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Abstract—This paper proposes an emotional speech synthesis
system based on a three-layered model using a dimensional
approach. Most previous studies related to emotional speech
synthesis using the dimensional approach focused on the relation-
ship between acoustic features and emotion dimensions (valence
and activation) only. However, people do not perceive emotion
directly from acoustic features. Hence, the acoustic features have
being particularly difficult to predict, and the affectiveness of
the synthesized sound is far from that intended. The ultimate
goal of this research is to improve the accuracy of acoustic
feature estimation and modification rules in order to synthesize
affective speech more similar to that intended in the dimensional
emotion space. The proposed system is composed by three layers:
acoustic features, semantic primitives, and emotion dimensions.
Fuzzy Inference System (FIS) is used to connect the three layers.
The related acoustic features of each semantic primitive are
selected for synthesizing the emotional speech. On the basis of
morphing rules, the estimated acoustic features can be applied
to synthesize emotional speech. Listening tests were carried out
to verify whether the synthesized speech can give the intended
impression in the dimensional emotion space. Results show that
not only is the accuracy of estimated acoustic features raised
but also the modification rules work well for the synthesized
speech, resulting in the proposed method improving the quality
of synthesized speech.

I. INTRODUCTION

In the field of human-computer-interface (HCI), one of the
goals is to improve user experiences by providing genuine
human communication. Thus, a speech-to-speech translation
(S2ST) system plays a consequential role for converting a
spoken utterance from one language into another to enable
people who speak different languages to communicate [1].
Conventional S2STs focus on processing linguistic informa-
tion only, which is deficient in synthesizing affective speech,
such as emotional rather than neutral speech. Therefore, a
system that can recognize and synthesize emotional speech
would be momentous.

To construct a system for synthesizing emotional speech,
several studies have already obtained some achievements.
Most methods are based on a concatenative approach, like
unit selection, or a statistical parametric approach, like the
Hidden Markov Model (HMM) with the Gaussian Mixture
Model (GMM) [2] [3]. Both methods can synthesize emotional
speech with good quality when the emotion is present in a
category such as happy, sad, or angry. However, they can only
synthesize the emotional speech with the average emotion (not
strong or weak emotions) in the emotion category, and both

need a huge database for training, although it is difficult to
collect many human responses when listening to emotional
speech. However, in human speech communication, people
sometimes strengthen or weaken emotional expressions de-
pending on the situation [4]. Thus, a small number of discrete
categories is not sufficient to mimic the emotional speech
in daily life. Therefore, some researchers proposed a multi-
dimensional approach to express emotion on a continuous-
valued scale instead of categorical methods [5] [6]. By using
the rule-based synthesis method, tendencies of the variations
can be acquired using a small database. With the tendencies
of variation, the synthesized speech can convey all degrees of
an emotion.

An emotional synthesis system based on dimensional space
previously proposed by the authors, named the two-layered
model [7], has already worked in a rule-based emotional
speech synthesis scenario. However, two main problems re-
main. First, the estimated acoustic features are not accurate
enough for this kind of method to extract rules just between
the acoustic features and emotional space. Second, some
synthesized speech cannot give the impression intended, which
means that the method for modifying acoustic features still has
a problem. The ultimate goal of our work is to improve the
conventional dimensional method in order to precisely predict
the acoustic features as well as to synthesize affective speech
much similar to that intended in dimensional space.

To improve the accuracy of estimated acoustic features, a
three-layered model is adopted. According to the Branswikian
lens model [8] shown in Figure 1, people’s emotion perception
is multi-layered. Human beings do not perceive emotion
directly from the acoustic features, so semantic primitives such
as bright, high, strong, and so on are also of great importance.
In these circumstances, this paper basically utilized the three-
layered model proposed by Huang and Akagi [9] (acoustic
features layer, semantic primitives layer, and emotion layer).
For the emotion layer, in this study, a dimensional emotion
space is used to model the human emotions. The Valence-
Activation (V-A) axes in the two-dimensional emotion space
can describe the strength, such as very or slightly happy,
which gives a more flexible interpretation of emotional states.
An Adaptive-Network-based Fuzzy Inference System (ANFIS)
[10] [11] connects the three layers and estimates corresponding
values of dimensional axes.

The modification of estimated acoustic features for emo-



Fig. 1. A Brunswikian lens (1956) model of the vocal communication of
emotion. (Scherer, 2003) [8]

tional speech synthesis is revised in this paper, especially
for the fundamental frequency (F0) related acoustic features.
Hamada et al. [7] separately extracted and modified the F0
related acoustic features such as average F0 pitch, highest
F0 pitch, F0 mean value of rising slope, and rising slope
of the first accentual phrase in accordance with the extracted
rules in the model. However, as there are strong connections
among them, these F0 related acoustic features are unsuitable
to handle independently. In this paper, the Fujisaki model [14]
is adopted to extract the trajectory of the F0 contour from
which we can obtain the F0 related acoustic features all at
once.

The difficulty in this research is to find out whether the
extracted rules are suitable for the intended emotion as the
relationship between the three layers is nonlinear. The input
and output of our system are the dimensional parameter values
in V-A space and the corresponding acoustic feature displace-
ments, respectively. ANFIS is used to connect the three layers
from the emotion space layer to the semantic primitives layer
and from semantic primitives layer to the acoustic features
layer. The related acoustic features of every semantic primitive
are selected when synthesizing the emotional speech. Listening
tests were carried out to verify whether the synthesis speech
can give a position similar to that anticipated. On the basis of
the listening test, effectiveness is discussed.

II. OUTLINE OF THE EMOTIONAL SPEECH
SYNTHESIS SYSTEM

This section outlines the emotional speech synthesis system.
The system can be divided into two parts. The first is applied
to estimate the acoustic features, and the second is used to
modify them. The ultimate goal of this paper is to improve the
estimation accuracy and the modification of acoustic features.
Figure 2 shows the flow chart for estimating the acoustic
features. In the model creation part, the evaluated emotion
dimensions, evaluated semantic primitives, and the extracted
acoustic features first need to be acquired by listening tests
and some tools, which are detailed in Chapter IV. To connect
the three layers, we use the fuzzy inference system (FIS). FIS
Modeling 1 is applied for connecting the emotion dimensions
layer and the semantic primitives layer whose input is the

Fig. 2. Flow chart for estimating acoustic features

value of Valence and Activation and output is the estimated
values of the according semantic primitives. The input of
FIS Modeling 2 is the values of the semantic primitives,
and output is the estimated acoustic features. This is fully
explained in Chapter V. After the system has been built, the
parameter values can be estimated when given the intended
position in the emotion dimensions. To obtain the emotional
synthesized speech, the estimated parameter values need to be
modified using some tools and models. This will be discussed
in Chapter VI.

III. THREE-LAYERED MODEL

The concept of the three-layered model is explained here. In
2008, Huang and Akagi proposed a three-layered model for
expressive speech perception [9], which states that humans
perceive the emotion of expressive speech not directly from
the academic terms such as F0 contour, power envelop or
power spectrum but from a series adjectives such as fast,
bright, or strong. On the basis of the three-layered model, the
recognition system proposed by Elbarougy and Akagi [12] is
adopted with opposite input and output to synthesize emotional
speech. However, the recognition system is irreversible as
the relationship between the three layers is nonlinear. The
difficulty in this research is to find out whether the extracted
rules are suitable for the intended emotion as the relationship
between the three layers. Opposite to the work of the speech
emotion recognition system, the input of the emotional speech
synthesis system is the position in valence-activation space,
and the output is the according acoustic features as shown
in Figure 3. In our system, the emotion dimension is at the
bottom, the semantic primitives layer is in the middle, and the
acoustic features layer is at the top.

IV. SPEECH MATERIALS AND EXPERIMENT

In this section, the database used in this study is explained
first. Then, in accordance with our method, the acoustic
features extracted from the database, semantic primitives, and
emotion dimension acquired by listening tests are presented
in the next subsections.



Fig. 3. Structure of three-layered model

A. Speech Materials and Subjects

A Fujitsu database containing 179 utterances spoken by a
professional female voice actress is used in this study. The
179 utterances consist of five different emotion states: neutral,
happy, sad, cold anger, and hot anger. In addition, there are
20 different Japanese sentences in this database. Each sentence
has one for neutral and two for other emotion states. The total
number of utterances is 179 because one cold anger utterance
is missing from the database.

In the listening test, 11 graduate students, all native Japanese
speakers without any hearing impairment, were asked to
evaluate the utterances as subjects.

B. Acoustic Feature Extraction

For synthesizing emotional speech, the acoustic features are
vital because they can hugely affect the effectiveness of the
synthesized speech. In the field of F0, power envelope, power
spectrum, and duration, 16 acoustic features are put to use in
accordance with the work of Huang and Akagi [9].

Except for the acoustic features related to duration that is
extracted by segmentation manually, the rest are obtained by
the high quality speech analysis-synthesis system STRAIGHT
[13]. Also, the same as in the work of Hamada et al. [7], five
acoustic features related to the voice quality were focused on
as they are important for perceiving the expressive voice. All
together, 21 acoustic features are classified into the following
subgroups:

F0 related features: The acoustic features related to F0
were extracted: F0 mean value of a rising slope of the F0
contour (RS), highest F0 (HP), average F0 (AP), and rising
slope of the F0 contour for the first accentual phrase (RS1).

Power envelope related features: Mean value of power
range in accentual phrase (PRAP), power range (PWR), rising
slope of the power for the first accentual phrase (PRS1), the
ratio between the average power in high frequency portion
(over 3 kHz), and the average power (RHT) were measured.

Power spectrum related features: First formant frequency
(F1), second formant frequency (F2), and third formant fre-
quency (F3) were taken approximately at the midpoint of
the vowels /a/, /e/, /i/, /o/, and /u/. The formant frequencies
were calculated at an LPC-order of 12. Spectral tilt (SPTL)
is used to measure voice quality and was calculated using the

following equation:

SP TL = A1 −A3 (1)

where A1 is the level in dB of the first formant, and A3 is
the level of the harmonic whose frequency is closest to the
third formant [15]. To describe acoustic consonant reduction
[16], spectral balance (SB) is adopted. It was calculated in
accordance with the following equation:

SP SB =

∑
fi · Ei∑
Ei

(2)

where fi is the frequency in Hz, and Ei is the spectral power
as a function of the frequency.

Duration related features: Total length (TL), consonant
length (CL), and ratio between consonant length and vowel
length (RCV).

Voice quality: According to Menezes et al. [17], H1-H2
is concerns glottal opening, which means the mean value of
difference between the first and second harmonics for vowels
/a/, /e/, /i/, /o/, and /u/ per utterance. MH A, MH E, MH I,
MH O, and MH U were used as indexes of voice quality.

C. Semantic Primitives Evaluation

As mentioned above, in the three-layered model, the bottom
layer is the emotion dimension layer, the middle layer is the
semantic primitives layer, and the top layer is the acoustic
features layer. Therefore, the value of semantic primitives
is essential for building this model. 11 subjects were asked
to give subjective values for 17 adjectives: Bright, Dark,
High, Low, Strong, Weak, Calm, Unstable, Well-modulated,
Monotonous, Heavy, Clear, Noisy, Quiet, Sharp, Fast, and
Slow. These words were selected by Huang and Akagi [9]
as they can describe emotional speech in a balanced way. The
17 semantic primitives were evaluated on a five-point scale
(“1-Does not feel so at all”, “2-Seldom feels so”, “3-Feels
slightly so ”, “4-Feels so”, “5-Feels very much so”). Sepa-
rately for each semantic primitives, the inter-rater agreement
was measured by pairwise Pearosn’s correlation between two
subjects’ ratings which shows that all subjects agreed from a
moderate to a high level.

D. Emotion Dimensions Evaluation

The evaluation of emotion dimension is divided into two
parts: valence and activation. The 11 subjects were required
to rate the 179 utterances on a five-point scale {-2, -1, 0, 1, 2
}. Valence was from -2 (very negative) to +2 (very positive),
and activation was from -2 (very calm) to +2 (very excited).
The value of the evaluation has a high inter-rater agreement,
which shows that all subjects had similar impressions of
the emotional speech. This work expands on the work of
Elbarougy and Akagi [12].

V. ESTIMATION OF ACOUSTIC FEATURES

A. Fuzzy Inference System

To obtain the estimated acoustic features, two kinds of
fuzzy inference system were used for training. One, called FIS



Fig. 4. Flow chart for training FIS

Modeling 1, is for estimating the semantic primitives from the
value of valence and activation. The other, called FIS Model-
ing 2, is for obtaining the estimated value of acoustic features
from the semantic primitives. Fuzzy logic is considered as it
turns human knowledge into mathematical models using If-
Then rules and is based on the non-linear functions of arbitrary
complexity. The relationship between the acoustic features and
emotion dimension is also non-linear. Moreover, fuzzy logic
is based on natural language, and the natural language used
in our system is in the form of semantic primitives. While
sometimes it is difficult to transform human knowledge into a
rule base, ANFIS overcomes this problem by using artificial
neutral networks that can identify fuzzy rules and tune the
parameters of membership functions automatically.

There are two reasons that fuzzy logic is considered instead
of other methods such Deep Neural Work (DNN). One is
that ANFIS has membership function with interpolate method
which means that from a few set of database, the tendency of
variance in the whole V-A space can be obtained . While DNN
do not has the ability of obtain the relationships of all positions
in V-A space between acoustic features and dimensional space
with a limit database as the function DNN used is point to
point. Another one is that fuzzy logic is on the basic of natural
language and the natural language used in our system is the
form of semantic primitives (the middle layer in three-layered
model).

Figure 4 shows the flow chart for estimating the acoustic
features. ANFIS is a system with multi-input and single-

output. For FIS Modeling 1, 17 ANFISs were trained because
17 semantic primitives whose inputs were the values of valence
and activation were used in the middle layer. FIS Modeling 2
has 21 ANFISs for the same reason that 21 acoustic features
are modified to synthesize the emotional speech. The input
of the FIS Modeling 2 is the semantic primitives evaluated
in the listening test when training the model. The values of
acoustic features were found to change greatly for emotional
speech and neutral speech [18]. Different people have different
vocal tracts, which will influence some acoustic features such
as formant frequency. For avoiding speaker-dependency and
emotion-dependency, all acoustic features were normalized by
the neutral speech using (3)

f̂(i,m) =
f(i,m)∑l

i=1 f(i,m)/l
(3)

where m is the number of acoustic features (m = 1, . . . , 21)
and i is the number of utterances in the database. f(i,m)(i =
1, 2, . . . , l, . . . , 179) is a sequence value of the mth acoustic
feature which come from the extracted values in the database
explained in Section IV(B). The first l represents the value
of the neutral acoustic features, and the rest are set to other
emotional states. By using (3), f̂(i,m) can be calculated which
represents the normalized value from the ith utterances of the
mth acoustic feature. The requirement for using ANFIS is that
all input and output should be from 0 to 1. Therefore, using
the range and minimum value of every variable, all acoustic
features, all semantic primitives, and all emotion dimensions



were normalized in the range [0,1] when training the model.
Using (4), the acoustic features between 0 and 1 can be got

f̃(i,m) =
f̂(i,m) − fminm

franm
(4)

where m is the number of acoustic features (m = 1, . . . , 21)
and i is the number of utterances in the database (i =
1, . . . , 179). f̂(i,m) is the normalized value from (3). fminm

and franm is the minimum value and range of the mth
acoustic features which have appeared in (4). Using (4), f̃(i,m)

which means the normalized value in the range [0,1] can be
used as the input for training ANFIS. For semantic primitives
and emotion dimension, the normalized part into [0,1] is the
same as acoustic features which is firstly needed to subtract
the minimum value and then divide the range value of the
semantic primitives or emotion dimension. All the data sets
were divided into the training data (90%) and testing data
(10%) in order to avoid the over-fitting of the model being
developed. ANFIS is first trained using the training data and
then validated using the testing data.

After the process of training the FIS model, equation (5) is
used to obtain the estimated semantic primitives when given
the input value of valence and activation. In (5), v, a represents
the value of valence and activation separately, F1n means the
ANFIS of the nth semantic primitives which is the same as
FIS Modeling 1 in Figure 4. And spn represents the estimated
value of the nth semantic primitives where n is the number
of semantic primitive (n = 1, . . . , 17).

spn(v, a) = F1n(v, a) (5)

The 17 estimated semantic primitives are the input of the
FIS Modeling 2. When training the model, the extracted
acoustic features were normalized in the range [0,1] so that the
denormalized procedure is needed using (6) to get the actual
estimated acoustic features.

f̌m(spn) = F2m(spn)× franm + fminm (6)

Equation (6) is adopted to obtain the acoustic features for
synthesis where m is the number of acoustic features (m =
1, . . . , 21), franm is the range of the mth acoustic feature,
and fminm is the minimum value of the mth acoustic feature
which give the same meaning as (4). F2m represents the
ANFIS of the mth acoustic feature which is the same as FIS
Modeling 2 in Figure 4. And f̌m is the estimated acoustic
features.

B. Related Acoustic Features of Semantic Primitives

Since not all 21 acoustic features have a strong relation
with the 17 semantic primitives, the acoustic features with
less relation with all semantic primitives are not put into use
to simplify modifications of acoustic features without spurious
and wrong estimations of them. The related acoustic features
of every semantic primitive were selected for synthesizing the
emotional speech. The selection procedure is based on the fol-
lowing hypothesis: acoustic features highly related to semantic

Fig. 5. Number of semantic primitives to which every acoustic feature is
related

primitives hugely affect how emotional speech is synthesized.
The selection procedure was done in the following four steps:

Step (1): Choosing one utterance with the maximum extent
of one semantic primitive, such as Bright, from our database.

Step (2): Extracting the values of 17 semantic primitives
(špn(n = 1, . . . , 17)) of the utterance with the highest value of
Bright from database and putting them in the FIS Modeling 2
using (6) so that the values of 21 acoustic features (f̌m(m =
1, . . . , 21)) can be obtained. On the other hand, the values of
17 semantic primitives (spn(n = 1, . . . , 17)) of the utterance
with the neutral voice as the input of FIS Modeling 2 and
the according acoustic features (fm(m = 1, . . . , 21)) can be
extracted.

Step (3): The following function is used to calculate per-
centage variation between the brightest and the neutral speech
of one acoustic feature

perm =
f̌m(špn)

fm(spn)
(7)

Step (4): Selecting the highly correlated acoustic features
for synthesizing. Considering the number of acoustic features
related to semantic primitives, the percentage (perm) above
1.4 and below 0.7 is chosen.

After the related acoustic features of every semantic primi-
tive have been obtained, the number of semantic primitives
to which every acoustic feature is related is calculated as
shown in Figure 5. This figure also shows that the number
of acoustic features related to the semantic primitives have
some tendencies which is limited to 16 at most. The larger
number the acoustic feature has, the closer relationship that
the acoustic feature is related to semantic primitives.

C. System Evaluation

The three layers are connected using ANFIS so that by
giving the value of activation and valence, the estimated
acoustic features can be obtained. However, the accuracy of
the estimated acoustic features and semantic primitives has not
been explored yet. Correlation coefficient R(j) between the
estimated acoustic feature y and the extracted acoustic feature



Fig. 6. Correlation coefficient of two- and three-layered models

x can be determined by the following equation:

R(j) =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
(8)

where x and y are the average values for x = {x(j)
i },

y = {y(j)i }, respectively. The correlation coefficients of
estimated and evaluated semantic primitives use the same
equation. The two-layered model of Hamada et al. [7] uses
the same method for evaluating the system performance. By
using the two synthesis systems separately, the values of
valence and activation of 179 utterances are given as the
inputs, and acoustic features can be obtained. Figure 6 displays
the correlation coefficient results of the two and three-layered
models (blue and red columns, respectively). From this figure,
we can see that among the performances of estimating the
21 acoustic features, correlation coefficients were higher for
12 acoustic features when using the three-layered model, the
same for seven acoustic features when using both models, and
higher for two acoustic features when using the two-layered
model. Therefore, a conclusion can be made that the three-
layered model more accurately estimated the acoustic features
than the two-layered model.

VI. MODIFICATION OF ACOUSTIC FEATURES

A. Modified value of acoustic features

After the ANFIS was used to obtain the estimated acoustic
features, voice morphing was done using the estimated acous-
tic features as shown in Figure 7. All 21 acoustic features
obtained from ANFIS were modified in accordance with the
following equation:

fmodm(v, a) = f(1,m) × f̌m(spn(v, a))

f̌m(spn(0, 0))
(9)

where v means the value of the valence, and a means the
value of the activation. m is the number of acoustic features
(m = 1, . . . , 21). f(1,m) is the extracted value without any
normalization of the mth acoustic feature from the 1st utter-
ance in the database which is the neutral voice. f̌m(spn(v, a))
is the estimated acoustic feature value using (5) and (6) when
input the value of valence and activation. f̌(spn(0, 0)) is the
estimated acoustic feature value using (5) and (6) when input

the value of valence and activation are both 0. fmodm is the
modified value of the mth acoustic feature. The original voice
was morphed using the modified values of acoustic features.

B. Modeling of F0 contour

Duration and spectrum parts were the same as those in the
work of Huang and Akagi [9], and the spectrum of glottal
waveform part is the same as that in the concept of Hamada et
al. [7]. In segmentation part, durations of phoneme, phrase, and
accent parts were measured manually. By using STRAIGHT
[13], power envelope and spectral sequence were extracted.
The spectrum of glottal waveform is extracted using the ARX-
LF model [19]. This procedure was exactly the same for the
two-layered model [7].

The modification method of F0 related acoustic features
(such as average pitch, highest pitch, f0 mean value of rising
slope, and rising slope of the first accentual phrase) is changed
in this paper. Because it is not suitable to extracted the F0
related acoustic features separately as previous work done.
The Fujisaki model [14] is adopted to extract the trajectory of
F0 contour from which we can obtain the F0 related acoustic
features all at once. The Fujisaki model is a mathematical
model represented by the sum of phrase components, accentual
components, and the base line (Fb). The F0 contour can be
expressed by

lnF0(t) = lnFb+

I∑
i=1

ApiGpi(t− T0i)

+
J∑

j=1

Aaj{Gaj(t− T1j)−Gaj(t− T2j)} (10)

Gpi(t) =

{
α2
i t exp(−αit), t ≥ 0

0, t < 0
(11)

Gaj(t)

{
min[1− (1 + βjt) exp(−βjt), γ], t ≥ 0

0, t < 0
(12)

where Gp(t) represents the impulse response function of the
phrase control mechanism, and Ga(t) represents the step re-
sponse function of the accent control mechanism. The symbols
in these equations forecast
Fb: baseline value of fundamental frequency,
I: number of phrase commands,
J : number of accent commands,
Api: magnitude of the ith phrase command,
Aaj : amplitude of the jth accent command,
T0i: timing of the ith phrase command,
T1j : onset of the jth accent command,
T2j : end of the jth accent command,
α: natural angular frequency of the phrase control mecha-

nism,
β: natural angular frequency of the accent control mecha-

nism,



Fig. 7. Process of modifying voice

γ: relative ceiling level of accent components.
Many researchers utilize the Fujisaki model, and the work

of Mixdorff [20] is adopted in this paper where α = 1.0/s and
β = 20/s. The modification procedure of the parameters of
the Fujisaki model (Ap, Aa, and Fb) from estimated acoustic
features related to F0 is done by three steps.

Firstly, the gradient of F0 and that of envelope are related to
the duration. The related acoustic features of the duration are
total length, consonant length, and ratio between consonant
length and vowel length. The related parameters of Fujisaki
model are T0, T1 and T2. According to the ratio between
the extracted values of the acoustic features and the estimated
values of the acoustic features, T0, T1 and T2 were modified.

Then the parameter values of Fujisaki model of the original
speech was estimated following the work of Mixdorff [20].
Since Fb, Ap and Aa are related to the values of the estimated
F0 related acoustic features, Fb, Ap and Aa were modified.

Lastly, by calculating the values of F0 related acoustic
features, the optimized values of Fb, Ap and Aa were esti-
mated. By controlling fundamental frequency, neutral speech
was converted into emotional speech related to a position on
the V-A space. Using modified F0 contour modeled Fujisaki
model, target voice was converted.

C. Evaluation

1) Listening Test: Listening tests are required to verify
whether synthesized speech can be perceived as the intended
position. What’s more, the naturalness of synthesized voice is
test by doing subject evaluation.

Subjects: Seven Japanese students (six males and one
female; mean age: 25 years old) were invited to do the
listening tests. The number of subjects is the same for the
two-layered model.

Stimuli: In the listening test for the two-layered model [7],
76 synthesized voices were used with the same position in V-A
space as shown in Figure 8. A happy voice was situated in the
1st quadrant, an angry voice the 2st quadrant, and a sad voice

Fig. 8. Stimuli position in valence-activation space

in the 3rd quadrant. Every quadrant had 25 pieces of synthesis
speech, and there was one neutral voice in the center position,
which is the original spoken by a professional voice actress
in the Fujitsu database. The content of all utterances was

• /Atarashi meru ga todoite imasu./ (Japanese original).
• /You’ve got a new e-mail./ (English translation).
Procedure: In a soundproof room, subjects were invited to

listen to the stimuli, which were presented through an audio
interface (FIREFACE UCX, Syntax Japan) and headphones
(HDA200, SENNHEISER). The mean sound pressure level of
the original voice was 65 dB, and the sound pressure level of
all stimuli ranged from 63 dB to 67 dB.

For valence and activation, subjects listened to all stimuli
twice. The reason is that they were supposed to acquire an
impression of the whole stimulus the first time and then
evaluate one dimension from -2 to 2 in 40 scales. What is
more, valence and activation needed to be done separately.
The interval was at least one day so that they would not
mistake the conception of valence and activation. Valence and
activation were evaluated using forty scales (Valence: Left
[Very Negative], Right [Very Positive]; Activation: Left [Very
Calm], Right [Very Excited]: range −2 ∼ 2 by 0.1 step).
Subjects evaluated these scales using the graphic user interface
(Figure 9). In each evaluation task, subjects could listen to the
stimulus repeatedly.

For naturalness, all synthesized speeches are presented once
before subjects give evaluations. The scale of evaluations is
divided into 5 levels from bad to excellent (1 ∼ 5). Subjects
give evaluations according to original speech spoken by human
whose naturalness is excellent. In addition, all synthesized
speeches can be listened repeatedly.

2) Results of listening test: The evaluated positions in V-
A space are shown in Figure 10. As the position of stimuli,
the number of subjects, and the evaluation in the listening test
were the same as for the two- and three-layered models [7],



Fig. 9. Graphic user interface for evaluation

Fig. 10. Evaluated positions in valence-activation space using three-layered
model. Blue, red, and green points are the average values of the 1st, 2nd, and
3rd quadrants, respectively. Each circle describes the standard deviation (solid:
evaluated value for synthesize voice; dashed: stimulus value for intended
emotional voice)

we can compare the results of positions in V-A space between
both models [7]. The results of the two-layered model for
evaluated position are shown in Figure 11.

To investigate the distance between the intended position
of stimuli and listeners’ evaluation, we calculated the mean
absolute error (MAE) (How much error is there between the
stimuli’s positions and the evaluated positions?). The values
of distance between the intended values and evaluated values
of valence and activation were calculated separately in each
quadrant. The MAE is calculated in accordance with the
following equation:

MAE(j) =

∑N
i=1 |x̂

(j)
i − x

(j)
i |

N
(13)

where j ∈ {V,A}, x̂(j)
i is the evaluated value for the synthesis

voice and x
(j)
i is the value of the intended stimulus. The MAEs

for each quadrant by two- and three-layered models [7] are
shown in Figure 12.

Considering the evaluation results of naturalness, the values

Fig. 11. Evaluated positions in valence-activation space using two-layered
model [7]

Fig. 12. MAEs of each quadrant using two- and three-layered models

of mean opinion score in each quadrant are shown in Figure
13. From this figure, we can see that the naturalness of the 1st
quadrant synthesized voice is about 3.8. For the 2nd and 3rd
quadrant, the mean opinion score is 2.8 and 2.7. The score of
the 1st quadrant is the highest.

D. Discussion

Comparing Figures 10 and 11, we can find that the evaluated
positions from three-layered model in the three quadrants are
closer to the intended positions than those from the two-
layered model. The position evaluated by two-layered model
is close to the center point, which means that the synthesized
speech may not express the strong intensity of emotion. In
contrast, the position evaluated by the three-layered model is
much closer to the intended position. The results of MAEs in
Figure 12 reveal that the mean absolute value between stimuli
position and evaluated position for the three-layered model is
about 0.6, which improves on that for the two-layered model,
1.0. However, from Figure 10, we can see that anger is not
as well-perceived as the other two emotions, resulting in the
MAEs of valence and activation in the second quadrant being
higher than in the others. In the future, the improvement of



Fig. 13. Naturalness of synthesized voices of each quadrant

anger voice needs to be investigated. From Figure 12, the
naturalness of the 1st quadrant is the highest comparing to the
two other quadrants. All scores are above 2.5, which means
the naturalness of all three quadrants synthesized voices can
achieved a acceptable level.

Three-layered model provide a high estimation method
and Fujisaki model improve the modification method. Both
give contributions to the final improvement. The reason why
three-layered model achieve higher accuracy than two-layered
model is that the relationship between acoustic features and
dimensional space is non-linear and so complicated. The two-
layered model only consider the relationship once while the
three-layered model try to build this system in two steps.
Therefore the higher accuracy can be obtained. On the other
hand, three-layered model following the process of human
perception which assume that human perceive emotion not
from acoustic features but can tell the intensity of some
adjectives.

All in all, the new estimation method outperforms the
two-layered model. The synthesized speech using the revised
model with the added modification method can give the
intended impression. What’s more, the distance between the
synthesized and intended speech is smaller for the three-
layered model than for the two-layered model, which is a great
improvement.

VII. CONCLUSION

This paper proposed an emotional speech synthesis system
using a three-layered model in a dimensional approach. AN-
FIS was used to connect the three layers for estimating the
semantic primitives and acoustic features. The related acoustic
features were used for synthesizing the emotional speech by
morphing rules. The higher correlation coefficient comparing
to the two-layered model [7]shows that three-layered model
estimates acoustic features more accurately than the previous

two-layered model. Results of subjective evaluations revealed
that emotional speeches converted by three-layered model
using new modification method, Fujisaki method can give
the intended impression to a much similar degree as than
the previous two-layered model in the emotion dimension.
And the mean opinion score of naturalness is about 3.2
above the average score 2.5 by subject evaluations which
is acceptable. Above all, a conclusion can be made that an
emotional conversion system utilizing three-layered model in
dimensional approach can achieve better quality synthesized
emotional speech than previous method.
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