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Abstract

This study aims to propose a formalization of a judge’s belief change in terms of
dynamic epistemic logic (DEL). Belief revision is an important concept for a judge to
decide if he/she will believe the received information or not. Reliability among witnesses
is usually considered to be a key issue for judgment. That is, when a judge receives a piece
of information from a witness, he/she has to decide if such witness is reliable or not. If the
judge considers such witness to be reliable, he/she will accept the received information. In
order to formalize this situation, we apply the notions of signed information and reliability
relation to represent an information source and its reliability, respectively. Furthermore,
the judge may change his/her reliability for the other witnesses, when he/she receives a
new piece of information from one of them. This process is called reliability change. This
shows that the connection between belief change and reliability change is an important
aspect. In order to capture changing of both belief and reliability, six dynamic operators
are proposed. Three operators including upgrade, downgrade and joint downgrade are
used to change the reliability of some agents with respect to a specific agent’s perspective.
That is, the upgrade operator is employed for making some agents more reliable, while
downgrade and joint downgrade operators are applied for downgrading all of them. Belief
change can be handled by private announcement, private permission and careful policy.
The first operator is used to remove some beliefs, while the second one is used to restore
the former beliefs. The careful policy aims to derive an agent’s belief from the received
signed information.

Since our goal of this study is to realize a judge’s changing of belief and reliability in
a judgment process by DEL, we need to consider two difficulties for applying DEL to a
legal case. First, since a key feature of DEL is that possibilities in an agent’s belief can
be represented by a Kripke model, our question is how we can construct the model from
a legal case. Second, since this study employs several dynamic operators, our question is
how we can decide which operators are to be applied for changing belief and reliability.
In order to solve these difficulties, we propose an analysis method and then implement a
computer system which provides two functions. First, the system can generate a Kripke
model from a legal case. Second, the system provides an inconsistency management policy
which can automatically perform several operations in order to reduce the effort needed
to decide which operators are to be applied. By our analysis method and implementation,
the above questions can be adequately solved. In addition, six legal cases are analyzed to
demonstrate our implementation.

Keywords: Belief change, Belief revision, Reliability change, Legal case, Judgment,
Dynamic epistemic logic
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Chapter 1

Introduction

1.1 Background and Motivation

In legal proceedings, a judge has to reconsider his/her belief in light of new evidence in
order to reach his/her own decision.1 That is, when a judge receives a piece of information,
he/she has to decide if he/she will believe the received information or not. This is the
same concept as belief revision which is a study of rationally revising beliefs in light of
new information. That is, if an agent considers the received information to be inconsistent
with his/her belief, he/she has to revise his/her belief. On the other hand, the agent will
accept and might believe the received information if it is considered to be consistent with
his/her belief. Let us briefly introduce an example taken from a legal case (the second
legal case in Appendix C).

“In the inquiry stage, two witnesses gave the statements to the police, and
then the defendant was decided to be guilty. After that, in the Youth Court,
those witnesses recanted their statements. Finally, the judge decided that the
defendant was innocent.”

This example shows that the judge gives firstly a decision, but after then, he/she
overturned the first. We could successfully depict this process by revising belief state
in multiple times. Although, a legal case can describe how a judge decides to changes
his/her decision by the reasoning process, it cannot describe how a judge changes his/her
belief. This process can be demonstrated by belief revision. Nowadays, belief revision is
one of the areas that has been studied widely in the context of artificial intelligence (AI)
such as in [1, 2, 3, 4, 5]. Dynamic epistemic logic (DEL) [6], which is a branch of modal
logic for studying belief change, has been applied to formalize belief revision such as in
[7, 8, 9, 10].

A key question of belief revision is how an agent decides which information he/she
should believe. A common criterion is to consider the reliability of an information source.
If the agent considers a source of received information to be reliable, he/she would accept
and might believe the received information. On the other hand, the agent may reject the
received information if he/she considers its source to be unreliable. Since a consideration
of reliability has a strong influence on a judge’s decision, the judge also needs a concept
of the reliability of an information source. That is, when the judge receives a piece of

1In this study, we suppose that a judge has not any mental problems. Although a judges mental
problem can affect his/her belief change and decision, it is difficult to find an example in a legal case.
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information from a witness, he/she should consider if the witness is reliable or not. In
addition, when the judge receives new information, he/she might change his/her reliability
ordering between the witnesses. This situation is called reliability change.

The reliability of an information source has been addressed by [11, 12, 13, 14]. Among
of them, Lorini et al. [13] introduced a modal framework for reasoning about signed
information. In their framework, an agent can keep track of the information source by
using a notion of signed information. They also considered the reliability relation over
information sources. However, Their works cannot capture any dynamics of reliability.
Therefore, the first motivation for this study is to overcome this limitation by addressing
the following question:

(Q1) How can we handle reliability change of an agent ?

Since logic can be used to clarify the meaning and soundness of reasoning, several
studies [15, 16, 17] have presented logical approaches in the legal systems. An application
of DEL to law was initially presented by [18]. They introduced a dynamic operator
representing an agent’s commitment for formalizing belief change of a judge. In their
work, the formalization provided only the process of removing accessible links for an
agent to believe an announced statement but did not include the process of restoring
links. In other words, their work only dealt with monotonic changes of an agent’s belief
but cannot cover non-monotonic changes of them. In order to handle non-monotonic
changes of an agent’s belief, we introduce a notion of belief re-revision which is not only
a sequence of multiple belief revisions but also a restoration of former beliefs. Therefore,
the second motivation for this study is addressed by the following question:

(Q2) How can we formalize belief re-revision of an agent ?

From [18], we found that there are two difficulties for applying DEL to a legal case:
First, since DEL provides a Kripke model which can be used to demonstrate possibilities, it
is required to construct such model. There are several ways for generating all possibilities
and representing them by a Kripke model. In the previous work, they proposed only
one way to construct the model for formalizing belief change of a judge in a judgment
process. However, since a legal case is full of variety, their method may not be suitable
for some legal cases. Thus, our question is how we can find a general way for constructing
the model. Second, the previous work proposed a logical operator in terms of DEL for
formalizing belief change of an agent. In addition to such operator, this study requires
the other dynamic operators for formalizing both belief re-revision and reliability of an
agent in order to satisfy the above questions (Q1) and (Q2). When there are several
dynamic operators, these operators can be applied in different ways, that is, different
sequences or combinations of such operators. Thus, our question is how such operators
are to be applied for changing an agent’s belief and/or reliability. For this reason, the
third motivation for this study is to solve these difficulties by addressing the following
questions:

(Q3) How can we construct a model from a legal case ?

(Q4) How can we decide which operators are to be applied for analyzing an agent’s
changing of belief and reliability ?

2



1.2 Former Formalisms

Non-monotonic reasoning is a viable tool for AI and can be described as a theory of rea-
soning. Human reasoning is non-monotonic because we have to draw conclusions from
our knowledge in our daily life. Thus far, default logic, predicate completion, circum-
scription, autoepistemic logic and so on have been proposed as non-monotonic logic in
[19, 20, 21]. Furthermore, argumentation theory or argumentation [22] has been used
to provide non-monotonic reasoning in law. In order to deal with the dynamics of such
human reasoning, two prominent formalisms based on non-monotonic reasoning including
defeasible logic and belief revision are discussed in this section.

1.2.1 Defeasible logic

Defeasible logic (DL) [23] is a simple and flexible non-monotonic formalism, based on
deductive reasoning. The goal of this logic is to derive plausible conclusions from the
knowledge base. There are five different kinds of features: facts, strict rules, defeasible
rules, defeaters and a superiority relation among rules. Strict rules cannot be defeated,
while defeasible rules can be defeated by the contrary evidence. Defeaters are rules that
cannot be used to draw any conclusions but to prevent some conclusions. Essentially,
the superiority relation provides the priority orderings between rules where one rule may
override the conclusion of another rule.

1.2.2 Belief revision

Belief revision [24] is a study of how an agent should revise his/her belief when he/she
receives new information without generating inconsistencies. Belief revision composes of
five basic operations, i.e., revision, contraction, expansion, consolidation and merging.
Contraction is an operation of removing some beliefs, while expansion aims to adding
beliefs without a consideration of inconsistency. The difference between revision and
merging operations can be described as follows: For revision, the new belief is considered
to be more reliable than the old ones. When there is an inconsistency, some old beliefs
are removed. For merging, the priority among the beliefs is considered to be the same.
However, revision can be performed by first incorporating the new belief and then restoring
the consistency by a consolidation operation. This can be considered as merging rather
than revision because the new belief is not always treated as more reliable than the old
ones.

1.2.3 Limitations

According to the above former formalisms, they cannot adequately handle belief re-
revision and reliability change of an agent because of the following limitations:

• Both of them do not provide a process of restoring the former beliefs. DL provides
only a process of retracting beliefs. Although belief revision provides a process of
revising belief including removing and adding beliefs, it cannot restore the former
beliefs. Therefore, both of them cannot deal with belief re-revision. In addition,
belief re-revision in our study is different from belief contraction into three aspects.
First, belief re-revision is formulated based on Kripke semantics in modal logic,

3



while belief contraction does not in Kripke semantics. Second, belief contraction
focuses on belief sets, while belief re-revision focuses on accessible links in Kripke
semantics. Third, belief contraction captures only a process of removing, while belief
re-revision covers processes of removing and adding.

• Both of them do not consider reliability change of an agent. Although DL and
belief revision consider the reliability by providing a concept of the priority, they
do not consider it in terms of dynamics. That is, the priority ordering in DL or the
reliability of beliefs in belief revision is static, i.e., it cannot be changed. Although
both of them can be used to realize reliability change, DEL has a clearer formal
semantics than DL and belief revision.

1.3 Research Methodology

This study aims to propose a logical formalization for analyzing belief change of an agent
by demonstrating in a judgment process. From Section 1.1, our motivation of this study
is addressed by the following questions:

(Q1) How can we handle reliability change of an agent ?

(Q2) How can we formalize belief re-revision of an agent ?

(Q3) How can we construct a model from a legal case ?

(Q4) How can we decide which operators are to be applied for analyzing an agent’s
changing of belief and reliability ?

In order to answer the above questions, this study requires three components as follows:

Logical tool for reliability change (in Chapter 3)

A goal of this part is to solve the first question (Q1). First, we formalize the reliability of
information sources by applying two notions. The first one is a notion of signed statement
which is used to represent a source of information, i.e., an agent. The second one is a
reliability relation between agents. Then, three operators including downgrade, upgrade
and joint downgrade are formulated for changing the grade of agents’ reliability. The
downgrade operator is used to downgrade some specified agents less reliable than other
agents in terms of the degree of reliability, while the upgrade operator is used for upgrad-
ing. Moreover, the joint downgrade operator is introduced to cover a different kind of
downgrading. A target of this operator is to make such agents in a specific group equally
reliable first and then downgrade them less reliable than the agents in the other groups.
In this study, we focus only on the reliability of agents but do not consider the reliability
of statements. In order to cover this limitation, it is required to state the first hypothesis
as follows:

(H1 ) When agent a receives statement ϕ from agent b, he/she has already decided if
statement ϕ is reliable or not. If agent a considers statement ϕ to be reliable, then
he/she believes that agent b who gives statement ϕ will be reliable.

4



Figure 1.1: Example of belief re-revision

Logical tool for belief re-revision (in Chapter 4)

In order to solve the second question (Q2), we introduce three dynamic logical operators
including private announcement, careful policy and private permission2 for formalizing
belief re-revision. In the conventional settings, belief revision simply abandons former
belief states and we cannot revive those former states in the later stage. In this study,
however, we intend to get back to the former states. Belief re-revision of an agent can
be handled by both private announcement and private permission operators as shown
in Fig. 1.1. That is, a judge first believes statements p and r. Then, when the judge
applies the private announcement operator for removing some beliefs, he/she will believe
only statement p. After that, the judge can restore the possibility of statement r by
employing the private permission. As a result, the judge will believe statements p and r
as in the initial stage. In addition, we require the careful policy for performing a process of
information aggregation. That is, when a judge receives several signed information from
witnesses, he/she needs an operation for switching from the received signed information
to beliefs. In order to satisfy our goal of this study, our logical formalization is constructed
by combining two logical tools for reliability change and belief re-revision. This logical
formalization will be used in the next part for analyzing an agent’s changing of belief and
reliability.

Dynamic logical analysis of legal cases (in Chapter 5)

This part aims to propose a method for analyzing a legal case by our logical formalization
as mentioned above. First, we introduce our proposed method for capturing how we
can analyze a judge’s changing of belief and reliability in a judgment process. There
are two main steps as follows: (1) constructing a model for analyzing a judge’s changing
of belief and reliability from a legal case, and (2) applying our dynamic operators for
formalizing belief re-revision and reliability change of agent. In the second step, we
propose an approach for applying our dynamic operators in Section 5.1. With the help of
this approach, we can decide which operators should be applied for analyzing a judge’s
changing of belief and reliability. That is, the fourth question (Q4) can be partially
solved. By this method and our logical formalization, we develop an implementation in a
computer system for realizing an agent’s changing of belief and reliability (in Appendix

2Permission in this study does not refer to an approval in a legal procedure, but an admission of a
possibility in beliefs.
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B). Our implementation provides two main functions as follows:

• The system can generate a model for analyzing a judge’s changing of belief and
reliability from a legal case by our proposed method in Section 5.1. This function
can solve the third question (Q3).

• The system can automatically perform an inconsistency management policy con-
sisting of three steps. First, when the system can detect that there is an agent
giving inconsistent statements, it will downgrade such agent less reliable than the
other agents by the joint downgrade operator because such agent is considered to
be unreliable. Second, the system will apply the private permission operators for
restoring the former beliefs. Third, if there is the received information which is not
inconsistent with the existing belief of an agent and is signed by the most reliable
agent, the system will apply the private announcement operator for admitting such
information. With this function and the application approach of dynamic operators
as mentioned above, we can solve the fourth question (Q4). In addition, this func-
tion can help an agent to reduce the effort to apply dynamic operators because the
system can perform some operators automatically instead of the agent.

From the above inconsistency management policy, the second hypothesis of reliability is:

(H2) When agent b gives inconsistent statements to agent a, he/she will be considered to
be unreliable from agent a’s perspective.

Consequently, we can analyze a judge’s changing of belief and reliability in a judgment
process by three components as mentioned above. In addition, we can investigate an
interaction between belief change and reliability change. That is, when a judge changed
his/her reliability ordering between some witnesses, he/she may change his/her beliefs
about information from those witnesses. This example demonstrates an effect of reliability
change on belief change. On the other hand, belief change may affect reliability change.

1.4 Thesis Structure

The rest of this thesis is organized as follows: Chapter 2 provides backgrounds and theories
of four logics including modal logic in Section 2.1, propositional dynamic logic (PDL) in
Section 2.2, dynamic epistemic logic (DEL) in Section 2.3 including public announcement
logic (PAL) in Section 2.3.1 and action models (AM) in Section 2.3.2, and logic for
signed information in Section 2.4. Next, our logical formalization for analyzing an agent’s
changing of belief and reliability is described in Chapters 3 and 4. Chapter 3 introduces
our logical tool for reliability change including two parts. First, the static logic of agents’
beliefs equipped with the notions of signed information and the reliability relation is stated
in Section 3.1. Second, three dynamic operators including downgrade, upgrade and joint
downgrade for capturing an agent’s changing of reliability ordering between agents are
presented in Section 3.2. Chapter 4 introduces our logical tool for belief re-revision of
an agent including three parts. First, an extension of the static logic of agents’ beliefs
from Section 3.1 is presented in Section 4.1. Second, three kinds of dynamic operators
including private announcement, careful policy and private permission for capturing belief
re-revision of an agent are presented in Section 4.2. Third, our logical formalism which is
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a combination of two logical tools for reliability change and belief re-revision is proposed
in Section 4.3. In Chapter 5, our proposed method for handling how to analyze a legal
case by our logical formalism is introduced in Section 5.1. With this method, six target
legal cases are analyzed by our logical formalization in Section 5.2. In this section, six
target legal cases are first summarized in Section 5.2.1, and then their analysis results are
presented in Section 5.2.2. From six target legal cases, an analysis process of the second
legal case is demonstrated in Section 5.2.3. Our analysis results are discussed in Section
5.2.4. Finally, Chapter 6 concludes this study and states our further directions.
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Chapter 2

Preliminaries

In this chapter, we first describe the technical details of three logics including modal
logic, propositional dynamic logic (PDL) and dynamic epistemic logic (DEL). In Section
2.1, modal logic is presented as an introduction to logical concepts and conventions used
throughout this study. Then, Section 2.2 states PDL which is a branch of modal logic
for reasoning about programs. After that, Section 2.3 provides DEL which is used for
studying changing of knowledge and belief. In this section, two kinds of logics including
public announcement logic (PAL) and action models (AM) are included. In each section,
we provide the Hilbert-style proof systems for each logic. Finally, we give an example of
modal framework for deriving an agent’s belief by a consideration of reliability relations
over information sources in Section 2.4. Since our first motivation of this study focuses
on the reliability of information sources (mentioned in Section 1), our logical formalism
is proposed based on this framework.

2.1 Modal Logic

Modal logic is extended from classical logic with new operators called modalities which
are used to model intensional notions such as necessity, possibility, belief, knowledge,
obligation and so on. An intuitive semantics of this logic is based on possible worlds
called Kripke semantics. This section presents a normal modal logic including the basic
language and its semantics. In addition, we provide the proof system for this logic.

2.1.1 Syntax and Kripke Semantics

Definition 1. A language LML consists of the following vocabulary: (i) a countably infinite
set Prop = { p, q, r, . . . } of propositional letters, (ii) Boolean connectives: ¬, →, and (iii)
a finite set Mod = {�,�′,�′′, . . . } of modal operators. A set FormML of formulas of LML

is inductively defined as follows:

FormML 3 A ::= p | ¬A | (A→ A) |�A

where p ∈ Prop and � ∈ Mod.

Note that the outer parentheses of a formula can normally be omitted. We say that ♦A
which is the duality of � is defined as ¬�¬A. The abbreviations for ∨, ∧, ↔, > and ⊥
are given in the following definition.
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Definition 2. Let A and B be any formulas in LML. The ordinary abbreviations for ∨,
∧, ↔, > and ⊥ can be defined as follows:

A ∨B := ¬A→ B A ∧B := ¬(A→ ¬B)
> := A→ A ⊥ := ¬>
A↔ B := (A→ B) ∧ (B → A)

We read �A as “it is necessary that A” and ♦A as “it is possible that A.” In order
to define the semantics of this language, we first specify a frame which is a relational
structure by the following definition.

Definition 3. A Kripke frame F is a pair (W, (R�)�∈Mod) where:

• W is a non-empty set of worlds or states, called the domain.

• R� ⊆ W ×W is an accessibility relation.

If F = (W, (R�)�∈Mod) is a frame, then we say “w is in F” to mean w ∈ W .

With the above definition, we can construct a Kripke model based on a frame as follows:

Definition 4. A Kripke model M is a tuple (F, V ), where F is a frame and V is a valuation
function. Therefore, the Kripke model M can be defined as M = (W, (R�)�∈Mod, V ) where:

• W is a non-empty set of worlds or states.

• R� ⊆ W ×W is an accessibility relation. We read wR�v as “world v is accessible
from world w.” We write wR�v for (w, v) ∈ R�.

• V : Prop→ P(W ) is a valuation function that specifies a truth value of propositional
letters at worlds in W . We say that V (p) is a set of worlds where p is true.

Definition 5. Given any model M, any state w ∈ W and any formula A, we define the
satisfaction relation M, w |= A inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬A iff M, w 6|= A
M, w |= A→ B iff M, w |= A implies M, w |= B
M, w |= �A iff for all v such that wR�v implies M, v |= A

We can define the validity of a formula by the following definition.

Definition 6. Let A be any formulas in LML. The notions of validity are defined as
follows:

• M |= A means that A is valid on a model M if M, w |= A for all worlds w ∈ W .

• F |= A means that A is valid on a frame F if (F, V ) |= A for all valuations V on F.

• M |= A means that A is valid on a class M of models if M |= A for all models
M ∈M.

• F |= A means that A is valid on a class F of frames if F |= A for all frames F ∈ F.

These validities correspond to various frame properties which are related to modal for-
mulas as in Table 2.1. A frame F = (W, (R�)�∈Mod) is called reflexive if its accessibility
relation R� is reflexive, and similarly for the other properties. For example, a frame
F |= �p→ p if and only if F is reflexive.
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Modal formula
Property of

relation
Frame condition

T� := �p→ p Reflexive wR�w for all w ∈ W
B� := p→ �♦p Symmetric wR�v implies vR�w for all w, v ∈ W
D� := �p→ ♦p Serial wR�v for all w ∈ W for some v ∈ W
4� := �p→ ��p Transitive wR�v and vR�u imply wR�u for all w, v, u ∈ W
5� := ♦p→ �♦p Euclidean wR�v and wR�u imply vR�u for all w, v, u ∈ W

Table 2.1: Five correspondences between modal formulas and frame properties

All instances of propositional tautologies
(K�) �(A→ B)→ (�A→ �B) (� ∈ Mod)
(MP) From A and A→ B, infer B
(Nec�) From A, infer �A (� ∈ Mod)

Table 2.2: Hilbert-style system HK for LML

2.1.2 Hilbert-style Axiomatization HK

The Hilbert-style system HK for LML is presented in Table 2.2. Note that K, MP and
Nec refer to a distribution axiom, modus ponens which is a rule of inference, and a
necessitation rule, respectively. In addition, we can construct the extensions of HK by
adding modal formulas from Table 2.1 as additional axioms as follows:

HT := {(K�), (T�) | � ∈ Mod}
HS4 := {(K�), (T�), (4�) | � ∈ Mod}
HS5 := {(K�), (T�), (5�) | � ∈ Mod}
HB := {(K�), (B�) | � ∈ Mod}
HD := {(K�), (D�) | � ∈ Mod}

From the above extensions of HK, we can define the Hilbert-style system HKΣ is an
axiomatic extension of HK. Then, we will show the proof of soundness and completeness
for HKΣ. Before describing the details of this proof, let us define a notion of derivability
(`) by the following definition.

Definition 7. Let Γ ∪ {A } ⊆ FormML. A derivation in HKΣ is a finite sequence of
formulas such that each of them is either an axiom of HKΣ or a result derived by a rule
of HKΣ to preceding formulas. A formula A is derivable in HKΣ (denoted `HKΣ A) if
A is the last formula of a derivation in HKΣ. We can write `HKΣ A to mean that A is
a theorem of HKΣ. Then, A is derivable from Γ in HKΣ (denoted Γ `HKΣ A) if there
is some finite Γ′ ⊆ Γ such that `HKΣ (

∧
Γ′)→ A.

Then, the soundness theorem is given as follows:

Theorem 1 (Soundness). Let FΣ be the class of all frames in Table 2.1 and MΣ be the
class of models such that MΣ := {(F, V ) | F ∈ FΣ and V is a valuation V on F}. For all
A ∈ FormML,

if `HKΣ A, then MΣ |= A.
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From the above theorem, we will prove that if a formula A is a theorem of HKΣ, then A is
valid on all models in a class MΣ according to the semantics. This proof is straightforward.
Therefore, we will move to the completeness proof by considering the reverse direction.
That is, the completeness proof aims to prove that if a formula A is valid on all models
in a class MΣ, then A is a theorem of HKΣ. We will show this proof by contraposition.
That is, if a formula A is not a theorem of HKΣ, then A is not valid on some model in
MΣ. Thus, it suffices to find a counter model M such that a formula A is false at some
state of M, i.e., M, w |= ¬A. This model can be called canonical model. In order to
construct this canonical model, we need to define the maximally consistent set which is
used as the set of states in the canonical model as follows:

Definition 8. Let Γ ⊆ FormML. We say that Γ is HKΣ-inconsistent if Γ `HKΣ ⊥. Γ is
a maximally HKΣ-consistent set (or HKΣ-MCS, in short) iff

(i) Γ is HKΣ-consistent if Γ is not HKΣ-inconsistent, i.e., Γ 6`HKΣ ⊥.

(ii) Γ is maximal if A ∈ Γ or ¬A ∈ Γ for all formulas A ∈ FormML.

Lemma 1 (Lindenbaum). Given any HKΣ-consistent set Γ, there exists an HKΣ-MCS
Γ+ such that Γ ⊆ Γ+.

Then, we can define the properties of the maximally consistent as follows:

Proposition 9. If Γ be an HKΣ-MCS, then the following hold.

(i) Γ `HKΣ A iff A ∈ Γ.

(ii) if A ∈ Γ and `HKΣ A→ B, then B ∈ Γ.

(iii) ¬A ∈ Γ iff A 6∈ Γ.

(iv) A→ B ∈ Γ iff A ∈ Γ implies B ∈ Γ.

(v) if �A 6∈ Γ, then {¬A } ∪ {B | �B ∈ Γ } 6`HKΣ ⊥.

With the help of all the above structures, we can define the canonical model as follows:

Definition 10. For any HKΣ, the canonical model for HKΣ: MHKΣ =
(WHKΣ, (RHKΣ

� )�∈Mod, V
HKΣ) is defined as follows:

• WHKΣ := {Γ | Γ is an HKΣ-MCS }, i.e., WHKΣ is a set of all HKΣ-MCSs.

• ΓRHKΣ
� ∆ iff �A ∈ Γ implies A ∈ ∆ for all formulas A.

• Γ ∈ V HKΣ(p) iff p ∈ Γ.

By the properties of the maximally consistent set in Proposition 9, we can prove the
following Truth Lemma.

Lemma 2 (Truth). Let Γ be any HKΣ-MCS. For all A ∈ FormML,

MHKΣ,Γ |= A iff A ∈ Γ.

By the above canonical model, we can define the following lemma.
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Lemma 3. Given the canonical model MHKΣ = (WHKΣ, (RHKΣ
� )�∈Mod, V

HKΣ),

ΓRHKΣ
� ∆ iff A ∈ ∆ implies ♦A ∈ Γ for all formulas A.

In order to show that HKΣ is complete with respect to MΣ, we need to show that the
canonical model MHKΣ satisfies the following constraints.

Lemma 4. Given the canonical model MHKΣ = (WHKΣ, (RHKΣ
� )�∈Mod, V

HKΣ),

(i) If `HKΣ �A→ A for all formulas A, then RHKΣ
� is reflexive.

(ii) If `HKΣ A→ �♦A for all formulas A, then RHKΣ
� is symmetric.

(iii) If `HKΣ �A→ ♦A for all formulas A, then RHKΣ
� is serial.

(iv) If `HKΣ �A→ ��A for all formulas A, then RHKΣ
� is transitive.

(v) If `HKΣ ♦A→ �♦A for all formulas A, then RHKΣ
� is Euclidean.

Now, we can provide the completeness proof for HKΣ as follows:

Theorem 2 (Completeness). Let FΣ be the class of all frames in Table 2.1 and MΣ be
the class of models such that MΣ := {(F, V ) | F ∈ FΣ and V is a valuation V on F}. For
all A ∈ FormML,

if MΣ |= A, then `HKΣ A.

Proof. By contraposition. Suppose 6`HKΣ A. Our goal is to show MΣ 6|= A. It suffices to
find a counter model M such that M, w 6|= A for some w of M. By our supposition, we
obtain that {¬A } is an HKΣ-consistent set, i.e., {¬A } 6`HKΣ ⊥. By Lemma 1, there
exists an HKΣ-MCS Γ such that {¬A } ⊆ Γ, i.e., ¬A ∈ Γ. By Lemma 2, we obtain that
MHKΣ,Γ |= ¬A, i.e., MHKΣ,Γ 6|= A. Finally, we need to show that the canonical model
MHKΣ belongs to MΣ. That is, it suffices to show that MHKΣ satisfies the properties of
all frames in MΣ. This is shown by Lemma 4.

2.2 Propositional Dynamic Logic

Propositional dynamic logic (PDL) [25] describes the interaction between programs and
propositions. In this section, we will present two kinds of PDL including basic PDL and
PDL without iteration. The later version of PDL will be used for building the dynamic
logic of relation changers in Section 4.1.

2.2.1 Syntax and Kripke Semantics

This section provides two languages LPDL for PDL and LPDL− for PDL without iteration.
Let us first define LPDL by the following definition.

Definition 11. A language LPDL consists of the following vocabulary: (i) a countably
infinite set Prop = { p, q, r, . . . } of propositional letters,(ii) a countably infinite set AP =
{ a, b, c, . . . } of atomic programs, (iii) Boolean connectives: ¬, →, (iv) program operators:
∪ (non-deterministic choice), ; (sequential composition), ∗ (iteration), and (v) mixed
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π; π′ : first execute π, then execute π′.
π ∪ π′ : choose either π or π′ nondeterministically and execute it.
A? : test A; proceed if true, fail if false.
π∗ : execute π a nondeterministically chosen finite number of times

(zero or more).
[π]A : it is necessary that after executing π, A is true.

Table 2.3: Examples of logical formalization of LPDL

operators: ? (test), [·] (necessity). A set FormPDL of formulas A of LPDL and a set Prog
of programs π of LPDL are inductively defined as follows:

FormPDL 3 A ::= p | ¬A | (A→ A) | [π]A

Prog 3 π ::= a |π ∪ π |π; π |A? | π∗

where p ∈ Prop and a ∈ AP.

The intuitive readings of formulas are shown in Table 2.3. The abbreviations for ∨,
∧, ↔, > and ⊥ can be defined in the same way as in Definition 2. In addition, the dual
operator 〈π〉 of [π] is defined by 〈π〉A := ¬[π]¬A. Before giving the semantics, let us
define the language LPDL− for PDL without iteration. Based on the above definition,
LPDL− is LPDL which does not contain the iteration operator ∗, and FormPDL− is FormPDL

which does not contain [π∗]A. Next, the semantics of PDL can be defined by the following
definitions.

Definition 12. A Kripke model M is a tuple M = (W, (Rπ)π∈Prog, V ), where

• W is a non-empty set of states, called the domain,

• Rπ ⊆ W ×W is an accessibility relation for program π,

• V : Prop→ P(W ) is a valuation.

Definition 13. Given any model M, any state w ∈ W and any formula A, we define the
satisfaction relation M, w |= A inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬A iff M, w 6|= A
M, w |= A→ B iff M, w |= A implies M, w |= B
M, w |= [π]A iff M, v |= A for all v such that wRπv,

where Rπ can be defined as follows:

Rπ∪π′ = Rπ ∪Rπ′

= { (w, v) | wRπv or wRπ′v }
Rπ;π′ = Rπ ◦Rπ′

= { (w, v) | wRπu and uRπ′v for some u ∈ W }
RA? = { (w, v) | w = v and M, v |= A }
Rπ∗ = (Rπ)∗

= { (w, v) | wRπnv for some 0 6 n },

where πn can be defined as π0 = >? and πn+1 = π; πn.

We can define the notions of validity in the same way as in Definition 6.

13



All instances of propositional tautologies
(K[π]) [π](A→ B)→ ([π]A→ [π]B)
(RA1) [π ∪ π′]A↔ [π]A ∧ [π′]A
(RA2) [π; π′]A↔ [π][π′]A
(RA3) [B?]A↔ (B → A)
(RA4) A ∧ [π][π∗]A↔ [π∗]A
(Ind) A ∧ [π∗](A→ [π]A)→ [π∗]A
(MP) From A and A→ B, infer B
(Nec[π]) From A, infer [π]A

Table 2.4: Hilbert-style system HPDL for LPDL

2.2.2 Hilbert-style Axiomatization HPDL

Table 2.4 presents the Hilbert-style system HPDL of LPDL. Note that RA refers to recur-
sion axioms. We can construct the Hilbert-style system HPDL− of LPDL− by removing
axioms (RA4) and (Ind) from HPDL. Since LPDL− will be used in this study (in Section
4.1), we will focus on the proof of soundness and completeness for HPDL− that is similar
to the proof for HKΣ in Section 2.1.2. Therefore, we first define a derivation in HPDL−

in the same manner as in Definitions 7. As a result, we obtain that A is a theorem of
HPDL−, denoted `HPDL− A. Next, we will show the soundness proof as follows:

Theorem 3 (Soundness). Let M be the class of all models. For all A ∈ FormPDL−,

if `HPDL− A, then M |= A.

By the above theorem, HPDL− is sound if all axioms in HPDL− are valid and all the
inference rules in HPDL− preserve validity. This is straightforward. For the completeness
proof for HPDL−, we use the same manner in Section 2.1.2 as the following steps. First,
we will define a maximally HPDL−-consistent set HPDL−-MCS by Definitions 8. Then,
we will give the following lemma.

Lemma 5 (Lindenbaum). Given any HPDL−-consistent set Γ, there exists an HPDL−-
MCS Γ+ such that Γ ⊆ Γ+.

Next, the properties of HPDL−-MCS are defined by the following proposition.

Proposition 14. Let Γ be an HPDL−-MCS. Then, the following hold.

(i) Γ `HPDL− A iff A ∈ Γ.

(ii) if A ∈ Γ and `HPDL− A→ B, then B ∈ Γ.

(iii) ¬A ∈ Γ iff A 6∈ Γ.

(iv) A→ B ∈ Γ iff A ∈ Γ implies B ∈ Γ.

(v) if [π]A 6∈ Γ, then {¬A } ∪ {B | [π]B ∈ Γ } 6`HPDL− ⊥.

(vi) [π ∪ π′]A ∈ Γ iff [π]A ∈ Γ and [π′]A ∈ Γ.
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(vii) [π; π′]A ∈ Γ iff [π][π′]A ∈ Γ.

(viii) [B?]A ∈ Γ iff (B → A) ∈ Γ.

By the above preparation, the canonical model for HPDL− is constructed by the following
definition.

Definition 15. The canonical model MHPDL− = (WHPDL− , (RHPDL−

π )π∈Prog, V
HPDL−)

for any HPDL− is defined by:

• WHPDL− := {Γ | Γ is an HPDL−-MCS }.

• ΓRHPDL−

π ∆ iff [π]A ∈ Γ implies A ∈ ∆ for all formulas A.

• Γ ∈ V HPDL−(p) iff p ∈ Γ.

Lemma 6 (Truth). Let Γ be any HPDL−-MCS. The following is true for all A ∈
FormPDL− and all π ∈ Prog:

(i) MHPDL− ,Γ |= A iff A ∈ Γ.

(ii) RHPDL−

π = QHPDL−

π , where ΓQHPDL−

π ∆ iff [π]A ∈ Γ implies A ∈ ∆ for all A.

Now, we are ready to provide the completeness proof for HPDL− as follows:

Theorem 4 (Completeness). Let M be the class of all models. For all A ∈ FormPDL−,

if M |= A, then `HPDL− A.

Proof. We demonstrate the proof by contrapositive implication. Suppose that 6`HPDL− A.
Our goal is to show M 6|= A. It suffices to find a counter model M such that M, w 6|= A for
some w of M. By our supposition, we obtain that {¬A } is an HPDL−-consistent set, i.e.,
{¬A } 6`HPDL− ⊥. By Lemma 5, there exists an HPDL−-MCS Γ such that {¬A } ⊆ Γ,
i.e., ¬A ∈ Γ. By Lemma 6, we obtain that MHPDL− ,Γ |= ¬A, i.e., MHPDL− ,Γ 6|= A, as
desired.

2.3 Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) is used to cover an extension of epistemic logic by adding
dynamic modalities for expressing changing of knowledge and belief. In order to formalize
such changes, this study focuses on two kinds of models including epistemic models by
using public announcement logic (PAL) and action models (AM).

2.3.1 Public Announcement Logic

Public announcement logic (PAL) which is the first and the simplest version of DEL and is
employed to numerous applications. PAL [26] is used to describe the dynamics of agents’
informational states when true information is publicly announced.
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Syntax and Kripke Semantics

Definition 16. Let G be a finite set of agents. A language LPAL consists of the following
vocabulary: (i) a countably infinite set Prop = { p, q, r, . . . } of propositional letters, (ii)
Boolean connectives: ¬, →, (iii) knowledge operators [Ka] (a ∈ G), and (iv) public an-
nouncement operators [!A]. A set FormPAL of formulas of LPAL is inductively defined as
follows:

FormPAL 3 A ::= p | ¬A | (A→ A) | [Ka]A | [!A]A

where p ∈ Prop and a ∈ G. The outer parentheses of a formula will normally be omitted.

The intuitive reading of [Ka]A is “agent a knows that A” and [!A]B is read as “after
the truthful announcement that A, B holds.” The abbreviations for ∨, ∧, ↔, > and ⊥
can be defined as in Definition 2. In addition, the dual operator 〈Ka〉 of [Ka] is defined by
〈Ka〉A := ¬[Ka]¬A. Next, the semantics for this language can be defined by the following
definition.

Definition 17. A Kripke model M is a tuple M = (W, (Ra)a∈G, V ), where

• W is a non-empty set of states, called the domain,

• Ra ⊆ W ×W is an accessibility relation for agent a,

• V : Prop→ P(W ) is a valuation.

Definition 18. Given any model M, any state w ∈ W and any formula A, we define the
satisfaction relation M, w |= A inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬A iff M, w 6|= A
M, w |= A→ B iff M, w |= A implies M, w |= B
M, w |= [Ka]A iff for all v such that wRav implies M, v |= A
M, w |= [!A]B iff M, w |= A implies M!A, w |= B,

where M!A = (W ′, (R′a)a∈G, V
′) is defined by:

W ′ := {w ∈ W |M, w |= A }
R′a := Ra ∩ (W ′ ×W ′)
V ′(p) := V (p) ∩W ′

According to the above semantics, the updated model M!A can be interpreted as a model
which deletes the states where A is false. The notions of validity can be defined similarly
as in Definition 6.

Hilbert-style Axiomatization HPAL

The Hilbert-style system HPAL for LPAL is presented in Table 2.5. Note that (T[Ka]),
(4[Ka]) and (5[Ka]) are called truth, positive introspective and negative introspective axioms,
respectively. In order to prove soundness and completeness for HPAL, we first define a
derivation in HPAL in the same manner as in Definition 7 in Section 2.1.2. Then, the
completeness proof for HPAL can be captured by a translation method as in [27].
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All instances of propositional tautologies
(K[Ka]) [Ka](A→ B)→ ([Ka]A→ [Ka]B)
(T[Ka]) [Ka]A→ A
(4[Ka]) [Ka]A→ [Ka][Ka]A
(5[Ka]) ¬[Ka]A→ [Ka]¬[Ka]A
(RA1) [!A]p↔ (A→ p)
(RA2) [!A]¬B ↔ (A→ ¬[!A]B)
(RA3) [!A]B → C ↔ ([!A]B → [!A]C)
(RA4) [!A][Ka]B ↔ (A→ [Ka][!A]B)
(RA5) [!A][!B]C ↔ [A ∧ [!A]B]C
(MP) From A and A→ B, infer B
(Nec[Ka]) From A, infer [Ka]A

Table 2.5: Hilbert-style system HPAL for LPAL

Definition 19. The translation t : FormPAL → FormML is defined as follows:

t(p) = p
t(¬A) = ¬t(A)
t(A→ B) = t(A)→ t(B)
t([Ka]A) = [Ka]t(A)
t([!A]p) = t(A→ p)
t([!A]¬B) = t(A→ ¬[!A]B)
t([!A](B → C)) = t([!A]B → [!A]C)
t([!A][Ka]B) = t(A→ [Ka][!A]B)
t([!A][!B]C) = t([!(A ∧ [!A]B)]C)

Lemma 7. For all formulas A ∈ FormPAL,

`HPAL A↔ t(A).

Theorem 5 (Soundness). Let FPAL be the class of frames such that FPAL := {T[Ka], 4[Ka],
5[Ka] | a ∈ G and [Ka] ∈ Mod} and MPAL be the class of models such that MPAL :=
{(F, V ) | F ∈ FPAL and V is a valuation V on F}. For all A ∈ FormPAL,

if `HPAL A, then MPAL |= A.

Proof. Suppose that `HPAL. Our goal is to show that MPAL |= A for all A. It suffices to
show that all axioms and all rules in HPAL are valid on all models in a class MPAL with
respect to the semantics of LPAL. This is straightforward.

Theorem 6 (Completeness). Let FPAL be the class of frames such that FPAL := {T[Ka],
4[Ka], 5[Ka] | a ∈ G and [Ka] ∈ Mod} and MPAL be the class of models such that MPAL :=
{(F, V ) | F ∈ FPAL and V is a valuation V on F}. For all A ∈ FormPAL,

if MPAL |= A, then `HPAL A.

Proof. Suppose that MPAL |= A. Our goal is to show `HPAL A for all formulas A. By the
soundness theorem (Theorem 5) and Lemma 7, we obtain that MPAL |= A ↔ t(A). By
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this and our supposition, we get MPAL |= t(A). Since the formula t(A) does not contain
any announcement operators, we can reduce the completeness of HPAL to that of HS5
(Theorem 2 in Section 2.1.2). Therefore, we obtain `HS5 t(A) by the completeness of
HS5 (Theorem 2). Since HS5 is a sub system of HPAL, we have that `HPAL t(A). By
this and Lemma 7, we obtain `HPAL A, as desired.

2.3.2 Action Models

From PAL in Section 2.3.1, agents do not know whether some actions happened or not.
In order to capture this situation, Baltag et al. [28] introduced relational structures called
action models (AM) to model actions or events.

Syntax and Kripke Semantics

Definition 20. Let G be a finite set of agents and S be a finite set of action points.
A language LAM consists of the following vocabulary: (i) a countably infinite set Prop
= { p, q, r, . . . } of propositional letters, (ii) Boolean connectives: ¬, →, (iii) knowledge
operators [Ka] (a ∈ G), and (iv) a pointed action model (M, s) with s ∈ S. An S5 action
model M is a tuple M = (S, (∼a)a∈G, pre), where S is a non-empty set of action points,
∼a is an equivalence relation on S, and pre : S → LAM is a preconditions function that
assigns a formula pre(s) ∈ LAM to each action s ∈ S. A set FormAM of formulas of LAM

is inductively defined as follows:

FormAM 3 A ::= p | ¬A | (A→ A) | [Ka]A | [M, s]A

where p ∈ Prop, a ∈ G and s ∈ S. The outer parentheses of a formulas will normally be
omitted.

We read [Ka]A as “agent a knows that A” and [M, s]A as “after an action s happens, A
holds.” We can define the abbreviations for ∨, ∧, ↔, > and ⊥ as in Definition 2. Before
giving the semantics of this language, let us define the composition of two action models.

Definition 21. Let M = (S, (∼a)a∈G, pre) and M′ = (S′, (∼′a)a∈G, pre′) be two action
models. Then, the composition of (M;M′) is a tuple (S′′, (∼′′a)a∈G, pre′′) such that

S′′ = S× S′

(s, s′) ∼′′a (t, t′) iff s ∼a t and s′ ∼′a t′
pre′′((s, s′)) = pre(s) ∧ [M, s]pre′(s′)

In order to define the Kripke semantics, a Kripke model M = (W, (Ra)a∈G, V ) is
constructed in the same way as in Definition 17 of PAL.

Definition 22. Given any model M, any state w ∈ W and any formula A, we define the
satisfaction relation M, w |= A inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬A iff M, w 6|= A
M, w |= A→ B iff M, w |= A implies M, w |= B
M, w |= [Ka]A iff for all v such that wRav implies M, v |= A
M, w |= [M, s]A iff M, w |= pre(s) implies M⊗M, (w, s) |= A,
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All instances of propositional tautologies
(K[Ka]) [Ka](A→ B)→ ([Ka]A→ [Ka]B)
(T[Ka]) [Ka]A→ A
(4[Ka]) [Ka]A→ [Ka][Ka]A
(5[Ka]) ¬[Ka]A→ [Ka]¬[Ka]A
(RA1) [M, s]p↔ (pre(s)→ p)
(RA2) [M, s]¬A↔ (pre(s)→ ¬[M, s]A)
(RA3) [M, s](A→ B)↔ ([M, s]A→ [M, s]B)
(RA4) [M, s][Ka]A↔ (pre(s)→

∧
s∼at[Ka][M, t]A)

(RA5) [M, s][M′, s′]A↔ [(M, s); (M′, s′)]A
(MP) From A and A→ B, infer B
(Nec[Ka]) From A, infer [Ka]A

Table 2.6: Hilbert-style system HAM for LAM

where (w, s) is the updated state of M⊗M and M⊗M = (W ′, (R′a)a∈G, V
′) is defined by:

W ′ := { (w, s) ∈ W × S |M, w |= pre(s) }
(w, s)R′a(v, t) iff wRav and s ∼a t
(w, s) ∈ V ′(p) iff w ∈ V (p)

A formula A is valid in a model M if M, w |= A for all states w of M.

According to the above semantics, M⊗M is called the product update model which is the
updated model by a product update mechanism.

Hilbert-style Axiomatization HAM

Table 2.6 presents the Hilbert-style system HAM for LAM . The proof of soundness and
completeness for HAM can be captured by a similar argument in Section 2.3.1. First,
we use the same manner in Section 2.1.2 (Definition 7) to define a derivation in HAM.
Then, we provide the following translation.

Definition 23. The translation t : FormAM → FormML is defined as follows:

t(p) = p
t(¬A) = ¬t(A)
t(A→ B) = t(A)→ t(B)
t([Ka]A) = [Ka]t(A)
t([M, s]p) = t(pre(s)→ p)
t([M, s]¬A) = t(pre(s)→ ¬[M, s]A)
t([M, s](A→ B)) = t([M, s]A→ [M, s]B)
t([M, s][Ka]A) =

∧
s∼at t(pre(s)→ [Ka][M, t]A)

t([M, s][M′, s′]A) = t([M, s;M′, s′]A)

Lemma 8. Given any formula A ∈ FormAM ,

`HAM A↔ t(A).
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Theorem 7 (Soundness). Let FAM be the class of frames such that FAM := {T[Ka], 4[Ka],
5[Ka] | a ∈ G and [Ka] ∈ Mod} and MAM be the class of models such that MAM :=
{(F, V ) | F ∈ FAM and V is a valuation V on F}. For all A ∈ FormAM ,

if `HAM A, then MAM |= A.

Proof. Suppose that `HAM. Our goal is to show that MAM |= A for all A. It suffices to
show that all axioms and all rules in HAM are valid on all models in a class MAM with
respect to the semantics of LAM . This is straightforward.

Theorem 8 (Completeness). Let FAM be the class of frames such that FAM := {T[Ka],
4[Ka], 5[Ka] | a ∈ G and [Ka] ∈ Mod} and MAM be the class of models such that MAM :=
{(F, V ) | F ∈ FAM and V is a valuation V on F}. For all A ∈ FormAM ,

if MAM |= A, then `HAM A.

Proof. Suppose that MAM |= A. Our goal is to show `HAM A for all formulas A. By the
soundness theorem (Theorem 7) and Lemma 8, we obtain that MAM |= A↔ t(A). By this
and our supposition, we get MAM |= t(A). Since the formula t(A) does not contain any
action models, we can reduce the completeness of HAM to that of HS5 (Theorem 2 in
Section 2.1.2). Therefore, we obtain `HS5 t(A) by the completeness of HS5 (Theorem 2).
Since HS5 is a sub system of HAM, we have that `HAM t(A). By this and Lemma 8,
we obtain `HAM A, as desired.

2.4 Logic for Signed Information

This section presents a logical framework proposed by Lorini et al. [13] for formalizing
an agent’s belief based on signed information. First, they provide the notions of an
agent’s belief, a signed statement and a reliability relation. Then, they propose two ways
for constructing an agent’s belief from static and dynamic perspectives. From a static
perspective, they apply policies for aggregating signed information. The tell-action is
introduced for capturing a process of belief construction from a dynamic perspective. In
this section, we simplify their framework by removing the universal quantifier for agents.
This is because we realized that most of the ideas in [13] are done without quantifiers for
agents when a set of agents is finite, i.e., the universal quantifier for a finite domain is just
reduced to the conjunction of finite conjuncts. This idea will be applied for constructing
our logical formalism in Chapter 3.

2.4.1 Formal Framework for Beliefs, Signatures and Preferences

Firstly, we give a language LBSP for formalizing beliefs, signatures and preferences. There
are three notions including belief and signature operators, and reliability orderings. The
first modal operator represents agents’ beliefs, while the second one is used to repre-
sent signed statements for handling sources of information. An agent’s preference over
information sources is represented by a notion of reliability orderings.

Definition 24. Let G be a finite set of agents. The language LBSP consists of the follow-
ing vocabulary: (i) a finite set Prop = { p, q, r, . . . } of propositional letters, (ii) Boolean
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connectives: ¬, →, (iii) the belief operators Bel(a, ·) (a ∈ G), (iv) the signature operators
Sign(a, ·) (a ∈ G), and (v) the constants for reliability ordering a 6 b (a, b ∈ G). A set
FormBSP of formulas of LBSP is inductively defined as follows:

FormBSP 3 ϕ ::= p | ¬ϕ |ϕ→ ϕ |Bel(a, ϕ) | Sign(a, ϕ) | a 6 b,

where p ∈ Prop and a, b ∈ G.

From the above definition, we read Bel(a, ϕ) as “agent a believes that ϕ”, Sign(a, ϕ) as
“agent a signs statement ϕ,” and b 6 c as “agent b is at least as reliable as agent c.” For
the reliability orderings, we can define by the following notions: b < c stands for agent b
is strictly more reliable than agent c, i.e., (b 6 c) ∧ ¬(c 6 b), and b ≈ c which stands for
agents b and c are equally reliable can be defined as (b 6 c) ∧ (c 6 b). The abbreviations
for ∨, ∧, ↔, > and ⊥ can be defined as in Definition 2. The semantics of this language
is given by the following definitions.

Definition 25. A Kripke model M is a tuple M = (W, (Ba)a∈G, (Sa)a∈G,4, V ), where:

• W is a non-empty set of possible states.

• Ba ⊆ W ×W is an accessibility relation representing beliefs.

• Sa ⊆ W ×W is an accessibility relation representing signatures.

• 4 is a function which maps from W to P(G × G) representing reliability ordering
between agents.

• V is a function of the propositional letters with respect to each possible state.

Definition 26. Given any model M, any state w ∈ W and any formula ϕ, we define the
satisfaction relation M, w |= ϕ inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ→ ψ iff M, w |= ϕ implies M, w |= ψ
M, w |= a 6 b iff (a, b) ∈4 (w)
M, w |= Sign(a, ϕ) iff M, v |= ϕ for all v such that (w, v) ∈ Sa
M, w |= Bel(a, ϕ) iff M, v |= ϕ for all v such that (w, v) ∈ Ba

A formula ϕ is valid in a model M if M, w |= ϕ for all states w of M.

Hilbert-style Axiomatization HBSP

The Hilbert-style system HBSP for LBSP is presented in Table 2.7. This table states
the axioms and inference rules for belief and signature operators and reliability orderings.
Belief operators follow K45 logic, while signature operators follow KD45 logic. We can
regard both belief and signature operators as a K45 operator which means that Ba and
Sa are transitive and euclidean. The axiom (DS) means that Sa are serial, that is, a
signature has to be consistent. However, the axiom D cannot hold for belief operators
because of the tell-action which is described in Section 2.4.2. For reliability orderings
4, it is a total preorder between agents because it is reflexive (by (R6)), transitive (by
(Tr6)) and comparable (by (T6)). In addition, the axiom (To6) means that 4 has to be
believed as total. Based on [13], the proof of soundness and completeness for HBSP can
be provided by Theorem 9.
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All instances of propositional tautologies
(KB) Bel(a, ϕ→ ψ)→

(
Bel(a, ϕ)→ Bel(a, ψ)

)
(4B) Bel(a, ϕ)→ Bel(a,Bel(a, ϕ))
(5B) ¬Bel(a, ϕ)→ Bel(a,¬Bel(a, ϕ))
(KS) Sign(a, ϕ→ ψ)→

(
Sign(a, ϕ)→ Sign(a, ψ)

)
(DS) Sign(a, ϕ)→ ¬Sign(a,¬ϕ)
(4S) Sign(a, ϕ)→ Sign(a, Sign(a, ϕ))
(5S) ¬Sign(a, ϕ)→ Sign(a,¬Sign(a, ϕ))
(R6) a 6 a
(Tr6) (a 6 b ∧ b 6 c)→ a 6 c
(T6) a 6 b ∨ b 6 a
(To6) Bel(a, b 6 c) ∨ Bel(a, c 6 b)
(MP) From ϕ and ϕ→ ψ infer ψ
(NecS) From ϕ infer Sign(a, ϕ)
(NecB) From ϕ infer Bel(a, ϕ)

Table 2.7: Hilbert-style system HBSP for LBSP

Theorem 9 (Completeness [13]). Let MBSP be the class of models where Ba satisfies
the properties of transitivity and Euclideanness, Sa satisfies the properties of seriality,
transitivity and Euclideanness, and 4 satisfies the properties of reflexivity, transitivity
and totality as shown in Table 2.7. For all ψ ∈ FormBSP ,

MBSP |= ψ iff `HBSP ψ.

2.4.2 Logical Tools for Formalizing Belief based on Signed In-
formation

This section describes two ways for formalizing an agent’s belief based on signed infor-
mation. The first way provides policies of information aggregation for constructing an
agent’s belief from a static point of view. The second way focuses a dynamic perspective
by proposing a tell-action in a similar way to private announcements in DEL.

Information Aggregation

Lorini et al. [13] introduced several policies, as meta-logical principles, in order to decide
which pieces of signed information an agent should believe. A common and rational
policy is called a careful policy that will be used in Chapter 4. An idea of this policy is to
accept, as beliefs, the statements which are universally signed by a group of agents who
are equally reliable. Before providing the details of the careful policy, let us describe how
to rank agents.

From Section 2.4.1, since the reliability orderings 4 is a total preorder, agents can be
ranked by giving a partition (Ci) as follows: Let (Ci)i≤M to G be a partition, where M
is a natural number representing the maximum rank (such M always exists because G is
finite). We define (Ci)i≤M inductively as follows. First, C1 which stands for “a group of
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agents which is the most reliable” can be defined by the following formula:

c ∈ C1 :=
∧

b∈G
(c 6 b),

where we recall that G is a finite set of agents and a, b, c ∈ G. Then, we can rank the
group of agents Ci such that i > 1 as follows:

c ∈ Ci :=

(( ∧
1≤j≤i−1

¬(c ∈ Cj)

)
∧
(∧
b∈G

(( ∧
1≤j≤i−1

¬(b ∈ Cj)
)
→ (c 6 b)

)))
.

This implies that all agents in Ci are equally reliable, and if i <N j then c < b for all
agents c ∈ Ci and b ∈ Cj. Note that c ∈ Ci is read as “a rank of agent c is i.” From
the above definition, we obtain that agents who are equally reliable are categorized in the
same group. Next, we define Sign(Ci, ϕ) which stands for “all agents who are in Ci sign
statement ϕ” by the following definition.

Sign(Ci, ϕ) :=
∧

c∈Ci

(
Sign(c, ϕ)

)
After that, the careful policy is given by the following definition.

Careful(a, ϕ) :=
∨

i≤M

(
Bel
(
a, Sign(Ci, ϕ)

)
∧

Bel
(
a,
∧

1≤j≤i−1¬Sign(Cj,¬ϕ)
))→ Bel(a, ϕ),

where M is the maximum natural number of {i ≤ #G | Cai 6= ∅} and Careful(a, ϕ) can be
read as “agent a aggregates information about ϕ by the careful policy.”

Tell Action

In the previous section, the careful policy is stated for deriving an agent’s belief from a
static point of view. Let us consider a dynamic perspective by introducing a notion of
tell-action [Tell(b, a, ϕ)] (whose reading is “agent b tells to agent a that ϕ is true”). An
underlying idea of tell-action is that agent b privately tells ϕ to agent a, that is, the other
agents than a would not notice this action. As a result, only agent a would change his/her
belief by ϕ but the other agents than a would not change their beliefs. After [Tell(b, a, ϕ)],
agent a believes that agent b signs ϕ as the following proposition.

Proposition 27 (Successful Telling [13]). [Tell(b, a, ϕ)]Bel
(
a, Sign(b, ϕ)

)
is valid on all

models M.

This proposition is an essential aspect of the tell-action. That is, after agent b tells to
agent a information ϕ, agent a believes that agent b signs ϕ. After that, agent a might
believe that ϕ if he/she considers agent b to be reliable based on the aggregation policy
as mentioned in the previous section.

Definition 28. Given a Kripke model M = (W, (Bc)c∈G, (Sc)c∈G,4, V ), a semantic clause
for [Tell(b, a, ϕ)] on M and w ∈ W is defined as follows:

M, w |= [Tell(b, a, ϕ)]ψ iff MTell(b,a,ϕ), w′ |= ψ,

where MTell(b,a,ϕ) = (W ∗, (B∗c )c∈G, (S
∗
c )c∈G,4

∗, V ∗) is defined by:
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Figure 2.1: Update operation of [Tell(b, a, p)]

• W ∗ := W ′ ∪W ′′ such that W ′ = {w′ | w ∈ W } and W ′′ = {w′′ | w ∈ W }.

• B∗a = { (w′, v′) | (w, v) ∈ Ba and M, v |= Sign(b, ϕ) } ∪ { (w′′, v′′) | (w, v) ∈ Ba }.

• B∗c = { (w′, v′′) | (w, v) ∈ Bc } ∪ { (w′′, v′′) | (w, v) ∈ Bc } (for all c ∈ G such that
c 6= a).

• S∗c = { (w′, v′) | (w, v) ∈ Sc } ∪ { (w′′, v′′) | (w, v) ∈ Sc } (for all c ∈ G).

• 4∗ (w′) = 4∗ (w′′) = 4 (w).

• w′ ∈ V ∗(p) iff w ∈ V (p) and w′′ ∈ V ∗(p) iff w ∈ V (p).

From the above definition, the process of the tell-action can be demonstrated by Fig. 2.1.
The concept of this process consists of two steps. First, all states w ∈ W are duplicated
in W ′ and W ′′. Second, the set of possible belief states of agent a is restricted to W ′

representing agent a’s belief after [Tell(b, a, p)]. In order to capture the private action, we
add the links representing relations Bc for the other agents except agent a from W ′ to
W ′′ in order to represent that the other agents than agent a do not change their beliefs
after [Tell(b, a, p)]. Fig. 2.1 illustrates that when agent b tells to agent a information p
([Tell(b, a, p)]), agent a will believe Sign(b, p) by removing all the links from state w0 into
the states where Sign(b, p) is false. That is, state w2 should not be a possible belief state
for agent a that is represented by state w′2. However, belief change of agent a should have
no influence on agent c’s belief. That is, we should keep state w2 as a possible belief state
for agent a that is represented by state w′′2 . Thus, agent c does not change his/her belief
after [Tell(b, a, p)]. Note that the agents’ signatures and the reliability orderings between
agents will not be affected by the tell-action. That is, S∗c and 4∗ are full copies of initial
Sc and 4. We define LBSPT which is an extension of LBSP by adding [Tell(b, a, ϕ)]. A set
of formulas of LBSPT is denoted as FormBSPT .

Table 2.8 presents the Hilbert-style system HBSPT for LBSPT . An axiom (TB6=)
means that after [Tell(b, a, ϕ)], the other agents than agent a would not change their
beliefs. The axioms (TS) and (T6) describe the permanence of agents’ signatures and the
reliability orderings between agents. Based on [13], the soundness and completeness for
HBSPT can be proved by Theorem 10.
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All axioms and rules of HSP
(Tatom) [Tell(b, a, ϕ)]p ↔ p
(T¬) [Tell(b, a, ϕ)]¬ψ ↔ ¬[Tell(b, a, ϕ)]ψ
(T∧) [Tell(b, a, ϕ)](ψ1 → ψ2) ↔ ([Tell(b, a, ϕ)]ψ1 → [Tell(b, a, ϕ)]ψ2)
(TB) [Tell(b, a, ϕ)]Bel(a, ψ) ↔ Bel(a, (Sign(b, ϕ)→ [Tell(b, a, ϕ)]ψ))
(TB 6=) [Tell(b, a, ϕ)]Bel(c, ψ) ↔ Bel(c, ψ) (c 6= a)
(TS) [Tell(b, a, ϕ)]Sign(c, ψ) ↔ Sign(c, ψ)
(T6) [Tell(b, a, ϕ)](a 6 b) ↔ a 6 b
(NecT) From ψ, infer [Tell(b, a, ϕ)]ψ

Table 2.8: Hilbert-style system HBSPT for LBSPT

Theorem 10 (Completeness [13]). Let MBSP be the class of models where Ba satisfies
the properties of transitivity and Euclideanness, Sa satisfies the properties of seriality,
transitivity and Euclideanness, and 4 satisfies the properties of reflexivity, transitivity
and totality as shown in Table 2.7. For all ψ ∈ FormBSPT ,

MBSP |= ψ iff `HBSPT ψ.
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Chapter 3

Logical Tool for Reliability Change

This chapter provides a formal tool for handling reliability change of an agent from a
logical point of view. First, Section 3.1 presents the logic of agents’ beliefs based on
the modal framework proposed by Lorini et al. [13] as mentioned in Section 2.4. An
information source is formalized by a notion of singed statement and its reliability is
represented by a notion of reliability ordering. However, our logical formalism is different
from Lorini’s framework [13] in three aspects. First, the universal quantifier for agents
is not introduced (mentioned in Section 2.4). Second, the notion of reliability ordering
is relativized to a specific agent (described in Section 3.1). Third, the careful policy
and the tell-action in [13] can be captured in terms of dynamic operator by the private
announcement which is our dynamic operator for formalizing belief re-revision of an agent
that will be described in Chapter 4. By this logic, three dynamic operators consisting of
upgrade, downgrade and joint downgrade are formulated in Section 3.2. A target of these
operators is to change the reliability of the other agents from a specific agent’s perspective.
With these operators, we can demonstrate how a judge changes his/her reliability ordering
between witnesses.

3.1 Static Logic of Agents’ Beliefs for Signed Infor-

mation

In this section, we introduce a language LBSR in order to formalize an agent’s belief, signed
information and the reliability of information sources. This language can be defined in a
similar way to LBSP as mentioned in Section 2.4.

3.1.1 Syntax and Semantics

Definition 29. Let G be a fixed finite set of agents. The language LBSR consists of
the following vocabulary: (i) a countably infinite set Prop = { p, q, r, . . . } of propositional
letters, (ii) Boolean connectives: ¬, →, (iii) the belief operators Bel(a, ·) (a ∈ G), (iv)
the signature operators Sign(a, ·) (a ∈ G), and (v) the constants for reliability orderings
b 6a c (a, b, c ∈ G). A set FormBSR of formulas of LBSR is inductively defined as follows:

FormBSR 3 ϕ ::= p | ¬ϕ |ϕ→ ϕ |Bel(a, ϕ) | Sign(a, ϕ) | b 6a c,

where p ∈ Prop and a, b, c ∈ G.
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Bel(a, ϕ) : agent a believes that ϕ.
Sign(a, ϕ) : agent a signs statement ϕ.
Sign(a, Sign(b, ϕ)) : agent a signs statement that

agent b signs statement ϕ.
b 6a c : from agent a’s perspective,

agent b is at least as reliable as agent c.
Bel
(
a, Sign(b, ϕ)

)
: agent a believes that agent b signs statement ϕ.

Bel
(
a, b 6a c

)
: agent a believes that from agent a’s perspective,

agent b is at least as reliable as agent c.

Table 3.1: Examples of static logical formalization of LBSR

The intuitive readings of the above formulas are presented in Table 3.1. We can de-
fine the abbreviations for ∧, ∨, ↔, > and ⊥ as in Definition 2 in Section 2.1. Let us
describe two important operators, i.e., signature and belief. First, signature operators are
information sources by a notion of signed information. For example, Sign(a, ϕ) represents
information ϕ is given by agent a. This allows us to keep track of information sources.
From Table 3.1, Bel

(
a, Sign(b, ϕ)

)
can be interpreted by the context of information gath-

ering in the judicial process as follows: When witness b gives information ϕ to judge a,
judge a cannot believe that such witness tells the truth. That is, judge a cannot believe
information ϕ, but judge a can believe that witness b signs or provides information ϕ.

This language LBSR is different from LBSP of [13] in Section 2.4 in at least two
respects. First, we do not introduce the universal quantifier for agents (mentioned in
Section 2.4) because we realized that the use of universal quantifier over agents in [13]
is redundant. Second, we relativize the notion of reliability ordering 6 to each agent.
In order to analyze our example from a logical perspective, we need to formalize belief
change of a judge of the Court and we regard that belief change is induced by reliability
change. However, there is no need for us to change the reliability ordering of the other
agents other than the judge of the court. This is why we propose the notion of reliability
ordering between agents depending on a particular agent’s perspective.

Definition 30. A model M is a tuple M = (W, (Ra)a∈G, (Sa)a∈G, (4a)a∈G, V ), where

• W is a non-empty set of states, called the domain,

• Ra ⊆ W ×W is an accessibility relation representing beliefs,

• Sa ⊆ W ×W is an accessibility relation representing signatures,

• 4a is a function which maps from W to P(G×G) representing agent a’s reliability
ordering between agents,

• V : Prop→ P(W ) is a valuation.

In what follows, we simply write b 4wa c for (b, c) ∈4a (w). Following [13], 4wa is
always required to be a total preordering between agents, i.e., 4wa is reflexive (b 4wa b for
all b), transitive (b 4wa c and c 4wa d jointly imply b 4wa d for all b, c, d), and comparable
(for any b and c, b 4wa c or c 4wa b). For any binary relation X on W and any state
w ∈ W , we write X(w) to mean { v ∈ W | (w, v) ∈ X }.
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Figure 3.1: Kripke model representing a relationship between belief and signature states

Definition 31. Given any model M, any state w ∈ W and any formula ϕ, we define the
satisfaction relation M, w |= ϕ inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ→ ψ iff M, w |= ϕ implies M, w |= ψ
M, w |= b 6a c iff b 4wa c
M, w |= Sign(a, ϕ) iff M, v |= ϕ for all v such that wSav
M, w |= Bel(a, ϕ) iff M, v |= ϕ for all v such that wRav

A formula ϕ is valid in a model M if M, w |= ϕ for all states w of M.

Example 32. Fig. 3.1 illustrates how agent a can build his/her belief using information
which is signed by two agents (i.e., b and c) and their reliability. Signed statements can
be represented by one relation S per source of information. For example, Sb represents
that agent b signs statement p or ¬p. From Fig. 3.1, the semantics of belief and signature
operators, and reliability ordering can be described as follows:

• The semantics of signature operators can be described as follows: Following Sb from
state w1, statement p holds at state w5. Thus, Sign(b, p) is true at state w1.

• We can describe the semantics of belief operators as follows: In order to check if
Bel
(
a, Sign(b, p)

)
is true or not, we need to check that Sign(b, p) is true at all states

that have Ra from state w0. Following Ra from state w0, Sign(b, p) is true at states
w1 and w3. Therefore, we obtain that Bel

(
a, Sign(b, p)

)
is true at state w0.

• For the semantics of the reliability orderings, 4wa represents the reliability ordering
of agent a is specific to each state w as shown in Fig. 3.1. For example, b <a c is
true at state w0, while c ≈a b is true at states w2 and w4. This means that “from
agent a’s perspective, agent b is more reliable than agent c at state w0, while agents
b and c are equally reliable at states w2 and w4.”
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All instances of propositional tautologies
(KB) Bel(a, ϕ→ ψ)→ (Bel(a, ϕ)→ Bel(a, ψ))
(KS) Sign(a, ϕ→ ψ)→ (Sign(a, ϕ)→ Sign(a, ψ))
(R6a) b 6a b
(Tr6a) (b 6a c ∧ c 6a d)→ b 6a d
(To6a) b 6a c ∨ c 6a b
(MP) From ϕ and ϕ→ ψ, infer ψ
(NecB) From ϕ, infer Bel(a, ϕ)
(NecS) From ϕ, infer Sign(a, ϕ)

Table 3.2: Hilbert-style system HBSR for LBSR

By using the total preordering 4wa , we can rank agents in a similar way to the idea of
[13] mentioned in Section 2.4 but use a notion Cai instead of Ci as follows:

c ∈ Ca1 :=
∧

b∈G
(c 6a b),

where Ca1 stands for “a group of agents which is the most reliable from a’s perspective,”
and we recall that G is a finite set of agents and a, b, c ∈ G. Then, we can rank the group
of agents Cai such that i > 1 as follows:

c ∈ Cai :=

(( ∧
1≤j≤i−1

¬(c ∈ Caj )

)
∧
(∧
b∈G

(( ∧
1≤j≤i−1

¬(b ∈ Caj )
)
→ (c 6a b)

)))
.

This implies that all agents in Cai are equally reliable, and if i <N j then c <a b for
all agents c ∈ Cai and agent b ∈ Caj . This means that we relativize the notion Cai to a
specific agent a because our notion of reliability ordering 6a depends on agent a. This
point differs from the framework in Section 2.4 that does not consider Ci with respect to
a specific agent.

3.1.2 Hilbert-style Axiomatization HBSR

The Hilbert-style system HBSR for LBSR is presented in Table 3.2. For the reliability
orderings, we regard that 4a is a total preordering between agents, i.e., 4a is reflexive (by
(R6a)), transitive (by (Tr6a)) and comparable (by (To6a)). From Lorini’s framework [13]
mentioned in Section 2.4, Sa has three properties of relations including serial, transitive
and Euclidean. That is, we ensures that an agent never signs a contradiction (due to
the serial property of Sa) and has both positive and negative introspection of his/her
signed information (due to the transitive and Euclidean properties of Sa). However, in
this study, there is no need to assume these properties of Sa for agents in a legal case. For
example, a witness first gave statement p in the inquiry stage, but after then he/she gave
statement ¬p in the court. Thus, the judge came to notice that the witness gave both
p and ¬p. This example shows that the witness in a legal case can sign a contradiction.
For belief operators Bel(a, ·), we suppose that Ra has no properties of relations because
of the private announcement and the private permission (described in Section 4.2.3). In
this study, the properties of Ra and Sa are supposed in a different way from Lorini’s
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framework [13] (in Section 2.4). Since HBSR is regarded as an extension of HKΣ, the
proof of soundness and completeness can be captured in a similar way as in Section 2.1.2.
First, a derivation in HBSR and a maximally HBSR-consistent set HBSR-MCS are
defined in the same manner as in Definitions 7 and 8, respectively.

Lemma 9 (Lindenbaum). Given any HBSR-consistent set Γ, there exists an HBSR-
MCS Γ+ such that Γ ⊆ Γ+.

Then, the canonical model for HBSR is constructed by the following definition.

Definition 33. The canonical model for HBSR: MHBSR =
{WHBSR, (RHBSR

a )a∈G, (S
HBSR
a )a∈G, (4HBSR

a )a∈G, V
HBSR} is defined by:

• WHBSR := {Γ | Γ is an HBSR-MCS }.

• ΓRHBSR
a ∆ iff Bel(a, ψ) ∈ Γ implies ψ ∈ ∆ for all formulas ψ.

• ΓSHBSR
a ∆ iff Sign(a, ψ) ∈ Γ implies ψ ∈ ∆ for all formulas ψ.

• b 4Γ
a c iff b 6a c ∈ Γ.

• Γ ∈ V HBSR(p) iff p ∈ Γ.

Next, we can show the following equivalence as in Lemma 2.

Lemma 10 (Truth). Let Γ be any HBSR-MCS. For all ψ ∈ FormBSR,

MHBSR,Γ |= ψ iff ψ ∈ Γ.

Theorem 11 (Soundness). Let MBSR be the class of all models where 4a satisfies the
properties of reflexivity, transitivity and totality as shown in Table 3.2. For all ψ ∈
FormBSR,

if `HBSR ψ, then MBSR |= ψ.

Since the soundness proof is to show the validity of recursion axioms of HBSR that is
straightforward, we will focus on the completeness proof.

Theorem 12 (Completeness). Let MBSR be the class of all models where 4a satisfies
the properties of reflexivity, transitivity and totality as shown in Table 3.2. For all ψ ∈
FormBSR,

if MBSR |= ψ, then `HBSR ψ.

Proof. The proof is by contrapositive implication. Suppose that 6`HBSR ψ. Our goal is
to show MBSR 6|= ψ. It suffices to find a counter model M such that M, w 6|= ψ for some
w of M. By our supposition, we obtain that {¬ψ } is an HBSR-consistent set, i.e.,
{¬ψ } 6`HBSR ⊥. By Lemma 9, there exists an HBSR-MCS Γ such that {¬ψ } ⊆ Γ,
i.e., ¬ψ ∈ Γ. By Lemma 10, we obtain that MHBSR,Γ |= ¬ψ, i.e., MHBSR,Γ 6|= ψ, as
desired.

3.2 Dynamic Operators for Reliability Change

This section provides three dynamic logical operators including upgrade, downgrade and
joint downgrade for changing a reliability ordering between agents from a particular
agent’s perspective. The first operator is used to upgrade some agents more reliable,
while the two later operators are used to downgrade some agents less reliable.
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Figure 3.2: Model for upgrading by [H ⇑aϕ]

3.2.1 Upgrade

This section introduces an upgrade operator [H ⇑aϕ], where H ⊆ G is a set of agents. Our
goal of this operator is to change the reliability of some specific agents to be more reliable.
We can read [H ⇑aϕ]ψ as “after agent a upgraded such agents who sign statement ϕ in
H, ψ holds.” Semantically speaking, [H ⇑aϕ] makes such agents who sign ϕ in H more
reliable than all the other agents.

Before giving the detailed semantics, let us demonstrate the effects of [H ⇑aϕ] by figures.
Firstly, we assume that a rectangle G of Fig. 3.2(i) represents a fixed finite set of agents.
Secondly, we will select a specified set of agents in order to change their reliability ordering
that can be represented by a rectangle H, and we assume that b1 ≈a b2 <a c1 ≈a c2 holds,
i.e., agents b1 and b2 which are equally reliable are more reliable than agents c1 and c2

which are equally reliable from agent a’s perspective. In this sense, b1, b2, c1 and c2

are situated as in Fig. 3.2(i). Then, if we focus on agents who sign statement ϕ, H is
divided into two equal vertical parts by Sign(x, ϕ) as in Fig. 3.2(ii), namely by the set
{x ∈ H |M, w |= Sign(x, ϕ)} and the set {x ∈ H |M, w |= ¬Sign(x, ϕ)}. Next, if agent a
upgrades all the agents signing statement ϕ in H, we upgrade all of them more reliable
than the other agents as in Fig.3.2(iii). Based on this idea, the semantics of [H ⇑aϕ] is
given by the following definition.

Definition 34. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4d)d∈G, V ), a semantic
clause for [H ⇑aϕ] on M and w ∈ W is defined by:

M, w |= [H ⇑aϕ]ψ iff MH⇑aϕ , w |= ψ,

where MH⇑aϕ = (W, (Ra)a∈G, (Sa)a∈G, (4′d)d∈G, V ) and 4′d is defined as: for all u ∈ W :

• if d 6= a, we put 4′ud = 4ud.
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• otherwise (if d = a), we define b 4′ua c iff(
b, c ∈ H and M, u |= Sign(b, ϕ) ∧ Sign(c, ϕ) and b 4ua c

)
or(

b, c ∈ (G \H) ∪ {x ∈ H |M, u |= ¬Sign(x, ϕ)} and b 4ua c
)

or(
c ∈ (G \H) ∪ {x ∈ H |M, u |= ¬Sign(x, ϕ)} and b ∈ H and M, u |= Sign(b, ϕ)

)
.1

Note the upgrade operator can preserve the property of total preordering of (4d)d∈G.

Proposition 35 (Recursive Validities). The following are valid on all models. Moreover,
if ψ is valid on all models, then [H ⇑aϕ]ψ is also valid on all models.

[H ⇑aϕ]p ↔ p
[H ⇑aϕ] (b 6d c) ↔ b 6d c (d 6= a)
[H ⇑aϕ] (b 6a c) ↔ b 6a c (b, c ∈ G \H)
[H ⇑aϕ] (b 6a c) ↔

(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

Sign(b, ϕ) ∧ ¬Sign(c, ϕ)
)

(b, c ∈ H)
[H ⇑aϕ] (b 6a c) ↔ ¬Sign(c, ϕ) ∧ (b 6a c) (c ∈ H, b ∈ G \H)
[H ⇑aϕ] (b 6a c) ↔ Sign(b, ϕ) ∨

(
¬Sign(b, ϕ) ∧ (b 6a c)

)
(b ∈ H, c ∈ G \H)

[H ⇑aϕ]¬ψ ↔ ¬[H ⇑aϕ]ψ
[H ⇑aϕ] (ψ1 → ψ2) ↔ [H ⇑aϕ]ψ1 → [H ⇑aϕ]ψ2

[H ⇑aϕ]Sign(b, ψ) ↔ Sign(b, [H ⇑aϕ]ψ)
[H ⇑aϕ]Bel(b, ψ) ↔ Bel(b, [H ⇑aϕ]ψ)

Proof. Our goal is to show that all axioms are valid with respect to the semantics of
[H ⇑aϕ] (defined in Definition 34) that is straightforward. We will show only the proof of
five axioms of reliability ordering as follows:

Case (d 6= a):
[H ⇑aϕ] (b 6d c)↔ b 6d c

Suppose that d 6= a. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H ⇑aϕ] (b 6d c) iff M, w |= b 6d c.

From M, w |= [H ⇑aϕ] (b 6d c),

M, w |= [H ⇑aϕ] (b 6d c) iff MH⇑aϕ , w |= b 6d c iff b 4′wd c iff b 4wd c iff M, w |= b 6d c

Case (b, c ∈ G \H):
[H ⇑aϕ] (b 6a c)↔ b 6a c

Suppose that b, c ∈ G \H. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H ⇑aϕ] (b 6a c) iff M, w |= b 6a c.

From M, w |= [H ⇑aϕ] (b 6a c),

M, w |= [H ⇑aϕ] (b 6a c) iff MH⇑aϕ , w |= b 6a c iff b 4′wa c iff b 4wa c iff M, w |= b 6a c

1Also in this case, since there is no relation between agents b and c, b 4ua c is omitted.
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Case (b, c ∈ H):

[H ⇑aϕ] (b 6a c)↔
(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

Sign(b, ϕ) ∧ ¬Sign(c, ϕ)
)

Suppose that b, c ∈ H. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= (b 6a c) iff M, w |=
(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

Sign(b, ϕ) ∧ ¬Sign(c, ϕ)
)
.

From M, w |= [H ⇑aϕ] (b 6a c),

M, w |= [H ⇑aϕ] (b 6a c) iff MH⇑aϕ , w |= b 6a c

iff b 4′wa c

iff
(
M, w |= Sign(b, ϕ) ∧ Sign(c, ϕ) and b 4wa c

)
or(

M, w |= ¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) and b 4wa c
)

or(
M, w |= ¬Sign(c, ϕ) and M, w |= Sign(b, ϕ)

)
iff
(
M, w |= Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
or(

M, w |= ¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)

or(
M, w |= ¬Sign(c, ϕ) ∧ Sign(b, ϕ)

)
iff M, w |=

(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

¬Sign(c, ϕ) ∧ Sign(b, ϕ)
)

Case (c ∈ H, b ∈ G \H):

[H ⇑aϕ] (b 6a c)↔ ¬Sign(c, ϕ) ∧ (b 6a c)

Suppose that c ∈ H, b ∈ G \ H. Fix any model M and any state w ∈ W . It suffices to
show:

M, w |= [H ⇑aϕ] (b 6a c) iff M, w |= ¬Sign(c, ϕ) ∧ (b 6a c).

From M, w |= [H ⇑aϕ] (b 6a c),

M, w |= [H ⇑aϕ] (b 6a c) iff MH⇑aϕ , w |= b 6a c

iff b 4′wa c

iff M, w |= ¬Sign(c, ϕ) and b 4wa c

iff M, w |= ¬Sign(c, ϕ) ∧ (b 6a c)

Case (b ∈ H, c ∈ G \H):

[H ⇑aϕ] (b 6a c)↔ Sign(b, ϕ) ∨
(
¬Sign(b, ϕ) ∧ (b 6a c)

)
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Figure 3.3: Model for downgrading by [H ⇓aϕ]

Suppose that b ∈ H, c ∈ G \ H. Fix any model M and any state w ∈ W . It suffices to
show:

M, w |= [H ⇑aϕ] (b 6a c) iff M, w |= Sign(b, ϕ) ∨
(
¬Sign(b, ϕ) ∧ (b 6a c)

)
.

From M, w |= [H ⇑aϕ] (b 6a c),

M, w |= [H ⇑aϕ] (b 6a c) iff MH⇑aϕ , w |= b 6a c

iff b 4′wa c

iff M, w |= Sign(b, ϕ) or
(
M, w |= ¬Sign(b, ϕ) and b 4wa c

)
iff M, w |= Sign(b, ϕ) or

(
M, w |= ¬Sign(b, ϕ) ∧ (b 6a c)

)
iff M, w |= Sign(b, ϕ) ∨

(
¬Sign(b, ϕ) ∧ (b 6a c)

)

3.2.2 Downgrade

This section propose a downgrade operator [H ⇓aϕ], where H ⊆ G is a set of agents.
This operator aims at changing the reliability of some specific agents to be less reliable.
[H ⇓aϕ]ψ can be read as “after agent a downgraded such agents who sign statement ϕ
in H, ψ holds.” Semantically speaking, [H ⇓aϕ] makes such agents who sign ϕ in H less
reliable than all the other agents.

Before giving the detailed semantics, let us demonstrate the effects of [H ⇓aϕ] by figures.
Firstly, we assume that a rectangle G of Fig. 3.3(i) represents a fixed finite set of agents.
Secondly, we will select a specified set of agents in order to change their reliability ordering
that can be represented by a rectangle H, and we assume that b1 ≈a b2 <a c1 ≈a c2 holds,
i.e., agents b1 and b2 which are equally reliable are more reliable than agents c1 and c2

which are equally reliable from agent a’s perspective. In this sense, b1, b2, c1 and c2

are situated as in Fig. 3.3(i). Then, if we focus on agents who sign statement ϕ, H is
divided into two equal vertical parts by Sign(x, ϕ) as in Fig. 3.3(ii), namely by the set
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{x ∈ H |M, w |= Sign(x, ϕ)} and the set {x ∈ H |M, w |= ¬Sign(x, ϕ)}. Next, if agent a
downgrades all the agents signing statement ϕ in H, we downgrade all of them less reliable
than the other agents as in Fig.3.3(iv). Based on this idea, the semantics of [H ⇓aϕ] is
given by the following definition.

Definition 36. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4d)d∈G, V ), a semantic
clause for [H ⇓aϕ] on M and w ∈ W is defined by:

M, w |= [H ⇓aϕ]ψ iff MH⇓aϕ , w |= ψ,

where MH⇓aϕ = (W, (Ra)a∈G, (Sa)a∈G, (4′d)d∈G, V ) and 4′d is defined as: for all u ∈ W :

• if d 6= a, we put 4′ud = 4ud.

• otherwise (if d = a), we define b 4′ua c iff(
b, c ∈ H and M, u |= Sign(b, ϕ) ∧ Sign(c, ϕ) and b 4ua c

)
or(

b, c ∈ (G \H) ∪ {x ∈ H |M, u |= ¬Sign(x, ϕ)} and b 4ua c
)

or(
b ∈ (G \H) ∪ {x ∈ H |M, u |= ¬Sign(x, ϕ)} and c ∈ H and M, u |= Sign(c, ϕ)

)
.2

Note that downgrade operator can preserve the property of total preordering of (4d)d∈G.

Proposition 37 (Recursive Validities). The following are valid on all models. Moreover,
if ψ is valid on all models, then [H ⇓aϕ]ψ is also valid on all models.

[H ⇓aϕ]p ↔ p
[H ⇓aϕ] (b 6d c) ↔ b 6d c (d 6= a)
[H ⇓aϕ] (b 6a c) ↔ b 6a c (b, c ∈ G \H)
[H ⇓aϕ] (b 6a c) ↔

(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

¬Sign(b, ϕ) ∧ Sign(c, ϕ)
)

(b, c ∈ H)
[H ⇓aϕ] (b 6a c) ↔ Sign(c, ϕ) ∨

(
¬Sign(c, ϕ) ∧ (b 6a c)

)
(c ∈ H, b ∈ G \H)

[H ⇓aϕ] (b 6a c) ↔ ¬Sign(b, ϕ) ∧ (b 6a c) (b ∈ H, c ∈ G \H)
[H ⇓aϕ]¬ψ ↔ ¬[H ⇓aϕ]ψ
[H ⇓aϕ] (ψ1 → ψ2) ↔ [H ⇓aϕ]ψ1 → [H ⇓aϕ]ψ2

[H ⇓aϕ]Sign(b, ψ) ↔ Sign(b, [H ⇓aϕ]ψ)
[H ⇓aϕ]Bel(b, ψ) ↔ Bel(b, [H ⇓aϕ]ψ)

Proof. Our goal is to show that all axioms are valid with respect to the semantics of
[H ⇓aϕ] (defined in Definition 36) that is straightforward. We will show only the proof of
five axioms of reliability ordering as follows:

Case (d 6= a):
[H ⇓aϕ] (b 6d c)↔ b 6d c

Suppose that d 6= a. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H ⇓aϕ] (b 6d c) iff M, w |= b 6d c.

2In this case, since there is no relation between agents b and c, b 4ua c is omitted.
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From M, w |= [H ⇓aϕ] (b 6d c),

M, w |= [H ⇓aϕ] (b 6d c) iff MH⇓aϕ , w |= b 6d c iff b 4′wd c iff b 4wd c iff M, w |= b 6d c

Case (b, c ∈ G \H):
[H ⇓aϕ] (b 6a c)↔ b 6a c

Suppose that b, c ∈ G \H. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H ⇓aϕ] (b 6a c) iff M, w |= b 6a c.

From M, w |= [H ⇓aϕ] (b 6a c),

M, w |= [H ⇓aϕ] (b 6a c) iff MH⇓aϕ , w |= b 6a c iff b 4′wa c iff b 4wa c iff M, w |= b 6a c

Case (b, c ∈ H):

[H ⇓aϕ] (b 6a c)↔
(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

¬Sign(b, ϕ) ∧ Sign(c, ϕ)
)

Suppose that b, c ∈ H. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= (b 6a c) iff M, w |=
(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

¬Sign(b, ϕ) ∧ Sign(c, ϕ)
)
.

From M, w |= [H ⇓aϕ] (b 6a c),

M, w |= [H ⇓aϕ] (b 6a c) iff MH⇓aϕ , w |= b 6a c

iff b 4′wa c

iff
(
M, w |= Sign(b, ϕ) ∧ Sign(c, ϕ) and b 4wa c

)
or(

M, w |= ¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) and b 4wa c
)

or(
M, w |= ¬Sign(b, ϕ) and M, w |= Sign(c, ϕ)

)
iff
(
M, w |= Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
or(

M, w |= ¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)

or(
M, w |= ¬Sign(b, ϕ) ∧ Sign(c, ϕ)

)
iff M, w |=

(
Sign(b, ϕ) ∧ Sign(c, ϕ) ∧ (b 6a c)

)
∨(

¬Sign(b, ϕ) ∧ ¬Sign(c, ϕ) ∧ (b 6a c)
)
∨(

¬Sign(b, ϕ) ∧ Sign(c, ϕ)
)

Case (c ∈ H, b ∈ G \H):

[H ⇓aϕ] (b 6a c)↔ Sign(c, ϕ) ∨
(
¬Sign(c, ϕ) ∧ (b 6a c)

)
Suppose that c ∈ H, b ∈ G \ H. Fix any model M and any state w ∈ W . It suffices to
show:

M, w |= [H ⇓aϕ] (b 6a c) iff M, w |= Sign(c, ϕ) ∨
(
¬Sign(c, ϕ) ∧ (b 6a c)

)
.
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From M, w |= [H ⇓aϕ] (b 6a c),

M, w |= [H ⇓aϕ] (b 6a c) iff MH⇓aϕ , w |= b 6a c

iff b 4′wa c

iff M, w |= Sign(c, ϕ) or
(
M, w |= ¬Sign(c, ϕ) and b 4wa c

)
iff M, w |= Sign(c, ϕ) or

(
M, w |= ¬Sign(c, ϕ) ∧ (b 6a c)

)
iff M, w |= Sign(c, ϕ) ∨

(
¬Sign(c, ϕ) ∧ (b 6a c)

)
Case (b ∈ H, c ∈ G \H):

[H ⇓aϕ] (b 6a c)↔ ¬Sign(b, ϕ) ∧ (b 6a c)

Suppose that b ∈ H, c ∈ G \ H. Fix any model M and any state w ∈ W . It suffices to
show:

M, w |= [H ⇓aϕ] (b 6a c) iff M, w |= ¬Sign(b, ϕ) ∧ (b 6a c).

From M, w |= [H ⇓aϕ] (b 6a c),

M, w |= [H ⇓aϕ] (b 6a c) iff MH⇓aϕ , w |= b 6a c

iff b 4′wa c

iff M, w |= ¬Sign(b, ϕ) and b 4wa c

iff M, w |= ¬Sign(b, ϕ) ∧ (b 6a c)

3.2.3 Joint Downgrade

From Section 3.2.2, when a judge considers a witness to be unreliable, he/she downgrades
such witness less reliable than other witnesses by the downgrade operator [H ⇓aϕ]. Nev-
ertheless, this downgrade operator cannot be applied in some cases. For example, when
judge j receives inconsistent statements from the first witness w1, he/she considers w1

to be unreliable and then downgrades w1 less reliable than other witnesses. Next, if the
second witness w2 gives inconsistent statements, j also downgrades w2 less reliable than
other witnesses. As a result, w2 is less reliable than w1. In fact, j cannot determine if the
reliability of w2 is less than w1 or not. The judge only believes that w2 is as unreliable as
w1, i.e., both w1 and w2 should be equally reliable.

For this reason, we introduce a new kind of downgrade operator, namely joint down-
grade. The joint downgrade operator [H �a] allows an agent to downgrade the agents in
the specific group equally reliable and less reliable than the agents in the other groups.
For [H �a], H ⊆ G is a set of agents. The reading of [H �a]ψ is “after such agents in H
are downgraded jointly by agent a, ψ holds.” Semantically speaking, [H �a] makes such
agents in H equally reliable and less reliable than the agents in the other groups. Note
that the joint downgrade operator [H �a] is different from the downgrade operator [H ⇓aϕ]
in two respects. First, [H �a] focuses only on the agents in H without consideration of
information, while [H ⇓aϕ] considers both the agents in H and their signed information,
that is, [H ⇓aϕ] focuses on the agents who sign information ϕ in H. The second respect is
the result of downgrading, that is, [H �a] makes the reliability ordering between agents
in H equal, while [H ⇓aϕ] keeps the same reliability ordering between agents in H.
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Figure 3.4: Model for jointly downgrading by [H �a]

Before giving the detailed semantics, let us demonstrate the effects of [H �a] by
figures. Firstly, we assume that a rectangle G of Fig. 3.4(i) represents a fixed finite set of
agents. Secondly, we will select a specified set of agents in order to jointly downgrade the
reliability ordering that can be represented by a rectangle H, and we assume that b <a c
holds, i.e., agent b is more reliable than agent c from agent a’s perspective. In this sense,
b and c are situated as in Fig. 3.4(i). Then, if the agents in H are downgraded jointly
by agent a, all of them will be made to be equally reliable and less reliable than all the
other agents as in Fig. 3.4(ii). Based on this idea, the semantics of [H �a] is given by
the following definition.

Definition 38. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4d)d∈G, V ), a semantic
clause for [H �a] on M and w ∈ W is defined by:

M, w |= [H �a]ψ iff MH�a , w |= ψ,

where MH�a = (W, (Ra)a∈G, (Sa)a∈G, (4′d)d∈G, V ) and 4′d is defined as: for all u ∈ W :

• if d 6= a, we put 4′ud = 4ud.

• otherwise (if d = a), we define b 4′ua c iff(
b, c ∈ H

)
or
(
b, c ∈ (G \H) and b 4ua c

)
or
(
b ∈ (G \H) and c ∈ H

)
.

Note that this joint downgrade can preserve the property of total preordering of (4d)d∈G.

Proposition 39 (Recursive Validities). The following are valid on all models. Moreover,
if ψ is valid on all models, then [H �a]ψ is also valid on all models.

[H �a]p ↔ p
[H �a] (b 6d c) ↔ b 6d c (d 6= a)
[H �a] (b 6a c) ↔ b 6a c (b, c ∈ G \H)
[H �a] (b 6a c) ↔ > (b, c ∈ H)
[H �a] (b 6a c) ↔ > (c ∈ H, b ∈ G \H)
[H �a] (b 6a c) ↔ ⊥ (b ∈ H, c ∈ G \H)
[H �a]¬ψ ↔ ¬[H �a]ψ
[H �a] (ψ1 → ψ2) ↔ [H �a]ψ1 → [H �a]ψ2

[H �a]Sign(b, ψ) ↔ Sign(b, [H �a]ψ)
[H �a]Bel(b, ψ) ↔ Bel(b, [H �a]ψ)
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Proof. Our goal is to show that all axioms are valid with respect to the semantics of
[H �a] (defined in Definition 38) that is straightforward. We will show only the proof of
five axioms of reliability ordering as follows:

Case (d 6= a):
[H �a] (b 6d c)↔ b 6d c

Suppose that d 6= a. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H �a] (b 6d c) iff M, w |= b 6d c.

From M, w |= [H �a] (b 6d c),

M, w |= [H �a] (b 6d c) iff MH�a , w |= b 6d c iff b 4′wd c iff b 4wd c iff M, w |= b 6d c

Case (b, c ∈ G \H):
[H �a] (b 6a c)↔ b 6a c

Suppose that b, c ∈ G \H. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H �a] (b 6a c) iff M, w |= b 6a c.

From M, w |= [H �a] (b 6a c),

M, w |= [H �a] (b 6a c) iff MH�a , w |= b 6a c iff b 4′wa c iff b 4wa c iff M, w |= b 6a c

Case (b, c ∈ H):
M, w |= [H �a] (b 6a c) iff >

Suppose that b, c ∈ H. Fix any model M and any state w ∈ W . It suffices to show:

M, w |= [H �a] (b 6a c) iff M, w |= >.

From M, w |= [H �a] (b 6a c),

M, w |= [H �a] (b 6a c) iff MH�a , w |= b 6a c iff b 4′wa c iff M, w |= >

Case (c ∈ H, b ∈ G \H):
[H �a] (b 6a c)↔ >

Suppose that c ∈ H, b ∈ G \ H. Fix any model M and any state w ∈ W . It suffices to
show:

M, w |= [H �a] (b 6a c) iff M, w |= >.
From M, w |= [H �a] (b 6a c),

M, w |= [H �a] (b 6a c) iff MH�a , w |= b 6a c iff b 4′wa c iff M, w |= >

Case (b ∈ H, c ∈ G \H):
[H �a] (b 6a c)↔ ⊥

Suppose that b ∈ H, c ∈ G \ H. Fix any model M and any state w ∈ W . It suffices to
show:

M, w |= [H �a] (b 6a c) iff M, w |= ⊥.
From M, w |= [H �a] (b 6a c),

M, w |= [H �a] (b 6a c) iff MH�a , w |= b 6a c iff b 4′wa c iff M, w |= ⊥
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Chapter 4

Logical Tool for Belief Re-revision

This chapter provides a formal tool for analyzing an agent’s belief re-revision from a logical
point of view. In Section 4.1, the static logic of agents’ belief for signed information as
mentioned in Section 3.1 is extended with a relation changer based on PDL. With this
logic, we introduce a new version of update mechanism by means of action product. This
update mechanism will be used for constructing the private announcement and the private
permission in Section 4.2. From Lorini’s framework [13] in Section 2.4, they propose two
logical operators including the careful policy and the tell-action in different settings. That
is, the careful policy is employed in a static viewpoint, while the tell-action is captured
in the sense of DEL. A main idea of the tell-action is to handle a private informing
between two agents (i.e., a sender and a receiver). Based on this idea, we introduce
the private announcement operator in Section 4.2.1. By this private announcement, we
can reformulate the careful policy in terms of dynamic operator that is different from
Lorini’s framework [13]. Thus, we can regard that our private announcement operator
can capture both the careful policy and the tell-action from Lorini’s framework [13] in
a unified setting. In order to cover belief re-revision of an agent, the private permission
operator is proposed for dealing with a restoration process of an agent’s belief in Section
4.2.3. Finally, we provide a logical formalization by integrating our dynamic operators
for reliability change and belief re-revision in Section 4.3.

4.1 PDL-extension of Static Logic of Agents’ Beliefs

for Signed Information

4.1.1 Syntax and Semantics

In this section, we introduce a language LRC which is a PDL-extension of LBSR as men-
tioned in Section 3.1.

Definition 40. Let G be a fixed finite set of agents. The language LRC consists of the
following vocabulary: (i) a countably infinite set Prop = { p, q, r, . . . } of propositional
letters, (ii) Boolean connectives: ¬, →, (iii) the constants for reliability ordering b 6a c
(a, b, c ∈ G), (iv) atomic programs: 1, Ba (a ∈ G), Sa (a ∈ G), (v) program operators: ∪
(non-deterministic choice), ; (sequential composition), and (vi) mixed operators: ? (test),
[·] (necessity). A set FormRC of formulas ϕ of LRC and a set Prog of programs π of LRC
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are inductively defined as follows:

FormRC 3 ϕ ::= p | ¬ϕ |ϕ→ ϕ | b 6a c | [π]ϕ

Prog 3 π ::= 1 |Ba | Sa |π ∪ π | π; π |ϕ?

where p ∈ Prop and a, b, c ∈ G. Note that [Ba] and [Sa] correspond to the belief operator
Bel(a, ·) and the signature operator Sign(a, ·), respectively. In what follows, we can write
Bel(a, ·) for [Ba] and Sign(a, ·) for [Sa]. The abbreviations for ∧, ∨, ↔, > and ⊥ can
be defined as shown in Definition 2. The dual operator 〈π〉 of [π] is defined in the same
manner in PDL (in Section 2.2). For the semantics of this language, a Kripke model is
defined by Definition 30 mentioned in Section 3.1 and the satisfaction relation M, w |= ϕ
is defined in a standard way for modal logic and PDL by Definition 41.

Definition 41. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4a)a∈G, V ), any state
w ∈ W and any formula ϕ, we define the satisfaction relation M, w |= ϕ inductively as
follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ→ ψ iff M, w |= ϕ implies M, w |= ψ
M, w |= b 6a c iff b 4wa c
M, w |= [π]ϕ iff M, v |= ϕ for all v such that wRπv,

where Rπ can be defined as follows:

R1 = W ×W
RBa = Ra

RSa = Sa
Rπ∪π′ = Rπ ∪Rπ′

= { (w, v) | wRπv or wRπ′v }
Rπ;π′ = Rπ ◦Rπ′

= { (w, v) | wRπu and uRπ′v for some u ∈ W }
Rϕ? = { (w, v) | w = v and M, v |= ϕ }

Hilbert-style Axiomatization HRC

Table 4.1 presents the Hilbert-style system HRC of LRC . Note that Incl refers to an
inclusion axiom and [1] can be regarded as an S5 operator.

Theorem 13 (Soundness). Let M be the class of all models. For all ψ ∈ FormRC ,

if `HRC ψ, then M |= ψ.

Proof. Suppose that `HRC. Our goal is to show that M |= ψ for all ψ. It suffices to show
that all axioms and all rules in HRC are valid on all models in a class M with respect to
the semantics of LRC . This is straightforward.

For the completeness proof for HRC, we use the same manner in Section 2.2.2 as
the following steps. First, we will define a maximally HRC-consistent set HRC-MCS by
Definition 8. Then, we will give the following lemma.
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All instances of propositional tautologies
(K[π]) [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(T[1]) [1]ϕ→ ϕ
(B[1]) ϕ→ [1]〈1〉ϕ
(4[1]) [1]ϕ→ [1][1]ϕ
(Incl [1]) [1]ϕ→ [π]ϕ
(RA1) [π ∪ π′]ϕ ↔ [π]ϕ ∧ [π′]ϕ
(RA2) [π; π′]ϕ ↔ [π][π′]ϕ
(RA3) [ψ?]ϕ ↔ (ψ → ϕ)
(R6) b 6a b
(Tr6) (b 6a c ∧ c 6a d)→ b 6a d
(To6) b 6a c ∨ c 6a b
(MP) From ϕ and ϕ→ ψ, infer ψ
(Nec[π]) From ϕ, infer [π]ϕ

Table 4.1: Hilbert-style system HRC for LRC

Lemma 11 (Lindenbaum). Given any HRC-consistent set Γ, there exists an HRC-MCS
Γ+ such that Γ ⊆ Γ+.

Next, the properties of HRC-MCS are defined by the following proposition.

Proposition 42. Let Γ, Σ and ∆ be any HRC-MCS. Then, the following hold.

(i) Γ `HRC ϕ iff ϕ ∈ Γ.

(ii) if ϕ ∈ Γ and `HRC ϕ→ ψ, then ψ ∈ Γ.

(iii) ¬ϕ ∈ Γ iff ϕ 6∈ Γ.

(iv) ϕ→ ψ ∈ Γ iff ϕ ∈ Γ implies ψ ∈ Γ.

(v) if [π]ϕ 6∈ Γ and {ϕ | [1]ϕ ∈ Σ} ⊆ Γ, then {¬ϕ } ∪ {ψ | [π]ψ ∈ Γ } ∪ { θ | [1]θ ∈ Σ }
6`HRC ⊥.

(vi) if { 〈α; β〉ϕ | ϕ ∈ ∆ } ⊆ Γ and {ϕ | [1]ϕ ∈ Σ} ⊆ Γ, then { θ | [1]θ ∈ Σ } ∪ {ϕ | [α]ϕ ∈ Γ }
∪ { 〈β〉ψ | ψ ∈ ∆ } 6`HRC ⊥.

(vii) [pi ∪ π′]ϕ ∈ Γ iff [π]ϕ ∈ Γ and [π′]ϕ ∈ Γ.

(viii) [π; π′]ϕ ∈ Γ iff [π][π′]ϕ ∈ Γ.

(ix) [ψ?]ϕ ∈ Γ iff (ψ → ϕ) ∈ Γ.

Proof. We will show only two items including (v) and (vi) as follows:

(v) if [π]ϕ 6∈ Γ and {ϕ | [1]ϕ ∈ Σ} ⊆ Γ, then {¬ϕ } ∪ {ψ | [π]ψ ∈ Γ } ∪ { θ | [1]θ ∈ Σ }
6`HRC ⊥.
First, we suppose that Γ and Σ are HRC-MCSs. Then, we also assume that [π]ϕ 6∈ Γ
and {ϕ | [1]ϕ ∈ Σ} ⊆ Γ. Our goal is to show:

{¬ϕ } ∪ {ψ | [π]ψ ∈ Γ } ∪ { θ | [1]θ ∈ Σ } 6`HRC ⊥
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Suppose for a contradiction that

{¬ϕ } ∪ {ψ | [π]ψ ∈ Γ } ∪ { θ | [1]θ ∈ Σ } `HRC ⊥

This is equivalent to

∃∆ ⊆ {¬ϕ } ∪ {ψ | [π]ψ ∈ Γ } ∪ { θ | [1]θ ∈ Σ }(∆ is finite and `HRC

∧
∆→ ⊥)

Fix such ∆ ⊆ {¬ϕ } ∪ {ψ | [π]ψ ∈ Γ } ∪ { θ | [1]θ ∈ Σ }. Then, we suppose that

`HRC (¬ϕ ∧ ψ1 ∧ . . . ∧ ψn ∧ θ1 ∧ . . . ∧ θm)→ ⊥

where [π]ψ1, . . . , [π]ψn ∈ Γ and [1]θ1, . . . , [1]θm ∈ Σ. It follows that:

`HRC (¬ϕ ∧ ψ1 ∧ . . . ∧ ψn ∧ θ1 ∧ . . . ∧ θm)→ ⊥
iff `HRC (ψ1 ∧ . . . ∧ ψn ∧ θ1 ∧ . . . ∧ θm)→ (¬ϕ→ ⊥)

iff `HRC (ψ1 ∧ . . . ∧ ψn ∧ θ1 ∧ . . . ∧ θm)→ ϕ

By axioms Nec[π] and K[π], we get

`HRC ([π]ψ1 ∧ . . . ∧ [π]ψn ∧ [π]θ1 ∧ . . . ∧ [π]θm)→ [π]ϕ

iff `HRC ([π]ψ1 ∧ . . . ∧ [π]ψn ∧ [π]θ1 ∧ . . . ∧ [π]θm)→ (¬[π]ϕ→ ⊥)

iff `HRC ([π]ψ1 ∧ . . . ∧ [π]ψn ∧ [π]θ1 ∧ . . . ∧ [π]θm ∧ ¬[π]ϕ)→ ⊥

By axiom Incl [1] and (ii), we get that

if [1]θ ∈ Σ, then [1][π]θ ∈ Σ.

By [1][π]θ ∈ Σ and our assumption of {ϕ | [1]ϕ ∈ Σ} ⊆ Γ, we get that [π]θ1, . . . , [π]θm ∈ Γ.
Thus, we have Γ′ := { [π]ψ1, . . . , [π]ψn, [π]θ1, . . . , [π]θm,¬[π]ϕ } ⊆ Γ and `HRC

∧
Γ′ → ⊥.

Therefore, Γ is HRC-inconsistent, but we assume that Γ is an HRC-MCS. This is a
contradiction.

(vi) if { 〈α; β〉ϕ | ϕ ∈ ∆ } ⊆ Γ and {ϕ | [1]ϕ ∈ Σ} ⊆ Γ, then { θ | [1]θ ∈ Σ } ∪ {ϕ | [α]ϕ ∈ Γ }
∪ { 〈β〉ψ | ψ ∈ ∆ } 6`HRC ⊥.
First, we suppose that Γ, Σ and ∆ are HRC-MCSs. Then, we assume { 〈α; β〉ϕ | ϕ ∈ ∆ }
⊆ Γ and {ϕ | [1]ϕ ∈ Σ} ⊆ Γ. Our goal is to show:

{ θ | [1]θ ∈ Σ } ∪ {ϕ | [α]ϕ ∈ Γ } ∪ { 〈β〉ψ | ψ ∈ ∆ } 6`HRC ⊥

Suppose for a contradiction that

{ θ | [1]θ ∈ Σ } ∪ {ϕ | [α]ϕ ∈ Γ } ∪ { 〈β〉ψ | ψ ∈ ∆ } `HRC ⊥

This is equivalent to

∃Λ ⊆ { θ | [1]θ ∈ Σ }∪{ϕ | [α]ϕ ∈ Γ }∪{ 〈β〉ψ | ψ ∈ ∆ }(Λ is finite and `HRC

∧
Λ→ ⊥)

Fix such Λ ⊆ { θ | [1]θ ∈ Σ } ∪ {ϕ | [α]ϕ ∈ Γ } ∪ { 〈β〉ψ | ψ ∈ ∆ }. Then, we suppose that

`HRC (θ1 ∧ . . . ∧ θn ∧ ϕ1 ∧ . . . ∧ ϕm ∧ 〈β〉ψ1 ∧ . . . ∧ 〈β〉ψk)→ ⊥
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where [1]θ1, . . . , [1]θn ∈ Σ, [α]ϕ1, . . . , [α]ϕm ∈ Γ, and ψ1, . . . , ψk ∈ ∆. It follows that:

`HRC

∧
{ θ1, . . . , θn, ϕ1, . . . , ϕm } ∧

∧
{ 〈β〉ψ1, . . . , 〈β〉ψk } → ⊥

iff `HRC

∧
{ θ1, . . . , θn, ϕ1, . . . , ϕm } →

(∧
{ 〈β〉ψ1, . . . , 〈β〉ψk } → ⊥

)
iff `HRC

∧
{ θ1, . . . , θn, ϕ1, . . . , ϕm } → ¬

∧
{ 〈β〉ψ1, . . . , 〈β〉ψk }

By axioms Nec[α] and K[α], we get that:

`HRC

∧
{ [α]θ1, . . . , [α]θn, [α]ϕ1, . . . , [α]ϕm } → [α]¬

∧
{ 〈β〉ψ1, . . . , 〈β〉ψk }.

By axiom Incl [1] and (ii), we get that:

if [1]θ ∈ Σ, then [1][α]θ ∈ Σ.

By [1][α]θ ∈ Σ and our assumption of {ϕ | [1]ϕ ∈ Σ} ⊆ Γ, we get that [α]θ1, . . . , [α]θn ∈ Γ.
Thus, we have [α]θ1, . . . , [α]θn, [α]ϕ1, . . . , [α]ϕm ∈ Γ. By this, we obtain that:

if
∧
{ [α]θ1, . . . , [α]θn, [α]ϕ1, . . . , [α]ϕm } ∈ Γ, then [α]¬

∧
{ 〈β〉ψ1, . . . , 〈β〉ψk } ∈ Γ.

From our assumption of { 〈α; β〉ϕ | ϕ ∈ ∆ } ⊆ Γ,

{ 〈α; β〉ϕ | ϕ ∈ ∆ } ⊆ Γ iff { 〈α〉〈β〉ϕ | ϕ ∈ ∆ } ⊆ Γ

By this and ψ1, . . . , ψk ∈ ∆, we get 〈α〉〈β〉ψ1, . . . , 〈α〉〈β〉ψk ∈ Γ. Therefore, we have:

〈α〉
(
¬
∧
{ 〈β〉ψ1, . . . , 〈β〉ψk } ∧

∧
{ 〈β〉ψ1, . . . , 〈β〉ψk }

)
∈ Γ.

This is equivalent to 〈α〉⊥ ∈ Γ. Since 〈α〉⊥ iff ⊥, we obtain ⊥ ∈ Γ. This means that Γ is
HRC-inconsistent, but we assume that Γ is an HRC-MCS. This is a contradiction.

Definition 43. The model M is a tuple M = (W,U, V ) is defined by:

• W := {Γ | Γ is an HRC-MCS}.

• ΓU∆ iff {ϕ | [1]ϕ ∈ Γ} ⊆ ∆ for all formulas ϕ.

• Γ ∈ V (p) iff p ∈ Γ.

In addition, U of Definition 43 is an equivalent relation by the following lemma.

Lemma 12. Given the model M = (W,U, V ) of Definition 43,

(i) If `HRC [1]ϕ→ ϕ for all formulas ϕ, then U is reflexive.

(ii) If `HRC ϕ→ [1]〈1〉ϕ for all formulas ϕ, then U is symmetric.

(iii) If `HRC [1]ϕ→ [1][1]ϕ for all formulas ϕ, then U is transitive.

By the above preparation, the canonical model for HRC is constructed by the following
definition.
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Definition 44. Let Σ be an HRC-MCS. The canonical model MHRC is a tuple M =
(WHRC, (RHRC

a )a∈G, (S
HRC
a )a∈G, (4HRC

a )a∈G, V
HRC) for any HRC is defined by:

• WHRC := {Γ | Γ is an HRC-MCS and ΣUΓ}.

• ΓRHRC
a ∆ iff [Ba]ψ ∈ Γ implies ψ ∈ ∆ for all formulas ψ.

• ΓSHRC
a ∆ iff [Sa]ψ ∈ Γ implies ψ ∈ ∆ for all formulas ψ.

• b 4Γ
a c iff b 6a c ∈ Γ.

• Γ ∈ V HRC(p) iff p ∈ Γ.

By the properties of the maximally consistent set in Proposition 42, we can prove the
following Truth Lemma.

Lemma 13 (Truth). Let Γ be any HRC-MCS. The following is true for all ψ ∈ FormRC

and all π ∈ Prog:

(i) MHRC,Γ |= ψ iff ψ ∈ Γ.

(ii) ΓRHRC
π ∆ iff [π]ψ ∈ Γ implies ψ ∈ ∆ for all ψ.

Now, we are ready to provide the completeness proof for HRC as follows:

Theorem 14 (Completeness). Let M be the class of all models. For all ψ ∈ FormRC ,

if M |= ψ, then `HRC ψ.

Proof. The proof is by contrapositive implication. Suppose that 6`HRC ψ. Our goal is to
show M 6|= ψ. It suffices to find a counter model M such that M, w 6|= ψ for some w of M.
By our supposition, we obtain that {¬ψ } is an HRC-consistent set, i.e., {¬ψ } 6`HRC ⊥.
By Lemma 11, there exists an HRC-MCS Γ such that {¬ψ } ⊆ Γ, i.e., ¬ψ ∈ Γ. By
Lemma 13, we obtain that MHRC,Γ |= ¬ψ, i.e., MHRC,Γ 6|= ψ, as desired.

4.1.2 Action Model Update

From Section 2.4, Lorini et al. [13] propose the tell-action for capturing a private action,
i.e., when agent b privately tells ϕ to agent a, only agent a will change his/her belief by
ϕ but the other agents than a will not change their beliefs. Based on this private action,
the private announcement and the private permission are captured in terms of action
model (cf. [27, 6]) in DEL because the action model can be used for modeling a variety
of events involving communication including public and private messages. In this section,
we introduce the action models which are applied to construct an update operation for the
private announcement in Section 4.2.1 and the private permission in Section 4.2.3. First,
the action models are defined by Definition 45. Then, the semantics of update models are
provided in Definition 46.

Definition 45. An action model E is a tuple E = (E, (Dc)c∈G, (Ua)a∈G, pre,Π) such that

• E is a finite domain of action points,

• Dc ⊆ E × E is an accessibility relation representing beliefs,
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• Ua ⊆ E × E is an accessibility relation representing signatures,

• pre is a preconditions function that assigns a precondition to each action,

• Π = (πc)c∈G is a family of programs where πc can be defined as follows:

πc ::= 1 |Bc | Sc |π ∪ π |π; π | pre(?1)? | pre(?2)?

where c ∈ G, and ?1 and ?2 are variables ranging over E. Moreover, we use πc(e, f)
to mean the result of replacing ?1 and ?2 with actions e and f in πc(e, f), respectively.

Definition 46. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4a)a∈G, V ), a semantic
clause for [E,Π, e] on M and w ∈ W is defined by:

M, w |= [E,Π, e]ψ iff M⊗E,Π, (w, e) |= ψ,

where (w, e) is the updated state of M⊗E,Π (defined just below) by the action model of
Definition 45, and M⊗E,Π = (W ′, (R′c)c∈G, (S

′
c)c∈G, (4

′
c)c∈G, V

′) is the updated model by
the action model of Definition 45. The updated model M⊗E,Π which is constructed with
an operation called a product update [27] is defined by:

• W ′ := W × E.

• (w, e)R′c(v, f) iff (e, f) ∈ Dc and wRπc(e,f)v (for all c ∈ G).

• (w, e)S ′c(v, f) iff wRScv and (e, f) ∈ Uc (for all c ∈ G).

• d 4′(w,e)c d′ iff d 4wc d
′.

• (w, e) ∈ V ′(p) iff w ∈ V (p).

Note that [E,Π, e] states that if action e ∈ E occurs, then ψ is true at state w in the
result.

Proposition 47 (Recursive Validities). The following are valid on all models. Moreover,
if ψ is valid on all models, then [E,Π, e]ψ is also valid on all models.

[E,Π, e]p ↔ p
[E,Π, e]d 6c d′ ↔ d 6c d′

[E,Π, e]¬ψ ↔ ¬[E,Π, e]ψ
[E,Π, e](ψ1 → ψ2) ↔ [E,Π, e]ψ1 → [E,Π, e]ψ2

[E,Π, e][1]ψ ↔
∧
f∈E[1][E,Π, f ]ψ

[E,Π, e][Sa]ψ ↔
∧
f∈Ua(e)[Sa][E,Π, f ]ψ

[E,Π, e][Ba]ψ ↔
∧
f∈Da(e) [πa(e, f)][E,Π, f ]ψ

[E,Π, e][π ∪ π′]ψ ↔ [E,Π, e][π]ψ ∧ [E,Π, e][π′]ψ
[E,Π, e][π; π′]ψ ↔ [E,Π, e][π][π′]ψ
[E,Π, e][ϕ?]ψ ↔ [E,Π, e](ϕ→ ψ)

Proof. Our goal is to show that all axioms are valid with respect to the semantics of
[E,Π, e] (defined in Definition 46) that is straightforward. We will show only the proof of
three axioms as follows:
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• [E,Π, e][1]ψ ↔
∧
f∈E[1][E,Π, f ]ψ

Our goal is to show M |= [E,Π, e][1]ψ ↔
∧
f∈E[1][E,Π, f ]ψ. Fix any model M ∈ M and

any state w ∈ W . It suffices to show:

M, w |= [E,Π, e][1]ψ iff M, w |=
∧
f∈E

[1][E,Π, f ]ψ.

From M, w |= [E,Π, e][1]ψ,

M, w |= [E,Π, e][1]ψ iff M⊗E,Π, (w, e) |= [1]ψ

iff ∀(v,f)

(
(w, e)R′1(v, f)⇒M⊗E,Π, (v, f) |= ψ

)
iff ∀(v,f) ((w, e)R′1(v, f)⇒M, v |= [E,Π, f ]ψ)

iff ∀(v,f) ((v ∈ W and f ∈ E)⇒M, v |= [E,Π, f ]ψ)

iff ∀v∀f (f ∈ E ⇒ (v ∈ W ⇒M, v |= [E,Π, f ]ψ))

iff ∀f (f ∈ E ⇒ ∀v(v ∈ W ⇒M, v |= [E,Π, f ]ψ))

iff ∀f (f ∈ E ⇒M, w |= [1][E,Π, f ]ψ)

iff M, w |=
∧
f∈E

[1][E,Π, f ]ψ

• [E,Π, e][Sa]ψ ↔
∧
f∈Ua(e)[Sa][E,Π, f ]ψ

Our goal is to show M |= [E,Π, e][Sa]ψ ↔
∧
f∈Ua(e)[Sa][E,Π, f ]ψ. Fix any model M ∈ M

and any state w ∈ W . It suffices to show:

M, w |= [E,Π, e][Sa]ψ iff M, w |=
∧

f∈Ua(e)

[Sa][E,Π, f ]ψ.

From M, w |= [E,Π, e][Sa]ψ,

M, w |= [E,Π, e][Sa]ψ iff M⊗E,Π, (w, e) |= [Sa]ψ

iff ∀(v,f)

(
(w, e)S ′a(v, f)⇒M⊗E,Π, (v, f) |= ψ

)
iff ∀(v,f) ((w, e)S ′a(v, f)⇒M, v |= [E,Π, f ]ψ)

iff ∀(v,f) ((wRSav and (e, f) ∈ Ua)⇒M, v |= [E,Π, f ]ψ)

iff ∀v∀f ((e, f) ∈ Ua ⇒ (wRSav ⇒M, v |= [E,Π, f ]ψ))

iff ∀f ((e, f) ∈ Ua ⇒ ∀v(wRSav ⇒M, v |= [E,Π, f ]ψ))

iff ∀f ((e, f) ∈ Ua ⇒M, w |= [Sa][E,Π, f ]ψ)

iff M, w |=
∧

f∈Ua(e)

[Sa][E,Π, f ]ψ,

where Ua(e) = {f ∈ E | (e, f) ∈ Ua}

• [E,Π, e][Ba]ψ ↔
∧
f∈Da(e) [πa(e, f)][E,Π, f ]ψ

Our goal is to show M |= [E,Π, e][Ba]ψ ↔
∧
f∈Da(e) [πa(e, f)][E,Π, f ]ψ. Fix any model

M ∈M and any state w ∈ W . It suffices to show:

M, w |= [E,Π, e][Ba]ψ iff M, w |=
∧

f∈Da(e)

[πa(e, f)][E,Π, f ]ψ.
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From M, w |= [E,Π, e][Ba]ψ,

M, w |= [E,Π, e][Ba]ψ iff M⊗E,Π, (w, e) |= [Ba]ψ

iff ∀(v,f)

(
(w, e)R′a(v, f)⇒M⊗E,Π, (v, f) |= ψ

)
iff ∀(v,f) ((w, e)R′a(v, f)⇒M, v |= [E,Π, f ]ψ)

iff ∀(v,f)

(
(wRπa(e,f)v and (e, f) ∈ Da)⇒M, v |= [E,Π, f ]ψ

)
iff ∀v∀f

(
wRπa(e,f)v ⇒ ((e, f) ∈ Da ⇒M, v |= [E,Π, f ]ψ)

)
iff ∀f

(
(e, f) ∈ Da ⇒ ∀v(wRπa(e,f)v ⇒M, v |= [E,Π, f ]ψ)

)
iff ∀f ((e, f) ∈ Da ⇒M, w |= [πa(e, f)][E,Π, f ]ψ)

iff M, w |=
∧

f∈Da(e)

[πa(e, f)][E,Π, f ]ψ,

where Da(e) = {f ∈ E | (e, f) ∈ Da}

4.2 Dynamic Operators for Belief Re-revision

This section presents three operators including private announcement, careful policy and
private permission for formalizing belief re-revision of an agent. In Section 4.2.1, the
private announcement is proposed for handling an agent’s commitment. For example,
when a judge receives signed information from a witness and considers it to be reliable,
he/she will accept and believe the received signed information by applying the private
announcement. Section 4.2.2 presents the careful policy which aims to deal with an
information aggregation based on Lorini’s framework [13] (in Section 2.4). That is, when
a judge receives many signed information from witnesses, he/she needs to derive his/her
belief from the received information. However, the careful policy in our formalism is
captured in terms of dynamic operator by the help of the private announcement. This
is different from Lorini’s framework [13] which employs the careful policy in a static
viewpoint. Section 4.2.3 addresses the private permission providing a process of belief
restoration. Both private announcement and private permission operators have the same
concept of a private action. That is, when there is an announcement, only an agent who
knows about such announcement will change his/her belief. In order to deal with this
private action, the action model update operation as mentioned in Section 4.1.2 is applied
for both private announcement and private permission operators.

4.2.1 Private Announcement

From Lorini’s framework [13] (mentioned in Section 2.4), they provide the tell-action for
capturing a private action which enables an agent to restrict his/her belief as received
information. Based on this idea, the private announcement operator [ϕ  a] (whose
reading is “a private announcement of ϕ to agent a”) is introduced. The first concept of
this operator is to restrict a’s attention to the ϕ’s states. With this operator, an agent
can remove some possibilities from his/her belief that can be described by Example 48.

Example 48. Fig. 4.1 illustrates a process of a private announcement of Sign(b, p) to
agent a. This private announcement can be interpreted as agent b privately tells infor-
mation p to agent a. We can represent “agent b tells information p” by Sign(b, p). When
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Figure 4.1: Update operation of [Sign(b, p) a]

agent a receives Sign(b, p), he/she commits him/herself to Sign(b, p) by [Sign(b, p)  a].
Let us describe a process of this private announcement. Firstly, agent a does not believe
Sign(b, p), i.e., ¬Bel(a, Sign(b, p)) as in the left-hand side of Fig. 4.1. By the update of
[Sign(b, p)  a], we delete all the links from state w0 into the states where Sign(b, p) is
false. That is, the links into states w2 and w4 will be eliminated. After this, agent a now
believes Sign(b, p), i.e., Bel(a, Sign(b, p)) as shown in the right-hand side of Fig. 4.1.

The second concept of this private announcement is that the other agent than a will
not notice a’s belief change.1 One of the merits of this operator is that a sender of message
ϕ is not specified, while a recipient is defined as agent a. This means that we may use
this operator also for self-decision of agent a, i.e., the sender and the recipient are the
same. In order to capture this private action, we introduce the following action model.

Definition 49. An action model E!aϕ for a private announcement of ϕ to agent a is
defined as a tuple (E, (Dc)c∈G, (Ua)a∈G, pre,Π) (based on Definition 45), where E is a
finite domain of action points consisting of two actions: ϕ-announcing action !aϕ to agent
a and non-announcing action >,2 Dc is an accessibility relation representing beliefs such
that Da = { (!aϕ, !

a
ϕ), (>,>) } and Dc = { (!aϕ,>), (>,>) } if c 6= a, Uc is an accessibility

relation representing signatures such that Uc = { (!aϕ,>), (>,>) } for all c ∈ G, pre is
a preconditions function that assigns a precondition to each action by pre(!aϕ) = ϕ and
pre(>) = >, and Π = (πc)c∈G is a family of programs where πc can be defined as:

πc = Bc ; pre(?2)?

Example 50. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4a)a∈G, V ) (defined in
Definition 30) and an action model E!a

Sign(b,p)
for a private announcement of Sign(b, p) to

1[ϕ  a] captures that the action of a’s privately receiving message ϕ will not affect of the other
agents’ beliefs than a. Thus, this work considers only the case that the other agents than a do not know
about such event.

2The ϕ-announcing action !aϕ is an action where there is an announcement of ϕ, while the non-
announcing action is an action where nothing happens.
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Figure 4.2: Product update operation of [Sign(b, p)  a] (! represents the Sign(b, p)-
announcing action !aSign(b,p) to agent a)

agent a (defined in Definition 49), we can define an updated model M
⊗E!a

Sign(b,p)
,Π

which is a
tuple (W ′, (R′c)c∈G, (S

′
c)c∈G, (4

′
c)c∈G, V

′) (see the right-hand side of Fig. 4.2) by Definition
46 as follows:

W ′ = {(w0, !
a
Sign(b,p)), (w1, !

a
Sign(b,p)), (w2, !

a
Sign(b,p)), (w3, !

a
Sign(b,p)), (w4, !

a
Sign(b,p)),

(w0,>), (w1,>), (w2,>), (w3,>), (w4,>)}
R′a = {

(
(w0, !

a
Sign(b,p)), (w1, !

a
Sign(b,p))

)
,
(
(w0,>), (w1,>)

)
,
(
(w0,>), (w2,>)

)
}

R′c = {
(
(w0, !

a
Sign(b,p)), (w1,>)

)
,
(
(w0, !

a
Sign(b,p)), (w2,>)

)
,
(
(w0,>), (w1,>)

)
,(

(w0,>), (w2,>)
)
}

S ′b = {
(
(w1, !

a
Sign(b,p)), (w3,>)

)
,
(
(w2, !

a
Sign(b,p)), (w4,>)

)
,
(
(w1,>), (w3,>)

)
,(

(w2,>), (w4,>)
)
}

4′c = 4c
V ′(p) = {(w3, !

a
Sign(b,p)), (w3,>)}

Let us describe how a Kripke model is updated with the action model E!a
Sign(b,p)

by Fig. 4.2.

First, agents a and c do not believe Sign(b, p), i.e., ¬Bel(a, Sign(b, p)) and ¬Bel(c, Sign(b, p))
(see Kripke model in the left-hand side of Fig. 4.2). By the product update operation, agent
a believes Sign(b, p), i.e., Bel(a, Sign(b, p)), but agent c still does not believe Sign(b, p), i.e.,
¬Bel(c, Sign(b, p)) (see the right-hand side of Fig. 4.2). The updated model can be explained
as follows: When we focus on the action !aSign(b,p) representing “there is an announcement

of Sign(b, p) to agent a”, we obtain that only agent a changes his/her belief, and his/her
belief change will not be noticed by agent c. On the other hand, when we focus on the
action >, we obtain that both agents a and c do not change their belief because there is
no announcement.

With this private announcement, we can capture both the tell-action and the careful
policy from Lorini’s framework [13] (in Section 2.4). In this section, we only describe
how to capture the tell-action by the private announcement, while the description for
the careful policy will be provided in Section 4.2.2. For the tell-action [Tell(b, a, ϕ)], a
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concept is that agent a would update his/her belief by the signed statement Sign(b, ϕ)
after [Tell(b, a, ϕ)]. Thus, we can define:

[Tell(b, a, ϕ)]ψ := [Sign(b, ϕ) a]ψ.

4.2.2 Careful Policy

From Lorini’s framework [13] as mentioned in Section 2.4, a careful policy which is one of
aggregation policies aims to derive an agent’s beliefs from the received signed information.
The policy is that only statements which are universally signed by a group of agents who
are equally reliable are accepted as beliefs. Since Lorini et al. [13] did not propose a logical
treatment from dynamic epistemic viewpoints for the careful policy, this study proposes
to capture the careful policy by the private announcement3 as follows: Firstly, the careful
policy is defined in terms of dynamic operators by [Careful(a, ϕ)], whose reading is “agent
a aggregates information about ϕ.” Then, we can obtain UniSign(ϕ, a), whose reading
is “agent a believes that ϕ is universally signed by a group of agents who are equally
reliable,” by using the definition in Section 2.4 as follows:

UniSign(ϕ, a) :=
∨

i≤M

(
Bel
(
a, Sign(Cai , ϕ)

)
∧

Bel
(
a,
∧

1≤j≤i−1¬Sign(Caj ,¬ϕ)
)) ,

where M is the maximum natural number of {i ≤ #G | Cai 6= ∅} and Cai is a group of
agents who are equally reliable from agent a’s perspective (defined in Section 3.1). Then,
Lorini et al. [13]’s definition of careful policy is introduced as the following implication:

UniSign(ϕ, a)→ Bel(a, ϕ).

However, Lorini et al. did not discuss how we can handle the idea of careful policy in
terms of dynamic operators, while they used the policy as a meta-logical principle. With
the help of our private announcement operator [ϕ a], we now define the careful policy
as a dynamic operator as follows:

[Careful(a, ϕ)]ψ := UniSign(ϕ, a)→ [ϕ a]ψ,

where [Careful(a, ϕ)]ψ can be read as “after agent a aggregates information about ϕ by
the careful policy, ψ holds.”

Example 51. Fig. 4.3 illustrates how agent a aggregates information about ¬p. At state
w0, agent a believes that agent b is more reliable than agent c, i.e., Bel(a, b <a c). In
the initial situation, agent a believes Sign(b,¬p) but does not believe Sign(c,¬p), i.e.,
Bel(a, Sign(b,¬p)) and ¬Bel(a, Sign(c,¬p)) as shown in the left-hand side of Fig. 4.3. By
[Careful(a,¬p)], agent a will aggregate information from agent b who is more reliable than
agent c. Finally, agent a believes ¬p, i.e., Bel(a,¬p) as shown in the right-hand side of
Fig. 4.3.

3Note that the sender and the recipient are regarded as the same to capture the careful policy.
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Figure 4.3: Agent a aggregates information about ¬p by [Careful(a,¬p)].

Figure 4.4: Update operation of [Sign(b,¬p)� a]

4.2.3 Private Permission

In order to capture belief re-revision of an agent, it requires two processes including
removing and restoring. The first process can be done by the private announcement as
mentioned in Section 4.2.1. In order to cover the second process, the private permission
[ϕ� a] is introduced. Our intended reading of [ϕ� a]ψ is “after the agent a permitted
ϕ to be the case, ψ.” Semantically speaking, [ϕ � a] enlarges a’s attention to cover
all the ϕ’s states. In this study, we assume that an effect of this private permission is
applied globally for all w ∈ W . The first concept of this operator is to restore the former
possibilities to an agent’s belief that can be described by Example 52.

Example 52. Fig. 4.4 illustrates a process of a private permission of Sign(b,¬p) to agent
a. [Sign(b,¬p) � a] can be interpreted as agent a privately permits the possibility of
Sign(b,¬p) to his/her belief. Firstly, agent a believes Sign(b, p), i.e., Bel(a, Sign(b, p)) as
shown in the left-hand side of Fig. 4.4. Then, [Sign(b,¬p) � a] allows us to restore all
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the former links to the states where Sign(b,¬p) is true. That is, the links into states w2

and w4 will be restored as shown in the right-hand side of Fig. 4.4. At this stage, agent
a becomes undetermined on Sign(b,¬p), i.e., ¬Bel(a, Sign(b, p)) and ¬Bel(a, Sign(b,¬p)).
Note that the right-hand side of Fig. 4.4 represents the result of [Sign(b,¬p) � a] when
we focus on a current viewpoint of agent a representing by state w0, that is, it shows only
the links from state w0.

From Fig. 4.1 (mentioned in Section 4.2.1) and Fig. 4.4, let us describe a restoration
process of the former links. First, agent a accepts Sign(b, p) by applying [Sign(b, p) a].
As a result, we delete all the links into the states where Sign(b, p) is false (see Fig. 4.1).
Next, agent a reconsiders his/her decision and decides to reject Sign(b, p) but accept
Sign(b,¬p) instead. In order to overturn the decision, agent a first needs to permit the
possibility of Sign(b,¬p) by applying [Sign(b,¬p)� a]. By the update of [Sign(b,¬p)� a],
we add all the links into the states where Sign(b,¬p) is true (see Fig. 4.4). Note that the
states where Sign(b, p) is false are the same as the states where Sign(b,¬p) is true. There-
fore, we can regard that all the links into Sign(b,¬p)’s states (i.e., states where Sign(b,¬p)
is true), which are deleted by [Sign(b,¬p) a], can be restored by [Sign(b,¬p)� a].

Similar to the private announcement, the second concept of [ϕ � a] is to allow only
agent a to notice his/her belief change after he/she permitted ϕ to be the case.4 In order
to capture this private action, we introduce the following action model.

Definition 53. An action model E¡aϕ for a private permission of ϕ to agent a is defined as
a tuple (E, (Dc)c∈G, (Ua)a∈G, pre,Π) (based on Definition 45), where E is a finite domain
of action points consisting of two actions: ϕ-announcing action ¡aϕ to agent a and non-
announcing action ⊥,5 Dc is an accessibility relation representing beliefs such that Da =
{ (¡aϕ, ¡

a
ϕ), (⊥,⊥) } and Dc = { (¡aϕ,⊥), (⊥,⊥) } if c 6= a, Uc is an accessibility relation rep-

resenting signatures such that Uc = { (¡aϕ,⊥), (⊥,⊥) } for all c ∈ G, pre is a preconditions
function that assigns a precondition to each action by pre(¡aϕ) = ϕ and pre(⊥) = ⊥, and
Π = (πc)c∈G is a family of programs where πc can be defined as:

πc = Bc ∪
(
1 ; pre(?2)?

)
According to Definition 46, we can describe how a Kripke model is updated with the

action model of Definition 53 by Example 54.

Example 54. Given a Kripke model M = (W, (Ra)a∈G, (Sa)a∈G, (4a)a∈G, V ) (defined
in Definition 30) and an action model E¡a

Sign(b,¬p)
for a private permission of Sign(b,¬p) to

agent a (defined in Definition 53), we can define an updated model M
⊗E¡a

Sign(b,¬p)
,Π

which is a
tuple (W ′, (R′c)c∈G, (S

′
c)c∈G, (4

′
c)c∈G, V

′) (see the right-hand side of Fig. 4.5) by Definition

4Based on the idea of the private action, [ϕ� a] captures that the action of a’s privately permitting
the possibility of ϕ will not affect of the other agents’ beliefs than a. Thus, this work considers only the
case that the other agents than a do not know about such event.

5The ϕ-announcing action ¡ϕ is an action where there is an announcement of ϕ, while the non-
announcing action is an action where nothing happens.
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Figure 4.5: Product update operation of [Sign(b,¬p) � a] (¡ represents the Sign(b,¬p)-
announcing action ¡aSign(b,¬p) to agent a)

46 as follows:

W ′ = {(w0, ¡
a
Sign(b,¬p)), (w1, ¡

a
Sign(b,¬p)), (w2, ¡

a
Sign(b,¬p)), (w3, ¡

a
Sign(b,¬p)), (w4, ¡

a
Sign(b,¬p)),

(w0,⊥), (w1,⊥), (w2,⊥), (w3,⊥), (w4,⊥)}
R′a = {

(
(w0, ¡

a
Sign(b,¬p)), (w1, ¡

a
Sign(b,¬p))

)
,
(
(w0, ¡

a
Sign(b,¬p)), (w2, ¡

a
Sign(b,¬p))

)
,(

(w0,⊥), (w1,⊥)
)
}

R′c = {
(
(w0, ¡

a
Sign(b,¬p)), (w1,⊥)

)
,
(
(w0,⊥), (w1,⊥)

)
}

S ′b = {
(
(w1, ¡

a
Sign(b,¬p)), (w3,⊥)

)
,
(
(w2, ¡

a
Sign(b,¬p)), (w4,⊥)

)
,
(
(w1,⊥), (w3,⊥)

)
,(

(w2,⊥), (w4,⊥)
)
}

4′c = 4c
V ′(p) = {(w3, ¡

a
Sign(b,¬p)), (w3,⊥)}

The result of the product update operation can be described by Fig. 4.5. First, agents
a and c believe Sign(b, p), i.e., Bel(a, Sign(b, p)) and Bel(c, Sign(b, p)) (see Kripke model in
the left-hand side of Fig. 4.5). By the product update operation, agent a does not believe
both Sign(b, p) and Sign(b,¬p), i.e., ¬Bel(a, Sign(b, p)) and ¬Bel(a, Sign(b,¬p)), but agent
c still believe Sign(b, p), i.e., Bel(c, Sign(b, p)) as shown in the right-hand side of Fig. 4.5.
The updated model in this figure can be described as follows: When we focus on the action
¡aSign(b,¬p), we obtain that only agent a changes his/her belief from Bel(a, Sign(b, p)) into

¬Bel(a, Sign(b, p)). This belief change of agent a can be noticed only by him/herself. On
the other hand, when we focus on the action ⊥, we obtain that beliefs of agents a and b are
the same as the initial situation before [Sign(b,¬p)� a]. Note that the right-hand side of

Fig. 4.5 (the updated model M
⊗E¡a

Sign(b,¬p)
,Π

) represents the result of [Sign(b,¬p)� a] when
we focus on a current viewpoint of agent a representing by state (w0, ¡), that is, it shows
only the links from state (w0, ¡).
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Figure 4.6: Product update operation of [p a]

Interaction between Private Announcement and Private Permission

This section describes how we need both private announcement and private permission.
For Rc, we suppose that Rc has no properties of relations in order to capture the non-
monotonic change of an agent’s belief. That is, we allow an agent to change his/her belief
from Bel(a, ϕ) into ¬Bel(a, ϕ). For example, we assume that agent a first does not believe
ϕ, i.e., ¬Bel(a, ϕ). By the private announcement, agent a changes his/her belief from
¬Bel(a, ϕ) into Bel(a, ϕ) by removing the links into ¬ϕ’s states. If there is no link, we can
regard that agent a believes both ϕ and ¬ϕ, i.e., Bel(a,⊥). In this sense, the property
of seriality cannot be preserved. However, the private announcement can preserve the
properties of transitivity and Euclideanness. Next, the private permission may be applied
in order to change agent a’s belief from Bel(a, ϕ) into ¬Bel(a, ϕ) by adding the links
into ¬ϕ’s states. This process may break the properties of transitivity and Euclideanness.
Nevertheless, the property of seriality can be preserved by the private permission. For this
reason, we may regard that the repetitive application of the private announcement and the
private permission could retrieve the properties of seriality, transitivity and Euclideanness.

Proposition 55. The private announcement [ϕ  a] cannot preserve the property of
seriality.

Proof. It is easily proved by counterexample. Suppose that G = { a }. Given a Kripke
model M = (W,Ra, V ), where W = {x, y }, Ra = { (x, y), (y, y) } and V (p) = {x } (see
a Kripke model in Fig. 4.6). Let E be an action model for a private announcement
of ϕ to agent a which is defined as a tuple (E,Da, pre), where E = { !aϕ,>}, Da =
{ (!aϕ, !

a
ϕ), (>,>) }, and pre(!aϕ) = ϕ and pre(>) = >. We fix ϕ as p. After [p  a], the

updated model M⊗E = (W ′, R′a, V
′) (see the right-hand side of Fig. 4.6) can be defined

by Definition 46 as follows:

W ′ = { (x, !ap), (y, !
a
p), (x,>), (y,>) }

R′a = {
(
(x,>), (y,>)

)
,
(
(y,>), (y,>)

)
}

V ′(p) = { (x, !ap), (x,>) }
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Figure 4.7: Product update operation of [¬p� a]

When a precondition is pre(!ap), we can find that some state does not have a successor.
Thus, R′a is not serial.

Proposition 56. The private permission [ϕ� a] cannot preserve the properties of tran-
sitivity and Euclideanness.

Proof. It is easily proved by counterexample. Suppose that G = { a }. Given a Kripke
model M = (W,Ra, V ), where W = {w, x, y, z }, Ra = {(y, x),(x, x),(y, y)} and V (p)
= {x, z } (see a Kripke model in Fig. 4.7). Let E be an action model for a private
permission of ϕ to agent a which is defined as a tuple (E,Da, pre), where E = { ¡aϕ,⊥},
Da = { (¡aϕ, ¡

a
ϕ), (⊥,⊥) }, and pre(¡aϕ) = ϕ and pre(⊥) = ⊥. We fix ϕ as ¬p. After [¬p� a],

the updated model M⊗E = (W ′, R′a, V
′) (see the right-hand side of Fig. 4.7) can be defined

by Definition 46 as follows:

W ′ = {(w, ¡a¬p), (x, ¡a¬p), (y, ¡a¬p), (z, ¡a¬p), (w,⊥), (x,⊥), (y,⊥), (z,⊥)}
R′a = {

(
(w, ¡a¬p), (w, ¡

a
¬p)
)
,
(
(w, ¡a¬p), (y, ¡

a
¬p)
)
,
(
(x, ¡a¬p), (x, ¡

a
¬p)
)
,
(
(x, ¡a¬p), (w, ¡

a
¬p)
)
,(

(x, ¡a¬p), (y, ¡
a
¬p)
)
,
(
(y, ¡a¬p), (y, ¡

a
¬p)
)
,
(
(y, ¡a¬p), (w, ¡

a
¬p)
)
,
(
(y, ¡a¬p), (x, ¡

a
¬p)
)
,(

(z, ¡a¬p), (w, ¡
a
¬p)
)
,
(
(z, ¡a¬p), (y, ¡

a
¬p)
)
,
(
(x,⊥), (x,⊥)

)
,
(
(y,⊥), (y,⊥)

)
,(

(y,⊥), (x,⊥)
)
}

V ′(p) = { (x, ¡a¬p), (x,⊥), (z, ¡a¬p), (z,⊥) }

When a precondition is pre(¡a¬p), we can find that
(
(y, ¡a¬p),(w, ¡

a
¬p)
)
∈ R′a and

(
(y, ¡a¬p),(x, ¡

a
¬p)
)

∈ R′a, but
(
(w, ¡a¬p),(x, ¡

a
¬p)
)
6∈ R′a. Thus, R′a is not Euclidean. In a similar way, we can

find that
(
(z, ¡a¬p), (y, ¡

a
¬p)
)
∈ R′a and

(
(y, ¡a¬p), (x, ¡

a
¬p)
)
∈ R′a, but

(
(z, ¡a¬p), (x, ¡

a
¬p)
)
6∈ R′a.

Thus, R′a is not transitive.
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4.3 Logical Formalism for Belief Re-revision and Re-

liability Change

Since this study aims to construct a logical formalism for analyzing an agent’s changing
of belief and reliability, it requires to combine two logical tools for reliability change and
belief re-revision into a unified system. From Section 3.2, we have three dynamic operators
for reliability change including upgrade [H ⇑aϕ], downgrade [H ⇓aϕ] and joint downgrade
[H �a]. From Section 4.1.2, we have an action model modality [E,Π, e] for capturing
an update operation of private announcement and private permission operators which is
used to formalize belief re-revision. In order to define our logical formalism for reliability
change and belief re-revision, we introduce a language LBRRC which is an extension of LRC

by adding the action model modality [E,Π, e] and three dynamic operators for reliability
change including upgrade [H ⇑aϕ], downgrade [H ⇓aϕ] and joint downgrade [H �a].

4.3.1 Syntax and Semantics

Definition 57. Let G be a fixed finite set of agents and E be a finite set of action points.
The language LBRRC consists of the following vocabulary: (i) a countably infinite set Prop
= { p, q, r, ... } of propositional letters, (ii) Boolean connectives: ¬, →, (iii) the constants
for reliability ordering b 6a c (a, b, c ∈ G), (iv) atomic programs: 1, Ba (a ∈ G), Sa
(a ∈ G), (v) program operators: ∪ (non-deterministic choice), ; (sequential composition),
(vi) mixed operators: ? (test), [·] (necessity), (vii) an action model modality: [E,Π, e] with
e ∈ E (E = (E, (Dc)c∈G, (Ua)a∈G, pre,Π) is an action model, where E is a finite domain
of action points, Dc is an accessibility relation representing beliefs, Ua is an accessibility
relation representing signatures, pre is a preconditions function, and Π is a family of
programs), and (viii) dynamic operators for reliability change: [H ⇑aϕ] (upgrade), [H ⇓aϕ]
(downgrade), [H �a] (joint downgrade). A set FormBRRC of formulas ϕ of LRC and a set
Prog of programs π of LRC are inductively defined as follows:

FormBRRC 3 ϕ ::= p | ¬ϕ |ϕ→ ϕ | b 6a c | [π]ϕ | [E,Π, e]ϕ | [H ⇑aϕ]ϕ | [H ⇓aϕ]ϕ | [H �a]ϕ

Prog 3 π ::= 1 |Ba | Sa |π ∪ π | π; π |ϕ?

where p ∈ Prop, e ∈ E, H ⊆ G and a, b, c ∈ G.
The abbreviations for ∧, ∨, ↔, > and ⊥ can be defined as shown in Definition 2.

For the semantics of this language, the definition of models and the satisfaction relation
M, w |= ϕ is defined in a similar way to Definition 41 (in Section 4.1).

4.3.2 Hilbert-style Axiomatization HBRRC

The Hilbert-style system HBRRC for LBRRC is presented in Table 4.2 including all
recursion axioms for [E,Π, e] (action model modality in Section 4.1.2), [H ⇑aϕ] (upgrade
in Section 3.2.1), [H ⇓aϕ] (downgrade in Section 3.2.2) and [H �a] (joint downgrade in
Section 3.2.3). Since HBRRC is regarded as an extension of HRC, we can provide the
proof of completeness by a translation method.
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All axioms and rules of HRC
(RA1[E,Π,e]) [E,Π, e]p ↔ p
(RA2[E,Π,e]) [E,Π, e]d 6c d′ ↔ d 6c d′

(RA3[E,Π,e]) [E,Π, e]¬ψ ↔ ¬[E,Π, e]ψ
(RA4[E,Π,e]) [E,Π, e](ψ1 → ψ2) ↔ [E,Π, e]ψ1 → [E,Π, e]ψ2

(RA5[E,Π,e]) [E,Π, e][1]ψ ↔
∧
f∈E [1][E,Π, f ]ψ

(RA6[E,Π,e]) [E,Π, e][Sa]ψ ↔
∧
f∈Ua(e)[Sa][E,Π, f ]ψ

(RA7[E,Π,e]) [E,Π, e][Ba]ψ ↔
∧
f∈Da(e) [πa(e, f)][E,Π, f ]ψ

(RA8[E,Π,e]) [E,Π, e][π ∪ π′]ψ ↔ [E,Π, e][π]ψ ∧ [E,Π, e][π′]ψ
(RA9[E,Π,e]) [E,Π, e][π;π′]ψ ↔ [E,Π, e][π][π′]ψ
(RA10[E,Π,e]) [E,Π, e][ϕ?]ψ ↔ [E,Π, e](ϕ→ ψ)
(RA1[H⇑aϕ]) [H ⇑aϕ]p ↔ p

(RA2[H⇑aϕ]) [H ⇑aϕ] (b 6d c) ↔ b 6d c (d 6= a)

(RA3[H⇑aϕ]) [H ⇑aϕ] (b 6a c) ↔ b 6a c (b, c ∈ G \H)

(RA4[H⇑aϕ]) [H ⇑aϕ] (b 6a c) ↔
(
[Sb]ϕ ∧ [Sc]ϕ ∧ (b 6a c)

)
∨
(
¬[Sb]ϕ ∧ ¬[Sc]ϕ ∧ (b 6a c)

)
∨
(
[Sb]ϕ ∧ ¬[Sc]ϕ

)
(b, c ∈ H)

(RA5[H⇑aϕ]) [H ⇑aϕ] (b 6a c) ↔ ¬[Sc]ϕ ∧ (b 6a c) (c ∈ H, b ∈ G \H)

(RA6[H⇑aϕ]) [H ⇑aϕ] (b 6a c) ↔ [Sb]ϕ ∨
(
¬[Sb]ϕ ∧ (b 6a c)

)
(b ∈ H, c ∈ G \H)

(RA7[H⇑aϕ]) [H ⇑aϕ]¬ψ ↔ ¬[H ⇑aϕ]ψ

(RA8[H⇑aϕ]) [H ⇑aϕ] (ψ1 → ψ2) ↔ [H ⇑aϕ]ψ1 → [H ⇑aϕ]ψ2

(RA9[H⇑aϕ]) [H ⇑aϕ][1]ψ ↔ [1][H ⇑aϕ]ψ

(RA10[H⇑aϕ]) [H ⇑aϕ][Sa]ψ ↔ [Sa][H ⇑aϕ]ψ

(RA11[H⇑aϕ]) [H ⇑aϕ][Ba]ψ ↔ [Ba][H ⇑aϕ]ψ

(RA12[H⇑aϕ]) [H ⇑aϕ][π ∪ π′]ψ ↔ [H ⇑aϕ][π]ψ ∧ [H ⇑aϕ][π′]ψ

(RA13[H⇑aϕ]) [H ⇑aϕ][π;π′]ψ ↔ [H ⇑aϕ][π][π′]ψ

(RA14[H⇑aϕ]) [H ⇑aϕ][ϕ?]ψ ↔ [H ⇑aϕ](ϕ→ ψ)

(RA1[H⇓aϕ]) [H ⇓aϕ]p ↔ p

(RA2[H⇓aϕ]) [H ⇓aϕ] (b 6d c) ↔ b 6d c (d 6= a)

(RA3[H⇓aϕ]) [H ⇓aϕ] (b 6a c) ↔ b 6a c (b, c ∈ G \H)

(RA4[H⇓aϕ]) [H ⇓aϕ] (b 6a c) ↔
(
[Sb]ϕ ∧ [Sc]ϕ ∧ (b 6a c)

)
∨
(
¬[Sb]ϕ ∧ ¬[Sc]ϕ ∧ (b 6a c)

)
∨
(
¬[Sb]ϕ ∧ [Sc]ϕ

)
(b, c ∈ H)

(RA5[H⇓aϕ]) [H ⇓aϕ] (b 6a c) ↔ [Sc]ϕ ∨
(
¬[Sc]ϕ ∧ (b 6a c)

)
(c ∈ H, b ∈ G \H)

(RA6[H⇓aϕ]) [H ⇓aϕ] (b 6a c) ↔ ¬[Sb]ϕ ∧ (b 6a c) (b ∈ H, c ∈ G \H)

(RA7[H⇓aϕ]) [H ⇓aϕ]¬ψ ↔ ¬[H ⇓aϕ]ψ

(RA8[H⇓aϕ]) [H ⇓aϕ] (ψ1 → ψ2) ↔ [H ⇓aϕ]ψ1 → [H ⇓aϕ]ψ2

(RA9[H⇓aϕ]) [H ⇓aϕ][1]ψ ↔ [1][H ⇓aϕ]ψ

(RA10[H⇓aϕ]) [H ⇓aϕ][Sa]ψ ↔ [Sa][H ⇓aϕ]ψ

(RA11[H⇓aϕ]) [H ⇓aϕ][Ba]ψ ↔ [Ba][H ⇓aϕ]ψ

(RA12[H⇓aϕ]) [H ⇓aϕ][π ∪ π′]ψ ↔ [H ⇓aϕ][π]ψ ∧ [H ⇓aϕ][π′]ψ

(RA13[H⇓aϕ]) [H ⇓aϕ][π;π′]ψ ↔ [H ⇓aϕ][π][π′]ψ

(RA14[H⇓aϕ]) [H ⇓aϕ][ϕ?]ψ ↔ [H ⇓aϕ](ϕ→ ψ)

(RA1[H�a]) [H �a]p ↔ p
(RA2[H�a]) [H �a] (b 6d c) ↔ b 6d c (d 6= a)
(RA3[H�a]) [H �a] (b 6a c) ↔ b 6a c (b, c ∈ G \H)
(RA4[H�a]) [H �a] (b 6a c) ↔ > (b, c ∈ H)
(RA5[H�a]) [H �a] (b 6a c) ↔ > (c ∈ H, b ∈ G \H)
(RA6[H�a]) [H �a] (b 6a c) ↔ ⊥ (b ∈ H, c ∈ G \H)
(RA7[H�a]) [H �a]¬ψ ↔ ¬[H �a]ψ
(RA8[H�a]) [H �a] (ψ1 → ψ2) ↔ [H �a]ψ1 → [H �a]ψ2

(RA9[H�a
ϕ]) [H �aϕ][1]ψ ↔ [1][H �aϕ]ψ

(RA10[H�a
ϕ]) [H �aϕ][Sa]ψ ↔ [Sa][H �aϕ]ψ

(RA11[H�a
ϕ]) [H �aϕ][Ba]ψ ↔ [Ba][H �aϕ]ψ

(RA12[H�a
ϕ]) [H �aϕ][π ∪ π′]ψ ↔ [H �aϕ][π]ψ ∧ [H �aϕ][π′]ψ

(RA13[H�a
ϕ]) [H �aϕ][π;π′]ψ ↔ [H �aϕ][π][π′]ψ

(RA14[H�a
ϕ]) [H �aϕ][ϕ?]ψ ↔ [H �aϕ](ϕ→ ψ)

(Nec[E,Π,e]) From ψ, infer [E,Π, e]ψ
(Nec[H⇑aϕ]) From ψ, infer [H ⇑aϕ]ψ

(Nec[H⇓aϕ]) From ψ infer [H ⇓aϕ]ψ

(Nec[H�a]) From ψ infer [H �a]ψ

Table 4.2: Hilbert-style system HBRRC for LBRRC
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Definition 58. The translation t : FormBRRC → FormRC is defined as follows:

t(p) = p
t(b 6d c) = b 6d c
t(¬ϕ) = ¬t(ϕ)
t(ϕ→ ψ) = t(ϕ)→ t(ψ)
t([1]ψ) = [1]t(ψ)
t([Sa]ψ) = [Sa]t(ψ)
t([Ba]ψ) = [Ba]t(ψ)
t([π ∪ π′]ψ) = t([π]ψ) ∧ t([π′]ψ)
t([π; π′]ψ) = t([π][π′]ψ)
t([ϕ?]ψ) = t(ϕ→ ψ)
t([E,Π, e]p) = p
t([E,Π, e]b 6d c) = b 6d c
t([E,Π, e]¬ψ) = ¬t([E,Π, e]ψ)
t([E,Π, e](ψ1 → ψ2)) = t([E,Π, e]ψ1)→ t([E,Π, e]ψ2)
t([E,Π, e][1]ψ) =

∧
f∈E[1]t([E,Π, f ]ψ)

t([E,Π, e][Sa]ψ) =
∧
f∈Ua(e)[Sa]t([E,Π, f ]ψ)

t([E,Π, e][Ba]ψ) =
∧
f∈Da(e) t([πa(e, f)][E,Π, f ]ψ)

t([E,Π, e][π ∪ π′]ψ) = t([E,Π, e][π]ψ) ∧ t([E,Π, e][π′]ψ)
t([E,Π, e][π; π′]ψ) = t([E,Π, e][π][π′]ψ)
t([E,Π, e][ϕ?]ψ) = t([E,Π, e]ϕ→ ψ)
t([E1,Π, e1][E2,Π, e2]ψ) = t([E1,Π, e1]t([E2,Π, e2]ψ))
t([E,Π, e][H ⇑aϕ]ψ) = t([E,Π, e]t([H ⇑aϕ]ψ))
t([E,Π, e][H ⇓aϕ]ψ) = t([E,Π, e]t([H ⇓aϕ]ψ))
t([E,Π, e][H �a

ϕ]ψ) = t([E,Π, e]t([H �a
ϕ]ψ))

t([H ⇑aϕ]p) = p
t([H ⇑aϕ]b 6d c) = b 6d c
t([H ⇑aϕ](b 6d c)) = b 6d c (d 6= a)
t([H ⇑aϕ](b 6d c)) = b 6d c (b, c ∈ G \H)
t([H ⇑aϕ](b 6d c)) =

(
[Sb]t(ϕ) ∧ [Sc]t(ϕ) ∧ (b 6a c)

)
∨(

¬[Sb]t(ϕ) ∧ ¬[Sc]t(ϕ) ∧ (b 6a c)
)
∨(

[Sb]t(ϕ) ∧ ¬[Sc]t(ϕ)
)

(b, c ∈ H)
t([H ⇑aϕ](b 6d c)) = ¬[Sc]t(ϕ) ∧ (b 6a c) (c ∈ H, b ∈ G \H)
t([H ⇑aϕ](b 6d c)) = [Sb]t(ϕ) ∨

(
¬[Sb]t(ϕ) ∧ (b 6a c)

)
(b ∈ H, c ∈ G \H)

t([H ⇑aϕ]¬ψ) = ¬t([H ⇑aϕ]ψ)
t([H ⇑aϕ](ψ1 → ψ2)) = t([H ⇑aϕ]ψ1)→ t([H ⇑aϕ]ψ2)
t([H ⇑aϕ][1]ψ) = [1]t([H ⇑aϕ]ψ)
t([H ⇑aϕ][Sa]ψ) = [Sa]t([H ⇑aϕ]ψ)
t([H ⇑aϕ][Ba]ψ) = [Ba]t([H ⇑aϕ]ψ)
t([H ⇑aϕ][π ∪ π′]ψ) = t([H ⇑aϕ][π]ψ) ∧ t([H ⇑aϕ][π′]ψ)
t([H ⇑aϕ][π; π′]ψ) = t([H ⇑aϕ][π][π′]ψ)
t([H ⇑aϕ][ψ?]θ) = t([H ⇑aϕ](ψ → θ))
t([H ⇑aϕ][E,Π, e]ψ) = t([H ⇑aϕ]t([E,Π, e]ψ))
t([H ⇑aϕ][H ⇑aψ]θ) = t([H ⇑aϕ]t([H ⇑aψ]θ))
t([H ⇑aϕ][H ⇓aψ]θ) = t([H ⇑aϕ]t([H ⇓aψ]θ))
t([H ⇑aϕ][H �a

ψ]θ) = t([H ⇑aϕ]t([H �a
ψ]θ))
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t([H ⇓aϕ]p) = p
t([H ⇓aϕ]b 6d c) = b 6d c
t([H ⇓aϕ](b 6d c)) = b 6d c (d 6= a)
t([H ⇓aϕ](b 6d c)) = b 6d c (b, c ∈ G \H)
t([H ⇓aϕ](b 6d c)) =

(
[Sb]t(ϕ) ∧ [Sc]t(ϕ) ∧ (b 6a c)

)
∨(

¬[Sb]t(ϕ) ∧ ¬[Sc]t(ϕ) ∧ (b 6a c)
)
∨(

¬[Sb]t(ϕ) ∧ [Sc]t(ϕ)
)

(b, c ∈ H)
t([H ⇓aϕ](b 6d c)) = [Sc]t(ϕ) ∨

(
¬[Sc]t(ϕ) ∧ (b 6a c)

)
(c ∈ H, b ∈ G \H)

t([H ⇓aϕ](b 6d c)) = ¬Sign(b, t(ϕ)) ∧ (b 6a c) (b ∈ H, c ∈ G \H)
t([H ⇓aϕ]¬ψ) = ¬t([H ⇓aϕ]ψ)
t([H ⇓aϕ](ψ1 → ψ2)) = t([H ⇓aϕ]ψ1)→ t([H ⇓aϕ]ψ2)
t([H ⇓aϕ][1]ψ) = [1]t([H ⇓aϕ]ψ)
t([H ⇓aϕ][Sa]ψ) = [Sa]t([H ⇓aϕ]ψ)
t([H ⇓aϕ][Ba]ψ) = [Ba]t([H ⇓aϕ]ψ)
t([H ⇓aϕ][π ∪ π′]ψ) = t([H ⇓aϕ][π]ψ) ∧ t([H ⇓aϕ][π′]ψ)
t([H ⇓aϕ][π; π′]ψ) = t([H ⇓aϕ][π][π′]ψ)
t([H ⇓aϕ][ψ?]θ) = t([H ⇓aϕ](ψ → θ))
t([H ⇓aϕ][E,Π, e]ψ) = t([H ⇓aϕ]t([E,Π, e]ψ))
t([H ⇓aϕ][H ⇑aψ]θ) = t([H ⇓aϕ]t([H ⇑aψ]θ))
t([H ⇓aϕ][H ⇓aψ]θ) = t([H ⇓aϕ]t([H ⇓aψ]θ))
t([H ⇓aϕ][H �a

ψ]θ) = t([H ⇓aϕ]t([H �a
ψ]θ))

t([H �a
ϕ]p) = p

t([H �a
ϕ]b 6d c) = b 6d c

t([H �a
ϕ](b 6d c)) = b 6d c (d 6= a)

t([H �a
ϕ](b 6d c)) = b 6d c (b, c ∈ G \H)

t([H �a
ϕ](b 6d c)) = > (b, c ∈ H)

t([H �a
ϕ](b 6d c)) = > (c ∈ H, b ∈ G \H)

t([H �a
ϕ](b 6d c)) = ⊥ (b ∈ H, c ∈ G \H)

t([H �a
ϕ]¬ψ) = ¬t([H �a

ϕ]ψ)
t([H �a

ϕ](ψ1 → ψ2)) = t([H �a
ϕ]ψ1)→ t([H �a

ϕ]ψ2)
t([H �a

ϕ][1]ψ) = [1]t([H �a
ϕ]ψ)

t([H �a
ϕ][Sa]ψ) = [Sa]t([H �a

ϕ]ψ)
t([H �a

ϕ][Ba]ψ) = [Ba]t([H �a
ϕ]ψ)

t([H �a
ϕ][π ∪ π′]ψ) = t([H �a

ϕ][π]ψ) ∧ t([H �a
ϕ][π′]ψ)

t([H �a
ϕ][π; π′]ψ) = t([H �a

ϕ][π][π′]ψ)
t([H �a

ϕ][ψ?]θ) = t([H �a
ϕ](ψ → θ))

t([H �a
ϕ][E,Π, e]ψ) = t([H �a

ϕ]t([E,Π, e]ψ))
t([H �a

ϕ][H ⇑aψ]θ) = t([H �a
ϕ]t([H ⇑aψ]θ))

t([H �a
ϕ][H ⇓aψ]θ) = t([H �a

ϕ]t([H ⇓aψ]θ))
t([H �a

ϕ][H �a
ψ]θ) = t([H �a

ϕ]t([H �a
ψ]θ))

Lemma 14. For all formulas ϕ ∈ FormBRRC ,

`HBRRC ϕ↔ t(ϕ).

Theorem 15 (Soundness). Let M be the class of all models. For all ψ ∈ FormBRRC ,

if `HBRRC ψ, then M |= ψ.

60



Proof. Suppose that `HBRRC. Our goal is to show that M |= ψ for all ψ. It suffices to
show that all axioms and all rules in HBRRC are valid on all models in a class M with
respect to the semantics of LBRRC . This is straightforward.

Theorem 16 (Completeness). Let M be the class of all models. For all ϕ ∈ FormBRRC ,

if M |= ϕ, then `HBRRC ϕ.

Proof. Suppose that M |= ϕ. Our goal is to show `HBRRC ϕ for all formulas ϕ. By
the soundness theorem (Theorem 15) and Lemma 14, we obtain that M |= ϕ ↔ t(ϕ).
By this and our supposition, we get M |= t(ϕ). Since the formula t(ϕ) does not contain
any dynamic operators, we can reduce the completeness of HBRRC to that of HRC in
Theorem 14. Therefore, we obtain `HRC t(ϕ) by the completeness of HRC (Theorem 14).
Since HRC is a sub system of HBRRC, we have that `HBRRC t(ϕ). By this and
Lemma 14, we obtain `HBRRC ϕ, as desired.

61



Chapter 5

Dynamic Logical Analysis of Legal
Cases

This chapter demonstrates how to analyze a legal case by our logical formalization. In
Section 5.1, our proposed method for analyzing a judge’s changing of belief and reliability
in a judgment process is presented. With this method and our logical formalization,
we develop an implementation for analyzing an agent’s changing of belief and reliability
(mentioned in Appendix B). By this implementation and our analysis method, six target
legal cases are analyzed in Section 5.2.

5.1 Analysis Method

This section provides a description of our proposed method for analyzing a legal case
based on our logical formalization consisting of the following steps.

(1) We will summarize the target legal case by extracting the facts and the decision
(the more details of this step will be described in Section 5.2.1).1 The result can be
shown in Tables 5.2, 5.3 and 5.4.

(2) We will construct an initial Kripke model for the target legal case. This model is
used for analyzing a judge’s changing of belief and reliability. A construction of
the initial model can be done by our implementation, as mentioned in the second
feature of our implementation in Section B. This process can be summarized into
the following steps:

(2.1) We will generate all possibilities which can be represented by possible belief
states of an agent in a Kripke model. The number of all possible belief states
can be calculated by 2N where N is the number of signed agents or witnesses
in the legal case. For example, the second legal case in Table 5.4 consists of a
statement p and two witnesses b and f . That is, we obtain that N is equal to
two, and the number of all possible belief states is four states as follows:

(w1) Agent b gives statement p and agent f gives statement p.

(w2) Agent b gives statement p and agent f gives statement ¬p.
1In this study, we did not apply legal text processing in the area of natural language processing (NLP)

for summarizing legal cases and generating an initial Kripke model from a legal case.
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Figure 5.1: Initial Kripke model for the second legal case consisting of 13 states including
four belief states of j (w1, w2,w3, w4), eight signed states including four signed states of
b (w5, w7, w9, w11) and four signed states of f (w6, w8, w10, w12) and one current state
(w0) representing j’s viewpoint

(w3) Agent b gives statement ¬p and agent f gives statement p.

(w4) Agent b gives statement ¬p and agent f gives statement ¬p.
From the above possible belief states, we can regard that each belief state
consists of two signed states representing signed statements of b and f . If
there is a lot of possible belief states, we may remove some states which are
considered to be not important for analyzing the judge’s changing of belief
and reliability. That is, we may regard that such possibilities cannot occur
in the legal judgment. This is for simplifying the initial model to be easy for
analyzing the judge’s changing of belief and reliability.

(2.2) Firstly, j representing a judge is defined as a belief agent who has an accessibil-
ity relation Rj. Two witnesses b and f are defined as signed agents who have
accessibility relations Sb and Sf , respectively. A current state representing j’s
viewpoint is defined as w0. Then, the links representing Sb and Sf will be added
from each belief state to its signed states. For example, the possible belief state
w1 from Step (2.1) consists of two signed states w5 and w6 representing signed
statements of b and f , respectively. Then, the links Sb and Sf will be added
from belief state w1 to signed states w5 and w6, respectively. Next, the links
representing Rj will be added from the current state (w0) to all possible belief
states (w1, w2, w3, w4) because we assume that the judge should open to all
possibilities at the initial stage. Finally, the initial model of our target legal
case can be constructed as in Fig. 5.1 which is the same as the left-hand side
of Fig. 5.2 outputting from our implementation. Note that Fig. 5.1 presents
one way for generating an initial model from the second legal case. However,
an initial model of the second legal case can be constructed in different ways,
that is, identifying different key features of a legal case (i.e., a statement, a
belief agent and signed agents) or removing some possibilities. For example, if
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Table 5.1: Summary of six dynamic logical operators

Type Operator name
Logical
formula

Goal

Formalizing
belief

change

Private announcement [ϕ a]
To restrict agent a’s
attention to the ϕ’s states

Careful policy [Careful(a, ϕ)]
To aggregate information
about ϕ

Private permission [ϕ� a]
To enlarge agent a’s
attention to cover all
ϕ’s states

Formalizing
reliability

change

Downgrade [H ⇓aϕ]
To make such agents who
sign ϕ in H less reliable
than all the other agents

Upgrade [H ⇑aϕ]
To make such agents who
sign ϕ in H more reliable
than all the other agents

Joint downgrade [H �a]

To make such agents in H
equally reliable and less
reliable than the agents in
the other groups

we regard that giving statement p of agent f is not important, we can remove
states w1 and w3. As a result, we obtain an initial Kripke model consisting of
seven states (i.e., two belief states (w2, w4), two signed states of b (w7, w11),
two signed states of f (w8, w12) and one current state (w0)) that is different
from Fig. 5.1. With different initial models, we can obtain the same analysis
result if such models have the essential information which is sufficient for a
judgment.

(3) We can analyze the judge’s changing of belief and reliability by inputting any dy-
namic logical operators including private announcement, careful policy, private per-
mission, downgrade, upgrade and joint downgrade as mentioned in Chapters 3 and
4. These dynamic logical operators can be summarized in Table 5.1. Recall that
our implementation aims at reducing the effort to decide which operators are to be
applied for analyzing an agent’s changing of belief and reliability. With this goal,
we propose an application method of our dynamic operators as follows:

(3.1) We assume that the agent needs to apply two basic operations including pri-
vate announcement and careful policy. When the agent receives a piece of
information, he/she will apply the private announcement for admitting such
information. The careful policy is used for deriving beliefs from signed infor-
mation. Based on this idea and the above goal, there are the following options
(OP1) and (OP2):

(OP1) The agent needs to apply only two kinds of operators, i.e., private an-
nouncement and careful policy. This means that whenever the agent re-
ceives a piece of information, he/she will accept the received information
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by applying the private announcement. If there is an inconsistency, the
system will handle such inconsistency instead of the agent. That is, the
inconsistency management policy will be automatically by our implemen-
tation by the following steps.

(i) The system will check if there is an inconsistency between the existing
belief and new information or not. That is, there is an agent giving
inconsistent statements or not.

(ii) If there is an inconsistency, the system applies the joint downgrade and
the private permission operators by the following steps. First, the joint
downgrade operator is employed for downgrading the agent who gives
inconsistent statements less reliable than the other agents. Second,
a process of belief restoration is performed by the private permission
operators. For this process, the system will automatically restore all
possibilities because it cannot determine which statements should be
permitted to the agent’s belief.

(iii) The system will check if there is the received information which is not
inconsistent with the existing belief and is signed by the most reliable
agent or not. If there is such information, the system will apply the
private announcement operator for admitting such information.

An example of applying this policy will be described in Section 5.2.3. From
the above policy, we can regard that the agent does not need to change
his/her reliability or permit the possibility to his/her belief by him/herself.

(OP2) The agent needs to apply three kinds of operators, i.e., private announce-
ment, downgrade/upgrade/joint downgrade and careful policy. That is,
the agent needs to apply the operation for changing his/her reliability, i.e.,
downgrade, upgrade and joint downgrade. In this option, the agent needs
to decide how to change his/her reliability ordering between other agents
by him/herself.2

(3.2) In order to analyze the judge’s changing of belief and reliability, we first use
option (OP1) because it is an easy way that we do not need to take much effort
to decide which operators are to be applied. If option (OP1) cannot work well,
we will use option (OP2).

5.2 Analyzing Target Legal Cases

This section presents how we can analyze a legal case by our proposed method and
implementation. First, six target legal cases are summarized in Section 5.2.1. Then, we
analyze six target legal cases by our implementation as mentioned in Appendix B and the
analysis results are stated in Section 5.2.2. Among six target legal cases, the second legal
case is used to illustrate how to analyze belief change of a judge in Section 5.2.3.

2In this study, we will not analyze how an agent decides to change his/her reliability ordering between
the other agents because this is a psychological issue and is out of our scope.
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Table 5.2: Summary of the decisions of six target legal cases

Legal
case

Defendants
Decisions

Inquiry Court

1 d
d was charged with
attempted murder

j decided that d was
guilty

2 d d was charged with murder j acquitted d

3 d1 and d2
d1 and d2 were charged
with first degree murder

j acquitted d1 and d2 of
first degree murder

4 d
d was charged with
manslaughter

j decided that d was
not guilty

5 d
d was charged with
attempted murder

j decided that d was
not guilty

6 d1 and d2
d1 and d2 were charged
with manslaughter

j decided that d1 and d2

were not guilty

5.2.1 Summary of Six Legal Cases

In this section, we present six target legal cases which have three characteristics. First,
these legal cases are published judgments of the Supreme Court that can be retrieved
from an on-line database. Second, we suppose that the judges in these legal cases need
to change their belief and/or reliability ordering in order to derive their decision. This
process can be demonstrated by our implementation. Third, these legal cases consist of
three main components as follows:

• Facts provide the essential features of a legal case including all of the relevant people,
actions, locations, evidences and so on.

• Decision explains how a judge decides a legal case in a court starting from the
original trial decision to the final one.

• Reasoning provides an explanation of how a judge justified application of the law
including the legal rules or precedents.

Among the above components, we consider the facts and the decision to be essential
for us to analyze our target legal cases by our implementation. Based on this idea, six
target legal cases can be summarized in Tables 5.2 and 5.3 (the more details of all target
legal cases are presented in Appendix C). We can describe how to summarize our target
legal cases as follows:

• Summarizing the decision of a legal case: this study focuses on only the inquiry
stage and the court. Table 5.2 shows a summary of judgment in six target legal
cases. In Table 5.2, j represents a judge in a legal case. In this study, we regard the
judges in each legal case as a single agent j.

• Summarizing the facts of a legal case: we will extract only statements and witnesses
that are most important to the judge for deriving his/her decision as shown in Ta-
ble 5.3. Note that, in the first legal case, po gives statements Sign(v, p), Sign(f1, p),
Sign(f2,¬p) and Sign(mo, p) that can be denoted by Sign(po, Sign(v, p)∧Sign(f1, p)∧
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Table 5.3: Summary of significant statements from witnesses in six target legal cases

Legal
case

Witness
Statements

Note
Inquiry Court

1

v p ¬p

p : d was the offender
f1 p ¬p
f2 ¬p None
mo p None

po None
Sign(v, p), Sign(f1, p),
Sign(f2,¬p), Sign(mo, p)

2

b ¬p p

p : d was the offender
f1 p ¬p
f2 p ¬p
f3 p ¬p

3
f1 p p

p : d2 was the shooter
f2 ¬p p

4 f ¬p p p : d was the offender

5

v p ¬p

p : d intended to kill v
f1 p ¬p
f2 p p
b p p

6

f1 None p, q, r p : d2 kicked v while v
was on the ground,

q : d1 kicked v while v
was on the ground,

r : d2 kicked v in the head

f2 None ¬p, ¬q
f3 ¬p, ¬q ¬p, ¬q
f4 p, ¬r p, ¬r
f5 ¬r q, r

Sign(f2,¬p) ∧ Sign(mo, p)). In this sense, we can regard that po first receives state-
ments p, p, ¬p and p from v, f1, f2 and mo, respectively, in the inquiry stage and
then gives the received statements to the judge in the court.

• Simplifying a legal case: if there are some witnesses who give redundant statements,
we can remove such witnesses. For example, in the second legal case, since three
witnesses f1, f2 and f3 give the same statements both in the inquiry stage and the
court (see Table 5.3), we can merge them into one witness f as shown in Table 5.4.

5.2.2 Analysis Result

According to our analysis method in Section 5.1, six target legal cases are analyzed by
our implementation and the results can be shown in Tables 5.5 and 5.6.

Table 5.5 shows a process for analyzing the judge’s changing of belief and reliability
in each legal judgment by our implementation including statements from Table 5.4, op-
erations for changing an agent’s belief and reliability, a goal of applying such operations
and the final result. In Table 5.5, the operations which an agent employed to change
his/her belief and reliability are shown. In addition, a goal of applying such operations
will be presented in order to show why the agent decides to apply such operations. Table

67



Table 5.4: Simplified summary of significant statements from witnesses in six target legal
cases

Legal case Witness
Statements

Inquiry Court

1

v (v, f1) p ¬p
f2 ¬p None
mo p None
po None Sign(v, p), Sign(f2,¬p), Sign(mo, p)

2
b ¬p p
f (f1, f2, f3) p ¬p

3
f1 p p
f2 ¬p p

4 f ¬p p

5
v (v, f1) p ¬p
b (b, f2) p p

6

f1 None p, q, r
f3 (f2, f3) ¬p, ¬q ¬p, ¬q
f4 p, ¬r p, ¬r
f5 ¬r q, r

5.6 shows the results of analyzing six legal cases by our implementation including the
following items:

• Number of statements are used to analyze the legal case (see Table 5.5).

• Number of steps are applied by an agent for changing his/her belief and reliability
(see Table 5.5).

• Number of all operations are employed by both an agent and our implementation
for changing such agent’s belief and reliability.

• We will check if the inconsistency management policy is applied or not (the more
details of this policy are described in Section B).

• We will check if the careful policy which is used to aggregate information can be
applied or not.

From Table 5.5, we obtain the final result of all target legal cases, interpreted corre-
sponding to the actual decision. From Table 5.6, we can interpret the results as follows:

• The number of statements can affect the number of steps and operations. Since this
study assumes that an agent can consider only one information, our implementation
will allow us to analyze only one statement at one time. However, we may need
several statements for analyzing some legal case. For example, in the sixth legal
case, we need three statements including p, q and r. In order to analyze such legal
case, it is required to analyze each statement separately as in Table 5.5. From
this table, three steps including three operations are performed for analyzing each
statement. Thus, we need nine steps including nine operations for analyzing this
legal case.
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Table 5.5: Summary of analysis process of six target legal cases (‘info.’: information,
‘Pri-Ann’: private announcement and ‘Agg’ : careful policy for information aggregation)

Legal
case

Statement Operation Goal Final Result

1 p

(1) Pri-Ann
To admit statements of
v and po in the court

j believes p(2) Upgrade
To upgrade agent po who
signs Sign(v, p)

(3) Agg To aggregate statements of po

(4) Upgrade
To upgrade agents v and mo
who sign p

(5) Agg To aggregate info. about p

2 p
(1) Pri-Ann

To admit statements of
b and f in the court

j cannot
determine on
statements of
both b and f

(2) Pri-Ann
To admit statement of b
in the inquiry stage

(3) Pri-Ann
To admit statement of f
in the inquiry stage

3 p
(1) Pri-Ann

To admit statements of f1

and f2 in the court
j believes p

(2) Pri-Ann
To admit statement of f2

in the inquiry stage
(3) Agg To aggregate info. about p

4 p
(1) Pri-Ann

To admit statement of f
in the court

j cannot
determine on
statements of f(2) Pri-Ann

To admit statement of f
in the inquiry stage

5 p
(1) Pri-Ann

To admit statements of v
and b in the court

j believes p
(2) Pri-Ann

To admit statement of v
in the inquiry stage

(3) Agg To aggregate info. about p

6

p
(1) Pri-Ann

To admit statements of f1,
f3 and f4 in the court

j believes ¬p
(2) Downgrade

To downgrade agents f1

and f4 who sign p
(3) Agg To aggregate info. about ¬p

q
(1) Pri-Ann

To admit statements of f1,
f3 and f5 in the court

j believes q
(2) Downgrade

To downgrade agent f3

who signs ¬q
(3) Agg To aggregate info. about q

r
(1) Pri-Ann

To admit statements of f1,
f4 and f5 in the court

j believes ¬r
(2) Downgrade

To downgrade agents f1

and f5 who sign r
(3) Agg To aggregate info. about ¬r
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Table 5.6: Result of analyzing six target legal cases by the implementation

Legal
case

Number
of

statements

Number
of

steps

Number
of

operations

Triggering
inconsistency
management

Capability
for

aggregation
1 1 5 5 No Yes
2 1 3 10 Yes No
3 1 3 7 Yes Yes
4 1 2 5 Yes No
5 1 3 7 Yes Yes
6 3 9 9 No Yes

• The number of steps depends on a way for applying our logical operations, as men-
tioned in the third step of Section 5.1. If we use option (OP1), the number of steps
is less than the number of operations because some operations are performed by our
implementation automatically. On the other hand, if we use option (OP2), the num-
ber of steps is equal to the number of operations. In this sense, our implementation
cannot reduce the effort to apply logical operations.

• Triggering the inconsistency management policy can reduce the number of opera-
tions which are employed by the agent. That is, our implementation can help the
agent to reduce the effort to apply logical operations. For example, in the second
legal case, when the inconsistency management policy is applied, the system will
automatically perform seven operations from the total of 10 (see Table 5.6). Thus,
the agent needs to apply only three operations by him/herself.

• Although the careful policy cannot be applied for aggregating information in some
legal cases, we can interpret the final result from our implementation corresponding
to the actual decision. This can be illustrated by an example of analyzing the second
legal case in Section 5.2.3.

5.2.3 Example of Analysis Process

This section aims to demonstrate how we can analyze a legal case based on our analysis
method as mentioned in Section 5.1. In this section, our target legal case is the second
legal case which is selected from our six legal cases in Section 5.2.1. Therefore, this section
will describe only the analysis process of the second legal case. The analysis process of
the other legal case is presented in Appendix D. Before describing a process of analysis,
we will give a short description of our target legal case (cf. Appendix C) as follows:

There was a fight between two groups of people, i.e., v’s group (v and b) and
d’s group (d, f1, f2 and f3). In the course of the fight, one of d’s group pulled
a knife and then stabbed v in the chest. Finally, v died.

Based on our analysis method (in Section 5.1), we first summarize this legal case as
mentioned in the previous section (Section 5.2.1). With the summary of legal case (see
Table 5.4), an initial Kripke model which is used to analyze belief change of a judge is
constructed by our implementation (the more details of this process is described in Section
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Table 5.7: Analysis process of the second legal case (first version)

Step Operation Meaning Result

(1)
[(Sign(b, p)∧
Sign(f,¬p)) j]

j admits
Sign(b, p) and
Sign(f,¬p)

Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
Bel(j, Sign(f,¬p))

(2) [Sign(b,¬p) j]
j admits
Sign(b,¬p) None

(2.1) [{b} �j]
j downgrades
agent b

Bel(j, f <j b)

(2.2)
[Sign(b, p)� j]
[Sign(b,¬p)� j]

j permits
Sign(b, p) and
Sign(b,¬p)

¬Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
¬Bel(j, Sign(f,¬p))

(2.3) [Sign(f,¬p) j]
j admits
Sign(f,¬p)

¬Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
Bel(j, Sign(f,¬p))

(3) [Sign(f, p) j]
j admits
Sign(f, p)

None

(3.1) [{f} �j]
j downgrades
agent f

Bel(j, b ≈j f)

(3.2)
[Sign(f,¬p)� j]
[Sign(f, p)� j]

j permits
Sign(f,¬p) and
Sign(f, p)

¬Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
¬Bel(j, Sign(f,¬p))

5.1). The resultant initial Kripke model for the second legal case (see the left-hand side
of Fig. 5.2) can be defined as follows:

G = { j, b, f }
W = {w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12 }
Rj = { (w0, w1), (w0, w2), (w0, w3), (w0, w4) }
Sb = { (w1, w5), (w2, w7), (w3, w9), (w4, w11) }
Sf = { (w1, w6), (w2, w8), (w3, w10), (w4, w12) }
V (p) = {w5, w6, w7, w10 }
@ := w0

Next, we will analyze the second legal case by using the first option (OP1) (mentioned
in Section 5.1) as an application method of our dynamic operators. That is, only private
announcement and careful policy are applied. Let us describe how to analyze the second
legal case from a judge’s viewpoint. At the initial stage, we assume that a judge j should
open to all possibilities (see the left-hand side of Fig. 5.2). Firstly, we will focus on
statements of witnesses b and f in the court. When j receives statements from b and f ,
the following steps are performed as in Table 5.7:

(1) j admits the statements of witnesses b and f in the court, i.e., Sign(b, p) and
Sign(f,¬p) by [(Sign(b, p) ∧ Sign(f,¬p)) j]. As a result, j believes Sign(b, p) and
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Figure 5.2: Left-hand side: Kripke model of the initial stage, Right-hand side: Kripke
model after [(Sign(b, p) ∧ Sign(f,¬p)) j]

Sign(f,¬p), i.e., Bel(j, Sign(b, p)) and Bel(j, Sign(f,¬p)) as shown in the right-hand
side of Fig. 5.2.

(2) When j turns back to the inquiry stage, j commits him/herself to statement of b
in the inquiry stage, i.e., Sign(b,¬p) by [Sign(b,¬p)  j], and the result can be
shown in the left-hand side of Fig. 5.3. After that, the system can detect that the
received statement Sign(b,¬p) is inconsistent with j’s belief. Thus, the system auto-
matically performs the inconsistency management policy including four operations
as the following sequences:

(2.1) When the system finds that b gives inconsistent statements, we can regard that
b is unreliable. Therefore, the system will apply [{b} �j] in order to downgrade
b to be less reliable than the other agents. The result of this downgrading is
Bel(j, f <j b) which means j believes that b becomes less reliable than f from
j’s perspective.

(2.2) By the update of [Sign(b,¬p)  j] in Step (2), there is no link from state w0

(see the left-hand side of Fig. 5.3). That is, there is no possibility in j’s belief.
Thus, we can regard that j needs to permit the possibility of both Sign(b, p)
and Sign(b,¬p) by [Sign(b, p)� j] and [Sign(b,¬p)� j], respectively. By these
private permissions, j becomes undetermined on Sign(b, p) and Sign(b,¬p), i.e.,
¬Bel(j, Sign(b, p)) and ¬Bel(j, Sign(b,¬p)). The results of [Sign(b, p) � j] and
[Sign(b,¬p)� j] are shown in the right-hand side of Fig. 5.3 and the left-hand
side of Fig. 5.4, respectively.

(2.3) The system finds that there is the received statement of f , i.e., Sign(f,¬p)
which is not inconsistent with j’s belief and is signed by f who is the most
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Figure 5.3: Left-hand side: Kripke model after [Sign(b,¬p) j], Right-hand side: Kripke
model after [Sign(b, p)� j]

Figure 5.4: Left-hand side: Kripke model after [Sign(b,¬p)� j], Right-hand side: Kripke
model after [Sign(f,¬p) j]
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Figure 5.5: Left-hand side: Kripke model after [Sign(f, p) j], Right-hand side: Kripke
model after [Sign(f,¬p)� j]

reliable agent. Thus, the system automatically employs [Sign(f,¬p)  j]
for admitting Sign(f,¬p) to j. As a result, j will believe Sign(f,¬p), i.e.,
Bel(j, Sign(f,¬p)) as shown in the right-hand side of Fig. 5.4.

(3) j also commits him/herself to statement of f in the inquiry stage, i.e., Sign(f, p) by
[Sign(f, p) j], and the result can be shown in the left-hand side of Fig. 5.5. After
that, the system can detect that the received statement Sign(f, p) is inconsistent with
j’s belief. Thus, the system automatically performs the inconsistency management
policy including three operations as the following sequences:

(3.1) Since the system can detect that f gives inconsistent statements, f is regraded
to be unreliable. Thus, [{f} �j] is employed in order to downgrade f . After
this downgrading, j believes that b and f become equally reliable and less
reliable than the other agents from j’s perspective, i.e., Bel(j, b ≈j f).

(3.2) By the update of [Sign(f, p) j] in Step (3), we can regard that there is no pos-
sibility in j’s belief. For this reason, j needs to permit the possibility of both
Sign(f,¬p) and Sign(f, p) by [Sign(f,¬p) � j] and [Sign(f, p) � j], respec-
tively. These permissions will be performed by the system and the result is that
j becomes undetermined on Sign(f, p) and Sign(f,¬p), i.e., ¬Bel(j, Sign(f, p))
and ¬Bel(j, Sign(f,¬p) as shown in Fig. 5.6.

After the above process, if j employs the careful policy for information aggregation,
we obtain that the careful policy cannot be done successfully because of the following
reasons: By the careful policy, the system first finds a group of agents who are equally
reliable. By Step (3.1), the system finds that agents b and f are equally reliable. Then,
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Figure 5.6: Kripke model after [Sign(f, p)� j]

the system will find statements which are universally signed by b and f . In this step, the
system cannot find such statements because there is an inconsistency between statements
of b and f . Thus, the careful policy cannot be employed.

Nevertheless, we can interpret the result from our implementation corresponding to
the actual decision as follows: From Fig. 5.6, we can regard that j becomes undetermined
on the statements of all witnesses. That is, j cannot decide which information he/she
should believe. This can be interpreted as there is an absence of sufficient evidence.
Consequently, we can regard that j acquits the defendant as in Table 5.2.

5.2.4 Discussion

According to analysis results in Section 5.2.2, we found two following problems.

(1) The aggregation policy cannot be applied in some legal cases.

As mentioned in the fifth feature of our implementation in Appendix B, since the sys-
tem cannot decide which possibilities should be restored, it will automatically restore all
possibilities to the agent’s beliefs. However, this problem can be solved by two steps as
follows:

• The system will allow us to select which statement should be permitted into an
agent’s belief by a consideration of the reliability of statements. That is, we will
select the statement which is more reliable.

• The system will perform the private permission operator for restoring the possibility
of the selected statement to an agent’s belief.
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Table 5.8: Analysis process of the second legal case (second version)

Step Operation Meaning Result

(1)
[(Sign(b, p)∧
Sign(f,¬p)) j]

j admits
Sign(b, p) and
Sign(f,¬p)

Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
Bel(j, Sign(f,¬p))

(2) [{f} �j]
j downgrades
agent f

Bel(j, b <j f)

(3) [Sign(b,¬p) j]
j admits
Sign(b,¬p) None

(3.1) [{b} �j]
j downgrades
agent b

Bel(j, b ≈j f)

(3.2) [Sign(b,¬p)� j]
j permits
Sign(b,¬p)

¬Bel(j, Sign(b, p))∧
Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
¬Bel(j, Sign(f,¬p))

(4) [Sign(f,¬p) j]
j admits
Sign(f,¬p)

¬Bel(j, Sign(b, p))∧
Bel(j, Sign(b,¬p))∧
¬Bel(j, Sign(f, p))∧
Bel(j, Sign(f,¬p))

(5) [Careful(j,¬p)]
j aggregates
information
about ¬p

Bel(j,¬p)

Nevertheless, this solution has a limitation. That is, it requires that an agent can deter-
mine which statement to be more reliable. Otherwise, this solution cannot be employed.
Let us illustrate how we can apply this solution to the second legal case. From Section
5.2.3, we found that the careful policy cannot be employed for information aggregation.
In order to solve this problem, we will analyze the second legal case in a different way as
shown in Table 5.8. Note that the analysis process in this table is called as the second
version, while the first version refers to the one in Table 5.7 as mentioned in Section 5.2.3.
We found that the second version differs from the first one in two aspects as follows:

• The second version applies the second option (OP2) as an application method of
our dynamic operators (mentioned in Section 5.1) instead of the first option (OP1)
which is used in the first version. For the second option (OP2), an agent needs to
apply not only the private announcement and the careful policy but also dynamic
operators for formalizing reliability change. That is, the joint downgrade operator
is applied for downgrading agent f who is considered to be unreliable (see Step (2)
in Table 5.8).

• For the inconsistency management policy, the system performs a process of belief
restoration by applying only [Sign(b,¬p)� j] for permitting the possibility of state-
ment Sign(b,¬p) (see Step (3.2) in Table 5.8). This is different from the first version
that applies both [Sign(b, p)� j] and [Sign(b,¬p)� j].

Let us explain why statement Sign(b,¬p) is chosen. Since we regard that j considers
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Sign(b, p) to be unreliable, j rejects Sign(b, p) but accepts Sign(b,¬p) instead. By the
analysis process in Table 5.8, the careful policy can be employed successfully. Finally,
we obtain that j believes ¬p, i.e., j believes that the defendant was not the offender.
Therefore, we can regard that j acquits the defendant that is the same as the actual
decision in Table 5.2.

(2) We cannot interpret the result of an agent’s reliability ordering in some legal cases.

Since this study focuses only on the result of an agent’s belief, a question is how we can
interpret the result of an agent’s reliability ordering. In this study, the result of an agent’s
belief can be interpreted corresponding to the actual decision, but we cannot interpret the
result of an agent’s reliability ordering in some legal cases. Let us describe this problem
by the first legal case. From Table 5.4, agent v gives both p and ¬p. Recall that this
study has two hypotheses of reliability as mentioned in Section 1.3. With our hypotheses,
there are two ways for interpreting the reliability of agent v as follows:

• Based on the first hypothesis (H1), we can interpret as: if statement p is considered
to be reliable, agent v who gives statement p will be considered to be reliable.

• Based on the second hypothesis (H2), we can interpret as: if agent v gives inconsis-
tent statements, agent v is considered to be unreliable.

Therefore, a question is how we can decide if agent v is reliable or not. Based on our
analysis result from Table D.1, we obtain that agent v is reliable because of the following
reason. From the analysis process in Table 5.5 in Section 5.2.2, since we regard that
agent j believes that statement p of agent v in the inquiry stage is more reliable than
statement ¬p of agent v in the court, agent j upgrades the agents who sign statement p
by [{v, f2,mo} ⇑jp] (see Step (4) in Table D.1). As a result, agent j believes that agents
v and mo become more reliable. From this process, we can regard that the reliability of
agent v is interpreted according to the first way as mentioned above. Nevertheless, since
agent v signs inconsistent statements, he/she should be unreliable. For this reason, we
cannot interpret the reliability of agent v in this case.
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Chapter 6

Conclusion and Further directions

6.1 Conclusion

Our main goal of this study is to analyze a judge’s belief change in a judgment process
by a logical formalization. In order to achieve this goal, we proposed two components as
follows:

Logical formalization for belief re-revision and reliability change

In order to analyze belief re-revision and reliability change of an agent, we proposed
a logical formalization consisting of six dynamic operators, i.e., upgrade, downgrade,
joint downgrade, private announcement, careful policy and private permission. Based on
Lorini’s framework [13] in Section 2.4, we first defined two notions including a signed
statement and a reliability ordering. Information sources, i.e., agents who give informa-
tion were represented by the signed statements and their reliability was represented by
the reliability orderings. Nevertheless, our logical formalism was different from Lorini’s
framework [13] in two main aspects. First, we relativized the notion of the reliability
orderings to a specific agent. Second, both the tell-action and the careful policy in [13]
were captured by the private announcement. Then, we presented upgrade, downgrade
and joint downgrade operators (mentioned in Chapter 3) which were used to allow an
agent to change his/her reliability ordering between the other agents. The upgrade op-
erator was applied for making some specific agents more reliable than the other agents,
while downgrade operator aimed to downgrade all of them. In addition, an agent can
make such agents in a specific group equally reliable and then downgrade them less re-
liable than agents in the other groups by employing the joint downgrade operator. For
formalizing belief re-revision of an agent, we constructed private announcement, careful
policy and private permission operators (mentioned in Chapter 4). An agent employed
the private announcement for removing some beliefs, while the private permission was
used to restore some possibilities to the agent’s belief. When an agent received several
statements, he/she had to derive his/her belief based on the received signed information
by applying the careful policy. With a combination of our dynamic operators, we can
analyze an agent’s changing of belief and reliability.
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Dynamic logical analysis of legal cases

In order to analyze a legal judgment from a logical point of view, we proposed our analysis
method (mentioned in Chapter 5) including two main features. First, we stated how to
construct an initial model for analyzing an agent’s changing of belief. Second, we presented
an approach for applying our dynamic operators. These features of our analysis method
and our dynamic operators as mentioned above were implemented in a computer system.
Our implementation consists of two main functions. First, the system can construct
an initial model for formalizing a judge’s changing of belief and reliability from a legal
case. Second, the system can perform a policy for handling inconsistency by applying a
combination of our dynamic operators. With the help of our implementation, we did not
need to take much effort for analyzing a judge’s changing of belief and reliability. That is,
our implementation can automatically perform some operators instead. Therefore, this
implementation can be regarded as a helpful tool for analyzing a legal judgment and can
aid an understanding of a judge’s reasoning in legal proceedings.

6.2 Further directions

Our future works consist of three goals. The first goal is to consider the reliability of
statements. This study focuses only on the reliability of agents but does not consider the
reliability of statements. This limitation leads to two problems as mentioned in Section
5.2.4. In order to solve these problems, we may formalize the reliability of statements by
employing a preference modality based on [30] or the framework by [31].

The second goal is to consider more sophisticated ways to construct a restoration
process of former beliefs by the private permission operator. Since this study supposed
that an agent can consider only one information, we can analyze only one statement at one
time. If we need to analyze several statements, it is required to analyze each statement
separately. By this way, the private permission operator can work well. Nevertheless, if
we consider multiple statements at the same time, it may cause a bad side-effect. For
example, agent j first believes p and q (Bel(j, p) ∧ Bel(j, q)). Then, if j needs to permit
the possibility of ¬p, [¬p� j] is employed. By the update of [¬p� j], j will not believe
p (¬Bel(j, p)) and may not believe q (¬Bel(j, q)). In other words, [¬p � j] affects not
only Bel(j, p) but also Bel(j, q). In fact, [¬p� j] should not affect the other propositions
than p. Therefore, our goal is to avoid this problem.

For our last goal, the another interesting direction is to employ legal text processing
in the area of natural language processing (NLP). Indeed, this study only focus on an
application of logic to a legal case but does not consider an application of legal text pro-
cessing. From our analysis method in Section 5.1, we manually summarize a legal case by
extracting the facts and the decision. We may employ the automatic text summarization
in our implementation for performing this process automatically.
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Appendix A

Labelled Sequent Calculus for DEL
with Relation Changers

First, we define a language LDELRC for DEL with relation changers as follows:

Definition 59. Let G be a fixed finite set of agents. The language LDELRC consists of
the following vocabulary: (i) a countably infinite set Prop = { p, q, r, ... } of propositional
letters, (ii) a countably infinite set AP = { a, b, c, ... } of atomic programs, (iii) Boolean
connectives: ¬, ∧, (iv) program operators: ∪ (non-deterministic choice), ; (sequential
composition), (v) mixed operators: ? (test), [·] (necessity), and (vi) a pointed action model
(E, e) with e ∈ E. An action model E is a tuple E = (E, (Qa)a∈π, pre), where E is a non-
empty set of action points, Qa is a relation on E, and pre is a preconditions function.
A set FormRC of formulas ϕ of LDELRC and a set Prog of programs π of LDELRC are
inductively defined as follows:

FormDELRC 3 ϕ ::= p | ¬ϕ |ϕ ∧ ϕ |ϕ→ ϕ | [π]ϕ | [E, e]ϕ

Prog 3 π ::= a |π ∪ π |π; π |ϕ?

where p ∈ Prop and a ∈ AP. We can regard [E, e] as [E,Π, e] in Section 4.1, and we can
define Qπ for any π ∈ Prog as follows:

Qa = Qa

Qπ∪π′ = Qπ ∪Qπ′

Qπ;π′ = Qπ ◦Qπ′

Qϕ? = { (e1, e2) | e1 = e2 }

In order to define our labelled sequent calculus GDELRC, we first introduce the
labelled formalism for GDELRC as follows. Let Var = {x, y, z, ... } be a countably
infinite set of variables. A set of labelled expressions (denoted by A,B,C, ...) is defined
by:

A ::= x :L ϕ | (x, L)Rπ(y, L′) |x = y,

where ϕ ∈ FormDELRC , x, y ∈ Var, L and L′ are the lists of pointed action models such that
L = ((E1, e1), (E2, e2), ..., (En, en)). For L, we use ε to define that L is empty. We say that
x :L ϕ is a labelled formula, (x, L)Rπ(y, L′) is a relational atom, and x = y is an equality
atom. Note that we can define (x, L)Rπ(y, L′) for atomic program a and program π
by: (x, L)Rπ(y, L′) = (x, (E1, e1), (E2, e2), ..., (En, en))Rπ(y, (F1, f1), (F2, f2), ..., (Fm, fm)),
where m = n and Ei = Fi and ei(Qi)πfi for all 1 6 i 6 m.
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An underlying intuition for labelled expression is defined as follows. A labelled expression
x :L ϕ is read as “after the successive updates of action models in L, a formula ϕ holds at
state x.” A labelled expression (x, L)Rπ(y, L′) is read as “after the successive updates of
action models in L and L′, y is accessible from x by an execution of program π.” We read
x = y as “state x is equal to state y.” Note that our labelled sequent calculus GDELRC
can be regarded as a formalized version of Kripke semantics. The length of these labelled
expressions can be defined by the following definition.

Definition 60. The length ` of formulas, programs, action models and labelled expressions
are defined as follows:

`(p) = 1
`(¬ϕ) = `(ϕ) + 1
`(ϕ ∧ ψ) = `(ϕ) + `(ψ) + 1
`(ϕ→ ψ) = `(ϕ) + `(ψ) + 1
`([π]ϕ) = `(π) + `(ϕ) + 1
`(a) = 1
`(π; π′) = `(π) + `(π′) + 1
`(π ∪ π′) = `(π) + `(π′) + 1
`(ϕ?) = `(ϕ) + 1
`(ε) = 0
`(E) = max{`(pre(e)) | e ∈ E}
`([E, e]ϕ) = `(E) + `(ϕ) + 1
`(L) = `((E1, e1), ..., (En, en)) = `(E1) + ...+ `(En)
`(x :L ϕ) = `(L) + `(ϕ)
`((x, L)Rπ(y, L′)) = `(L) + `(π)
`(x = y) = 0

In what follows, Γ and ∆ are finite multiset of labelled expressions. From Table A.1,
we define Γ ⇒ ∆, where Γ ⇒ ∆ is a sequent. The Hilbert-style system HDELRC for
LDELRC is presented in Table A.2.

Theorem 17 (Completeness). Let M be the class of models. For all ψ ∈ FormDELRC ,

M |= ψ iff `HDELRC ψ.

From the labelled sequent calculus GDELRC in Table A.1, we can show that if a
formula ϕ is provable in HDELRC , then x :ε ϕ is provable in GDELRC by Theorem
18. Before giving this theorem, we define the following derivable rules in GDELRC for
the case of axiom (RA8) in HDELRC as follows:

(x, ε)Rπ(y, ε),Γ⇒ ∆, y :ε ϕ

Γ⇒ ∆, x :ε [π]ϕ
(R[π]1)∗

Γ⇒ ∆, (x, ε)Rπ(y, ε) y :ε ϕ,Γ⇒ ∆

x :ε [π]ϕ,Γ⇒ ∆
(L[π]1)

where ∗: y does not appear in the lower sequent.

Γ⇒ ∆, x :L ϕ

Γ⇒ ∆, x :L
∧
f∈Qa(e) ϕ

(R
∧

)†
x :L ϕ,Γ⇒ ∆∧
f∈Qa(e) ϕ,Γ⇒ ∆

(L
∧

)‡

where †: eQad for some d ∈ E and d does not appear in the lower sequent, and ‡:
(e, d) ∈ Qa for some d ∈ E. Note that

∧
is finite because Qa is finite.
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Table A.1: Labelled sequent calculus GDELRC

(Initial sequents)

x :L ϕ⇒ x :L ϕ (x, L)Rπ(y, L′)⇒ (x, L)Rπ(y, L′) x = y ⇒ x = y

(Structural rules)
Γ⇒ ∆

Γ⇒ ∆, A
(Rw) Γ⇒ ∆

A,Γ⇒ ∆
(Lw)

Γ⇒ ∆, A,A

Γ⇒ ∆, A
(Rc)

A,A,Γ⇒ ∆

A,Γ⇒ ∆
(Lc)

(Logical rules)
x :L ϕ,Γ⇒ ∆

Γ⇒ ∆, x :L ¬ϕ
(R¬)

Γ⇒ ∆, x :L ϕ

x :L ¬ϕ,Γ⇒ ∆
(L¬)

Γ⇒ ∆, x :L ϕ1 Γ⇒ ∆, x :L ϕ2

Γ⇒ ∆, x :L ϕ1 ∧ ϕ2

(R∧)
x :L ϕi,Γ⇒ ∆

x :L ϕ1 ∧ ϕ2,Γ⇒ ∆
(L∧)i∈{ 1,2 }

x :L ϕ1,Γ⇒ ∆, x :L ϕ2

Γ⇒ ∆, x :L ϕ1 → ϕ2

(R→)
Γ⇒ ∆, x :L ϕ1 x :L ϕ2,Γ⇒ ∆

x :L ϕ1 → ϕ2,Γ⇒ ∆
(L→){

(x, (E1, e1), ..., (En, en))Rπ(y, (E1, f1), ..., (En, fn)),Γ⇒ ∆, y :(E1,f1),...,(En,fn) ϕ | Σ
}

Γ⇒ ∆, x :(E1,e1),...,(En,en) [π]ϕ
(R[π])†

Γ⇒ ∆, (x, L)Rπ(y, L′) y :L
′
ϕ,Γ⇒ ∆

x :L [π]ϕ,Γ⇒ ∆
(L[π])

†: y does not appear in the lower sequent and Σ = ei(Qi)πfi for all i.

(Action models rules)

Γ⇒ ∆, x :L p

Γ⇒ ∆, x :L,(E,e) p
(Rat)

x :L p,Γ⇒ ∆

x :L,(E,e) p,Γ⇒ ∆
(Lat)

Γ⇒ ∆, x :L,(E,e) ϕ

Γ⇒ ∆, x :L [E, e]ϕ
(R[E, e]) x :L,(E,e) ϕ,Γ⇒ ∆

x :L [E, e]ϕ,Γ⇒ ∆
(L[E, e])
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(Relational atom rules)

Γ⇒ ∆, (x, L)Rπa(e,f)(y, L
′)

Γ⇒ ∆, (x, L, (E, e))Ra(y, L′, (E, f))
(Rrel)

(x, L)Rπa(e,f)(y, L
′),Γ⇒ ∆

(x, L, (E, e))Ra(y, L′, (E, f)),Γ⇒ ∆
(Lrel)

(Program rules)
Γ⇒ ∆, (x, L)Rπi(y, L

′)

Γ⇒ ∆, (x, L)Rπ1∪π2(y, L′)
(R∪)i∈{ 1,2 }

(x, L)Rπ1(y, L′),Γ⇒ ∆ (x, L)Rπ2(y, L′),Γ⇒ ∆

(x, L)Rπ1∪π2(y, L′),Γ⇒ ∆
(L∪)

Γ⇒ ∆, (x, L)Rπ1(z, L′′) Γ⇒ ∆, (z, L′′)Rπ2(y, L′)

Γ⇒ ∆, (x, L)Rπ1;π2(y, L′)
(R; )

{(x, (E1, e1), ..., (En, en))Rπ1 (z, (E1, d1), ..., (En, dn)), (z, (E1, d1), ..., (En, dn))Rπ2 (y, (E1, f1), ..., (En, fn)),Γ⇒ ∆ | Σ}
(x, (E1, e1), ..., (En, en))Rπ1;π2 (y, (E1, f1), ..., (En, fn)),Γ⇒ ∆

(L; )‡

‡: z does not appear in the lower sequent and Σ = ei(Qi)π1di and di(Qi)π2fi for all i.

Γ⇒ ∆, x = y Γ⇒ ∆, x :L ϕ

Γ⇒ ∆, (x, L)R?ϕ(y, L′)
(R?)

x = y,Γ⇒ ∆

(x, L)R?ϕ(y, L′),Γ⇒ ∆
(L?1)

x :L ϕ,Γ⇒ ∆

(x, L)R?ϕ(y, L′),Γ⇒ ∆
(L?2)

(Equality rules)

⇒ x = x (R =)

x = y,Γ[x/w]⇒ ∆[x/w]

x = y,Γ[y/w]⇒ ∆[y/w]
(L =1)

x = y,Γ[y/w]⇒ ∆[y/w]

x = y,Γ[x/w]⇒ ∆[x/w]
(L =2)

(Cut rule)
Γ⇒ ∆, A A,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
(Cut)
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All instances of propositional tautologies
(K[π]) [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(RA1) [π ∪ π′]ϕ ↔ [π]ϕ ∧ [π′]ϕ
(RA2) [π; π′]ϕ ↔ [π][π′]ϕ
(RA3) [ψ?]ϕ ↔ (ψ → ϕ)
(RA4) [E, e]p ↔ p
(RA5) [E, e]¬ϕ ↔ ¬[E, e]ϕ
(RA6) [E, e](ϕ ∧ ψ) ↔ [E, e]ϕ ∧ [E, e]ψ
(RA7) [E, e](ϕ→ ψ) ↔ [E, e]ϕ→ [E, e]ψ
(RA8) [E, e][a]ϕ ↔

∧
f∈Qa(e) [πa(e, f)][E, f ]ϕ

(RA9) [E, e][π ∪ π′]ϕ ↔ [E, e][π]ϕ ∧ [E, e][π′]ϕ
(RA10) [E, e][π; π′]ϕ ↔ [E, e][π][π′]ϕ
(RA11) [E, e][ϕ?]ψ ↔ [E, e](ϕ→ ψ)
(MP) From ϕ and ϕ→ ψ, infer ψ
(Nec[π]) From ϕ, infer [π]ϕ
(Nec[E,e]) From ϕ, infer [E, e]ϕ

Table A.2: Hilbert-style system HDELRC for LDELRC

Theorem 18. For any formula ϕ ∈ FormDELRC and any variable x ∈ Var, if `HDELRC ϕ,
then `GDELRC⇒ x :ε ϕ.

Proof. Suppose that `HDELRC ϕ. Our goal is to show that `GDELRC⇒ x :ε ϕ. This proof
can be conducted by induction on the height of derivation of HDELRC. Thus, we will
show the following cases.

Case of axiom (RA4): [E, e]p↔ p

First, we show the direction from left to right as follows:

x :ε p⇒ x :ε p

x :(E,e) p⇒ x :ε p
(Lat)

x :ε [E, e]p⇒ x :ε p
(L[E, e])

⇒ x :ε [E, e]p→ p
(R→)

Second, we show the direction from right to left as follows:

x :ε p⇒ x :ε p

x :ε p⇒ x :(E,e) p
(Rat)

x :ε p⇒ x :ε [E, e]p (R[E, e])

⇒ x :ε p→ [E, e]p (R→)

Case of axiom (RA5): [E, e]¬ϕ↔ ¬[E, e]ϕ
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First, we show the direction from left to right as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :ε [E, e]ϕ⇒ x :(E,e) ϕ
(L[E, e])

⇒ x :(E,e) ϕ, x :ε ¬[E, e]ϕ
(R¬)

x :(E,e) ¬ϕ⇒ x :ε ¬[E, e]ϕ
(L¬)

x :ε [E, e]¬ϕ⇒ x :ε ¬[E, e]ϕ (L[E, e])

⇒ x :ε [E, e]¬ϕ→ ¬[E, e]ϕ (R→)

Second, we show the direction from right to left as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :(E,e) ϕ→ x :ε [E, e]ϕ
(R[E, e])

⇒ x :ε [E, e]ϕ, x :(E,e) ¬ϕ
(R¬)

x :ε ¬[E, e]ϕ⇒ x :(E,e) ¬ϕ
(L¬)

x :ε ¬[E, e]ϕ⇒ x :ε [E, e]¬ϕ (R[E, e])

⇒ x :ε ¬[E, e]ϕ→ [E, e]¬ϕ (R→)

Case of axiom (RA6): [E, e](ϕ ∧ ψ)↔ [E, e]ϕ ∧ [E, e]ψ

First, we show the direction from left to right as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :(E,e) ϕ ∧ ψ ⇒ x :(E,e) ϕ
(L∧)

x :(E,e) ϕ ∧ ψ ⇒ x :ε [E, e]ϕ
(R[E, e])

x :(E,e) ϕ⇒ x :(E,e) ψ

x :(E,e) ϕ ∧ ψ ⇒ x :(E,e) ψ
(L∧)

x :(E,e) ϕ ∧ ψ ⇒ x :ε [E, e]ψ
(R[E, e])

x :(E,e) ϕ ∧ ψ ⇒ x :ε [E, e]ϕ ∧ [E, e]ψ
(R∧)

x :ε [E, e](ϕ ∧ ψ)⇒ x :ε [E, e]ϕ ∧ [E, e]ψ (L[E, e])

⇒ x :ε [E, e](ϕ ∧ ψ)→ ([E, e]ϕ ∧ [E, e]ψ)
(R→)

Second, we show the direction from right to left as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :ε [E, e]ϕ⇒ x :(E,e) ϕ
(L[E, e])

x :ε ([E, e]ϕ ∧ [E, e]ψ)⇒ x :(E,e) ϕ
(L∧)

x :(E,e) ψ ⇒ x :(E,e) ψ

x :ε [E, e]ψ ⇒ x :(E,e) ψ
(L[E, e])

x :ε ([E, e]ϕ ∧ [E, e]ψ)⇒ x :(E,e) ψ
(L∧)

x :ε ([E, e]ϕ ∧ [E, e]ψ)⇒ x :(E,e) ϕ ∧ ψ
(R∧)

x :ε ([E, e]ϕ ∧ [E, e]ψ)⇒ x :ε [E, e](ϕ ∧ ψ)
(R[E, e])

⇒ x :ε ([E, e]ϕ ∧ [E, e]ψ)→ [E, e](ϕ ∧ ψ)
(R→)

Case of axiom (RA7): [E, e](ϕ→ ψ)↔ [E, e]ϕ→ [E, e]ψ
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First, we show the direction from left to right as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :(E,e) ϕ⇒ x :(E,e) ψ, x :(E,e) ϕ
(Rw)

x :(E,e) ψ ⇒ x :(E,e) ψ

x :(E,e) ψ, x :(E,e) ϕ⇒ x :(E,e) ψ
(Lw)

x :(E,e) ϕ→ ψ, x :(E,e) ϕ⇒ x :(E,e) ψ
(L→)

x :ε [E, e](ϕ→ ψ), x :ε [E, e]ϕ⇒ x :ε [E, e]ψ ([E, e])

x :ε [E, e](ϕ→ ψ)⇒ x :ε [E, e]ϕ→ [E, e]ψ (R→)

⇒ x :ε [E, e](ϕ→ ψ)→ ([E, e]ϕ→ [E, e]ψ)
(R→)

Second, we show the direction from right to left as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :(E,e) ϕ⇒ x :(E,e) ψ, x :(E,e) ϕ
(Rw)

x :(E,e) ψ ⇒ x :(E,e) ψ

x :(E,e) ψ, x :(E,e) ϕ⇒ x :(E,e) ψ
(Lw)

x :(E,e) ϕ→ ψ, x :(E,e) ϕ⇒ x :(E,e) ψ
(L→)

x :ε [E, e](ϕ→ ψ), x :ε [E, e]ϕ⇒ x :ε [E, e]ψ ([E, e])

x :ε [E, e](ϕ→ ψ)⇒ x :ε [E, e]ϕ→ [E, e]ψ (R→)

⇒ x :ε ([E, e]ϕ→ [E, e]ψ)→ [E, e](ϕ→ ψ)
(R→)

Case of axiom (RA8): [E, e][a]ϕ↔
∧
f∈Qa(e) [πa(e, f)][E, f ]ϕ

First, we show the direction from left to right as follows:

(x, ε)Rπa(e,f) (y, ε)⇒ (x, ε)Rπa(e,f) (y, ε)

(x, ε)Rπa(e,f) (y, ε)⇒ y :(E,f) ϕ, (x, ε)Rπa(e,f) (y, ε)
(Rw)

(x, ε)Rπa(e,f) (y, ε)⇒ y :(E,f) ϕ, (x, (E, e))Ra (y, (E, f))
(Rrel)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :(E,f) ϕ, (x, ε)Rπa(e,f) (y, ε)⇒ y :(E,f) ϕ
(Lw)

(x, ε)Rπa(e,f) (y, ε), x :(E,e) [a]ϕ⇒ y :(E,f) ϕ
(L[a])

(x, ε)Rπa(e,f) (y, ε), x :(E,e) [a]ϕ⇒ y :ε [E, f ]ϕ
(R[E, f ])

x :(E,e) [a]ϕ⇒ x :ε [πa(e, f)][E, f ]ϕ
(R[πa(e, f)])

x :(E,e) [a]ϕ⇒ x :ε
∧
f∈Qa(e)

[πa(e, f)][E, f ]ϕ
(R
∧

)

x :ε [E, e][a]ϕ⇒ x :ε
∧
f∈Qa(e)

[πa(e, f)][E, f ]ϕ
(L[E, e])

⇒ x :ε [E, e][a]ϕ→
∧
f∈Qa(e)

[πa(e, f)][E, f ]ϕ
(R→)

Second, we show the direction from right to left as follows:

(x, ε)Rπa(e,f) (y, ε)⇒ (x, ε)Rπa(e,f) (y, ε)

(x, (E, e))Ra (y, (E, f))⇒ (x, ε)Rπa(e,f) (y, ε)
(Lrel)

(x, (E, e))Ra (y, (E, f))⇒ y :(E,f) ϕ, (x, ε)Rπa(e,f) (y, ε)
(Rw)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :ε [E, f ]ϕ⇒ y :(E,f) ϕ
(L[E, f ])

y :ε [E, f ]ϕ, (x, (E, e))Ra (y, (E, f))⇒ y :(E,f) ϕ
(Lw)

{
(x, (E, e))Ra (y, (E, f)), x :ε [πa(e, f)][E, f ]ϕ⇒ y :(E,f) ϕ | eQaf

} (L[πa(e, f)]1)

x :ε [πa(e, f)][E, f ]ϕ⇒ x :(E,e) [a]ϕ
(R[a])

x :ε [πa(e, f)][E, f ]ϕ⇒ x :ε [E, e][a]ϕ
(L[E, e])

x :ε
∧
f∈Qa(e)[πa(e, f)][E, f ]ϕ⇒ x :ε [E, e][a]ϕ

(L
∧

)

⇒ x :ε
∧
f∈Qa(e)[πa(e, f)][E, f ]ϕ→ [E, e][a]ϕ

(R→)

Case of axiom (RA9): [E, e][π ∪ π′]ϕ↔ [E, e][π]ϕ ∧ [E, e][π′]ϕ
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First, we show the direction from left to right as follows:

.... D1

x :(E,e) [π ∪ π′]ϕ⇒ x :ε [E, e][π]ϕ

.... D2

x :(E,e) [π ∪ π′]ϕ⇒ x :ε [E, e][π′]ϕ
x :(E,e) [π ∪ π′]ϕ⇒ x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ

(R∧)

x :ε [E, e][π ∪ π′]ϕ⇒ x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ (L[E, e])

⇒ x :ε [E, e][π ∪ π′]ϕ→ [E, e][π]ϕ ∧ [E, e][π′]ϕ (R→)

where D1 is constructed as follows:

(x, (E, e))Rπ (y, (E, f))⇒ (x, (E, e))Rπ (y, (E, f))

(x, (E, e))Rπ (y, (E, f))⇒ y :(E,f), (x, (E, e))Rπ (y, (E, f))
(Rw)

(x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ, (x, (E, e))Rπ∪π′ (y, (E, f))
(R∪)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :(E,f) ϕ, (x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ
(Lw){

(x, (E, e))Rπ (y, (E, f)), x :(E,e) [π ∪ π′]ϕ⇒ y :(E,f) ϕ | eQπf
} (L[π ∪ π′])

x :(E,e) [π ∪ π′]ϕ⇒ x :(E,e) [π]ϕ
(R[π])

x :(E,e) [π ∪ π′]ϕ⇒ x :ε [E, e][π]ϕ
(R[E, e])

Similarly, D2 is constructed as follows:

(x, (E, e))Rπ′ (y, (E, f))⇒ (x, (E, e))Rπ′ (y, (E, f))

(x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f), (x, (E, e))Rπ′ (y, (E, f))
(Rw)

(x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ, (x, (E, e))Rπ∪π′ (y, (E, f))
(R∪)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :(E,f) ϕ, (x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(Lw){

(x, (E, e))Rπ′ (y, (E, f)), x :(E,e) [π ∪ π′]ϕ⇒ y :(E,f) ϕ | eQπ′f
} (L[π ∪ π′])

x :(E,e) [π ∪ π′]ϕ⇒ x :(E,e) [π′]ϕ
(R[π′])

x :(E,e) [π ∪ π′]ϕ⇒ x :ε [E, e][π′]ϕ
(R[E, e])

Second, we show the direction from right to left as follows:

.... D1

x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ, (x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ

.... D2

x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ, (x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ{
(x, (E, e))Rπ∪π′ (y, (E, f)), x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ⇒ y :(E,f) ϕ | eQπ∪π′f

} (L∪)

x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ⇒ x :(E,e) [π ∪ π′]ϕ
(R[π ∪ π′])

x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ⇒ x :ε [E, e][π ∪ π′]ϕ
(R[E, e])

⇒ x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ→ [E, e][π ∪ π′]ϕ
(R→)

where D1 is constructed as follows:

(x, (E, e))Rπ (y, (E, f))⇒ (x, (E, e))Rπ (y, (E, f))

(x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ, (x, (E, e))Rπ (y, (E, f))
(Rw)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :(E,f) ϕ, (x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ
(Lw)

x :(E,e) [π]ϕ, (x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ
(L[π])

x :ε [E, e][π]ϕ, (x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ
(L[E, e])

x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ, (x, (E, e))Rπ (y, (E, f))⇒ y :(E,f) ϕ
(L∧)

Similarly, D2 is constructed as follows:

(x, (E, e))Rπ′ (y, (E, f))⇒ (x, (E, e))Rπ′ (y, (E, f))

(x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ, (x, (E, e))Rπ′ (y, (E, f))
(Rw)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :(E,f) ϕ, (x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(Lw)

x :(E,e) [π′]ϕ, (x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(L[π′])

x :ε [E, e][π′]ϕ, (x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(L[E, e])

x :ε [E, e][π]ϕ ∧ [E, e][π′]ϕ, (x, (E, e))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(L∧)

Case of axiom (RA10): [E, e][π; π′]ϕ↔ [E, e][π][π′]ϕ
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First, we show the direction from left to right as follows:

.... D1(
(x, (E, e))Rπ (y, (E, f)),
(y, (E, f))Rπ′ (z, (E, d))

)
⇒
(

z :(E,d) ϕ,
(x, (E, e))Rπ;π′ (z, (E, d))

) z :(E,d) ϕ⇒ z :(E,d) ϕ z :(E,d) ϕ,
(x, (E, e))Rπ (y, (E, f)),
(y, (E, f))Rπ′ (z, (E, d))

⇒ z :(E,d) ϕ

(Lw)

{
(x, (E, e))Rπ (y, (E, f)), (y, (E, f))Rπ′ (z, (E, d)), x :(E,e) [π;π′]ϕ⇒ z :(E,d) ϕ | fQπ′d

} (L[π;π′])

{
(x, (E, e))Rπ (y, (E, f)), x :(E,e) [π;π′]ϕ⇒ y :(E,f) [π′]ϕ | eQπf

} (R[π′])

x :(E,e) [π;π′]ϕ⇒ x :(E,e) [π][π′]ϕ
(R[π])

x :ε [E, e][π;π′]ϕ⇒ x :ε [E, e][π][π′]ϕ
([E, e])

⇒ x :ε [E, e][π;π′]ϕ→ [E, e][π][π′]ϕ
(R→)

where D1 is constructed as follows:

(x, (E, e))Rπ (y, (E, f))⇒ (x, (E, e))Rπ (y, (E, f))(
(x, (E, e))Rπ (y, (E, f)),
(y, (E, f))Rπ′ (z, (E, d))

)
⇒ (x, (E, e))Rπ (y, (E, f))

(Lw)
(y, (E, f))Rπ′ (z, (E, d))⇒ (y, (E, f))Rπ′ (z, (E, d))(
(x, (E, e))Rπ (y, (E, f)),
(y, (E, f))Rπ′ (z, (E, d))

)
⇒ (y, (E, f))Rπ′ (z, (E, d))

(Lw)

(x, (E, e))Rπ (y, (E, f)), (y, (E, f))Rπ′ (z, (E, d))⇒ (x, (E, e))Rπ;π′ (z, (E, d))
(R; )

(x, (E, e))Rπ (y, (E, f)), (y, (E, f))Rπ′ (z, (E, d))⇒ z :(E,d) ϕ, (x, (E, e))Rπ;π′ (z, (E, d))
(Rw)

Second, we show the direction from right to left as follows:

(x, (E, e))Rπ (z, (E, d))⇒ (x, (E, e))Rπ (z, (E, d))(
(x, (E, e))Rπ (z, (E, d)),
(z, (E, d))Rπ′ (y, (E, f))

)
⇒
(

y :(E,f) ϕ,
(x, (E, e))Rπ (z, (E, d))

) (w)

.... D1 z :(E,d) [π′]ϕ,
(x, (E, e))Rπ (z, (E, d)),
(z, (E, d))Rπ′ (y, (E, f))

⇒ y :(E,f) ϕ

{
(x, (E, e))Rπ (z, (E, d)), (z, (E, d))Rπ′ (y, (E, f)), x :(E,e) [π][π′]ϕ⇒ y :(E,f) ϕ | eQπd, dQπ′f

} L[π]

{
(x, (E, e))Rπ;π′ (y, (E, f)), x :(E,e) [π][π′]ϕ⇒ y :(E,f) ϕ | eQπ;π′f

} (L; )

x :(E,e) [π][π′]ϕ⇒ x :(E,e) [π;π′]ϕ
(R[π;π′])

x :ε [E, e][π][π′]ϕ⇒ x :ε [E, e][π;π′]ϕ
([E, e])

⇒ x :ε [E, e][π][π′]ϕ→ [E, e][π;π′]ϕ
(R→)

where D1 is constructed as follows:

(z, (E, d))Rπ′ (y, (E, f))⇒ (z, (E, d))Rπ′ (y, (E, f))

(z, (E, d))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ, (z, (E, d))Rπ′ (y, (E, f))
(Rw)

y :(E,f) ϕ⇒ y :(E,f) ϕ

y :(E,f) ϕ, (z, (E, d))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(Lw)

z :(E,d) [π′]ϕ, (z, (E, d))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(L[π′])

z :(E,d) [π′]ϕ, (x, (E, e))Rπ (z, (E, d)), (z, (E, d))Rπ′ (y, (E, f))⇒ y :(E,f) ϕ
(Lw)

Case of axiom (RA11): [E, e][ϕ?]ψ ↔ [E, e](ϕ→ ψ)

First, we show the direction from left to right as follows:

⇒ x = x (R =)

x :(E,e) ϕ⇒ x :(E,e) ψ, x = x
(w)

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :(E,e) ϕ⇒ x :(E,e) ψ, x :(E,e) ϕ
(Rw)

x :(E,e) ϕ⇒ x :(E,e) ψ, (x, (E, e))Rϕ? (x, (E, e))
(R?)

x :(E,e) ψ ⇒ x :(E,e) ψ

x :(E,e) ψ, x :(E,e) ϕ⇒ x :(E,e) ψ
(Lw)

x :(E,e) ϕ, x :(E,e) [ϕ?]ψ ⇒ x :(E,e) ψ
(L[ϕ?])

x :(E,e) [ϕ?]ψ ⇒ x :(E,e) ϕ→ ψ
(R→)

x :ε [E, e][ϕ?]ψ ⇒ x :ε [E, e](ϕ→ ψ)
([E, e])

⇒ x :ε [E, e][ϕ?]ψ → [E, e](ϕ→ ψ)
(R→)
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Second, we show the direction from right to left as follows:

x :(E,e) ϕ⇒ x :(E,e) ϕ

x :(E,e) ϕ⇒ y :(E,f) ψ, x :(E,e) ϕ
(Rw)

(x, (E, e))Rϕ? (y, (E, f))⇒ y :(E,f) ψ, x :(E,e) ϕ
(L?2)

x :(E,e) ψ ⇒ x :(E,e) ψ

x = y, x :(E,e) ψ ⇒ x :(E,f) ψ
(Lw)

x = y, x :(E,e) ψ ⇒ y :(E,f) ψ
(L =1)

x :(E,e) ψ, (x, (E, e))Rϕ? (y, (E, f))⇒ y :(E,f) ψ
(L?1){

(x, (E, e))Rϕ? (y, (E, f)), x :(E,e) ϕ→ ψ ⇒ y :(E,f) ψ | eQϕ?f
} (L→)

x :(E,e) ϕ→ ψ ⇒ x :(E,e) [ϕ?]ψ
(R[ϕ?])

x :ε [E, e](ϕ→ ψ)⇒ x :ε [E, e][ϕ?]ψ
([E, e])

⇒ x :ε [E, e](ϕ→ ψ)→ [E, e][ϕ?]ψ
(R→)

Next, we will provide a proof of cut elimination of GDELRC. Before giving the
details of the proof, let us define the substitution by the following definition.

Definition 61. We define a substitution A[y/x] (whose reading is the result of substituting
x in A with y) as:

z[y/x] ≡ z if x 6= z
z[y/x] ≡ y if x = z

(z, L)Rπ(w,L′)[y/x] ≡ (z[y/x], L)Rπ(w[y/x], L′)
(z :L ϕ)[y/x] ≡ z[y/x] :L ϕ
(w = z)[y/x] ≡ w[y/x] = z[y/x]

where w, x, y, z ∈ Var, ϕ ∈ FormDELRC , π ∈ PR, L and L′ are the lists of pointed action
models, and A be a labelled expression. Given a multiset Γ of labelled expressions, we
define a substitution Γ[y/x] as:

Γ[y/x] := {A[y/x] | A ∈ Γ }

By the above definition, we give the following lemma.

Lemma 15. If Γ ⇒ ∆ is derivable in GDELRC by a derivation D, then Γ[y/x] ⇒
∆[y/x] is also derivable by a derivation D′ which has the same height as D.

Then, we define the following rule of the extended cut.

Definition 62. Let A be a labelled expression.

Γ⇒ ∆, Am An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

where m,n ≥ 0 and A is called an Ecut labelled expression.

Let us define GDELRC− as GDELRC without the cut rule. Next, we give the definition
of an Ecut-bottom form as follows:

Definition 63. A derivation D is an Ecut-bottom form if

.... DL

Γ⇒ ∆, Am

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

where we have no applications of (Ecut) in DL nor DR.
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Now, we provide the following lemma which is used for the proof of cut elimination.

Lemma 16. If there is an Ecut-bottom form derivation of Γ ⇒ ∆, then GDELRC− `
Γ⇒ ∆.

Proof. We can show this proof by the method of Ono and Komori [32]. First, we give an
Ecut-bottom form derivation D as follows:

.... DL

Γ⇒ ∆, Am

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

Then, the proof is conducted by double induction on the complexity c(D) and the weight
w(D) of D, where c(D) is the length of the Ecut labelled expression in the last application
of (Ecut), and w(D) is the number of the total sequents in DL and DR (note that c(D) > 0
and w(D) > 2). In addition, we can define the lexicographic order (c, w) 6 (c′, w′) as
(c, w) < (c′, w′) := c < c′ or (c = c′ and w 6 w′), where c = c(D) and w = w(D). From
the above Ecut-bottom form, we suppose that m = 0 and n = 0. Let us use rule(L) and
rule(R) to mean the last rules of DL and DR, respectively. The proof can be divided
into the following five cases.

(1) At least one of rule(L) and rule(R) is an initial sequent or (R =).

(2) At least one of rule(L) and rule(R) is a structural rule.

(3) At least one of rule(L) and rule(R) is a logical rule, an action model rule, a
relational rule, or a program rule where the cut labelled expression is not introduced
by the rule.

(4) Both rule(L) and rule(R) are logical rules, action model rules, relational rules, or
program rules where the cut labelled expression is introduced by the rules.

(5) At least one of rule(L) and rule(R) is equality rules (L =1) or (L =2).

From all the above cases, we will focus only on cases (1), (3), (4) and (5).

Case (1): we will show only the case for (R =).

Case (1.1): rule(L) is (R =). We can construct the derivation D as follows:

⇒ x = x (R =)

.... DR

(x = x)n,Γ′ ⇒ ∆′

Γ′ ⇒ ∆′
(Ecut)

This case is reduced to check what is the last rule of rule(R).

Case (3): we will show only the cases for (Rat), (R[E, e]) and (Rrel).
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Case (3.1): rule(L) is (Rat).

.... DL′

Γ⇒ ∆, x :L p,Am

Γ⇒ ∆, x :L,(E,e) p,Am
(Rat)

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x :L,(E,e) p
(Ecut)

This is transformed into the following derivation.

.... DL′

Γ⇒ ∆, x :L p,Am

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x :L p
(Ecut)

Γ,Γ′ ⇒ ∆,∆′, x :L,(E,e) p
(Rat)

Case (3.2): rule(L) is (R[E, e]).
.... DL′

Γ⇒ ∆, x :L,(E,e) ϕ,Am

Γ⇒ ∆, x :L [E, e]ϕ,Am
(R[E, e])

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x :L [E, e]ϕ
(Ecut)

This is transformed into the following derivation.

.... DL′

Γ⇒ ∆, x :L,(E,e) ϕ,Am

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x :L,(E,e) ϕ
(Ecut)

Γ,Γ′ ⇒ ∆,∆′, x :L [E, e]ϕ
(R[E, e])

Case (3.3): rule(L) is (Rrel).

.... DL′

Γ⇒ ∆, (x, L)R[πa(e,f)] (y, L′), Am

Γ⇒ ∆, (x, L, (E, e))Ra (y, L′, (E, f))
(Rrel)

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, (x, L, (E, e))Ra (y, L′, (E, f))
(Ecut)

This is transformed into the following derivation.

.... DL′

Γ⇒ ∆, (x, L)R[πa(e,f)] (y, L′), Am

.... DR

An,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, (x, L)R[πa(e,f)] (y, L′)
(Ecut)

Γ,Γ′ ⇒ ∆,∆′, (x, L, (E, e))Ra (y, L′, (E, f))
(Rrel)

Case (4): we will show only the cases for (Rat), (R[E, e]) and (Rrel).
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Case (4.1): rule(L) is (Rat).

.... DL′

Γ⇒ ∆, x :L p, (x :L,(E,e) p)m−1

Γ⇒ ∆, (x :L,(E,e) p)m
(Rat)

.... DR′

(x :L,(E,e) p)n−1, x :L p,Γ′ ⇒ ∆′

(x :L,(E,e) p)n,Γ′ ⇒ ∆′
(Lat)

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

From the above derivation, we can construct the derivation D1 as follows:

.... DL′

Γ⇒ ∆, x :L p, (x :L,(E,e) p)m−1

.... DR′

(x :L,(E,e) p)n−1, x :L p,Γ′ ⇒ ∆′

(x :L,(E,e) p)n,Γ′ ⇒ ∆′
(Lat)

Γ,Γ′ ⇒ ∆,∆′, x :L p
(Ecut)

In addition, we can construct the derivation D2 as follows:

.... DL′

Γ⇒ ∆, x :L p, (x :L,(E,e) p)m−1

Γ⇒ ∆, (x :L,(E,e) p)m
(Rat)

.... DR′

(x :L,(E,e) p)n−1, x :L p,Γ′ ⇒ ∆′

x :L p,Γ,Γ′ ⇒ ∆,∆′
(Ecut)

By D1 and D2, we can transform the original derivation into the following derivation.

.... D1

Γ,Γ′ ⇒ ∆,∆′, x :L p

.... D2

x :L p,Γ,Γ′ ⇒ ∆,∆′

Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′
(c)

Case (4.2): rule(L) is (R[E, e]).
.... DL′

Γ⇒ ∆, x :L,(E,e) ϕ, (x :L [E, e]ϕ)m−1v

Γ⇒ ∆, (x :L [E, e]ϕ)m
(R[E, e])

.... DR′

(x :L [E, e]ϕ)n−1, x :L,(E,e) ϕ,Γ′ ⇒ ∆′

(x :L [E, e]ϕ)n,Γ′ ⇒ ∆′
(L[E, e])

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

From the above derivation, we can construct the derivation D1 as follows:

.... DL′

Γ⇒ ∆, x :L,(E,e) ϕ, (x :L [E, e]ϕ)m−1

.... DR′

(x :L [E, e]ϕ)n−1, x :L,(E,e) ϕ,Γ′ ⇒ ∆′

(x :L [E, e]ϕ)n,Γ′ ⇒ ∆′
(L[E, e])

Γ,Γ′ ⇒ ∆,∆′, x :L,(E,e) ϕ
(Ecut)

In addition, we can construct the derivation D2 as follows:

.... DL′

Γ⇒ ∆, x :L,(E,e) ϕ, (x :L [E, e]ϕ)m−1

Γ⇒ ∆, (x :L [E, e]ϕ)m
(R[E, e])

.... DR′

(x :L [E, e]ϕ)n−1, x :L,(E,e) ϕ,Γ′ ⇒ ∆′

x :L,(E,e) ϕ,Γ,Γ′ ⇒ ∆,∆′
(Ecut)
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By D1 and D2, we can transform the original derivation into the following derivation.
.... D1

Γ,Γ′ ⇒ ∆,∆′, x :L,(E,e) ϕ

.... D2

x :L,(E,e) ϕ,Γ,Γ′ ⇒ ∆,∆′

Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′
(c)

Case (4.3): rule(L) is (Rrel). Let A = (x, L, (E, e))R[πa(e,f)] (y, L′, (E, f)).

.... DL′

Γ⇒ ∆, (x, L)R[πa(e,f)] (y, L′), Am−1

Γ⇒ ∆, Am
(Rrel)

.... DR′

An−1, (x, L)R[πa(e,f)] (y, L′),Γ′ ⇒ ∆′

An,Γ′ ⇒ ∆′
(Lrel)

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

From the above derivation, we can construct the derivation D1 as follows:

.... DL′

Γ⇒ ∆, (x, L)R[πa(e,f)] (y, L′), Am−1

.... DR′

An−1, (x, L)R[πa(e,f)] (y, L′),Γ′ ⇒ ∆′

An,Γ′ ⇒ ∆′
(Lrel)

Γ,Γ′ ⇒ ∆,∆′, (x, L)R[πa(e,f)] (y, L′)
(Ecut)

In addition, we can construct the derivation D2 as follows:
.... DL′

Γ⇒ ∆, (x, L)R[πa(e,f)] (y, L′), Am−1

Γ⇒ ∆, Am
(Rrel)

.... DR′

An−1, (x, L)R[πa(e,f)] (y, L′),Γ′ ⇒ ∆′

(x, L)R[πa(e,f)] (y, L′),Γ,Γ′ ⇒ ∆,∆′
(Ecut)

By D1 and D2, we can transform the original derivation into the following derivation.
.... D1

Γ,Γ′ ⇒ ∆,∆′, (x, L)R[πa(e,f)] (y, L′)

.... D2

(x, L)R[πa(e,f)] (y, L′),Γ,Γ′ ⇒ ∆,∆′

Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′
(c)

Case (5): we will show two examples as follows:

Case (5.1): rule(R) is (L =1). Let A = A′[x/w]. Suppose that rule(L) is (R =). We
can construct the derivation D as follows:

⇒ x = x (R =)

.... DR′

x = x, (A′[x/w])n,Γ′[x/w]⇒ ∆′[x/w]

x = x, (A′[x/w])n,Γ′[x/w]⇒ ∆′[x/w]
(L =1)

Γ′[x/w]⇒ ∆′[x/w]
(Ecut)

where A′[x/w] is x = x. Thus, we can regard x = x, (A′[x/w])n as (x = x)n+1.
Then, the above derivation is transformed into the following form.

⇒ x = x (R =)

.... DR

x = x, (A′[x/w])n,Γ′[x/w]⇒ ∆′[x/w]

Γ′[x/w]⇒ ∆′[x/w]
(Ecut)
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Case (5.2): rule(L) is (L =1). Let A = A′[y/w]. In this case, we assume that there are
no occurrences of a substitution of w in A′.

.... DL′

x = y,Γ[x/w]⇒ ∆[x/w], (A′[x/w])m

x = y,Γ[y/w]⇒ ∆[y/w], (A′[y/w])m
(L =1)

.... DR

(A′[y/w])n,Γ′ ⇒ ∆′

x = y,Γ[y/w],Γ′ ⇒ ∆[y/w],∆′
(Ecut)

This is transformed into the following derivation.

.... DL′ [x/y]
x = x,Γ[x/w][x/y]⇒ ∆[x/w][x/y], (A′[x/w][x/y])m

.... DR[x/y]
(A′[y/w][x/y])n,Γ′[x/y]⇒ ∆′[x/y]

x = x,Γ[x/w][x/y],Γ′[x/y]⇒ ∆[x/w][x/y],∆′[x/y]
(Ecut)

x = y, x = x,Γ[x/w][x/y],Γ′[x/y]⇒ ∆[x/w][x/y],∆′[x/y]
(Lw)

x = y, x = y,Γ[y/w],Γ′ ⇒ ∆[y/w],∆′
(L =1)

x = y,Γ[y/w],Γ′ ⇒ ∆[y/w],∆′
(Lc)

Theorem 19 (Cut Elimination). For any Γ and ∆, if `GDELRC Γ⇒ ∆, then `GDELRC−

Γ⇒ ∆.

Proof. Suppose `GDELRC Γ ⇒ ∆. Our goal is to show that `GDELRC− Γ ⇒ ∆. The
proof can be established by Lemma 16.

Next, we will show the soundness of labelled sequent calculus GDELRC for Kripke
semantics.

Definition 64. Let M = (W, (Ra)a∈Prog, V ) be a model and f : Var→ W be an assignment
on M. Given any model M, any assignment f on M and any labelled expression A, we
can define M, f |= A as follows:

M, f |= x :(E1,e1),...,(En,en) ϕ iff M⊗E1⊗...⊗En , (f(x), e1, ..., en) |= ϕ
M, f |= x = y iff f(x) = f(y)
M, f |= (x, (E1, e1), ..., (En, en))Rπ(y, (E1, d1), ..., (En, dn)) iff (f(x), e1, ..., en)R⊗E1⊗...⊗En

π (f(y), d1, ..., dn))

Lemma 17. For any Γ and ∆,

if `GDELRC Γ⇒ ∆, then M, f |= Γ⇒ ∆.

Proof. We show the proof by induction on the height h of a derivation of Γ ⇒ ∆ in
GDELRC.

Basis (initial sequents):
Our goal is to show that

M, f |= A⇒ A for all M and all f.

Fix any M and f . Suppose that M, f |= A. It suffices to show that M, f |= A. This is
trivial by our assumption.
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Case where the last applied rule of our derivation is (R[π]):
First, we can write the rule (R[π]) by a simple case as follows:{

(x, (E1, e1))Rπ(y, (E1, d1)),Γ⇒ ∆, y :(E1,d1) ϕ | e1Qπd1

}
Γ⇒ ∆, x :(E1,e1) [π]ϕ

(R[π])

Then, we suppose that M, f |= (x, (E1, e1))Rπ(y, (E1, d1)),Γ ⇒ ∆, y :(E1,d1) ϕ such that
e1Qπd1 for all models M and all assignments f . Our goal is to show that

M, f |= Γ⇒ ∆, x :(E1,e1) [π]ϕ for all M and all f,

where y of our assumption does not appear in Γ, ∆ and x :(E1,e1) [π]ϕ. Fix any model M
and any assignment f . Suppose that M, f |= C for all C ∈ Γ. It suffices to show that

M, f |= D for some D ∈ ∆ or M, f |= x :(E1,e1) [π]ϕ

iff if M, f 6|= D for all D ∈ ∆, then M, f |= x :(E1,e1) [π]ϕ.

Suppose that M, f 6|= D for all D ∈ ∆. We show that

M, f |= x :(E1,e1) [π]ϕ iff M⊗E1 , (f(x), e1) |= [π]ϕ

iff ∀(v,d1)∈W⊗E1 ((f(x), e1)R⊗E1
π (v, d1)⇒M⊗E1 , (v, d1) |= ϕ).

Fix any (v, d1) ∈ W⊗E1 such that (f(x), e1)R⊗E1
π (v, d1). Let us show that

M⊗E1 , (v, d1) |= ϕ.

Define new assignment function g : Var→ W by

g(z) =

{
v if z = y,

f(z) if z 6= y.

By our first assumption, M, g |= (x, (E1, e1))Rπ(y, (E1, d1)),Γ⇒ ∆, y :(E1,d1) ϕ, i.e.,

if M, g |= (x, (E1, e1))Rπ(y, (E1, d1)) and M, g |= C for all C ∈ Γ,

then M, g |= D for some D ∈ ∆ or M, g |= y :(E1,d1) ϕ.

Let us show

M, g |= (x, (E1, e1))Rπ(y, (E1, d1)) and M, g |= C for all C ∈ Γ.

By our assumption of M, f |= C for all C ∈ Γ and y is fresh, we can get M, g |=
C for all C ∈ Γ. Next, we will show

M, g |= (x, (E1, e1))Rπ(y, (E1, d1)) iff (g(x), e1)R⊗E1
π (g(y), d1).

By definition of g, we get (f(x), e1)R⊗E1
π (v, d1) which is our assumption. By M, g |=

(x, (E1, e1))Rπ(y, (E1, d1)) and M, g |= C for all C ∈ Γ, we get

M, g |= D for some D ∈ ∆ or M, g |= y :(E1,d1) ϕ

iff if M, g 6|= D for all D ∈ ∆, then M, g |= y :(E1,d1) ϕ.
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By our assumption of M, f 6|= D for all D ∈ ∆ and the freshness of y in ∆, we get
M, g 6|= D for all D ∈ ∆. It follows that

M, g |= y :(E1,d1) ϕ iff M⊗E1 , (g(y), d1) |= ϕ.

By definition of g, we get M⊗E1 , (v, d1) |= ϕ, which is our goal.

Case where the last applied rule of our derivation is (L[π]):
First, we can write the rule (L[π]) as follows:

Γ⇒ ∆, (x, (E1, e1))Rπ(y, (E1, d1)) y :(E1,d1) ϕ,Γ⇒ ∆

x :(E1,e1) [π]ϕ,Γ⇒ ∆
(L[π])

Then, we suppose that M, f |= Γ ⇒ ∆, (x, (E1, e1))Rπ(y, (E1, d1)) and M, f |= y :(E1,d1)

ϕ,Γ⇒ ∆ for all models M and all assignments f . Our goal is to show that

M, f |= x :(E1,e1) [π]ϕ,Γ⇒ ∆ for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= x :(E1,e1) [π]ϕ and
M, f |= C for all C ∈ Γ. It suffices to show that

M, f |= D for some D ∈ ∆.

By our assumption, M, f |= Γ⇒ ∆, (x, (E1, e1))Rπ(y, (E1, d1)), i.e., if M, f |= C for all C ∈
Γ, then M, f |= D for some D ∈ ∆ or M, f |= (x, (E1, e1))Rπ(y, (E1, d1)). By this impli-
cation and our assumption of M, f |= C for all C ∈ Γ, we get

M, f |= D for some D ∈ ∆ or M, f |= (x, (E1, e1))Rπ(y, (E1, d1)).

From M, f |= (x, (E1, e1))Rπ(y, (E1, d1)), we get (f(x), e1)R⊗E1
π (f(y), d1). From our as-

sumption of M, f |= x :(E1,e1) [π]ϕ,

M, f |= x :(E1,e1) [π]ϕ iff M⊗E1 , (f(x), e1) |= [π]ϕ

iff ∀(v,d1)∈W⊗E1 ((f(x), e1)R⊗E1
π (v, d1)⇒M⊗E1 , (v, d1) |= ϕ).

By this implication and (f(x), e1)R⊗E1
π (f(y), d1), we get

M⊗E1 , (f(y), d1) |= ϕ iff M, f |= y :(E1,d1) ϕ.

From our assumption, M, f |= y :(E1,d1) ϕ,Γ⇒ ∆, i.e.,

if M, f |= y :(E1,d1) ϕ and M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆.

By this implication, M, f |= y :(E1,d1) ϕ and our assumption of M, f |= C for all C ∈ Γ,
we obtain M, f |= D for some D ∈ ∆, which is our goal.

Case where the last applied rule of our derivation is (Rat):
First, we can write the rule (Rat) as follows:

Γ⇒ ∆, x :ε p

Γ⇒ ∆, x :(E1,e1) p
(Rat)
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Suppose that M, f |= Γ⇒ ∆, x :ε p for all models M and all assignments f . Our goal is
to show that

M, f |= Γ⇒ ∆, x :(E1,e1) p for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= C for all C ∈ Γ. It
suffices to show that

M, f |= D for some D ∈ ∆ or M, f |= x :(E1,e1) p

iff if M, f 6|= D for all D ∈ ∆, then M, f |= x :(E1,e1) p.

Suppose that M, f 6|= D for all D ∈ ∆. Our goal is to show that

M, f |= x :(E1,e1) p iff M⊗E1 , (f(x), e1) |= p

iff (f(x), e1) ∈ V ⊗E1(p)

iff f(x) ∈ V (p)

iff M, f(x) |= p

iff M, f |= x :ε p.

By our first assumption, M, f |= Γ⇒ ∆, x :ε p, i.e.,

if M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆ or M, f |= x :ε p.

By this implication and our assumption of M, f |= C for all C ∈ Γ, we get

M, f |= D for some D ∈ ∆ or M, f |= x :ε p

iff if M, f 6|= D for all D ∈ ∆, then M, f |= x :ε p.

By our assumption of M, f 6|= D for all D ∈ ∆, we obtain M, f |= x :ε p, which is our goal.

Case where the last applied rule of our derivation is (Lat):
First, we can write the rule (Lat) as follows:

x :ε p,Γ⇒ ∆

x :(E1,e1) p,Γ⇒ ∆
(Lat)

Suppose that M, f |= x :ε p,Γ⇒ ∆ for all models M and all assignments f . Our goal is
to show that

M, f |= x :(E1,e1) p,Γ⇒ ∆ for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= x :(E1,e1) p and M, f |=
C for all C ∈ Γ. It suffices to show that

M, f |= D for some D ∈ ∆.

From our assumption of M, f |= x :(E1,e1) p,

M, f |= x :(E1,e1) p iff M⊗E1 , (f(x), e1) |= p

iff (f(x), e1) ∈ V ⊗E1(p)

iff f(x) ∈ V (p)

iff M, f(x) |= p

iff M, f |= x :ε p.
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By our first assumption, M, f |= x :ε p,Γ⇒ ∆, i.e.,

if M, f |= x :ε p and M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆.

By this implication, M, f |= x :ε p and our assumption of M, f |= C for all C ∈ Γ, we
obtain M, f |= D for some D ∈ ∆, which is our goal.

Case where the last applied rule of our derivation is (R[E, e]):
First, we can write the rule (R[E, e]) as follows:

Γ⇒ ∆, x :(E1,e1) ϕ

Γ⇒ ∆, x :ε [E1, e1]ϕ
(R[E, e])

Suppose that M, f |= Γ ⇒ ∆, x :(E1,e1) ϕ for all models M and all assignments f . Our
goal is to show that

M, f |= Γ⇒ ∆, x :ε [E1, e1]ϕ for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= C for all C ∈ Γ. It
suffices to show that

M, f |= D for some D ∈ ∆ or M, f |= x :ε [E1, e1]ϕ

iff if M, f 6|= D for all D ∈ ∆, then M, f |= x :ε [E1, e1]ϕ.

Suppose that M, f 6|= D for all D ∈ ∆. Our goal is to show that

M, f |= x :ε [E1, e1]ϕ iff M, f(x) |= [E1, e1]ϕ

iff M⊗E1 , (f(x), e1) |= ϕ

iff M, f |= x :(E1,e1) ϕ.

By our first assumption, M, f |= Γ⇒ ∆, x :(E1,e1) ϕ, i.e.,

if M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆ or M, f |= x :(E1,e1) ϕ.

By this implication and our assumption of M, f |= C for all C ∈ Γ, we get

M, f |= D for some D ∈ ∆ or M, f |= x :(E1,e1) ϕ

iff if M, f 6|= D for all D ∈ ∆, then M, f |= x :(E1,e1) ϕ.

By our assumption of M, f 6|= D for all D ∈ ∆, we obtain M, f |= x :(E1,e1) ϕ, which is
our goal.

Case where the last applied rule of our derivation is (L[E, e]):
First, we can write the rule (L[E, e]) as follows:

x :(E1,e1) ϕ,Γ⇒ ∆

x :ε [E1, e1]ϕ,Γ⇒ ∆
(L[E, e])

Suppose that M, f |= x :(E1,e1) ϕ,Γ ⇒ ∆ for all models M and all assignments f . Our
goal is to show that

M, f |= x :ε [E1, e1]ϕ,Γ⇒ ∆ for all M and all f.
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Fix any model M and any assignment f . Suppose that M, f |= x :ε [E1, e1]ϕ and M, f |=
C for all C ∈ Γ. It suffices to show that

M, f |= D for some D ∈ ∆.

By our assumption of M, f |= x :ε [E1, e1]ϕ,

M, f |= x :ε [E1, e1]ϕ iff M, f(x) |= [E1, e1]ϕ

iff M⊗E1 , (f(x), e1) |= ϕ

iff M, f |= x :(E1,e1) ϕ.

From our first assumption, M, f |= x :(E1,e1) ϕ,Γ⇒ ∆, i.e.,

if M, f |= x :(E1,e1) ϕ and M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆.

By this implication, M, f |= x :(E1,e1) ϕ and our assumption of M, f |= C for all C ∈ Γ,
we obtain M, f |= D for some D ∈ ∆, which is our goal.

Case where the last applied rule of our derivation is (Rrel):
First, we can write the rule (Rrel) as follows:

Γ⇒ ∆, (x, ε)Rπa(e1,d1)(y, ε)

Γ⇒ ∆, (x, (E1, e1))Ra(y, (E1, d1))
(Rrel)

Suppose that M, f |= Γ ⇒ ∆, (x, ε)Rπa(e1,d1)(y, ε) for all models M and all assignments
f . Our goal is to show that

M, f |= Γ⇒ ∆, (x, (E1, e1))Ra(y, (E1, d1)) for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= C for all C ∈ Γ. It
suffices to show that

M, f |= D for some D ∈ ∆ or M, f |= (x, (E1, e1))Ra(y, (E1, d1))

iff if M, f 6|= D for all D ∈ ∆, then M, f |= (x, (E1, e1))Ra(y, (E1, d1)).

Suppose that M, f 6|= D for all D ∈ ∆. Our goal is to show that

M, f |= (x, (E1, e1))Ra(y, (E1, d1)) iff (f(x), e1)R⊗E1
a (f(y), d1)

iff f(x)Rπa(e1,d1)f(y)

iff M, f |= (x, ε)Rπa(e1,d1)(y, ε).

By our first assumption, M, f |= Γ⇒ ∆, (x, ε)Rπa(e1,d1)(y, ε), i.e.,

if M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆ or M, f |= (x, ε)Rπa(e1,d1)(y, ε).

By this implication and our assumption of M, f |= C for all C ∈ Γ, we get

M, f |= D for some D ∈ ∆ or M, f |= (x, ε)Rπa(e1,d1)(y, ε)

iff if M, f 6|= D for all D ∈ ∆, then M, f |= (x, ε)Rπa(e1,d1)(y, ε).
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By this implication and our assumption of M, f 6|= D for all D ∈ ∆, we obtain M, f |=
(x, ε)Rπa(e1,d1)(y, ε), which is our goal.

Case where the last applied rule of our derivation is (Lrel):
First, we can write the rule (Lrel) as follows:

(x, ε)Rπa(e1,d1)(y, ε),Γ⇒ ∆

(x, (E1, e1))Ra(y, (E1, d1)),Γ⇒ ∆
(Lrel)

Suppose that M, f |= (x, ε)Rπa(e1,d1)(y, ε),Γ ⇒ ∆ for all models M and all assignments
f . Our goal is to show that

M, f |= (x, (E1, e1))Ra(y, (E1, d1)),Γ⇒ ∆ for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= (x, (E1, e1))Ra(y, (E1, d1))
and M, f |= C for all C ∈ Γ. It suffices to show that

M, f |= D for some D ∈ ∆.

From our assumption of M, f |= (x, (E1, e1))Ra(y, (E1, d1)),

M, f |= (x, (E1, e1))Ra(y, (E1, d1)) iff (f(x), e1)R⊗E1
a (f(y), d1)

iff f(x)Rπa(e1,d1)f(y)

iff M, f |= (x, ε)Rπa(e1,d1)(y, ε).

By our first assumption, M, f |= (x, ε)Rπa(e1,d1)(y, ε),Γ⇒ ∆, i.e.,

if M, f |= (x, ε)Rπa(e1,d1)(y, ε) and M, f |= C for all C ∈ Γ, then M, f |= D for some D ∈ ∆.

By this implication, M, f |= (x, ε)Rπa(e1,d1)(y, ε) and our assumption of M, f |= C for all C ∈
Γ, we obtain M, f |= D for some D ∈ ∆, which is our goal.

Case where the last applied rule of our derivation is (R;):
First, we can write the rule (R;) as follows:

Γ⇒ ∆, (x, (E1, e1))Rπ1(z, (E1, e3)) Γ⇒ ∆, (z, (E1, e3))Rπ2(y, (E1, e2))

Γ⇒ ∆, (x, (E1, e1))Rπ1;π2(y, (E1, e2))
(R; )

Then, we suppose that M, f |= Γ ⇒ ∆, (x, (E1, e1))Rπ1(z, (E1, e3)) and M, f |= Γ ⇒ ∆,
(z, (E1, e3))Rπ2(y, (E1, e2)) for all models M and all assignments f . Our goal is to show
that

M, f |= Γ⇒ ∆, (x, (E1, e1))Rπ1;π2(y, (E1, e2)) for all M and all f.

Fix any model M and any assignment f . Suppose that M, f |= C for all C ∈ Γ. It
suffices to show that

M, f |= D for some D ∈ ∆ or M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2))

iff if M, f 6|= D for all D ∈ ∆, then M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2)).
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Suppose that M, f 6|= D for all D ∈ ∆. Our goal is to show

M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2)) iff (f(x), e1)R⊗E1
π1;π2

(f(y), e2)

iff (f(x), e1)R⊗E1
π1

(v, e3) and (v, e3)R⊗E1
π2

(f(y), e2)

for some (v, e3) ∈ W⊗E1 .

From our assumption, M, f |= Γ⇒ ∆, (x, (E1, e1))Rπ1(z, (E1, e3)), i.e.,

if M, f |= C for all C ∈ Γ,

then M, f |= D for some D ∈ ∆ or M, f |= (x, (E1, e1))Rπ1(z, (E1, e3)).

By this implication and our assumption of M, f |= C for all C ∈ Γ, we get

M, f |= D for some D ∈ ∆ or M, f |= (x, (E1, e1))Rπ1(z, (E1, e3))

iff if M, f 6|= D for all D ∈ ∆, then M, f |= (x, (E1, e1))Rπ1(z, (E1, e3)).

By this implication and our assumption of M, f 6|= D for all D ∈ ∆, we get

M, f |= (x, (E1, e1))Rπ1(z, (E1, e3)) iff (f(x), e1)R⊗E1
π1

(f(z), e3).

From our assumption, M, f |= Γ⇒ ∆, (z, (E1, e3))Rπ2(y, (E1, e2)), i.e.,

if M, f |= C for all C ∈ Γ,

then M, f |= D for some D ∈ ∆ or M, f |= (z, (E1, e3))Rπ2(y, (E1, e2)).

By this implication and our assumption of M, f |= C for all C ∈ Γ, we get

M, f |= D for some D ∈ ∆ or M, f |= (z, (E1, e3))Rπ2(y, (E1, e2))

iff if M, f 6|= D for all D ∈ ∆, then M, f |= (z, (E1, e3))Rπ2(y, (E1, e2)).

By this implication and our assumption of M, f 6|= D for all D ∈ ∆, we get

M, f |= (z, (E1, e3))Rπ2(y, (E1, e2)) iff (f(z), e3)R⊗E1
π2

(f(y), e2).

By (f(x), e1)R⊗E1
π1

(f(z), e3) and (f(z), e3)R⊗E1
π2

(f(y), e2), we obtain (f(x), e1)R⊗E1
π1

(v, e3)
and (v, e3)R⊗E1

π2
(f(y), e2) for some (v, e3) ∈ W⊗E1 , which is our goal.

Case where the last applied rule of our derivation is (L;):
First, we can write the rule (L;) by a simple case as follows:

{(x, (E1, e1))Rπ1(z, (E1, e3)), (z, (E1, e3))Rπ2(y, (E1, e2)),Γ⇒ ∆ | e1Qπ1e3, e3Qπ2e2}
(x, (E1, e1))Rπ1;π2(y, (E1, e2)),Γ⇒ ∆

(L; )

Then, we suppose that M, f |= (x, (E1, e1))Rπ1(z, (E1, e3)), (z, (E1, e3))Rπ2(y, (E1, e2)),
Γ⇒ ∆ such that e1Qπ1e3 and e3Qπ2e2 for all models M and all assignments f . Our goal
is to show that

M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2)),Γ⇒ ∆ for all M and all f,
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where z of our assumption does not appear in Γ, ∆ and (x, (E1, e1))Rπ1;π2(y, (E1, e2)). Fix
any model M and any assignment f . Suppose that M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2))
and M, f |= C for all C ∈ Γ. It suffices to show that

M, f |= D for some D ∈ ∆.

By our assumption of M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2)),

M, f |= (x, (E1, e1))Rπ1;π2(y, (E1, e2)) iff (f(x), e1)R⊗E1
π1;π2

(f(y), e2)

iff (f(x), e1)R⊗E1
π1

(v, e3) and (v, e3)R⊗E1
π2

(f(y), e2)

for some (v, e3) ∈ W⊗E1 .

Define new assignment function g : Var→ W by

g(u) =

{
v if u = z,

f(u) if u 6= z.

By our first assumption, M, g |= (x, (E1, e1))Rπ1(z, (E1, e3)), (z, (E1, e3))Rπ2(y, (E1, e2)),
Γ⇒ ∆, i.e.,

if M, g |= (x, (E1, e1))Rπ1(z, (E1, e3)) and M, g |= (z, (E1, e3))Rπ2(y, (E1, e2)) and

M, g |= C for all C ∈ Γ, then M, g |= D for some D ∈ ∆.

Let us show M, g |= (x, (E1, e1))Rπ1(z, (E1, e3)) and M, g |= (z, (E1, e3))Rπ2(y, (E1, e2))
and M, g |= C for all C ∈ Γ. By our assumption of M, f |= C for all C ∈ Γ and z is
fresh, we can get M, g |= C for all C ∈ Γ. Next, we will show

M, g |= (x, (E1, e1))Rπ1(z, (E1, e3)) iff (g(x), e1)R⊗E1
π1

(g(z), e3).

By definition of g, we get (f(x), e1)R⊗E1
π1

(v, e3), which is our assumption. From our as-
sumption of (z, (E1, e3))Rπ2(y, (E1, e2)),

M, g |= (z, (E1, e3))Rπ2(y, (E1, e2)) iff (g(z), e3)R⊗E1
π2

(g(y), e2).

By definition of g, we get (v, e3)R⊗E1
π1

(f(y), e2), which is our assumption. Thus, by our
assumptions and the freshness of z in ∆, we obtain M, f |= D for some D ∈ ∆, which is
our goal.

Case where the last applied rule of our derivation is (L =1):
First, we can write the rule (L =1) as follows:

x = y,Γ[x/w]⇒ ∆[x/w]

x = y,Γ[y/w]⇒ ∆[y/w]
(L =1)

Then, we suppose that M, f |= x = y,Γ[x/w] ⇒ ∆[x/w] for all models M and all
assignments f . Our goal is to show that

M, f |= x = y,Γ[y/w]⇒ ∆[y/w] for all M and all f.
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Fix any model M and any assignment f . Suppose that M, f |= x = y and M, f |=
C[y/w] for all C ∈ Γ. It suffices to show that

M, f |= D[y/w] for some D ∈ ∆.

From our assumption of M, f |= x = y,

M, f |= x = y iff f(x) = f(y).

Define new assignment function g : Var→ W by

g(z) =

{
f(y) if z = x,

f(z) if z 6= x.

Based on definition of g and our assumption of f(x) = f(y), we have our claim as follows:

M, f |= C[y/w] iff M, g |= C[x/w] for all C.

By our first assumption, M, g |= x = y,Γ[x/w]⇒ ∆[x/w], i.e.,

if M, g |= x = y and M, g |= C[x/w] for all C ∈ Γ,

then M, g |= D[x/w] for some D ∈ ∆.

By this implication and our claim, we obtain M, f |= D[y/w] for some D ∈ ∆, which is
our goal.

Theorem 20 (Soundness). If `GDELRC−⇒ x :ε ϕ for all x ∈ Var, then ϕ is valid on all
Kripke models.

Proof. Suppose `GDELRC−⇒ x :ε ϕ for all x ∈ Var. Our goal is to show that ϕ is valid
on all models. The proof can be shown by Lemma 17.

Corollary 1. Given any formula ϕ, the following are equivalent:

(i) ϕ is valid on all models

(ii) `HDELRC ϕ

(iii) `GDELRC⇒ x :ε ϕ for all x ∈ Var

(iv) `GDELRC−⇒ x :ε ϕ for all x ∈ Var

Proof. First, the direction from (i) to (ii) can be established by Theorem 17 (completeness
of HDELRC). Then, the direction from (ii) to (iii) is shown by Theorem 18 (all formulas
ϕ in HDELRC are derivable in GDELRC). Next, the direction from (iii) to (iv) can be
shown by Theorem 19 (cut-elimination of GDELRC). Finally, the direction from (iv) to
(i) can be established by Theorem 20 (soundness of GDELRC for Kripke semantics).
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Appendix B

Implementation for Realizing
Changing of Belief and Reliability

This chapter describes an implementation for realizing an agent’s changing of belief and
reliability based on our analysis method (mentioned in Section 5.1) and our logical formal-
ization (mentioned in Chapters 3 and 4). We have developed a Windows-Based Applica-
tion with Visual C# TM . This program outputs the truth value of propositions, together
with world accessibility relations in dot format. Thus, we can visualize the dot file by
GraphvizTM .

The main features of our implementation are summarized as follows:

(1) We can input and edit the definition of an initial Kripke model corresponding to
Definition 30 in Section 3.1 that consists of the following six items:

– G : a finite set of agents

– W : a finite non-empty set of states

– (Ra)a∈G : an accessibility relation representing beliefs of agent a

– (Sa)a∈G : an accessibility relation representing signatures of agent a

– (4a)a∈G : a reliability ordering between agents by agent a

– V : a valuation

In addition, we have to input Prop, which is a set of propositions, and @ which is
a current state representing agent a’s viewpoint. For the reliability ordering, the
system will automatically define that all agents are equally reliable, i.e., their rank
is 1, at the initial stage. Note that this study fixes the rank of reliability to be 0, 1
and 2. That is, we may regard that 0 represents unreliable, 1 represents neutral, and
2 represents reliable.1 However, the system allows us to edit the reliability ordering
of all agents manually. Furthermore, we can export the definition of an initial model
into the text file and import such model into the system. An example of inputting
an initial model of the second legal case can be shown by Fig. B.1. This initial
model can be visualized as in Fig. B.2.

1In the real world, a judge cannot categorize the reliability of witnesses to be several groups as [13].
Thus, this study proposes to simplify the rank of reliability in a real situation by fixing to be 0, 1 and 2.
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Figure B.1: Inputting an initial model of the second legal case

Figure B.2: Initial Kripke model of the second legal case
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Figure B.3: Generating an initial model for the second legal case

Table B.1: Format of dynamic logical operators for inputting into the implementation

Operator name Logical formula Format in the system
Private announcement [p a] [p=>a]

Private permission [p� a] [PriPer(a,p)]

Careful policy [Careful(a, p)] [Agg(a,p)]

Downgrade [H ⇓ap] [downgrade(a,H,p)]

Upgrade [H ⇑ap] [upgrade(a,H,p)]

Joint downgrade [H �a] [jdowngrade(a,H)]

(2) The system can generate an initial Kripke model based on our proposed method
described in Section 5.1 by the following steps:

– We first import a set of agents (G) and a set of propositions (Prop). Then,
the system allows us to input three key features of a legal case including a
statement, a belief agent and signed agents. Note that a statement represents
a proposition that needs to be analyzed, a belief agent is an agent that needs
to be analyzed his/her changing of belief and reliability, and signed agents are
agents who give such statement in the legal case. After that, the system will
generate all possibilities according to the input features as shown in Fig. B.3.

– The system allows us to edit such possibilities obtained from the previous step
by removing some of them. Then, the system will generate a definition of an
initial Kripke model.

– We can export the definition of the initial model into the text file that can be
imported into the system as described in the previous feature.
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Figure B.4: Result after inputting [Sign(b,¬p) j]

(3) We can input any dynamic logical operators consisting of six operators as shown in
Table B.1. Then, the system automatically calculates such operator according to
Chapters 3 and 4, and outputs the result on the screen such as in Fig. B.4 which
consists of the following parts:

– Operation is an input of any dynamic operators.

– Template is a guideline for inputting any dynamic operators. The system will
automatically generate this template corresponding to an input definition of
an initial Kripke model.

– Mem.Info. is a memory of received information which is used to check if there
is an inconsistency or not.

– Mem.Operations is a memory of operations presenting all operations are em-
ployed by both an agent and our system.

– Analysis Process demonstrates how dynamic operators are applied for for-
malizing an agent’s changing of belief and reliability step by step. An output
is shown in terms of formulas.

– Updated Relations represent an updated relation Ra which is the result after
calculating three kinds of dynamic operators including private announcement,
careful policy and private permission for formalizing belief re-revision.

– Updated Reliability Orderings represent an updated reliability ordering
4a resulting from three dynamic operators including downgrade, upgrade and
joint downgrade.

In addition to the result in Fig. B.4, the system can automatically visualize the
resultant states such as in Fig. B.5 which represents a result after calculating
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Figure B.5: Result after calculating [Sign(f,¬p) j] by a product update operation

[Sign(f,¬p)  j] by a product update operation. Since the result in Fig. B.5 is
difficult to understand, the system automatically converts such result into a simple
one (which focuses only an announcing action ‘!’) such as in Fig. B.6.

(4) The system can verify if an input of dynamic logical operator is correct syntax or
not by a logical formula parser. Let us describe how to construct the logical formula
parser. There are three following steps.

(4.1) The context-free grammar is defined corresponding to the syntax of our logical
formalization (mentioned in Chapters 3 and 4) as follows:

S → [actions]
actions → brvFunc(agent,infos) |

jdowngrade(agent, agentSet ) |
grading(agent,agentSet,infos) |
infos => agent

brvFunc → PriPer | Agg
grading → downgrade | upgrade
agent → a | b | c
agentSet → {agents}
agents → agents | agent, agent | agents, agent
infos → info
info → prop | ~ info | (info) | info & info | info # info |

info -> info | info <-> info | Bel(agent,infos) |
Sign(agent,infos)

prop → p
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Figure B.6: Kripke model after calculating [Sign(f,¬p) j]

Note that infos represents a set of formulas. The boolean connectives ¬, ∧,
∨, → and ↔ are represented by ~, &, #, -> and <->, respectively. In Table
B.1, a set of agents H, which is in [downgrade(a,H,p)], [upgrade(a,H,p)]
and [jdowngrade(a,H)], can be represented by agentSet as defined above.

(4.2) A process of parsing is implemented based on the Earley algorithm [33] which
is a well-known top-down parsing algorithm for parsing strings that belong to
a given context-free grammar. The process of parsing consists of three steps as
follows: First, the context-free grammar from (4.1) is entered into the parser.
Second, the process of parsing is performed based on the Earley algorithm.
Finally, the parse tree will be retrieved from such chart entries.

(4.3) If the input has syntax errors, the parser can detect where an error occurred and
may correct such error by a process of error recovery automatically. However,
some errors cannot be automatically corrected by the system. That is, it
requires the user to correct them by him/herself. In this case, the system will
indicate a position where the error occurred and generate an error message
including information about such error and a suggestion for error recovery such
as in Fig. B.7. This figure shows an example of an error message indicating
information of the error consisting of type, position and solution.

(5) The system can perform an inconsistency management policy as follows:

(5.1) The system will check if there is an inconsistency between the existing belief
and new information or not. That is, our goal is to check if there is an agent
giving inconsistent statements or not.
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Figure B.7: Error message after inputting [Sign(, p) => j]

(5.2) If there is an inconsistency, the system applies joint downgrade and private
permission operators by the following steps. First, the joint downgrade opera-
tor is employed for downgrading the agent who gives inconsistent statements
less reliable. Second, a process of belief restoration is performed by the private
permission operators. For this process, the system will automatically restore all
possibilities because it cannot determine which statements should be permitted
to the agent’s belief.

(5.3) The system will check if there is the received information which is not incon-
sistent with the existing belief and is signed by the most reliable agent or not.
If there is such information, the system will apply the private announcement
operator for admitting such information.

The above process can be illustrated by Fig. B.4. When [Sign(b,¬p) j] is calcu-
lated and an inconsistency is detected, the system will perform four operations corre-
sponding to the above process as follows: [{b} �j], [Sign(b, p)� j], [Sign(b,¬p)� j]
and [Sign(f,¬p)  j]. For a process of belief restoration, the system applies two
private permission operators for permitting both Sign(b, p) and Sign(b,¬p). The
more details of this process are described in Section 5.2.3.

(6) The system can keep track of all the changes of an agent’s belief and reliability by
showing a comparison of relations and a comparison of reliability orderings from
a specific agent’s perspective. Fig. B.8 illustrates changing of j’s belief as fol-
lows: First, j does not believe Sign(b, p) and Sign(f,¬p), i.e., ¬Bel(j, Sign(b, p))
and ¬Bel(j, Sign(f,¬p)) (see the left-hand side of Fig. B.8). Then, when j admits
statements Sign(b, p) and Sign(f,¬p) by [(Sign(b, p) ∧ Sign(f,¬p))  j], j believes
Sign(b, p) and Sign(f,¬p), i.e., Bel(j, Sign(b, p)) and Bel(j, Sign(f,¬p)) (see the right-
hand side of Fig. B.8). Reliability change of agent j can be demonstrated by Fig. B.9.
First, j believes that agents b and f are equally reliable, i.e., Bel(j, b ≈j f) (see the
left-hand side of Fig. B.9). Then, when j considers agent b to be unreliable, j down-
grades agent b by [{b} �j]. As a result, j believes that agent b is less reliable than
agent f , i.e., Bel(j, f <j b) (see the right-hand side of Fig. B.9).
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Figure B.8: Comparison of relations Rj: the left-hand side is Rj and Kripke model of
the initial stage, and the right-hand side is Rj and Kripke model after [(Sign(b, p) ∧
Sign(f,¬p)) j].

Figure B.9: Comparison of reliability orderings 4j: the left-hand side is 4j in the initial
stage, and the right-hand side is 4j after [{b} �j].
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Appendix C

Details of Six Target Legal Cases

The story and the judgment of six target legal cases can be summarized as follows:

1) Legal case from Thailand (in [34]) occurred on January 26, 2003 in Trang province,
Thailand.1 The story can be summarized as follows:

One day, Choochart (v) had a drink with his friends including Saichol (f1),
Ekachai (f2) and Sommai (d) at f2’s house. After that, v was punched
and stabbed with a hand scraper in the back by an offender, and as a
result, v had bleeding in the lung. However, v was still alive.

The details of judgment can be summarized as follows:

In the inquiry stage, four witnesses v, f1, f2 and mo (mother of v) were
interviewed by a police po, who is an official inquiry, as follows: v, f1

and mo told that d was the offender, while f2 told that d was not the
offender. After the interview, d was charged with attempted murder. In
the Civil Court, v and f1 changed their statements, i.e., both of them told
that d was not the offender. po was called to be a witness for testifying
all statements in the inquiry stage. From these testimonies, the judge
believed that the statements of v and f1 in the Civil Court are less reliable
than that in the inquiry stage. Thus, the judge believed that d was the
offender and decided that d was guilty.

2) Legal case from Canada (in [35]) occurred on April 24, 1988 in Ontario, Canada.2

The story can be summarized as follows:

One day, Joseph (v) and his brother, Steven (b), got off a bus at an
intersection. At the same time, the respondent, K.G.B. (d) and three
other men including P.L. (f1), P.M. (f2) and M.T. (f3) were driving past
the same intersection. An argument started among them and shortly
thereafter a fight occurred. v and b were unarmed. In the course of the
fight, one of the four men from the car pulled a knife and then stabbed v
in the chest. Finally, v died.

1This legal case can be referred from http://deka2007.supremecourt.or.th/deka/web/search.jsp

(in Thai).
2This legal case can be referred from http://www.canlii.org/en/.
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The details of judgment can be summarized as follows:

In the inquiry stage, four witnesses b, f1, f2 and f3 were interviewed as
follows: b told that d was not the offender, while f1, f2 and f3 told that
d was the offender. After the interview, d was charged with murder. In
the Youth Court, since all witnesses recanted their statements, the judge
could not consider the prior statements of all witnesses as evidence. Thus,
the judge acquitted d.

3) Legal case from British Columbia (in [36]) occurred on August 31, 1996 in Surrey,
British Columbia.2 The story can be summarized as follows:

One day, while Basant Singh (v) with new friends including Sher (f1),
Jarnail (f2), and the others gathered for social purposes, a van consisting
of two respondents Sukhminder (d1), Ajmer (d2) and the others slowly
approached the group of v. A burst of gun fire swept the group of v,
shooting on a low trajectory into the ground. As a result, v died and
three others including f2 were wounded.

The details of judgment can be summarized as follows:

In the inquiry stage, two witnesses f1 and f2 were interviewed as follows:
f1 told that d1 was a driver of the van and d2 was the shooter, while f2

told that d1 was a driver of the van and d2 was not the shooter. After
the interview, both d1 and d2 were charged with the first degree murder,
the attempted murder of three other persons and aggravated assault on
the same three persons. In the Crown Court, f2 changed his statement,
i.e., he told that d2 was the shooter. Since there is an inconsistency in the
statements of f2, the judge considered only f1’s statement for identifying
the shooter to be truthful. In addition, the judge believed that both d1

and d2 did not intend to kill v. For this reason, the judge acquitted both
d1 and d2 of first degree murder but convicted them of manslaughter.
The judge also convicted them of aggravated assault instead of attempted
murder of the other three victims.

4) Legal case from Nova Scotia occurred on December 31, 2009 in Halifax, Nova Scotia.2

The story can be summarized as follows:

One day, Welsh (v) went to a New Year’s Eve Party with his girlfriend
Gautreau (f). While f was drinking in the party, v went outside the party
to have a cigarette. Later on, f went outside and found v was punched
then fell backward and struck his head on the pavement. Finally, v died.

The details of judgment can be summarized as follows:

In the inquiry stage, only one witness f was interviewed as follows: f
told that Leeds (d) was the offender. After the interview, d was charged
with manslaughter. In the Crown Court, the judge found that f ’s rec-
ollection of the event was affected by her alcohol assumption, and there
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were many inconsistencies in f ’s evidence such as the identification of d as
the offender. Thus, the judge believed that f was not a reliable witness.
Accordingly, the judge decided that d was not guilty.

5) Legal case from Nova Scotia occurred on August 6, 2011 in Halifax, Nova Scotia.2

The story can be summarized as follows:

One day, Barry (v) and his friends including Fisher (f1), Marsh (f2) and
Slaunwhite (f3) were drinking alcohol and smoking marijuana at v’s home.
Then, v together with his friends f1, f2 and f3 drove to the house of Neil
(d). While v was driving the vehicle at d, d was scared and fired the shot
that injured v. However, v was still alive.

The details of judgment can be summarized as follows:

In the inquiry stage, four witnesses v, f1, f2 and Beaupre (b) who was d’s
neighbor were interviewed as follows: v and f1 told that d intended to kill
v, while f2 and b told that d did not intend to kill v. After the interview,
d was charged with the following offences: attempted murder, aggravated
assault, using of a weapon in committing an assault, discharging a firearm
with intent to endanger the life, intentionally discharging a firearm into a
place, using of a firearm in a careless manner and possessing a weapon for
a purpose dangerous to the public peace. In the Crown Court, the judge
considered v and f1 to be unreliable because v could not recall the events
because of a combination of his intoxication by both drugs and alcohol
on the evening in the events, and f1’s evidence was inconsistent within
itself. Thus, the judge only accepted the evidence from f2 and b that d
did not intend to kill v; in fact, d just defended himself against v’s attack.
That is, d’s actions were justified to be self-defense. Therefore, the judge
decided that d was not guilty of all counts in the indictment.

6) Legal case from Nova Scotia occurred on July 17, 2004 in Bedford, Nova Scotia.2

The story can be summarized as follows:

One day, Bobby (v) was intoxicated at Busters Bar and having been
denied further drinks from the bar. While Comer (d1) and his friends
including Warner (f1), Maes (f2), Southwell (f3) and Morrison (f4) were
drinking, v approached d1’s table and asked for some beer but his request
was refused. Then, v attempted to take d1’s beer but his attempt was
prevented from f1. After that, Smith (d2) and his friend, Hodgson (f5),
arrived at the bar and joined the group at d1’s table. v left the bar first,
then d1, d2 and f5 left the bar. When f1, f2, f3 and f4 exited the bar, they
came upon a verbal exchange between v, d1, d2 and f5. Then, v kicked d2

first, then all three including v, d1 and d2 were punching each other. The
fight was of short duration. After v fell to the ground, d1, d2 and f5 ran
off.

The details of judgment can be summarized as follows:
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In the inquiry stage, five witnesses f1, f2, f3, f4 and f5 were interviewed as
follows: f1 and f2 told that they could not see what happened when v was
on the ground, but f2 stated that he saw d2 kicked v once above the belt.
f3 told that he did not see anyone kick v while v was on the ground. f4 told
that v kicked d2 first, then d2 kicked v while v was on the ground. However,
f4 was not sure if d2’s kick was to v’s head or not. f5 told that he could not
say where d1’s kick landed on v. After the interview, both d1 and d2 were
charged with manslaughter in the death of v. In the Crown Court, three
witnesses f1, f2 and f5 changed their statements as follows: f1 testified
that d1 and d2 kicked v while v was on the ground, and all the kicks he saw
landed on v’s upper body between the belt and the head. f2 told that he
could not say if anyone kicked v while v was on the ground because people
were in front of him and blocking his view. f5 told that v kicked d2 first,
then d1 kicked v in the head while v was on the ground. The judge found
that the reliability of evidence of all witnesses was questionable because of
the following reasons: f1 and f5 gave inconsistent statements, f2’s view of
the events was affected by the fact that he was not wearing his eyeglasses,
and f3 and f4 turned away from the fight. Based on these reasons, the
judge was not satisfied on the evidence that d2 kicked v while v was on
the ground. Thus, the judge believed that d2’s act was in self-defense and
was not excessive. Accordingly, d2 was found not guilty. On the other
hand, the judge believed that the kicking of d1 was not in self-defense and
was excessive because of the evidence that d1 kicked v while v was on the
ground. However, the judge cannot conclude that the kicking of d1 was
the cause of v’s death because there is no evidence to support a finding
that d1 kicked v in the head. Accordingly, d1 was found not guilty.

115



Appendix D

Analysis Process of Five Target
Legal Cases

Section 5.2.2 presents only the summary of analysis process of six target legal cases in
Table 5.5. Then, only the details of analysis process of the second legal case are shown in
Table 5.7 (mentioned in in Section 5.2.3) for describing how to analyze a judge’s changing
of belief and reliability. Therefore, this chapter demonstrates the details of analysis process
of five target legal cases in the following tables.
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Table D.1: Analysis process of the first legal case

Step Operation Meaning Result

(1)

[
(
Sign(v,¬p)∧

Sign(po, Sign(v, p)∧
Sign(f2,¬p)∧
Sign(mo, p))

)
 j]

j admits
Sign(v,¬p) and
Sign(po, Sign(v, p)∧
Sign(f2,¬p)∧
Sign(mo, p))

Bel(j, Sign(v,¬p)∧
Sign(po, Sign(v, p)∧
Sign(f2,¬p)∧
Sign(mo, p)))

(2) [{v, po} ⇑jSign(v,p)]
j upgrades
agent po who
signs Sign(v, p)

Bel(j, po <j v ≈j
f2 ≈j mo)

(3)
[Careful(j, Sign(v, p)∧
Sign(f2,¬p)∧
Sign(mo, p))]

j aggregates
statements of po

Bel(j, Sign(v, p)∧
Sign(f2,¬p)∧
Sign(mo, p))

(4) [{v, f2,mo} ⇑jp]
j upgrades
agents v and mo
who sign p

Bel(j, po ≈j v ≈j
mo <j f2)

(5) [Careful(j, p)]
j aggregates
information about p

Bel(j, p)

Table D.2: Analysis process of the third legal case

Step Operation Meaning Result

(1)
[
(
Sign(f1, p)∧

Sign(f2, p)
)
 j]

j admits
Sign(f1, p) and
Sign(f2, p)

Bel(j, Sign(f1, p))∧
¬Bel(j, Sign(f1,¬p))∧
Bel(j, Sign(f2, p))∧
¬Bel(j, Sign(f2,¬p))

(2) [Sign(f2,¬p) j]
j admits
Sign(f2,¬p)

None

(2.1) [{f2} �j]
j downgrades
agent f2

Bel(j, f1 <j f2)

(2.2)
[Sign(f2, p)� j]
[Sign(f2,¬p)� j]

j permits
Sign(f2, p) and
Sign(f2,¬p)

¬Bel(j, Sign(f1, p))∧
¬Bel(j, Sign(f1,¬p))∧
¬Bel(j, Sign(f2, p))∧
¬Bel(j, Sign(f2,¬p))

(2.3) [Sign(f1, p) j]
j admits
Sign(f1, p)

Bel(j, Sign(f1, p))∧
¬Bel(j, Sign(f1,¬p))∧
¬Bel(j, Sign(f2, p))∧
¬Bel(j, Sign(f2,¬p))

(3) [Careful(j, p)]
j aggregates
information
about p

Bel(j, p)
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Table D.3: Analysis process of the fourth legal case

Step Operation Meaning Result

(1) [Sign(f, p) j]
j admits
Sign(f, p)

Bel(j, Sign(f, p))∧
¬Bel(j, Sign(f,¬p))

(2) [Sign(f,¬p) j]
j admits
Sign(f,¬p) None

(2.1) [{f} �j]
j downgrades
agent f

Bel(j, j <j f)

(2.2)
[Sign(f, p)� j]
[Sign(f,¬p)� j]

j permits
Sign(f, p) and
Sign(f,¬p)

¬Bel(j, Sign(f, p))∧
¬Bel(j, Sign(f,¬p))

Table D.4: Analysis process of the fifth legal case

Step Operation Meaning Result

(1)
[
(
Sign(v,¬p)∧

Sign(b, p)
)
 j]

j admits
Sign(v,¬p) and
Sign(b, p)

¬Bel(j, Sign(v, p))∧
Bel(j, Sign(v,¬p))∧
Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))

(2) [Sign(v, p) j]
j admits
Sign(v, p)

None

(2.1) [{v} �j]
j downgrades
agent v

Bel(j, b <j v)

(2.2)
[Sign(v, p)� j]
[Sign(v,¬p)� j]

j permits
Sign(v, p) and
Sign(v,¬p)

¬Bel(j, Sign(v, p))∧
¬Bel(j, Sign(v,¬p))∧
¬Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))

(2.3) [Sign(b, p) j]
j admits
Sign(b, p)

¬Bel(j, Sign(v, p))∧
¬Bel(j, Sign(v,¬p))∧
Bel(j, Sign(b, p))∧
¬Bel(j, Sign(b,¬p))

(3) [Careful(j, p)]
j aggregates
information
about p

Bel(j, p)
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Table D.5: Analysis process of the sixth legal case

Step Operation Meaning Result

(1)
[
(
Sign(f1, p)∧

Sign(f3,¬p)∧
Sign(f4, p)

)
 j]

j admits
Sign(f1, p),
Sign(f3,¬p) and
Sign(f4, p)

Bel(j, Sign(f1, p))∧
¬Bel(j, Sign(f1,¬p))∧
¬Bel(j, Sign(f3, p))∧
Bel(j, Sign(f3,¬p))∧
Bel(j, Sign(f4, p))∧
¬Bel(j, Sign(f4,¬p))

(2) [{f1, f3, f4} ⇓jp]
j downgrades
agents f1 and f4

who sign p
Bel(j, f3 <j f1 ≈j f4)

(3) [Careful(j,¬p)]
j aggregates
information
about ¬p

Bel(j,¬p)

(4)
[
(
Sign(f1, q)∧

Sign(f3,¬q)∧
Sign(f5, q)

)
 j]

j admits
Sign(f1, q),
Sign(f3,¬q) and
Sign(f5, q)

Bel(j, Sign(f1, q))∧
¬Bel(j, Sign(f1,¬q))∧
¬Bel(j, Sign(f3, q)∧
Bel(j, Sign(f3,¬q))∧
Bel(j, Sign(f5, q))∧
¬Bel(j, Sign(f5,¬q))

(5) [{f1, f3, f5} ⇓j¬q]
j downgrades
agent f3 who
signs ¬q

Bel(j, f1 ≈j f5 <j f3)

(6) [Careful(j, q)]
j aggregates
information
about q

Bel(j, q)

(7)
[
(
Sign(f1, r)∧

Sign(f4,¬r)∧
Sign(f5, r)

)
 j]

j admits
Sign(f1, r),
Sign(f4,¬r) and
Sign(f5, r)

Bel(j, Sign(f1, r))∧
¬Bel(j, Sign(f1,¬r))∧
¬Bel(j, Sign(f4, r)∧
Bel(j, Sign(f4,¬r))∧
Bel(j, Sign(f5, r))∧
¬Bel(j, Sign(f5,¬r))

(8) [{f1, f4, f5} ⇓jr]
j downgrades
agents f1 and f5

who sign r
Bel(j, f4 <j f1 ≈j f5)

(9) [Careful(j,¬r)]
j aggregates
information
about ¬r

Bel(j,¬r)
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[13] E. Lorini, L. Perrussel, and J. Thévenin, “A modal framework for relating belief
and signed information,” in Computational Logic in Multi-Agent Systems, vol. 6814,
pp. 58–73, 2011.

[14] F. Liu and E. Lorini, “Reasons to believe in a social environment,” in International
Conference on Deontic Logic in Computer Science (DEON), Bayreuth, Germany,
July 18-21, 2016, pp. 155–170, College Publications, 2016.

[15] H. Prakken and G. Sartor, “The role of logic in computational models of legal argu-
ment - a critical survey,” in Computational Logic: Logic Programming and Beyond,
vol. 2408 of Lecture Notes in Computer Science, pp. 342–381, 2001.

[16] T. J. M. Bench-Capon and H. Prakken, “Introducing the logic and law corner,”
Journal of Logic and Computation, vol. 18, pp. 1–12, 2008.

[17] D. Grossi and A. Rotolo, “Logic in the law: A concise overview,” Logic and Philos-
ophy Today, Studies in Logic, vol. 30, pp. 251–274, 2011.

[18] K. Sano, R. Hatano, and S. Tojo, “Misconception in legal cases from dynamic logical
viewpoints,” in Proceedings of the Sixth International Workshop of Juris-Informatics
(JURISIN 2012), pp. 101–113, 2012.

[19] N. Obeid and R. Turner, “Logical foundations of nonmonotonic reasoning,” Artificial
Intelligence Review, vol. 5, no. 1–2, pp. 53–70, 1991.

[20] M. Cadoli and M. Schaerf, “A survey of complexity results for nonmonotonic logics,”
The Journal of Logic Programming, vol. 17, no. 2–4, pp. 127–160, 1993.

[21] H. Prakken, Logical Tools for Modelling Legal Argument: A Study of Defeasible Rea-
soning in Law. Kluwer, 1997.

[22] P. M. Dung, “On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games,” Artificial Intelligence,
vol. 77, no. 2, pp. 321–358, 1995.

[23] D. Nute, “Defeasible logic,” in Handbook of Logic in Artificial Intelligence and Logic
Programming (Vol. 3): Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3,
pp. 353–395, Oxford University Press, Inc., 1994.

[24] P. Gardenfors, ed., Belief Revision. New York, NY, USA: Cambridge University
Press, 1992.

[25] D. Harel, J. Tiuryn, and D. Kozen, Dynamic Logic. Cambridge, MA, USA: MIT
Press, 2000.

121



[26] J. A. Plaza, “Logics of public communications,” in Proceedings of the 4th Interna-
tional Symposium on Methodologies for Intelligent Systems (M. L. Emrich, M. S.
Pfeifer, M. Hadzikadic, and Z. W. Ras, eds.), pp. 201–216, 1989.

[27] H. van Ditmarsch, W. van der Hoek, and B. Kooi, Dynamic Epistemic Logic.
Springer, 2008.

[28] A. Baltag, L. S. Moss, and S. Solecki, The Logic of Public Announcements, Common
Knowledge, and Private Suspicions, pp. 773–812. Cham: Springer International
Publishing, 2016.

[29] B. Chellas, Modal Logic: An Introduction. Cambridge University Press, 1980.

[30] J. van Benthem and F. Liu, “Dynamic logic of preference upgrade,” Journal of Ap-
plied Non-Classical Logics, vol. 17, no. 2, pp. 157–182, 2007.

[31] S. Ghosh and F. Velázquez-Quesada, “Merging information,” in Games, Norms and
Reasons: Logic at the Crossroads (J. van Benthem, A. Gupta, and E. Pacuit, eds.),
vol. 353 of Synthese Library, Springer, 2011.

[32] H. Ono and Y. Komori, “Logics without the contraction rule,” Journal of Symbolic
Logic, vol. 50, pp. 169–201, 03 1985.

[33] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, 2nd ed., 2009.

[34] P. Jirakunkanok, K. Sano, and S. Tojo, “Analyzing reliability change in legal case,”
in New Frontiers in Artificial Intelligence - JSAI-isAI 2014 Workshops, LENLS,
JURISIN, and GABA, Kanagawa, Japan, October 27–28, 2014, Revised Selected
Papers, pp. 274–290, 2014.

[35] P. Jirakunkanok, K. Sano, and S. Tojo, “Analyzing belief re-revision by consider-
ation of reliability change in legal case,” in 2015 Seventh International Conference
on Knowledge and Systems Engineering, KSE 2015, Ho Chi Minh City, Vietnam,
October 8–10, 2015, pp. 228–233, 2015.

[36] P. Jirakunkanok, K. Sano, and S. Tojo, “An implementation of belief re-revision and
reliability change in legal case,” in Proceedings of the Ninth International Workshop
of Juris-Informatics (JURISIN 2015), pp. 97–110, 2015.

122



Publications

International journal

[1] Pimolluck Jirakunkanok, Katsuhiko Sano, and Satoshi Tojo, “Dynamic Epistemic
Logic of Belief Change in Legal Judgments,” submitted to Journal of Artificial
Intelligence and Law.

International conferences

[2] Pimolluck Jirakunkanok, Katsuhiko Sano, and Satoshi Tojo, “An implementation
of belief re-revision and reliability change in legal case,” in Proceedings of the Ninth
International Workshop of Juris-Informatics (JURISIN 2015), Kanagawa, Japan,
November 16-18, 2015, pp. 97-110, 2015.

[3] Pimolluck Jirakunkanok, Katsuhiko Sano, and Satoshi Tojo, “Analyzing belief re-
revision by consideration of reliability change in legal case,” in 2015 Seventh In-
ternational Conference on Knowledge and Systems Engineering, KSE 2015, Ho Chi
Minh City, Vietnam, October 8-10, 2015, pp. 228-233, 2015.

[4] Pimolluck Jirakunkanok, Katsuhiko Sano, and Satoshi Tojo, “Analyzing reliability
change in legal case,” in New Frontiers in Artificial Intelligence - JSAI-isAI 2014
Workshops, LENLS, JURISIN, and GABA, Kanagawa, Japan, October 27-28, 2014,
Revised Selected Papers, pp. 274-290, 2014.

[5] Pimolluck Jirakunkanok, Shinya Hirose, Katsuhiko Sano, and Satoshi Tojo, “Belief
re-revision in chivalry case,” in New Frontiers in Artificial Intelligence - JSAI-isAI
2013 Workshops, LENLS, JURISIN, MiMI, AAA, and DDS, Kanagawa, Japan,
October 27-28, 2013, Revised Selected Papers, pp. 230-245, 2013.

123


