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ON PRINCIPLES BETWEEN Σ1- AND Σ2-INDUCTION,
AND MONOTONE ENUMERATIONS

ALEXANDER P. KREUZER AND KEITA YOKOYAMA

Abstract. We show that many principles of first-order arithmetic, previously
only known to lie strictly between Σ1-induction and Σ2-induction, are equiva-
lent to the well-foundedness of ωω. Among these principles are the iteration
of partial functions (P Σ1) of Hájek and Paris, the bounded monotone enu-
merations principle (non-iterated, BME1) by Chong, Slaman, and Yang, the
relativized Paris-Harrington principle for pairs, and the totality of the rela-
tivized Ackermann-Péter function. With this we show that the well-foundedness
of ωω is a far more widespread than usually suspected.

Further, we investigate the k-iterated version of the bounded monotone iter-
ations principle (BMEk), and show that it is equivalent to the well-foundedness

of the k + 1-height ω-tower ω . . .
ω

.

In this paper we will investigate principles between Σ1-induction (IΣ1) and
Σ2-induction (IΣ2). The following principles will be considered.

1) Iteration of partial functions, as introduced by Hájek, Paris in [7].
2) The bounded monotone enumeration principle (non-iterated), as introduced

by Chong, Slaman, Yang in their proof of the fact that Ramsey’s theorem
for pairs and two colors (RT2

2) does not imply Σ2-induction in [5, 4].
3) The relativized Paris-Harrington principle for pairs and arbitrarily many

colors.
4) The totality of the Ackermann-Péter function relativized to a total function.
5) The well-foundedness of ωω (WF(ωω)).

Of all of these principles it is well known that they lie strictly between IΣ1 and
IΣ2. However, their relations were mostly unknown. To the knowledge of the
authors it was only known that the well-foundedness of ωω implies the totality of
the Ackermann-Péter function, and that this is equivalent to the (non-relativized)
Paris-Harrington principle for pairs.

We will show that all of the above-enumerated principles are equivalent over IΣ1.
This is surprising since these principles usually have been investigated separately,
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2 ALEXANDER P. KREUZER AND KEITA YOKOYAMA

and the connection was apparently not expected. For instance in [8] the Pairs-
Harrington principle, iteration of partial functions, and WF(ωω) are considered but
in separate sections. The system WF(ωω) has shown up in even more places before.
In [13] Simpson showed that it is equivalent to Hilbert’s basis theorem. Recently,
Hatzikiriakou and Simpson that also a related result by Formanek and Lawrence on
group algebras is equivalent to, see [9].

Given the many equivalent forms of WF(ωω) of which many are natural statements,
we believe that WF(ωω) must be considered as a natural and robust system just like
BΣ2, which for instance occurs in the natural description as the infinite pigeonhole
principle or as a certain partition principle, see [6].

In addition to this we also investigate k-iterated bounded monotone enumeration
principle as used in [5], and characterize its strength. We will show that the k-iterated

version BMEj is equivalent to the well-foundedness of k+ 1-high ω-tower ω . .
.
ω

= ωωk .
In particular, the Π0

3-consequence of BME =
⋃
k∈N BMEk are all Π0

3-sentences of PA.
The paper is structured as follows. The first chapter will introduce the principles

mentioned above. In the following chapter the equivalences between them are proven.
The third chapter deals with the iterated bounded monotone enumeration. The last
chapter consists of concluding remarks.

1. Introduction

We will work over IΣ1, that is Peano Arithmetic where the induction axiom is
restricted to Σ1-formulas. We will make use of stronger forms of induction (i.e.,
IΣn with n ≥ 2) and the bounded collection principle (i.e., BΣn). If the reader is
not familiar with these systems and principles, we refer him to [8].

1.1. Iteration of functions. A formula φ(x, y) represents a total function if
∀x ∃!y φ(x, y), it represents a partial function if for all x there is at most one
y satisfying φ(x, y). We shall denote these statements by TFUN(φ), respectivly
PFUN(φ). We shall say that s is an approximation to the iteration of such a function,
if s is a finite sequence such that

∀i < lth(s)−1 ∀x, y ((x ≤ (s)i ∧ φ(x, y))→ y ≤ (s)i+1) .

We will denote this statement by Approxφ(s). The statement that all finite approxi-
mations of the iterations of a total resp. partial function is given by φ is then given
by the following.

(Tφ) : TFUN(φ)→∀z ∃sApproxφ(s) ∧ lth(s) = z

(Pφ) : PFUN(φ)→∀z ∃sApproxφ(s) ∧ lth(s) = z

These definitions are made relative to IΣ1. For a class of formulas K, the sets
{Tφ | φ ∈ K} ∪ IΣ1, {Pφ | φ ∈ K} ∪ IΣ1 will be denoted by TK resp. PK.

The following theorem collects the known facts about T , P .

Theorem 1 ([7], [8, Chap. I.2.(b)]).
1) TΣn+1 ↔ TΠn, PΣn+1 ↔ PΠn, PΣ0 ↔ PΣ1.
2) TΣn+1 ↔ IΣn+1.
3) IΣn+2→PΣn+1→ IΣn+1. Here all implications are strict.
4) PΣn+1 is incomparable with BΣn+2.
5) PΣn+1 +BΣn+2 is strictly weaker than IΣn+2.
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〈〉

τ1

τ11 τ12

τ121 τ122

τ13 τ14

τ2

τ21

...

Strings τi in a box are enumerated at the same stage. The stage-by-stage enumeration of
say τ121 is 〈〉, τ1, τ12, τ121. Not visible in the diagram is that notes enumerate at the same

stage, say τ1, τ2, might be of different length.

Figure 1. Tree enumerated by a monotone enumeration.

1.2. Bounded monotone iterations. Bounded monotone iterations will deal with
enumerations of trees of natural numbers (N<N).

Let E be a function given by a quantifier-free formula. We will regard E[s] via
a suitable coding as a finite subset of N<N and assume that E[s] ⊆ E[s+ 1]. We
will refer to the parameter s of E as the stage of the enumeration and use E also to
refer to the tree enumerated by E, i.e.,{

τ ∈ N<N ∣∣ ∃s∃σ ∈ E[s] (τ ≺ σ)
}
.

Definition 2 ([5]). E is a monotone enumeration if the following holds.
1) The empty sequence 〈〉 is enumerated at the first stage.
2) At each stage only finitely many sequences are enumerated by E. (This is

by our coding automatically the case.)
3) If τ is enumerated by E at stage s and τ0 is the longest initial segment

enumerated by E at a prior stage. Then
(a) no extension of τ0 has been enumerated by E before the stage s and
(b) all sequences enumerated at stage s are extensions of τ0.

Let E be a monotone enumeration. For an element τ enumerated by E at stage
s we call the maximal initial segments (τi) of τ enumerated at stages prior to s the
stage-by-stage sequence of τ . We say that a monotone enumeration E is bounded
by b if for each τ in E the length of its stage-by-stage sequence is bounded by b.

Definition 3. BME∗ is the statement that a tree enumerated by a bounded mono-
tone enumeration is finite.

The following is known about the first-order strength of BME∗.

Theorem 4 ([5, Propositions 3.5, 3.6]).
1) IΣ2 ` BME∗
2) BΣ2 0 BME∗

Note that BME∗ is equivalent to BME1 as defined by Chong, Slaman an Yang.
This follows for instance from Theorems 5 and 16.

1.3. Paris-Harrington theorem. The Paris-Harrington theorem (PH) is a strength-
ening of the finite Ramsey’s theorem. It is one of the classical examples of a natural
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first-order theorem which is not provable from Peano Arithmetic. In this paper we
will be only concerned with a (variant of a) fragment of PH.

As usual in this context, we will write X → (q)uz for the statement that each
coloring of unordered u-tuples of X with z colors has a homogenous set of cardinality
q. In this notation finite Ramsey’s theorem is simply the statement

∀q ≥ 1∀u ≥ 1 ∀z ∃y
(
[0, y]→ (q)uz

)
.

To state the Paris-Harrington variant of Ramsey’s theorem we will need the
following. A finite set X is called relatively large if minX < |X|.

We will write X →
∗

(q)uz if each coloring of unordered u-tuples of X with z colors
has a relatively large homogenous set of cardinality at least q. The Paris-Harrington
theorem is then the following statement.

(PH) : ∀x ∀q ≥ 1 ∀u ≥ 1 ∀z ∃y
(
[x, y]→

∗
(q)uz

)
.

(Note that we need to vary the starting point x of the interval since the property of
being relatively large is not translation invariant.)

We will write PH(u, z) for the restriction of PH to u-tuples and z many colors.
We will write PH(u) for ∀z PH(u, z).

We will also need the relativization PH∗(u, z) of PH(u, z) given by the following.
Let φ(n) be a Σ1-formula describing an infinite set. Then PH∗(u, z) states that
PH(u, z) holds relativized to [x, y] ∩ {n | φ(n)}. In other words,

PH∗(u, z) : ∀k ∃n > k φ(n)→∀x∀q ≥ 1 ∃y
((

[x, y] ∩ {n | φ(n)}
)
→
∗

(q)uz
)
.

PH∗(u) is defined as above.
We will be mainly concerned with PH(2), PH∗(2).

1.4. Ackermann function. The Ackermann-Péter function is given by the follow-
ing defining equations.

(1) A(m,n) :=


n+ 1 if m = 0,
A(m− 1, 1) if m > 0 and n = 0,
A(m− 1, A(m,n− 1)) if m,n > 0,

It is known that IΣ2 or even the statement that ωω is well-order implies the totality
of Ackermann-Péter function. Let f be a strictly monotonic function. The relativized
Ackermann-Péter function Af is defined as A but with the base case set to f , i.e.,
(2) Af (0, n) := f(n).
We will write A∗ for the statement that for each function f (given by a quantifier-free
formula) the Ackermann-Péter function relative to f is total.

1.5. Ordinals. We will use ordinals < ε0. For this we will fix a suitable ordinal
notation. See e.g. [8, Section II.3] for details. We shall write WF(α) for the statement
that α if well-ordered or well-founded, that is there is no infinite descending sequence
of ordinals αi starting from α. In the context of fragments of first-order arithmetic
the sequence αi is understood to be primitive recursive in the theory, which is
equivalent to saying that αi is given as a Σ1-function, as defined in Section 1.1.

Since our work is motivated by results in second-order arithmetic/reverse mathe-
matics, we would note that in that context well-foundedness is defined differently,
see [13]. There the descending sequence αi is given by a second-order object X
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coding the function f : i 7→ αi. Since that Σ1-function in the sense of Section 1.1 are
exactly the functions from which a theory proves to be recursive, recursive compre-
hension gives that the Σ1-functions and the second-order functions coincide. This
immediately shows that the first- and second-order definitions of well-foundedness
are equivalent.

The main result of this paper is the following.

Theorem 5. Over IΣ1 the following are equivalent:
(i) PΣ1,
(ii) BME∗,
(iii) PH∗(2),
(iv) A∗,
(v) WF(ωω).

The proof will proceed as follows.
• (i)⇔ (ii) (Proposition 6),
• (i)⇒ (iv) (Proposition 7),
• (iv)⇒ (iii) (Proposition 8),
• (iii)⇒ (v) (Proposition 12)
• (v)⇒ (ii) (Proposition 13)
• (v)⇒ (iv) is a classical result.

2. The proof of Theorem 5

Proposition 6. IΣ1 ` PΣ1 ↔ BME∗
Proof. “→”: Let E be a monotone enumeration. Assume that E is bounded by b.
Define the partial functions

F ′(τ) := [first stage s such that extensions of τ are enumerated in E]
and

F (τ) := E[F ′(τ)] \ E[F ′(τ)− 1].
The partial function F (τ) yields the set of all extensions of τ that are newly
enumerated at the first stage where extensions of τ enter into E. Since E is a
monotone enumeration these are all direct extensions of τ .

The graph of F ′ can be defined by the following Σ0-formula
φ′(τ, s) :≡ ∃τ ′ ∈ E[s] \ E[s− 1] (τ ≺ τ ′) ∧ ∀τ ′ ∈ E[s− 1] (τ ⊀ τ ′) .

The partial function F can then be defined by the Σ1-formula
φ(τ, x) :≡ ∃s

(
φ′(τ, s) ∧ x =

[
E[s] \ E[s− 1]

])
.

We make the assumption that for each code of a finite set x we have that y ∈ x
implies y ≤ x. (This is for instance the case for the usual coding based on Cantor
pairing.)

Then we have for each stage-by-stage enumeration (τi) that τi+1 ≤ F (τi). Hence
τi+1 ≤ F i+1(τ0) = F i+1(〈〉). As a consequence each element in any b-bounded
stage-by-stage enumeration is bounded by maxi≤b{F i(〈〉)}. Now by PΣ1 we can
bound this value and obtain that E is finite.

“←”: Let φ(x, y) be a quantifier-free formula and assume PFUN(φ). (Quantifier-
free is sufficient by Theorem 1.(1).) Let b be given. We will construct a b-bounded
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monotone enumeration E which will give an approximation s of length b to the
iteration of φ.
At stage 0 we will enumerate 〈0〉 into the tree.
At stage s+ 1 we search for the smallest σ = 〈x0, . . . , xk〉 ∈ E[s] such that |σ| < b
and ∃y < s+ 1φ(xk, y). If such a σ exists then enumerate σ ∗ 〈0〉, σ ∗ 〈1〉, . . . , σ ∗ 〈y〉.
Otherwise do nothing.

By BME∗ this tree is finite. Let mi be the maximum of the elements in the ≤ i
levels of E. We claim that s = 〈m0,m1, . . . ,mb〉 satisfies Approxφ(s). We prove
this by induction on the length of s. For 〈m0〉 = 〈0〉 this is clear. Assume that the
statement is true for 〈m0, . . . ,mi〉. First we consider the case that the maximum
mi+1 is attained at a level < i, i.e., mi = mi+1 and by the construction of E we
have that ∀x ≤ mi ∀y φ(x, y)→ y ≤ mi. From this it follows immediately that also
〈m0, . . . ,mi,mi〉 satisfies Approxφ. Now consider the case that mi+1 is attained
at the (i + 1)-th level and no prior level. By construction of E there must be
the elements [0;mi] on the i-th level, and we have ∀x < mi ∀y φ(x, y)→ y ≤ mi+1,
which yields that 〈m0, . . . ,mi,mi+1〉 satisfies Approxφ. �

Proposition 7. IΣ1 ` PΣ1→A∗.

Proof. For notational ease we will only show that A(m,n) is total. The relativization
to Af (m,n) is straightforward.

Let φA(m,n, k) be the Σ1-formula describing the graph of the (relativized)
Ackermann-Péter function A as in (1) and ψA(m,n) ≡ ∃k φA(m,n, k) be the
Σ1-formula which states that A(m,n) is defined. Clearly,
(3) ∀n ψA(0, n).

We claim that IΣ1 proves
(4) ∀m,n (¬ψA(m,n)→∃n′ ¬ψA(m− 1, n′)) .
Indeed, suppose ¬ψA(m,n) and in particular that m > 0. Then by IΣ1 we can
find a k which is minimal with ¬ψA(m, k). If k = 0 then by definition of A we
have ¬ψA(m − 1, 1). If k > 0 then by minimality A(m, k − 1) is defined, thus
A(m− 1, A(m, k − 1)) cannot be defined and therefore ¬ψA(m− 1, A(m, k − 1)).

Σ2-induction applied to (4) would now immediately give that ¬ψA(m,n) implies
∃n′ ¬ψA(0, n′). (Σ2-induction is required since ∃n′ ¬ψA(m,n′) is Σ2.) Together
with (3) this would yield the totality of A.

We will show how to use PΣ1 to bound n′ occurring in (4). With this, IΣ1
suffices to carry out this induction.

Let 〈m,n〉 denote the Cantor pairing function and (x)0, (x)1 the unpairing
functions. Recall that m,n < 〈m,n〉. To cover both parameters of A(m,n) we will
use the following modification

A′(x) :=
〈
A
(
(x)0, (x)1

)
, A
(
(x)0, (x)1

)〉
Let φA′(x, k) be the Σ1-formula describing the graph of A′.

Suppose that A(m,n) is not defined or in other words ¬ψA(m,n). Let c :=
max(m,n).

Now by PΣ1 arbitrary long approximations to A′ exists. Since A(0, n) = n+ 1,
and assuming that 〈0, 0〉 = 0, which is the case for Cantor pairing, we have for any
approximation s of A′

(s)j ≥ 〈j + 1, j + 1〉, for j < lth(s).
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Therefore, if A(m,n) with m,n < c is defined then A(m,n) ≤ (s)c for any approxi-
mation s to A′ of length > c.

Now as in the argument above, assume that A(m,n) is not defined. Then we know
that there is a k < m such that A(m, k−1) is defined and A(m−1, A(m, k−1)) is not
defined or A(m− 1, 1) is not defined. In particular, for a long enough approximation
s of A′ we have

∃n′ < (s)c ¬φA(m− 1, n′).
Since m,n′ are bound by (s)c one obtains by the same argument that

∃n′′ < (s)c+1 ¬φA(m− 2, n′′).
Iterating this argument gives then

∃n∗ < (s)c+m−1 ¬φA(0, n∗)
and with this the desired contradiction to (3). This argument can be carried out in
PΣ1 since this iteration is—after building the approximation s of sufficient (= 2c)
length—provable in IΣ1 which is a consequence of PΣ1. �

It is known that the totality of the Ackermann function implies PH, see Theo-
rem II.3.36 and Fact II.3.34 of [8]. We show here how to relativize this proof to
obtain the following theorem.

Proposition 8. IΣ1 ` A∗→PH∗(2).

Before we can prove this theorem we will need some notation and lemmata. In a
canonical way we can define a fundamental sequence {α}(n) for each α < ε0. That
is a sequence such that {α}(n) converges monotonically from below to α if α is a
limit and the predecessor otherwise. For instance {ω}(n) = n. This sequence will
be ∆1. See [8, II.3.a)] for details.

We say that a finite set X = {x0 < x1 < x2 < x3 < · · · < xn} is α-large if the
sequence

{α}(x0),
{
{α(x0}

}
(x1),

{{
{α(x0}

}
(x1)

}
(x2), . . .

reaches 0. It is easy to see that ω-large is the same as relatively large (by using the
fact {ω}(n) = n and {n}(m) = n− 1).

Lemma 9 ([12, Section 6.2]). Let z ≥ 2, θ := ωz+3 + ω3 + z + 4. Further, let X be
an θ-large set. Assume that the pairs of X are colored with z many colors. There
exists a subset Y of X that is homogenous and relatively large.

In other words, for X we have that the conclusion of PH∗(2, z) holds.

Lemma 10 ([8, Lemma II.3.21.(3)]). Suppose α � β > 0 (that means, looking
at the Cantor-normals forms of α =

∑x
i=0 ω

µiai, β =
∑y
i=0 ω

νibi we have that
µ0 ≥ νy). Then X is (α + β)-large iff there are Xα, Xβ such that X = Xβ ∪Xα,
max(Xβ) < min(Xα), and Xα is α-large and Xβ is β-large.

Lemma 11 (cf. [8, Lemma II.3.30.(3)]). Let g be the strictly increasing enumeration
of an infinite set X. Let fα be the fast growing hierarchy relativized to g as follows.

f0(n) := g(n)
fβ+1(n) := fnβ (g(n+ 1)), where fn is the n-fold iteration
fλ(n) := f{λ}(n)(g(n+ 1)).

(5)

If x ∈ X, the set [x, fα(x)] ∩X is ωα-large.
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Proof of Lemma 11. First observe that for all α, n we have fα(n) ∈ X. We will use
the following claim.
Claim: Assume that the statement of the lemma holds for α and that x ∈ X.
Then the set [x, fyα(x)] ∩X is ωα · y-large.
Proof of claim: The statement is shown by induction in y. Suppose [x, fyα(x)]∩X
is ωα · y large. By the assumption we have that [x, fα(x)] ∩X is ωα-large, and by
induction hypothesis that [fα(x), fyα(fα(x))] ∩X is ωα · y-large. Now Lemma 10
gives the claim.

We prove the lemma by quantifier-free transfinite induction. (We will use it only
for α < ω in the proof of Proposition 8.) Consider α+ 1 and x = g(n) ∈ X. Now
[x, z]∩X is ωα+1-large iff [g(n+1), z]∩X is ωα ·x-large, i.e., if z ≥ fxα(g(n+1)). Since
fxα(g(n+1)) ≤ fxα(g(x+1)) = fα+1(x), the claim follows. For the limit case consider
λ and again x = g(n) ∈ X. Then [x, z]∩X is ωλ-large iff [g(n+ 1), z]∩X is ω{λ}(x)-
large, i.e., z ≥ f{λ}(x)(g(n+1)). Thus it suffices if z ≥ f{λ}(x)(g(x+1)) = fλ(x). �

Proof of Proposition 8. Let φ(n) be a Σ1-formula describing an infinite set. Assume
that a number of colors z is given. By Lemma 9 (we check that it formalizes in IΣ1)
it is sufficient to find a θ-large subset of X := {n | φ(n)}. We can apply Lemma 11
to X (a suitable g exists by IΣ1) and reduce the problem to showing that fz+4(x)
as in (5) is total. This follows from the totality of the relativized Ackermann-Péter
function. (We have for instance that Ag(2k, n) majorizes fk(n).) �

Proposition 12. IΣ1 ` PH∗(2)→WF(ωω).

Proof. It is well known that the order of ωω is isomorphic to the lexicographic
order <∗ of N<N. (To see this consider the order-isomorphism n0n1n2 · · ·nk 7→
ωk · (nk + 1) + · · ·+ ω2 · n2 + ω1 · n1 + n0.)

Assume that ωω is not well-ordered. Then there is a function f : N −→ N<N such
that f(n) ∗> f(n+1). We will show that this contradicts PH∗(2). Let b := lth(f(0)).
By definition of the lexicographic order we know that lth(f(n)) ≤ b for all n. We
define a ∆1-set X and a strictly increasing ∆1-function h : X −→ N, such that
maxi

(
f(h(n))

)
i
< n and min(X) > b. Such X,h can be build by primitive recursion

by
h(0) := 0,

h(n+ 1) :=
{
h(n) + 1 if maxi

(
f(h(n) + 1)

)
i
< n+ 1,

h(n) otherwise.

X := {n > maxi
(
f(0)

)
i
, b | h(n) 6= h(n− 1)}.

It is clear that X is infinite.
Define the coloring c : [X]2 −→ b ∪ {−1} by the following

c({n,m}) :=


max

 i < b

∣∣∣∣∣∣
(
f(h(n))

)
i
6=
(
f(h(m))

)
i

∧ i < lth(f(h(m))


 if such an i exists,

−1 otherwise.

By PH∗(2) there exists a c-homogenous, relatively large set Y ⊆ X. First assume
that c([Y ]2) = −1. This implies that for n,m ∈ Y we have

n < m→ f(h(n)) wp f(h(m)).



ON PRINCIPLES BETWEEN IΣ1 AND IΣ2, AND MONOTONE ENUMERATIONS 9

Therefore, lth(f(h(n)) > lth(f(h(m)). Since the length of f(n) is bounded by b,
there must be a strictly decreasing sequence of natural numbers ≤ b of length
|Y | > minY > b, which is a contradiction.

Now assume c([Y ]2) = i 6= −1. Then for n,m ∈ Y we have

n < m→
(
f(h(n))

)
i
>
(
f(h(m))

)
i
.

Since
(
f(h(minY ))

)
i
< minY , we have decreasing sequence of length |Y | > minY

of natural numbers < minY , which is again a contradiction. �

Proposition 13. IΣ1 `WF(ωω)→BME∗

Proof. Let E[s] be a b-bounded monotone enumeration. We will assign to the trees
E and E[s] an ordinal in the following way.

For τ ∈ E let |τ |E be length of the stage-by-stage enumeration of τ . We say a τ
is maximal in its stage if there is no extension τ ′ ∈ E of τ with |τ |E = |τ ′|E . For
maximal τ, τ ′ ∈ E define τ @E τ ′ if τ @ τ ′ and |τ |E = |τ ′|E − 1. To a maximal
τ ∈ E we assign the following ordinal.

(6) ζE(τ) :=


0 if |τ |E = b,
ωb−|τ |E if τ is a leaf in E and |τ |E < b,∑
τ ′AEτ

ζE(τ ′) if τ is not a leaf.

Same for E[s] instead of E. We define the ordinal ζE , ζE[s] for E respectively E[s]
to be ζE(〈〉), ζE[s](〈〉).

By definition it is clear that ζE , ζE[s] ≤ ωb. Moreover, we claim that if new
elements are enumerated into E[s + 1] then ζE[s+1] < ζE[s]. Indeed, if there are
new elements enumerated at stage s + 1 there must be a leaf τ ∈ E[s] such that
all elements are successors of τ . Then by definition we have ζE[s+1](τ) < ζE[s](τ).
Induction on |τ |E , gives that ζE[s+1](τ ′) < ζE[s](τ ′) for all maximal τ ′ @ τ . In
particular ζE[s+1] < ζE[s].

Now the stages si where new elements are enumerated into E gives a decreasing
sequence of ordinals ζE[si] < ωb. Since ωb < ωω and ωω is well-founded by assump-
tion, there can be only finitely many stages where new elements are enumerated
and thus E is finite. �

Note that Theorem 5 can be relativizable with set parameters. In the second-
order setting with the recursive comprehension, we can replace primitive recursive
sequences / Σ1-definable infinite sets / functions defined by quantifier-free or Σ1-
formulas by sets. Thus, we have the following.

Theorem 14. Over RCA0 the following are equivalent:
(i) PΣ0

1: Pφ for any Σ0
1-formulas (Σ1-formulas with set parametes),

(ii) BME∗: ∀E (E is a monotone enumeration bounded by b→E is finite),
(iii) PH∗(2): ∀X ∀z

(
(∀k ∃n > k n ∈ X)→∀x∀q ≥ 1∃y

((
[x, y] ∩X

)
→
∗

(q)2
z

))
,

(iv) A∗: ∀f (the Ackermann-Péter function relative to f is total),
(v) WF(ωω): ¬∃f (f is an infinite descending sequence of ordinals αi starting

from ωω).
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3. Full BME

Chong, Slaman, Yang actually used certain iterations of the principle BME∗
in [5] called BMEk and BME :=

⋃
k BMEk for the union of all these. In these

principles, bounded monotone enumerations will be enumerated relative to a real
(in a continuous way). We will write E(σ), with σ ∈ N<N, for such an enumeration
and understand that the stage s will be implicitly given by s = |σ|. Further, we will
compute a bounded tree in a similar fashion, i.e., by a function V (τ) where τ ∈ N<N.
Here, we again consider functions E and V defined by Σ1-formulas to work within
IΣ1, but one can easily lift-up the following discussion into the second-order setting
as same as Theorem 14.

Definition 15.
1) Let E(σ) be a monotone enumeration as above. For a tree enumerated by

V a σ ∈ V is called E-expansionary if in E(σ) a new element is enumerated
a stage |σ|.

2) A level ` in a tree V is E-expansionary if there is an n such that ` is minimal
with for all σ ∈ V with |σ| = ` and there are at least n E-expansionary
initial segments of σ.

3) A k-iterated monotone enumeration is a sequence (Vi, Ei)1≤i≤k such that
(a) each Vi is a relativized recursively bounded tree as above,
(b) each Ei is a relativized monotone enumeration procedure as above,
(c) for each 1 ≤ j < k, if σ ∈ Vj is Ej-expansionary, then for each new

element τ enumerated in Ej(σ), Vj+1(τ) is a proper Ej+1-expansionary
extension of Vj+1(τ0), where τ0 is the longest initial segment of τ that
had been enumerated into Ej(σ) before.

4) A k-path for a k-iterated monotone enumeration (as above) is a sequence
(σi, τi)1≤i≤k such that σ1 ∈ V1, τ1 is a maximal sequence in E1(σ1), and for
each 1 < j ≤ k we have that σj is a maximal sequence in Vj(τj−1) and τj is
a maximal sequence in Ej(σj).

5) A k-iterated monotone enumeration is b-bounded if Ek(σ) is b-bounded for
each σ.

6) BMEk is the statement that each bounded k-iterated monotone enumeration
procedure contains only finitely many E1-expansionary levels in V1.

Let ωδ0 := δ and ωδk+1 := ωω
δ
k . In particular ωωk = ωω

. .
.
ω

︸ ︷︷ ︸
k + 1 many ω

. We will show the

following theorem.

Theorem 16. For all k

IΣ1 ` BMEk ↔WF(ωωk ).

Corollary 17. IΣ1 ` ∀kBMEk ↔WF(ε0).

The proof of Theorem 16 proceeds by exhibiting a one-to-one correspondence
between k-iterated monotone enumerations and ordinals < ωωk .

For the backward direction of the proof we will consider bounded monotone
enumerations of N together with a special termination symbol ⊥. This will not
cause any problems since N ∪ {⊥} can of course be code into N. We will extend the
assignment of ordinals to bounded monotone enumerations as in (6) to include a
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case for ⊥.

ζE(τ) :=


0 if τ(|τ | − 1) = ⊥,
0 if |τ |E = b,
ωb−|τ |E if τ is a leaf in E and |τ |E < b,∑
τ ′AEτ

ζE(τ ′) if τ is not a leaf.
Now let a k-iterated monotone enumeration (Vi, Ei)1≤i≤k be given. Further

assume that 〈σ1, τ1, . . . , σk, τk〉 is a k-path in (Vi, Ei)1≤i≤k. We assign the following
ordinals.

ζ〈σ1,τ1,...,σk〉(τ) := ζEk(σk)(τ),
ζ〈σ1,τ1,...,σj ,τj〉 := max

σ∈Vj+1(τj)
|σ|=`

ζ〈σ1,τ1,...,τj ,σ〉(〈〉),

where ` is the maximal Ej+1-expansionary level in Vj+1(τj),

ζ〈σ1,τ1...,σj〉(τ) :=


0 if τ is a leaf in Ej(σj)

and τ(|τ | − 1) = ⊥,
ωζ〈σ1,τ1,...,σj,τ〉

if τ is a leaf in Ej(σj)
and τ(|τ | − 1) 6= ⊥,∑

τ ′AEj(σj)τ
ζ〈σ1,τ1,...,σj〉(τ ′) if τ is not a leaf in Ej(σj).

To the full k-iterated monotone enumeration we assign the following ordinal.
ζ(Vi,Ei)1≤i≤k := ζ〈〉.

Note that ζ(Vi,Ei)1≤i≤k ≤ ωbk < ωωk .

Lemma 18. Let (Vi, Ei)1≤i≤k be a k-iterated monotone enumeration and a tree V ′1
be given, such that V ′1 properly extends V1. If V ′1 contains strictly more E1-expan-
sionary levels thant V1, then

ζ(Vi,Ei)1≤i≤k > ζ(V ′
i
,Ei)1≤i≤k

,

where for i ≥ 2 we set V ′i := Vi.
Proof. We prove my induction that

(a) ζ〈σ1,τ1,...,σj ,τj〉 > ζ〈σ1,τ1,...,σj ,τ ′j〉, if τ
′
j w τj enumerates a new Ej+1-expan-

sionary level in Vj+1,
(b) ζ〈σ1,τ1...,σj〉 > ζ〈σ1,τ1...,σ′j〉, if σ

′
j w σj enumerates a new element into Ej .

This directly implies then the lemma.
To prove the induction we start with (b) for j = k. This case follows as in

Proposition 13.
For (a) and j we assume that (b) already holds for j. By the induction hypothesis
each of the terms in the maximum in the definition ζ〈σ1,τ1,...,σj ,τj〉 decreases. There-
fore, ζ〈σ1,τ1,...,σj ,τ ′j〉 < ζ〈σ1,τ1,...,σj ,τj〉.
For (b) and j < k we assume that (a) already holds for j + 1. This case follows by
a similar proof as in Proposition 13 together with the induction hypothesis. �

For the backward direction we will only consider simplified iterated monotone
enumerations where the trees Vk(τ) are trivial, i.e., they contain only branches of
the form 〈0, . . . , 0, 1〉, where the length codes τ . Thus, we can omit the Vi and
assume that Ej+1 is of the form Ej+1(τj) with τj ∈ Ej . With this the bound on
the E1-expansionary levels in V1 then becomes a bound cardinality of E1.
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Further we make the assumption that each tree contains 〈⊥〉 and that Ej(〈⊥〉) =
{⊥}. For ease of notation we will omit the Vj .

Lemma 19. For any α < ωbk+1, one can effectively find an k + 1-iterated bounded
enumeration 〈E1, . . . , Ek+1〉 where E1 is bounded by b and such that ζ〈E1,...,Ek+1〉 =
α.

Proof. We will prove this lemma by induction on k.
For the case k = 0 and α = 0, set E1 := {〈⊥〉}. For k = 0 and α > 0, write

α =
∑

1≤j≤l ω
ej such that b > e1 ≥ e2 ≥ · · · ≥ el. In this case one easily checks

that, the enumeration the constant sequences 〈j, . . . , j〉 of length b − ej in b − ej
steps for j ∈ [1; l], i.e.,

E1 := {〈j〉∗m | 1 ≤ j ≤ l ∧ m ≤ b− ej},
such that

|τ |E1
= |τ | for any τ ∈ E1

is the desired tree. (We write 〈j〉∗m for the m-fold repetition of j.)
For the case k > 0 and α = 0, we again set E1 := {〈⊥〉}, and Ei(〈⊥〉) = {〈⊥〉} for

any j ∈ [1; k+1]. If α > 0, write α =
∑

1≤j≤l ω
αj such that ωbk > α0 ≥ α1 ≥ · · · ≥ αl.

By induction hypothesis, one can find effectively k-iterated bounded enumerations
(Eji )1≤i≤k such that ζ(Ej

i
)1≤i≤k

= αj .
Let

E1 := {〈j〉 | 1 ≤ j ≤ l},

Ei+1(〈j〉 ∗ τ) := 〈j〉 ∗ Eji (τ) = {〈j〉 ∗ σ | σ ∈ Eji (τ)},

for i ∈ [1; k]. We can easily check that ζ(Ei)1≤i≤l = α. �

We say that a bounded enumeration E is separating if
E(τ1) ∩ E(τ2) = E(τ) where τ longest common initial substring of τ1, τ2.

In other words, E is separating if different paths enumerate separate sets of strings,
or each σ is enumerated at most once into E. We say that a k-iterated bounded
enumeration (Ei)1≤i≤k is separating if each Ei is separating.

We can make any enumeration separating by just coding into each string where
it has been enumerated without changing the ordinal.

Lemma 20. For any separating k + 1-iterated bounded enumeration (Ei)1≤i≤k+1
bounded by b+1 with ζ(Ei)1≤i≤k+1 =: α < ωbk+1 and for any β < α, one can effectively
find a separating proper monotone extension (E′i)1≤i≤k+1 also bounded by b, such
that ζ(E′

i
)1≤i≤k+1 ≥ β.

Proper extension means hear that only leafs of Ei are extended in E′i and E1 ( E′1.

Proof. We will prove this lemma by induction on k.
For the case k = 0, write α =

∑
1≤i≤l ω

ej and β =
∑

1≤j≤l′ ω
fj such that

b > e0 ≥ e1 ≥ · · · ≥ el and b > f0 ≥ · · · ≥ fl′ .
If l′ < l and ej = fj for all j ≤ l′, find a leaf τ ∈ E1 such that |τ |E1

= b− el′+1, and
put E′1 = E1 ∪ {τ ∗ 〈⊥〉}.
Otherwise, there exists j∗ < l, l′ such that ej∗ > fj∗ . Find a leaf τ ∈ E1 such that
|τ |E1

= b − ej∗ . Let E′1 := E1 ∪ {τ ∗ 〈j〉∗m | j∗ ≤ j ≤ l′ ∧ m ≤ ej∗ − fj∗} where
〈j〉∗m is enumerated step by step, i.e., |σ ∗ 〈j〉∗(ej∗−fj∗)|E1

= b− fj∗ .
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For the case k > 0, write α =
∑

1≤j≤l ω
αj and β =

∑
1≤j≤l′ ω

βj such that
ωbk > α1 ≥ · · · ≥ αl and ωbk > β1 ≥ · · · ≥ βl′ . If l′ < l and αj = βj for all j ≤ l′.
Find a leaf τ1 ∈ E1 such that ζ〈〉(τ1) = ωαl′+1 . Set E′1 := E1 ∪ {τ ∗ 〈⊥〉}, and set

τi+1 := min{τ | τ is leaf in Ei+1(τi) and ζ〈τ1,...,τi〉(τ) > 0},

E′i+1(τ) :=
{
Ei+1(τi) ∪ {τi+1 ∗ 〈⊥〉} if τ = τi ∗ 〈⊥〉,
Ei+1(τ) otherwise.

Otherwise, there exists j∗ < l, l′ such that αj∗ > βj∗ . Find a leaf τ1 ∈ E1 such that
ζ〈〉(τ1) = ωαj∗ . By induction hypothesis, there exist proper a extensions (E′i)1≤i≤k
of (E2(τ1), E3, . . . , Ek) such that ζ(E∗

i
)1≤i≤k ≥ βj for j ∈ [j∗; l′]. (One can effectively

find these extensions.) We may further assume that the new elements enumerated
into E′ji for different j are different.

Set
E′1 := E1 ∪ {τ1 ∗ 〈j〉∗m | j∗ ≤ j ≤ l′},

m is minimal with ζ(E′j
i

[|τ1|+m])1≤i≤k
< αj ,

E′2(τ) :=
{
E′ji [|τ |] if τ = τ1 ∗ 〈j〉,
E2(τ) otherwise,

E′i+2(τ) :=
{
E′ji+1(τ) for τ being enumerated below a τ1 ∗ 〈j〉.
Ej(τ) otherwise.

The last case distinction is possible by separability. We can easily check that
(E′i)1≤i≤k+1 is again separable and α > ζ(E′

i
)1≤i≤k+1 ≥ β. �

Proof of Theorem 16. The forward direction follows directly from Lemma 18 and
the fact that ζ(Vi,Ei)1≤i≤k ≤ ωωk for any k-iterated monotone enumeration. For
the backward direction assume that there exists an infinite descending sequence of
ordinals (αn)n with α0 = ωωk . Take b large enough that α1 ≤ ωbk. By Lemma 19
and the comments below it, there exists a separating k-iterated b + 1-bounded
monotone enumeration (E1

i )1≤i≤k with ζ(E1
i
)1≤i≤k = α1. Lemma 20 gives a sequence(

(Eni )1≤i≤k
)
n

of separating k-iterated b-bounded monotone enumerations with
ζ(En

i
)1≤i≤k ≥ αn. Now set E′i :=

⋃
nE

n
i , then (E′i)1≤i≤k is again k-iterated b + 1-

bounded monotone enumeration. However by construction E0 is infinite and thus
we get ¬BMEk. �

We close this section with showing that weak König’s lemma, a formulation of
the Baire Category theorem, and the cohesive principle are Π1

1-conservative over
RCA0 + WF(O) for each primitive recursive linear order O. Here WF(O) stands for
the statement that O is well-founded. (In particular one can take for O any ordinal
α < ε0.) This shows that BME is stable with those axioms.

Theorem 21 (Folklore). For each primitive recursive linear order O, the system
WKL0 + WF(O) is Π1

1-conservative over RCA0 + WF(O).

Proof. The proof proceeds as the classical proof of the Π1
1-conservativity of WKL0

over RCA0, see [14, IX.2]. By a standard argument it is sufficient to show that
each countable model of RCA0 + WF(O) can be extended to an ω-submodel of
WKL0 + WF(O). This follows, again by a standard argument, from the fact that for
each model M = (|M |,SM ) of RCA0 + WF(O) and each tree infinite tree T ∈ SM
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one can find an ω-submodel M ′ |= RCA0 + WF(O) containing an infinite branch of
T . To establish this, let M = (|M |,SM ) be a model of RCA0 + WF(O). The model
will be extended by forcing along the set TM of infinite 0/1-trees in M ordered by
inclusion, i.e.,

TM :=
{
T ∈ SM

∣∣M |= T is an infinite subtree of 2N
}
.

For T1, T2 ∈ TM we set T1 ≥ T2 iff T1 ⊇ T2. A set D ⊆ SM is called dense if for
every T ∈ TM there is an T ′ ∈ D with T ≥ T ′. A set G is called TM -generic iff it
meets every definable, dense subset of TM .

One can show that any infinite tree in M has a TM -generic path and that for
each TM -generic G we have that M [G] |= IΣ0

1, where M [G] :=
(
|M |, {X ⊆ |M | |

X is recursive in G and sets from SM}
)
. See Lemmas X.2.3–5 of [14].

To prove this theorem it is thus sufficient to show the following lemma.
Lemma 22. For each M |= RCA0 + WF(O) and each TM -generic G, we have that
M [G] |= WF(O).
Proof of Lemma 22. To show this lemma it is sufficient to show that the e-th Turing
functional ΦGe relative to G for any (e ∈ |M |) does not give an infinite descending
chain in O.

For a σ ∈ |M | viewed as a finite binary sequence in M , and T ∈ TM we will write
σ ≺ T iff M |= “any τ ∈ T is compatible with σ”. For e,m ∈ |M |, put

D1
e :=

{
T ∈ TM

∣∣∣∣∣ ∃n∃σ
(
σ ≺ T ∧ ∀i ≤ n (Φσe,|σ|[i]↓)
∧
(
Φσe,|σ|[i]

)n
i=0 is not strictly decreasing in O

)}
,

D2
e,m :=

{
T ∈ TM

∣∣∣ ∀τ ∈ T (Φτe,|τ |[m]↑
)}

,

De := D1
e ∪

⋃
m∈|M |

D2
e,m.

Clearly, if T ∈ De and G ∈ [T ], then, ΦGe is not an infinite descending sequence of
O.

Now, we want to show that De is dense. Assume not then there exists an
infinite tree T ∈ TM such that any infinite subtree is not in De. Put l0 := 0 and
lm+1 := min

{
l > lm

∣∣∣ ∀τ ∈ T ∩ 2l (Φτe,|τ |[m+ 1]↓)
}
. Such an l always exists since

there are only finitely many τ ∈ T such that Φτe,|τ |[m]↑. Otherwise they would form
an infinite subtree of T belonging to D2

e,m. Note that the sequence lm is computable
in M .

For each m ∈ |M | and each τ ∈ T ∩2lm the finite sequence
(
Φτe,|τ |[i]

)m
i=0 is strictly

decreasing in O, since otherwise the subtree below τ would lie in D1
e . Therefore, the

function f(m) := minO
{
φτe,|τ |

∣∣∣ τ ∈ T ∩ 2lm
}

is computable in M and one easily
checks that it gives an infinite strictly decreasing sequence in O. This contradicts
the fact M |= WF(O) and hence De must be dense. �

The Baire Category theorem for Cantor space can be formulated in the following
way. For a σ ∈ 2<N and X ∈ 2N we will write σ ⊆ X if X extends σ. A set D is
called dense if for each σ ∈ 2<N there is a τ ∈ D with τ ⊇ σ. We say that X meets
D if ∃σ ∈ D (σ ⊆ D). The Baire category theorem (BCT) is then the statement
that every sequence of dense sets Di ⊆ 2<N there exists a set G that meets every
Di.
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Theorem 23. For each primitive recursive linear order O, the system RCA0 +
WF(O) + BCT is Π1

1-conservative over RCA0 + WF(O).

Proof. As in the proof of Theorem 21 it is sufficient to show that each countable
model M = (|M |,SM ) of RCA0 + WF(O) can be extended to an ω-submodel of
BCT.

In [2, Lemma 6.2] it is shown that one can find a G such thatM [G] |= RCA0+BCT
and G intersects all dense M -definable sets. Such a set G will be called M -generic.
The theorem follows by showing the following lemma.

Lemma 24. For each M |= RCA0 + WF(O) and each M -generic M [G] |= WF(O).

Proof of Lemma 24. As in Lemma 22 we construct for each Turing-functional ΦXe
a dense set De. Hence put,

D1
e :=

{
σ ∈ 2<|M |

∣∣∣∣∣ ∃n ∈ |M |
(
∀i ≤ n (Φσe,|σ|[i]↓) ∧

(
Φσe,|σ|[i]

)n
i=0

is not strictly decreasing in O

)}
,

D2
e,m :=

{
σ ∈ 2<|M |

∣∣∣ ∀τ ⊇ σ (Φτe,|τ |[m]↑
)}

,

D := D1
e ∪

⋃
m∈M

D2
e,m.

Clearly, if a generic G meets De then ΦG
e is not an infinite descending sequence

of O. Now, we want to show that De is dense. Assume not, then there exists a
σ0 such that for any σ ⊇ σ0 we have ∀i ≤ n

(
Φσe,|σ|[i]↓

)
implies that

(
Φσe,|σ|[i]

)n
i=0

is strictly decreasing in O, and for any m ∈ 〈M〉 the set
{
τ
∣∣∣ Φτe,|τ |[m]↓

}
is dense

below σ0. By the latter condition one can easy construct a computable in M set
X ⊇ σ0 such that ΦXe (m)↓ for any m ∈ |M |. By the former ΦXe outputs a strictly
decreasing sequence of O in M which is a contradiction. �

A sentence of the form
∀X (φ(X)→∃Y η(X,Y ))

where φ is arithmetical and η ∈ Σ0
3, is called restricted Π1

2-sentence (r-Π1
2). Hirschfeld

and Shore showed that the cohesive principle (COH) is r-Π1
2-conservative over

RCA0, see [10, Theorem 7.18] and [11]. Assume that RCA0 + WF(O) does prove a
r-Π1

2-sentence, i.e.,
RCA0 + COH + WF(O) ` ∀X (φ(X)→∃Y η(X,Y )) .

By the deduction theorem this is equivalent to
RCA0 + COH ` ∀Z WF(O)[Z]→∀X (φ(X)→∃Y η(X,Y )) ,

where WF(O)[Z] denotes each Z-computable sequence is well-founded. Note that
this can be written as a Σ0

2[Z]-formula. By logical transformation this is equivalent
to

RCA0 + COH ` ∀X (φ(X)→∃Y ∃Z (η(X,Y ) ∨ ¬WF[Z])) .

Since this is again a r-Π1
2-sentence we can apply the above-mentioned result. This

proves the following theorem.

Theorem 25. For each primitive recursive linear order O, the system RCA0 +
WF(O) + COH is r-Π1

2-conservative over RCA0 + WF(O).
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IΣ1 +3BΣ2 +3IΣ2 +3BΣ3 +3 · · ·

Figure 2. Pairs-Kirby hierarchy

BΣ2

$,

OO

__

��

IΣ1

 (

6>

BΣ2 + WF(ωω) +3IΣ2 +3BΣ3 +3 · · ·

WF(ωω)

2:

Figure 3. Extended Paris-Kirby hierarchy

4. Conclusion

We have shown in Theorem 5 that WF(ωω) has many equivalent formulations and
occurs far more often than expected. It has been rediscovered in different contexts,
see for instance [7] and [5] as already mentioned above. This shows that there are
only a few natural first-order principles between IΣ1 and IΣ2, and WF(ωω) has to
be considered one of them, besides induction and bounded collection principles. For
this reason we believe that the usually in reverse mathematics considered Kirby-Paris
hierarchy as shown in Figure 2 has to be extended to give a comprehensive picture.
Figure 3 displays such an extension by WF(ωω). This hierarchy has been defined
in [8]. There the considered formulation of WF(ωω) was PΣ1, and more generally
PΣn+1 for all n was considered. As mentioned above PΣn+1 lies between IΣn+1
and IΣn+2. However, a similar equivalence as in Theorem 5 for PΣn+1 with n > 0
cannot hold for quantifier reasons. In detail, PΣ2 is Π4 while WF(ωω2 ) is still Π3.
Thus, it is unlikely to find similar extensions between IΣn+1 and IΣn+2 that are
equally natural.

We furthermore characterize the principles BME and BMEn in terms of well-
foundedness of ordinals. This allows us to answer the question whether Ramsey’s
theorem for pairs and two colors (RT2

2) implies BME, as ask by Chong, Slaman, and
Yang in [4, Question 5.2], negatively. This cannot be the case since it is known that
RT2

2 is Π1
1-conservative over IΣ2, see [3], where ωω3 cannot be seen to be well-founded

in IΣ2. Thus RCA0 + RT2
2 0 BME3.

Let ME be the monotone enumeration principle which states that each unbounded
monotone enumeration has an infinite branch. This principle is formalized in RCA0.
For ME we have the following well-known result.

Theorem 26 (Folklore, RCA0). ACA0 and ME are equivalent.

BME can be seen as a miniaturization of ME as certain iterations of the Paris-
Harrington principle are for Ramsey’s theorem for pairs, see [1, 16, 15], or has been
done for PΣ1 in [7]. For the Paris-Harrington principle equivalences between these
miniaturizations and the provably recursive functions (in some cases even provable
Π0

3 or Π0
4 statements) of RT2

2 over different systems (in detail WKL0, WKL∗0) have
been established. For PΣ1 this has not been done yet. Our characterization in
Theorem 5 together with Theorem 3 of [7] shows that the miniaturization of [7]
is faithful, in the sense that they prove the same Π0

2-sentences. Since Theorem 16
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shows that the Π0
3-sentences of BME are exactly the same as of PA, BME is a faithful

miniaturization of ME in the same way.
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