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The Convex Configurations of “Sei Shōnagon Chie no Ita” and Other
Dissection Puzzles

Eli Fox-Epstein∗ Ryuhei Uehara†

Abstract

The tangram and Sei Shōnagon Chie no Ita are popu-
lar dissection puzzles consisting of seven pieces. Each
puzzle can be formed by identifying edges from sixteen
identical right isosceles triangles. It is known that the
tangram can form 13 convex polygons. We show that
Sei Shōnagon Chie no Ita can form 16 convex polygons,
propose a new puzzle that can form 19, no 7 piece puzzle
can form 20, and 11 pieces are necessary and sufficient
to form all 20 polygons formable by 16 identical isosceles
right triangles. Finally, we examine the number of con-
vex polygons formable by different quantities of these
triangles.

1 Introduction

A dissection puzzle is a game where one must decide
whether a given set of polygons can be placed in the
plane in such a way that their union is a given target
polygon. Rotation and reflection are allowed but scal-
ing is not, and all polygons must be internally disjoint.
Formally, a set of polygons S can form a polygon P if
there is an isomorphism up to rotation and reflection
between a partition of P and the polygons of S (i.e. a
bijection f(·) from a partition of P to S such that x and
f(x) are congruent for all x).

The tangram is a set of polygons consisting of a square
cut by straight incisions into different-sized pieces. See
the left diagram in Figure 1. Of anonymous origin, the
first known reference in literature is from 1813 in China
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Figure 1: Left: the tangram in square configuration.
Right: Sei Shōnagon Chie no Ita pieces in square con-
figuration.

Figure 2: A set of plates in the form of Sei Shōnagon
Chie no Ita pieces, crafted by Tomomi Takeda in
Kanazawa, Japan.

Figure 3: A typical Sei Shōnagon Chie no Ita layout as
a square configuration with a hole missing.

[Slo04]. The tangram has grown to be extremely popu-
lar throughout the world and now has over 2000 dissec-
tion and related puzzles [Slo04, Gar87].

There is a similar but less famous Japanese set of
puzzle pieces called Sei Shōnagon Chie no Ita. Sei
Shōnagon was a courtier and famous novelist in Japan,
but there is no evidence that the puzzle existed a mil-
lennium ago during her lifetime. Chie no ita means
wisdom plates, which refers to the physical puzzle. It
is said that the puzzle is named after Sei Shōnagon’s
wisdom. Historically, the Sei Shōnagon Chie no Ita first
appeared in literature in 1742 [Slo04]. Even in Japan,
the tangram is more popular than Sei Shōnagon Chie
no Ita, though Sei Shōnagon Chie no Ita is common
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enough to have been made into ceramic dinner plates
(see e.g. Figure 2, [Tak14]), and in puzzle communities
it is admired for being able to form some more interest-
ing shapes that the tangram cannot, such as a square
configuration with a hole missing (Figure 3).

Wang and Hsiung considered the number of possible
convex (filled) polygons formed by the tangram [WH42].
They first noted that, given sixteen identical isosceles
right triangles, one can create the tangram pieces by
gluing some edges together. Consequently, the tangram
pieces can only form a subset of the convex polygons
that sixteen idential isosceles right triangles can form.
Embedded in the proof of their main theorem, Wang
and Hsiung [WH42] demonstrate that sixteen identical
isosceles right triangles can form exactly 20 convex poly-
gons. These 20 are illustrated in Figure 7. The tangram
can realize thirteen of them.

It is quite natural to ask how many of these convex
polygons the Sei Shōnagon Chie no Ita pieces can form.
We first show that Sei Shōnagon Chie no Ita achieves
sixteen. Therefore, in a sense, we can conclude that Sei
Shōnagon Chie no Ita is more expressive than the tan-
gram: while both the tangram and Sei Shōnagon Chie
no Ita contain seven pieces made from sixteen identical
isosceles right triangles, Sei Shōnagon Chie no Ita can
form more convex polygons than the tangram. (Also,
recall that the Sei Shōnagon Chie no Ita configuration
in Figure 3 is impossible with the tangram.)

One might next wonder if this can be improved with
different shapes. We demonstrate a set of seven pieces
that can form nineteen convex polygons among the 20
candidates, and that to realize them all, it is neces-
sary to have at least eleven shapes, which is sufficient.
Throughout, all triangles mentioned are identical isosce-
les right triangles with side lengths 1, 1, and

√
2.

2 The Sei Shōnagon Chie no Ita puzzle

Theorem 1 The Sei Shōnagon Chie no Ita puzzle
pieces can be rearranged into exactly sixteen distinct
convex polygons up to reflection and rotation.

Proof. We first notice that the seven puzzle pieces can
be decomposed into sixteen identical right isosceles tri-
angles, just like the tangram.

We make use of two important results from Wang and
Hsiung [WH42]. First, there are only 20 candidate con-
vex polygons that we need to consider; and second, in
any formable convex polygon, the bases of the sixteen
triangles can be pairwise collinear, parallel, or perpen-
dicular ([WH42], Lemma 1). This means we only need
to consider configurations that could be embedded with
triangle and target polygon vertices on integer coordi-
nates.

Sixteen convex polygons are filled as illustrated in
Figure 8. The remaining four polygons cannot be

formed since they are too thin. More precisely, the
largest trapezoid puzzle piece of area 2 has a base of
length 3. Under the four rotations we need to consider,
the base of the trapezoid does not fit into the target
polygon. �

3 An optimal seven piece puzzle

Although Sei Shōnagon Chie no Ita is more expressive
than the tangram, Sei Shōnagon Chie no Ita is not the
optimal set of seven pieces if one wishes to form as many
convex polygons as possible.

Theorem 2 There is a set of seven polygons composed
from sixteen identical right isosceles triangles that can
form nineteen distinct convex polygons. Furthermore,
no set of seven polygons composed of sixteen identi-
cal right isosceles triangles can form 20 distinct convex
polygons.

Proof. The set of seven polygons that can form nine-
teen distinct convex polygons and its formations are de-
picted in Figure 9. Theorem 3 implies that no seven-
piece puzzle can form all 20 convex polygons. �

(a)

(b)

Figure 4: Any set of 7 pieces covering shape (a) must
have a piece that consists of at least 3 triangles, which
cannot be covered by shape (b).

4 Beyond seven pieces

The next natural question to ask is how many pieces
built from sixteen identical isosceles right triangles
might one need in order to form all 20 convex polygons.

Theorem 3 Ten or fewer pieces formed from sixteen
identical isosceles right triangles cannot form 20 convex
polygons. However, eleven pieces can.

Proof. In the negative direction, observe that to form
the 1×8

√
2 parallelogram in Figure 4 (a) with ten pieces,

there must be at least six 1×
√

2 parallelograms and at
most four single triangles (larger pieces all contain a
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parallelogram and do not fit within the shape of Fig-
ure 4 (b)).

Consider the 2
√

2-sidelength square. The perimeter
has 8 incident triangles, so the six parallelograms would
have to cover at least four of those. Exhaustive case
analysis, as seen in Figure 5, shows that all arrange-
ments that cover enough of the exterior triangles leave
a square in the middle and boundary triangles that can-
not fit a single parallelogram.

Figure 5: Six parallelograms do not fit in a square.

We observe that five 1 ×
√

2 parallelograms can fit
inside each of the 20 shapes: see Figure 10. So, these
parallelograms along with six single triangles can realize
all 20 convex polygons. �

5 Concluding remarks

Sixteen identical right isosceles triangles can form
twenty convex polygons. We compare the power of ex-
pression of some classic dissection puzzles constructed
from these triangles. The “difficulty” of a dissection
puzzle for people to solve can be estimated by the num-
ber of ways in which one can solve it. Computing these
numbers efficiently remains a compelling task for future
work.

Another interesting direction of study is the number
of convex polygons formed by different numbers of tri-
angles. Let f(n) be the number of formable convex
polygons formed by n identical right isosceles triangles.
To analyze the tangram and Sei Shōnagon Chie no Ita
puzzles, the value f(16) = 20 plays an important role.
If we design larger puzzles, it is natural to consider the
number of formable polygons. The function f(n) itself
is also interesting to investigate. The values of the func-
tion presented in Figure 6 were determined by computer
search: all potential side length assignment to octogons
were considered (for convex, simple arragements of iden-
tical right isosceles triangles, the interior angles are at
most 3π

4 ; polygons with more than 8 sides have aver-
age exterior angle strictly less than π/4). Although it
is not monotone (f(1) = 1, f(2) = 3, and f(3) = 2),
it is a generally increasing function. Trivially, for all
x ≥ 0, we have f(x) < f(2x) as one can subdivide
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Figure 6: The number f(n) of convex polygons formed
by n identical right isosceles triangles.

every triangle into two to get the same number. The
inequality’s strictness comes from a new, skinnier par-
allelogram with side lengths 1 and x

√
2.
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Figure 7: All 20 potential convex polygons.

Figure 8: The sixteen convex polygons that can be formed by Sei Shōnagon Chie no Ita.

Figure 9: Seven pieces forming nineteen convex polygons.

Figure 10: Eleven pieces forming all twenty convex polygons (the six individual isosceles right triangles not shown).


