JAIST Repository

https://dspace.jaist.ac.jp/

K Linear Al gebraic Semanticp for Mul t]i
Communication

Author(s) Hat ano, Ryo; Sano, Katsuhj)j ko; Toj o,
Proceedings of the Internptional Col

Citation Agents and Artificial Intplligence (|
174-181

Issue Date 2015

Type Conference Paper

Text version publ i sher

URL http://hdl.handle.net/ 101009/ 14765
This materi al is posted hpre with pc¢
SCI TEPRESS. Hatano R., Sapo K. and
(2015) . Linear Al gebraic Bemantics

Rights agent Communicati on. I n Proceedings
I nternational Conference pn Agents
I ntelligencel SBN 978-989-[758-073- 4,
181. DOI: 10.5220/0005219p01740181

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Linear Algebraic Semanticsfor Multi-agent Communication
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Abstract: When we study multi-agent communication system, it forces us to manage an existence of communication
channels between agents, such as phone numbers or e-mail addresses, while ordinary modal logic for multi-
agent system does not consider the notion of channel. This paper proposes a decidable and semantically
complete logic of belief with communication channels, and then expands the logic with informing action
operators to change agents’ beliefs via communication channels. Moreover, for a better formalism for handling
these semantics efficiently, we propose a linear algebraic representation of these. That is, with the help of
Fitting (2003) and van Benthem and Liu (2007), we reformulate our proposed semantics of the doxastic static
logic and its dynamic extensions in terms of boolean matrices. We also implement and publicize a calculation
system of our matrix reformulations as an open system on the web.

1 INTRODUCTION (R1) An effect of an informing action is restricted to
some specified agents determined by communi-

. . cation channels.
One of the most important aspects of multi-agent

communication is changes of an agent's knowledge or (R2) An existence of communication channel be-

belief (Gardenfors, 2003). Nowadays, such changes ~ fween agents depends on a given situation, i.e.,
are well-discussed in terms of modal logic, as dy- itis not constant or rigid for all situations.
namic epistemic logic (van Ditmarsch et al., 2007). One of the deficiencies of the two dimensional

For example, public announcement logic, proposed framework is that it is still unknown whether the re-
by Plaza (Plaza, 1989), can capture how an agent'ssulting logics in (Seligman et al., 2011; Sano and
knowledge change after a piece of informatioput- Tojo, 2013) are decidable, i.e., we can effectively test
licly announced to all the agents, while we do not as- if a given formula is a theorem of a given logic. One
sume any structure among agents. On the other handof the purposes of this paper is to proposteaidable
in communication of multiple agents, we can natu- multi-agent doxastic logic which satisfies the two re-
rally consider the existence ohanneldetweenthem  quirements above and can talk about communication
(Barwise and Seligman, 1997), e.g., phone numberschannels among agents. Instead of communication
or e-mail addresses. Then, communicability in those channel as a modal operator, we implement the notion
agents can be represented in a directed graph, wher@f channel as a constant symlegh whose reading is
a vertex is an agent and an edge a channel. ‘there is a channel from ageatto agentb’. More-
There are several studies integrating the notion of over, instead of public announcement operators, this
structure among agents into dynamic epistemic logic. Paper proposes two dynamic operators satisfying the
(Seligman et al., 2011) proposes a two-dimensional requirement (R1), calledemi-private announcement
modal logic which can handle both agents’ knowl- andintrospective announcemenerators.
edge and a friendship relation between agents. Based \When we study logic of multi-agent system, it
on the two-dimensional framework, (Sano and Tojo, forces us to manage many indices, such as agent IDs
2013) implemented the idea of communication chan- and names of the worlds in our syntax and its seman-
nel in terms of a modal operator and studies belief tics. What seems to be lacking is an introduction
changes of agents, where they raised the following re- of a better formalism or notation for handling such
quirements: many indices. Thus far, (Fitting, 2003) proposed a
linear algebraic reformulation of Kripke semantics of
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modal logic. (Tojo, 2013) has employed the notion 2 STATIC LOGIC FOR AGENTS
of boolean matrix and tried to integrate the notion of BELIEF
communication channel with dynamic logic of mul-
tiple agents’ beliefs in term of linear algebra. In this
research, we give a more rigorous logical formalisms
to (Tojo, 2013). That is, we reformulate our proposed o ) )
doxastic logic and its dynamic extensions in terms of ThiS section introduces a modal epistemic language
boolean matrices. which enables us to formalize agents’ beliefs and
To sum up, this paper first proposes a decidable Communication channels.
multi-agent doxastic logic and its dynamic extensions L&t G be a fixedfinite set of agents. Our syntax
with two informing action operators, and then refor- £ consists of the following vocabulary: a finite set
mulate our Kripke semantics in terms of boolean ma- Prop = {p,q.r,... } of propositional letters; boolean
trices. connectives-, v, belief operator8, (a < G); channel
This paper is organized as follows. Section 2 in- constantsa, (a,b € G). A set of formulas of” is
troduces a static logic of agents’ belief equipped with inductively defined as:
the notion of channel between agents and establish — -
that all the valid formulas on all tHfenite Kripke mod- oi=plean|=0 [0V |Bad
els for our syntax is completely axiomatizable (The- wherep € Prop, a,b € G. We deﬁneé\aq) = 2By
orem 1). Moreover, our proposed axiomatization is whose reading is ‘ageatconsiders it possible thét.
decidable (Theorem 2). In order to deal with changes \We also introduce the boolean connectives—, <
of agents’ belief via communication channel, Sec- as ordinary abbreviation8, p stands for ‘agerd be-
tion 3 provides two dynamic operators to our syntax |ieves thatp’ andeap is to read ‘there is a communica-
of static logic with sets of reduction axioms. Follow- tion channel fromato b’. Then, let us provide Kripke
ing the idea by (Fitting, 2003), Section 4 reformu- semantics with our syntax. Aodelt is a tuple
lates our Kripke semantics in terms of boolean ma- (W, (Ra)aca, (Cab)abes, V) whereW is a non-empty
trix. With the help of (Van Benthem and Liu, 2007), set of worlds, callediomain Ry C W x W, Cap €W
Section 5 reveals that we can regard our two dynamic js achannel relatiorsuch thaC,, = W for all a € G,
operators as program terms in propositional dynamic andV : Prop — ?(W) is avaluation function Note
logic and also reformulates the semantics of two op- that we requir€,, = W for all a € G in order to cap-
erators in terms of boolean matrix. Section 6 use our tyre our notion of communication channel. ffame

boolean matrix reformulation to present an algorithm (denoted by, etc.) is the result of dropping a valua-
for checking agent’s belief at a given world and an al- tion function from a model.

2.1 Syntax and Semantics

gorithm for rewriting a given Kripke model by one of Given any modedn, any worldw € W, and any
our dynamic operators. Finally, Section 7 concludes formula¢, we define theatisfaction relatiord)t, w =
this paper. ¢ inductively as follows:

MwEp iff weV(p)
M, W = cap iff weCyp
Mwe=—¢  iff Mwo

Related Works. Here we comment on linear alge-
braic approach to multi-agent belief revision. (Fitting,
2003) proposed a linear algebraic approach to Kripke .
semantics, but he did not consider any dynamic oper- g’x E dévq)w :g £7Y/V|'::q§|)fgrr§£|tl7\\;vw':itr?wl?av
ators. On the other hand, we reformulate (Van Ben- ’ a ’ ‘

them and Liu, 2007)'s idea aklation changerover  We define theruth set[d]ox of ¢ in M by [¢]an =
propositional dynamic logic in terms of matrices and {weW|D,wl=o¢}. ¢ is valid on 90t if M,w = ¢
provide a linear algebraic treatment with our dynamic for all worldsw € W. We say that is valid in a class
operators. In this sense, this paper can be regarded agf Kripke models if¢ is valid on9 belongs to the

a generalization of (Fitting, 2003) to dynamic exten- class. It is clear thata, is always valid in any Kripke
sions. While (Liau, 2004) also used boolean matri- model9t. Moreover, given any Kripke modén, it
ces to represent an accessibility relation of an agentis easy to see that all the axioms in Table 1 are valid

and (Fusaoka et al., 2007) used real-valued matricesin 9 and all the rules of Table 1 preserve validity on
to represent qualitative belief change in multi-agent g,

setting, both of them did not provide any concrete ax-

iomatization of logics they study. Example 1 (Running Example)LetG = {a,b}. De-

fine M (see Figure 1) byW = {wy,wo, w3}, Ry =
{(wr, W), (We,Wa), (W, Wa), (Wa, Wa), (W3, W3)}, Ry
=WxW,V(p) = {wz2}, Cap = {w1,W2}, Cpa =0,
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Table 1: Hilbert-style AxiomatizatioK . of Static Logic.

(Taut) ¢, ¢ is a tautology

(Kg) Ba(¢ — W) — (Bad — Bal)) (a€G)
(Selfchn) caa (a€G)

(MP) From¢ and¢ — , infer

(Necg) From¢, infer Bap (ac G)

Figure 1: Accessibility relations of agerasandb.

Caa = Cpp = W. Agenta believesp in w, and—p in
ws, but he/she is not sure @f or —p in wy. On the
other hand, agerii does not believe nor —p at all
the worlds. There are channels framo b in wy and
Wy, but there is no channel between themvin

2.2 Hilbert-style Axiomatization

The following theorem implies that we can axiom-
atize all the valid formlas on the class of &ihite
Kripke models. The restriction to the finite models
is important for us, since our matrix representation of
Kripke model is always in terms dinite matrix

Theorem 1. For all formulasp in £, ¢ is a theorem
in K. of Table 1 iff¢ is valid on the class of afinite
Kripke models.

Proof. (Outline) Since the soundness is easy to es-
tablish, we focus on the completeness with respect to finite

the class of all finite Kripke models. We show that
any unprovable formulg in K. is falsified in a fi-
nite Kripke model. Leth be an unprovable formula
in K.. First, we define the canonical mod& where
¢ is falsified at some point dit. Second, since the
domain of the canonical model is infinite, we employ
the technique ofiltration to boil the model down to
a finite model wheré is still falsified at some point.
For both steps, we basically follow the standard tech-
nigues, e.g. found in (Blackburn et al., 2002).

We say that a sdi of formulas isK .-consistent
(for short,consistentif AT is unprovable irk ., for
all finite subset$’ of I', and thaf” is maximally con-
sistentif " is consistent ang € " or —=¢ € I" for all
formulas¢. Note thaty is unprovable irK. iff =
is K.-consistent, for any formulg. We define the
canonical mode{W, (Ra)aca, (Cab)apes,V) by:

o W is the set of all maximal consistent sets;
o MRAIff (BaW €T impliesy € A) for all g;
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o Cop:={lr eWlcaperl};
e MeV(p)iff peT.

Then, we can show the following equivalence (Truth
Lemma (Blackburn et al., 2002, Lemma 4.21)):
M, I =y iff Y erl for all formulasy andll € W,
where we note that we need to use the axidtg )
and the rule(Necg) for the case where is of the
form of Bay.) Given any unprovable formulé in
K¢, we can find a maximal consistent desuch that
—¢ € I (where we need to usgraut) and (MP)).
Then, by the equivalence aboweis falsified atA of
the canonical modébt, where we can assure th@f,
=W or all a€ G by the axiom(Selfch). This finishes
the firststep of our proof.

Let us move to the second step. L8t =
(W, (Ra)acG; (Cab)abea, V) be a Kripke model and
a finite set of formulas that is closed under taksngy-
formulas Without loss of generality, we can assume
thatl" containga, for all agentsa occurring inl” (oth-
erwise, we can just add,s tol for all as occurring
in I where note that the number of suahis finite).
Let-us define an equivalence relatisft by w ~rw
iff (9t,w = W iff 9,w = W) forall g €. Then, we
define a finite modelir as follows:

e W :={[w]|wec W}, where[w] is the equivalence
class ofw with respect to~r.

o [WR[W]iff VRV for somev € [w] andV' € [w].

o Cl:={[w]|weCap} forcaper.

e W eV (p)iff weV(p)forper.

Remark thaCl, always holds, since we assumed that
caa € I for all as occurring inl. Remark also that
the size ofW' is less than or equal to”2, hence
By induction ony € I', we can show that
N,w = Piff N, [w] = Y forall we W (the proof can
be found in (Blackburn et al., 2002, Theorem 2.39)).
Recall that any unprovable formudain K. is falsi-
fied atl" of the canonical modeft. Now we can
apply the filtration technique to obtain a finite model
oM’ where¢ is falsified at[A] andT is the union of
{caa| @aoccursing } and the finite set Sylp) of all
subformulas ofp and this finishes the second (and
last) step of our proof. O

Theorem 2. K. is decidable.

Proof. When¢ is unprovable irk ., Theorem 2 tells
us thatd has a finite countermodel. Since we can re-
cursively check if a given finite model satisfies the
conditionCya = W for all agentsa € G (note G is
finite), we can construct an effective procedure gen-
erating all the finite Kripke models and checking if
¢ is falsified at some point of a finite model. To-
gether with an effective procedure of enumerating all
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the theorems oK ., we obtain the decision procedure

Table 2: Hilbert-style Axiomatizatio | a.
of Theoremhood oK .. O

In addition to all the axioms and rules Kf., we add:

[01p]P <P
3 DYNAMIC OPERATORSFOR o1 DA AP
CHANNEL COMMUNICATION  [6lwvx) < [0V o
BLIBY & Belblgy (oD
BLHBIY o ((can”Bab) + Bo(0 —» [BIFW)A

This section introduces two dynamic operators which
allows us to talk about agents’ belief changes in
terms of informing action. The first dynamic oper-
ator (semi-private announcement) specifies both the
sender and the receiver, but the second operator (in-Theorem 3. For all formulasp in the expanded syn-
trospective announcement via channel) just specifiedtax £ with [Q]], ¢ is a theorem irK | 48] of Table 2
the sender agents and we need to calculate the reiff ¢ is valid on the class of all finite Kripke models.
ceivers of the information via communication chan-
nels.

(~(can/\Bad) — By [0LEW)
(Necigz)) Fromy, infer [XES[U

Proof. By F Y (or =" 1)), we mean thab is a theorem
of the axiomatizatiorK. (or, K;. L respectively.)
The soundness of the axioms is easy. One can also
check that the necessitation rulseciyz ) preserves
the validity on the class of all finite models. As for the
completeness part, we can reduce the completeness of
our dynamic extension to the static counterpart (i.e.,
Theorem 1) as follows. With the help of the axioms
of Table 2, we can define a mappihgending a for-
(R3) Our introducing operators argemi-private or mulay of the expanded syntax (we denote thisiby
non-public announcements to some specific below) with the dynamic operatof|?] to a formula
agents. We assume thatan agecén send ames-  t(y) of the original syntaxZ, where we start rewrit-
sage to an agerit only when there is a channel  ing theinnermost occurrencesf [.2]. For example,
fromatob. t([¢18]Bc(pV cac)) := Be(pV cac). For this mapping
When an agent informs one of the other agents of t: We can show tha « t() is valid on all finite
something, our basic assumption is that we need amodels and-" y <> t(). Then, we can proceed as
(context-dependent) channel between those agentsfollows. Fix any formulap of L+ such thatp is valid
The notion of channel was formalized as channel N all finite models. By the validity o < t(y) on

3.1 Semi-private Announcement

One of the most well-known dynamic operators is
public announcement operator (Plaza, 1989), but our
operator of this section differs from it by the follow-
ing requirement:

propositions:gp.

Let us denote our intended dynamic operator by
[$12], whose reading is ‘after the ageminforms the
agentb of the messagé via channel’. Our intended
reading of /]|y is ‘after the agent informs the
agentb to ¢, Y’. We provide the semantic clause for
[$12]p on amodemt = (W, (Ra)aca, (Cab)apes,V) is
given as follows:

Mwi= [DIFY iff M w= g

where %% = (W, (R,)ace; (Cab)apes,V) and
(R.)cec is defined as: it = b, for all x e W, we set

Ro(X) N [¢]on
Ro(X)

If c#b, R, := Re.. Semantically speakind$|3] re-
strictsb’s attention to the&’s worlds if there is a chan-
nel from the agerd to b and agena believesp. Oth-
erwise, the actiofp | 7] will not changeb’s belief.

|f mt,x |: Baq) /\Cab
otherwise.

Ro(X) 1= {

all finite models, we obtain tha(y) is valid on all
finite models. By Theorem % t(W), which implies
F* t(g). Finally, it follows from T < t(g) that
Ty, as desired. O

Example 2. In Example 1, we obtain the truth of
[pl{]Bp p at wy, i.e., ‘after agent informs agenb
of the messagé via channel, agertt comes to be-
lieve p'in wo. Figure 2 is the updated model®t by
[pl2]. On the other hand, ageatdoes not have any
channel tdo in ws, and so, the accessible worlds from
ws will be unchanged even after the update)tfby
[plf]. Therefore[pl3] By p is false atws. Similarly,
agenta does not believe.p in wy, i.e.,Ba—p fails in
wi, and so, the informing actidip){] will not change
the accessible worlds fromy .
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Figure 2: Updated accessibility relation of agbnt

Table 3: Hilbert-style Axiomatizatio ..

In addition to all the axioms and rules kf., we add:

[0"]p P

[(N/H]Cab <> Cab,

[0 -w < oM,

DIM(WwvX) < DM TwVe)x,

0"]Bal < (Vier (coaABo®) — Bp(d — [01"]W))

A= (Vier (cbaA Bo ) — Bo[dL™ W)
(Necig~) Fromy, infer [pJ7]@

3.2 Introspective Announcement Via

Communication Channels

In the dynamic operatdip|f], we specifiech andb

as the sender and the receiver of the information
respectively. Even so, we may consider the situa-
tion where more than one agents, sagndb, send

a piece of information to the other agents, and who
will receive the information may change, depending

on communication channels between agents. In this
sense, we do not specify the receivers in advance here

Rather, we calculate the receivers of the information

from the senders and the communication channels.

We may expand our static syntaxwith a dynamic
operator[p "] (H C G) whose reading is ‘after a
groupH of agents sends a pie¢eof information via
communication channels’. Given a Kripke moé@#i
(W, (Ra)acG; (Cab)abec, V) and a worldv € W, we
define the semantics &My by:

mw = oMy iff m wiey,

WhereDthH = (W, (Ra)aeG, (Cab)a,beGaV) and R,a is
defined as follows: for allv € W, if there is some
b € H such thaw € Cpq andMt, w |= By ¢, we put

Ra(W) := Ra(w) N [¢]on:-
Otherwise, we pulR, (W) := Ra(W).

By the similar argument to Theorem 3, we can
prove the completeness theorem Koy 13 over the
class of all the finite Kripke models.

Theorem 4. For all formulasp in the expanded syn-
tax £ with [y4"], ¢ is a theoremiirK . v of Table 3
iff ¢ is valid on the class of all finite Kripke models.

Example 3. In Example 1, leH = {a} be a group
of senders. Then, when we focus on the waovig we

178

can calculate the receivers by the calculation just be-
fore this example and specify the receiverd ash},
since there is a channel froento b in w, anda be-
lievesp in wy. So, we obtain the truth dp/"]By p
atwp, i.e., ‘after the group of agemi sends a piece
p of information via communication channel, agent
b comes to believgy in w,. Moreover, the updated
model of9)t by [p/"] is the same as Figure 2.
However, when we change the group of senders
to H' = {b}, agentb does not believe in w; (i.e.,
By pis false inw»), and so, the accessible worlds from
wz will be unchanged even after the updatedtifby
[p4H']. Therefore[p/H' By pis still false atws.

4 MATRIX REPRESENTATION
OF KRIPKE SEMANTICS

A usual Kripke framgW,R) (for a single agent) can
be regarded as a directed graph, i.e., a\éef possi-

ble worlds corresponds to a set of nodes, and &set
of accessibility relation corresponds to a set of edges.
Generally speaking, such set of edges can be written
as a boolean matrix. Therefore, the accessibility rela-
tion (= a belief state of an agent) can be represented in
a matrix. In this case, the accessibility from possible
worldi to j can be mapped to th§& j)-element of the
matrix. In what follows, we us&(mx n) to mean

the set of alm x n-boolean matrix.

Let us provide a matrix representation of our no-
tions of frame and model. First, we start with frames.
Given any Kripke framg = (W, (Ra)acc, (Cab)apes)
with #W = n, we writeW = {wy, Wy, ..., Wy } and de-
fine matrix representations 6§, andR; as follows.

In accordance witlCa,, C W (a,b € G), CM is a
matrix in M(n x 1), i.e., a column vector where the
k's componentis 1 ifag € Cyp, Otherwise 0. In gen-
eral, given any relatioR C W x W, RM is a matrix in
M(n x n) such that

RM('vJ) :{

Now we move to define a matrix representation of
a modelMt = (W, (Ra)acc, (Cab)apea,V). Here we
assume that the numbeP#bp of propositional letters
ismand #V of possible worlds is.. Our matrix repre-
sentation oW (p) is similar to a channel relatidByp.
That is,V(p)™ is a matrix inM(n x 1) (= a column
vector) where thé&’s component is 1 ifw, € V(p),
otherwise 0.

Now we can rewrite Kripke semantics to our syn-
tax in terms of matrix. We inductively associate

1 if (w,wj)eR
0 otherwise
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each formulap of £ with a column vectot|d|on €
M(n x 1) as follows?

V()" lcapllom

10l [| Bahllon
1oV Wllan = (9]l + [[W]]om

where, forX € M(n x n), X means the boolean com-
plementation ofX. For the duaB;, of By, it is easy

to see that|Bad|lsn = RY|[|¢]lon. If the underlying
model is clear from the context, we drop the subscript
‘M from ||§|lon. We use||¢|lw, to means the-th
component|||(i) of the column vectol|d||on, i.€.,
the truth value of the formuld atw; of 9.

Example4. || Bapllon in Example 1 is calculated as:

4 )06

This result coincides with our explanation in Exam-
ple 1 (recall also Figure 1).

This match up can be captured by the following
proposition.

Proposition 5. Given any finite modeD)t and any
formula¢ of £, we can show that[¢]on )™ = || ||om.

Cih
RY[¢]]one.-

[[Pllone
(= llom

RY [ pllan =

5 MATRIX REPRESENTATION
OF DYNAMIC OPERATORS

Given a Kripke model9t with a domain W

= {wi,...,Wh}, we may easily rewrite semantic
clauses off¢)8] and[H?] in terms of matrix such
ast [[®43]Wllon = (W]l 0 and [[H )@l :

Wl et Wherel| [0 2]w[[ox and||[H1®]W]|ox are ma-
tricesinM(nx 1). However, itis not so clear if we can

capture processes of updatitiy to M andone”

in terms of operations over matrices. (Van Benthem
and Liu, 2007) propose a general framework of up-
dating agents’ accessibility relations in terms of pro-
gram term of propositional dynamic logic. With the
help of their ideas, this section provides matrix rep-
resentations of our two dynamic operat@s;] and
[H]®]. First, we expand our syntax of static logic of
agents’ belief with terms of (iteration free) proposi-
tional dynamic logic, and then we explain the main
idea of (Van Benthem and Liu, 2007) in Section 5.1.
Finally, we rewrite their semantic idea in terms of ma-
trix in Section 5.2.

1in order to handle multiple agen, (Fitting, 2003)
employed the notion of(G)-valued matrix. However, we
keep ourselves to the boolean matrices in this paper.

5.1 Propositional Dynamic L ogic of
Relation Changers

The syntax of PDL-extension of is defined by si-
multaneous induction on a program ternand a for-
mulad:

T:=Ra |[(MUM| (T |$? (A€ G)
¢ = plcap[ ¢ |0V |[Md (peProp,a,becC)

Here we regardR, as anatomic program(for agent

a). [Ra] corresponds to the previous belief operator
Ba. So, in what follows, we also writB; for [Ry], if

no confusion arises from the context. Then, we may
read the program terms as followgtU 17) is to read
‘do Tror T, non-deterministically”(T; 17) is to read
“do mtfollowed byT’™; ¢?is to read “proceed i true,
else fail”. As is well-known, we can introduce some
standard programming constructs by definitional ab-
breviation. For example,

if ¢ then melse I := (¢2;1) U ((—0)?;70).

Given a modeblt = (W, (Ra)ace, (Cab)abes: V), we
define the semantics of our PDL-extension by:

Ralon = Ra

MU on =[x U [ ]om

wlop =[x o []on

¢?)om = {(wv)|w=vandw e [¢]on }
pPlon = V(p

Cablon = ab

0o = W\ [d]m

OVPlon = [0]an UW]on

Moo = {weW|[[o(W) C [¢]om },

whereRo Sis the relational composition & with S
i.e., (w,v) € RoSiff (w,u) € Rand(u,v) € Sfor some
ueW, and [on(w) = {ve W|(w,Vv) € [T]om }.
Note that[[Ra]$]on is the same meaning as the truth
set{weW |9 ,w|=¢} of the previous Kripke se-
mantics.

Recall that, in the semantics @§.7] and [¢|H]
(H C G), we keep the domain of a model, channel re-
lations, and a valuation for proposition letters bext
definethe accessibility relatiofRa)acc. In this sense,
we may say that those operations egkation chang-
ers (Van Benthem and Liu, 2007) observed that, if
relation changing operations are written in terms of
program terms generated from atomic programs by
the composition ;, the unioo and the test?, then
we can automatically generate the set of reduction ax-
ioms (as in Tables 2 and 3) to assure semantic com-
pleteness of propositional dynamic logic with relation
changing operations. Let us suppose that our relation
changer for a relatioR, = [Ra]on is written in terms
of a program termry (a € G). Then, we may de-
note by[(Ra := Ta)acc] our dynamic operator which
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changes an original relatid®, into a new relatiorR;

via T, for all agentsa € G. Then, our key equivalence

for generating the reduction axioms takes the follow-
ing form:
[(Ra 1= Tla)aca][Ro]¢ <+ [Mp][(Ra := Th)acc|d.

where we generalize van Benthem and Liu’s equiva-

lence for a single agent to multi-agents.

Example6. 1. Semi-private Announcement: In the
semantics of(¢|3], we have rewritten the ac-
cessibility relations(R;)acc into the new ones
(R,)acc- We may reformulate the semantics in
terms of binary relations.

e Letc=b. Then, R, := (RN ([cacABad] x

[91)) U (Ren ([~(cac A Bad)] x W)).
e Letc#b. ThenR, =R..
Then, the corresponding relation changer adpent
to [¢.7] is the following. Whert = b,
If we employ the previous definitional abbrevia-
tion, we may writer, as:

TG, = if cap A Ba® then Rp; ¢? else Ry,

Whenc # b, the relation changer for ageator
(0] is: T := Rc. Then, we may regar|f] as
[(Ra:= Th)aca)-

. Introspective Announcement via Communication
Channel: Leta be any agent. The correspond-
ing relation changer tap| ] is the following pro-
gram termry, := (Y?;Rp;$?) U (—-Y?;Rp), where
Y := Vacn(cabA Bad). By the previous defini-
tional abbreviation, we may writg, as:

= if (\/aeH (cap Bad))) then Rp; 0 else Ro.
Then, we may regarh|"] as[(Ra := T, )acc]-

5.2 Relation Changersin Matrix Form

Given two relationsR;,R, € W x W. Relational
union and composition fit well with matrix addition
and multiplication as follows:

(RIUR)M RY+RY, (RioRy)M RY'RY!
Let ¢ be a formula of static logic of agents’ belief.
Since[¢?on = { (w,v) |[w=vandM,w = ¢ } is also
a relation or\W, we may provide a matrix representa-
tion [¢?]on. By definition ofR", we obtain:

(675 (i, }) = {1 if i = j and9n,wi = 0,

0 otherwise.
Therefore,[[d)?]}% is the matrix from which diagonal
components we may read off the information of truth
set of [¢]on of the formulag. For test program, we
note the following proposition.
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Proposition 7. Let ¢ and ¢ be formulas. Then,
[(®AW)7) = [97 o [W?). Therefore[(¢ Ay)7" =
[07)" [wA™.

Example 8. Let us see whether our matrix repre-
sentation of model update for semi-private announce-
ment works on our running example (Example 1). As
is the same as in Example 2, we consider the update
by [plf]. There are channel between agargndb,

and agent believes thap atw,. By Proposition 7,

the first part of a matrix calculation &% becomes:

[(capABap)MRY [P = [can?] [Ba p7]™ RY [p7]M

100\ /00O0\ /111\ /00O 000
=(0120f{010)|111)(010|=|010
000/ \0OO0O/ \111/ \00O 000

Then calculate also the remaining part Bf,

i.e.]-(capA Ba p)?]]MRg", we combine both results to
obtain updated relatioR;, of agentb as:

R, = [(cap/\ Ba P)AMRY [pAM + [~(can A Bap) M RY

000 111 111
=|(010|+(000|=1|010
000

111 111
This coincides with the result of Example 2 (see Fig-
ure 2)

6 IMPLEMENTATION

This section introduces two algorithms. One of them
calculates the truth value of a formuly p and the
other one calculates the relation update$y]. For
both algorithms, we assume that an input magiek

(W, (Ra)acG; (Cab)abec, V) is represented in terms of
boolean matrix.

Algorithm 1: Calculation of||Bap||w-

procedure BELIEF-OF
input M, w; e W, a€ G, pe Prop

IBapl :=RYvV(pM .
return Trueif || Bapl|(i) > O; Falseotherwise
end procedure

Here we comment just on Algorithm 2. In order
to update an accessibility relation of agénthe al-
gorithm loops to find agerti. If the algorithm finds
agentb, a model updating procedure (for a single
agent) will be started, otherwise it just pgt = Re.

At the beginning of the updating procedure, the algo-
rithm generates test matrices throufgst function
where an input of this function is a column vector,
and it enumerates the elements of the input vector
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Second, we followed the idea by (Fitting, 2003) to re-

Algorithm 2: Calculati flpld]. - - - o
gortthm alculation offpl formulate Kripke semantics to our doxastic logic in

procedure SEMI-PRIVATE-ANNOUNCEMENT linear algebraic form, and employ the idea of PDL-
::nput E)Jé g,be G, p& Prop format by (Van Benthem and Liu, 2007) to provide
or |Cff: _ b?hen matrix representations to our two dynamic operators.
X := TestCapM) Finally, based on this linear algebraic reformulation,
Y := Test(|Ba p||) we implemented the calculation system of agents’ be-
Z :=Testy/ (p)™) liefs and updates of Kripke models fdy)3]. Anim-
R{)M = XYRIZ+XYR/ plementation of¢ )] is a direction of further work.
e
TRV R
end if
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