A � (B _ C)

We need to prove (B ^ C) ! POS(B ^ C) and (B _ C) ! POS(B _ C), i:e:

(B ^ C) ! (POS(B) ^ POS(C)) and (B _ C) ! (POS(B) _ POS(C)). This is

proved easily by hypothesis.

(5) A � (9x � t)B

We need to prove (9x � t)B ! POS((9x � t)B).

By de�nition of POS and Bounded quanti�er,

` (9x � t)B ! 9x(x � t ^B)
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! 9x(POS(x � t) ^ POS(B))

! 9xPOS(x � t ^ B)

! POS(9x(x � t ^ B))

! POS((9x � t)B).

Therefore IS1
2 ` (9x � t)B ! POS((9x � t)B).

(6) A � (8x � jtj)B

We need to prove (8x � jtj)B ! POS((8x � jtj)B).

By de�nition of POS and Bounded quanti�er,

` (8x � jtj)B ! 8x(Sjtj � x _ B)

! 8x(POS(Sjtj � x) _ POS(B))

! 8xPOS(Sjtj � x _ B)

! POS(8x(Sjtj � x _B))

! POS((8x � jtj)B).

Therefore IS1
2 ` (8x � jtj)B ! POS((8x � jtj)B).

Theorem 2.3.11 The H�b

1 � PIND scheme is derivable in IS1
2 .

(proof)

Let A(x) be any formula in H�b

1. By lemma 1.3.10 2:3:10 and A(x) 2 H�b

1,

IS1
2 ` A(0)$ POS(A(0));` A(b1

2
xc)$ POS(A(b1

2
xc)) and ` A(x)$ POS(A(x)).

Assume that IS1
2 ` A(0) ^ 8x(A(b

1
2
xc)! A(x)). Then

IS1
2 ` POS(A(0)) ^ 8x(POS(A(b

1
2
xc))! POS(A(x))).

By POS(A(0)); POS(A(b1
2
xc)) and A(x) 2 �b+

1 , these formulas can be apllied

�b+
1 � PIND. Therefor IS1

2 ` 8xPOS(A(x)). Therefor IS
1
2 ` 8xA(x).

Therefore For any formula A(x) 2 H�b

1, IS
1
2 ` [A(0) ^ 8x(A(b1

2
xc)! A(x))]! 8xA(x).

This theorem is useful in Chapter 9 to prove that IS1
2 and IS

1
2B are equivalent.

19



2.4 Bootstrapping IS
1
2

In this section, we say the relation IS1
2 and polynomial time computable functions.

De�nition 2.4.1 Let T and T 0 be systems.

(1) We de�ne L(T ) as set of all of formulas of T .

(2) T 0 is extension of T if 8A 2 L(T )[T ` A) T 0
` A]

(3) T 0 is consevative extension of T if 8A 2 L(T )[T 0 ` A) T ` A]

De�nition 2.4.2 Let T be an extension of IS1
2 . Let A be a �b+

1 formula of T and let t

be a term of T such that

T ` 8~x(9y � t)A(~x; y)

T ` 8~x8y8z[A(~x; y) ^ A(~x; z)! y = z]

Then we say that T can �b+
1 -define the function f such that 8~xA(~x; f(~x)). The defining

axiom for f is:

f(~x) = y$ A(~x; y)

where f is a new n-ary function symbol. The defining formula for f is A and the

boundinig term for f is t.

Theorem 2.4.3 Let T and f be as in the above de�nition, and assume that all �b+
1 -

PIND axioms in the language of T are theorems of T . let T (f) be the extension of T

obtained by adding f as a new function symbol, together with its de�ning axioms, and

also all �b+
1 -PIND axioms in the language of T (f). Then T (f) is a conservative extension

of T .

(proof)

For any formula A 2 L(T ) if A is proved in T (f) without to apply �b+
1 -PIND axioms

in the language of T (f) then A is obviously proved in T . Therefore we prove that the

�b+
1 � PIND scheme for T (f) can be derived from the �b+

1 � PIND scheme for T .

Let A be a �b+
1 formula in T (f) and containing a term f(t1 � � � tn), where t1 � � � tn are

terms of T . Let B be be the de�ning formula for f and t be the bounded term. Then A

is equivalent to 9y � t(A[y=f(t1 � � � tn)] ^ B(~t; y)), where y is a variable not occurring in

A. And 9y � t(A[y=f(t1 � � � tn)] ^ B(~t; y)) is in �b+
1 and is not containing f . Hence the

�b+
1 � PIND scheme for T (f) can be derived from the �b+

1 � PIND scheme for T .

De�nition 2.4.4 Let T be a theory of arithmetic containing a function jxj which is a

binary length function ( i:e: jxj = dlog2(x+ 1)e). Then we say that T contains a set of

eÆcient coding functions provided that T contains a one-place predicate Seq, a one-

place function Len , two-place functions ＊, β, and Bound, for which the following are
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theorems of T :

(A) Seq(0) ^ Len(0) = 0;

(B) Seq(s)! Seq(s � u);

(C) Seq(s)! Len(s � u) = Len(s) + 1;

(D) Seq(s)! Len(s) � jsj;

(E) Seq(s)! (i < Len(s)! �(i; s � u) = �(i; s));

(F) Seq(s)! �(Len(s); s � u) = u;

(G) (Seq(s) ^ Seq(t))! [Len(s) = Len(t) ^ (8i < Len(s))(�(i; s) = �(i; t))! s = t];

(H) Seq(s) ^ (Len(s) � jbj+ 1) ^ (8i < Len(s))(�(i; s) � a)! s � Bound(a; b).

De�nition 2.4.5 Let T be an extension of IS1
2 . We say that T is sufficiently strong

if it satis�es the conditions :

(1) T contains a 2-place function symbols Lmin for which the theorem

Lmin(x; y) = z $ (jxj � jyj ^ z = x) _ (:(jxj � jyj) ^ z = y)

is provable in T ;

(2) T contains a set of eÆcient coding functions;

(3) T contains the �b+
1 -PIND scheme for all formulas in the language of T ;

(4) T contains a 2-place function symbols Trunc for which the theorem :

(i)Trunc(a; jaj) = a

(ii)i � jb
1
2
acj ! Trunc(b1

2
ac; i) = Trunc(a; i)

are provable in T .

Lemma 2.4.6 There is an extension IS1�
2 of IS1

2 by �
b+
1 -de�nitions which is suÆciently

strong.

(proof) We can �b+
1 -de�ne under functions and predicates.
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(P1) a＜b() Sa � b

(F1) b=P(a)() (a = 0 ^ b = 0)∨Sb = a

(F2) c=max(a,b)() (a � b ^ b = c)∨(b � a ^ a = c)

(F3) c=min(a,b)() (a � b ^ a = c)∨(b � a ^ b = c)

(F4) b=Mod2(a)() b + 2 � b1
2
ac = a

(P2)Decomp(a,b,c,d)() jcj � b∧d � 2min(jaj;b) + c = a

(F5) c=LSP(a,b)() (9d � a)Decomp(a; b; c; d)

(F6) d=MSP(a,b)() (9c � a)Decomp(a; b; c; d)

(F7) c=Bit(b,a)() c =Mod2(MSP (a; b))

(P3)QuoRem(a,b,c,d)() (b = 0 ^ c = 0 ^ d = 0)∨(d < b ^ a = c � b + d)

(F8) c=ba/bc() (9d � b)QuoRem(a; b; c; d)

(F9) d=Rem(a,b)() (9c � a)QuoRem(a; b; c; d)

(P4) b j a() Rem(a; b) = 0∧S0 � b

(P5)Even(a)() Mod2(a) = 0

(P6)Odd(a)()Mod2(a) = 1

(P7)Comma(b,a)() Even(b)∧Bit(b; a) = 1∧Bit(Sb; a) = 0

(F10) c=Digit(b,a)()

[Even(b) ^ Bit(Sb; a) = 1 ^ Bit(b; a) = c]∨[(Odd(b) _ Bit(Sb; a) = 0) ^ c = 2]

(P8)PSqSL(a,b,c)() jaj+ 2 = 2 � c � Sb∧
(8y < jaj)((2b+ 2)j(y + 2)! Comma(y; a))∧
(8y < jaj)(:((2b+ 2)j(y + 2))! Digit(y; a) < 2)

(F11) b=ProtoSize(a)()

2 � b � jaj∧(2 � b = jaj _ Comma(2 � b; a))∧(8x < b)(:Comma(2 � x; a))

(F12) b=ProtoLen(a)() c = b(jaj+ 2)=(2 � ProtoSize(a) + 2)c
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(P9)ProtoSeq(a)() PSqSL(a; ProtoSize(a); P rotoLen(a))

(F13) c=a�.b () a = b + c∨(c = 0 ^ a < b)

(F14) c=Protoβ (b,a)() (:ProtoSeq(a) ^ c = 0)∨
[ProtoSeq(a) ^ jcj � ProtoSize(a)^

(8y < ProtoSize(a))(Bit(y; c) = Digit(2�(y+(ProtoSize(a)+1)�(b�
.
1)); a))]

(F15) c=ProtoStar(a,b)() (:ProtoSeq(a) ^ c = 0)∨
[ProtoSeq(a) ^ ProtoSeq(c) ^ ProtoSize(a) = ProtoSize(c)^

ProtoLen(c) = ProtoLen(a) + 1^

(8x < ProtoLen(a))(Protoβ (x+ 1; a) = Protoβ (x+ 1; c))^

Protoβ (ProtoLen(a) + 1; c) = LSP (b; P rotoSize(a))]

(F16) Let A(z; y; ~x) be any formula. The function f(y; ~x) is defined by length bounded

counting from A i� f satis�es

f(y; ~x) = (#z � jyj)A(z; y;�!x )

where #z � t)(� � �) means \the number of z � t such that � � �".

(F17)

(i) f1(
�!x ) = minft(y) : y � jsjg

(ii) f2(
�!x ) = maxft(y) : y � jsjg

(iii) f3(
�!x ) = (�y � jsj)A(y)

where s and t are terms. The free variables of s are the ~x; The free variables of t and

A may include y and ~x.

By these functions and predicate,

(a) b=Substring(a,i,j)() b =MSP (LSP (a; j); i)

(b) Seq(w)() (8x < jwj)[Even(x)! (Comma(x; w) _Digit(x; w) � 1)]∧
(Comma(0; w) _ w = 0)

(c) a=Len(w)() (:Seq(w) ^ a = 0)∨(Seq(w) ^ a = (#i < jwj)Comma(i; w))

(d) b=Decode(a)() (:ProtoSeq(a)^b = 0)∨(ProtoSeq(a)^b = Proto�(1; a))

(e) b=Encode(a)() PSqSL(b; jaj; 1)∧a = Proto�(1; b)

(f) a=Startβ (i,w)() (:Seq(w) ^ a = 0)∨
(Seq(w)^a = (�x � jwj+1)[Len(Substring(w; 0; x)) = i^Even(x)])
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(g) b=Endβ (i,w)() (:Seq(w) ^ b = 0)∨
(Seq(w)^ b = (�x � jwj)[S0 � Len(Substring(w; Start�(i; w); x+2))^Even(x)])

(h) a=β (i,w)() (i = 0 ^ a = Len(w))∨
(S0 � i ^ a = Decode(Substring(w; Start�(i; w); End�(i; w))))

(i) c=a＊＊b() c = b � 2jaj+Mod2(jaj) + a

(j) c=a＊b() a � �(4 � Encode(b) + 1)

(k) c=Bound(a,b)() (2b+ 1)#(4 � (2 � a+ 1)2)

Lemma 2.4.7 Let T be a suÆciently strong extension of IS1
2 , and k(a;~b) be an n+1-

place function symbol of T . Then there is an extension T 0 of T by a �b+
1 -de�nition of a

function m so that:

T 0
` k(a;~b) � m(a;~b)

T 0 ` m(b1
2
ac;~b) � m(a;~b).

(proof)In proof we abbreviate Trunc(a; i) as ai.

It is straightforward to prove in T by �b+
1 � PIND on a that:

8a(9i � jaj)(8j � jaj)[k(aj;~b) � k(ai;~b)].

8a(9i � jaj)[k(ai;~b) = c ^ (8j � jaj)k(aj;~b) � c].

We prove that We can thus de�ne the function m:

m(a;~b) = c$ (9i � jaj)[k(ai;~b) = c ^ (8j � jaj)k(aj;~b) � c].

Let A(a;~b; c) be (9i � jaj)[k(ai;~b) = c ^ (8j � jaj)k(aj;~b) � c]. We need to prove

T ` 8a8~b9c � tA(a;~b; c),

T ` 8a8~b8c18c2[A(a;~b; c1) ^ A(a;~b; c2)! c1 = c2].

1) T ` 8a8~b9c � tA(a;~b; c)

By the function k which is �b+
1 -de�ned in T ,

T ` 9c(c � t ^ k(ai;~b) = c).

By 9c(c � t ^ k(ai;~b) = c) and (9i � jaj)[k(ai;~b) = c ^ (8j � jaj)k(aj;~b) � c],

T ` 9c(c � t ^ (9i � jaj)[k(ai;~b) = c ^ (8j � jaj)(k(aj;~b) � c)]) .

Hence

T ` 8a8~b9c � tA(a;~b; c).

2) T ` 8a8~b8c18c2[A(a;~b; c1) ^ A(a;~b; c2)! c1 = c2].

Let T ` A(a;~b; c1) ^ A(a;~b; c2).

By A(a;~b; c1),

T ` 9u(u � jaj ^ k(au;~b) = c1 ^ (Sjaj � v _ k(av;~b) � c1)).
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We number subformulas of the upper formula as follow :

u � jaj is (1), k(au;~b) = c1 is (2) and (Sjaj � v _ k(av;~b) � c1) is (3).

By A(a;~b; c2).

T ` 9v(v � jaj ^ k(av;~b) = c2 ^ (Sjaj � u _ k(au;~b) � c2)).

And same as

v � jaj is (4), k(av;~b) = c2 is (5) and Sjaj � u _ k(au;~b) � c2 is (6).

By (3),(4),(5),

T ` c2 � c1.

By (1),(2),(6),

T ` c1 � c2.

By (B.5),

T ` c1 = c2.

Therefore

T ` A(a;~b; c1) ^ A(a;~b; c2)! c1 = c2.

Theorem 2.4.8 Let T be a suÆciently strong extension of IS1
2 , and g; h; k be n-place,

n+2-place and n+1-place function symbols of T . Then there is an extension T � of T by

�b+
1 -de�nitions so that

T � ` f(0;~b) = g(~b)

T � ` a = 0 _ f(a;~b) = Lmin[h(a;~b; f(b1
2
ac;~b)); k(a;~b)]:

(proof) First, we extend T by adding a �b+
1 -de�nition of a function m(a;~b) for which the

theorems

k(a;~b) + g(~b) + 1 � m(a;~b)

m(b1
2
ac;~b) � m(a;~b)

are provable. Lemma 2:4:7 guarantees the existence of such a de�nition. We abbreviate

Trunc(a; i) as ai. Now let B(w; a) be the following formula:

fSeq(w) ^ Len(w) = jaj+ 1 ^ �(0; w) = g(~b)

^

(8i < jaj)[�(i+ 1; w) = Lmin(h(ai+1;~b; �(i; w)); k(ai+1;~b))]g.

The de�ning axiom for f is:

f(a;~b) = c$ (9w � Bound(m(a;~b); a))[B(w; a) ^ �(jaj; w) = c].

To justify this de�nition, we need to prove the existence and uniqueness conditions.

EXISTENCE

Let D0(a;~b; c) be (9w � Bound(m(a;~b); a))[B(w; a)^�(jaj; w) = c]. We need to prove

that
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T ` 8a8~b9c � tD0(a;~b; c).

By de�nition of Bound,

w � Bound(m(a;~b); a) � Seq(w) ^ Len(w) � jaj + 1 ^ (8i < Len(w))(�(i; w) �

m(a;~b)).

Let D(a;~b) be 9w(B(w; a) ^ (8i < Len(w))(�(i; w) � m(a;~b))). Then we prove

T ` 8a8~bD(a;~b)! 8a8~b9c � tD0(a;~b; c)

as follows

8a8~bD(a;~b)

D(a;~b) 8a8~bD(a;~b)

(8i < Len(w))(�(i; w) � m(a;~b)) D(a;~b)

�(jaj; w) � m(a;~b) 9w[w � Bound(m(a;~b); a) ^B(w; a) ^ �(jaj; w) = �(jaj; w)]

�(jaj; w) � m(a;~b) ^ 9w[w � Bound(m(a;~b); a) ^B(w; a) ^ �(jaj; w) = �(jaj; w)]

9c(c � m(a;~b) ^ 9w[w � Bound(m(a;~b); a) ^ B(w; a) ^ �(jaj; w) = c])

(9c � m(a;~b))(9w � Bound(m(a;~b); a))[B(w; a) ^ �(jaj; w) = c]

8a8~b9c � tD0(a;~b; c).

Therefore we prove D(a;~b) by �b+
1 � PIND on a.

Basis Step: a=0. We wish to prove B(w; 0)^ (8i < Len(w))(�(i; w) � m(0;~b)). By

def. 2:4:4(A), T ` Seq(0) ^ Len(0) = 0. Let w be 0 � g(~b). By def. 2:4:4(C), Len(w) = 1.

def. 2:4:4(F), �(0; w) = �(Len(0); w) = g(~b). By �(0; w) � m(0;~b),

(8i < Len(w))(�(i; w) � m(0;~b)). Therefore T ` D(0;~b).

Induction Step: Assume a < 0. We prove D(b1
2
ac;~b)! D(a;~b).

D(b1
2
ac;~b) � 9w1[Seq(w1) ^ Len(w1) = jb

1
2
acj+ 1 ^ �(0; w1) = g(~b)^

 Æ �

(8i < jb
1
2
acj)[�(i+ 1; w1) = Lmin(h(b1

2
aci+1;~b; �(i; w1)); k(b

1
2
aci+1;~b))]^

�

(8i < Len(w1))(�(i; w1) � m(b1
2
ac;~b))].

 

D(a;~b) � 9w2[Seq(w2) ^ Len(w2) = jaj+ 1 ^ �(0; w2) = g(~b)^

� � �

(8i < jaj)[�(i+ 1; w2) = Lmin(h(ai+1;~b; �(i; w2)); k(ai+1;~b))]^

�

(8i < Len(w2))(�(i; w2) � m(a;~b))].

	

De�ne u as Lminfh(a;~b; �(b1
2
ac; w1)); k(a;~b)g and let w2 be w1 � u. We prove that this

w2 satis�es �;�;�;� and 	 from ; Æ; �; � and  .

(�) By def. 2:4:4(B) and ().

(�) By def. 2:4:4(C) and (Æ), Len(w2) = Len(w1) + 1 = (jb1
2
acj+ 1) + 1 = jaj+ 1.

(�) By def. 2:4:4 (C) and (�),�(0; w2) = �(0; w1 � u) = �(0; w1) = g(~b).
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(�) The case i < jb
1
2
acj.

From def. 2:4:4(E), def. 2:4:5(4) and (�).

The case i = jb
1
2
acj

�(i+ 1; w2) = �(jb1
2
acj+ 1; w2)

= �(Len(w1); w2)

= �(Len(w1); w1 � u)

= u

= Lminfh(a;~b; �(b1
2
ac; w1)); k(a;~b)g

= Lminfh(ajaj;~b; �(b
1
2
ac; w1)); k(ajaj;~b)g

= Lminfh(ai+1;~b; �(i; w2)); k(ai+1;~b))g

(�) The case i < Len(w1).

From def. 2:4:4(E), m(b1
2
ac;~b) � m(a;~b) and ( ).

The case i = Len(w1)

�(i; w2) = �(Len(w1; w1 � u))

= u

= Lminfh(a;~b; �(b1
2
ac; w1)); k(a;~b)g

� k(a;~b)

� m(a;~b)

UNIQUENESS

LetD0(a;~b; c1) be (9w1 � Bound(m(a;~b); a))[B(w1; a)^�(jaj; w1) = c1] andD
0(a;~b; c2)

be (9w2 � Bound(m(a;~b); a))[B(w2; a) ^ �(jaj; w2) = c2]. We need to prove

T ` D0(a;~b; c1) ^D
0(a;~b; c2)! c1 = c2.

For this, we prove

T ` D0(a;~b; c1) ^D
0(a;~b; c2)! w1 = w2.

Assume that T ` D0(a;~b; c1) ^ D
0(a;~b; c2). Then T ` (Seq(w1) ^ Seq(w2)) ^ Len(w1) =

Len(w2). If we prove (8i < Len(w1))(�(i; w1) = �(i; w2)) then w1 = w2 by def. 2:4:4(G).

Let C(d) be the formula:

(8i � jw1j)[(i < Len(w1) ^B(w1; a) ^ B(w2; a) ^ i � d)! �(i; w1) = �(i; w2)].

We prove C(d) by �b+
1 � LIND on the variable d.

base step

For d = 0, �(i; w1) = �(i; w2) = g(~b).

induction step

Assume C(r). We prove C(r)! C(r + 1)

C(r) � 8i(Sjw1j � i _ [i < Len(w1)^B(w1; a)^B(w2; a)^ i � r! �(i; w1) = �(i; w2)]),

C(r + 1) � 8i(Sjw1j � i _ [i < Len(w1) ^ B(w1; a) ^ B(w2; a) ^ i � r + 1 ! �(i; w1) =

�(i; w2)]).

The case r < i. Obvious.
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The case i � r. By induction hypothesis.

The case i = r + 1.

�(i; w1) = �(r + 1; w1)

= Lminfh(ar+1;~b; �(a; w1)); k(ar+1;~b)g

= �(Len(w1); w1 � u)

= �(r + 1; w2)

= �(i; w2)

Hence C(r)! C(r + 1)

Therefore ` 8rC(jrj). Hence ` C(jw1j). Therefore ` (8i < Len(w1))(�(i; w1) = �(i; w2))

Hence w1 = w2. Therefore c1 = c2. By EXISTENCE and UNIQUENESS, the function f

can �b+
1 -de�ne.

Finally, we prove that this function satis�es two conditions.

The equation

f(0;~b) = g(~b)

follows immediately from the de�nition of B(w; 0). Next, we have:

(9w1)[B(w1; b
1
2
ac) ^ �(jb1

2
acj; w1) = f(b1

2
ac;~b)]

(9w2)[B(w2; a) ^ �(jaj; w2) = f(a;~b)].

Let u = Lminfh(a;~b; �(b1
2
ac; w1)); k(a;~b)g and w3 = w1 �u. Then it is easy to prove that

a = 0 _ B(w3; a) so that w3 = w2. Thus:

Either a = 0 or

f(a;~b) = �(jaj; w2)

= �(jaj; w3)

= Lminfh(a;~b; �(jb1
2
acj; w1)); k(a;~b)g

= Lminfh(a;~b; f(a;~b)); k(a;~b)g

De�nition 2.4.9 The class of polynomial time computable functions (class P) is de�ned

by Cobham as follows.

・ Four initial functions are included in the class P .

・ The class P is closed under composition ( ordinary composition ).

・ The class P is closed under composition under a special recursion

(\Bounded Recursion on Notation").

(1) Initial functions

(a) 0 (Constant)

(b) x]y = 2jxj�jyj (Smash function)

(c) s0x = 2 � x; s1x = 2 � x+ 1 (Successor)

(d) In
i
(w1; � � � ; wn) = wi (Projection)
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(2) Composition

Let h; g be in P and f be de�ned as f(x) = h(g(x)). Then f is included in P .

(3) Bounded Recursion on Notation (BRN)

Let g, h and k be n-place, n+2-place and n+1-place function symbols, then the

function symbol f (de�ned as follows) is included in P .

f(0;~b) = g(~b)

f(a;~b) = h(a;~b; f(b1
2
ac;~b))

f(a;~b) � k(a;~b)

Corollary 2.4.10 If f(~x) is a polynomial-time computable function then f is

�b+
1 -de�nable in IS1

2 .

(proof)

For initial function,

(a) and (b) are obvious.

(c) s0x = y $ y = 2 � x and s1x = y $ y = 2 � x + 1.

(d) In
i
(~x) = y $ �(i; ~x) = y.

For composition, let de�ning formulas and bounding terms of g and h be A(x; y);

B(u; v); s and t. Then g(x) = y $ A(x; y); 8x9y � sA(x; y); h(u) = v $ 8u9v �

tB(u; v). Then de�ning formula of h(g(x)) is A(x; y)^B(y; v)^y � s and bounding term

of h(g(x)) is t[y=u].

For B.R.N., theorem 2:4:8.
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Chapter 3

The System PV

In 1975 Cook [3] introduced an equation system PV (\polynomially veri�able") of number

theory. The motivation for this work comes from two general sources.

The �rst motivation the basic open open question in complexity theory of whether

P = NP . His approach is to try to show they are not equal, by trying to show that the

set of tautologies is not in NP (of course its complement is in NP ). This is equivalent

to showing that no proof system for the tautologies is \super" i the sense that there is

a short proof for every tautology. Extended resolution is an example of a powerful proof

system for tautologies that can simulate most standard proof system.

The second motivation comes from constructive mathematics. A constructive proof of

A for each value of x, but nothing is said about how long this proof is as a function of x.

If the function is exponential or super exponential, then for short values of x the length

of the proof of the instance of A may exceed the number of electrons in the universe.

Thus one can question the sense in which our original \constructive\ provides a method

of verifying 8xA for such values of x.

Cook patterned after Skolem's equational theory of primitive recursive arithmetic.

Whereas Skolem's system has a function symbol for each primitive recursive function, PV

has one for each polynomial time computable function. The system PV was supposed to

capture an intuitive notion of \feasibly constructive proof", a form of highly constructive

proof is to polynomial time algorithm.

The System PV is a logic-free equational calculus. The idea is that a proof in PV of

an equation t = u provides a template for verifying each instance of the equation in time

polynomial in the length of the instance.

3.1 De�nition of system PV

De�nition 3.1.1 The function symbols and terms of PV are de�ned as follows:

(1) There are in�nitely many numerical variables, and each such variable is a term.

(2) The constant 0 is a term.
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(3) If f is an n-place function symbol and t1 � � � tn are terms, then (� � � (ft1) � � � tn) is

a term.

(4) s0; s1; Parity; b
1
2
c are 1-place function symbols.

(5)
_
;□+ ; ] are 2-place function symbols.

(6) Cond is a 3-place function symbol.

(7) If t is a term and x1 � � �xn(n � 0) is a list of variables including all variables in t,

then [�x1 � � �xn:t] is an n-place function symbol.

(8) If g, h and k are n-place, n+2-place and n+1-place function symbols respectively,

then R[g; h; k] is an n+1-place function symbol.

The term notation (� � � (ft1) � � � tn) in (3) is designed to �t the system PV ! of Chapter

6. We shall depart from the formal de�nition above by employing the informal conventions

of writing ft1 � � � tn or f(t1 � � � tn) instead of (� � � (ft1) � � � tn), by employing in�x notation

[x
_
y for ((

_
x)y)] and writing b1

2
xc for (b1

2
cx).

The axioms of PV give either explicit or recursive de�ning equations for each function

symbol of PV except s0 and s1, which are considered primitive.

De�nition 3.1.2 The axioms of PV are de�ned as follows:

(0) s0(0) = 0

(1a) Parity(s0x) = 0

(1b) Parity(s1x) = 1

(2a) b1
2
s0xc = x

(2b) b1
2
s1xc = x

(3a) Cond(0; y; z) = y

(3b) Cond(s0x; y; z) = Cond(x; y; z)

(3c) Cond(s1x; y; z) = z

(4a) x□+ s0y = Cond(y; x; s0(x□+ y))

(4b) x□+ s1y = s0(x□+ y)

(5a) x
_
s0y = Cond(y; x; b1

2
(x

_
y)c)
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(5b) x
_
s1y = b

1
2
(x

_
y)c

(6a) x]s0y = Cond(y; 1; (x]y)□+ x)

(6b) x]s1y = (x]y)□+ x

(7) [�x1 � � �xn:t](x1; � � � ; xn) = t

(8) R[g; h; k](x; ~y) = Cond(x; g(~y); Cond(t
_
k(x; ~y); t; k(x; ~y))); where

t
d

� h(x; ~y; R[g; h; k](b1
2
xc; ~y))

From these axioms, the intended interpretation of the function symbols

s0; s1; Parity; b
1
2
xc;□+ ;

_
; ]; Cond;R[g; h; k] is as follows:

Let x � (�n � � ��0)2. Then

s0x = (�n � � ��00)2 = 2x,

s1x = (�n � � ��01)2 = 2x + 1,

Parity(x) = �0,

b
1
2
ac = (�n � � ��1)2,

x
_
y = (�n � � ��jyj)2,

x]y = 2jxj�jyj,

Cond(x; y; z) = (if x = 0 then y else z).

R[g; h; k] is Bounded Recursion on Notation.

De�nition 3.1.3 The axioms of PV are de�ned as follows:

R1. t = u ` u = v

R2. t = u; u = v ` t = v

R3. t1 = u1; � � � ; tn = un ` ft1 � � � tn = fu1 � � �un

R4.t = u ` t[v=x] = u[v=x], x a variable, v any term

R5. t1[0=x] = t2[0=x]

t1[s0x=x] = v0[t1=a] t2[s0x=x] = v0[t2=a]

t1[s1x=x] = v1[t1=a] t2[s1x=x] = v1[t2=a]

t1 = t2
for any termst1; t2; v0; v1 and any variable a.

The R5 is a form of induction on binary notation. The rule may be understood as

follows: if the term t1 and t2 satisfy the premisses of R5 for all x, then the functions

de�nes by the two terms satisfy the same recursion equations, and hence are the same

function.
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3.2 Development of PV

In the formal development of PV , the abbreviations \T", \DR", \D" are used for theo-

rems, derived rules and de�nitions. Most of the theorems proved below are derived using

induction on notation (R5). In such a case, the proof usually breaks down into three

steps, corresponding to the base of the induction, and the two induction step for the

successor functions s0 and s1. In proving Theorem m we shall denote these three steps by

(m:;); (m:0); (m:1) respectively; the two equations constituting step (m:0), for example,

will be denoted by (m:0a) and (m:0b). In a case where the two steps (m:0) and (m:1)

can be treated simultaneously, this will be written as (m:i). In a statement of a derived

rules, the notation \t1 = u1; � � � ; tn = un ` v = w" should be read as an abbreviation for

\If ` t1 = u1; � � � ;` tn = un then ` v = w".

The formal development of PV is very similar to that of primitive recursive arith-

metic, but is complicated by the fact that function symbols introduced by de�nition

contain a built-in bounding term. To make use of such a symbol in the later devel-

opment, it is usually necessary to show that the bound can be eliminated, so that the

recursion equations hold unconditionally. If f(x; ~y) is a function symbol introduced by

de�nition as R[g; h; k](x; ~y), the temporary abbreviation \(t(f)" will be used for the term

\h(x; ~y; R[g; h; k](b1
2
xc; ~y))" de�ned in Axiom 8.

We omit proof of theorems and derived rules. But we prove T4 as an example of proof.

(proof)

Let t1 � Cond(x; Cond(x; c; d); Cond(x; e; f)), t2 � Cond(x; c; f). Then we de�ne v0

and v1 as v0
d

� a and v1
d

� f .

(4:; :) t1[0=x] = Cond(0; Cond(0; c; d); Cond(0; e; f)) = Cond(0; c; d) = t2[0=x].

(4:0a :) t1[s0x=x] = Cond(s0x; Cond(s0x; c; d); Cond(s0x; e; f))

= Cond(x; Cond(x; c; d); Cond(x; e; f)) = t1
v0[t1=a] = a[t1=a] = t1
Therefore t1[s0x=x] = v0[t1=a]

(4:0b :) t2[s0x=x] = Cond(s0x; c; f) = Cond(x; c; f) = t2
v0[t2=a] = a[t2=a] = t2
Therefore t2[s0x=x] = v0[t2=a]

(4:1a :) t1[s1x=x] = Cond(s1x; Cond(s1x; c; d); Cond(s1x; e; f)) = Cond(s1x; e; f) = f

v1[t1=a] = f [t1=a] = f

Therefore t1[s1x=x] = v1[t1=a]

(4:0b :) t2[s1x=x] = Cond(s1x; c; f) = f

v1[t1=a] = f [t1=a] = f

Therefore t2[s1x=x] = v1[t2=a]

T1: Cond(x; y; y) = y.

T2: Cond(x; fy1 � � � yn; fz1 � � � zn) = fCond(x; y1; z1) � � �Cond(x; yn; zn), f any n-place

function symbol of PV .
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T3: Cond(x; fb~y; fb~z) = fbCond(x; y1; z1) � � �Cond(x; yn; zn), f any (n+1)-place func-

tion symbol, a any variable distinct from x.

T4: Cond(x; Cond(x; c; d); Cond(x; e; f)) = Cond(x; c; f).

T5: Cond(x; 0; x) = x.

T6: Cond(x; u[0=x]; u) = u, where u is any term of PV .

T7: Cond(x; u; y) = Cond(x; u[0=x]; y).

T8: Cond(x; y; u) = Cond(x; y; u[Cond(x; z; a)=a]), for u any term of PV .

D9: \v 6= 0 � t = u\ abbreviates \ Cond(v; u; t) = u", for any terms v; t; u.

DR10: t = u ` v 6= 0 � t = u.

T11: x 6= 0 � Cond(x; t; u) = u.

DR12: v 6= 0 � t = u ` v 6= 0 � u = t.

DR13: w 6= 0 � t = u; w 6= 0 � u = v ` w 6= 0 � t = v.

DR14: v 6= 0 � ti = ui; i = 1 � � �n ` v 6= 0 � ft1 � � � tn = fu1 � � �un.

DR15(Conditional proof principle):

t[0=x] = u[0=x]; v 6= 0 � t0 = u0 ` t0 = u0, where t0 � t[v=x] and u0 � u[v=x].

DR16: t[0=x] = u[0=x]; x 6= 0 � t = u ` t = u.

DR17(Conditional Induction):

t1[0=x] = t2[0=x]

x 6= 0 � t1[s0x=x] = w0[t1=a] x 6= 0 � t2[s0x=x] = w0[t2=a]

t1[s1x=x] = w1[t1=a] t2[s1x=x] = w1[t2=a]

t1 = t2.

T18: 0
_
x = 0.

T19: b
1
2
(six _

y)c = x
_
y; i = 0; 1.
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T20: For i = 0; 1,

y 6= 0 � six _
s0y = x

_
y

six _
s1y = x

_
y.

T21: b
1
2
(x

_
y)c = b

1
2
xc

_
y.

T22: x
_
x = 0.

T23: R[g; h; k](x; ~y)
_
k(x; ~y) = Cond(x; g(~y)

_
k(0; ~y); 0).

D24(The successor function):

Sx = Cond(x; 1; Cond(t(S)
_
s1x; t(S); s1x)),

where t(S) � Cond(Parity(x); s1b
1
2
xc; s0Sb

1
2
xc).

T25: Sx
_
s1x = 0.

T26: Sx = Cond(Parity(x); s1b
1
2
xc; s0Sb

1
2
xc).

T27: x
_
1 = b

1
2
xc.

The abbreviation \x0" for \s0x" and \x1"for\s1x" are employed below.

DR28: t[x0=x] = u[x0=x]; t[x1=x] = u[x1=x] ` t = u.

T29: x = Cond(Parity(x); b1
2
xc0; b1

2
xc1).

T30: Parity(Parity(x)) = Parity(x).

D31: sg(x)
d

� Cond(x; 0; 1).

D32: sg(x)
d

� Cond(x; 1; 0).

We shall write \� x" for "sg(x)" .

D33: (x&y)
d

� Cond(x; sg(y); 1).

D34: (x _ y)
d

� Cond(x; 0; sg(y)).

D35: (x � y)
d

� Cond(x; sg(y); 0).

D36: (x, y)
d

� Cond(x; sg(y); sg(y)).

Note that we are employing the convention: 0 = true, 1 = false.
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We de�ne the class of Propositional terms as follows:

(a) 0; 1; x; y; z; � � � are propositional term;

(b) if P;Q are propositional term, so are sg(P );� P; (P&Q);

(P ^Q); (P � Q) and (P , Q).

T37: Cond(sg(x); y; z) = Cond(x; y; z).

T38: Cond(� x; y; z) = Cond(x; z; y).

T39: sg(sg(x)) = sg(x).

T40: sg(Parity(x)) = Parity(x).

T41: If P is a propositional term which is not a variable then P [sg(x)=x] = P .

T42: Cond(x; y; t[sg(x)=x]) = Cond(x; y; t[1=x]).

T43: If P and Q are equivalent propositional terms and neither is a variable, then

P = Q.

T44: If P is a propositional term which is not a variable then sg(P ) = P .

T45: If P is a propositional term which is not a variable then P
_
1 = 0.

DR46: Let P and Q be arbitrary terms. (P � Q) = 0; P = 0 ` Q = 0.

D47: \t 6= 0" abbreviates \sg(t) = 0".

D48: \P � t = u" abbreviates \Cond(P; t; u) = u".

DR49: P � t = u; P = 0 ` t = u.

DR50: P � t = u;Q � t = u ` P _Q � t = u.

DR51: sg(t) = 0 ` t = 0.

DR52: For any function symbol f ,

f(0; ~y) = 0; [f(x; ~y) � f(xi; ~y)] = 0; i = 0; 1 ` f(x; ~y) = 0.

D53: For m �xed, I(m) is the term s1 � � � s10 with value 2m � 1. I(m) serves as a

standard numeral of (binary) length m.
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D54: Equl(x;m)
d

� [(x
_
I(m))&(I(m)

_
x)]. Equl(x;m) = 0 if and only if jxj (the

length of x in binary notation) is m.

T55: I(m)
_
x 6= 0 � xi

_
I(m) = 0.

D56: Lm(x)
d

�

8<
:

If x = 0 then 0

else if t(Lm) _
I(m� 1) = 0 then t(Lm)

else I(m� 1);

t(Lm) � Cond(I(m� 1)
_
Lm(b

1
2
(x)c); 0; Lm(b

1
2
(x)c)1)

T57: t(Lm) _
I(m� 1) = 0.

T58: x 6= 0 � (Equl(x; k) � Equl(xi; k + 1)) = 0.

T59: [Equl(Lm(x); 0) _ � � � _ Equl(Lm(x); m� 1)] = 0.

T60: [Equl(Lm(x); m) �� Equl(Lm(x); n)] = 0; m 6= n.

DR61(Bounded multi-digit recursion): For m > 0 and g; h; k n-place,

n+2-place, n+1-place functions, there is an n+1-place function Rm[g; h; k] so that:

Rm[g; h; k](x; ~y) =

8<
:

If x = 0 then g(~y)

else if t(Rm) _
k(x; ~y) = 0 then t(Rm)

else k(x; ~y);

where t(Rm) � h(x; ~y; Rm[g; h; k](x _
I(m); ~y)).

DR62: Let Rm[g; h; k] be de�ned as in DR61. If

h(x; ~y; Rm[g; h; k](x _
I(m); ~y)

_
k(x; ~y)) = 0 and h(0; ~y; g(~y)) = g(~y) then

Rm[g; h; k](x; ~y) = Rm[g; h; k](x _
I(m); ~y).

D63: Bitm(x)
d

� Parity(x
_
I(m)). Bitm(x) is the coeÆcient of 2

m in x's binary repre-

sentation.

D64: Tail(x; s)
d

� sgd0(Bit0(x))&sg
d1(Bit1(x))& � � �&sg

dm�1(Bitm�1(x)), for �xed s =

dm�1dm�2 � � �d0 2 f1; 0g
m, where sg0

d

� sg and sg1
d

� sg. Tail(x; s) = 0 i� the last m bits

of x's binary notation (padded with leading 0's if necessary) comprise s.

T65: Let s1; � � � ; s2m be the number of f0; 1gm. Then

[Tail(x; s1) _ Tail(x; s2) _ � � �Tail(x; s2m)] = 0.

T66: Tail(x; s) � (x
_
I(m))s = x, for each s 2 f0; 1gm
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DR67(Proof by m-digit induction): For m > 0,if

t[0=x] = u[0=x]

and
t[xs=x] = vs[t=a]

u[xs=x] = vs[u=a]

�
all s 2 f0; 1gm

then

t = u.

D68: x
 y
d

� Cond(y; s0(x); s1(x)).

D69(Concatenation):

x � y =

8<
:

If y = 0 then x

else if t(�)
_
(x1□+ y) = 0 then t(�)

else (x1□+ y);

where t(�) = (x � b1
2
yc)
 Parity(y).

T70: y 6= 0 � x � y = (x � b1
2
yc)
 Parity(y).

D71: 2jxj+jyj = 1□+ x□+ y.

T72: x□+ y1□+ z = x□+ y□+ z1.

T73: x□+ y□+ z = x□+ z□+ y.

T74: 2jxj+jyj = 2jyj+jxj.

T75: x 6= 0 � x□+ y 6= 0.

T76: 2jxj+jyj 6= 0.

T77: (x
 y)
_
1 = x.

T78: Bitl(x
 yk 
 yk�1 
 � � � 
 y0) = Parity(yl); l � k.

T79: Bitm((x _
1)
 i) = Bitm(x); m > 0; i = 0; 1.

D80: For k > 0, we use DR61 to de�ne

Puffk(x)
d

�

8<
:

If x = 0 then 0

else if t(Puffk) _
2jxj+jyj = 0 then t(Puffk)

else 2jxj+jyj;

t(Puffk) � Puffk(x _
I(k))
 Bitk�1(x)
 � � � 
Bit0(x)
 0.

T81: Puffk(x) = Puffk(x _
I(k))
 Bitk�1(x)
 � � � 
 Bit0(x)
 0.
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D82: For k > 1,

Shiftk(x)
d

�

8<
:

If x = 0 then 0

else if t(Shiftk) _
(x � I(k)) = 0 then t(Shiftk)

else x � I(k);

where t(Shiftk) � b
1
2
Shiftk(x _

I(k))c
Bit0(x)
Bitk�1(x)
� � �
Bit1(x)
0.

T83: Shiftk(x) _
xs = 0.

T84: Shiftk(x) = b
1
2
Shiftk(x _

I(k))c 
Bit0(x)
Bitk�1(x)
 � � � 
 Bit1(x)
 0.

D85: For k > 0, 2kjxj = 1□+ x□+ � � �□+ x(pad on k x0s).

T86: (x
_
(y

_
1))

_
1 = Cond(y; x

_
1; x

_
y).

DR87: t
_
u = 0 ` (t

_
x)

_
(u

_
x) = 0.

T88: y 6= 0 � ((x
_
1)
 i

_
y) = x

_
y; i = 0; 1.

T89: y 6= 0 � (Shiftk(x) _
y0k)

_
(x

_
y) = 0.

D90: For k > 1,

Interleavek(x; y)
d

�

8>><
>>:

If y = 0 then Puffk�1(x)

else if t(Interleavek) _
Puffk�1(x) � 2

kjyj = 0

then t(Interleavek)

else Puffk�1(x) � 2
kjyj;

where t(Interleavek) � [Shiftk(Interleavek(x; b
1
2
yc))

_
1]
 Parity(y).

T91: y 6= 0 � t(Interleavek) _
Puffk�1(x) � 2

kjyj = 0.

T92: For k > 0, Shiftk+1(Puffk(x)) = Puffk(x).

T93: For k > 1, Interleavek(x; y) = [Shiftk(Interleavek(x; b
1
2
yc))

_
1]
 Parity(y).

T94: For i; j 2 f1; 0g; k > 1,

[Interleavek(x; yi) _
1] = Interleavek(x; yj).

T95: Bitl(Shiftk(x)) = Bitl(x); 0 < l < k.

T96: Bit0(Interleavek(x; y)) = Bit0(y).

T97: Shiftk(Interleavek(xs; y)) = Interleavek(x; y)s0; s 2 f0; 1g
k�1; k > 1.

T98: Interleavek(xi1 � � � ik�1; yik) = Interleavek(x; y)i1 � � � ik�1.
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D99: < x >
d

� x:

< x1; � � � ; xk >
d

� Interleavek(< x1; � � � ; xk�1 >; xk); k > 1.

T100: < 0; � � � ; 0 >= 0.

T101: < x1i1; � � � ; xkik >=< x1; � � � ; xk > i1 � � � ik.

T102: For k > 1 :

�m

L
(x)

d

�

8<
:

If x = 0 then 0

else if t(�m

L
)
_
x = 0 then t(�m

L
)

else x;

where t(�m

L
) � �m

L
(x

_
I(m))
 Bitm�1(x)
 � � � 
Bit1(x):

�m

R
(x)

d

�

8<
:

If x = 0 then 0

else if t(�m

R
)
_
x = 0 then t(�m

R
)

else x;

where t(�m

R
) � �m

R
(x

_
I(m))
Bit0(x).

T103: �m

L
(x) = �m

L
(x

_
I(m))
Bitm�1(x)
 � � � 
 Bit1(x).

T104: �m

R
(x) = �m

R
(x

_
I(m))
Bit0(x).

T105: �m

L
((x

_
1)
 i) = �m

L
(x).

T106: �m

R
((x

_
1)
 i) = (�m

R
(x)

_
1)
 i.

T107: �m

L
(Shiftm(x)) = �m

L
(x).

T108: �m

R
(Shiftm(x)) = �m

R
(x)
 0.

T109: �m

L
(x

_
I(m)) = �m

L
(x)

_
I(m� 1).

T110: �m

R
(x

_
I(m)) = �m

R
(x)

_
1.

T111: �m

L
(Puffm�1(x)) = x.

T112: �m

R
(Puffm�1(x)) = 0.

T113: �m

L
[Interleavem(x; y)] = x.

T114: �m

R
[Interleavem(x; y)] = y.
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D115: �1
1(x)

d

� x;

�m

k
(x) = �m�1

k
(�m

L
(x)) for 0 < k < m,

�m

m
(x) = �m

R
(x).

T116: �m

k
(< x1; � � � ; xm >) = xk; 1 � klem.

T117: For s 2 f0; 1gn and 1 � k � n,

�n

k
(xs) = �n

k
(x)sk.

DR118(Multi-variable induction: From

t[0=x1 � � �0=xn] = u[0=x1 � � � 0=xn]

t[x1s1=x1 � � �xnsn=xn] = vs[t=a]

u[x1s1=x1 � � �xnsn=xn] = vs[u=a]

�
8s 2 f0; 1gn; s = s1 � � � sn

infer t = u.

T119: < x1; � � � ; xn > _
I(n) =< b

1
2
x1c � � � b

1
2
xnc >.

DR120(Bounded multi-variable recursion):

Rm[g; h; k](~x; ~y)
d

�

8<
:

If < x1; � � � ; xn >= 0 then g(~y)

else if t
_
k(~x; ~y) = 0 then t

else k(~x; ~y);

where t � h(~x; ~y; Rm[g; h; k](b1
2
x1c � � � b

1
2
xnc; ~y)).

D121(Equality):

Equ(x; y)
d

�

8<
:

If < x; y >= 0 then 0

else if t(Equ)
_
1 = 0 then t(Equ)

else 1;

where t(Equ) � [Equ(b1
2
xc; b1

2
yc)&(Parity(x), Parity(y))].

T122: Equ(x; x) = 0.

T123: Equ(x; y) = Equ(y; x).

T124: [(Equ(x; y)&Equ(y; z)) � Equ(x; z)] = 0.

T125: Equ(x; y) � x = y.

DR126: Equ(t; u) = 0 ` t = u.

DR127: t = u ` Equ(t; u) = 0.
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T128: [Equ(x; y) � Equ(f(x; ~z); f(y; ~z))] = 0.

DR129: From P [0=x1 � � �0=xn] = 0 and [P � P [x1s1=x1 � � �xnsn=xn]] = 0;

8s 2 f0; 1gnP = 0

D130: x v y
d

� Equ(x
_
y; 0). This is the characteristic function of the relation jxj � jyj.

T131: [((x v y)&(y v z)) � (xsqsubseteqz)] = 0.

T132: x 6= y � (S(x
_
1)

_
x) = 0.

D133:

jxj
d

�

8<
:

If x = 0 then 0

else if S(jb1
2
xcj)

_
x = 0 then S(jb1

2
xcj)

else x:

T134: x 6= 0 � S(jb1
2
xcj)

_
x = 0.

T135: jxj = Cond(x; 0; S(jb1
2
xcj)).

D136:

Less(x; y)
d

�

�
If x = y = 0 then 1

else Cond(t(Less)
_
1; t(Less); 1)

where t(Less) � [Equ(b1
2
xc; b1

2
yc)& � (Parity(x) � Parity(y)) _ Less(b1

2
xc; b1

2
yc)]

D137: Lesseq(x; y)
d

� [Less(x; y) _ Equ(x; y)].

T138: [Less(x; y)&Less(y; z) � Less(x; z)] = 0.

T139: [Lessequ(x; y)&Lessequ(y; z) � Lessequ(x; z)] = 0.

T140: Less(x; x) = 1.

T141: [Lessequ(x; y)&Lessequ(y; x) � Equ(x; y)] = 0.

T142: [Lessequ(x; y) _ Lessequ(y; x)] = 0.

T143: x 6= 0 � Less(0; x) = 0.

T144: Lessequ(0; x) = 0.

T145: Lessequ(Sx; y) = Less(x; y).

T146: Less(x; Sy) = Lessequ(x; y).

42



T147: [Lessequ(x; y) � Equ(x; y) _ Lessequ(Sx; y)] = 0.

T148: Equ(x; Sx) = 1.

T149: Less(Sx; Sy) = Less(x; y).

T150: Lessequ(x; 0) = Equ(x; 0).

T151: [Lessequ(x; y) � Lessequ(jxj; jyj)] = 0.

T152: y 6= 0 � (x0□+ y) = x□+ y0.

D153(Addition):

x+ y
d

�

8<
:

If x = y = 0 then 0

else if t(+)
_
(1□+ x□+ y) = 0 then t(+)

else 1□+ x□+ y;

t(+)
d

�

8<
:

If Parity(x) = 0 then (b1
2
xc+ b1

2
yc)
 Parity(y)

else if Parity(y) = 0 then (b1
2
xc+ b1

2
yc)1

else S(b1
2
xc + b1

2
yc)0:

T154: t(+)
_
(1□+ x□+ y) = 0.

T155: x + 0 = x.

T156: Sx = x+ 1.

T157: x + y = y + x.

T158: x + Sy = S(x+ y).

T159: (x + y) + z = z + (y + z).

T160: [Equ(x+ z; y + z), Equ(x; y)] = 0.

T161: Less(x + y; y + z) = Less(x; y).

T162: Lessequ(x + z; y + z) = Lessequ(y; x)] = 0.

T163: y 6= 0 � x
_
(y□+ z) = (x

_
y)

_
z.

T164: (x v x) = 0.
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T165: x 6= 0 � Equ(x; 0) = 1.

T166: sg(x) = Equ(x; 0).

T167: [x v y � x
_
z v y

_
z] = 0.

T168: [x v y � si(x) v si(y)] = 0.

T169: [Equ(x0; 0) � Equ(x; 0)] = 0.

T170: [Equ(x□+ y; 0) � Equ(x; 0)] = 0.

T171: Equ(x#y; 0) = 1.

T172: x□+ y1 = x0□+ y.

T173: sg(Sx) = 1.

T174: sg(jxj) = sg(x).

T175: (x v y) = Lessequ(jxj; jyj).

T176: y 6= 0 � x
_
(y1□+ z) = x

_
(y□+ z)1.

T177: y 6= 0 � (x + y)
_
(x□+ y) = 0.

T178: Equ(Sx; 0) = 1.

T179: [Equ(x+ y; 0) � Equ(x; 0)] = 0.

T180: x 6= 0 � jx□+ yj = jxj+ jyj.

D181(Multiplication):

x � y
d

�

�
If y = 0 then 0

else Cond(y(�)
_
(x1#y); t(�); x1#y);

where t(�) � Cond(Parity(y); (x � b1
2
yc)0; (x � b1

2
yc)0 + x).

T182: [Equ(x � y; 0) � (Equ(x; 0) _ Equ(y; 0))] = 0.

T183: x � y = Cond(Parity(y); (x � b1
2
yc)0; (x � b1

2
yc)0 + x).

T184: x � 1 = 0.
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T185: s0x = x + x = x � 2.

T186: x � (y + 1) = (x � y) + x.

T187: x � (y + z) = (x � y) + (x � z).

T188: x0 � y = (x � y)0.

T189: x1 � y = (x � y)0 + y.

T190: 0 � x = 0.

T191: x � y = y � x.

T192: [Lessequ(1; x) � Equ(j2 � xj; S(jxj))] = 0.

T193: jS(2 � x)j = S(jxj).

T194: jx#yj = S(jxj � jyj).

T195: 1#1 = 2.

T196: 0#x = 1.

T197: xi 6= 0 � xi#y = (x#y)□+ y.

T198: x#y = y#x.

T199: (x□+ y) � z = (x � z)□+ y.

T200: x 6= 0 � (x□+ y)#z = (x#z) � (y#z).

T201: [Equ(jxj; jyj) � Equ(x#z; y#z)] = 0.

T202: [Equ(jxj; juj+ jvj) � Equ(x#y; (u#y) � (v#y))] = 0.

T203: [Equ(x; b1
2
xc + b1

2
xc) _ Equ(x; S(b1

2
xc + b1

2
xc))] = 0.

45



D204:

f9(a; ~y)
d

�

8<
:

If a = 0 then sg(f(0; ~y))

else if t(f9)
_
1 = 0 then t(f9)

else 1;

where t(f9) � f9(b1
2
ac); ~y) _ f(jaj; ~y):

f8(a; ~y)
d

�

8<
:

If a = 0 then sg(f(0; ~y))

else if t(f8)
_
1 = 0 then t(f8)

else 1;

where t(f8) � f8(b1
2
ac); ~y)&f(jaj; ~y).

DR205:

(1)f9(0; ~y) = sg(f(0; ~y));

(2)f9(a; ~y) = f9(b1
2
ac); ~y) _ f(jaj; ~y);

(3)f8(0; ~y) = sg(f(0; ~y));

(4)f8(a; ~y) = f8(b1
2
ac); ~y)&f(jaj; ~y).

T206: Let f be an n-place function symbol of PV . Then there are n+1-place function

symbol fM of PV for which the theorems are provable:

(1) Lessequ(f(x1; � � � ; xn); f
M(x1; � � � ; xn)) = 0;

(2) [(Lesswqu(x1; y1)& � � �&Lessequ(xn; yn)) �

Lesseq(fM (x1; � � � ; xn); f
M(y1; � � � ; yn))] = 0.
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Chapter 4

The System IPV

The system IPV arises by adding intuitionistic predicate logic of PV , together with a

form of induction on NP predicates. Because of availability of function symbols in PV ,

the form of predicates used in the induction scheme is much more restricted than IS1
2 .

This restriction will simplify the realizability interpretation in Chapter 8 and 9. Main

theorem of this chapter is that IPV is conservative extension of IS1
2 .

4.1 De�nition of IPV

De�nition 4.1.1

(1) The predicate symbols of IPV are x = y and x � y.

(2) The terms and function symbos of IPV are those of PV .

(3) Bounded quantifiers and the class of formulas �b

k
;�b

k
;�b+

k
;�b+

k

are de�ned in Chapter 2.

(4) Rules of inference of IPV are NJ and IR.

De�nition 4.1.2 The nonlogical axioms of IPV are:

(1) All axioms of PV

(2) x � y $ Lessequ(x; y) = 0

(3) x = s0b
1
2
xc _ x = s1b

1
2
xc

(4) Cond(x; a; b) = c$ (x = 0 ^ a = c) _ (:(x = 0) ^ b = c)

(5) NP-Induction scheme

Any formula of the form:

[A(0) ^ 8x(A(b1
2
xc)! A(x))]! 8zA(z)

where A is of the form (9y � t)u = v, where t; u; v are terms of PV .

Of course, we can apply NP-Induction to the formula \u = v".
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4.2 Conservative extension of IS1
2

Theorem 4.2.1 Any theorem of PV is a theorem of IPV .

(proof) A form of theorem of PV is \t = u". We need to prove that axioms of PV are

provable in IPV and rules of inference of PV are derived rules in IPV .

(1) Axioms of PV

Assume t = u is an axiom of PV . Then t = u is provable because axioms of PV

are contained IPV .

(2) R1

Let IPV ` t = u. By (IR2), IPV ` u = t.

(3) R2

Let IPV ` t = u and u = v. By (IR3), IPV ` t = v.

(4) R3

Let IPV ` t1 = u1; � � � ; tn = un. By (IR4), IPV ` ft1 � � � tn = fu1 � � �un.

(5) R4

Let IPV ` t = u. By (8I) and (8E), IPV ` t[v=x] = u[v=x].

(6) R5

Let IPV ` t1[0=x] = t2[0=x]; t1[s0x=x] = v0[t1=a]; t2[s0x=x] = v0[t2=a];

t1[s1x=x] = v1[t1=a] and t2[s1x=x] = v0[t2=a]. De�ne A(x) as t1(x) = t2(x). Then

we prove IPV ` A(x) by NP-Induction.

By t1[0=x] = t2[0=x],

IPV ` A(0).

By A(b1
2
xc); x = s0b

1
2
xc, t1[s0x=x] = v0[t1=a] and t2[s0x=x] = v0[t2=a],

IPV ` x = s0b
1
2
xc ! (A(b1

2
xc)! A(x)).

Similarly by t1[s1x=x] = v1[t1=a] and t2[s1x=x] = v0[t2=a],

IPV ` x = s1b
1
2
xc ! (A(b1

2
xc)! A(x)).

By above and (x = s0b
1
2
xc _ x = s1b

1
2
xc)(Def. 4:1:2(3)),

IPV ` A(b1
2
xc)! A(x).

By NP-Induction,

IPV ` A(x).

Therefore R5 is derived rule.

Theorem 4.2.2 The following are theorems of IPV :

(1) Equ(x; y) = 0$ (x = y).

(2) � x = 0$ :(x = 0)
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(3) x&y = 0$ (x = 0 ^ y = 0)

(4) x _ y = 0$ (x = 0 _ y = 0)

(5) x � y $ (x = 0! y = 0)

(6) x, y = 0$ (x = 0$ y = 0)

(7) f9(a; ~y) = 0$ (9x � jaj)f(x; ~y) = 0

(8) f8(a; ~y) = 0$ (8x � jaj)f(x; ~y) = 0

(proof)

(1) Equ(x; y) is de�ned in D121.

By (T125),

IPV ` Equ(x; y) = 0! x = y.

By (T122),

IPV ` x = y ! Equ(x; y) = 0.

(2) � x is de�ned in D32.

By de�nition,

IPV `� x = 0! :(x = 0).

By Def. 4:1:2(4),

IPV ` :(x = 0)!� x = 0.

(3) x&y is de�ned in D33.

Next two are obvious,

` (x = 0 ^ sg(y) = 0)! (x = 0 ^ y = 0)

and

` (:(x = 0) ^ 1 = 0)! (x = 0 ^ y = 0).

By (x&y = 0) � (x = 0 ^ sg(y) = 0) _ (:(x = 0) ^ 1 = 0),

IPV ` (x&y = 0)! (x = 0 ^ y = 0).

By de�nition,

IPV ` (x = 0 ^ y = 0)! x&y = 0.

(4) x _ y is de�ned in D34.

By (x = 0 ^ 0 = 0)! x = 0; (:(x = 0) ^ sg(y) = 0)! y = 0 and

(x _ y = 0) � (x = 0 ^ 0 = 0) _ (:(x = 0) ^ sg(y) = 0),

IPV ` x _ y = 0! (x = 0 _ y = 0).

By ` x = 0! (x _ y = 0);` y = 0! (x _ y = 0),

IPV ` (x = 0 _ y = 0)! x _ y = 0.

(5) x � y is de�ned in D35.

By x = 0 ^ sg(y) = 0,

` (x = 0 ^ sg(y) = 0)! (x = 0! y = 0).

Next is obvious,
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` (:(x = 0) ^ 0 = 0)! (x = 0! y = 0).

By (x � y = 0) � (x = 0 ^ sg(y) = 0) _ (:(x = 0) ^ 0 = 0),

IPV ` (x � y = 0)! (x = 0! y = 0).

By :(x = 0),

` :(x = 0)! [(x = 0! y = 0)! (x � y = 0)].

By Def. 4:1:2(4),

` x = 0! [(x = 0! y = 0)! (x � y = 0)].

By x = 0 _ :(x = 0),

IPV ` (x = 0! y = 0)! (x � y = 0).

(6) x, y is de�ned in D36.

Next is obvious,

` (x = 0 ^ sg(y) = 0)! (x = 0$ y = 0).

Next two are obvious,

` (:(x = 0) ^ sg(y) = 0)! (y = 0! x = 0).

and

` (:(x = 0) ^ sg(y) = 0)! (x = 0! y = 0).

Hence

` (:(x = 0) ^ sg(y) = 0)! (x = 0$ y = 0).

By x, y � (x = 0 ^ sg(y) = 0) _ (:(x = 0) ^ sg(y) = 0,

IPV ` (x, y)! (x = 0$ y = 0).

Next two are obvious,

` y = 0! [(x = 0$ y = 0)! (x, y)].

and

` :(y = 0)! [(x = 0$ y = 0)! (x, y)].

By y = 0 _ :(y = 0)

IPV ` (x = 0$ y = 0)! (x, y).

(7) f9(a; ~y) is de�ned in D204.

i)(9x � jaj)f(x; ~y) = 0! f9(a; ~y) = 0

Let B(a) be (x � jaj ^ f(x; ~y) = 0) ! f9(a; ~y) = 0. By Def. 4:1:2(2)and this

theorem(3), (x � jaj ^ f(x; ~y) = 0) � [Lesseq(x; jaj)&f(x; ~y)] = 0. Therefore we

can apply NP-Induction to B(a). Hence we prove B(a) by NP-Induction on the

variable a.

Basis step Assume x � j0j ^ f(x; ~y) = 0. Then x = 0 ^ f(x; ~y) = 0. Therefore

f(0; ~y) = 0. By D204, f9(0; ~y) = 0. Therefore

` B(0).

Induction step Assume ` B(b1
2
ac) and ` x � jaj ^ f(x; ~y) = 0.

By x � jaj ! (x � jb
1
2
acj _ x = jaj),

` [x � jaj ^ f(x; ~y) = 0]! [(x � jb
1
2
acj _ x = jaj) ^ f(x; ~y) = 0].

By (x � jb
1
2
acj ^ f(x; ~y) = 0) and B(b1

2
ac),

` f9(b1
2
ac; ~y) = 0.

Therefore f9(a; ~y) = [f9(b1
2
ac; ~y) _ f(jaj; ~y)] = [0 _ f(jaj; ~y)] = 0.
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By x = jaj ^ f(x; ~y) = 0,

` f(jaj; ~y) = 0.

Therefore f9(a; ~y) = [f9(b1
2
ac; ~y) _ f(jaj; ~y)] = [f9(b1

2
ac; ~y) _ 0] = 0.

By hypothesis, ` f9(a; ~y) = 0.

Therefore

` B(b1
2
ac)! B(a).

By NP-Induction,

` B(a).

Therefore

IPV ` (9x � jaj)f(x; ~y) = 0! f9(a; ~y) = 0

ii)f9(a; ~y) = 0! (9x � jaj)f(x; ~y) = 0

Let D(a) be (9x � jaj)(f(x; ~y) = 0_f9(a; ~y) = 1). We prove D(a) by NP-Induction

on the variable a.

Basis step By f9(0; ~y) = Cond(f(0; ~y); 0; 1) and Def. 4:1:2(4),

` (f(0; ~y) = 0 ^ f9(0; ~y) = 0) _ (:(f(0; ~y) = 0) ^ f9(0; ~y) = 1)

By this and 0 � j0j,

` 0 � j0j ^ [f(0; ~y) = 0 _ f9(0; ~y) = 1].

Hence

` 9x(x � j0j ^ [f(x; ~y) = 0 _ f9(0; ~y) = 1]).

Therefore

` D(0).

Induction step Let ` D(b1
2
ac)(� 9x(x � jb

1
2
acj^ [f(x; ~y) = 0_f9(b1

2
ac; ~y) = 1])).

By x � jb
1
2
acj; f(x; ~y) = 0,

` (x � jb
1
2
acj ^ f(x; ~y) = 0)! x � jaj

` (x � jb
1
2
acj ^ f(x; ~y) = 0)! (f(x; ~y) = 0 _ f9(a; ~y) = 1).

Hence

` (x � jb
1
2
acj ^ f(x; ~y) = 0)! (x � jaj ^ [f(x; ~y) = 0 _ f9(a; ~y) = 1]).

�

By f9(b1
2
ac; ~y) = 1 and f9(a; ~y) = Cond(f9(b1

2
ac; ~y); 0; sg(f(jaj; ~y))),

` f9(b1
2
ac; ~y) = 1! [(f(jaj; ~y) = 0^f9(a; ~y) = 0)_(:(f(jaj; ~y) = 0)^f9(a; ~y) = 1)].

By (f(jaj; ~y) = 0 ^ f9(a; ~y) = 0),

` (f(jaj; ~y) = 0 ^ f9(a; ~y) = 0)! 9x(x � jaj ^ (f(jaj; ~y) = 0 _ f9(a; ~y) = 1)).

By (:(f(jaj; ~y) = 0) ^ f9(a; ~y) = 1),

` (:(f(jaj; ~y) = 0) ^ f9(a; ~y) = 1)! 9x(x � jaj ^ (f(jaj; ~y) = 0 _ f9(a; ~y) = 1)).

Hence

` (x � jb
1
2
acj ^ f9(b1

2
ac; ~y) = 1)! 9x(x � jaj ^ (f(jaj; ~y) = 0 _ f9(a; ~y) = 1)).

�

By (�); (�), and D(b1
2
ac),

` D(b1
2
ac)9x(x � jaj ^ (f(jaj; ~y) = 0 _ f9(a; ~y) = 1)).

Therefore

` D(b1
2
ac)! D(a)

By NP-Induction ,
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` D(a)

By x � jaj ^ f(jaj; ~y) = 0,

` (x � jaj ^ f(jaj; ~y) = 0)! [f9(a; ~y) = 0! 9x(x � jaj ^ f(jaj; ~y) = 0)].

By x � jaj ^ f9(a; ~y) = 1,

` (x � jaj ^ f9(a; ~y) = 1)! [f9(a; ~y) = 0! 9x(x � jaj ^ f(jaj; ~y) = 0)].

By these and D(a),

IPV ` f9(a; ~y) = 0! (9x � jaj)f(jaj; ~y) = 0.

(8) f8(a; ~y) is de�ned in D204.

Let E(a) be f8(a; ~y) = 0$ (8x � jaj)f(x; ~y) = 0. We prove E(a) by NP-Induction

on the variable a.

Basis step

By (f8(0; ~y) = 0)$ f(0; ~y) = 0 and (8x � jaj)f(x; ~y) = 0$ f(0; ~y) = 0,

` f8(0; ~y) = 0$ f(0; ~y) = 0

Therefore

` E(0)

Induction step Let IPV ` E(b1
2
ac).

Assume ` f8(a; ~y) = 0. By T205,

` f8(b1
2
ac; ~y)&f(jaj; ~y) = 0.

By this theorem (3),

` f8(b1
2
ac; ~y) = 0 ^ f(jaj; ~y) = 0.

By E(b1
2
ac),

` (8x � jb
1
2
acj)f(x; ~y) = 0 ^ f(jaj; ~y) = 0.

In a word,

` (8x � jaj)f(x; ~y) = 0.

Therefore

` f8(a; ~y) = 0! (8x � jaj)f(x; ~y) = 0.

Assume (8x � jaj)f(x; ~y) = 0. Then

` f(jaj; ~y) = 0 ^ (8x � jb
1
2
acj)f(x; ~y) = 0.

By E(b1
2
ac),

` f(jaj; ~y) = 0 ^ f8(b1
2
ac; ~y) = 0.

By T205,

` f8(a; ~y) = 0.

Therefore

` (8x � jaj)f(x; ~y) = 0! f8(a; ~y) = 0.

Therefore

` E(b1
2
ac)! E(a).

By NP-Induction,

IPV ` f8(a; ~y) = 0$ (8x � jaj)f(x; ~y) = 0

Theorem 4.2.3 If A is a �b

0formula of IPV then there is a term tA of PV so that
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IPV ` A$ tA = 0

(proof) We prove by induction on the logical structure of A

Let t1 and t2 be terms.

1) If A is t1 = t2, then t1 = t2 $ Equ(t1; t2) = 0 by Th. 4:2:2(1).

2) If A is t1 � t2, then t1 � t2 $ Lessequ(t1; t2) = 0 by Def. 4:1:2(2).

For the remaining cases,assume that ` B $ tB = 0 and ` C $ tC = 0, where B and

C are �b

0 formula and t
B = 0 and tC = 0 are terms of PV .

3) If A is B ^ C, then B ^ C $ (tB = 0) ^ (tC = 0)$ (tB&tC = 0) by Th. 4:2:2(3).

4) If A isB_C, then B_C $ (tB = 0)_(tC = 0)$ (tB_tC = 0) by Theorem 4:2:2(4).

5) If A is B ! C, then B ! C $ (tB = 0)! (tC = 0)$ (tB � tC = 0)

by Theorem 4:2:2(5).

For the remaining cases,assume that ` D(x; ~y) $ tB(x; ~y) = 0, where D(x; ~y) is �b

0

formula and tB(x; ~y) is term of PV .

6) If A is (9x � jaj)B(x; ~y), then (9x � jaj)B(x; ~y)$ (9x � jaj)tB(x; ~y) = 0$

(tB)9(x; ~y) = 0 by Theorem 4:2:2(7).

7) If A is (8x � jaj)B(x; ~y), then (8x � jaj)B(x; ~y)$ (8x � jaj)tB(x; ~y) = 0$

(tB)8(x; ~y) = 0 by Theorem 4:2:2(8).

Theorem 4.2.4 If A is a �b

0formula of IPV then IPV ` A _ :A.

(proof) By theorem 4:2:2(2),(4),T1,T4,D31,D34,T38 and theorem 4:2:3.

Lemma 4.2.5 The �b

1 � PIND and �b

1 � LIND are derivable in IPV , provided that

the formula A(x) is of the form (9y � t)B, where B is �b

0.

(proof) By theorem 4:2:3, A � (9y � t)tB = 0. So The �b

1 � PIND scheme for A(x)

is equivalent to NP-Induction. Therefore the �b

1 � PIND scheme is a theorem of IPV .

The �b

1 � LIND scheme for A(x) is provided exactly as in lemma 2:3:6.

Theorem 4.2.6 There are functions Sx; jxj; b1
2
xc; x+ y; x � y and x]y de�nable in PV so

that all the BASIC axioms of IS1
2 are provable in IPV .

(proof) Sx; jxj; x+ y and x � y are de�ned in each D24,D133,D153 and D181.

B.1 is by T122 and T148 . B.2 is by T122 and T148 .

B.3 is by D137 and T144 . B.4 is by T139 .

B.5 is by T141 . B.6 is by T142 .

B.7 is by D133 . B.8 is by T192 .

B.9 is by T193 . B.10 is by T151 .

B.11 is by T194 . B.12 is by T195 .

B.13 is by T198 . B.14 is by T202 .

B.15 is by T155 . B.16 is by T158 .
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B.17 is by T159 . B.18 is by T162 .

B.19 is by T184 . B.20 is by T187 .

B.21 is by T203 .

Theorem 4.2.7 IPV contains a set of eÆcient coding functions.

(proof) A sequence s0; � � � ; sk can be encoded by replacing each digit in an entry in the

sequence by a two-digit sequence, then concatenating all the encoded entries with a two-

digit code as a separator. The result coding functions are fairly easy to de�ne in PV , and

the theorems required by def. 2:4:4 may be established by using multi-variable induction

(DR118).

De�nition 4.2.8 The �b

0-replacement scheme is the family of formulas of the form:

(8x � jtj)(9y � s)A(x; y)$ (9w � Bound(s�; t))(8x � jtj)[A(x; �(x; w)) ^ �(x; w) � s]:

where A(x; y)is a �b

0 formula of IPV and s� = sM [jtj=x], where now sM is the monotone

upper bound on s obtained from T206.

Theorem 4.2.9 All instances of the �b

0-replacement scheme are provable in IPV .

(proof) Let

L
d

� (8x � jtj)(9y � s)A(x; y),

M
d

� (9w � Bound(s�; t))(8x � jtj)[A(x; �(x; w)) ^ �(x; w) � s],

N(u)
d

� (9w � Bound(s�; t))(8x � jtj)[x � u! A(x; �(x; w)) ^ �(x; w) � s].

1)M! L

w � Bound(s�; t) ^ (8x � jtj)[A(x; �(x; w)) ^ �(x; w) � s]

8x(Sjtj � x _ [A(x; �(x; w)) ^ �(x; w) � s])

Sjtj � x _ [A(x; �(x; w)) ^ �(x; w) � s]

Sjtj � x 9y[A(x; y) ^ y � s]

Sjtj � x (9y � s)A(x; y)

Sjtj � x _ (9y � s)A(x; y) Sjtj � x _ (9y � s)A(x; y)

Sjtj � x _ (9y � s)A(x; y)

8x(Sjtj � x _ (9y � s)A(x; y))

M L

L (by (9E) for w)

2)L!M

For L!M , we prove L! N(u) by �b

1 � LIND.

We �rst show A! N(0), that is ,

A! (9w � Bound(s�; t))(8x � jtj)[x � u! A(0; �(0; w)) ^ �(0; w) � s].
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Assuming L, we have A(0; b) for some b � s[0=x]. Let w be 0 � b.

By def. 2:4:4(A,B,C),

` Seq(w) ^ Len(w) = 1.

By def. 2:4:4(F),

` �(0; w) = b.

By �(0; w) = b � s[0=x] � sM [0=x] � sM [jtj=x] = s�,

` (8i < Len(w))(�(i; w) � s�).

By def. 2:4:4(H),

` w � Bound(s�; t).

By A(0; b) and �(0; w) = b,

` A(0; �(0; w)).

By A(0; �(0; w)),

` x � 0! A(0; �(0; w)).

By x � 0! x = 0 and �(0; w) � s[0=x],

` x � 0! �(x; w) � s[x=x].

So the proof of L! N(0) is complete.

Secondly, for to prove L ! (N(u) ! N(Su)) we prove L ^ N(u) ^ jtj � u! N(Su)

and L ^ N(u) ^ u < jtj ! N(Su). L ^ N(u) ^ jtj � u ! N(Su) is easy because of

x � jtj ! x � u and N(u). Therefore we prove L ^N(u) ^ u < jtj ! N(Su). Assuming

the antecedent, we have :

N(u) � (9w1 � Bound(s�; t))(8x � jtj)[x � u! A(x; �(x; w1)) ^ �(x; w1) � s].

N(Su) � (9w2 � Bound(s�; t))(8x � jtj)[x � Su! A(x; �(x; w2)) ^ �(x; w2) � s].

By L and u < jtj(� Su � jtj), we have A(Su; b) for some b � s[Su=x] (take Su as x). We

de�ne w2 to be w1�b. By def. 2:4:4(B), Seq(w2). By Len(w1) � jtj+1, Len(w2) � Sjtj+1.

By b � s[Su=x] � s[jtj=x] = s�; N(u),and def. 2:4:4(E), (8i < Len(w2))�(i; w2) � s�. By

def. 2:4:4(H), w2 � Bound(s�; t). By def. 2:4:4(E) and N(u),

` x � u! A(x; �(x; w2)) ^ �(i; w) � s� � � � � � � (�).

By A(Su; b) and b = �(Su; w2)

` x = Su! A(Su; �(Su; w2)).

By �(Su; w2)(= b) � s�,

` x = Su! �(x; w2) � s�.

By (^I),

` x = Su! A(Su; �(Su; w2)) ^ �(x; w2) � s�. � � � � � � (�)

By (�),(�) and x � Su! x � u _ x = Su,

` x � Su! A(x; �(x; w2)) ^ �(i; w) � s� .

By these, we prove L ^N(u) ^ u < jtj ! N(Su). By �b

1 � LIND, L! N(juj).

Therefore L!M is proved.

Lemma 4.2.10 IPV ` (9y1 � t1)(9y2 � t2)u = v $ (9z � s)u0 = v0

(proof)

(1) (9z � s)u0 = v0 ! (9y1 � t1)(9y2 � t2)u = v

(9z � s)u0 = v0 ! (0 � 0 ^ (9z � s)u0 = v0)

! 9x(x � 0 ^ (9z � s)u0 = v0)
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! (9x � 0)(9z � s)u0 = v0.

(2) (9y1 � t1)(9y2 � t2)u = v ! (9z � s)

Let A be (9y1 � t1)(9y2 � t2)u = v. By de�nition of bounded quanti�ers (def. 2:1:9),

yi does not occur in ti, i=1,2. If y2 occurs in t1 then we may avoid this occurrence by

renaming the variable in the second quanti�er. However, y1 may occur in t1. To eliminate

this occurrence, we appeal to T206 and th. 4:2:2 to �nd a term s2 whose variables are

among those of t2 such that ` t2 � s2 and ` (y1 � t1 ! s2 � s2[t1=y1]). Then

IPV ` A$ (9y1 � t1)(9y2 � s2[t1=y1])(y2 � t2 ^ u = v)

$ (9y1 � t1)(9y2 � s2[t1=y1])Lessequ(y2; t2) ^ Equ(u; v) = 0.

Thus we may assume that in the formula A neither y1 or y2 occur in t1 or t2.

We use the pairing function < x; y > (D99) and projection function �2
1;�

2
2 (D115)

which have the which has the properties of �2
1(y1; y2) = y1,�

2
2(y1; y2) = y2 and

(y1 � t1 ^ y2 � t2)!< y1; y2 >�< t1; t2 >.

By use of these functions,

(9y1 � t1)(9y2 � t2)u = v

! 9y1(9y2((y1 � t1 ^ y2 � t2) ^ y1 � t1 ^ y2 � t2 ^ u = v))

! 9y1(9y2((< y1; y2 >�< t1; t2 >) ^ �2
1(< y1; y2 >) � t1 ^

�2
2(< y1; y2 >) � t2 ^ u[�

2
i
(< y1; y2 >)=yi] = v[�2

i
(< y1; y2 >)=yi]))

! 9z(z �< t1; t2 > ^�2
1(z) � t1 ^ �2

2(z) � t2 ^ u[�
2
i
(z)=yi] = v[�2

i
(z)=yi]))

! (9z �< t1; t2 >)(�
2
1(z) � t1 ^ �2

2(z) � t2 ^ u
0 = v0)

! (9z �< t1; t2 >)([Lessequ(�
2
1(z); t1)&Lessequ(�

2
2(z); t2)&Equ(u

0v0)] = 0),

where u0 and v0 are u[�2
i
(z)=yi] and v[�

2
i
(z)=yi].

Lemma 4.2.11 Every �b+
1 formula of IPV is equivalent in IPV to a formula of the form

(9y � t)(u = v).

(proof) We prove by induction on the complexity of �b+
1 formula A.

1) A � u = v

Assume u = v. Then by ` 0 � t ^ u = v, ` 9y(y � t ^ u = v). Therefore

IPV ` A! (9y � t)(u = v).

Assume (9y � t)(u = v). Then by ` :(u = v)! ((9y � t)(u = v)! ?),

` :(u = v)! ((9y � t)(u = v)! u = v). By (u = v) _ :(u = v), ` u = v. Therefore

IPV ` (9y � t)(u = v)! A.

2) A � u � v

Assume u � v. By 0 � t, ` 0 � t^u � v. By def. 4:1:2(2), ` 9y(y � t^Lessequ(u; v) = 0).

Therefore

IPV ` A! (9v � t)(Lessequ(u; v) = 0).

Assume (9y � t)(u � v). Then ` :(u � v) ! ((9y � t)(u = v) ! u � v). By

(u � v ! u � v) and (u � v) _ :(u = v), ` u � v. Therefore

IPV ` (9y � t)(u = v)! A.
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For the remaining cases, assume that �b+
1 formulas B and C are B $ (9y1 � t1)(u1 =

v1) and C $ (9y2 � t2)(u2 = v2).

3) A � (9y � t)B

Assume (9y � t)B. By de�nition of B, ` (9y � t)(9y1 � t1)(u1 = v1). By lemma 4:2:10,

` 9z(z � s)u0 = v0. Therefore

IPV ` A! (z � s)u0 = v0.

By to reverse the method, we can prove (9y � t)(u = v)! A.

4) A � (8y � jtj)B

Assume (8y � jtj)B. By de�nition of B, ` (8y � jtj)(9y1 � t1)(u1 = v1). By th. 4:2:9,

` (9w � Bound(t�1; t))(8y � jtj)(u1[�(y; w)=y1] = v1[�(y; w)=y1] ^ �(y; w) � t1) .

By th. 4:2:2(1),(3),(8) and def. 4:1:2,

` (9w � Bound(t�1; t))[(Equ(u
0
1; v

0
1)&Lessequ(�(t; w); s))

8 = 0],

where u01 and v
0
1 are u1[�(y; w)=y1] and v1[�(y; w)=y1].

Hence

IPV ` A! (9w � Bound(t�1; t))[(Equ(u
0
1; v

0
1)&Lessequ(�(t; w); s))

8 = 0].

By to reverse the method, we can prove

IPV ` 9w � Bound(t�1; t))[(Equ(u
0
1; v

0
1)&Lessequ(�(t; w); s))

8 = 0]! A.

5) A � B ^ C

Assume B ^ C. Then ` (9y1 � t1)(9y2 � t2)(u1 = v1 ^ u2 = v2).

By th. 4:2:2(1),(3),

` (9y1 � t1)(9y2 � t2)(Equ(u1; v1)&Equ(u2; v2) = 0).

By lemma 4:2:10,

` (z � s)u0 = v0.

Hence

IPV ` A! (z � s)u0 = v0.

By to reverse the method, we can prove (z � s)u0 = v0 ! A.

6) A � B _ C

Assume B _ C. Then ` (9y1 � t1)(9y2 � t2)(u1 = v1 _ u2 = v2). By th. 4:2:2(1),(4),

` (9y1 � t1)(9y2 � t2)(Equ(u1; v1)_Equ(u2; v2) = 0). By lemma 4:2:10, ` (z � s)u0 = v0.

Hence

IPV ` A! (z � s)u0 = v0.

By to reverse the method, we can prove (z � s)u0 = v0 ! A.

Theorem 4.2.12 IPV is a conservative extension of IS1
2 .

(proof) We need to prove 8A 2 L(IS1
2)[IPV ` A ) IS1

2 ` A]. We de�ne the system T

which is extension of IS1
2 by 1) �

b+
1 de�nition which is suÆciently strong and 2) function

symbol f by th. 2:4:8. To prove this theorem, we prove 8A 2 L(IS1
2)[IS

1
2 ` A) IPV `

A] and 8A 2 L(IPV )[IPV ` A) T ` A] .
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1) 8A 2 L(IS1
2)[IS

1
2 ` A) IPV ` A]

By th. 4:2:6,

IPV `BASIC axioms .

Let A(x) be IPV ` A(0) ^ 8x(A(b1
2
xc) ! A(x)), where A(x) is any �b+

1 -formula. By

lemma 4:2:11, IPV ` A $ (9y � t)(u = v). Let B(x) be (9y � t)(u = v). Then

IPV ` B(0) ^ 8x(B(b1
2
xc) ! B(x)). By NP-Induction for B(x), IPV ` 8xB(x). By

de�nition of B(x), IPV ` 8xA(x).

Therefore IPV ` A(0) ^ 8x(A(b1
2
xc)! A(x))! xA(x).

Therefore

IPV ` �b+
1 � PIND.

2) 8A 2 L(IPV )[IPV ` A) T ` A]

Each basic function symbol of PV is either a function symbol of IS1
2 , or has a simple

de�ning formula in IS1
2 . Thus

s0(x) = 2 � x

s1(x) = 2 � x+ 1

y = Parity(x)$ x = y + 2 � b1
2
xc

w = Cond(x; y; z)$ (x = 0 ^ y = w) _ (:(x = 0) ^ z = w)

x□+ y = x � (y]1)

z = x
_
y$ (9w � x)(jwj � jyj ^ x = z□+ y + w)

[�x1 � � �xn:t](y1 � � � yn) = t[y1=x1 � � � yn=xn]

Lessequ(x; y) = z $ ((x � y ^ z = 0) _ (:(x � y) ^ z = 1)).

We prove T ` PV axioms (0)-(7) (def. 3:1:2).

PV Axiom (0) s0(0) = 2 � 0 = 0.

PV Axiom (1a)

By (B.21),

` s0(x) = 2 � b1
2
s0xc _ 2 � b1

2
s0xc + 1.

Hence

` 2 � x = 2 � b1
2
s0xc.

Therefore

` s0(x) = 2 � b1
2
s0xc + 0.

By de�nition of Parity,

` Parity(s0x) = 0.

PV Axiom (1b)

By (B.21),

` s1(x) = 2 � b1
2
s1xc _ 2 � b1

2
s1xc + 1.

Hence

` 2 � x+ 1 = 2 � b1
2
s0xc + 1.

Therefore

` s1(x) = 2 � b1
2
s1xc + 1.
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By de�nition of Parity,

` Parity(s1x) = 1.

PV Axiom (2a) By 1a, ` 2 � x = 2 � b1
2
s0xc. Therefore ` x = b

1
2
s0xc.

APV xiom (2b) By 1b, ` 2 � x + 1 = 2 � b1
2
s0xc + 1. Therefore ` x = b

1
2
s0xc.

PV Axiom (3a)

By (0 = 0)! [(0 = 0 ^ y = y) _ (:(0 = 0) ^ z = y)],

:(0 = 0)! [(0 = 0 ^ y = y) _ (:(0 = 0) ^ z = y)] and (0 = 0) _ :(0 = 0),

` (0 = 0 ^ y = y) _ (:(0 = 0) ^ z = y).

Therefore

` Cond(0; y; z) = y.

PV Axiom (3b)

By x = 0$ s0x = 0 and :(x = 0)$ :(s0x = 0),

Cond(x; y; z) = w$ [(x = 0 ^ y = w) _ (:(x = 0) ^ z = w)]

$ [(s0x = 0 ^ y = w) _ (:(s0x = 0) ^ z = w)]

$ Cond(s0x; y; z) = w

PV Axiom (3c) By IPV ` :(s1x = 0), ` (s1x = 0 ^ y = z) _ (:(s1x = 0) ^ z = z).

PV Axiom (4a)

By (y = 0)! [(y = 0 ^ x = x□+ s0y) _ (:(y = 0) ^ s0(x□+ y) = x□+ s0y)],

:(y = 0)! [(y = 0 ^ x = x□+ s0y) _ (:(y = 0) ^ s0(x□+ y) = x□+ s0y)]

and (y = 0) _ :(y = 0),

` Cond(y; x; s0(x□+ y)) = x□+ s0y.

PV Axiom (4b)

x□+ s1y = x � (s1y#1) = x � 2js1yj�j1j = x � 2jyj�j1j � 2 = s0(x � (y#1)) = s0(x□+ y)

PV Axiom (5a)

By :(y = 0)! [:(y = 0) ^ b1
2
(x

_
y)c = x

_
s0y],

` :(y = 0)! ([y = 0 ^ x = x
_
s0y] _ [:(y = 0) ^ b1

2
(x

_
y)c = x

_
s0y])

By (y = 0)! [y = 0 ^ x = x
_
s0y],

` (y = 0)! ([y = 0 ^ x = x
_
s0y] _ [:(y = 0) ^ b1

2
(x

_
y)c = x

_
s0y])

By (y = 0) _ :(y = 0),

` [y = 0 ^ x = x
_
s0y] _ [:(y = 0) ^ b1

2
(x

_
y)c = x

_
s0y])

PV Axiom (5b)

z = x
_
s1y $ x = z□+ s1y + w

$ x = z � 2js1yj�j1j + w

$ x = s0z � 2
jyj�j1j + w

$ x = (s0z□+ y) + w
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$ s0z = x
_
y

$ z = b
1
2
(x

_
y)c

PV Axiom (6a)

By (y = 0)! [(y = 0 ^ 1 = (x#s0y)) _ (:(y = 0) ^ (x#y)□+ x = (x#s0y))],

:(y = 0)! [(y = 0 ^ 1 = (x#s0y)) _ (:(y = 0) ^ (x#y)□+ x = (x#s0y))]

and (y = 0) _ :(y = 0),

` [(y = 0 ^ 1 = (x#s0y)) _ (:(y = 0) ^ (x#y)□+ x = (x#s0y))].

PV Axiom (6b) x#s1y = 2jxj�(jyj+1) = 2jxj�jyj � 2jxj � 1 = (x#y)□+ x.

PV Axiom (7) [�x1 � � �xn:t](x1 � � �xn) = t[x1=x1] � � � [xn=xn] = t.

We prove T ` IPV axioms (2)-(5) (def. 4:1:2).

IPV axiom (2)

By de�nition,

` (x � y)! (x � y ^ 0 = 0)

! ([x � y ^ 0 = 0] _ [:(x � y) ^ 0 = 1])

! Lessequ(x; y) = 0.

By (x � y ^ 0 = 0)! x � y; (neg(x � y) ^ 0 = 1)! x � y and

Lessequ(x; y) = 0! (x � y ^ 0 = 0) _ (neg(x � y) ^ 0 = 1),

` Lessequ(x; y) = 0! x � y.

IPV axiom (3) By (B.21).

IPV axiom (4) By de�nition of Cond.

IPV axiom (5) Let A(x) be any formula of the form (9y � t)u = v. Then A(x) is �b+
1

formula. By �b+
1 � PIND, ` A(0) ^ 8x(A(b1

2
xc)! A(x))! 8xA(x). Therefore

T ` NP-Induction .

We prove T ` PV Axiom (8).

PV Axiom (8) By de�nition of Lmin, ` Lmin(x; y) = z ! Cond(x
_
y; x; y) = z. By

th. 2:4:8, there is an n+1-place function f which satis�es

f(0;~b) = g(~b)

a = 0 _ f(a;~b) = Lmin[h(a;~b; f(b1
2
ac);~b); k(a;~b)].

By f and Lmin,

` (a = 0 ^ g(~b) = f(a;~b)) _ (:(a = 0) ^ Cond(t
_
k(a;~b); t; k(a;~b))),

where t
d

� h(a;~b; f(b1
2
ac);~b) .

Therefore

T ` f(a;~b) = Cond(a; g(~b); Cond(t
_
k(a;~b); t; k(a;~b))).
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Therefore T ` PV axioms (8).

Therefore

8A 2 L(IPV )[IPV ` A) T ` A].

By T which is conservative extension of IS1
2 ,

3) 8A 2 L(IS1
2)[T ` A) IS1

2 ` A].

By 1) and 2) ,

4) 8A 2 L(IS1
2)[IPV ` A) T ` A].

By 3) and 4) ,

8A 2 L(IS1
2)[IPV ` A) IS1

2 ` A].

Therefore IPV is a conservative extension of IS1
2 .
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Chapter 5

The Typed � Calculus

5.1 De�nition

In this section we introduce the basic concepts of the typed �-calculus which will be used

in later section.

De�nition 5.1.1 The class of type is de�ned as follows:

(1) 0 is type.

(2) (� ! �) is a type is � and � are types.

De�nition 5.1.2 If � = 0! 0! � � � ! 0, with at least one \!",

then � is a type 1 type.

De�nition 5.1.3 Let F be a collection of function symbols (of any types). The collection

of �-term generated from F , denoted �(F), is de�ned as follows :

(1) There are in�nitely many variables X�; Y �; Z�; � � � for each type � , and each such

variable is a term of type � ;

(2) Every function symbol in F of type � is a term of type � ;

(3) If T is a term of type � and X is a variable of type � , then (�X:T ) is a term of

type (� ! �) (abstraction);

(4) If S is a term of type (� ! �) and T is a term of type � , then (ST ) is a term of

type � (application).

De�nition 5.1.4 Subterm is de�ned as follows :

(1) P is a subterm of P .

(2) If P is a subterm of M or N ,then P is a subterm of (MN).

(3) If P is a subterm of M or P � x,then P is a subterm of (�x:M) .
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De�nition 5.1.5 The free occurrence and bounded occurrence of a variable x in a term

t are de�ned inductively as follows :

(1) if t is the variable x, then the occurrence of x in t is free ;

(2) if t =MN , then the free occurrences of x in t are those of x in M and N ;

(3) if t = �y:M , then the free occurrences of x in t are those of x in M ,

except if x = y ; in that case, occurrence of x in t is bounded.

De�nition 5.1.6

A free variable in t is a variable which has at least one free occurrence in t.

A bounded variable in t is a variable which occurs in t just after the symbol �.

Let M be a term. Then FV (M) is set of free variables in M . BV (M) is set of bounded

variables in M . A term which has no free variable is called a closed term.

De�nition 5.1.7 If S and T are terms of types � and � , and X is a variable of type � ,

then S[T=X] is de�ned to be the terms of type � which results from S by substituting T

for all free occurrences of X in S. The rules of substitution are de�ned as follows ;

(1) x[N=x] � N

(2) y[N=x] � y if x 6= y

(3) (PQ)[N=x] � (P [N=x])(Q[N=x])

(4) (�x:P )[N=x] � �x:P

(5) (�y:P )[N=x] � �y:(P [N=x]) if y �= x ; and y =2 FV (N) or x =2 FV (P )

(6) (�y:P )[N=x] � �z:(P [z=y][N=x]) if y �= x; and y 2 FV (N) and x 2 FV (P )

De�nition 5.1.8 A term of the from (�X:S)T is said to be a β redex, and the term

S[T=X] is its contractum. A term of the form (�X:TX) such that X has no free

occurrence in T is said to be an η redex and the term T is its contractum. A term

S contracts to a term T if T is obtained from S by replacing a � or � redex in S by its

contractum. A term S reduces to a term T if T is obtained from S by a �nite sequence of

contractions and changes of bound variable. The rules of ��-contraction(1��-reduction)

and ��-reduction are de�ned as follows ;

(1) (�X:M)N
1��
! M [N=X]

(2) (�X:TX)
1��
! T

(3) If M
1��
! N , then ZM

1��
! ZN;MZ

1��
! NZ and �X:M

1��
! �X:N

(4) M
��

!M
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(5) If M
1��
! N , then M

��

! N

(6) M
��

! L; L
��

! N )M
��

! N

P
1��
! Q : P ��- contracts to Q (P ��-reduces to Q in one step)

P
��

! Q : P ��-reduces to Q

De�nition 5.1.9

(1) A term T is in normal form if T has no redex.

(2) NF (T ) denotes a particular term in normal form such that T reduces to NF (T ).

(The choice of NF (T ) is unique up to changes in bound variables).

De�nition 5.1.10 Rules of parallel ��-reduction are de�ned as follows ;

(1) x
��

) x

(2) If P
��

) Q, then �x:P
��

) �x:Q

(3) If Pi
��

) Qi (i = 1; 2), then P1P2
��

) Q1Q2

(4) If Pi
��

) Qi (i = 1; 2), then (�x:P1)P2
��

) Q1[Q2=x]

(5) If P
��

) Q and x =2 FV (P ), then �x:Px
��

) Q.

De�nition 5.1.11 Rules of length of term are de�ned as follows.

(1) If x is a variable or constant 0, then lgh(x) = 1

(2) lgh(MN) = lgh(M) + lgh(N)

(3) lgh(�x:M) = 1 + lgh(M)
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5.2 Some theorems

Next two theorems are used to prove Church-Rosser Theorem.

Theorem 5.2.1 If Pi
��

) Qi (i = 1; 2), then P1[P2=y]
��

) Q1[Q2=y].

(proof) Assume Pi
��

) Qi (i = 1; 2). Then we prove by induction on length of term.

(1) lgh(P1) = 1 (base step).

Then P1 is constant 0 or variable x. P1 � 0 is obvious. Therefore We assume

P1 � x. Then Q1 � x, too.

(a) x � y

Then P1[P2=y] � P2 and Q1[Q2=y] � Q2. By P2
��

) Q2, P1[P2=y]
��

) Q1[Q2=y].

(b) x �= y

Then P1[P2=y] � x and Q1[Q2=y] � x.

By de�nition of
��

), P1[P2=y]
��

) Q1[Q2=y].

(2) Let if lgh(P 00
1 ) = n and P 00

i

��

) Q00
i
(i = 1; 2), then P 00

1 [P
00
2 =y]

��

) Q00
1[Q

00
2=y] (induction

step).

Assume lgh(P1) = n + 1 and Pi
��

) Qi (i = 1; 2).

(a) P1 � �x:P 0
1

Then Q1 which satis�es P1
��

) Q1 is Q1 � �x:Q0
1, where P

0
1

��

) Q0
1.

i. x � y

Then P1[P2=y] � (�x:P 0
1)[P2=y] � (�x:P 0

1) � P1 and

Q1[Q2=y] � (�x:Q0
1)[Q2=y] � (�x:Q0

1) � Q1.

By induction hypothesis, P1[P2=y]
��

) Q1[Q2=y].

ii. x �= y; and y =2 FV (P2) or x =2 FV (P1)

By lgh(P 0
1) = n and P2

��

) Q2, we can use induction hypothesis.

Therefore P 0
1[P2=y]

��

) Q0
1[Q2=y].

By de�nition of
��

), �x(P 0
1[P2=y])

��

) �x(Q0
1[Q2=y]).

Therefore (�x:P 0
1)[P2=y]

��

) (�x:Q0
1)[Q2=y].

iii. y �= x; and y 2 FV (P2) and x 2 FV (P1)

Then P1[P2=y] � (�x:P 0
1)[P2=y] � (�z:(P 0

1[z=x])[P2=y]).

By lgh(P 0
1) = n and z

��

) z, P 0
1[z=x]

��

) Q0
1[z=x].

By lgh(P 0
1[z=x]) = n and P2

��

) Q2, we can use induction hypothesis.

Therefore P 0
1[z=x][P2=y]

��

) Q0
1[z=x][Q2=y].

Hence �z:(P 0
1[z=x][P2=y])

��

) �z:(Q0
1[z=x][Q2=y]).

Therefore P1[P2=y]
��

) Q1[Q2=y].
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(b) P1 � P 0
1P

00
1

Then Q1 � Q0
1Q

00
1, where P

0
1

��

) Q0
1, P

00
1

��

) Q00
1, lgh(P

0
1) � n and lgh(P 00

1 ) � n.

Then P1[P2=y] � (P 0
1P

00
1 )[P2=y] � (P 0

1[P2=y])(P
00
1 [P2=y]).

By these and P2
��

) Q2, P
0
1[P2=y]

��

) Q0
1[Q2=y] and P

00
1 [P2=y]

��

) Q00
1[Q2=y].

By de�nition of
��

), (P 0
1[P2=y])(P

00
1 [P2=y])

��

) (Q0
1[P2=y])(Q

00
1[P2=y]).

By (Q0
1[P2=y])(Q

00
1[P2=y]) � (Q0

1Q
00
1)[P2=y] � Q1[P2=y], P1[P2=y]

��

) Q1[Q2=y].

Theorem 5.2.2 M
��

! N and M
��

) N are equivalent.

(proof)

(1) First we prove if M
��

! N then M
��

) N

We prove by induction on length of term M .

(a) lgh(M) = 1 (base step).

Then M is a variable. Let M � x. Then by de�nition of
��

!, N � x.

By x
��

) x, M
��

) N .

(b) Let if lgh(M 0) = n and M 0 ��

! N 0, then M 0 ��

) N 0.

Assume lgh(M) = n + 1 and M
��

! N .

i. M � �x:M1.

n + 1 = lgh(M) = lgh(�x:M1) = lgh(M1) + 1. Hence lgh(M1) = n. And

N which satis�esM
��

! N is �x:N1, whereM1
��

! N1. By lgh(M1) = n and

induction hypothesis, M1
��

) N1. By de�nition of
��

), �x:M1
��

) �x:N1.

Therefore M
��

) N .

ii. M � (�x:M1)M2.

Then N which satis�es M
��

! N is under three patterns.

(�) N � (�x:N1)M2, where M1
��

! N1

(�) N � (�x:M1)N2, where M2
��

! N2

(|) N � M1[M2=x].

CASE (�)

By lgh(M) = lgh(M1) + lgh(M2) + 1 = n+ 1, lgh(M1) � n.

Hence by lgh(M1) � n, M1
��

! N1 and induction hypothesis, M1
��

) N1.

By de�nition of
��

), (�x:M1)M2
��

) (�x:N1)M2.

Therefore M
��

) N .

CASE (�)

Same as (�).
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CASE (|)

By lgh(M1) � n, lgh(M2) � n, M1
��

! M1 and M2
��

! M2, we can use

induction hypothesis. Therefore M1
��

) M1 and M2
��

) M2. By these and

de�nition of
��

), (�x:M1)M2
��

)M1[M2=x].

Therefore M
��

) N .

iii. M � M1M2, where M1 �= �x:M
0.

Then N which satis�es M
��

! N is under two patterns.

(�) N � N1M2,where M1
��

! N1

(|) N � M1N2,where M2
��

! N2

CASE (�)

By n + 1 = lgh(M) = lgh(M1) + lgh(M2) and 0 < lgh(Mi), lgh(Mi) �

n. By lgh(M1) � n and M1
��

! N1, we can use induction hypothesis.

Therefore M1
��

) N1. By these and de�nition of
��

), M1M2
��

) N1M2.

Therefore M
��

) N .

CASE (|)

Same as (�).

(2) We prove if M
��

) N then M
��

! N .

(a) lgh(M) = 1 (base step).

Then M is a variable. Let M � x. Then by de�nition of
��

), N � x.

By x
��

! x, M
��

! N .

(b) Let if lgh(M 0) = n and M 0 ��

) N 0, then M 0 ��

! N 0.

Assume lgh(M) = n + 1 and M
��

) N .

i. M � �x:M1.

n + 1 = lgh(M) = lgh(�x:M1) = lgh(M1) + 1. Hence lgh(M1) = n. And

N which satis�esM
��

) N is �x:N1, whereM1
��

) N1. By lgh(M1) = n and

induction hypothesis, M1
��

! N1. By de�nition of
��

!, �x:M1
��

! �x:N1.

Therefore M
��

! N .

ii. M � (�x:M1)M2.

Then N which satis�es M
��

) N is under two patterns.

(�) N � (�x:N1)N2, where Mi

��

) Ni.

(|) N � N1[N2=x], where Mi

��

) Ni.

CASE (�)

By lgh(M) = lgh(M1) + lgh(M2) + 1 = n+ 1, lgh(Mi) � n.

Hence by lgh(Mi) � n, Mi

��

) Ni and induction hypothesis, Mi

��

! Ni.
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By M1
��

! N1, (�x:M1)M2
��

! (�x:N1)M2.

By M2
��

! N2, (�x:N1)M2
��

! (�x:N1)N2.

By (�x:M1)M2
��

! (�x:N1)M2 and (�x:N1)M2
��

! (�x:N1)N2,

(�x:M1)M2
��

! (�x:N1)N2.

Therefore M
��

! N .

CASE (|)

By same method as (�), (�x:M1)M2
��

! (�x:N1)N2.

By this and (�x:N1)N2
��

! N1[N2=x], (�x:M1)M2
��

! N1[N2=x].

Therefore M
��

! N .

iii. M � M1M2, where M1 �= �x:M
0.

Then N which satis�es M
��

) N is N1N2, where Mi

��

) Ni.

By n+ 1 = lgh(M) = lgh(M1) + lgh(M2) and 0 < lgh(Mi), lgh(Mi) � n.

By lgh(Mi) � n and Mi

��

! Ni, we can use induction hypothesis.

Therefore Mi

��

! Ni.

By these and de�nition of
��

!, M1M2
��

! N1M2 and N1M2
��

! N1N2.

Hence M1M2
��

! N1N2.

Therefore M
��

! N .

Theorem 5.2.3 (Church-Rosser Theorem)

If S reduces to T and S reduces to T 0 then there is a term T
00

such that both T and T 0

reduce to T
00

.

(proof) First we prove that

for any term M there exists term M 00 such that

8M 0(if M
��

)M 0, then M 0 ��

)M 00). � � � � � � (�)

We de�ne M� as follows.

(1) If M � x, then M�
� x,

(2) if M � �x:M1, then M
�
� �x:M�

1 ,

(3) if M �M1M2 and M1 �= �x:M3, then M
� � M�

1M
�
2 ,

(4) if M � (�x:M1)M2, then M
� �M�

1 [M
�
2 =x].

Then we prove that M� satis�es conditions of M 00 by induction on complexity of M .

(1) M � x.

Then by M 0
� x �M�, M 0 ��

)M� is obvious.
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(2) M � �x:M1.

Then there exists M 0
1 such that M 0 � �x:M 0

1, where M1
��

)M 0
1. Then by induction

hypothesis M 0
1

��

)M�
1 , �x:M

0
1

��

) �x:M�
1 .

Therefore M 0 ��

)M�.

(3) M � M1M2, where M1 �= �x:M3.

Then there exist M 0
i
(i = 1; 2) such that M 0 � M 0

1M
0
2 and Mi

��

) M 0
i
. Then by

induction hypothesis M 0
i

��

)M�
i
, M 0

1M
0
2

��

)M�
1M

�
2 .

Therefore M 0 ��

)M�.

(4) M � (�x:M1)M2.

By de�nition of
��

), there exist M 0
i
(i = 1; 2) which satisfy Mi

��

)M 0
i
such that

(�) M 0 � (�x:M 0
1)M

0
2

or

(|) M 0 �M 0
1[M

0
2=x].

CASE (�)

By induction hypothesis M 0
i

��

)M�
i
and de�nition of

��

)(4), M 0 ��

)M 0
1[M

0
2=x].

Therefore M 0 ��

)M�.

CASE (|)

By induction hypothesis and theorem 5:2:1, M 0 ��

)M 0
1[M

0
2=x].

Therefore M 0 ��

)M�.

Hence we proved (�). By (�) and theorem 5:2:2, Church-Rosser Theorem is obvious.

Next two de�nition, �ve notes and three theorems are used to prove

Strong Normalization Theorem.

De�nition 5.2.4 strongly normalizable (SN) terms

A term M is strongly normalizable i� all reductions starting at M are �nite. It is

normalizable i� reduces to a normal form.

De�nition 5.2.5 strongly computable (SC) terms

For term, strongly computable is de�ned by induction on the number of occurrence of!

in the term's type :

(1) A term of type 0 is SC i� it is SN.

(2) A term M�!� is SC i�, for all SC term N�, the term (MN)� is SC.

Note 5.2.6 Each type � can be written in a unique way in the form �1 ! � � � ! �n ! 0.
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Note 5.2.7 Let � � �1 ! � � � ! �n ! 0. Then M� is SC i�, for all SC terms

M�1

1 ; � � � ;M�n
n
, (MM1 � � �Mn)

0 is SC i� it is SN. And (MM1 � � �Mn)
0 is SC i� it is SN.

Note 5.2.8 If M� is SC, then every term which di�ers from M� only by changes of

bound variables is SC. And the same holds for SN.

Note 5.2.9 If M�!� is SC and N� is SC, then (MN)� is SC.

Note 5.2.10 IfM� is SN, then every subterm ofM� is SN, because any in�nite reduction

from a subterm from a of M gives rise to an in�nite reduction M .

Theorem 5.2.11 Let � be any type.

(1) Every term (aM1 � � �Mn)
�, where a is type 0 and M1; � � � ;Mn are all SN, is SC.

(2) Every SC term of type � is SN.

(proof) We prove by induction on the number of occurrence of ! in �. And we de�ne

j�j as the number of occurrence of ! in �.

base step � is 0.

(1) Then (aM1 � � �Mn)
0 is SN because a is type 0 and M1; � � � ;Mn are SN. Therefore

(aM1 � � �Mn)
0 is SC because � is type 0 and de�nition 5:2:5 (1).

By a : type 0 and M1; � � � ;Mn : SN, (aM1 � � �Mn)
0 is SN. By � : type 0 and

de�nition 5:2:5 (1), (aM1 � � �Mn)
0 is SC.

(2) Let M be type 0 SC term. Then by de�nition 5:2:5 (1), M is SN term.

(induction step) Assume that if j�0j � m then (1) and (2) are true. And j�j = m + 1

and � is � ! .

(1) Let N� be any SC term. By induction hypothesis of (2), N� is SN and so

(aM1 � � �MnN) is SN. By jj � m and induction hypothesis of (2), (aM1 � � �MnN)

is SC.

Therefore by de�nition 5:2:5 (2), (aM1 � � �Mn) is SC.

(2) Let termM� be SC and a variablem� which is not contained inM�. By induction

hypothesis of (1), m is SC. By this and Note 5:2:9, (Mm) is SC. By induction

hypothesis of (2), (Mm) is SN. Therefore by Note 5:2:10, M� is SN.

Theorem 5.2.12 If M�[N�=x�] is SC, then (�x�:M�)N� is SC; provided that N� is SC

if x� is not free in M�.

(proof) Let � be �1 ! � � � ! �n ! 0 and M
�1

1 ; � � � ;M�n
n

be SC terms.

(([N=x]M)M1 � � �Mn)
0 is SN because M�[N�=x�] is SC and by Note 5:2:7.
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(1) x is not contained in M .

By induction, N is SC. By theorem 5:2:11, N is SN. And subterms of

(([N=x]M)M1 � � �Mn)
0 are SN. Hence M;M1; � � � ;Mn and N do not have in�nite

reduction.

Therefore ((�x:M)NM1 � � �Mn) do not have in�nite reduction.

(2) x is contained in M .

Assume ((�x:M)NM1 � � �Mn) has an in�nite reduction.

(a) M
��

!M 0 or N
��

! N 0 or Mi

��

!M 0
i
is in�nite reduction.

Then we can construct an in�nite reduction from (([N=x]M)M1 � � �Mn):

(([N=x]M)M1 � � �Mn)
��

! (([N 0=x]M 0)M 0
1 � � �M

0
n
)

��

! � � � .

This contradicts that (([N=x]M)M1 � � �Mn) is SN.

(b) M
��

!M 0 and N
��

! N 0 and Mi

��

!M 0
i
are �nite reductions. And x 2 FV (M).

Then by induction, there is an in�nite reduction such that

((�x:M)NM1 � � �Mn)
��

! ((�x:M 0)N 0M 0
1 � � �M

0
n
)

1��
! (([N 0=x]M 0)M 0

1 � � �M
0
n
)

��

! � � � .

Then there exists an in�nite reduction such that

(([N=x]M)M1 � � �Mn)
��

! (([N 0=x]M 0)M 0
1 � � �M

0
n
)

��

! � � � .

This contradicts that (([N=x]M)M1 � � �Mn) is SN.

(c) M
��

!M 0 and N
��

! N 0 and Mi

��

!M 0
i
are �nite reductions. And x =2 FV (M).

((�x:M)NM1 � � �Mn)
��

! ((�x:M 0)N 0M 0
1 � � �M

0
n
)

� ((�x:M 0x)N 0M 0
1 � � �M

0
n
)

1��
! M 0N 0M 0

1 � � �M
0
n

��

! � � � .

Then there exists an in�nite reduction such that

(([N=x]M)M1 � � �Mn)
��

! (([N 0=x]M 0)M 0
1 � � �M

0
n
)

��

! � � � .

This contradicts that (([N=x]M)M1 � � �Mn) is SN.

Hence an assumption which ((�x:M)NM1 � � �Mn) has an in�nite reduction, contra-

dicts. Therefore ((�x:M)NM1 � � �Mn) has no in�nite reduction.

Theorem 5.2.13 For every term M�:

(1) For all x�11 ; � � � ; xn
�n and for all SC terms N�1

1 ; � � � ; Nn�n , the term M�� �

M [N1=x1] � � � [Nn=xn] is SC.
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(2) M� is SC.

(proof)

(1) We prove by induction on the construction of M .

(a) M � xi
Then M� � Ni. By Ni : SC, M

� is SC.

(b) M is a variable distinct from x1; � � � ; xn.

Then M� �M . By theorem 5:2:11, M� is SC.

(c) M �M1M2, where M
�
1 and M�

2 are SC.

Then M� � (M1M2)[N1=x1] � � � [Nn=xn]

� (M1[N1=x1] � � � [Nn=xn])(M2[N1=x1] � � � [Nn=xn])

�M�
1M

�
2 . By Note 5:2:9, M�

1M
�
2 is SC. Therefore M� is SC.

(d) M� � �x :M Æ

1 , where M
�
1 is SC. Then

M�
� �x:M�

1

if we neglect changes in bound variables.

Let N be any SC term. Then M�N � (�x:M�
1 )N

1��
! M�

1 [N=x]. By M
�
1 and

N be SC, M�
1 [N=x] is SC. By theorem 5:2:12, �x:M�

1 is SC.

(2) By (1), (2) is obvious.

Theorem 5.2.14 (Strong Normalization Theorem)

Every sequence of contractions of a term T terminates with a term in normal form.

(proof) By theorem 5:2:13 (2), all terms are SC. By theorem 5:2:11 (2), all terms are SN.

Therefore we can prove Strong Normalization Theorem.

Theorem 5.2.15 Let F be a collection of function symbols of types 0 and 1. Let t be a

term of type 0 in Lambda(F) in which all free variables have type 0. Then NF (t) has no

occurrence of �, and hence all subterms have type 0 or type 1.

(proof) Assume that NF (t) has a left-most subterm of the form �X:S.

(1) NF (t) � �X:S

Then type of NF (t) is �! �. This contradicts that NF (t) is type 0. There cannot

be this.

(2) NF (t) � (�X:S)U

NF (t) is normal form. Hence NF (t) should be the form of S[U=X]. Therefore there

cannot be this.

(3) NF (t) � �Y:(�X:S)

his contradicts that NF (t) has a left-most subterm of the form �X:S. Therefore

there cannot be this.
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(4) NF (t) � U(�X�:S�), where U does not contain �.

Then type of U is (� ! �) ! 0. Hence U cannot be only variable. If U contains

function symbols, one of function symbols has a type of � � � ! (� ! �)! 0. This

type is distinct 0 and 1. Therefore there cannot be this.

Therefore NF (t) has no �.
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Chapter 6

The System PV
!

We now extend the system PV to a system PV ! by adding variables of all �nite types.

We need only one constant in addition to these in PV , namely the recursor R. This is

used to introduce higher type functions by limited recursion on notation. Main theorem

of this chapter is to prove that PV ! is conservative extension of PV .

6.1 De�nition

De�nition 6.1.1 The function symbols of PV ! are de�ned as follows:

(1) For each n � 0 each n-place function symbol of PV is a function symbol of PV !

of type 0! 0 � � � ! 0 (n+1 zeros).

(2) The Constant R is a function symbol of PV ! of type

0! (0! 0! 0)! (0! 0)! 0! 0.

De�nition 6.1.2 The terms of PV ! comprise the set �(F) (see De�nition 5:1:3), where

F is the set of function symbols given in de�nition 6:1:1 .

Notation 6.1.3 SfTg refers to a term with a distinguished occurrence of a subterm T .

Then SfUg means SfTg with the indicated occurrence of T replaced by U . In general T

and U may have free variables which become bound in SfTg and SfUg.

De�nition 6.1.4 The formulas of PV ! are all equations s = t, where s; t are type 0

terms of PV !.

De�nition 6.1.5 The axioms of PV ! are de�ned as follows :

(1) All axioms of PV

(2) (HTLRN)

R(y; Z;W; x) =

8<
:

if x = 0 then y

else

Cond(t
_
W (x); t;W (x))
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where

t
d

� Z(x;R(y; Z;W; b1
2
xc))

and the variables

x; y : type 0

Z : type 0! 0! 0

W : type 0! 0

(3) (α) sf�X:Tg = sf�Y:T [Y=X]g, provided Y does not occur free in T .

(4) (β) sf(�X:T )Ug = sfT [U=X]g.

(5) (η) sf(�X:TX)g = sfTg, provided X does not occur free in T .

De�nition 6.1.6 The rules of infernce of PV ! are de�ned as follows :

(R1!)s = t ` t = s

(R2!)s = t; t = u ` s = u

(R3!)s = t ` ufsg = uftg

(R4!)s = t ` s[T=X] = t[T=X]

(R5!) t1[0=x] = t2[0=x]

t1[s0x=x] = v0[t1=a] t2[s0x=x] = v0[t2=a]

t1[s1x=x] = v1[t1=a] t2[s1x=x] = v1[t2=a]

t1 = t2
where t1; t2; v0 and v1 are terms of type 0.

6.2 Conservative extension of PV

Proposition 6.2.1

PV ! ` sfTg = sfNF (T )g

PV !
` s = NF (s)

(proof) We prove by induction on the complexity of the term T .

(1) PV ! ` sfTg = sfNF (T )g

a)T � X

By NF (T ) � X.

b)T � �X:AX

By NF (T ) � A and (�), sfTg = sf�X:AXg = sfAg = sfNF (T )g.

c)T � �X:A

By NF (T ) � �X:A � T and (�), sfTg = sf�X:Ag = sfNF (T )g.
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d)T � (�X:A)U

By NF (T ) � A[U=X], sfTg = sf(�X:A)Ug = sfA[U=X]g = sfNF (T )g.

e)T � AB, where A don't contain � and sfBg = sfNF (B)g

By NF (T ) � A(NF (B)) � NF (AB),

sfTg = sfABg = sfA(NF (B))g = sfNF (AB)g = sfNF (T )g.

(2) PV ! ` s = NF (s)

s = x or s = (�X:A)U because the type of s is 0.

a)s = x

By NF (s) � x, s = NF (s).

b)s = (�X:A)U

By (�); (�); (�) and th. 5:2:14, s = (�X:A)U = A[U=X] = NF (A)[NF (U)=X].

By de�nition of NF , NF (s) = NF (A)[NF (U)=X]. Therefore s = NF (s).

Theorem 6.2.2 (Conditional Proof Principle)

If PV !
` t[0=x] = u[0=x] and PV !

` x 6= 0 � t = u then PV !
` t = u.

(proof) By DR16.

De�nition 6.2.3 Let � = �1 ! � � � ! �n ! 0 (n � 0) and ~W = (W1; � � � ;Wn), where Wi

is a variable of type �i, 1 � i � n. Then

Cond� (x; Y; Z)
d

� � ~W:Cond(x; Y ( ~W ); Z( ~W )).

In particular,

Cond0(x; y; z)
d

� Cond(x; y; z).

Lemma 6.2.4 PV ! ` Cond0(x; tfSg; tfTg) = tfCond� (x; S; T )g

(proof) By th. 6:2:2, if we prove A[0=x] = B[0=x] and x 6= 0 � A = B, then PV !
` A =

B. Let x0 be a variable not contained in Cond0(x; tfSg; tfTg) and tfCond� (x; S; T )g.

Let W1; � � � ;Wn be variables where each Wi has type �i. De�ne A(x0) and B(x0) as

Cond0(x
0; tfSg; tfTg) and tfCond� (x

0; S; T )g.

(1) x0 = 0

By (�),def. 3:1:2(3a) and def. 6:2:3,

A(0) = Cond0(0; tfSg; tfTg)

= tfSg

= tf�W1:SW1g

= tf�W1:(�W2:(SW1)W2)g
...

= tf�W1:(�W2:(� � � (�Wn:(SW1)W2) � � �)Wn)g
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= tf� ~W:S( ~W )g

= tf� ~W:Cond(0; S( ~W ); T ( ~W ))g

= tfCond� (0; S; T )g

= B(0)

2) x0 6= 0

By T11,

A(x0) = tfTg

= tf�W1:TW1g

...

= tf� ~W:T ( ~W )g

= tf� ~W:Cond(x0; S( ~W ); T ( ~W ))g

= tfCond� (x
0; S; T )g

By (1), (2) and th. 6:2:2, ` A(x0) = B(x0). By (R4!),

PV ! ` A(x) = B(x).

Theorem 6.2.5 a) PV ! ` tfCond� (0; S; T )g = tfSg

b) PV ! ` x 6= 0 � tfCond� (x; S; T )g = tfTg

(proof)

a) By lemma 6:2:4

b) By lemma 6:2:4

PV ! ` tfCond� (x; S; T )g = Cond0(x; tfSg; tfTg).

By x 6= 0,

PV ! ` Cond0(x; tfSg; tfTg) = tfTg.

Hence

PV ! ` tfCond� (x; S; T )g = tfTg.

Theorem 6.2.6 (Simultaneous Recursion)

For each n � 2 there are closed terms �1; � � � ; �n such that for 1 � i � n

PV !
` �i(~y; ~Z; ~W; x) =

8<
:

if x = 0 then yi
else

Cond(< ~t >
_
< ~Wi(x) >; ti;Wi(x))

where

ti
d

� Zi(x; ~�(~y; ~Z; ~W; b1
2
xc))

and the variables

xi; yi : type 0

Zi : type 0! 0! � � � ! 0 (n+ 2 zeroes)

Wi : type 0! 0.

(proof) For 1 � i � n, let

�i
d

� �~y ~Z ~Wx:�n
i
(R(s; T; U; x))

where ,
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s
d

�< ~y >,

T
d

�< ~Z(x0; �n1 (z); � � � ; �
n

n
(z)) >,

and

U
d

� �x0: < ~W (x0) >.

Then form the axioms (�) and (HTLRN) and equality reasoning we have in PV !

R(s; T; U; x) =

8<
:

if x = 0 then < ~y >

else

Cond(< ~t >
_
< ~W (x) >;< ~t >;< ~W (x) >)

where

< ~t >
d

�< ~Z(x; ~�(~y; ~Z; ~W; b1
2
xc)) >.

Then

�i(~y; ~Z; ~W; x) = �n
i
(R(s; T; U; x))

=

8<
:

if x = 0 then �n
i
< ~y >

else

Cond(< ~t >
_
< ~W (x) >; �n

i
< ~t >; �n

i
< ~W (x) >)

=

8<
:

if x = 0 then yi
else

Cond(< ~t >
_
< ~Wi(x) >; ti;Wi(x))

De�nition 6.2.7 A term T is zero-order open if all free variables of T have type 0. A

subterm U of a term T is free in T if no variable has an occurrence which is free in U

and bound in T .

De�nition 6.2.8 The transformation t ; ftgPV takes a zero-order open type 0 term t

of PV ! to an equivalent term ftgPV of PV . The following three cases partition the set

of such terms t (we sometimes write tPV for ftgPV , and ~uPV for uPV1 ; � � � ; uPV
n

).

Case 1. NF (t) is a term of PV . Then

ftgPV
d

� NF (t).

Case 2. NF (t) � f(t1; � � � ; tn), where f is PV function symbol but not all of t1; � � � ; tn
are PV terms. Then

ftgPV
d

� f(tPV1 ; � � � ; tPV
n

) .

Case 3. NF (t) � R(s; T; U; v). Then

ftgPV
d

� R[g; h; k](vPV ; ~uPV )

where u1
d

� s, and u2; � � � ; un are the maximal type 0 subterms, listed in order

and not necessarily distinct, occurring free in T; U , and g; h; k are PV function

symbols de�ned as follows. Let y1; � � � ; yn be distinct new variables, and let
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T 0; U 0 be terms whose only type 0 subterms occurring free are the y0
i
s such that

T � T 0[u2=y2; � � � ; un=yn]

and

U � U 0[u2=y2; � � � ; un=yn]

then

g � [�~y:y1]

h � [�x~yz:T 0(x; z)
PV

]

k � [�x~y:U 0(x)
PV

]

where x and z are new variables.

Lemma 6.2.9 ft[u=x]gPV � tPV [uPV =x], for all terms t; u in the domain of f�gPV , and

all type 0 variables x.

(proof) By Church-Rosser theorem 5:2:3, NF (t[u=x]) � NF (t)[NF (u)=x]. We prove by

induction on the length of NF (t[u=x]).

(1) NF (t[u=x]) is a term of PV .

NF (t) � tPV and NF (u) � uPV because NF (t) and NF (u) are terms of PV .

By hypothesis,

ft[u=x]gPV � NF (t[u=x]) � NF (t)[NF (u)=x] � tPV [uPV =x].

(2) NF (t[u=x]) � f(t1; � � � ; tn),

where NF (t) � f(t01; � � � ; t
0
n
); ti � t0

i
[NF (u)=x] and tPV

i
� t

0

PV

i
[uPV =x].

ft[u=x]gPV � f(tPV1 ; � � � ; tPV
n

)

� f(t
0

PV

1 [uPV =x]; � � � ; t
0

PV

n
[uPV =x])

� (f(t
0

PV

1 ; � � � ; t
0

PV

n
))[uPV =x]

� tPV [uPV =x].

(3) NF (t[u=x]) � R(ŝ; T̂ ; Û ; v̂),

where NF (t) � R(s; T; U; v); ŝ � s[NF (u)=x]; T̂ � T [NF (u)=x];

Û � U [NF (u)=x]; v̂ � v[NF (u)=x] and ftgPV � R[g; h; k](v
0

PV ; ~u
0PV ),

where g � [�~y:y1]; h � [�x1~yz:fT
0(x1; z)g

PV ] and k � [�x1~y:fU
0(x1)g

PV ],

where x1 and z are new variables.

Then ft[u=x]gPV � R[g0; h0; k0](v
00

PV ; ~u
00PV ), where g0

d

� [�~y:y1];

h0
d

� [�x1~yz:fT
00(x1; z)g

PV ]; k0
d

� [�x1~y:fU
00(x1)g

PV ];

v
00

PV
d

� fv0[u=x]gPV � v
0

PV [uPV =x] and u
00

PV

i

d

� fu0
i
[u=x]gPV � u

0

PV

i
[uPV =x].

By free variables of T 0(x1; z) and U
00(x1) be only y2; � � � ; yn,

T 00(x1; z) � T 0(x1; z)[u=x] � T 0(x1; z) and U
00(x1) � U 0(x1)[u=x] � U 0(x1).

Hence g � g0; h � h0 and k � k0.

Therefore ft[u=x]gPV � R[g0; h0; k0](v
00

PV ; ~u
00PV )

� R[g; h; k](v
0

PV [uPV =x]; ~u
0PV [uPV =x])
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� (R[g; h; k](v
0

PV ; ~u
0PV ))[uPV =x]

� tPV [uPV =x].

Theorem 6.2.10 PV !
` t = tPV , for each type 0 term t in the domain of f�gPV .

(proof) We prove by induction on the length of NF (t).

(1) NF (t) is a term of PV .

By prop. 5:2:14, t = NF (t). Therefore tPV = NF (t) = t.

(2) NF (t) � f(t1; � � � ; tn), where t
PV

i
� ti.

tPV � f(tPV1 ; � � � ; tPV
n

) � f(t1; � � � ; tn) � NF (t). By prop. 5:2:14, t = NF (t) � tPV .

Therefore t = tPV .

Assume v = vPV and ui = uPV
i

.

(3) NF (t[u=x]) � R(ŝ; T̂ ; Û ; v̂).

tPV � R[g; h; k](vPV ; ~uPV ).

R(s; T; U; v) =

8<
:

if v = 0 then s

else

Cond(t1 _
U(v); t1; U(v));

where

t1
d

� T (v;R(s; T; U; b1
2
vc)).

R[g; h; k](vPV ; ~uPV ) =

8<
:

if vPV = 0 then g(~uPV )

else

Cond(t2 _
k(vPV ; ~uPV ); t2; k(v

PV ; ~uPV ));
where

t2
d

� h(vPV ; ~uPV ; R[g; h; k](b1
2
vPV c; ~uPV )).

(a) v = 0

vPV = v = 0. Therefore g(~uPV ) = g(~u) = u1 � s.

Therefore v = 0 � R(s; T; U; v) = R[g; h; k](vPV ; ~uPV ).

(b) v 6= 0

Assume R(s; T; U; b1
2
vc) = R[g; h; k](b1

2
vPV c; ~uPV ). By (�) and lemma 6:2:9,

t2 = h(vPV ; ~uPV ; R[g; h; k](b1
2
vPV c; ~uPV ))

= [�x~yz:fT 0(x; z)gPV ](vPV ; ~uPV ; R[g; h; k](b1
2
vPV c; ~uPV ))

= fT (vPV ; R[g; h; k](b1
2
vPV c; ~uPV ))gPV

= T (vPV ; R[g; h; k](b1
2
vPV c; ~uPV ))

= t1

k(vPV ; ~uPV ) = [�x~y:fU 0(x)gPV ](vPV ; ~uPV )

= fU(v)gPV
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= U(v)

Therefore Cond(t1 _
U(v); t1; U(v)) = Cond(t2 _

k(vPV ; ~uPV ); t2; k(v
PV ; ~uPV )).

Therefore v 6= 0 � R(s; T; U; v) = R[g; h; k](vPV ; ~uPV ).

By (a),(b) and th. 6:2:2, R(s; T; U; v) = R[g; h; k](vPV ; ~uPV ).

Therefore t = NF (t) = R(s; T; U; v) = R[g; h; k](vPV ; ~uPV ) = tPV .

De�nition 6.2.11 Let S; T be terms of PV !. We say that (S 0; T 0) is an instance of

(S; T ) i� there is a common substitution of terms of free variables which yields S 0 from S

and T 0 from T , and (S 0; T 0) is a zero-order open instance of (S; T ) if in addition S 0 and

T 0 are zero-order open.

De�nition 6.2.12 Suppose S; T are terms of type �1 ! �2 ! � � � ! �n ! 0. We write

S
PV

� T i� PV ` fS 0(~�)gPV = fT 0(~�)gPV for all zero-order open instances (S 0; T 0) of

(S; T ), and all ~� � �1; � � � ; �n such that �i is zero-order open of type �i, 1 � i � n.

De�nition 6.2.13 Let S; T be zero-order open terms of PV ! of type �1 ! �2 ! � � � !

�n ! 0. Then S � T i� PV ` fS(~�)gPV = fT (~�)gPV for all ~� � �1; � � � ; �n such that �i
is zero-order open of type �i, 1 � i � n.

Thus for S; T any terms of PV !, S
PV

� T i� T S 0 � T 0 for all zero-order open instances

(S 0; T 0) of (S; T ).

De�nition 6.2.14 The properties G�(T ) are de�ned by induction on the type �.

(1) G0(t) i� t is zero-order open of type 0.

(2) If � � �1 ! � � � ! �n ! 0, then G�(T ) i� T is zero-order open of type � and

T (~�) � T (~ ) for all ~� � �1; � � � ; �n, and ~ �  1; � � � ;  n such that G�i
(�i); G�i

( i),

and �i �  i, (1 � i � n).

De�nition 6.2.15 For any term T of PV !, G�(T ) i� G(T [~�= ~X]) and T [~�= ~X] � T [~ = ~X]

for all ~� � �1; � � � ; �n, and ~ �  1; � � � ;  n such that

(1) G(�i); G( i); �i �  i

(2) T [~�= ~X] is zero-order open.

Lemma 6.2.16 G�(T ) for all terms T of PV !.

(proof) We prove by induction on the de�nition 6:1:2 of term T . Assume that ~� �

�1; � � � ; �n, and ~ �  1; � � � ;  n are (1) G(�i); G( i); �i �  i , (2) T [~�= ~X] be zero-order

open.
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(1) T is a type 0 variable X.

(a) X = Xi (1 � i � n)

By T [~�= ~X] = �i and de�nition of ~�, G(T [~�= ~X]).

By T [~�= ~X] = �i; T [~ = ~X] =  i and �i �  i, T [~�= ~X] � T [~ = ~X].

(b) X is not in the list ~X.

By T [~�= ~X] = X and def. 6:1:2, G(T [~�= ~X]).

By T [~�= ~X] = X; T [~ = ~X] = X and X � X, T [~�= ~X] � T [~ = ~X].

Therefore G�(T ).

(2) T is a variable X not type 0.

(a) X � Xi (1 � i � n)

By T [~�= ~X] � �i and de�nition of ~�, G(T [~�= ~X]).

By T [~�= ~X] � �i; T [~ = ~X] =�  i and �i �  i, T [~�= ~X] � T [~ = ~X].

(b) X is not in the list ~X.

We don't need to think this case. 8i(X �= Xi) is impossible. T [~�= ~X] � T � X.

But this condition is contradiction to def. 6:2:15 (2).

Therefore G�(T ).

(3) T � f , where f is a function symbol of PV .

By �i �  i, PV ` �PV
i

=  PV

i
. By this and NF (T (~�)) = f(�1; � � � ; �n),

fT (~�)gPV = f(�PV1 ; � � � ; �PV
n

) = f( PV

1 ; � � � ;  PV

n
) = fT (~ )gPV .

Therefore G(f).

By f be not contained free variable, T [~�= ~X] � T .

Therefore G(T [~�= ~X]).

By T [~�= ~X] � T; T [~ = ~X] � T and T � T , T [~�= ~X] � T [~ = ~X].

Therefore G�(T ).

(4) T � R

(a) We prove G(T [~�= ~X]).

By R has no free variable, T [~�= ~X] � T . Hence we prove G(T ) for G(T [~�= ~X]).

Assume s � ŝ; T � T̂ ; U � Û and v � v̂. Then we prove R(s; T; U; v) �

R(ŝ; T̂ ; Û ; v̂) for to prove G(T ). We prove

PV ` fR(s; T; U; v)gPV = fR(ŝ; T̂ ; Û ; v̂)gPV for R(s; T; U; v) � R(ŝ; T̂ ; Û ; v̂).

By hypothesis, PV ` sPV = ŝPV ; vPV = v̂PV .

i. g(~uPV ) = uPV1 = sPV = ŝPV = û1
PV = ĝ(~̂u

PV

).
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ii. k(vPV ; ~uPV ) = [�x~y:fU 0(x)gPV ](vPV ; ~uPV )

= fU 0(x)gPV [vPV =x][~uPV =~y]

= fU 0[v=x][~u=~y]((x)[v=x][~u=~y])gPV

= fU 0[~u=~y]((x)[v=x])gPV

= fU(v)gPV

= fÛ(v̂)gPV

= fÛ 0[~̂u=~̂y]((x̂)[v̂=x̂])gPV

= [�x̂~̂y:fÛ 0(x̂)gPV ](v̂PV ; ~̂u
PV

)

= k̂(v̂PV ; ~̂u
PV

).

iii. Same as h(vPV ; ~uPV ; R[g; h; k](b1
2
vPV c; ~uPV )) =

ĥ(v̂PV ; ~̂u
PV

; R[ĝ; ĥ; k̂](b1
2
v̂PV c; ~̂u

PV

)).

By (i)-(iii),

fR(s; T; U; v)gPV = R[g; h; k](vPV ; ~uPV )

=

8<
:

if vPV = 0 then g(~uPV )

else

Cond(t
_
k(vPV ; ~uPV ); t; k(vPV ; ~uPV ))

=

8><
>:

if v̂PV = 0 then ĝ(~̂u
PV

)

else

Cond(t̂
_
k̂(v̂PV ; ~̂u

PV

); t̂; k̂(v̂PV ; ~̂u
PV

))

= fR(ŝ; T̂ ; Û ; v̂)gPV ,

where t
d

� h(vPV ; ~uPV ; R[g; h; k](b1
2
vPV c; ~uPV )) and

t̂
d

� ĥ(v̂PV ; ~̂u
PV

; R[ĝ; ĥ; k̂](b1
2
v̂PV c; ~̂u

PV

)).

(b) We prove T [~�= ~X] � T [~ = ~X].

By R has no free variable.

By (a) and (b), G�(T ).

(5) G�(TU), where G�(T ) and G�(U).

De�ne T 0; T 00; U 0 and U 00 as T [~�= ~X]; T [~ = ~X]; U [~�= ~X] and U [~ = ~X]. Then by G�(T )

and G�(U), T 0 � T 00; U 0 � U 00; G(T 0); G(T 00); G(U 0) and G(U 00).

(a) We prove G(TU [~�= ~X]).

By G(T 0), T 0(U 0; ~�) � T 0(U 0; ~�), where ~� and ~� are any suitable sequences

of zero-order open. Then T 0U 0(~�) � T 0U 0(~�). Hence G(T 0U 0). Therefore

G(TU [~�= ~X]).

(b) We prove TU [~�= ~X] � TU [~ = ~X].

By T 0
� T 00, PV ` fT 0(U 0; ~�)gPV = fT 00(U 0; ~�)gPV , where ~� is any suit-

able sequences of zero-order open. By def. 6:2:13, T 0(U 0; ~�) � T 00(U 0; ~�). By

def. 6:2:14, T 00(U 0; ~�) � T 00(U 00; ~�). By T 0(U 0; ~�) � T 00(U 0; ~�) and T 00(U 0; ~�) �

T 00(U 00; ~�), T 0(U 0; ~�) � T 00(U 00; ~�). Then for any suitable sequences ~�,
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PV ` fT 0U 0(~�)gPV = fT 00U 00(~�)gPV . Hence T 0U 0 � T 00U 00.

Therefore TU [~�= ~X] � TU [~ = ~X].

By (a) and (b), G�(TU).

(6) G�(�X:T ), where G�(T )

Let �i �  i; G(�i); G( i) and T
0
� T [~�=~Y ] and T 00

� T [~ =~Y ], where X is not among

the components of ~Y . Let any ~� and ~� such that G(�i); G(�i); �i � �i. Assume any

U and V such that zero-order open, U � V and same type as X.

(a) We prove G((�X:T )[~�=~x]).

By G(T ), T [~�=~Y ; U=X] � T [~�=~Y ; V=X]. Hence T 0[U=X] = T 0[V=X].

Therefore 8~�(PV ` fT 0[U=X](~�)gPV = fT 0[V=X](~�)gPV ).

By type of T 0[U=X](~�) be 0, T 0[U=X](~�) � T 0[V=X](~�).

By G�(T ), G(T [~�=~Y ; V=X]). Therefore G(T 0[V=X]).

By G(T 0[V=X]); G(�i); G(�i) and �i � �i, T
0[V=X](~�) � T 0[V=X](~�).

By T 0[U=X](~�) � T 0[V=X](~�) and T 0[V=X](~�) � T 0[V=X](~�),

T 0[U=X](~�) � T 0[V=X](~�).

Therefore PV ` fT 0[U=X](~�)gPV = fT 0[V=X](~�)gPV .

By NF (T 0[U=X](~�)) = NF ((�X:T 0)(U; ~�)) and

NF (T 0[V=X](~�)) = NF ((�X:T 0)(V; ~�)),

PV ` f(�X:T 0)(U; ~�)gPV = f(�X:T 0)(V; ~�)gPV .

Hence G(�X:T 0).

Therefore G((�X:T )[~�=~Y ]).

(b) We prove (�X:T )[~�=~Y ] � (�X:T )[~ =~Y ].

By G�(T ), T [~�=~Y ; U=X] � T [~ =~Y ; U=X]. Hence T 0[U=X] � T 00[U=X].

Therefore 8~�(PV ` fT 0[U=X](~�)gPV = fT 00[U=X](~�)gPV ).

By NF (T 0[U=X](~�)) = NF ((�X:T 0)(U; ~�)) and

NF (T 00[U=X](~�)) = NF ((�X:T 00)(U; ~�)),

8(U; ~�)(PV ` f(�X:T 0)(U; ~�)gPV = f(�X:T 00)(U; ~�)gPV ).

Hence (�X:T 0) � (�X:T 00).

Therefore (�X:T )[~�=~Y ] � (�X:T )[~ =~Y ].

By (a) and (b), G�(�X:T ).

Lemma 6.2.17 If S
PV

� T then (�X:S)
PV

� (�X:T ).

(proof) Let (S 0; T 0) be zero-order open instance of (S; T ) and X be free variable of (S 0; T 0)

and (S; T ). Assume S
PV

� T . We need to prove that for any suitable zero-order open terms

 and ~�, PV ` f(�X:S 0)( ; ~�)gPV = f(�X:T 0)( ; ~�)gPV

De�ne A;A0; B; B0 as (�X:S 0)( ; ~�); S 0[ =X](~�); (�X:T 0)( ; ~�) and T 0[ =X](~�).

By NF (A) = NF (A0) and NF (B) = NF (B0), APV = A0PV and BPV = B0PV .
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By S 0 and T 0 be zero-order open, S 0[ =X] and T 0[ =X] are zero-order open. By (S 0; T 0)

be instance of (S; T ), S 0
� S[~v=~x] and T 0

� T [~v=~x]. By S 0[ =X] � S[~v=~x;  =X] and

T 0[ =X] � T [~v=~x;  =X], (S 0[ =X]; T 0[ =X]) is zero-order open instance of (S; T ).

By S
PV

� T ,

PV ` fS 0[ =X](~�)gPV = fT 0[ =X](~�)gPV

Therefore PV ` A0PV = B0PV .

Therefore PV ` APV = BPV .

Lemma 6.2.18 If S
PV

� T then (SU)
PV

� (TU).

(proof) Let types of T; S be �1 ! � � ��n ! 0 and U be �1. Assume (S 0U 0; T 0U 0) be

any zero-order open instance of (SU; TU), where S 0; T 0 and U 0 are S[~v=~v]; T [~v=~v] and

U [~v=~v]. Then S 0; T 0 and U 0 are zero-order open because S 0U 0 and T 0U 0 are zero-order

open instance. De�ne a set � as

�
d

� f~� j [~� � �1; � � � ; �n]; each �i is zero-order open of type �i; 1 � i � ng.

By S
PV

� T , 8(S 0; T 0)8~� 2 �(PV ` fS 0(~�)gPV = fT 0(~�)gPV ). De�ne a set �00 as

�00
d

� f ~�00 j [ ~�00 � �001; � � � ; �
00
n�1]; each �

00
i
is zero-order open of type �i+1; 1 � i � ng.

For any ~�00 2 �00, de�ne a sequence ~�0 as

�01
d

� U 0 and Then ~�0 2 �. By ~�0 2 � and S
PV

� T , PV ` fS 0(~�0)gPV = fT 0(~�0)gPV .

Therefore

PV ` fS 0(~�0)gPV = f(� � � (S 0�01)�
0
2 � � ��

0
n
)gPV

= f(� � � (S 0U 0)�02 � � ��
0
n
)gPV

= f(� � � (S 0U 0)�001 � � ��
00
n�1)g

PV

= f(S 0U 0)( ~�00)gPV .

Same as PV ` fT 0(~�0)gPV = f(T 0U 0)( ~�00)gPV .

Therefore PV ` f(S 0U 0)( ~�00)gPV = f(T 0U 0)( ~�00)gPV .

Therefore 8(S 0U 0; T 0U 0)8 ~�00 2 �00(PV ` f(S 0U 0)( ~�00)gPV = f(T 0U 0)( ~�00)gPV ).

Therefore (SU)
PV

� (TU).

Lemma 6.2.19 If S
PV

� T then (US)
PV

� (UT ).

(proof) By lemma 6:2:16, G�(U).

Hence 8~�0; ~ 0; ~�(PV ` fU [~�= ~X](~�0)gPV = fU [~�= ~X](~ 0)gPV ).

By S
PV

� T , 8~�; ~ ; ~�(PV ` fS[~�= ~X](~�)gPV = fT [~�= ~X](~ )gPV ).

Therefore we take S[~�= ~X](~�) and T [~�= ~X](~ ) as ~�0 and ~ 0.

Then 8~�; ~ ; ~�(PV ` fU [~�= ~X](S[~�= ~X](~�))gPV = fU [~�= ~X](T [~�= ~X](~ ))gPV ).

Therefore 8~�; ~ ; ~�(PV ` fU [~�= ~X]S[~�= ~X](~�)gPV = fU [~�= ~X]T [~�= ~X](~ )gPV ).

Therefore (US)
PV

� (UT ).

Lemma 6.2.20 If S
PV

� T then UfSg
PV

� UfTg.

(proof) By lemma 6:2:17, 6:2:18 and 6:2:19.
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Theorem 6.2.21 If PV ! ` t = u, then PV ` tPV1 = uPV1 , where t1 = u1 is any zero-

order open substitution instance of t = u.

(proof)

We prove induction on the PV ! proof of PV .

(1) t = u is an axiom of PV .

By lemma 6:2:9 and (R4), PV ` tPV1 = uPV1 .

(2) t = u is an instance of (�); (�) or ().

Let t � sf�X:Tg and u � sf�Y:T [Y=X]g. Then tPV � fsf�X:TggPV and uPV �

fsf�Y:T [Y=X]ggPV . By th. 5:2:3, NF (tPV1 ) � NF (uPV1 ). Hence tPV1 = uPV1 is

instance of x = x.

(3) t = u is an instance of (HTLRN).

Let t = R(s; T; U; v) and u =

8<
:

if v = 0 then s

else

Cond(w
_
U(v); w; U(v));

where

w
d

� T (v;R(s; T; U; b1
2
vc)):

Then tPV = R[g; h; k](vPV ; ~rPV )

=

8<
:

if vPV = 0 then g(~rPV )

else

Cond(w0

_
k(vPV ; ~rPV ); w0; k(vPV ; ~rPV ));

where

rPV1

d

� sPV ; T � T 0[r2=y2; � � � ; rn=yn]; U � U 0[r2=y2; � � � ; rn=yn]; g � [�~y:y1];

h � [�x~yz:T 0(x; z)
PV

]; k � [�x~y:fU 0(x)gPV ] and

w0
d

� h(vPV ; ~rPV ; R[g; h; k](b1
2
vPV c; ~rPV )).

And uPV =

8<
:

if vPV = 0 then sPV

else

Cond(w00

_
fU(vPV )gPV ; w00; fU(vPV )gPV );

where

w00
d

� fT (vPV ; fR(s; T; U; b1
2
vc)gPV )gPV .

By PV ` g(~rPV ) = rPV1 = sPV ,

PV ` w0 = h(vPV ; ~rPV ; R[g; h; k](b1
2
vPV c; ~rPV ))

= fT (vPV ; R[g; h; k](b1
2
vPV c; ~rPV ))gPV

= fT (vPV ; fR(s; T; U; b1
2
vc)gPV )gPV

= w00.

and

PV ` k(vPV ; ~rPV ) = [�x~y:fU 0(x)gPV ](vPV ; ~rPV )

= fU(vPV )gPV .

Therefore PV ` tPV = uPV .
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(4) t = u is an instance of (R1!).

Assume PV !
` t = u) PV ` tPV = uPV .

Then we need to prove that PV !
` u = t) PV ` uPV = tPV .

This proof follows from (R1!), hypothesis and (R1).

(5) t = u is an instance of (R2!).

Assume PV ! ` t = s ) PV ` tPV = sPV and PV ! ` s = u ) PV ` sPV = uPV .

Then we need to prove PV !
` t = s; s = u) PV ` tPV = uPV .

This proof follows from (R2!),hypothesis and (R2).

(6) t = u is an instance of (R3!).

Assume PV ! ` t = u) PV ` tPV = uPV .

Then we need to prove PV ! ` sftg = sfug ) PV ` fsftggPV = fsfuggPV .

By lemma 6:2:20, sftg
PV

� sfug.

Hence by de�nition of
PV

� , PV ` fsftggPV = fsfuggPV .

(7) t = u is an instance of (R5!).

Assume PV ! ` t = u) PV ` tPV = uPV .

Then we need to prove PV ! ` u = t) PV ` fsu[�=x]gPV = fst[�=x]gPV .

This proof follows from lemma 6:2:9, th. 6:2:10 and hypothesis.

(8) t = u is an instance of (R5!).

Assume

PV !
` t[0=x] = u[0=x]; t[s0x=x] = v0[t=a]; u[s0x=x] = v0[u=a];

t[s1x=x] = v1[t=a]; u[s1x=x] = v1[u=a]

)

PV ` ft[0=x]gPV = fu[0=x]gPV ;

ft[s0x=x]g
PV = fv0[t=a]g

PV ; fu[s0x=x]g
PV = fv0[u=a]g

PV ;

ft[s1x=x]g
PV = fv1[t=a]g

PV ; fu[s1x=x]g
PV = fv1[u=a]g

PV :

Then we need to prove PV ! ` t[0=x] = u[0=x]; t[s0x=x] = v0[t=a];

u[s0x=x] = v0[u=a]; t[s1x=x] = v1[t=a]; u[s1x=x] = v1[u=a]) PV ` tPV = uPV .

This proof follows from lemma 6:2:9, th. 6:2:10,(R4); (R5) and hypothesis.

Theorem 6.2.22 PV ! is a conservative extension of PV .

(proof)

By th. 6:2:21,

8(t = u) 2 L(PV )[PV ! ` t = u) PV ` tPV = uPV ].

By t = u 2 L(PV ), tPV = t and uPV = u. Hence

8(t = u) 2 L(PV )[PV ! ` t = u) PV ` t = u].

Therefore PV ! is a conservative extension of PV .
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Chapter 7

The System IPV
!

The system IPV ! is a quanti�ed version of PV !, employing intuitionistic predicate logic.

Main theorem of this chapter is to prove that IPV ! is a conservative extension of IPV .

7.1 De�nition

De�nition 7.1.1

(1) The function symbols and terms of IPV ! are same as PV !.

(2) The predicate symbols of IPV ! are = and �.

(3) Bounded quantifiers are same as de�ned in Chapter 2.

De�nition 7.1.2 The formulas of IPV ! are de�ned as follows:

(1) The atomic formulas are all formulas of the form t = u or t � u,

where t and u are any type 0 term.

(2) If A and B are formulas , then A _ B, A ^B and A! B are formulas.

(3) If A is a formula and x is a variable with type 0, then 8xA and 9xA are formulas .

De�nition 7.1.3 The rules of inference of IPV ! are de�ned as follows:

(1) NJ and IR which understood to apply to the many-sorted predicate calculus.

(2) A! s = t ` A! ufsg = uftg,

where every free variable of s or t which becomes bound in ufsg or uftg has no free

occurrence in A.

Notice that we have placed all theorems of PV ! as axioms of IPV !, rather than just

the axioms of PV ! (just the axioms of PV are needed as axioms for IPV ). The diÆculty

lies with the powerful PV ! rule R3!. The analogous rule R3 of PV is a derived rule in

IPV because of the identity axioms, but R3! does not follow from the identity axioms
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because s and t may have free variables which are bounding ufsg and uftg. We cannot

translate the rule as an axiom scheme, say s = t ! ufsg = uftg, because this is not

sound. We could incorporate the rule R3! as a rule of IPV !, but then the deduction

theorem would not hold in IPV !. To preserve the deduction theorem, we could add the

more general rule

A! s = t ` A! ufsg = uftg,

subject to the restriction that every free variables of s or t which become bound in ufsg

or uftg has no free occurrence in A. This rule is sound, but (because of HTLRN) it

would considerably complicate our proof that IPV ! is a conservative extension of IPV .

De�nition 7.1.4 The axioms of IPV ! are de�ned as follows:

(1) The theorems of PV !.

(2) The non-logical axioms of IPV .

(3) PIND! axiom :

(A[0=x] ^ 8x(A[b1
2
xc=x]! A))! 8xA ,

where A has the form

(9y � t)u = v

with t zero-order open.

Notice that in the formula A of the PIND! scheme the term u and v may have

free higher variables, but free variables of t must have type 0. The reason for the latter

restriction is that we will require that each bounding term t is bounded by a monotone

term. On the other hand, to prove the results on realizability the terms u and v must

have free occurrences of higher type variables.

7.2 Conservative extension of IPV

Notation 7.2.1 AfSg refers to a formula with a distinguished occurrence of a term S.

Then AfTg means AfSg with the indicated occurrence of S replaced by T . In general S

and T may have free variables which become bound in AfSg and AfTg.

Theorem 7.2.2

a)IPV !
` x = 0! (AfCond� (x; S; T )g $ AfSg)

b)IPV !
` x 6= 0! (AfCond�(x; S; T )g $ AfTg),

provided the indicated occurrence of x on the right are free (not bound by quanti�ers or

�-terms in Afg).

(proof) We prove by induction on the logical structure of Afg.

a)

(1) Afg is u = v.

Then AfSg � ufSg = vfSg.
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By th. 6:2:5, ufSg = ufCond�(0; S; T )g and vfSg = vfCond�(0; S; T )g.

Hence ufSg = vfSg $ ufCond�(0; S; T )g = vfCond� (0; S; T )g.

Therefore x = 0! (ufSg = vfSg $ ufCond�(x; S; T )g = vfCond� (x; S; T )g).

(2) Afg is u � v.

Same as (1).

For the remaining cases, assume that

IPV !
` x = 0! (BfSg $ BfCond� (x; S; T )g) and

IPV ! ` x = 0! (CfSg $ CfCond� (x; S; T )g), where B and C are formulas.

(3) Afg is Bfg _ Cfg.

Then AfSg � BfSg _ CfSg.

By hypothesis, BfSg _ CfSg $ BfCond� (0; S; T )g _ CfCond� (0; S; T )g.

Therefore x = 0! (BfSg _ CfSg $ BfCond� (x; S; T )g _ CfCond�(x; S; T )g).

(4) Afg is Bfg ^ Cfg.

Same as (3).

(5) Afg is 8zBfg.

By (8I); (8E) and hypothesis,

8zBfSg $ 8zBfCond� (0; S; T )g.

Therefore x = 0! (8zBfSg $ 8zBfCond� (x; S; T )g).

(6) Afg is 9zBfg.

Same as (5).

B)

Same as A).

Theorem 7.2.3

If A is a �b

0 formula of IPV
!, then there is a term tA of PV ! so that

IPV ! ` A$ tA = 0.

(proof) We prove by induction on the logical structure of A.

a)

(1) A is u = v.

By u = v $ Equ(u; v) = 0, and Equ(u; v) = 0 is a term of PV !.

(2) A is u � v.

By u � v $ Lessequ(u; v) = 0, and Lessequ(u; v) = 0 is a term of PV !.

For the remaining cases, assume that B $ tB = 0, C $ tC = 0 and D(x; ~y) $

tD(x; ~y) = 0.
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(3) A is B _ C.

By B _ C $ (tB = 0 _ tC = 0)$ (tB _ tC = 0).

(4) A is B ^ C.

By B ^ C $ (tB = 0 ^ tC = 0)$ (tB&tC = 0).

(5) A is (8x � jaj)D(x; ~y).

By (8x � jaj)D(x; ~y)$ tD
8
(a; ~y) = 0.

(6) A is (9x � jaj)D(x; ~y).

By (9x � jaj)D(x; ~y)$ tD
9
(a; ~y) = 0.

Theorem 7.2.4 If A is a �b

0 formula of IPV
! then IPV ! ` A _ :A.

(proof) For any �b

0 formula A, PV
! ` A! tA = 0 by th. 7:2:3. Then

PV ! ` Cond(tA; 0; 0) = 0, by T1

PV !
` Cond(tA; Cond(tA; 0; 0); Cond(tA; 1; 0)) = 0, by T4

PV ! ` Cond(tA; 0; Cond(� tA; 0; 1)) = 0, by T38

PV !
` Cond(tA; 0; sg(� tA)) = 0, by D31

PV ! ` tA_ � tA = 0, by D31.

Therefore

IPV ! ` tA_ � tA = 0,

IPV ! ` tA = 0_ � tA = 0, by th. 4:2:2(4)

IPV !
` tA = 0 _ :(tA = 0), by th. 4:2:2(2)

IPV ! ` A _ :A, by th. 7:2:3.

Proposition 7.2.5 For each type 0 zero-order open term s and all type 0 variables x; y

there is a term t of PV whose free variables are among those in a such that

(a) IPV ! ` s � t

and

(b) IPV ! ` x � y! t � t[y=x].

(proof) Assume that s is an any zero-order open type 0 term.

By th. 6:2:10, IPV !
` s = sPV .

By T206 and s be a term of PV , there is a term sPV
M

in PV such that

(1)Lessequ(sPV (x); sPV
M
(x)) = 0

(2)[Lessequ(x; y)) Lessequ(sPV
M
(x); sPV

M
(y))] = 0

Then

IPV ` Lessequ(sPV (x); sPV
M

(x)) = 0 and

` [Lessequ(x; y)) Lessequ(sPV
M

(x); sPV
M

(y))] = 0 by th. 4:2:1.

IPV ` sPV (x) � sPV
M
(x) = 0 and x � y ! sPV

M
(x) � sPV

M
(y) by th. 4:2:2.

Therefore

IPV !
` sPV (x) � sPV

M

(x) = 0 and x � y ! sPV
M

(x) � sPV
M

(y).
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IPV !
` s(x) � sPV

M
(x)) = 0 and x � y ! sPV

M
(x) � sPV

M
(y) by s = sPV .

Therefore if we take sPV
M

as t, then satis�es (a) and (b).

Recall that (9~y � ~t) stands for (9y1 � t1) � � � (9yn � tn).

Theorem 7.2.6 Each instance of the PIND! axiom scheme is a theorem of IPV ! when

A has the more general form

(9~y � ~t)u = v

with each ti zero-order open.

(proof) By prop. 7:2:5 and T206, we can prove

IPV !
` (9y1 � t1)(9y2 � t2)u = v $ (9z � s)u0 = v0 � � � � � � (a)

by a method same as lemma 4:2:11. By (a), we can prove

IPV !
` (9~y � ~t)u = v $ (9z � s)u0 = v0.

Therefore We can apply PIND! to a formula which has a form (9~y � ~t)u = v.

To apply cut elimination, the system IPV and IPV ! are reformulated in terms of

Gentzen's sequent system LJ . In LJ , each node in a proof tree is a sequent of the

form A1; � � � ; An ! B, where possibly n=0 or B is missing. The logical rules are those

described later. In particular we divide cut rule into high cut and normal cut. If cut

formula A has higher type quantifiers then the cut rule is called high cut , where higher

type quantifier is one of the form 8X or 9X, where X is a variable not of type 0. The

logical axioms are all those of the form A ! A, where we require that A be atomic.

The set of axioms must be closed under substitution in order for cut elimination to work,

so we take as a nonlogical axiom in the old formulation. It is important that no axiom

involve higher type quanti�ers, so we take as identity axioms every instance of any sequent

x = y! (A$ A[y=x]), where A is atomic.

Since LJ is equivalent to the logical system NJ which is given in Chapter 2, it is not

hard to see that the resulting sequent systems for IPV and IPV ! are equivalent to the

original systems, in the sense that ! A is a theorem of the sequent system i� A is a

theorem of the original system.

For the rest of this section we assume that IPV and IPV ! have their sequent formu-

lations.

De�nition 7.2.7 LJ is given by the following rules of inference:

1) Structural rules:

�!�
A;�!�

(weakening left)
�!
�!A

(weakening right)

A;A;�!�
A;�!�

(contraction left)
�;A;B;�!�
�;B;A;�!�

(exchange left)

�!A A;�!�

�;�!�
(normal cut), where A has no higher type quanti�er.

�!A A;�!�
�;�!�

(high cut), where A has higher type quanti�ers.
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2) Logical rules:

A;�!�
A^B;�!�

(^ left1)
B;�!�

A^B;�!�
(^ left2)

�!A �!B
�!A^B

(^ right)
A;�!� B;�!�

A_B;�!�
(_ left)

�!A
�!A_B

(_ right1)
�!B

�!A_B
(_ right2)

�!A B;�!C
A�B;�;�!C

(� left)
A;�!B
�!A�B

(� right)

�!A
:A;�!

(: left)
A;�!
�!:A

(: right)

3) Quanti�er rules

A[T=X];�!�

8XA;�!�
(8 left)

�!A[Z=X]

�!8XA
(8 right)

A[Z=X];�!�

9XA;�!�
(9 left)

�!A[T=X]

�!9XA
(9 right)

where Z does not occur in the lower sequent, and T is an arbitrary term.The variable

Z is called eigenvariable.

De�nition 7.2.8

Mixture rule

�!A �1!�
�;�2!�

(A),

where �1 contain the formula A, and �2 is obtained from �1 by deleting all the occurrence

of A.

We call A the mixing formula. If A has higher type quanti�ers then mixture rule is

called higher mixture, else mixture rule is called normal mixture.

Mixture rule is equivalent to cut rule.

Lemma 7.2.9 If �! A has a proof in IPV ! which has no high cut, then every substi-

tution instance of �! A has such a proof.

(proof) We prove [�(x) ! A(x)] ) [�(t) ! A(t)] (where t is a term) by induction on a

proof P .

(a-1) P is an only logical axiom A(x)! A(x).

By A(t)! A(t) be a logical axiom, too.

(a-2) P is an only nonlogical axiom ! A(x).

By only nonlogical axioms be closed under substitution.
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For the remaining cases, assume that every substitution instance before last inference

has such a proof.

(b) The last inference rule of P is structural rule or logical rule. We prove the rule

(normal cut) as an example.

Let P be

M(x)!M(x) N(x)! N(x)
...

...

�(x)! A(x) A(x);�(x)! B(x)

�(x);�(x)! B(x)

By hypothesis,

M(t)!M(t) N(t)! N(t)
... and

...

�(t)! A(t) A(t);�(t)! B(t)

are provable. Hence by (cut),

M(t)!M(t) N(t)! N(t)
...

...

�(t)! A(t) A(t);�(t)! B(t)

�(t);�(t)! B(t)

(c) The last inference rule of P is a quanti�er rule.

Assume that a variable z is the eigenvariable. We prove the rule (8 right) as an example.

(1) a term t is a variable b and x is the eigenvariable.

Let P be

M(x)!M(x)
...

�! A(x)

�! 8yA(y)

By hypothesis and (8 right),

M(b)!M(b)
...

�! A(b)

�! 8yA(y)

By t = b,

M(t)!M(t)
...

�! A(t)

�! 8yA(y)

(2) a term t is a variable b and x is not the eigenvariable.

Let P be
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M(x)!M(x)
...

�(x)! A(x; z)

�(x)! 8yA(x; y)

By hypothesis and (8 right),

M(b)!M(b)
...

�(b)! A(b; z)

�(b)! 8yA(b; y)

By t = b,

M(t)!M(t)
...

�(t)! A(t; z)

�(t)! 8yA(t; y)

By (1) and (2), if P is a proof which contains a variable x, then P 0 which obtains

from replacement x in P a variable b is a proof, too.

(IPV ! ` �(x)! A(x)) IPV ! ` �(b)! A(b), where x and b are variables).

We call this property (|).

(3) x 6= z and z is not free variable in t.

Let P be

M(x)!M(x)
...

�(x)! A(x; z)

�(x)! 8yA(x; y)

By hypothesis and (8 right),

M(t)!M(t)
...

�(t)! A(t; z)

�(t)! 8yA(t; y)

(4) x 6= z and z is free variable in t.

Let P be

M(x; z)!M(x; z)
...

�(x)! A(x; z)

�(x)! 8yA(x; y)

By (|),

M(x; b)!M(x; b)
...

�(x)! A(x; b)
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�(x)! 8yA(x; y)

where the variable b is not contained in P and t.

By hypothesis and (8 right),

M(t; b)!M(t; b)
...

�(t)! A(t; b)

�(t)! 8yA(t; y)

By (|),

M(t; z)!M(t; z)
...

�(t)! A(t; z)

�(t)! 8yA(t; y)

(5) x = y (i:e: x is the eigenvariable).

Let P be

M(x)!M(x)
...

�! A(x)

�! 8xA(x)

Then x is not free variable in � because of condition of (8 right). Therefore by

hypothesis,

M(t)!M(t)
...

�! A(t)

�! 8xA(t)

De�nition 7.2.10 We de�ne grade; thread and rank for next theorem \high mix elimi-

nation".

Let P be a proof which contains a mix only as the last inference:

J :
�!A �1!�

�;�2!�
(A),

The grade of a formula A (denoted by g(A)) is the number of logical symbols contained

in A. The grade of a mix is the grade of the mix formula. When a proof P has a mix as

the last inference, we de�ne the grade of P (denoted by g(P )) to be the grade of this mix.

We refer to the left and right upper sequents as S1 and S2, respectively, and to the lower

sequent as S. We call a thread in P a left(right) thread if it contains the left(right)

upper sequent of the mix. J . The rank of a thread T in P is de�ned as follows : if T is

a left(right) thread, then the rank of T is the number of consecutive sequents, counting

upward from the left(right) upper sequent of J , that contains the mix formula, the rank
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of a thread in P is at least 1. The rank of thread T in P is denoted by rank(T;P ). We

de�ne

rankl(P ) = max(rank(T;P )),

where T ranges over all the left threads in P , and

rankr(P ) = max(rank(T;P )),

where T ranges over all the right threads in P . The rank of (P ) , rank(P ), is de�ned as

rank(P ) = rankl(P ) + rankr(P ).

Notice that rank(P ) is always � 2.

Lemma 7.2.11 If �! A is a sequent of IPV and a theorem of IPV !, then �! A has

a proof in IPV ! which does not involve higher type quanti�ers.

(proof) Since � ! A has no higher type quanti�er, it suÆces to �nd a proof of � ! A

which has no high mix. Therefore we need to prove high mix elimination.

proof of high mix elimination

Let P be a proof which contains a mix only as the last inference. We prove by double

induction on the grade d and rank r.

(1) r=2 i:e: rankl(P ) = rankr(P ) = 1

(a) The left upper sequent S1 is an initial sequent.

In this case assume P is of the form

J :
A!A �1!�

A;�2!�
(A).

We prove A;�2 ! � without a mix.

�1 ! �

some exchanges

A; � � � ; A;�2 ! �

some contractions

A;�2 ! �

(b) The left upper sequent S2 is an initial sequent.

Same as (a).

(c) Neither S1 nor S2 is an initial sequent, and S1 is the lower sequent of a

structural inference J1. Since rankl(P ) = 1, the formula A cannot appear in
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the upper sequent of J1, i:e:, J1 must be a weakening : right, whose weakening

formula is A :
�!
�! A

J1 �1 ! �

�;�2 ! �
(A)

We prove �;�2 ! � without a mix.

�!
some weakenings

�2;�!

some exchanges

�;�2 !

�;�2 ! �
(weakening right)

(d) Neither S1 nor S2 is an initial sequent, and S2 is the lower sequent of a

structural inference J2. Same as (c).

(e) Both S1 and S2 are lower sequents of logical inferences.

In this case, mixing formula has the form B ^C;B _C;B � C and :B, where

bounded quanti�ers are contained in B or C always. We prove B ^ C as an

example. Since rankl(P ) = rankr(P ) = 1, assume P is of the form

�! B �! C
�! B ^ C

�2 ! �

B ^ C;�2 ! �

�;�2 ! �
(B ^ C)

We prove �;�2 ! � without a mix.

�2 ! �

some weakenings

�;�2 ! �

(f) Both S1 and S2 are lower sequents of quanti�er inferences.

In this case, mixing formula has the form 8XB(X) or 9XB(X). We prove

8XB(X) as an example. Since rankl(P ) = rankr(P ) = 1, assume P is of the

form
�! B(Z)

�! 8XB(X)

B(T );�2 ! �

8XB(X);�2 ! �

�;�2 ! �
(8XB(X))

By eigenvariable condition, Z does not occur in � and B(X). By lemma 7:2:9,

we can prove � ! B(T ) from � ! B(Z) without high mix. Using this, We

prove �;�2 ! � without a mix.

�! B(Z)

�! B(T ) B(T );�2 ! �

�;�2 ! �
(normal cut)
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(2) rankr(P ) > 1

(a) � (in S1) contains A.

We prove �;�2 ! � without a mix as follows.

�1 ! �

some exchanges and contractions

A;�2 ! �

some weakenings and exchanges

�;�2 ! �

(b) S1 is the lower sequent of an inference J2, where J2 is not a logical inference

whose principal formula is A. The last part of P looks like this:

�! A
�! 	
�1 ! �

J2

�;�2 ! �
(A);

where the proofs of � ! � and � ! 	 contain no mixes and � contains at

least one A. Consider the following proof P 0:

�! A �! 	
�;�� ! 	

high mix (A):

Then rankl(P
0) = rankl(P ) and rankr(P

0) =rankr(P ) - 1. Thus by the induc-

tion hypothesis, �;��
! 	 is provable without a mix. Therefore

�;�� ! 	

some exchanges

��;�! 	

�2;�! �
J2

some exchanges

�;�2 ! �

(c) � contains no A's, and S2 is the lower sequent of a logical rule or quanti�er

rule whose principal formula is A. Although there are several cases according

to the outermost logical symbol of A, we prove two examples.

i. A is B � C, where bounded quanti�ers are contained in B or C always.

The last part of P is of the form:

�! B � C

�1 ! B C;�2 ! �

B � C;�1;�2 ! �
J2

�;��
1;�

�
2 ! �

J (B � C):

If B � C is in �1 and �2, then we consider the following proofs P1 and P2:

....
�! B � C

....
�1 ! B

�;��
1 ! B

P1 (B � C);
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....
�! B � C

....
C;�2 ! �

�; C;��
2 ! �

P2 (B � C);

else if B � C is not in �1 or �2, then �1 and �2 are de�ned as follows :

....
�1 ! B

weakenings and exchanges
P1

�;��
1 ! B

....
C;�2 ! �

weakenings and exchanges
P2

�; C;��
2 ! �

Note that g(P1) = g(P2) = g(P ), rankl(P1) = rankl(P2) = rankl(P ) and

rankl(P1) = rankl(P2) = rankl(P ) - 1. Hence by induction hypothesis, the

end sequents of P1 and P2 are provable without a high mix (say by P
0
1 and

P 0
2). Consider the following proof P

0 :

�! B � C

P 0
1....

�;��
1 ! B

P 0
2....

C;�;��
2 ! �

B � C;�;��
1;�;�

�
2 ! �

�;�;��
1;�;�

�
2 ! �

J (B � C):

Then g(P 0) = g(P ), rankl(P
0) = rankl(P ), rankr(P

0) = 1, for � contains

no occurrences of B � C and rank(P 0) < rank(P ). Thus the end-sequent

of P 0 is provable without a mix by the induction hypothesis, and hence so

is the end-sequent of P .

ii. A is 9XF (X).

The last part of P is of the form:

�! 9XF (X)

F (T );�1 ! �

9XF (X);�1 ! �

�;��
1 ! �

J (9XF (X)):

Let Y be a free variable not occurring in P . Then the result of replacing T

by Y throughout the proof ending with F (T );�1 ! � is a proof, without

a mix, ending with F (Y );�1 ! �, since by the eigenvariable condition, Y

does not occur in �1 or �.

Consider the following proof :

....
�! 9XF (X)

....
F (Y );�1 ! �

�; F (Y );��
1 ! �

J (9XF (X)):
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By the induction hypothesis, the end-sequent of this proof can be proved

without a mix (say by P 0). Now consider the proof

....
�! 9XF (X)

P 0
....

�; F (Y );�1 ! �

some exchange

F (Y );�;�1 ! �

9XF (X);�;��
1 ! �

�;�;��
1 ! �

J (9XF (X));

where Y occurs in none of 9XF (X);�;�1;� This mix can then also be

eliminated by the induction hypothesis.

(3) rankr(P ) = 1 and rankl(P ) > 1

Same as (2).

De�nition 7.2.12 The transformation t; ftgPV takes a zero-order open formula A of

IPV ! with no higher type quanti�ers to an equivalent formula fAgIPV of IPV , and is

de�ned inductively as follows:

ft = ugIPV
d

� tPV = uPV

ft � ugIPV
d

� tPV � uPV

fAcBgIPV
d

� AIPV cBIPV , where c is !;_ or ^

f8xAgIPV
d

� 8xAIPV

f9xAgIPV
d

� 9xAIPV

fA1; � � � ; Ang
IPV

d

� AIPV

1 ; � � � ; AIPV

n

For every zero-order open type zero term t of PV !

fS[t=x]g � SIPV [tPV =x],

where S is a sequent or formula of IPV !.

Lemma 7.2.13 If a proof P of IPV ! does not involve higher type quanti�ers, then

IPV ` fS 0gIPV for every zero-order open instance S 0 of any sequent S in P .

(proof) We prove by induction on the length of the longest path S to a leaf in P .

base step S is an axiom.

(1) S is an axiom of IPV .

By IPV ` S and fSgIPV � S, IPV ` fSgIPV .
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(2) S is a theorem of PV !.

Let S � (u = v). By th. 6:2:21, PV !
` t = u) PV ` tPV1 = uPV1 .

By tPV1 = uPV1 � ft1 = u1g
IPV , IPV ` ft1 = u1g

IPV .

Therefore IPV ` fS 0
g
IPV .

(3) S is PIND!.

By S � A(0) ^ 8x(A(b1
2
xc)! A(x))! 8xA(x),

fSgIPV � fA(0)gIPV ^ 8x(fA(b1
2
xc)gIPV ! fA(x)gIPV )! 8xfA(x)gIPV .

This is NP-Induction of IPV. Hence IPV ` fSgIPV .

induction step S is the consequence in P of appling a rule of LJ . Then we de�ne S 0 as

upper sequent of S. We need to prove for each rule. In here, We prove the rule (^ left) as

an example. De�ne S � A ^B;�! � and S 0 � A;�! �. Then we need to prove that

[IPV ` fAgIPV ; f�gIPV ! f�gIPV ]) [IPV ` fA ^ BgIPV ; f�gIPV ! f�gIPV ].

Assume IPV ` fAgIPV ; f�gIPV ! f�gIPV .

By (^ left), IPV ` fAgIPV ^ fBgIPV ; f�gIPV ! f�gIPV .

By de�nition of fgIPV , IPV ` fA ^ BgIPV ; f�gIPV ! f�gIPV .

Theorem 7.2.14 IPV ! is a conservative extension of IPV .

(proof)

By lemma 7:2:13,

8(�! �) 2 L(IPV )[IPV ! ` �! �) IPV ` f�gIPV ! f�gIPV ].

By (�! �) 2 L(IPV ), (f�gIPV ! f�gIPV ) � �! �. Hence

8(�! �) 2 L(IPV )[IPV ! ` �! �) IPV ` �! �].

Therefore IPV ! is a conservative extension of IPV .
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Chapter 8

Realizability

Realizability by numbers was �rst introduced by S.C.Kleene in 1945 [7], and was intended

as a kind of reinterpretation of intuitionistic arithmetic, so as to bring out more explicitly

the intended constructive interpretation of the logical operators. As such, it may be

viewed as a variant of the abstract interpretation scheme �rst introduced by Heyting. As

we shall see from the de�nition and results in the sequel, Kleene's notion is not just a

variant of , but essentially di�ers from the interpretation intended by Heyting. Hence, it

cannot be said to make the intended meaning of the logical operators more precise. As

a \philosophical reduction" of the interpretation of the logical operators it is also only

moderately successful ; i:e: negative formulae are essentially interpreted by themselves.

On the other hand, realizability possesses some nice formal properties, which provide

it with some mathematical interest of its own ; but more important, realizability and he

many variants deriving from it turn out to be very convenient tools in the development

intuitionistic proof theory.

Modi�ed realizability was �rst introduced and used in Kreisel. Modi�ed realizability

in its abstract form provides interpretation s of the various HA!-versions into themselves

; the interpretation may be specialized (to an interpretation in (a subsystem of) a version

of another system) by specifying a model for the objects of �nite type.

One of its most distinctive properties is that Markov's principle is no validated by

modi�ed realizability ; this was already noted and used by Kreisel to show underivability

of Markov's principle in systems of intuitionistic analysis.

On the other hand, modi�ed realizability validates

(:A! 9yB)! 9y(:A! B), where y is not free in A.

This fact is connected with its invalidating Markov's principle.

This property was used for proof-theoretic applications(\derived rules").

In this section we present a form of Kreisel's modi�ed realizability for the system

IPV !. As applications, we show that decidable formula represent polynomial time pred-

icates, prove a version of Buss's main theorem for IS2
1 relating existence proofs and

polynomial time functions, and prove two of Buss's conjectures concerning IS2
1 .

Our version of realizability is a translation of IPV ! a formula ~XR A (read ~X realizes

A) of IPV !, where ~X is a sequence of zero or more variables of types determined by

the variables ~X help to explain why A is true. Our de�nition follows that presented in
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[10]. The main di�erence is the conjunct A ! B in clause (iv) below, which assures

that provably realizable formulas are provable, and allows us to prove theorem 8:1:6 and

Buss's conjectures. In standard realizability, a suitable version of the axiom of choice is

provably realizable but not provable [10].

Main theorem of this chapter is to prove that if IPV ` 8~x9yA(~x; y) then there is a

PV function symbol f such that IPV ` 8~xA(~x; f(~x)).

8.1 De�nition

To apply realizability, the system IPV and IPV ! are reformulated in terms of Hilbert

Style system. Hilbert Style is very similar to NJ . NJ has some rules which of hypothesis

are struck out, (! I); (_E) and (9E). ButHilbert Style has no such a rule. This property

is very useful of realizability. And Hilbert Style is equivalent to the logical system NJ .

Therefore in this chapter and next chapter we assume that logical rules and axioms of

IPV and IPV ! are Hilbert Style.

De�nition 8.1.1 Hilbert Style of intuitionistic predicate logic is given by the following

axioms and rules of inference:

Axiom Schemes

1: A! (A ^ A) 2: (A _ A)! A 3: (A ^ B)! B

4: B ! (A _ B) 5: (A ^B)! (B ^ A) 6: (A _ B)! (B _ A)

7: 8xA! A[t=x] 8: A[t=x]! 9xA 9: (0 = 1)! A

Rules of Inference

10.
A;A!B

B
11.

A!B;B!C
A!C

12.
(A^B)!C

A!(B!C)
13.

A!(B!C)

(A^B)!C

14.
A!B

C_A!C_B
15.

A!B
A!8xB

16.
B!A
9xB!A

Identity axioms

17: x = x 18: x = y ! (A$ A[y=x])

In axiom schemes 7 and 8, A[t=x] stands for the result of substituting the term t for

all free occurrences of x in A; t must not contain an occurrence of a free variable which

becomes bound in A[t=x]. In rules 15 and 16, x must not occur free in A.

Notation 8.1.2 We use the notation ~X for X1; � � � ; Xn and ~Y for Y1; � � � ; Yk, n; k � 0,

and ~Y ( ~X) for Y1( ~X); � � � ; Yk( ~X), etc. Also � stands for the empty sequence of variables,

and Y (�)
d

� Y .

De�nition 8.1.3 (Kreisel's modi�ed realizability)
~XR A is de�ned by induction on the logical structure of A. We assume that no variable in
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the list ~X occurs free in A. ~TR A
d

� ( ~XR A)[~T= ~X]; that is ~XR A with the simultaneous

substitution of Ti for Xi (1 � i � n).

(i) �R A
d

� A, if A is atomic.

(ii) ~X; ~YR (A ^B)
d

� ~XR A ^ ~YR B.

(iii) z; ~X; ~YR (A _ B)
d

� (z = 0 ^ ~XR A) _ (z 6= 0 ^ ~YR B).

(iv) ~YR (A! B)
d

� 8 ~X( ~XR A! ~Y ( ~X)R B) ^ (A! B).

(v) ~XR 8Y A
d

� 8Y ( ~X(Y )R A).

(vi) Z; ~XR 9Y A
d

� ~XR A[Z=Y ].

Proposition 8.1.4 �R :A � 8~Y (:(~YR A)) ^ :A

(proof)

�R :A � �R (A! (0 = 1)), by def. 8:1:3 (iv)

� 8~Y (~YR A! A(~Y )R (0 = 1)) ^ (A! (0 = 1)), by def. 8:1:3 (i)

� 8~Y (~YR A! (0 = 1)) ^ :A,

� 8~Y (:(~YR A)) ^ :A.

Proposition 8.1.5

a)Each free variables of ~XR A is either free in A or in the list ~X.

b)If Y is not in the list ~X, then ~XR A[T=Y ] � ( ~XR A)[T=Y ].

(proof)

a)We prove by induction on the logical structure of A.

(1) A is atomic.

There are only free variables in A. Therefore variables in ~XR A are only free

variables in A or in the list ~X.

For the remaining cases, we assume that free variables of ~XR B are either free in

B or in the list ~X and free variables of ~YR C are either free in C or in the list ~Y .

(2) A is B ^ C.

By def. 8:1:3 (ii), ~X; ~YR (B ^ C) � ( ~XR B) ^ (~YR C).

Hence each free variables of ~X; ~YR (B ^ C) is a free variable of ~XR B or ~YR C.

Therefore each free variables of ~X; ~YR (B ^ C) is in the list ~X; ~Y or in B ^ C.

105



(3) A is B _ C.

By def. 8:1:3 (iii), z; ~X; ~YR (B _ C) � (z = 0 ^ ~XR B) _ (z 6= 0 ^ ~YR C).

By hypothesis,

each free variables of z; ~X; ~YR (B _ C) is z or free variable of ~XR B or ~YR C.

Therefore each free variables of z; ~X; ~YR (B _C) is in the list z; ~X; ~Y or in B _C.

(4) A is B ! C.

By def. 8:1:3 (iv), ~YR (B ! C) � 8 ~X( ~XR B ! ~Y ( ~X)R C)^ (B ! C). Hence free

variables of ~YR (B ! C) are free variables of (B ! C) or B or ~Y ( ~X)R C without
~X. Therefore each free variables of ~YR (B ! C) is in (B ! C) or in the list ~Y .

(5) A is 8ZB.

By def. 8:1:3 (v), ~XR 8ZB � 8Z( ~X(Z)R B).

Hence free variables of ~XR 8ZB are free variables of ~X(Z)R B without Z.

Therefore each free variables of ~XR 8ZB is in the list ~X or in B.

(6) A is 9ZB.

By def. 8:1:3 (vi), W; ~XR 9ZB � ~XR B[W=Z].

Hence free variables of W; ~XR 9ZB are free variables of ~XR B[W=Z].

Therefore each free variables of W; ~XR 9ZB is in the list W; ~X or in 9ZB.

b) By Y be not in the list ~X, ~X � ~X[T=Y ].

Therefore ~XR (A[T=Y ]) � ~X[T=Y ]R A[T=Y ] � ( ~XR A)[T=Y ].

Theorem 8.1.6 For every formula A of IPV !

IPV ! ` 9 ~X( ~XR A)! A.

(proof) We prove by induction on the logical structure of A.

(1) A is atomic.

By A! A, �R A! A. By �R A! A, 9 ~X( ~XR A)! A.

For the remaining cases, we assume that 9~Y (~YR B) ! B and 9~Z(~ZR D) ! D.

Let variables a; ~U; ~V ;W;W 0 and W 00 are not contained in B;D and in the list ~Y ; ~Z.

(2) A is B ^D.

By ~UR B ! ~UR B, ~UR B ! 9~Y (~YR B).

By this and 9~Y (~YR B)! B, ~UR B ! B. Hence ~UR B ^ ~VR D ! B.

Same as ~UR B ^ ~VR D! D. Hence ~UR B ^ ~VR D! B ^D.

Therefore 9~Y 9~Z(~Y ; ~ZR (B ^D))! (B ^D).

(3) A is B _D.

By same method as (2), ~UR B ! B. Hence a = 0 ^ ~UR B ! B _D.

By same method as upper, a 6= 0 ^ ~UR D! B _D.
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Hence (a = 0 ^ ~UR B) _ (a 6= 0 ^ ~UR D)! B _D.

Therefore 9z9~Y 9~Z(z; ~Y ; ~ZR (B _D))! B _D.

(4) A is B ! D.

By (B ! D)! (B ! D), 8~V (~VR B ! ~U(~V )R D) ^ (B ! D)! (B ! D).

Hence ~UR (B ! D)! (B ! D).

Therefore 9 ~X( ~XR (B ! D))! (B ! D).

(5) A is 8WD.

By same method as (2), ~U(W 0)R D! D. Hence 8W (~U(W )R D)! D.

By this, 8W (~U(W )R D)! 8WD. Hence ~UR 8WD! 8WD.

Therefore 9~Z(~ZR 8WD)! 8WD.

(6) A is 9WD.

By same method as (2), ~UR A[W 0=W ]! A[W 0=W ].

Hence ~UR A[W 0=W ]! 9WD.

By def. 8:1:3 (vi), W 0; ~UR 9WD ! 9WD.

Therefore 9W 009~Z(W 00; ~ZR 9WD)! 9WD.

Corollary 8.1.7 IPV !
` (�R :A)$ :A.

(proof)

(1) �R :A! :A.

By th. 8:1:6, ~X( ~XR :A)! :A.

By �R :A! �R :A. By this and ~X( ~XR :A)! :A, �R :A! :A.

(2) :A! �R :A.

By :A! :A, :A! (�R A! �(�)R (0 = 1)).

Hence :A! 8~Y (~YR ~Y ! �(~Y )R (0 = 1)).

By this and :A! :A, :A! 8~Y (~YR ~Y ! �(~Y )R (0 = 1)) ^ (A! (0 = 1)).

Hence :A! �R (A! (0 = 1)). Therefore :A! �R :A.

8.2 Soundness of Realizability

Theorem 8.2.1 (Soundness Theorem)

If IPV ! ` A then IPV ! ` ~TR A for some sequence ~T of terms whose free variables

are among the free variables of A.

(proof) We prove by induction on the IPV ! proof of A. We �rst consider the logical

axiom and rules.
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(1) Axiom scheme 1

De�ne as R
d

� �~Y :0 and ~S � ~T
d

� �~Y :~Y . Then by ~UR A! ~UR A,
~UR A! (R(~U) = 0 ^ ~S(~U)R A) _ (R(~U) 6= 0 ^ ~T (~U)R A).

By def. 8:1:3(iii), ~UR A! (R(~U); ~S(~U); ~T (~U))R A _ A.

Hence 8 ~X[ ~XR A! (R; ~S; ~T )( ~X)R A _ A] ^ (A! A _ A).

Therefore (R; ~S; ~T )R (A! A _ A).

(2) Axiom scheme 2

By (z = 0 ^ ~XR A) _ (z 6= 0 ^ ~YR A)! (z = 0 ^ ~XR A) _ (z 6= 0 ^ ~YR A)

and th. 7:2:2,

(z = 0 ^ ~XR A) _ (z 6= 0 ^ ~YR A)! [( ~XR A ^ ( ~XR A! Cond� (z; ~X; ~Y )R A)) _

(~YR A ^ (~YR A! Cond� (z; ~X; ~Y )R A))].

Hence (z = 0^ ~XR A)_(z 6= 0^~YR A)! Cond� (z; ~X; ~Y )R A_Cond� (z; ~X; ~Y )R A.

By def. 8:1:3 (iii), (z; ~X; ~Y )R (A _ A)! Cond� (z; ~X; ~Y )R A. Hence

8z ~X~Y [(z; ~X; ~Y )R (A _ A)! (�u~S ~T :Cond(u; ~S; ~T ))(z; ~X; ~Y )R A] ^ (A _ A! A).

By def. 8:1:3 (iv), (�u~S ~T :Cond(u; ~S; ~T ))R (A _ A! A).

(3) Axiom scheme 3

By ~XR A ^ ~YR B ! ~YR B,

8 ~X~Y [ ~X; ~YR A ^ B ! (�~S ~T :~T )( ~X; ~Y )R B] ^ (A ^ B ! B).

Therefore by def. 8:1:3 (iv), (�~S ~T :~T )R (A ^ B ! B).

(4) Axiom scheme 4

De�ne as R
d

� �~Y :1 and ~S � ~T
d

� �~Y :~Y . Then by ~XR B ! ~XR B,
~XR B ! [(R( ~X) = 0 ^ ~S( ~X)R A) _ (R( ~X) 6= 0 ^ ~T ( ~X)R B)].

By def. 8:1:3 (iii), ~XR B ! (R( ~X); ~S( ~X); ~T ( ~X))R A _B .

Hence 8 ~X[ ~XR B ! (R; ~S; ~T )( ~X)R A _B] ^ (B ! A _B).

By def. 8:1:3 (iv), (R; ~S; ~T )R (B ! A _ B).

(5) Axiom scheme 5

By ~XR A ^ ~YR B ! ~YR B ^ ~XR A and def. 8:1:3 (ii),
~X; ~YR A^B ! ~Y ; ~XR B^A. Hence ~X; ~YR A^B ! (�~S ~T :(~T ; ~S))( ~X; ~Y )R B^A.

Therefore 8 ~X~Y [ ~X; ~YR A ^B ! (�~S ~T :(~T ; ~S))( ~X; ~Y )R B ^A] ^ (A ^B ! B ^A).

By def. 8:1:3 (iv), (�~S ~T :(~T ; ~S))R (A ^B ! B ^ A).

(6) Axiom scheme 6

De�ne as R
d

� �u~V ~W:sg(u); ~S
d

� �u~V ~W: ~W and ~T
d

� �u~V ~W:~V .

By D47, z = 0$ sg(z) 6= 0 and z 6= 0$ sg(z) = 0.

By (z = 0 ^ ~XR A) _ (z 6= ~YR B)! (z 6= ~YR B) _ (z = 0 ^ ~XR A),

(z = 0 ^ ~XR A) _ (z 6= ~YR B)! (sg(z) 6= ~YR B) _ (sg(z) = 0 ^ ~XR A).

By def. 8:1:3 (iii), (z; ~X; ~YR A _ B)! ((R; ~S; ~T )(z; ~X; ~Y )R B _ A).

Hence 8z ~X~Y [z; ~X; ~YR A_B)! ((R; ~S; ~T )(z; ~X; ~Y )R B _A)]^ (A_B ! B _A).

By def. 8:1:3 (iv), (R; ~S; ~T )R (A _ B ! B _ A).
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(7) Axiom scheme 7

By 8Y ( ~X(Y )R A)! ( ~X(Y )R A)[T=Y ], 8Y ( ~X(Y )R A)! ( ~X(T )R A[T=Y ].

Hence 8 ~X(8Y ( ~X(Y )R A)! (�~V :~V (T )) ~XR A[T=Y ]) ^ (8Y A! A[T=Y ].

By def. 8:1:3 (iv), (�~V :~V (T ))R 8Y A! A[T=Y ].

(8) Axiom scheme 8

De�ne as R
d

� �~V :T and ~S
d

� �~V :~V .

By ~XR A[T=Y ]! ~XR A[T=Y ] and def. 8:1:3 (vi), ~XR A[T=Y ]! T; ~XR 9Y A.

Hence 8 ~X[ ~XR A[T=Y ]! (R; ~S)( ~X)R 9Y A] ^ (A[T=Y ]! 9Y A).

By def. 8:1:3 (iv), (R; ~S)R (A[T=Y ]! 9Y A).

(9) Axiom scheme 9

By (0 = 1)! ~RR A and def. 8:1:3 (i), �R (0 = 1)! ~R(�)R A.

Hence 8 ~X( ~XR (0 = 1)! ~R( ~X)R A) ^ (0 = 1)! A.

By def. 8:1:3 (iv),~RR (0 = 1)! A.

(10) Axiom scheme 17

By def. 8:1:3 (i), �R x = x.

(11) Axiom scheme 18

De�ne as S � T
d

� � ~W: ~W . And assume that variables x and y are not

contained in the list ~Y .

By x = y! (~YR A! (~YR A)[y=x]),

x = y ! (~YR A! (� ~W: ~W )(~Y )R A[y=x]).

By Rule 15 and Axiom 18,

x = y! 8~Y (~YR A! (� ~W: ~W )(~Y )R A[y=x]) ^ (A! A[y=x]).

By def. 8:1:3 (iv), x = y! (� ~W: ~W )R (A! A[y=x]).

Therefore x = y ! SR (A! A[y=x]).

Therefore x = y ! S(�)R (A! A[y=x]) � � � � � � (�).

Same as x = y ! T (�)R (A[y=x]! A) � � � � � � (�).

By x = y! x = y ^ x = y; (�); (�) and def. 8:1:3 (i),

�R x = y ! (S(�)R (A! A[y=x]) ^ T (�)R (A[y=x]! A)).

By 8:1:3 (ii), �R x = y! S(�); T (�)R (A! A[y=x] ^ A[y=x]! A).

Hence 0 = 0! (�R x = y ! (S; T )(�)R A$ A[y=x]).

By Rule 15, 0 = 0! 8 ~X( ~XR x = y ! (S; T )( ~X)R A$ A[y=x]).

By 0=0 and def. 8:1:3 (iv), (S; T )R (x = y ! (A$ A[y=x])).

(12) Rule of inference 10

We need to prove that if ~SR A and ~TR A ! B then there exists ~W which satisfy
~WR B. Assume ~SR A and ~TR (A! B).

By ~TR A! B � 8 ~X( ~XR A! ~T ( ~X)R B) ^ (A! B), ~SR A! ~T (~S)R B.

By this and ~SR A, ~T (~S)R B. Therefore we take ~S( ~X) as ~W .
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(13) Rule of inference 11

We need to prove that if ~SR (A! B) and ~TR (B ! C) then there exists ~W such

that ~WR (A ! C). Assume ~SR (A ! B) and ~TR (B ! C). By hypothesis,
~UR A ! ~S(~U)R B and ~S(~U)R B ! ~T (~S(~U))R C. Hence ~UR A ! ~T (~S(~U))R C.

By this, A! B and B ! C, 8~U(~UR A! (� ~W:~T (~S( ~W )))(~U)R C) ^ (A! C).

Therefore (� ~W:~T (~S( ~W )))R (A! C). Therefore we take � ~W:~T (~S( ~W ))) as ~W .

(14) Rule of inference 12

We need to prove that if ~SR (A ^ B ! C) then there exists ~T which satisfy
~TR (A! (B ! C)). Assume ~SR (A ^ B ! C).
~SR (A ^B ! C) � 8 ~X~Y ( ~X; ~YR A ^B ! ~S( ~X; ~Y )R C) ^ (A ^B ! C)

� 8 ~X~Y ( ~XR A ^ ~YR B ! ~S( ~X; ~Y )R C) ^ (A ^B ! C).

Hence ~XR A ^ ~YR B ! ~S( ~X; ~Y )R C.

By Rule 12, ~XR A! (~YR B ! ~S( ~X; ~Y )R C))

By Rule 15, ~XR A! 8~Y (~YR B ! (� ~W:~S( ~X; ~W ))(~Y )R C).

By def. 8:1:3 (iv), ~XR A! (� ~W:~S( ~X; ~W ))R (B ! C).

By Axiom 7, Rule 11 and (A ^B ! C),

8 ~X( ~XR A! (�~V ~W:~S(~V ; ~W ))( ~X)R (B ! C)) ^ (A! (B ! C)).

By def. 8:1:3 (iv), (�~V ~W:~S(~V ; ~W ))R (A! (B ! C)).

Therefore we take (�~V ~W:~S(~V ; ~W )) as ~T .

(15) Rule of inference 13

We need to prove that if ~SR (A! (B ! C)) then there exists ~T such that
~TR (A ^B ! C). Assume ~SR (A! (B ! C)).
~SR (A! (B ! C)) � 8 ~X( ~XR A! ~S( ~X)R (B ! C)) ^ (A! (B ! C))

� 8 ~X( ~XR A! 8~Y (~YR B ! ~S( ~X(~Y )))) ^ (A! (B ! C)).

Hence ~VR A! ( ~WR B ! ~S(~V ( ~W ))R C).

By Rule 13, (~VR A ^ ~WR B)! (� ~M ~N:~S( ~M( ~N)))(~V ; ~W )R C.

By Axiom 7, Rule 11 and A! (B ! C),

8 ~X~Y ( ~X; ~YR A ^ B ! (� ~M ~N:~S( ~M( ~N)))( ~X; ~Y )R C) ^ (A ^ B ! C).

By def. 8:1:3 (iv), (� ~M ~N:~S( ~M( ~N)))R (A ^ B ! C).

Therefore we take (� ~M ~N:~S( ~M( ~N))) as ~T .

(16) Rule of inference 14

We need to prove that if ~TR (A ! (B ! C)) then there exists ~W such that
~WR (C _ A ! C _ B). Assume ~TR (A ! (B ! C)) . We de�ne P; ~R and ~S as

P
d

� �u~V ~W:u, ~R
d

� �u~V ~W:~V and ~S
d

� �u~V ~W:~T ( ~W ). By hypothesis,
~YR A! ~T (~Y )R B. Hence z 6= 0 ^ ~YR A! z 6= 0 ^ ~T (~Y )R B. By Rule 14,

(z = 0 ^ ~XR C) _ (z 6= 0 ^ ~YR A)! (z = 0 ^ ~XR C) _ (z 6= 0 ^ ~T (~Y )R B).

By def. 8:1:3 (iii), z; ~X; ~YR C _ A! z; ~X; ~T (~Y )R C _B.

Hence z; ~X; ~YR C _ A! (P; ~R; ~S)(z; ~X; ~Y )R C _B. By this and A! B,

8z ~X~Y [z; ~X; ~YR C _ A! (P; ~R; ~S)(z; ~X; ~Y )R C _ B] ^ (C _ A! C _ B).
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By def. 8:1:3 (iv), (P; ~R; ~S)R (C _ A! C _B). Therefore we take (P; ~R; ~S) as ~W .

(17) Rule of inference 15

We need to prove that if ~TR (A! B) then there exists ~R such that ~RR (A! 8Y B),

where Y is not contained in A. Assume ~TR (A! B).

By hypothesis, ~SR A! ~T (~S)R B, where ~S not contain Y . By Rule 15,
~SR A! 8Y ((�V:~T (~S))(Y )R 8Y B), where V is not free variable in ~T (~S).

By def. 8:1:3 (v), ~SR A! (�V:~T (~S))R 8Y B.

Hence ~SR A! (� ~WV:~T ( ~W ))(~S)R 8Y B.

By Axiom 7, Rule 11 and A! B,

8 ~X( ~XR A! (� ~WV:~T ( ~W ))( ~X)R 8Y B) ^ (A! 8Y B).

By def. 8:1:3 (iv), (� ~WV:~T ( ~W ))R (A! 8Y B).

Therefore we take � ~WV:~T ( ~W ) as ~R.

(18) Rule of inference 16

We need to prove that if ~TR (B[Z=Y ]! A) then there exists ~R such that
~RR (9Y B ! A). where Y is not free variable in A. Assume ~TR (B[Z=Y ]! A).

By hypothesis, ~XR B[Z=Y ]! ~T ( ~X)R A. By def. 8:1:3 (vi),

Z; ~XR 9Y B ! (�V ~W:~T ( ~W ))(z; ~X)R A, where V is not free variable in ~T ( ~X).

By B[Z=X]! A, 8Z; ~X(Z; ~XR 9Y B ! (�V ~W:~T ( ~W ))(z; ~X)R A) ^ 9Y B ! A.

By def. 8:1:3 (iv), (�V ~W:~T ( ~W ))R (9Y B ! A).

Therefore we take (�V ~W:~T ( ~W )) as ~R.

(19) Theorems of PV ! (def. 4:1:2(1))

Theorems of PV ! are form of u = v. Therefore �R u = v.

(20) x � y$ Lessequ(x;y) = 0 (def. 4:1:2(2))

x � y and Lessequ(x; y) = 0 are atomic formulas. Therefore

(x � y $ Lessequ(x; y) = 0)$ (�R x � y $ �(�)R Lessequ(x; y) = 0)

$ (8 ~X( ~XR x � y $ ~X(�)R Lessequ(x; y) = 0))

$ (�R (x � y $ Lessequ(x; y) = 0)).

(21) x = s0b
1

2
xc _ x = s1b

1

2
xc (def. 4:1:2(3))

By x = s0b
1
2
xc _ x = s1b

1
2
xc,

(Parity(x) = 0 ^ (�R x = s0b
1
2
xc)) _ (Parity(x) 6= 0 ^ (�R x = s1b

1
2
xc)).

By def. 8:1:3 (iii), (Parity(x);�;�)R (x = s0b
1
2
xc _ x = s1b

1
2
xc).

(22) Cond(x; a;b) = c$ (x = 0 ^ a = c) _ (:(x = 0) ^ b = c) (def. 4:1:2(4))

By same method of (21),

(x;�;�)R (Cond(x; a; b) = c! (x = 0 ^ a = c) _ (:(x = 0) ^ b = c)) and

(�u~S ~T :�)R ((x = 0 ^ a = c) _ (:(x = 0) ^ b = c)! Cond(x; a; b) = c). Therefore

(x;�;�); (�u~S~T :�)R Cond(x; a; b) = c$ (x = 0 ^ a = c) _ (:(x = 0) ^ b = c).

(23) PIND! (def. 4:1:2(5))

We use the notation B(x; y) for the equation u = v of PV !, where x; y are type 0
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variables, and B(s; t) denotes u = v with the simultaneous substitution of s; t for

x; y. Then a PIND! axiom has the form

I
d

� ((9y � t00)B(0; y) ^ 8xJ)! 8x(9y � t)B(x; y)

where

J
d

� ((9y � t0)B(b1
2
xc; y)! (9y � t)B(x; y)),

t00 � t[0=x] and t0 � t[b1
2
xc=x],

and t is zero-order open with no free occurrence of y.

We need to �nd a term S of PV ! for proof such that IPV !
` SR I.

SR I � 8yY [(y � t00 ^ B(0; y) ^ 8x(Y (x)R J))!

8x(S(y; Y; x) � t ^ B(x;S(y; Y; x)))] ^ I

and

Y (x)R J � 8y[y � t0 ^ B(b1
2
xc; y)! Y (x; y) � t ^ B(x; Y (x; y))] ^ J .

We hope that S satis�es under conditions.

1)S(y; Y; 0) = y

If x = 0, then B(x;S(y; Y; x)) � B(0;S(y; Y; 0)). And the hypothesis of SR I

contain the condition \B(0; y)".

2)S(y; Y; x) = Y (x;S(y; Y; b1
2
xc))

Assume x 6= 0. Then B(b1
2
xc;S(y; Y; b1

2
xc))! B(x; Y (x;S(y; Y; b1

2
xc))) by

Y (x)R J . And one of result of SR I is B(x;S(y; Y; x)).

3)S(y; Y; x) � t

This is obvious.

Therefore we de�ne S by HTLRN as follows

S
d

� �yY x:R(y; �x0z:Y (x0; z); �x0:2 � t[x0=x]; x).

Then

IPV !
` S(y; Y; x) = Cond(x; y; Cond(u

_
2 � t; u; 2 � t)) � � � � � � 2 ,

where u
d

� Y (x;S(y; Y; b1
2
xc)).

We would like to prove SR I in IPV ! by induction on x. In order to apply a

suitable PIND! axiom, we must transform SR I to be of the form 9y � t(u = v).

First we drop the conjunct I from SR I, since I is already an axiom of IPV !, and

we strengthen the assertion SR I by dropping the conjunct J from Y (x)R J . The

result has the form

8yY [(C ^ 8xyD)! 8xE] � � � � � � 1 ,

where

C
d

� y � t00 ^B(0; y)

D
d

� y � t0 ^ B(b1
2
xc; y)! Y (x; y) � t ^ B(x; Y (x; y))

E
d

� S(y; Y; x) � t ^B(x;S(y; Y; x)).

Note that C;D and E are quanti�er-free.

Let

A(x)
d

� 9x0 � x9y0 � u(C ^D0 ! E)

where

u
d

� t[b1
2
x0c=x] and D0

d

� D[x0y0=xy].
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This is a suitable formula for a PIND! axiom by theorem 7:2:3 and theorem 7:2:6.

We use this fact to prove below that IPV !
` A(x). First note that using Theorem

4:2:2, the truth-functional connectives in A(x) can be re-interpreted as the usual

connective ^;_:;! in IPV !. Next, the bounds on the existential quanti�ers in

A can be dropped (they only strengthen the assertion) and standard intuitionistic

reasoning then yield 1 , and hence IPV ! ` SR I.

It remains to prove A by PIND! induction.

1) base step

By C ! y � t[0=x] ^ B(0; y) and y = S(y; Y; 0),

C ! S(y; Y; 0) � t[0=x] ^ B(0;S(y; Y; 0)). Hence C ! E[0=x].

By this and C ^D[00=xy]! C, C ^D[00=xy]! E[0=x].

Therefore 0 � 0 ^ (0 � t[b1
2
0c=x] ^ (C ^D[00=xy]! E[0=x])).

Hence 9x0(x0 � 0 ^ 9y0 � t[b1
2
x0c=x](C ^D[x0y0=xy]! E[0=x])).

Therefore 9x0 � 09y0 � u(C ^D0 ! E[0=x]).

Therefore We can prove A(0) in IPV !.

2) induction step

Assume A(b1
2
xc). For any x0 and y0 IPV !

` (C ^D0) _ :(C ^D0) because C ^D0

is �b

0-formula.

i) The case \:(C ^D0)".

A(x) is obvious.

ii) The case \C ^D0".

By A(b1
2
xc), E[b1

2
xc=x] is provable. E[b1

2
xc=x] � S(y; Y; b1

2
xc) � t[b1

2
xc=x] ^

B(b1
2
xc;S(y; Y; b1

2
xc)). We de�ne x0 and y0 as x0

d

� x and y0
d

� S(y; Y; b1
2
xc).

Then y0 � t[b1
2
x0c=x] ^ B(b1

2
x0c; y0)(� y0 � u ^ B(b1

2
x0c; y0)) is provable, too.

And IPV ! ` (C ^D0) _ :(C ^D0) for these x0 and y0.

i')The case \:(C ^D0)".

C ^D0 ! E is obvious.

ii') The case \C ^D0".

By C;D0 and E[b1
2
x0c=x], Y (x0; y0) � t ^ B(x0; Y (x0; y0)). Therefore

Y (x;S(y; Y; b1
2
xc)) � t ^ B(x; Y (x;S(y; Y; b1

2
xc))). By this and 2 ,

u � t ^B(x; u). Hence (u � t ^ B(x; u)) ^ u
_
2 � t = 0 ^ x 6= 0.

By 2 , (u � t ^ B(x; u)) ^ u = S(y; Y; x).

Therefore E.

By i' and ii', if C ^D0 then E.

By i and ii, if A(b1
2
xc), then A(x).

By 1 and 2, A is provable.

By (1)-(23), Realizability is soundness.
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8.3 Main theorem

Proposition 8.3.1 If IPV !
` A(x) _ :A(x), where A(x) has only the type 0 variable x

occurring free, then there is a PV function symbol f such that

IPV ! ` f(x) = 0$ A(x).

The same holds with IPV ! replaced (twice) by IPV .

(proof)Assume IPV !
` A(x) _ :A(x). By soundness theorem, There exist T; ~U and �

such that T; ~U;�R 8x(A(x) _ :A(x)), where T; ~U;�R 8x(A(x) _ :A(x)) �

T; ~U;�R 8x[(T (x) = 0^ ~UR A(x))_ (T (x) 6= 0^�R :A(x))], where T is closed and has

type 0 ! 0. Then fT (x)gPV is term of PV because a term of IPV ! is a term of PV !

and T (x) is zero-order open. We de�ne f as f
d

� [�x:fT (x)gPV ]. Then f is a function

symbol of IPV ! because f is a function symbol of PV by de�nition 3:1:2(7). Therefore

IPV ! ` f(x) = [�x:fT (x)gPV ](x)

= fT (x)gPV

= T (x), by theorem 6:2:10.

(1) A(x)! f(x) = 0

(i) (T (x) = 0 ^ ~UR A(x))! T (x) = 0

! f(x) = 0.

(ii) (T (x) 6= 0 ^ �R :A(x))! :A(x)

! (A(x)! 0 = 1)

! (A(x)! f(x) = 0).

By (i),(ii), (T (x) = 0 ^ ~UR A(x)) _ (T (x) 6= 0 ^ �R :A(x)) and (_E),

IPV !
` A(x)! f(x) = 0.

(2) f(x) = 0! A(x)

(i) (T (x) = 0 ^ ~UR A(x))! (f(x) = 0! A(x)).

Assume T (x) = 0 ^ ~UR A(x). By theorem 8:1:6, 9 ~X( ~XR A(x))! A(x).

By this and ~UR A(x)! 9 ~X( ~XR A(x)), ~UR A(x)! A(x).

By (T (x) = 0 ^ ~UR A(x)), ~UR A(x). By this and ~UR A(x)! A(x), A(x).

Hence f(x) = 0! A(x).

Therefore (T (x) = 0 ^ ~UR A(x))! (f(x) = 0! A(x)).

(ii) (T (x) 6= 0 ^ �R :A(x))! (f(x) = 0! A(x)).

Assume T (x) 6= 0 ^ �R :A(x). Then T (x) 6= 0. Hence f(x) 6= 0.

If we assume f(x) = 0 then this contradict to f(x) 6= 0.

Therefore f(x) = 0! 0 = 1.

Hence f(x) = 0! A(x).
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Therefore (T (x) 6= 0 ^ �R :A(x))! (f(x) = 0! A(x)).

By (i) and (ii), IPV ! ` f(x) = 0! A(x).

By (1) and (2), if IPV ! ` A(x) _ :A(x) then IPV ! ` f(x) = 0$ A(x).

Theorem 8.3.2 Let 8 ~X9Y A( ~X; Y ) be a closed Theorem of IPV !. Then there is a

closed term S of IPV ! such that

IPV ! ` 8 ~XA( ~X; S( ~X)).

The same is true with IPV ! replaced (twice) by IPV .

(proof)

(1) IPV ! ` 8 ~XA( ~X; S( ~X)).

Assume IPV ! ` 8 ~X9Y A( ~X; Y ). By theorem 8:2:1,

there exist closed terms S; ~T such that IPV !
` S; ~TR 8 ~X9Y A( ~X; Y ).

This means IPV ! ` 8 ~X(~T ( ~X)R A( ~X; S( ~X))).

By theorem 8:1:6, IPV !
` 8 ~XA( ~X; S( ~X)).

(2) IPV ` 8 ~XA( ~X; S( ~X)).

Same as IPV !.

Theorem 8.3.3 Let 8~x9yA(~x; y) be a closed theorem of IPV ! such that the variables

~x; y have type 0. Then there is a PV function symbol f such that

IPV !
` 8~xA(~x; f(~x)).

The same is true with IPV ! replaced (twice) by IPV .

(proof)

(1) IPV ! ` 8~xA(~x; f(~x)).

Assume IPV ! ` 8~x9yA(~x; y). Then by theorem 8:3:2, then there is a type 1 closed

term S of IPV ! such that IPV ! ` 8~xA(~x; S(~x)). Then fS(~x)gPV is a term of PV

because S(~x) is a term of PV ! and zero-order open. We de�ne f as

f
d

� [�~x:fS(~x)gPV ]. Then f is a function symbol of PV . Therefore

PV ` f(~x) = [�~x:fS(~x)gPV ](x)

= fS(~x)g

= ff(~x)g.

Therefore f(~x)
PV

� S(~x). By lemma 6:2:20, A(~x; f(~x))
PV

� A(~x; S(~x)).

Therefore PV ` fA(~x; f(~x))gPV = fA(~x; S(~x))gPV .

By theorem 6:2:10, IPV ! ` A(~x; f(~x)) = A(~x; S(~x)).

By IPV ! ` 8~xA(~x; S(~x)), IPV ! ` 8~xA(~x; f(~x)).
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(2) IPV ` 8~xA(~x; f(~x)).

Assume IPV ` 8~x9yA(~x; y). Then IPV !
` 8~x9yA(~x; y).

By same method as (1), IPV !
` 8~xA(~x; f(~x)). Then A(~x; f(~x)) is a IPV formula

because A(x; y) is a IPV formula and f is a function symbol of PV .

Therefore by theorem 7:2:14, IPV ` 8~xA(~x; f(~x)).

The next result proves Conjecture 1 of Buss [2].

Theorem 8.3.4 If IS1
2 ` 9yA(~x; y), then there is a �b+

1 formula B(~x; y) such that IS1
2

proves the following formulas:

(1) 8~x8y(B(~x; y)! A(~x; y))

(2) 8~x8y8z(B(~x; y) ^ B(~x; z)! y = z)

(3) 8~x9yB(~x; y)

(proof)

(1) Assume IS1
2 ` 9yA(~x; y). Then IPV ` 9yA(~x; y). Hence IPV ` 8~x9yA(~x; y).

By theorem 8:3:3, IPV ` 8~xA(~x; f(~x)). By theorem 7:2:14 and theorem 4:2:12,

IS1
2 ` 8~xA(~x; f(~x)). Then there is a IS1

2 formula B(~x; y) such that

IS1
2 ` f(~x) = y $ B(~x; y) because f is a PV function symbol and corollary 2:4:10.

By this and IS1
2 ` 8~xA(~x; f(~x)), IS

1
2 ` B(~x; y)! A(~x; y).

Therefore IS1
2 ` 8~x8y(B(~x; y)! A(~x; y)).

(2) By de�nition of �b+
1 -de�nition for f .

(3) By IS1
2 ` A(~x; y)$ A(~x; f(~x)) and (2), IS1

2 ` f(~x) = y.

By this and IS1
2 ` f(~x) = y $ B(~x; y), IS1

2 ` B(~x; y).

Therefore IS1
2 ` 8~x9yB(~x; y).

We think about Felmat0s \Little Theorem as an example of use of realizability.

Felmat0s \Little Theorem" is that if 0 < a < n and n is prime, then an�1 mod n =1.

Since an�1 mod n is a polynomial time computable function of a and n, the conclusion is

an atomic formula of IPV which has the form an�1 mod n =1.

We let the formula B be the following form of the contrapositive:

8a8n[(0 < a ^ a < n ^ an�1 mod n 6= 1)! 9d(djn ^ d 6= 1 ^ d 6= n)]

where djn is the polynomial time predicate \d divides n". Then if B is provable in IPV !,

by the soundness theorem there is a term D such that ` DR B. That is , the formula

8a8n[(0 < a ^ a < n ^ an�1 mod n 6= 1)! (D(a; n)jn^D(a; n) 6= 1^D(a; n) 6= n)]

would be a theorem of IPV !. For \most" composite numbers n a random number a such
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that 0 < a < n will satisfy the antecedent. Hence such a realizing function D might well

provide a practical method for factoring large numbers. In any case the existence of such

a polynomial time function D would represent a surprising and major result in complexity

theory. B is conjectured not a theorem of IPV !.
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Chapter 9

The Dialectica Interpretation

The Dialectica interpretation and translation were �rst introduced in 1958 G�odel, for

intuitionistic arithmetic. The purpose was to provide a consistency proof for intuitionistic

arithmetic (and hence for classical arithmetic ) by elementary \logic" (i:e: quanti�ers

especially) by an interpretation of an arithmetical statement by a quanti�er-free formula

in a theory of objects of �nite type, where the concept of a constructive object of �nite

type was to be regarded as primitive and intuitively evident.

Hence logic was to be eliminated in favor of a suitable basic concept of object of �nite

type. It seems that a concept with decidable equality at all types as a primitive was

intended.

In 1959 Kreisel applies the interpretation to intuitionistic analysis, only equality be-

tween objects of type 0 is taken as a primitive ; equality between higher type objects is

interpreted as extensional equality.

A characterization of Dialectica interpretable formula of WE-HA! was �rst given

explicitly by Yasugi in 1963, after Kreisel already noted that (weakenings of) AC, IP , M

implied the equivalence of a formula with its interpretation and showed the interpretability

of M , where AC � 8x�9y�A(x�; y� ) ! 9z�!�8x�A(x�; z�!�x�), IP � 8x(A _ :A) ^

(8xA! 9yB)! 9y(8xA! B) and M � 8x(A _ :A) ^ ::9xA! 9xA.

We de�ne a second translation from IPV ! into itself which follows the functional

interpretation of Heyting arithmetic in G�odel [5]. The translation di�ers from that of

the previous chapter in the treatment of implication. The more radical translation of

implications in G�odel's interpretation allows elimination of logical operators.

The translation associates with each formula A of IPV ! a formula 9~x8~ytA = 0, where

~x and ~y are �nite sequences of variables of �nite type and tA is a term of PV !. The types

of ~x and ~y depend only on the logical structure of A; the free variables of A are included

in the free variables of tA.

First we prove that \over IPV !, (MP ) and A$ AD are equivalent",MP is de�ned in

next section. This chapter has two main theorems. One is to prove same as realizability

by Dialectica interpretation that if IPV ` 8~x9yA(~x; y) then there is a PV function

symbol f such that IPV ` 8~xA(~x; f(~x)). Another is to prove that IS2
1 is equivalent to

IS2
1B.
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9.1 De�nition

Notation 9.1.1 In de�nition 1.1.2, the following notational conventions are used:

1. If s = 0 and t = 0 are equation of PV !, we write:

(s = 0&t = 0) for (s&t = 0);

(s = 0 _ t = 0) for (s _ t = 0);

(s = 0 � t = 0) for (s � t = 0);

s 6= 0 for � s = 0.

2. ~x; ~y; ~u;~v are �nite sequences of distinct variables of �nite type, while z is

a numerical variable.

3. ~U is a sequence of variables whose number and types are determined by the fact

that each of them can be applied to ~x as an argument sequence and that the sequence
~U(~x) so obtained agrees with the sequence ~u with respect to the number and type of its

numbers. If ~u is the empty sequence then ~U is empty; if ~x is empty then ~U = ~u.

4. One-element sequences are identi�ed with their only elements.

De�nition 9.1.2 If A is a formula of IPV !, the Dialectica translation of A, AD, is

de�ned by induction on the logical complexity of A:

(1) If A is an equation u = v, then AD is Equ(u; v) = 0;

(2) If A is an inequality u � v, then AD is Lessequ(u; v) = 0;

For the remaining cases, assume that

AD
d

� 9~x8~ytA(~x; ~y) = 0,

BD
d

� 9~u8~vtB(~u;~v) = 0.

(3) (A ^ B)D
d

� 9~x~u8~y~v[tA(~x; ~y) = 0 & tB(~u;~v) = 0];

(4) (A _ B)D
d

� 9z~x~u8~y~v[(z = 0 & tA(~x; ~y) = 0) _ (z 6= 0 & tB(~u;~v) = 0)];

(5) (9wA)D
d

� 9w~x8~ytA(~x; ~y) = 0;

(6) (8wA)D
d

� 9 ~X8w~ytA( ~X(w); ~y) = 0;

(7) (A! B)D
d

� 9~U ~Y 8~x~v[tA(~x; ~Y (~x~v)) = 0 � tB(~U(~x); ~v) = 0];

(8) (:A)D
d

� 9~Y 8~xtA(~x; ~Y (~x)) 6= 0.
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9.2 Soundness of Dialectica Interpretation

De�nition 9.2.1 We denote by MP (Markov0s Principle) the scheme ::9~xA! 9~xA,

where A is an atomic formula.

Theorem 9.2.2 (Soundness of Dialectica interpretation)

If A(~z) is a formula of IPV !, whose free variables are contained in ~z, such that

IPV ! + MP ` A(~z) then there is a sequence ~S of closed terms of PV ! so that

PV ! ` tA(~S(~z); ~y; ~z) = 0,

where AD
d

� 9~x8~ytA(~x; ~y; ~z) = 0.

(proof) We prove by induction on the IPV ! proof of A. We �rst consider the logical

axiom and rules.Let ~R; ~R1; ~R2; ~S; ~S1; ~S2; ~T ; ~T1; ~T2; ~U; ~X; ~Y ; ~Z be terms of PV !.

(1) Axiom scheme 1

De�ne as ~S1(~x) = ~S2(~x)
d

� ~x and for 1 � i � k where ~y = y1; � � � ; yk, Ti(~x~y1 ~y2)
d

�

Cond(tA(~x~y1 ~y2); (~y1)i; (~y2)i). By theorem 6:2:5,

PV ! ` tA(~x; ~y2) = 0 � tA(~x; ~T (~x~y1 ~y2)) = tA(~x; ~y1) � � � � � � 1

PV ! ` tA(~x; ~y2) 6= 0 � tA(~x; ~T (~x~y1 ~y2)) = tA(~x; ~y2) � � � � � � 2
By T43,

PV !
` tA(~x; ~y2) = 0 _ tA(~x; ~y2) 6= 0.

i)The case \tA(~x; ~y2) = 0"

By 1 , tA(~x; ~T (~x~y1 ~y2)) = 0 � tA(~x; ~y1) = 0 & tA(~x; ~y2) = 0.

ii)The case \tA(~x; ~y2) 6= 0"

By 2 , tA(~x; ~T (~x~y1 ~y2)) = 0 � tA(~x; ~y1) = 0 & tA(~x; ~y2) = 0.

By i), ii) and tA(~x; ~y2) = 0 _ tA(~x; ~y2) 6= 0,

PV !
` tA(~x; ~T (~x~y1 ~y2)) = 0 � tA(~x; ~y1) = 0 & tA(~x; ~y2) = 0.

Hence

IPV ! ` tA(~x; ~T (~x~y1 ~y2)) = 0 � tA( ~S1(~x); ~y1) = 0 & tA( ~S2(~x); ~y2) = 0.

Therefore

IPV !
` 9 ~S1 ~S2 ~T8~x~y1 ~y2

[tA(~x; ~T (~x~y1 ~y2)) = 0 � tA( ~S1(~x); ~y1) = 0&tA( ~S2(~x); ~y2) = 0].

Therefore If IPV ! +MP ` A! A ^ A then IPV ! ` (A! A ^ A)D.

(2) Axiom scheme 2

De�ne as ~X(~u~v)
d

� Cond(z; ~u;~v), ~Y (~u~w)
d

� ~w and ~Z(~v ~w)
d

� ~w. By theorem 6:2:5,

PV ! ` z = 0 � tA( ~X(~u~v); ~w) = tA(~u; ~w)

and

PV ! ` z 6= 0 � tA( ~X(~u~v); ~w) = tA(~v; ~w).

Hence
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PV !
` z = 0&tA(~u; ~w) = 0 � tA( ~X(~u~v); ~w) = 0

and

PV ! ` z 6= 0&tA(~v; ~w) = 0 � tA( ~X(~u~v); ~w) = 0.

Hence

PV !
` (z = 0&tA(~u; ~w) = 0) _ (z 6= 0&tA(~v; ~w) = 0) � tA( ~X(~u~v); ~w) = 0.

Hence

IPV !
` 9z ~X~Y ~Z8~u~v ~w

[(z = 0&tA(~u; ~w) = 0) _ (z 6= 0&tA(~v; ~w) = 0) � tA( ~X(~u~v); ~w) = 0].

Therefore IPV ! ` (A _ A! A)D.

(3) Axiom scheme 3

De�ne as ~X(~u~v)
d

� ~v, ~Y (~u~w)
d

� ~w and ~Z(~v ~w)
d

� ~w.

By PV ! ` tB(~v; ~w) = 0 � tB(~v; ~w) = 0,

PV !
` tB(~v; ~Z(~v ~w)) = 0 � tB( ~X(~u~v); ~w) = 0.

By T43,

PV !
` tA(~u; ~Y (~u~w)) = 0&tB(~v; ~Z(~v ~w)) = 0 � tB( ~X(~u~v); ~w) = 0.

Hence

IPV ! ` 9 ~X~Y ~Z8~u~v ~w

[tA(~u; ~Y (~u~w)) = 0&tB(~v; ~Z(~v ~w)) = 0 � tB( ~X(~u~v); ~w) = 0].

Therefore IPV !
` (A ^ B ! B)D.

(4) Axiom scheme 4

De�ne as ~X(~u)
d

� ~u, ~Y (~u)
d

� ~u and ~Z(~u~v ~w)
d

� ~w.

By PV ! ` tB(~u; ~w) = 0 � tB(~u; ~w) = 0,

PV ! ` tB(~u; ~Z(~u~v ~w)) = 0 � (1 6= 0&tB(~Y (~u); ~w) = 0).

By T43,

PV !
` tB(~u; ~Z(~u~v ~w)) = 0 �

(1 = 0&tA( ~X(~u); ~v) = 0) _ (1 6= 0&tB(~Y (~u); ~w) = 0).

Hence

IPV ! ` 9z ~X~Y ~Z8~u~v ~w

[tB(~u; ~Z(~u~v ~w)) = 0 � (z = 0&tA( ~X(~u); ~v) = 0)_(z 6= 0&tB(~Y (~u); ~w) = 0)].

Therefore IPV ! ` (B ! A _ B)D.

(5) Axiom scheme 5

De�ne as ~R(~x~y~v)
d

� ~y, ~S(~x~y~v)
d

� ~v, ~T (~u)
d

� ~u and ~U(~x)
d

� ~x.

By T43,

PV ! ` tA(~x; ~y) = 0&tB(~u;~v) = 0 � tB(~u;~v) = 0&tA(~x; ~y) = 0.

Hence

PV ! ` tA(~x; ~R(~x~y~v)) = 0&tB(~u; ~S(~x~y~v)) = 0 �

tB(~T (~u); ~v) = 0&tA(~U(~x); ~y) = 0.

Hence

IPV ! ` 9~R~S ~T ~U8~x~y~u~v

[tA(~x; ~R(~x~y~v)) = 0&tB(~u; ~S(~x~y~v)) = 0 � tB(~T (~u); ~v) = 0&tA(~U(~x); ~y) = 0].

Therefore IPV ! ` (A ^ B ! B ^ A)D.
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(6) Axiom scheme 6

De�ne as ~R(~x~y~v)
d

� ~y, ~S(~x~y~v)
d

� ~v, ~T (~u)
d

� ~u and ~U(~x)
d

� ~x.

By T43,

PV !
` (0 = 0&tA(~x; ~y) = 0) _ (0 6= 0&tB(~u;~v) = 0) � (0 6= 0&tB(~u;~v) = 0).

Hence

PV ! ` (0 = 0&tA(~x; ~y) = 0) _ (0 6= 0&tB(~u;~v) = 0) � tB(~u;~v) = 0.

Therefore

PV ! ` (0 = 0&tA(~x; ~y) = 0) _ (0 6= 0&tB(~u;~v) = 0) � (0 = 0&tB(~u;~v) = 0).

Hence

PV ! ` (0 = 0&tA(~x; ~y) = 0) _ (0 6= 0&tB(~u;~v) = 0) �

(0 = 0&tB(~u;~v) = 0) _ (0 6= 0&tA(~x; ~y) = 0).

By de�nition of ~R; ~S; ~T ; ~U ,

PV ! ` (0 = 0&tA(~x; ~R(~x~y~v)) = 0) _ (0 6= 0&tB(~u; ~S(~x~y~v)) = 0) �

(0 = 0&tB(~T (~u); ~v) = 0) _ (0 6= 0&tA(~U(~x); ~y) = 0).

Hence

IPV !
` 9~R~S ~T ~U8~x~y~u~v

[(z = 0&tA(~x; ~R(~x~y~v)) = 0) _ (z 6= 0&tB(~u; ~S(~x~y~v)) = 0) �

(z = 0&tB(~T (~u); ~v) = 0) _ (z 6= 0&tA(~U(~x); ~y) = 0)].

Therefore IPV ! ` (A _ B ! B _ A)D.

(7) Axiom scheme 7

De�ne as ~X(w)
d

� ~x, ~X(t)
d

� ~x, ~Y ( ~X(w)~y)
d

� ~y, ~Z( ~X(t))
d

� ~X(w).

By PV ! ` tA( ~X(w); ~y) = 0 � tA( ~X(w); ~y) = 0,

PV ! ` tA( ~X(w); ~Y ( ~X(w)~y)) = 0 � tA(~Z( ~X(t)); ~y) = 0.

Hence

IPV !
` 9 ~X~Y ~Z8w~y[tA( ~X(w); ~Y ( ~X(w)~y)) = 0 � tA(~Z( ~X(t)); ~y) = 0].

Therefore IPV ! ` (8wA! A[t=w])D.

(8) Axiom scheme 8

Let free variables of A(~x); ~y; ~z) be contained in the list ~z.

De�ne as ~R(~x~y)
d

� ~y and ~S(~x)
d

� ~x. Let ~z0 be replacement w in the list ~z to t.

By PV !
` tA(~x; ~y; ~z0)! tA(~x; ~y; ~z0) and de�nition of ~R and ~S,

PV ! ` tA(~x; ~R(~x~y); ~z0)! tA(~S(~x); ~y; ~z0).

Hence

IPV ! ` 9w~R~S8~x~y[tA(~x; ~R(~x~y); ~z0)! tA(~S(~x); ~y; ~z0)].

Therefore IPV !
` (A[t=w]! 9wA)D.

(9) Axiom scheme 9

By PV !
` Equ(0; 1) = 1 and T43,

PV !
` Equ(0; 1) = 0 � tA(~U(~x); ~v) = 0.

Hence

IPV ! ` 9~U8~x~v[Equ(0; 1) = 0 � tA(~U(~x); ~v) = 0].

Therefore IPV ! ` (0 = 1! A)D.
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(10) Axiom scheme 17

PV !
` Equ(x; x) = 0. Therefore IPV !

` (x = x)D.

(11) Axiom scheme 18

De�ne as ~R1(~x~y)
d

� ~y, ~R2(~x~y)
d

� ~y, ~T1(~x)
d

� ~x and ~T2(~x)
d

� ~x. Let ~z0 be replacement

u in the list ~z to v.

By IPV !
` Equ(u; v) = 0 �

[(tA(~x; ~y; ~z) = 0 � tA(~x; ~y; ~z0) = 0)&(tA(~x; ~y; ~z0) = 0 � tA(~x; ~y; ~z) = 0)] ,

IPV !
` Equ(u; v) = 0 � [tA(~x; ~R1(~x~y); ~z) = 0 �

(tA( ~T1(~x); ~y; ~z0) = 0&tA(~x; ~R2(~x~y); ~z0) = 0 � tA( ~T2(~x); ~y; ~z) = 0)].

Hence

IPV !
` 9 ~R1

~R2
~T1 ~T28~x~y~z

(Equ(u; v) = 0 � [(tA(~x; ~R1(~x~y); ~z) = 0 � tA( ~T1(~x); ~y; ~z0) = 0)&

(tA(~x; ~R2(~x~y); ~z0) = 0 � tA( ~T2(~x); ~y; ~z) = 0)]).

Therefore IPV ! ` (u = v ! (A$ A[v=x]))D.

(12) Rule of inference 10

Assume PV ! ` tA(~x; ~y) = 0; tA(~x; ~R(~x~v)) = 0 � tB( ~Q(~x); ~v) = 0. Then we need to

�nd ~X and ~Y such that PV ! ` tB( ~X; ~Y ) = 0. By tA(~x; ~y) = 0 and R4!,

PV ! ` tA(~x; ~y)[~R(~x~v)=~y] = 0[~R(~x~v)=~y].

This is

PV !
` tA(~x; ~R(~x~v)) = 0.

By this and hypothesis,

PV ! ` tB( ~Q(~x); ~v) = 0.

Therefore it is good to take ~Q(~x) and ~v as ~X and ~Y .

Therefore If IPV ! ` (A)D and (A! B)D, then IPV ! ` (B)D.

(13) Rule of inference 11

Assume PV ! ` tA(~x; ~R(~x~v)) = 0 � tB( ~Q(~x); ~v) = 0 and

tB(~u; ~T (~u~z)) = 0 � tC(~S(~u); ~z) = 0. Then we need to �nd ~N and ~P such that

PV !
` tA(~x; ~P (~x~z)) = 0 � tC( ~N(~x); ~z) = 0.

By R4!,

PV ! ` tA(~x; ~R(~x~v))[~T ( ~Q(~x)~z)=~y] = 0 � tB( ~Q(~x); ~v)[~T ( ~Q(~x)~z)=~y] = 0

and

PV !
` tB(~u; ~T (~u~z))[ ~Q(~x)=~u] = 0 � tC(~S(~u); ~z)[ ~Q(~x)=~u] = 0.

By this and Rule 11,

PV ! ` tA(~x; ~R(~x~T ( ~Q(~x)~z))) = 0 � tC(~S( ~Q(~x)); ~z) = 0.

Therefore it is good to take ~N
d

� �~x:~S( ~Q(~x)) and ~P
d

� �~x~z: ~R(~x~T ( ~Q(~x)~z)).

Therefore If IPV ! ` (A! B)D and (B ! C)D, then IPV ! ` (A! C)D.

(14) Rule of inference 12

Assume PV ! ` tA(~u; ~Y (~u~w)) = 0&tB(~v; ~Z(~v ~w)) = 0 � tC( ~X(~u~v); ~w) = 0.

Then we need to �nd ~M , ~N , ~P and ~Q such that

PV ! ` tA(~u; ~M(~u~w)) = 0 � (tB( ~N(~u); ~P ( ~N(~u)~w)) = 0 � tC( ~Q( ~N(~u)); ~w) = 0).
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By hypothesis and R12,

PV !
` tA(~u; ~Y (~u~w)) = 0 � (tB(~v; ~Z(~v ~w)) = 0 � tC( ~X(~u~v); ~w) = 0).

Therefore it is good to take ~M
d

� ~Y , ~N
d

� �~u:~v, ~P
d

� ~Z and ~Q
d

� ~v: ~X(~u~v).

Therefore If IPV !
` (A ^B ! C)D, then IPV !

` (A! (B ! C))D.

(15) Rule of inference 13

Assume

PV !
` tA(~u; ~M(~u~w)) = 0 � (tB( ~N(~u); ~P ( ~N(~u)~w)) = 0 � tC( ~Q( ~N(~u)); ~w) = 0).

Then we need to �nd ~X; ~Y and ~Z such that

PV ! ` (tA(~u; ~Y (~u~w)) = 0&tB(~v; ~Z(~v ~w)) = 0) � tC( ~X(~u~v); ~w) = 0.

By hypothesis and R12,

PV ! ` (tA(~u; ~M(~u~w)) = 0&tB( ~N(~u); ~P ( ~N(~u)~w)) = 0) � tC( ~Q( ~N(~u)); ~w) = 0.

Therefore it is good to take ~X
d

� �~u~v: ~Q(~v), ~Y
d

� ~M and ~Z
d

� ~P .

Therefore If IPV ! ` (A! (B ! C))D, then IPV ! ` (A ^B ! C)D.

(16) Rule of inference 14

Assume PV ! ` (tA(~u; ~R(~u~v)) = 0 � tB(~T (~u); ~v) = 0. Then we need to prove

IPV !
` 9z ~M ~N ~P ~Q8~x~y~u~v

[(z = 0&tC(~x; ~M(~x~y~v)) = 0) _ (z 6= 0&tA(~u; ~N(~u~y~v)) = 0) �

(z = 0&tC(~P (~x); ~y) = 0) _ (z 6= 0&tA( ~Q(~u); ~N(~v)) = 0)].

For this we need to �nd ~M; ~N; ~P and ~Q. Therefore it is good to take ~M
d

� �~x~y~v:~y,

~N
d

� �~u~y~v: ~R(~u~v), ~P
d

� �~x:~x and ~Q
d

� �~u:~T (~u).

By hypothesis,

PV ! ` (1 6= 0&tA(~u; ~R(~u~v)) = 0) � (1 6= 0&tB(~T (~u); ~v) = 0).

By Rule 14,

PV !
` (0 = 0&tC(~x; ~y) = 0) _ (1 6= 0&tA(~u; ~R(~u~v)) = 0) �

(0 = 0&tC(~x; ~y) = 0) _ (1 6= 0&tB(~T (~u); ~v) = 0).

By de�nition of ~M; ~N; ~P and ~Q,

PV ! ` (0 = 0&tC(~x; ~M(~x~y~v)) = 0) _ (0 6= 0&tA(~u; ~N(~u~y~v)) = 0) �

(0 = 0&tC(~P (~x); ~y) = 0)_ (0 6= 0&tA( ~Q(~u); ~N(~v)) = 0).

Therefore If IPV ! ` (A! B)D, then IPV ! ` (C _ A! C _B)D.

(17) Rule of inference 15

Assume PV !
` tA(~x; ~Y (~x~v)) = 0 � tB(~U(~x); ~v) = 0. We de�ne ~X

d

� �~w:~U(~x).

By this and hypothesis,

PV ! ` tA(~x; ~Y (~x~v)) = 0 � tB( ~X(w); ~v) = 0.

Hence

IPV !
` 9 ~X~Y 8w~x~v[tA(~x; ~Y (~x~v)) = 0 � tB( ~X(~w); ~v) = 0].

Therefore If IPV ! ` (A! B)D, then IPV ! ` (A! 8xB)D.

(18) Rule of inference 16

Assume PV ! ` tB(~x; ~R(~x~y)) = 0 � tA(~S(~x); ~y) = 0. Then

IPV ! ` 9w~R~S8~x~y[tB(~x; ~R(~x~y)) = 0 � tA(~S(~x); ~y) = 0].
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is obvious.

Therefore If IPV !
` (B ! A)D, then IPV !

` (9xB ! A)D.

(19) 1)theorem of PV ! and 2)axioms of IPV

These are forms of t = u. Therefore IPV !
` (t = u)D is obvious.

(20) PIND!

Induction scheme has the form :

(A[0=x] ^ 8x(A[b1
2
xc=x]! A))! 8xA

where A has the form (9y � t)u = v, with t zero-order open. We shall write s as an

abbreviation of the term (Lessequ(y; t)&Equ(u; v)); we write s(p; q) for s[p; q=x; y].

With this convention, we need to prove that

IPV ! ` 9T3S1T18~Z[fs(0; y0) = 0&s(b1
2
S1(~Z)c; T1(~Z)) = 0 �

s(S1(~Z); ~Y2(S1(~Z); T1(~Z))) = 0g � s(x; T3(~Z)) = 0],

where ~Z abbreviates the vector y0Y2x.

Hence we need to �nd terms T3; S1 and T1.

We de�ne three terms, T3; S1 and an auxiliary term U by simultaneous recursion,

using Theorem 6:2:6:

T3(x)
d

�

8<
:

If x = 0 then y0
else

Cond(< F;G;H >
_
< t0; x; 1 > 0; F; t0)

S1(x)
d

�

8<
:

If x = 0 then 0

else

Cond(< F;G;H >
_
< t0; x; 1 > 0; G; x)

T1(x)
d

� T3(b
1
2
xc)

U
d

�

8<
:

If x = 0 then s(0; y0)

else

Cond(< F;G;H >
_
< t0; x; 1 > 0; H; 1)

where F;G;H are de�ned as:

F
d

�

8>><
>>:

If U(b1
2
xc) = 0 then

8<
:

if s(x; Y2(xT3(b
1
2
xc))) = 0

then Y2(xT3(b
1
2
xc))

else T3(b
1
2
xc)

else T3(b
1
2
xc)

G
d

� Cond(U(b1
2
xc); x; S1(b

1
2
xc))

H
d

� Cond(U(b1
2
xc); s(x; Y2(xT3(b

1
2
xc))); 1),

where suppressed the free parameters y0 and Y2 in the de�nitions of T3; S1 and U ,

to simplify notation. And the term t' stands for a term which can be proved to

obey the properties t � t0; y0 � t0; x � y � t0(x) � t0(y) in PV !. Such a term can

be proved to exists by T206.
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In remaining proof, we use the predicate symbols of IPV and classical proposi-

tional calculus, as we are entitled to do by T43 and Theorem 4:2:2.

We �rst prove < F;G;H >
_
< t0; x; 1 > 0 = 0. By de�nition of G and H,

G � x and H � 1. To prove F � t0, for x > 0, we �rst prove T3(x) � t0, which holds

by the de�nition of T3. Now for x > 0, if U(b1
2
xc) = 0 and s(x; Y2(xT3(b

1
2
xc))) = 0

then Y2(xT3(b
1
2
xc)) � t, so F � t; in other case, F = T3(b

1
2
xc) � t0(b1

2
xc) � t0(x).

It follows that < F;G;H >�< t0; x; 1 > so < F;G;H >
_
< t0; x; 1 > 0 = 0.

Hence

T3(x) � Cond(x; y0; F )

S1(x) � Cond(x; 0; G)

U(x) � Cond(x; s(0; y0); H)

By de�nition of T3; S1 and U ,

(A) U(x) = 0 � U(b1
2
xc) = 0

(B) U(x) = 0 _ U(x) = 1

(C) U(b1
2
xc) = 0 � S1(x) = x

(D) U(x) = 1 � T3(x) = T3(b
1
2
xc)

(E) U(x) = 0 � s(x; T3(x)) = 0

(F) U(x) = 1 � s(0; y0) = 1 _

[s(b1
2
S1(x)c; T1(x)) = 0 ^ s(S1(x); Y2(S1(x)T1(x))) = 1].

Assume s(0; y0) = 0 and s(b1
2
S1(~Z)c; T1(~Z)) = 0 � s(S1(~Z); ~Y2(S1(~Z); T1(~Z))) = 0.

And we de�ne H as this hypothesis formulas. By (B),U(x) = 0 _ U(x) = 1.

1) Assume U(x) = 0

By (E), if U(x) = 0 then H � s(x; T3(x)) = 0.

2) Assume U(x) = 1

By (F), s(0; y0) = 1 _ [s(b1
2
S1(x)c; T1(x)) = 0 ^ s(S1(x); Y2(S1(x)T1(x))) = 1].

i)s(0;y0) = 1

By s(0; y0) = 0 of hypothesis, H � 0 = 1. Therefore H � s(x; T3(x)) = 0.

ii)s(b1
2
S1(x)c;T1(x)) = 0 ^ s(S1(x);Y2(S1(x)T1(x))) = 1

By s(b1
2
S1(x)c; T1(x)) = 0 and hypothesis, s(S1(~Z); ~Y2(S1(~Z); T1(~Z))) = 0.

By this and s(S1(x); Y2(S1(x)T1(x))) = 1, H � 0 = 1.

Therefore H � s(x; T3(x)) = 0.

By i) and ii), if U(x) = 1 then H � s(x; T3(x)) = 0.

By 1),2) and (B),
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PV !
` fs(0; y0) = 0&s(b1

2
S1(~Z)c; T1(~Z)) = 0 �

s(S1(~Z); ~Y2(S1(~Z); T1(~Z))) = 0g � s(x; T3(~Z)) = 0.

Therefore IPV !
` ((A[0=x] ^ 8x(A[b1

2
xc=x]! A))! 8xA)D

(21) MP

An instance of the scheme has the form ::9~xA ! 9~xA, where A is an atomic

formula of IPV !. Then (::9~xA)D has the form 9~x �� t = 0, while (9~xA)D is

9~xt = 0. Therefore By T43, IPV ! ` (::9~xA! 9~xA)D.

We think about Felmat0s \Little Theorem as an example of use of Dialectica Inter-

pretation.

We formulate Felmat's \Little Theorem" as the formula A:

8a8n[8d(1 6= d ^ d 6= n! :djn)! (0 < a ^ a < n! an�1 mod n = 1)].

The Dialectica translation AD is essentially A with 8d removed and the remaining occur-

rences of d replaced by the term D(a; n), where D has type 0! 0! 0. Thus if IPV ` A,

then by theorem 9:2:2 a polynomial time function D(a; n) can be found which satis�es

AD. This function supplies the same information as the term D in DR B. Thus for

Felmat's theorem, the Dialectica translation is interesting for both the statement itself

and its contrapositive, while the realizability is interesting only for the contrapositive.

The Dialectica interpretation shows follows.

Proposition 9.2.3 IPV ` A i� IPV ` B.

(proof)

By standard intuitionistic reasoning we have IPV ` B ! A. Conversely, if IPV ` A,

then by theorem 9:2:2, PV !
` AD(D) for some closed term D of IPV !. It is easy to see

that

IPV ! ` AD(D)! B

and hence IPV ! ` B. By theorem 7:2:14, IPV ` B.

9.3 Equivalent to the systems IS
2
1 and IS

2
1B

Theorem 9.3.1 IPV ! +MP is a conservative extension of PV !.

(proof) Theorem of PV ! has the form of u = v. Assume IPV ! + MP ` u = v for

any PV ! formula u = v. Then by theorem 9:2:2, PV ! ` Equ(u; v) = 0. By T126,

PV !
` u = v.

Therefore 8(u = v) 2 L(PV !)[IPV ! +MP ` u = v ) PV ! ` u = v].

Theorem 9.3.2 IPV is a conservative extension of PV !.
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(proof) IPV ! is an extension of IPV . Hence 8A 2 L(IPV )[IPV ` A) IPV ! ` A].

And L(PV ) � L(IPV ) because IPV is an extension of PV .

Hence 8A 2 L(PV )[IPV ` A) IPV !
` A].

By theorem 9:3:1 and theorem 6:2:22, IPV ! is a conservative extension of PV . Therefore

8A 2 L(PV )[IPV ` A) PV ` A].

De�nition 9.3.3 Let A be a formula of IPV or of IPV !. The negative translation

of A, A::, is de�ned by induction on the complexity of A as follows:

(1) If A is atomic, A::
d

� A;

(2) (A ^ B)::
d

� (A:: ^ B::);

(3) (A! B)::
d

� (A::
! B::);

(4) (8xA)::
d

� 8xA::;

(5) (A _ B)::
d

� ::(A::
_ B::);

(6) (9xA)::
d

� ::9xA::.

Theorem 9.3.4 Let A be an any formula of IPV . Then IPV +MP ` ::A:: ! A::.

Same as IPV !.

(proof) We prove by induction on the complexity of A.

A) IPV

(1) A is atomic formula.

By MP , IPV +MP ` ::A! A. By A � A::, IPV +MP ` ::A:: ! A::.

The remaining cases, assume IPV +MP ` ::B::
! B:: and ::D::

! D::.

(2) A � B ^D

Then A:: � B:: ^D::.

By IPV +MP ` (B:: ^D::) ^ :B:: ! ?,

IPV +MP ` :B:: ! :(B:: ^D::).

By this and ` ::(B::
^D::) ^ :B::

! ?,

IPV +MP ` ::(B::
^D::)! ::B::.

Same as

IPV +MP ` ::(B:: ^D::)! ::D::.

Therefore

IPV +MP ` ::(B:: ^D::)! ::B:: ^ ::D::.

By hypothesis,

IPV +MP ` ::(B:: ^D::)! B:: ^D::.
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(3) A � B ! D

Then A::
� B::

! D::.

By IPV +MP ` [B::
^ (B::

! D::) ^ :D::]! ?,

IPV +MP ` (B::
^ :D::)! :(B::

! D::).

Therefore

IPV +MP ` [B:: ^ :D:: ^ ::(B:: ! D::)]! ?.

Hence

IPV +MP ` (B:: ^ (::(B:: ! D::)))! ::D::.

By Rule 12,

IPV +MP ` ::(B::
! D::)! (B::

! ::D::)

By hypothesis,

IPV +MP ` ::(B:: ! D::)! (B:: ! D::)

(4) A � 8xB

Then A::
� 8xB::.

By IPV +MP ` (8xB:: ^ :B::)! ?,

IPV +MP ` :B::
! :8xB::.

Hence

IPV +MP ` (:B::
^ ::8xB::)! ?.

By Rule 12,

IPV +MP ` ::8xB:: ! ::B::.

By hypothesis,

IPV +MP ` ::8xB:: ! B::.

By Rule 15,

IPV +MP ` ::8xB:: ! 8xB::.

(5) A � B _D

Then A:: � ::(B:: _D::).

We can prove IPV +MP ` ::(::M)! (::M) where M is any formula.

Therefore IPV +MP ` ::(::(B:: _D::))! ::(B:: _D::).

(6) A � 9xB

Then A:: � ::9xB.

IPV +MP ` ::(::(9xB))! ::(9xB) is obvious.

B) IPV !

Same as IPV .

De�nition 9.3.5 We shall denote by CPV the system obtained from IPV by adding

all instances of the law of excluded middle A_:A (axiom 20). CPV! is obtained from

IPV ! in the same way. CPV is a conservative extension of S1
2 , by Theorem ?? . (CPV

is equivalent to S1
2(PV ) in Buss [1].)

Lemma 9.3.6 If CPV ` A then IPV +MP ` A::. If CPV ! ` A then IPV ! +MP `

A::.
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(proof) We prove by induction on the length of the proof of A.

A) CPV

(1) Axiom scheme 1

IPV +MP ` A::
! A::

^A:: is obvious. Therefore IPV +MP ` (A! A^A)::.

(2) Axiom scheme 2

By theorem 5:2:14, ::A::
! A::. By this and ::(A::

_ A::)! ::A::,

IPV +MP ` ::(A:: _ A::)! A::.

Therefore IPV +MP ` (A _ A! A)::.

(3) Axiom scheme 3

IPV +MP ` A::^B:: ! B:: is obvious. Therefore IPV +MP ` (A^B ! B)::.

(4) Axiom scheme 4

By B:: ! A:: _B::, IPV +MP ` B:: ^ :(A:: _B::)! ?.

Therefore IPV +MP ` B::
! ::(A::

_B::).

Therefore IPV +MP ` (B ! A _ B)::.

(5) Axiom scheme 5

IPV +MP ` A:: ^B:: ! B:: ^ A:: is obvious.

Therefore IPV +MP ` (A ^ B ! B ^ A)::.

(6) Axiom scheme 6

By IPV +MP ` A::
_B::

! B::
_ A::,

IPV +MP ` :(A::
_ B::)! :(B::

_ A::).

By this,

IPV +MP ` ::(A:: _ B::)! ::(B:: _ A::).

Therefore IPV +MP ` (A _ B ! B _ A)::.

(7) Axiom scheme 7

IPV +MP ` 8xA:: ! A::[t=x] is obvious.

Therefore IPV +MP ` (8xA! A[t=x])::.

(8) Axiom scheme 8

By IPV +MP ` A::[t=x] ^ :9xA:: ! ?,

IPV +MP ` A::[t=x]! ::9xA:: ! ?.

Therefore IPV +MP ` (A[t=x]! 9xA)::.

(9) Axiom scheme 9

IPV +MP ` 0 = 1! A:: is obvious. Therefore IPV +MP ` (0 = 1! A)::.

(10) Axiom scheme 17

IPV +MP ` x = x is obvious. Therefore IPV +MP ` (x = x)::.
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(11) Axiom scheme 18

IPV + MP ` x = y ! ((A::
! A::[y=x]) ^ (A::[y=x] ! A::)) is obvious.

Therefore IPV +MP ` (x = y! (A$ A[y=x]))::.

(12) Axiom scheme 20

By axiom 4,

IPV +MP ` A:: ! A:: _ :A::.

Hence

IPV +MP ` A:: ^ :(A:: _ :A::)! ?.

Therefore

IPV +MP ` :(A:: _ :A::)! :A::.

Hence

IPV +MP ` :(A:: _ :A::)! (A:: _ :A::).

Hence

IPV +MP ` :(A:: _ :A::) ^ :(A:: _ :A::)! ?.

Therefore

IPV +MP ` :(A:: _ :A::)! ?.

Hence

IPV +MP ` ::(A:: _ :A::).

Therefore IPV +MP ` (A _ :A)::.

(13) Rule of inference 10

Assume IPV +MP ` A:: and (A! B)::.

Then by (A! B):: � A:: ! B:: and Rule 10,

IPV +MP ` B::.

Therefore If IPV +MP ` A:: and (A! B)::, then IPV +MP ` B::.

(14) Rule of inference 11-16

Same as Rule of inference 10.

(15) De�nition 4:1:2(2)-(4)

Non-logical axioms of IPV have the equivalent formula which have the form u = v.

Therefore

IPV +MP ` (Non-logical axioms)::.

(16) NP-Induction

Since :9xF and 8:xF are equivalent in intuitionistic logic, the negative translation

of NP-Induction scheme is equivalent in IPV to a formula of the form:

[::A(0) ^ 8x(::A(b1
2
xc)! ::A(x))]! 8z::A(z),

where A is of the form (9y � t)u = v.

By theorem 4:2:2, (9y � t)u = v is equivalent in IPV to the formula

9y(Lessequ(y; t)&Equ(u; v) = 0), so that ::A$ A byMP . Therefore the negative

translation of NP-Induction scheme is derivable in IPV +MP .

B) CPV !

Same as CPV .
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Theorem 9.3.7 For each �b

0 formulaA, if CPV ` 9~xA then IPV ` 9~xA, and if CPV ! `

9~xA then IPV !
` 9~xA.

(proof) Let A be any �b

0 formula of CPV . By theorem 4:2:3, there is a term tA such that

IPV ` A$ tA = 0. Therefore if CPV ` 9~xA, then CPV ` 9~x(tA = 0). By lemma 9:3:6,

IPV +MP ` (9~x(tA = 0))::.

By MP

IPV +MP ` (9~x(tA = 0)):: $ ::9x1(9x2; � � � ; xn(tA = 0))::

$ 9x1::9x2(9x3; � � � ; xn(tA = 0))::

...

$ 9~x(tA = 0).

Therefore IPV +MP ` 9~x(tA = 0).

By theorem 9:2:2, there exists ~s of zero-order open term of PV ! such that

PV ! ` tA[~s=~x] = 0. By theorem 6:2:10, PV ! ` tA[~s
PV =~x] = 0. By theorem 6:2:22,

PV ` tA[~s
PV =~x] = 0. Hence IPV ` 9~x(tA = 0).

Therefore IPV ` 9~xA.

For CPV ! and IPV !, same as CPV and IPV .

Theorem 9.3.8 CPV is a conservative extension of PV .

(proof) Theorem of PV has the form of u = v. Assume CPV ` u = v for any PV formula

u = v. Then by theorem 9:3:7, IPV ` u = v. By this and theorem 9:3:1, PV ` u = v.

Therefore 8(u = v) 2 L(PV )[CPV ` u = v ) PV ` u = v].

Theorem 9.3.9 CPV ! is a conservative extension of PV !.

(proof) Same as theorem 9:3:8.

Theorem 9.3.10 (First main theorem) The system IS2
1 and IS

2
1B are equivalent.

(proof) We have already shown in theorem 2:3:11 that H�b

1�PIND scheme is derivable

in IS1
2 . Thus it suÆces to show that the remaining axioms of IS2

1B are derivable in

IS2
1 . Let (A ! B) be a theorem of S2

1 , where both A and B are H�b

1 formulas. By

lemma 2:3:10, we may assume that A and B are both �b+
1 . Now if IS2

1 ` A ! B then

CPV ` A! B, and by lemma 4:2:11 and theorem 4:2:2, A and B are provably equivalent

in IPV to formulas of the term (9x � t)(u = 0) and (9y � t)(v = 0). Thus

CPV ` (x � t ^ u = 0)! (9y � t)(v = 0)

so by classical logic,

CPV ` 9y(x � t ^ u = 0)! (y � t ^ v = 0).

By theorem 9:3:7,

IPV ` 9y(x � t ^ u = 0)! (y � t ^ v = 0).

Therefore

IPV ` A! B.
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By theorem 4:2:12,

IS1
2 ` A! B.

Hence

if A and B are H�b

1-formulas and (A! B) is theorem of S1
2 ,

then (A! B) is axiom of IS1
2 .

Therefore

8A 2 L(IS1
2B)[IS

1
2B ` A) IS1

2 ` A].

Conversely, BASIC axioms are provable in IS1
2B.

And By L(�b+
1 ) � L(H�b

1), �
b+
1 � PIND scheme is provable from H�b

1 � PIND.

Therefore

8A 2 L(IS1
2)[IS

1
2 ` A) IS1

2B ` A].

Theorem 9.3.11 (Second main theorem) Let A be a �b

1 formula such that CPV `

8~x9yA(~x; y). Then there is an n-place function symbol f of PV so that IPV ` A(~x; f(~x)).

(proof)

Assume CPV ` 8~x9yA(~x; y). Then CPV ` 9yA0(~x; y), where A0(~x; y) is POS(A0(~x; y)).

By lemma 4:2:11, A0(~x; y) is equivalent in IPV to a formula of the form (9z � t)(u = v).

By theorem 9:3:7, IPV ` 8~x9yA0(~x; y). By lemma 2:3:2, IPV ` 8~x9yA(~x; y).

By theorem 8:3:3, IPV ` A(~x; f(~x)).
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Chapter 10

Concluding Remarks

10.1 Results

In chapter 2 we de�ned arithmetic systems of Buss's IS1
2B and Cook's IS1

2 . And we proved

that two systems are equivalent in Chapter 9. And we proved that �b+
1 -de�nable func-

tions in IS1
2 are polynomial time computable functions and polynomial time computable

functions are �b+
1 -de�nable functions in IS1

2 in Chapter 2.

There is a big di�erence between \�b+
1 -de�nable function is polynomial time com-

putable function" and \there exists a polynomial time computable function which is �b+
1 -

de�nable". Hence we hoped that existence of polynomial time computable function is

guaranteed. So we used two techniques same as computable function for this proof. In

chapter 8 we used Troelstra's technique. So we proved \if 8~x9yA(~x; y) is a closed theorem

of IS1
2 , then there exists a polynomial time computable function f such that 8~xA(~x; f(~x))

is a theorem of IS1
2" by realizability. In chapter 9 we used G�odel's technique. And we

proved same property by Dialectica interpretation.

10.2 future subject

One of study of computational computability is to study the including relation of some

classes. In this study there is the famous problem \P = NP problem". This is a problem

which relation between P and NP is \P = NP ?" or \P & NP ?" There are some classes

besides P and NP . In these classes we direct my attention to classes which is de�nable

by function algebra. For example, class K, T and E are de�nable by function algebra.

In these classes it does not solve whether it is T = K or T & K. So I want to express

functions of each class by logical arithmetic like functions of class P by IS2
1 , and we want

to solve including relation of some classes. Therefore �rst we �nd suitable hierarchy like

�b

i
and �b

i
in IS1

2 because we know that class P and hierarchy are close relations. Next

we construct logical arithmetic based on hierarchy. Next we show by use of function

algebra that a function f is �0-de�nable i� a function f is a function of each class in

each system. And we prove in system by realizability and Dialectica interpretation that

there exists a function of each class which can �0-de�ne. Finally using these, I want to
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solve the relation of some classes. Then we need to study pure logic because we might be

able to use tools of pure logic for study of computational complexity like realizability and

Dialectica interpretation.
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