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Abstract: In a two-person perfect-information game, Conspiracy Number Search (CNS) was invented as a possible
search algorithm but did not find much success. However, we believe that the conspiracy number, which is
the core of CNS, has not been used to its full potential. In this paper, we propose a novel way to utilize the
conspiracy number in the minimax framework. Instead of using conspiracy numbers separately, we combine
them together. An example way of combining conspiracy numbers with the evaluation value is suggested.
Empirical results obtained for the game of Othello show the potential of the proposed method.

1 INTRODUCTION

In a two-person perfect-information game, it is com-
mon to employ a minimax-based procedure to esti-
mate the current game situation as well as decide the
next move based on that information. A minimax-
based search produces a search tree, using an eval-
uation function to estimate the value of leaf nodes
and use those value to determine the value of the root
node(Shannon, 1950)(Turing et al., 1953). For most
games, the size of the tree renders the search ineffi-
cient. As a result, many algorithms such as alpha-beta
pruning (Knuth and Moore, 1975) and SSS* (Stock-
man, 1979) have been invented to solve this prob-
lem. Most algorithms focus on selectively choos-
ing appearing paths to search while ignoring a large
portion of the tree (for example, singular extensions
(Anantharaman et al., 1990) and null move (Beal,
1990)(Goetsch and Campbell, 1990)). However, the
effectiveness of these algorithms also depends on the
quality of the evaluation function, because no matter
how fast the algorithm is, it cannot search the whole
tree. It needs to stop at some points and use static
evaluation values. As a result, a weak evaluation func-
tion may remove the branch with the best move and
bias the search toward non-optimal moves.

Conspiracy Number Search (CNS) (McAllester,
1988) was invented as a game-independent best-first
search which expands the game tree non-uniformly
to establish a stable value for the root node. The
algorithm was based on the concept of conspiracy

numbers which, in a sense, show how unlikely the
root value would change to a certain value. Conspir-
acy numbers were also used in alpha-beta-conspiracy
(McAllester and Yuret, 2002); theirs usage were dif-
ferent and less computationally intensive. However,
both algorithms were not very successful (Schaeffer,
1990), and conspiracy numbers did not receive much
attention after that. Recently, the conspiracy number
was investigated again, but for another usage (Khalid
et al., 2015). In our opinion, the failure of these pre-
vious methods occurred because their methods used
conspiracy numbers separately. A single conspiracy
number would not have much information about the
game situation, so it is not beneficial to decide based
on it. In this paper, we propose a new method of com-
bining the conspiracy numbers to evaluate the game
situation. It is shown that the proposed method has a
potential to improve the evaluation accuracy.

The structure of this paper is as follows. Section 2
presents related works in this domain and the basic
idea of conspiracy numbers is described in section 3.
Then we propose our new method in section 4, and
experiments which we performed and their results are
shown together with some discussion in section 5. Fi-
nally, concluding remarks are given in section 6.

2 RELATED WORKS

In this section, we describe in more details about
conspiracy numbers and their application in previous
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methods.

2.1 Conspiracy Number

In (McAllester, 1988), conspiracy numbers are the
measurement of the difficulty of changing the mini-
max root value of a given tree. The conspiracy num-
ber of a particular value v in a given tree is the mini-
mum number of leaf nodes that have to change their
values (called conspirators) so that the value of the
root node will change to v.

Root value 1 2 3 4 5 6
Conspiracy number 2 1 0 1 1 2

Figure 1: A simple minimax tree. The table shows conspir-
acy numbers for several values. CN(3) = 0 because 3 is the
value of the root node, so we do not need to change any-
thing. To change the root’s value to 2, at least node C or D
needs to change to 2. To change to 1, node A or B and node
C or D need to change to 1.

Let T denote a node with minimax value m. The
conspiracy number CN(T,v) can be defined recur-
sively as follows:

• A a leaf node, because there is no more search,
the only conspirator is the node itself. However,
if it is also a terminal node (an ending position),
its value cannot be changed. So:

CN(T,v) =





0 if v = m
1 if v 6= m
∞ if terminal node

(1)

• At a max node, in order to increase its value, at
least one of its children needs to increase its value.
Meanwhile, to decrease its value, all of its chil-
dren need to decrease their values. Therefore, we

have two cases:

CN ↑ (T,v)=
{

0 if v≤ m
min

all children Ti
CN ↑ (Ti,v) if v > m

(2)

CN ↓ (T,v)=





∑
all children Ti

CN ↓ (Ti,v) if v < m

0 if v≥ m
(3)

• At a min node, a similar scheme is applied:

CN ↑ (T,v)=





0 if v≤ m
∑

all children Ti

CN ↑ (Ti,v) if v > m

(4)

CN ↓ (T,v)=
{

min
all children Ti

CN ↓ (Ti,v) if v < m

0 if v≥ m
(5)

2.2 Conspiracy Number Search

Conspiracy number search was described in
(McAllester, 1988). It is a selective search that
explores the game tree non-uniformly to determine
the value of the root node. It maintains a range
of possible values and keeps expanding the tree
until a certain degree of confidence is reached. The
confidence is measured by the width of a possible
values’ range W and a minimum value for conspiracy
numbers T . The purpose of the search is to raise
the conspiracy numbers of unlikely values to greater
than T in order to reduce the range of possible values
to below W . At each turn, CNS tries to disprove
either the highest or lowest possible value, which has
the highest conspiracy numbers, by expanding one
of its conspirators. Then, it recalculates conspiracy
numbers and repeats the process until the desired
confidence is obtained.

Using the example in Figure 1, we will demon-
strate how CNS works. Let W be 1, which means that
the search will only stop when there is only 1 value
in the possible range. Let T be 1, which means that
any value which has more than 1 conspirators is con-
sidered unlikely. The range of possible values in our
example would be 2−5, which is larger than our de-
sired range W . To reduce it, CNS choose to raise the
conspiracy number of either 2 or 5. If it selects 2,
whose conspirators is either node C or node D, CNS
will expand both node C and D. Figure 2 shows a pos-
sible result after expanding C.

CNS had been analyzed in several papers such
as (Elkan, 1989), (Schaeffer, 1990), (VanderMeulen,
1990), (Klingbeil and Schaeffer, 1990) and (Lister
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Figure 2: The tree in Figure 1 after expanding node C. Now,
to change value of node C to 2, both node E and F need to
change to 2. So the conspirators of 2 are node D or node E
and F. Next, node D will be selected to expand.

and Schaeffer, 1994), which showed some drawbacks
and proposed some improvements to CNS, but CNS
did not enjoy much success or attention afterward.

2.3 Other Directions

Alpha-Beta Conspiracy search (ABC), another algo-
rithm based on the conspiracy number, was intro-
duced in (McAllester and Yuret, 2002). ABC uses
2 values of conspiracy numbers to guide the search;
hence, it is less computationally expensive than CNS.
However, to our knowledge, not much analysis or ap-
plication has been done with ABC.

Later, conspiracy numbers inspired works on
proof-number search (PNS) (Allis et al., 1994) which
was very successful at solving games (Schaeffer et al.,
2007). PNS is applicable in AND/OR tree (Kishimoto
et al., 2012), in which a node only has 3 possible val-
ues: true, false or unknown. In a game situation, these
values can represent a win, a lost or undetermined, re-
spectively. The purpose of PNS is to determine the
outcome of the game as fast as possible by searching
branches that have high chance of establishing result
first. PNS does not require an evaluation function; it
only requires the rules of the game to determine the
outcome at ending positions. However, while it is ca-
pable to solve end-game positions (Seo et al., 2001),
PNS cannot make decision at the opening or the mid-
dle of a game.

In (Khalid et al., 2015), another usage of conspir-
acy numbers is investigated. The authors suggest that
the flow of conspiracy numbers can indicate critical
positions which can be used to determine a change in
strategy, speculative plays or early resignation.

3 IMPROVING MOVE
SELECTION WITH
CONSPIRACY NUMBERS

In this section, we will note some important aspects
of conspiracy numbers and introduce our method.

3.1 Important Characteristics of
Conspiracy Numbers

There are 2 important characteristics of conspiracy
numbers. First, they increase asymmetrically with re-
spect to the search depth. Assume that the root node
is a max node, if the search depth is one, from Equa-
tion (2) and (3), it can be seen that for values higher
the root value, their conspiracy numbers will be 1
(only one of its children need to change to a higher
value). Meanwhile, for values lower than root value,
their conspiracy numbers could be higher (all of its
children with higher value than the root value need to
change). If the root node is a min node, the oppo-
site is true. Therefore, we only consider conspiracy
numbers with even search depth, so that their values
would be balanced for both higher values and lower
values.

Another important property of conspiracy num-
bers is that they increase monotonically. Let m denote
the root value. If v1 < v2 < m, CN(v1) ≥ CN(v2) >
CN(m) = 0. Also if m < v1 < v2, 0 = CN(m) <
CN(v1)≤CN(v2). Figure 3 illustrates this property.

Figure 3: A simple example shows the relation between
evaluation values and conspiracy numbers. m denotes the
root value.

3.2 Combining Conspiracy Numbers

The above characteristics give us the intuition that
Conspiracy Numbers for a game situation can be
viewed as the probability distribution of evaluation
value for that situation. A value with high conspir-
acy number indicates that it is difficult to achieve
that value and vice versa. From that intuition, we
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Figure 4: Evaluation values and inverted conspiracy num-
bers. Conspiracy numbers are the same as in Figure 3. We
consider CN(m) to be 1 instead of 0 for easier computation.

think that we can combine conspiracy numbers to
better understand game situations. It is also a dif-
ferent approach toward conspiracy numbers since to
our knowledge, previous methods only use conspir-
acy number of a single (as in CNS) or two (as in ABC
search) evaluation values to determine the direction of
the search.

Let v denote the current minimax value of a game
situation. For any value x, CN(x) is the conspiracy
number of x (either CN ↑ (x) or CN ↓ (x)). Then, in-
tuitively, we choose 1

CN(x) to represent the probability

of changing to x. The graph of 1
CN(x) is shown in Fig-

ure 4. To combine these numbers, we treat CN() as
a continuous function, and 1

CN(x) would resemble the
probability distribution of the evaluation value. We
then calculate a value which we call the ”Conspiracy
Adjusted Evaluation Value” (CAEV) as follows:

∫ ∞
−∞

x
CN(x)dx

∫ ∞
−∞

1
CN(x)dx

(6)

The numerator represents the expected value if we
consider 1

CN(x) as the probability of having x as the

evaluation value. The denominator
∫ ∞
−∞

1
CN(x)dx is

presented to normalize the new value. Our hypoth-
esis is that the CAEV would be a better measure of
the game position than evaluation value alone.

The CAEV cannot be calculated exactly because
CN() is not a real continuous function. Therefore, we
approximate it using the following procedure:
• First, the evaluation range is divided into small

segments.
• Second, conspiracy numbers for the start and end

positions of each segment are calculated.
• Then, in each segment, we consider CN() to be a

linear function and calculate Equation (6) for that
segment.

• The summation of these values is the approxima-
tion of CAEV.

The detail of the procedure can be found in the Ap-
pendix.

4 EXPERIMENT

We conducted some experiments to assess the effec-
tiveness of the new measure. In this section, we de-
scribe the experiments and discuss about their results.

4.1 Experimental Design

The game of Othello is chosen as our test bed. We
use game transcripts from the United States 2015 Na-
tional Open tournament (United States Othello Asso-
ciation, 2015). For our experiments, we propose a
method which corporate CAEV and alpha-beta search
as in Algorithm 1. Algorithm 2 shows the pseudo
code for minimax procedure (which is implemented
as negamax) in Algorithm 1.

Algorithm 1: Func CN(node,cn depth,ab depth).

minimax(node,cn depth)
for all child in node.children do

child.eval =CAEV (child)
end for
return get best move(node.children)

Algorithm 2: Func minimax(node,depth).

if node.is terminal() or depth = 0 then
node.eval← al phabeta(node,ab depth)
return

end if
node.eval←−∞
for all child in node.children do

minimax(child,depth−1)
node.eval← max(node.eval,−child.eval)

end for

Figure 5 illustrates the structure of our method.
It consists of 2 layers. The top layer is a game tree
generated by minimax algorithm; CAVE is applied
to this tree. The leaf nodes of this tree are eval-
uated by an alpha-beta procedure. In the pseudo-
code, cn depth denotes the depth of the minimax layer
while ab depth denotes the depth of the alpha-beta
layer. So a player with cn depth = 0 will be iden-
tical to an alpha-beta player, while if ab depth = 0,
it will be a minimax player with CAEV applied. For
short, we will denote a player as CN(x,y) with x being
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Figure 5: Structure of our proposed player which consists of
a layer of minimax above a layer of alpha-beta. The CAEV
will be applied to the minimax layer.

cn depth and y being ab depth. We compare 3 play-
ers: CN(5,0), CN(3,2) and CN(0,5) to identify the
influence of CAEV on a minimax-based player. Also,
2 evaluation functions are prepared for these players
to identify the effect of different evaluation functions.
Details on these evaluation functions can be found in
the Appendix.

Each player will play 20 games with other players.
A game will start from a random position between
move 5 and move 10 of a game from a set of ran-
domly selected games in the tournament. In addition,
to ensure fairness, for each selected game, each player
will start first once, which means that there will be 40
matches between each player pairs. For each match,
the winner gets 1 point, the loser gets 0 point, while
each player will get 0.5 point in case of a draw.

4.2 Experimental Results

First, we performed matches between players with the
same evaluation function. Their results are shown in
Table 1 and Table 2. Then, matches between play-
ers with different evaluation functions was played and
their results are shown in Table 3.

Table 1: Results of matches between players using EV1.
Note that the results are symmetric.

CN(5,0) CN(3,2) CN(0,5)
CN(5,0) - 19.5 - 20.5 19 - 21
CN(3,2) 20.5 - 19.5 - 18 - 22
CN(0,5) 21 - 19 22 - 18 -

From Table 1, we cannot observe much influence
of CAEV on players with EV1. Most of the matchup
are seemingly equal. But for EV2, We can see that
the CAEV indeed has a remarkable effect on the per-
formance of the players. As shown in Table 2, players
with higher cn depth perform better.

Table 2: Comparison between players with EV2.

CN(5,0) CN(3,2) CN(0,5)
CN(5,0) - 23 - 17 28 - 12
CN(3,2) 17 - 23 - 22 - 18
CN(0,5) 12 - 28 18 - 22 -

Table 3: Comparison between players with EV1 and EV2.
In the column are players with EV1, while in the row are
players with EV2.

EV2
CN(5,0) CN(3,2) CN(0,5)

E
V

1 CN(5,0) 25 - 15 19 - 21 15 - 25
CN(3,2) 23 - 17 27 - 13 25 - 15
CN(0,5) 22 - 18 25.5 - 14.5 20.5 - 19.5

To find the difference between the 2 evaluation
functions, we let players with EV1 compete with
players with EV2. The results are shown in Table 3.
Although the results look complicated, it is clear that
players with EV1 performs better than players with
EV2 since most players with EV1 won over players
with EV2. Among them, CN(3,2) with EV1 achieves
the best results (second row). However, there are still
ambiguity, such as indicated by the fact that CN(5,0)
with EV1 lost against CN(0,5) (alpha-beta player)
with EV2 while both CN(3,2) and CN(0,5) did not,
and for EV2, the player with more cn depth obtains
worst results, which contradict with the results in Ta-
ble 2. Further investigation is needed to clarify the
effects of CAEV and to know the best way to utilize
it.

5 CONCLUDING REMARKS

We have presented a move selection policy which in-
corporates conspiracy numbers. The novel idea of our
method is treating conspiracy numbers as a whole,
contrasting with previous methods which treat con-
spiracy numbers separately for each individual evalu-
ation value. By doing so, we can better understand a
game situation and make better decisions.

A simple method using the proposed idea was sug-
gested. The method combines conspiracy numbers
into evaluation values by an integration method and
using the new value to select moves. Our experiments
show that the value can have huge improvement on
certain evaluation functions.

To clearly understand the effects of the proposed
idea, more experiments are required. For example,
another evaluation function or another domain should
be tested. We expect that the effect would be greater
on weak evaluation functions than on strong evalua-
tion functions. Also, we could change the function
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1
CN(x) . It was chosen based on intuition, and since it is
an approximation, other functions may also perform
well.

The method also has some drawbacks. The most
notable one is the expensive cost of building a mini-
max tree which is inherited from conspiracy number.
If we could calculate or approximate conspiracy num-
bers without the need of a minimax tree, we could use
the method much more freely, such as using alpha-
beta or other fast game playing algorithms.
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APPENDIX

CAEV. Here is the procedure to calculate the
CAEV of a node.

Algorithm 3: Func CAEV (node).

ev← node.eval
sum← 0
for v = ev−RANGE +ST EP; v <= ev+RANGE;
v+= ST EP do

sum+= intgr(v−ST EP, 1
CN(v−ST EP) ,v,

1
CN(v) )

end for
return sum

In the above procedure, RANGE is the maximum
distance of the evaluation value to the current value
of the root. We do not need to calculate the maxi-
mum or minimum possible evaluation values because
such values would have very high conspiracy num-
bers, which means that their inverse will be extremely
small and can be disregarded. ST EP is the segments’
length; a smaller ST EP indicates a better approxima-
tion and thus a higher computational cost. In our ex-
periments, we set RANGE to 1000, which is equal to
the difference of 1 corner stone in our evaluation func-
tion, and ST EP to 50. The function intgr(x,fx,y,fy)
will calculate the integral from x to y of a straight line
which goes through (x, f x) to (y, f y).

Using Conspiracy Numbers for Improving Move Selection in Minimax Game-Tree Search

405



Evaluation Function. In our experiment, we use
2 simple evaluation functions which relies on sev-
eral features of the game with hand-tuned weight.
The functions are symmetric in relation to the side to
move. For the first evaluation function (EV1), the in-
cluded features are the differences between 2 players
in the number of corners, mobility (the number of
moves), the number of discs, the number of next-to-
open-corner discs and the number of frontier discs
(discs next to an open cell).

Algorithm 4: Evaluation Function 1.

return 1000*corners + 100*mobility -
200*next to corners - 100*frontier discs +
1*discs

The second evaluation function (EV2) is simpler
than the first one. It only depends on the number of
corners, the mobility and the number of discs.

Algorithm 5: Evaluation Function 2.

return 1000*corners + 100*mobility + 1*discs
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