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Linear Algebraic Semantics for Multi-agent Communication

Ryo Hatano, Katsuhiko Sano and Satoshi Tojo
School of Information Science, Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
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Abstract: When we study multi-agent communication system, it forces us to manage an existence of communication
channels between agents, such as phone numbers or e-mail addresses, while ordinary modal logic for multi-
agent system does not consider the notion of channel. This paper proposes a decidable and semantically
complete logic of belief with communication channels, and then expands the logic with informing action
operators to change agents’ beliefs via communication channels. Moreover, for a better formalism for handling
these semantics efficiently, we propose a linear algebraic representation of these. That is, with the help of
Fitting (2003) and van Benthem and Liu (2007), we reformulate our proposed semantics of the doxastic static
logic and its dynamic extensions in terms of boolean matrices. We also implement and publicize a calculation
system of our matrix reformulations as an open system on the web.

1 INTRODUCTION

One of the most important aspects of multi-agent
communication is changes of an agent’s knowledge or
belief (Gärdenfors, 2003). Nowadays, such changes
are well-discussed in terms of modal logic, as dy-
namic epistemic logic (van Ditmarsch et al., 2007).
For example, public announcement logic, proposed
by Plaza (Plaza, 1989), can capture how an agent’s
knowledge change after a piece of information ispub-
licly announced to all the agents, while we do not as-
sume any structure among agents. On the other hand,
in communication of multiple agents, we can natu-
rally consider the existence ofchannelsbetween them
(Barwise and Seligman, 1997), e.g., phone numbers
or e-mail addresses. Then, communicability in those
agents can be represented in a directed graph, where
a vertex is an agent and an edge a channel.

There are several studies integrating the notion of
structure among agents into dynamic epistemic logic.
(Seligman et al., 2011) proposes a two-dimensional
modal logic which can handle both agents’ knowl-
edge and a friendship relation between agents. Based
on the two-dimensional framework, (Sano and Tojo,
2013) implemented the idea of communication chan-
nel in terms of a modal operator and studies belief
changes of agents, where they raised the following re-
quirements:

(R1) An effect of an informing action is restricted to
some specified agents determined by communi-
cation channels.

(R2) An existence of communication channel be-
tween agents depends on a given situation, i.e.,
it is not constant or rigid for all situations.

One of the deficiencies of the two dimensional
framework is that it is still unknown whether the re-
sulting logics in (Seligman et al., 2011; Sano and
Tojo, 2013) are decidable, i.e., we can effectively test
if a given formula is a theorem of a given logic. One
of the purposes of this paper is to propose adecidable
multi-agent doxastic logic which satisfies the two re-
quirements above and can talk about communication
channels among agents. Instead of communication
channel as a modal operator, we implement the notion
of channel as a constant symbolcab whose reading is
‘there is a channel from agenta to agentb’. More-
over, instead of public announcement operators, this
paper proposes two dynamic operators satisfying the
requirement (R1), calledsemi-private announcement
andintrospective announcementoperators.

When we study logic of multi-agent system, it
forces us to manage many indices, such as agent IDs
and names of the worlds in our syntax and its seman-
tics. What seems to be lacking is an introduction
of a better formalism or notation for handling such
many indices. Thus far, (Fitting, 2003) proposed a
linear algebraic reformulation of Kripke semantics of
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modal logic. (Tojo, 2013) has employed the notion
of boolean matrix and tried to integrate the notion of
communication channel with dynamic logic of mul-
tiple agents’ beliefs in term of linear algebra. In this
research, we give a more rigorous logical formalisms
to (Tojo, 2013). That is, we reformulate our proposed
doxastic logic and its dynamic extensions in terms of
boolean matrices.

To sum up, this paper first proposes a decidable
multi-agent doxastic logic and its dynamic extensions
with two informing action operators, and then refor-
mulate our Kripke semantics in terms of boolean ma-
trices.

This paper is organized as follows. Section 2 in-
troduces a static logic of agents’ belief equipped with
the notion of channel between agents and establish
that all the valid formulas on all thefiniteKripke mod-
els for our syntax is completely axiomatizable (The-
orem 1). Moreover, our proposed axiomatization is
decidable (Theorem 2). In order to deal with changes
of agents’ belief via communication channel, Sec-
tion 3 provides two dynamic operators to our syntax
of static logic with sets of reduction axioms. Follow-
ing the idea by (Fitting, 2003), Section 4 reformu-
lates our Kripke semantics in terms of boolean ma-
trix. With the help of (Van Benthem and Liu, 2007),
Section 5 reveals that we can regard our two dynamic
operators as program terms in propositional dynamic
logic and also reformulates the semantics of two op-
erators in terms of boolean matrix. Section 6 use our
boolean matrix reformulation to present an algorithm
for checking agent’s belief at a given world and an al-
gorithm for rewriting a given Kripke model by one of
our dynamic operators. Finally, Section 7 concludes
this paper.

Related Works. Here we comment on linear alge-
braic approach to multi-agent belief revision. (Fitting,
2003) proposed a linear algebraic approach to Kripke
semantics, but he did not consider any dynamic oper-
ators. On the other hand, we reformulate (Van Ben-
them and Liu, 2007)’s idea ofrelation changerover
propositional dynamic logic in terms of matrices and
provide a linear algebraic treatment with our dynamic
operators. In this sense, this paper can be regarded as
a generalization of (Fitting, 2003) to dynamic exten-
sions. While (Liau, 2004) also used boolean matri-
ces to represent an accessibility relation of an agent
and (Fusaoka et al., 2007) used real-valued matrices
to represent qualitative belief change in multi-agent
setting, both of them did not provide any concrete ax-
iomatization of logics they study.

2 STATIC LOGIC FOR AGENTS’
BELIEF

2.1 Syntax and Semantics

This section introduces a modal epistemic language
which enables us to formalize agents’ beliefs and
communication channels.

Let G be a fixedfinite set of agents. Our syntax
L consists of the following vocabulary: a finite set
Prop = { p,q, r, ...} of propositional letters; boolean
connectives¬,∨; belief operatorsBa (a∈G); channel
constantscab (a,b ∈ G). A set of formulas ofL is
inductively defined as:

ϕ ::= p | cab | ¬ϕ | ϕ∨ψ | Ba ϕ

wherep∈ Prop, a,b∈ G. We definêBaϕ := ¬Ba¬ϕ
whose reading is ‘agenta considers it possible thatϕ’.
We also introduce the boolean connectives∧,→,↔
as ordinary abbreviations.Ba p stands for ‘agenta be-
lieves thatp’ andcab is to read ‘there is a communica-
tion channel froma to b’. Then, let us provide Kripke
semantics with our syntax. AmodelM is a tuple
(W,(Ra)a∈G,(Cab)a,b∈G,V) whereW is a non-empty
set of worlds, calleddomain, Ra ⊆ W×W, Cab ⊆ W
is achannel relationsuch thatCaa = W for all a∈ G,
andV : Prop → P (W) is a valuation function. Note
that we requireCaa =W for all a∈ G in order to cap-
ture our notion of communication channel. Aframe
(denoted byF, etc.) is the result of dropping a valua-
tion function from a model.

Given any modelM, any worldw ∈ W, and any
formulaϕ, we define thesatisfaction relationM,w |=
ϕ inductively as follows:

M,w |= p iff w∈V(p)
M,w |= cab iff w∈Cab
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ∨ψ iff M,w |= ϕ orM,w |= ψ
M,w |= Ba ϕ iff M,v |= ϕ for all v with wRav.

We define thetruth setJϕKM of ϕ in M by JϕKM =
{w∈W |M,w |= ϕ}. ϕ is valid on M if M,w |= ϕ
for all worldsw∈W. We say thatϕ is valid in a class
of Kripke models ifϕ is valid onM belongs to the
class. It is clear thatcaa is always valid in any Kripke
modelM. Moreover, given any Kripke modelM, it
is easy to see that all the axioms in Table 1 are valid
in M and all the rules of Table 1 preserve validity on
M.

Example 1 (Running Example). Let G = {a,b}. De-
fine M (see Figure 1) by:W = {w1,w2,w3}, Ra =
{(w1,w1),(w1,w2),(w1,w3),(w2,w2),(w3,w3)}, Rb
= W×W, V(p) = {w2}, Cab = {w1,w2}, Cba = /0,
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Table 1: Hilbert-style AxiomatizationKc of Static Logic.

(Taut) ϕ, ϕ is a tautology
(KB) Ba(ϕ → ψ)→ (Ba ϕ → Baψ) (a∈ G)
(Selfchn) caa (a∈ G)
(MP) Fromϕ andϕ → ψ, infer ψ
(NecB) Fromϕ, infer Ba ϕ (a∈ G)

Figure 1: Accessibility relations of agentsa andb.

Caa = Cbb = W. Agenta believesp in w2 and¬p in
w3, but he/she is not sure ofp or ¬p in w1. On the
other hand, agentb does not believep nor ¬p at all
the worlds. There are channels froma to b in w1 and
w2, but there is no channel between them inw3.

2.2 Hilbert-style Axiomatization

The following theorem implies that we can axiom-
atize all the valid formlas on the class of allfinite
Kripke models. The restriction to the finite models
is important for us, since our matrix representation of
Kripke model is always in terms offinite matrix.

Theorem 1. For all formulasϕ in L, ϕ is a theorem
in Kc of Table 1 iff ϕ is valid on the class of allfinite
Kripke models.

Proof. (Outline) Since the soundness is easy to es-
tablish, we focus on the completeness with respect to
the class of all finite Kripke models. We show that
any unprovable formulaϕ in Kc is falsified in a fi-
nite Kripke model. Letϕ be an unprovable formula
in Kc . First, we define the canonical modelM where
ϕ is falsified at some point ofM. Second, since the
domain of the canonical model is infinite, we employ
the technique offiltration to boil the model down to
a finite model whereϕ is still falsified at some point.
For both steps, we basically follow the standard tech-
niques, e.g. found in (Blackburn et al., 2002).

We say that a setΓ of formulas isKc-consistent
(for short,consistent) if

∧
Γ′ is unprovable inKc , for

all finite subsetsΓ′ of Γ, and thatΓ is maximally con-
sistentif Γ is consistent andϕ ∈ Γ or ¬ϕ ∈ Γ for all
formulasϕ. Note thatψ is unprovable inKc iff ¬ψ
is Kc-consistent, for any formulaψ. We define the
canonical model(W,(Ra)a∈G,(Cab)a,b∈G,V) by:

• W is the set of all maximal consistent sets;
• ΓRa∆ iff (Ba ψ ∈ Γ impliesψ ∈ ∆) for all ψ;

• Cab := {Γ ∈W |cab ∈ Γ};
• Γ ∈V(p) iff p∈ Γ.

Then, we can show the following equivalence (Truth
Lemma (Blackburn et al., 2002, Lemma 4.21)):
M,Γ |= ψ iff ψ ∈ Γ for all formulasψ andΓ ∈ W,
where we note that we need to use the axiom(KB)
and the rule(NecB) for the case whereψ is of the
form of Ba γ.) Given any unprovable formulaϕ in
Kc , we can find a maximal consistent set∆ such that
¬ϕ ∈ Γ (where we need to use(Taut) and (MP)).
Then, by the equivalence above,ϕ is falsified at∆ of
the canonical modelM, where we can assure thatCaa
= W for all a∈G by the axiom(Selfch). This finishes
the first step of our proof.

Let us move to the second step. LetN =
(W,(Ra)a∈G,(Cab)a,b∈G,V) be a Kripke model andΓ
a finite set of formulas that is closed under takingsub-
formulas. Without loss of generality, we can assume
thatΓ containscaa for all agentsa occurring inΓ (oth-
erwise, we can just addcaas toΓ for all as occurring
in Γ where note that the number of suchas is finite).
Let us define an equivalence relation∼Γ by w∼Γ w′

iff (N,w |= ψ iff N,w′ |= ψ) for all ψ ∈ Γ. Then, we
define a finite modelNΓ as follows:

• WΓ := { [w] |w∈W}, where[w] is the equivalence
class ofw with respect to∼Γ.

• [w]RΓ
a [w

′] iff vRav′ for somev∈ [w] andv′ ∈ [w′].
• CΓ

ab := { [w] |w∈Cab} for cab∈ Γ.

• [w] ∈VΓ(p) iff w∈V(p) for p∈ Γ.

Remark thatCΓ
aa always holds, since we assumed that

caa ∈ Γ for all as occurring inΓ. Remark also that
the size ofWΓ is less than or equal to 2#Γ, hence
finite. By induction onψ ∈ Γ, we can show that
N,w |= ψ iff N, [w] |= ψ for all w∈W (the proof can
be found in (Blackburn et al., 2002, Theorem 2.39)).
Recall that any unprovable formulaϕ in Kc is falsi-
fied at Γ of the canonical modelM. Now we can
apply the filtration technique to obtain a finite model
MΓ whereϕ is falsified at[∆] andΓ is the union of
{caa| a occurs inϕ} and the finite set Sub(ϕ) of all
subformulas ofϕ and this finishes the second (and
last) step of our proof.

Theorem 2. Kc is decidable.

Proof. Whenϕ is unprovable inKc , Theorem 2 tells
us thatϕ has a finite countermodel. Since we can re-
cursively check if a given finite model satisfies the
conditionCaa = W for all agentsa ∈ G (note G is
finite), we can construct an effective procedure gen-
erating all the finite Kripke models and checking if
ϕ is falsified at some point of a finite model. To-
gether with an effective procedure of enumerating all
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the theorems ofKc , we obtain the decision procedure
of Theoremhood ofKc .

3 DYNAMIC OPERATORS FOR
CHANNEL COMMUNICATION

This section introduces two dynamic operators which
allows us to talk about agents’ belief changes in
terms of informing action. The first dynamic oper-
ator (semi-private announcement) specifies both the
sender and the receiver, but the second operator (in-
trospective announcement via channel) just specified
the sender agents and we need to calculate the re-
ceivers of the information via communication chan-
nels.

3.1 Semi-private Announcement

One of the most well-known dynamic operators is
public announcement operator (Plaza, 1989), but our
operator of this section differs from it by the follow-
ing requirement:

(R3) Our introducing operators aresemi-privateor
non-public announcements to some specific
agents. We assume that an agenta can send a mes-
sage to an agentb only when there is a channel
from a to b.

When an agent informs one of the other agents of
something, our basic assumption is that we need a
(context-dependent) channel between those agents.
The notion of channel was formalized as channel
propositionscab.

Let us denote our intended dynamic operator by
[ϕ↓a

b], whose reading is ‘after the agenta informs the
agentb of the messageϕ via channel’. Our intended
reading of[ϕ↓a

b]ψ is ‘after the agenta informs the
agentb to ϕ, ψ’. We provide the semantic clause for
[ϕ↓a

b]ψ on a modelM = (W,(Ra)a∈G,(Cab)a,b∈G,V) is
given as follows:

M,w |= [ϕ↓a
b]ψ iff Mϕ↓a

b,w |= ψ

where Mϕ↓a
b = (W,(R′

a)a∈G,(Cab)a,b∈G,V) and
(R′

c)c∈G is defined as: ifc= b, for all x∈W, we set

R′
b(x) :=

{
Rb(x)∩ JϕKM if M,x |= Ba ϕ∧ cab

Rb(x) otherwise.

If c 6= b, R′
c := Rc. Semantically speaking,[ϕ↓a

b] re-
strictsb’s attention to theϕ’s worlds if there is a chan-
nel from the agenta to b and agenta believesϕ. Oth-
erwise, the action[ϕ↓a

b] will not changeb’s belief.

Table 2: Hilbert-style AxiomatizationKc[ ·↓a
b]

.

In addition to all the axioms and rules ofKc , we add:
[ϕ↓a

b]p ↔ p,
[ϕ↓a

b]ccd ↔ ccd,

[ϕ↓a
b]¬ψ ↔ ¬ [ϕ↓a

b]ψ,
[ϕ↓a

b](ψ∨χ) ↔ [ϕ↓a
b]ψ∨ [ϕ↓a

b]χ,
[ϕ↓a

b]Bc ψ ↔ Bc [ϕ↓a
b]ψ (c 6= b)

[ϕ↓a
b]Bb ψ ↔ ((cab∧Ba ϕ)→ Bb(ϕ → [ϕ↓a

b]ψ))∧
(¬(cab∧Baϕ)→ Bb [ϕ↓a

b]ψ)
(Nec[ϕ↓a

b]
) Fromψ, infer [ϕ↓a

b]ψ

Theorem 3. For all formulasϕ in the expanded syn-
tax L with [ψ↓a

b], ϕ is a theorem inKc[ ·↓a
b]

of Table 2
iff ϕ is valid on the class of all finite Kripke models.

Proof. By ⊢ψ (or⊢+ ψ), we mean thatψ is a theorem
of the axiomatizationKc (or, Kc[ ·↓a

b]
, respectively.)

The soundness of the axioms is easy. One can also
check that the necessitation rule(Nec[ϕ↓a

b]
) preserves

the validity on the class of all finite models. As for the
completeness part, we can reduce the completeness of
our dynamic extension to the static counterpart (i.e.,
Theorem 1) as follows. With the help of the axioms
of Table 2, we can define a mappingt sending a for-
mulaψ of the expanded syntax (we denote this byL

+

below) with the dynamic operators[ϕ↓a
b] to a formula

t(ψ) of the original syntaxL, where we start rewrit-
ing theinnermost occurrencesof [ϕ↓a

b]. For example,
t([ϕ↓a

b]Bc(p∨ cac)) := Bc(p∨ cac). For this mapping
t, we can show thatψ ↔ t(ψ) is valid on all finite
models and⊢+ ψ ↔ t(ψ). Then, we can proceed as
follows. Fix any formulaψ of L

+ such thatψ is valid
on all finite models. By the validity ofψ ↔ t(ψ) on
all finite models, we obtain thatt(ψ) is valid on all
finite models. By Theorem 1,⊢ t(ψ), which implies
⊢+ t(ψ). Finally, it follows from⊢+ ψ ↔ t(ψ) that
⊢+ ψ, as desired.

Example 2. In Example 1, we obtain the truth of
[p↓a

b]Bb p at w2, i.e., ‘after agenta informs agentb
of the messageϕ via channel, agentb comes to be-
lieve p’ in w2. Figure 2 is the updated model ofM by
[p↓a

b]. On the other hand, agenta does not have any
channel tob in w3, and so, the accessible worlds from
w3 will be unchanged even after the update ofM by
[p↓a

b]. Therefore,[p↓a
b]Bb p is false atw3. Similarly,

agenta does not believe¬p in w1, i.e.,Ba¬p fails in
w1, and so, the informing action[p↓a

b] will not change
the accessible worlds fromw1.
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Figure 2: Updated accessibility relation of agentb.

Table 3: Hilbert-style AxiomatizationKc[·↓H ].

In addition to all the axioms and rules ofKc , we add:
[ϕ↓H ]p ↔ p,
[ϕ↓H ]cab ↔ cab,

[ϕ↓H ]¬ψ ↔ ¬[ϕ↓H ]ψ,
[ϕ↓H ](ψ∨χ) ↔ [ϕ↓H ]ψ∨ [ϕ↓H ]χ,
[ϕ↓H ]Ba ψ ↔ (

∨
b∈H (cba∧Bb ϕ)→ Bb(ϕ → [ϕ↓H ]ψ))

∧(¬ (
∨

b∈H(cba∧Bb ϕ))→ Bb[ϕ↓H ]ψ)
(Nec[ϕ↓H ]) Fromψ, infer [ϕ↓H ]ψ

3.2 Introspective Announcement Via
Communication Channels

In the dynamic operator[ψ↓a
b], we specifieda andb

as the sender and the receiver of the informationϕ,
respectively. Even so, we may consider the situa-
tion where more than one agents, saya andb, send
a piece of information to the other agents, and who
will receive the information may change, depending
on communication channels between agents. In this
sense, we do not specify the receivers in advance here.
Rather, we calculate the receivers of the information
from the senders and the communication channels.
We may expand our static syntaxL with a dynamic
operator[ϕ↓H ] (H ⊆ G) whose reading is ‘after a
groupH of agents sends a pieceϕ of information via
communication channels’. Given a Kripke modelM

= (W,(Ra)a∈G,(Cab)a,b∈G,V) and a worldw∈W, we
define the semantics of[ϕ↓H ]ψ by:

M,w |= [ϕ↓H ]ψ iff Mϕ↓H
,w |= ψ,

whereMϕ↓H
= (W,(R′

a)a∈G,(Cab)a,b∈G,V) andR′
a is

defined as follows: for allw ∈ W, if there is some
b∈ H such thatw∈Cba andM,w |= Bb ϕ, we put

R′
a(w) := Ra(w)∩ JϕKM.

Otherwise, we putR′
a(w) := Ra(w).

By the similar argument to Theorem 3, we can
prove the completeness theorem forKc[ ·↓a

b]
over the

class of all the finite Kripke models.

Theorem 4. For all formulasϕ in the expanded syn-
taxL with [ψ↓H ], ϕ is a theorem inK

c[ ·↓H ] of Table 3
iff ϕ is valid on the class of all finite Kripke models.

Example 3. In Example 1, letH = {a} be a group
of senders. Then, when we focus on the worldw2, we

can calculate the receivers by the calculation just be-
fore this example and specify the receivers as{a,b},
since there is a channel froma to b in w2 anda be-
lieves p in w2. So, we obtain the truth of[p↓H]Bb p
at w2, i.e., ‘after the group of agentH sends a piece
p of information via communication channel, agent
b comes to believep’ in w2. Moreover, the updated
model ofM by [p↓H ] is the same as Figure 2.

However, when we change the group of senders
to H ′ = {b}, agentb does not believep in w2 (i.e.,
Bb p is false inw2), and so, the accessible worlds from
w2 will be unchanged even after the update ofM by
[p↓H′

]. Therefore,[p↓H′
]Bb p is still false atw2.

4 MATRIX REPRESENTATION
OF KRIPKE SEMANTICS

A usual Kripke frame(W,R) (for a single agent) can
be regarded as a directed graph, i.e., a setW of possi-
ble worlds corresponds to a set of nodes, and a setR
of accessibility relation corresponds to a set of edges.
Generally speaking, such set of edges can be written
as a boolean matrix. Therefore, the accessibility rela-
tion (= a belief state of an agent) can be represented in
a matrix. In this case, the accessibility from possible
world i to j can be mapped to the(i, j)-element of the
matrix. In what follows, we useM(m× n) to mean
the set of allm×n-boolean matrix.

Let us provide a matrix representation of our no-
tions of frame and model. First, we start with frames.
Given any Kripke frameF= (W,(Ra)a∈G,(Cab)a,b∈G)
with #W = n, we writeW = {w1,w2, . . . ,wn} and de-
fine matrix representations ofCab andRa as follows.

In accordance withCab ⊆ W (a,b ∈ G), CM
ab is a

matrix in M(n× 1), i.e., a column vector where the
k’s component is 1 ifwk ∈ Cab, otherwise 0. In gen-
eral, given any relationR⊆W×W, RM is a matrix in
M(n×n) such that

RM(i, j) =

{
1 if (wi ,wj ) ∈ R

0 otherwise

Now we move to define a matrix representation of
a modelM = (W,(Ra)a∈G,(Cab)a,b∈G,V). Here we
assume that the number #Prop of propositional letters
is mand #W of possible worlds isn. Our matrix repre-
sentation ofV(p) is similar to a channel relationCab.
That is,V(p)M is a matrix inM(n× 1) (= a column
vector) where thek’s component is 1 ifwk ∈ V(p),
otherwise 0.

Now we can rewrite Kripke semantics to our syn-
tax in terms of matrix. We inductively associate
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each formulaϕ of L with a column vector‖ϕ‖M ∈
M(n×1) as follows:1

‖p‖M := V(p)M ‖cab‖M := CM
ab

‖¬ϕ‖M := ‖ϕ‖M ‖Ba ϕ‖M := RM
a ‖ϕ‖M.

‖ϕ∨ψ‖M := ‖ϕ‖M+ ‖ψ‖M

where, forX ∈ M(n×n), X means the boolean com-
plementation ofX. For the dual̂Ba of Ba, it is easy
to see that‖B̂aϕ‖M = RM

a ‖ϕ‖M. If the underlying
model is clear from the context, we drop the subscript
‘M’ from ‖ϕ‖M. We use‖ϕ‖wi to means thei-th
component‖ϕ‖(i) of the column vector‖ϕ‖M, i.e.,
the truth value of the formulaϕ at wi of M.
Example 4. ‖Ba p‖M in Example 1 is calculated as:

RM
a ‖p‖M =




1 1 1
0 1 0
0 0 1






1
0
1


=




1
0
1


=




0
1
0


 .

This result coincides with our explanation in Exam-
ple 1 (recall also Figure 1).

This match up can be captured by the following
proposition.

Proposition 5. Given any finite modelM and any
formulaϕ of L, we can show that(JϕKM)M = ‖ϕ‖M.

5 MATRIX REPRESENTATION
OF DYNAMIC OPERATORS

Given a Kripke modelM with a domain W
= {w1, . . . ,wn}, we may easily rewrite semantic
clauses of[ϕ↓a

b] and [H↓ϕ] in terms of matrix such
as: ‖[ϕ↓a

b]ψ‖M := ‖ψ‖
M

ϕ↓a
b

and ‖[H ↓ϕ]ψ‖M :=
‖ψ‖

Mϕ↓H where‖[ϕ↓a
b]ψ‖M and‖[H↓ϕ]ψ‖M are ma-

trices inM(n×1). However, it is not so clear if we can
capture processes of updatingM to Mϕ↓a

b andMϕ↓H

in terms of operations over matrices. (Van Benthem
and Liu, 2007) propose a general framework of up-
dating agents’ accessibility relations in terms of pro-
gram term of propositional dynamic logic. With the
help of their ideas, this section provides matrix rep-
resentations of our two dynamic operators[ϕ↓a

b] and
[H↓ϕ]. First, we expand our syntax of static logic of
agents’ belief with terms of (iteration free) proposi-
tional dynamic logic, and then we explain the main
idea of (Van Benthem and Liu, 2007) in Section 5.1.
Finally, we rewrite their semantic idea in terms of ma-
trix in Section 5.2.

1In order to handle multiple agentsG, (Fitting, 2003)
employed the notion ofP (G)-valued matrix. However, we
keep ourselves to the boolean matrices in this paper.

5.1 Propositional Dynamic Logic of
Relation Changers

The syntax of PDL-extension ofL is defined by si-
multaneous induction on a program termπ and a for-
mulaϕ:

π ::= Ra |(π∪π) |(π;π) |ϕ? (a∈ G)

ϕ ::= p|cab|¬ϕ |ϕ∨ϕ | [π]ϕ (p∈ Prop, a,b∈ G)

Here we regardRa as anatomic program(for agent
a). [Ra] corresponds to the previous belief operator
Ba. So, in what follows, we also writeBa for [Ra], if
no confusion arises from the context. Then, we may
read the program terms as follows:(π∪π′) is to read
‘do π or π′, non-deterministically”;(π;π′) is to read
“do π followed byπ′”; ϕ? is to read “proceed ifϕ true,
else fail”. As is well-known, we can introduce some
standard programming constructs by definitional ab-
breviation. For example,

if ϕ then π else π′ := (ϕ?;π)∪ ((¬ϕ)?;π′).

Given a modelM = (W,(Ra)a∈G,(Cab)a,b∈G,V), we
define the semantics of our PDL-extension by:

JRaKM := Ra
Jπ∪π′KM := JπKM ∪ Jπ′KM
Jπ;π′KM := JπKM ◦ Jπ′KM
Jϕ?KM := {(w,v) |w= v andw∈ JϕKM }
JpKM := V(p)
JcabKM := Cab
J¬ϕKM := W \ JϕKM
Jϕ∨ψKM := JϕKM ∪ JψKM
J[π]ϕKM := {w∈W |JπKM(w)⊆ JϕKM } ,

whereR◦S is the relational composition ofR with S,
i.e.,(w,v) ∈R◦Siff (w,u)∈ Rand(u,v)∈Sfor some
u ∈ W, and JπKM(w) := {v∈W |(w,v) ∈ JπKM }.
Note thatJ[Ra]ϕKM is the same meaning as the truth
set {w∈W |M,w |= ϕ} of the previous Kripke se-
mantics.

Recall that, in the semantics of[ϕ↓a
b] and [ϕ↓H ]

(H ⊆ G), we keep the domain of a model, channel re-
lations, and a valuation for proposition letters butre-
definethe accessibility relation(Ra)a∈G. In this sense,
we may say that those operations arerelation chang-
ers. (Van Benthem and Liu, 2007) observed that, if
relation changing operations are written in terms of
program terms generated from atomic programs by
the composition ;, the union∪ and the testϕ?, then
we can automatically generate the set of reduction ax-
ioms (as in Tables 2 and 3) to assure semantic com-
pleteness of propositional dynamic logic with relation
changing operations. Let us suppose that our relation
changer for a relationRa = JRaKM is written in terms
of a program termπa (a ∈ G). Then, we may de-
note by[(Ra := πa)a∈G] our dynamic operator which
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changes an original relationRa into a new relationR′
a

via πa for all agentsa∈G. Then, our key equivalence
for generating the reduction axioms takes the follow-
ing form:

[(Ra := πa)a∈G][Rb]ϕ ↔ [πb][(Ra := πa)a∈G]ϕ.
where we generalize van Benthem and Liu’s equiva-
lence for a single agent to multi-agents.

Example 6. 1. Semi-private Announcement: In the
semantics of[ϕ↓a

b], we have rewritten the ac-
cessibility relations(Ra)a∈G into the new ones
(R′

a)a∈G. We may reformulate the semantics in
terms of binary relations.
• Let c = b. Then,R′

c := (Rc ∩ (Jcac∧Ba ϕK×
JϕK)) ∪ (Rc∩ (J¬(cac∧Ba ϕ)K×W)).

• Let c 6= b. Then,R′
c := Rc.

Then, the corresponding relation changer agentb
to [ϕ↓a

b] is the following. Whenc = b,

πb :=((cab∧Ba ϕ)?;Rb;ϕ?)∪(¬(cab∧Ba ϕ)?;Rb).

If we employ the previous definitional abbrevia-
tion, we may writeπb as:

πb := if cab∧Ba ϕ then Rb;ϕ? else Rb.

Whenc 6= b, the relation changer for agentc for
[ϕ↓a

b] is: πc := Rc. Then, we may regard[ϕ↓a
b] as

[(Ra := πa)a∈G].
2. Introspective Announcement via Communication

Channel: Leta be any agent. The correspond-
ing relation changer to[ϕ↓H ] is the following pro-
gram termπ′

b := (ψ?;Rb;ϕ?)∪ (¬ψ?;Rb), where
ψ :=

∨
a∈H(cab∧Ba ϕ). By the previous defini-

tional abbreviation, we may writeπ′
b as:

π′
b := if

(∨
a∈H

(cab∧Ba ϕ)
)

then Rb;ϕ? else Rb.

Then, we may regard[ϕ↓H ] as[(Ra := π′
a)a∈G].

5.2 Relation Changers in Matrix Form

Given two relationsR1,R2 ⊆ W ×W. Relational
union and composition fit well with matrix addition
and multiplication as follows:

(R1∪R2)
M = RM

1 +RM
2 , (R1◦R2)

M = RM
1 RM

2

Let ϕ be a formula of static logic of agents’ belief.
SinceJϕ?KM = {(w,v) |w= v andM,w |= ϕ} is also
a relation onW, we may provide a matrix representa-
tion Jϕ?KM. By definition ofRM, we obtain:

Jϕ?KM
M
(i, j) =

{
1 if i = j andM,wi |= ϕ,
0 otherwise.

Therefore,Jϕ?KM
M

is the matrix from which diagonal
components we may read off the information of truth
set ofJϕKM of the formulaϕ. For test program, we
note the following proposition.

Proposition 7. Let ϕ and ψ be formulas. Then,
J(ϕ∧ψ)?K = Jϕ?K ◦ Jψ?K. Therefore,J(ϕ∧ψ)?KM =
Jϕ?KMJψ?KM.

Example 8. Let us see whether our matrix repre-
sentation of model update for semi-private announce-
ment works on our running example (Example 1). As
is the same as in Example 2, we consider the update
by [p↓a

b]. There are channel between agenta andb,
and agenta believes thatp at w2. By Proposition 7,
the first part of a matrix calculation ofRb becomes:

J(cab∧Ba p)?KMRM
b Jp?KM = Jcab?K

MJBa p?KMRM
b Jp?KM

=




1 0 0
0 1 0
0 0 0






0 0 0
0 1 0
0 0 0






1 1 1
1 1 1
1 1 1






0 0 0
0 1 0
0 0 0


=




0 0 0
0 1 0
0 0 0




Then calculate also the remaining part ofR′
b,

i.e.,J¬(cab∧Ba p)?KMRM
b , we combine both results to

obtain updated relationR′
b of agentb as:

R′
b = J(cab∧Ba p)?KMRM

b Jp?KM + J¬(cab∧Ba p)?KMRM
b

=




0 0 0
0 1 0
0 0 0


+




1 1 1
0 0 0
1 1 1


=




1 1 1
0 1 0
1 1 1




This coincides with the result of Example 2 (see Fig-
ure 2)

6 IMPLEMENTATION

This section introduces two algorithms. One of them
calculates the truth value of a formulaBa p and the
other one calculates the relation updates by[p↓a

b]. For
both algorithms, we assume that an input modelM=
(W,(Ra)a∈G,(Cab)a,b∈G,V) is represented in terms of
boolean matrix.

Algorithm 1: Calculation of‖Bap‖w.

procedure BELIEF-OF
input M, wi ∈W, a∈ G, p∈ Prop

‖Ba p‖ := RM
a V(p)M

return True if ‖Ba p‖(i)> 0; Falseotherwise
end procedure

Here we comment just on Algorithm 2. In order
to update an accessibility relation of agentb, the al-
gorithm loops to find agentb. If the algorithm finds
agentb, a model updating procedure (for a single
agent) will be started, otherwise it just putR′

c = Rc.
At the beginning of the updating procedure, the algo-
rithm generates test matrices throughTest function
where an input of this function is a column vector,
and it enumerates the elements of the input vector
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Algorithm 2: Calculation of[p↓a
b].

procedure SEMI-PRIVATE-ANNOUNCEMENT
input M, a,b∈ G, p∈ Prop

for c∈ G do
if c= b then

X := Test(Cab
M)

Y := Test(‖Ba p‖)
Z :=Test(V(p)M)
R′

b
M := XYRM

b Z+XYRM
b

else
R′

c
M := Rc

M

end if
end for
return M′ = (W,(R′

a)a∈G,(C)a,b∈G,V)
end procedure

in the diagonal components of an output matrix, and
fills 0 in the non-diagonal components of the matrix.
Then, it calculates the updated accessibility relation
of agentb in terms of boolean matrix. Note that
‖¬ϕ?‖ can be calculated as‖ϕ?‖. Finally, the algo-
rithm returns the updated modelM′.

Implemented Program. We have implemented the
preceding algorithms in a single calculator with GUI
by JavaTM 7. It is now available on our web site2.
The main features of the calculator are summarized
as follows. First, we may edit the numbers of both
agents and worlds, and also accessibility relations for
agents in terms of boolean matrix. Second, it also
implemented an algorithm checking if a given acces-
sibility relation satisfies frame properties such as re-
flexivity, transitivity, etc. Third, the calculator can vi-
sualize both an accessibility relation of an agent and a
channel relation (communication channels) between
agents at a world, with the help of Graphviz.3

7 CONCLUSION

The main contribution of this paper can be summa-
rized as follows. First, we introduced the static doxas-
tic logic with communication channels (where we al-
ways assume self-channel on all agents) with the com-
plete axiomatizationKc that is also decidable (Theo-
rems 1 and 2). We also extended such static logic with
two dynamic operators[ϕ↓a

b] (semi-private announce-
ment) and[ϕ↓H ] (introspective announcement) with
reduction axioms (so extensions of both of them en-
joy completeness results, Theorems 3 and 4). A key
feature of our dynamic operators arenon-public, i.e.,
effects of announcements are restricted to some spec-
ified agents determined by communication channels.

2http://cirrus.jaist.ac.jp:8080/soft/bc
3http://www.graphviz.org/

Second, we followed the idea by (Fitting, 2003) to re-
formulate Kripke semantics to our doxastic logic in
linear algebraic form, and employ the idea of PDL-
format by (Van Benthem and Liu, 2007) to provide
matrix representations to our two dynamic operators.
Finally, based on this linear algebraic reformulation,
we implemented the calculation system of agents’ be-
liefs and updates of Kripke models by[ϕ↓a

b]. An im-
plementation of[ϕ↓H ] is a direction of further work.
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