
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title A framework for scheduling real-time systems

Author(s) Cheng, Zhuo; Zhang, Haitao; Tan, Yasuo; Lim, Yuto

Citation

The 22nd International Conference on Parallel and

Distributed Processing Techniques and

Applications (PDPTA): 182-187

Issue Date 2016/07/25

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/14772

Rights

Zhuo Cheng, Haitao Zhang, Yasuo Tan, and Yuto

Lim, The 22nd International Conference on

Parallel and Distributed Processing Techniques

and Applications (PDPTA), 2016, 182-187.

Description

A Framework for Scheduling Real-Time Systems

Zhuo Cheng⇤, Haitao Zhang†, Yasuo Tan⇤, and Yuto Lim⇤
⇤School of Information Science, Japan Advanced Institute of Science and Technology, Japan

{chengzhuo, ytan, ylim}@jaist.ac.jp
†School of Information Science and Engineering, Lanzhou University, China

htzhang@lzu.edu.cn

Abstract—Real-time system is playing an important role in

our society. For such a system, sensitivity to timing is the central

feature of system behaviors, which means tasks in the systems

are required to be completed before their deadlines. To guarantee

this requirement, the design of scheduling is crucial. In this

paper, based on satisfiability modulo theories (SMT), we provide

a framework to design scheduling for real-time systems. In the

framework, the problem of scheduling is treated as a satisfiability

problem. The key work is to formalize the satisfiability problem

using first-order language. After the formalization, a SMT solver

(e.g., Z3, Yices) is employed to solver such a satisfiability problem.

An optimal schedule can be generated based on a solution model

returned by the SMT solver. To demonstrate the practicality of

the framework, we give design guidelines for real-time systems

with multiprocessor. Through the demonstration, the framework

is found flexible and sufficiently general to apply to different

kinds of real-time systems. To the best of our knowledge, it is the

first time that systematically introducing SMT to solve a series

problems covering a wide range in real-time scheduling domain.

Keywords—real-time scheduling, SMT, multiprocessor, satisfia-

bility problem

I. INTRODUCTION

Real-time system is playing an important role in our
society. For example, chemical and nuclear plant control, space
missions, flight control, telecommunications, and multimedia
systems are all real-time systems [1]. In such a system,
sensitivity to timing is the central feature of system behaviors,
which means, tasks in the system are required to be completed
before their deadlines. To provide such guarantee, the design
of scheduling is crucial.

The research on real-time scheduling has lasted for
decades, but still lots of challenges remain [5]. For example,
limited task models for multiprocessor systems, limited poli-
cies for access to shared resources, ineffective schedulability
tests, limited scheduling methods. In this paper, we try to
address the challenge limited scheduling methods.

For designing scheduling method, many research has con-
tributed to this area [8, 9, 10, 11]. But one important problem is
that all the proposed methods are specified on either a specific
system architecture (e.g., uniprocessor) or specific scheduling
target (e.g., make all task meet deadline). Usually, it is quite
difficult, even impossible, to adapt one scheduling method to
another application scenario. This becomes a main obstacle for
designing scheduling for a new application system and results
in a high design cost. In this paper, we try to solve the problem

This paper is submitted as a Regular Research Paper. Please contact Zhuo
Cheng for any inquiry.

by proposing a framework to design scheduling for real-time
systems. The main contributions of this paper are as follows.

i) We propose a scheduling framework based on satisfia-
bility modulo theories (SMT). In this framework, the problem
of scheduling is treated as a satisfiability problem. The key
work is to formalize the satisfiability problem using first-order
language. We use a sat model to represent the formalized
problem. This sat model is a set of first-order logic formulas
(within linear arithmetic in the formulas) which express all
the scheduling constraints that a desired optimum schedule
should satisfy. After the sat model is constructed, a SMT solver
(e.g., Z3 [6], Yices [7]) is employed to solve the formalized
problem. An optimal schedule can be generated based on a
solution model returned by the SMT solver. The correctness
of this method and the optimality of the generated schedule
are straightforward.

ii) The proposed scheduling framework is flexible. In the
SMT-based scheduling method, we define the scheduling con-
straints as system constraints and target constraints. It means
if we want to design scheduling to achieve other objectives,
only the target constraint needs to be modified. Or, if we
want to achieve the same scheduling objective for another real-
time system with different system architecture, only the system
constraints need to be modified.

iii) We give practical design guidelines for scheduling mul-
tiprocessor systems. These design guidelines are for systems
with multiprocessor, and of course, they are also applicable for
system with uniprocessor, as scheduling uniprocessor systems
is a sub problem of scheduling multiprocessor systems. The
model for the multiprocessor system is defined in a very gen-
eral way, and in the design guidelines, we have considered sys-
tems with mixed-criticality (hard and soft) real-time functions,
task dependency relation, task migration cost, heterogeneous
processors (processors with different processing speed and
architectures), heterogeneous network channels (network chan-
nels with different data transfer speed and supporting different
network protocols). All these efforts make the framework
practicable and sufficiently general to apply to different kinds
of real-time systems and different scheduling targets, which
can benefit system designers to efficiently design scheduling.

The remainder of this paper is organized as follows. In
Section II, we present scheduling framework which is based
on satisfiability modulo theories. The system model is denoted
in Section III. We give the design guidelines for system
constraints in Section IV, while Section V gives the design
guidelines for target constraints. Related work are summarized
in Section VI. Section VII concludes the paper.

TABLE I. SYMBOLS AND DEFINITIONS

Symbol Definition

t system time instant
� network precision
F set of functions of a real-time system
FH ✓ F set of functions with hard deadlines
FS ✓ F set of functions with soft deadlines
Fi 2 F function of a real-time system, i is the index of the function
ri triggered time instant of function Fi

di deadline of function Fi

vi obtained value by completing function Fi before deadline
T set of all the tasks in the real-time systems
Ti ✓ T set of tasks corresponding to function Fi

⌧j 2 T task, j is index of the task
cj computation cost of ⌧j
mj migration cost of ⌧j from a processor to another one
⌧si start task of task poset (Ti,�)

⌧ei end task of task poset (Ti,�)

P set of processors
pa 2 P processor, where a is the index of the processor
psa speed of processor pa

TSa ✓ T task set that can be completed by processor pa

TSa!b ✓ T task set that can migrate on network channel na!b

N ✓ P ⇥ P set of network channels
na!b 2 N network channel from processor pa to pb

nsa!b speed of na!b

II. THE SMT-BASED SCHEDULING FRAMEWORK

A. Satisfiability Modulo Theories (SMT)

Satisfiability modulo theories checks the satisfiability of
logic formulas in first-order formulation with regard to certain
background theories like linear integer arithmetic or bit-vectors
[2]. A first-order logic formula uses variables as well as quan-
tifiers, functional and predicate symbols, and logic operators
[3]. A formula F is satisfiable, if there is an interpretation
that makes F true. For example, formula 9a, b 2 R, (b >
a + 1.0) ^ (b < a + 1.1), where R is real number set, is
satisfiable, as there is an interpretation, a 7! �1.05, b 7! 0, that
makes F true. On the contrast, a formula F is unsatisfiable,
if there does not exist an interpretation that makes F true.
For example, if we define 9a, b 2 Z, where Z is integer set,
the formula (b > a+1.0)^ (b < a+1.1) will be unsatisfiable.

For a satisfiability problem that has been formalized by
first-order logic formulas, a SMT solver (e.g., Z3, Yices)
can be employed to solver such a problem. If all the logic
formulas are satisfiable, SMT solver returns the results sat
and a solution model which contains an interpretation for all
the variables defined in the formulas that makes the formulas
true. For the case 9a, b 2 R, the model is: a 7! �1.05, b 7! 0.
If there is an unsatisfiable logic formula, SMT solver returns
the results unsat with an empty model, for the case 9a, b 2 Z.

B. The Scheduling Framework

The framework of the SMT-based scheduling is illustrated
in Fig. 1. In a real-time system, a schedule (execution order of
tasks) is generated by a scheduler. The problem of scheduling
can be treated as a satisfiability problem.

In order to use SMT to solve this satisfiability problem,
the key work is to formalize the problem using first-order

Target

Scheduler

Task

system

schedule

System
Constraints

Target
Constraints

SAT Model

/\

SMT Solver (e.g., Z3)

Fig. 1. The framework for scheduling real-time system based on SMT

language. We use a sat model to represent the formalized
problem. This sat model is the set of first-order logic formulas
(within linear arithmetic in the formulas) which expresses
all the constraints that the desired schedule should satisfy.
There are two kinds of constraints: system constraints and
target constraints. System constraints are based on the specific
system. For example, if two tasks run on a processor, a
schedule should make sure that the execution of these two
tasks cannot have overlap in time domain. Target constraint
is based on the scheduling target. For example, under normal
workload condition, the desired schedule should make all the
functions meet their deadlines (completed before deadlines).

After the sat model is constructed, it can be inputted into
a SMT solver (e.g., Z3). A solution model will be returned by
the SMT solver. This solution model gives an interpretation
for all the variables defined in the sat model, and under
the interpretation, all the logic formulas in the sat model
are evaluated as true. It means the satisfiability problem
represented by the sat model is solved, and based on this
interpretation, the desired schedule can be generated.

III. SYSTEM MODEL

A. Function Set

Function set define the functions that can be achieved
by a real-time system. Let F = {F1, F2, . . . , Fn} denote
the function set. Each function Fi 2 F is achieved by a
corresponding series tasks, represent as poset (Ti,�), Ti 6= ;
denotes the set of the corresponding task, and � denotes
the dependency relation of tasks in Ti (the detail of the
poset will be explained in the next subsection). For real-time
systems, when functions are triggered at system time instant
r, they are required to be completed before a specific time,
which is called deadline, represented by di. Moreover, different
functions have different degrees of importance to the system,
we use vi to denote the values obtained by the system through
completing functions Fi before its deadline di. Based on above
explanation, we define the function Fi = ((Ti,�), ri, di, vi).

Note that, unlike many research on real-time scheduling
that set deadlines to tasks, we set deadline to the function
level rather than task level. This setting can better reflect the
reality that the deadline requirement is for the functions of
real-time systems, while a function is achieved by a series
tasks cooperated together.

This function definition denotes the functions which have
hard real-time properties. That is, for such a function, if it

misses its deadline, system will not obtain any value through
completing it. Usually, in a complex real-time system, not all
functions are hard real-time functions. Some functions are soft
real-time functions. For such a function, if it misses deadline,
it will still be useful for the system, but the value obtained
by completing such function will be less than completing it
before its deadline. To denote the function with soft real-
time properties, we define such functions as: Fi = ((Ti,�
), ri, di, vi ⇤ f(cpi � di)), where cpi is the time when the
system completes the function, and the coefficient function
f(cpi � di) characters how the value vi will decrease when
the function misses its deadline. The reasonable value of the
coefficient function is in interval [0 1]. For convenience, we
use FH ✓ F to denote the set of functions with hard real-time
properties, and use FS ✓ F to denote the set of functions with
soft real-time properties.

B. Task Poset

A multiprocessor real-time system comprises a set of tasks,
denoted by T . For each function, it is achieve by a series tasks
cooperated together. Poset (Ti,�) is used to denote such a
series tasks, where Ti ✓ T is the task set corresponding to Fi,
and Ti = {⌧1, ⌧2, . . . , ⌧m}, where ⌧j 2 Ti is a task, and m is
the number of tasks. We use ⌧i,j to indicate task ⌧j 2 Ti. We
assume that, if |F| > 1, then 8Ti, Tj ⇢ T , i 6= j =) Ti\
Tj = ;. That is, no tasks are shared by different functions 1.
The symbol � indicates the dependency relation between two
tasks. That is, ⌧k, ⌧j 2 Ti, ⌧k � ⌧j indicate that task ⌧j can start
to run only after task ⌧k has been completed. The dependency
relation is transitive. That is, ⌧k � ⌧j , ⌧j � ⌧l =) ⌧k � ⌧l.

Definition (start task). A start task of (Ti,�) is such a
task ⌧i 2 Ti that starts earliest of all the tasks in Ti, that is,
8⌧j 2 Ti, i 6= j =) ⌧i � ⌧j .

Definition (end task). A end task of (Ti,�) is such a task
⌧i 2 Ti that starts latest of all the tasks in Ti, that is, 8⌧j 2
Ti, i 6= j =) ⌧j � ⌧i.

Without losing generality, we assume that there is one start
task and one end task of (Ti,�), and use ⌧si and ⌧ei to indicate
the start task and end task of task poset (Ti,�), respectively
2. Each task has two parameters, ⌧j = (cj ,mj), where j is
the index of the task. cj is the required computation cost,
which means the number of time slots (ticks of processor)
needed by a unit speed processor to complete task ⌧j ; and mj

is the required migration cost for task ⌧j migrating from a
processor to another one. We use the parameter mj combined
with parameters of network (the details will be explained later)
to calculated the overheads of migrating tasks.

C. Processor Set

In multiprocessor real-time systems, different processors
are used to execute tasks. We use P = {p1, p2, . . . , pl}
to denote the set of processors, where l is the number of
processors. Each processor pa is a 2-tuple, pa = (psa, TSa),

1Note that, this assumption is for concise expression. In real systems, if
task ⌧k 2 T is used by function Fi and Fj , we can use two tasks ⌧ik and
⌧jk , to represent ⌧k used in function Fi and Fj , respectively.

2To express a function with many starts (end) tasks, we can set a virtual
task, with empty operation, start before all the starts tasks (start after all the
end task) to be the start (end) task.

(a) (b) (c)

Fig. 2. Different types of network topologies: a. ring, b. mesh, c. tree

where a is the index of the processor. psa is the speed of the
processor. When task ⌧i running on processor pa, the number
of time slots needed for processor pa to complete task ⌧i,
represented by task completion tcia:

tcia =
ci
psa

(1)

TSa is the task set that can be completed by processor pa. This
parameter is for heterogeneous systems, as in such systems,
processors have different architectures, some tasks can only be
executed on some specific processors. If TSa = ;, it means
processor pa cannot be used to execute any task in the system.

Processors have independent local clocks, they are syn-
chronized with each other in the time domain through syn-
chronization protocol. The maximum difference between the
local clocks of any two processors in the networked systems
is called network precision (also called synchronization jitter)
which is a global constant. We denote the network precision
with �.

D. Network Channel Set

In multiprocessor real-time systems, processors are con-
nected through network channels. We use N ✓ P⇥P to denote
the set of network channel. na!n 2 N denotes the network
channel from processor pa to pb, where pa, pb 2 P, a 6= b.
Since we consider bi-directional network channel, we have
8na!b 2 N =) nb!a 2 N . We use nsa!b to represent the
speed of na!b.

Note that, define the network channel set as N ✓ P ⇥ P
makes the system model become very general which includes
any types of network topologies. For example, as shown in
Fig. 2, the network channel set for mesh topology (b in the
Fig. 2) equals to P ⇥P , while the ring and tree topologies is
the subset of P ⇥P . Moreover, this definition is also suitable
for processor with multi-cores. For example, for a processor A
with four cores, in this definition, can be represented as four
processors connect with network channels in mesh topology,
and the speed of networks is set based on the data transfer
speed inside the processor A.

When the data of the computed results of task ⌧i migrates
from processor pa to pb3, the time slots spent on network
channel, represented by tmi

a!b, can be calculated as:

tmi
a!b =

mi

nsa!b
(2)

3For conciseness, we say “task ⌧i migrates from processor pa to pb” to
mean “the data of the computed results of task ⌧i migrates from processor pa
to pb” in the reset of the paper.

Ĳ1

Ĳ2

Ĳ3

Ĳ5

Ĳ4

Ĳ6

(4,8)

(2,8) (12,4)

(4,16)

(2,4)

(2,4)

p1

Task Poset ()
Processor Set (P) and

Network Channel Set (N)

p2 p3

(2,{Ĳ1,Ĳ2,Ĳ3,Ĳ4,Ĳ5,Ĳ6})

(2,{Ĳ2,Ĳ3,Ĳ4,Ĳ5,Ĳ6}) (4,{Ĳ1,Ĳ3,Ĳ4,Ĳ5})

ns1->2=4

,T E

Function F=((),1,11),T E
Network precision į=1

ns3->1=1

ns2->1=4 ns1->3=1

ns3->2=2

ns2->3=2

Fig. 3. An example for scheduling multiprocessor real-time systems

Based on tmi
a!b, we can get the time instant that processor

pb receives the data of task ⌧i migrating from processor pa
through network channel na!b, represented by ria!b, as

ria!b = sia!b + tmi
a!b + � (3)

where, sia!b is the start time of ⌧i migrating through network
channel na!b, and � is the network precision.

For a distributed real-time system, different processors are
connected through network channels which are built by routers.
As different routers support different network protocols, some
tasks may not be migrated through some network channels.
To capture this characteristics, similar as the heterogeneous
processors, we also can define the heterogeneous network
channels. We use TSa!b to denote that task set that can be
transferred through network channel na!b.

E. Assumptions

Applied to this system model, we require that all the
parameters of the functions and tasks are known a prior.
This requirement makes the model become a generalization
of the widely studied period task model, in which all the
tasks in the system are released periodically. This means our
method applies more broadly than other methods which are
specified on period task model. To guarantee a certain level of
determinacy, in this paper, task preemption is not allowed.

To illustrate the defined system model, an exam-
ple of scheduling for multiprocessor real-time systems is
shown in Fig. 3. In this example, there are three pro-
cessors p1, p2, p3 in the system. These processors are
connected with each other through six network chan-
nels n1!2, n2!1, n1!3, n3!1, n2!3, n3!2, and these network
channels support all the migration of all the tasks in T . The
network precision � is 1. In the system, a hard real-time
function F = ((T,�), 1, 11) is waiting to be executed on the
processors. The task poset of the function is (T,�) which
consists of six tasks. Task dependency relations are described
in a directed acyclic graph. An edge starting from task ⌧i to
task ⌧j represented by a dotted line denotes a dependency
relation ⌧i � ⌧j .

IV. SYSTEM CONSTRAINTS

This subsection describes all the system constraints ex-
pressed in the sat model for the defined multiprocessor sys-

tems.

A. Constraint on start execution time of functions

Task set Ti corresponding to function Fi can start to run
only after the function is triggered. That is, the start execution
time of the start task of the poset (Ti,�) should be larger than
the triggered time of function Fi.

8Fi 2 F , 8pa 2 P
s⌧sia � ri

where symbol s⌧sia denotes the start execution time of task ⌧si
on processor pa.

B. Constraint on start time of task migration

If a task ⌧i migrates from processor pa to processor pb
through network channel na!b, it means i): task ⌧i has been
completed by processor pa; or ii): ⌧i has migrated to processor
pa from another processor. For the first case, task ⌧i can start
to migrate after it has been completed, and for the second
case, task ⌧i can start to migrate after it has already migrated
to processor pa.

8⌧i 2 T , 8na!b 2 N , 9nc!a 2 N
(sia!b � sia + tcia) _ (sia!b � ric!a)

where symbol sia!b denotes the start time of task ⌧i migrating
through network channel na!b, sia denotes the start execution
time of task ⌧i on processor pa.

C. Constraint on task dependency

For processor pa, if ⌧i � ⌧j , task ⌧j can start to run only
after ⌧i has been completed. Similar to the constraints on start
time of task migration, there are two cases. i): task ⌧i has
been completed by processor pa; ii): task ⌧i has migrated
to processor pa from another processor. For the first case,
⌧j can start to run after ⌧i has been completed, and for the
second case, ⌧j can start to run after ⌧i has already migrated
to processor pa.

8⌧i, ⌧j 2 T , 8pa 2 P, 9nb!a 2 N
⌧i � ⌧j =) (sja � sia + tcia) _ (sja � rib!a)

D. Constraint on execution of processors

A processor can execute only one task at a time. This is
interpreted as: there is no overlap of the execution time of any
two tasks.

8⌧i, ⌧j 2 T , i 6= j, 8pa 2 P
(sia � sja + tcja) _ (sja � sia + tcia)

E. Constraint on network channels

A network channel can transfer data of only one task at a
time. That is, there is no overlap of the migration time of any
two tasks on a network channel.

8⌧i, ⌧j 2 T , i 6= j, 8na!b 2 N
(sia!b � sja!b + tmj

a!b) _ (sja!b � sia!b + tmi
a!b)

P3

P2

P1

Time
1 3 5 7 92 4 6 8

Ĳ1

10 11

Ĳ2 Ĳ3 Ĳ5 Ĳ6

Ĳ1 Ĳ4

Ĳ1 migrates from p1 to p2 through
network n1->2

Ĳ4 migrates from p3 to p2 through
network n3->2

Fig. 4. The scheduling result for example shown in Fig. 3 by using the
proposed SMT-based scheduling

F. Constraint on heterogeneous processors

In heterogeneous systems, processors have different archi-
tectures, some tasks can only be executed on some specific
processors. For tasks that cannot be executed on some proces-
sors, the start execution time of the tasks in such processors
are set to +1, which means the tasks will never start to run
on these specific processors.

8pa 2 P, 8⌧i 2 T � TSa

sia = +1

G. Constraint on heterogeneous network channels

For a distributed real-time system, different processors are
connected through network channels which are built by routers.
As different routers support different network protocols, some
tasks may not be migrated through some network channels.
Similar as the constraint on heterogeneous processors, for
tasks that cannot migrate on some network channels, the start
migration time of the tasks in such network channels are set
to +1, which means the tasks will never start to migrate on
these specific network channels.

8na!b 2 N , 8⌧i 2 T � TSa!b

sia!b = +1

V. TARGET CONSTRAINTS

There are many targets can be considered when we de-
sign scheduling for real-time systems. Which objectives are
appropriate in a given situation depends, of course, upon the
application. In this section, we give design guidelines for
different scheduling targets.

A. Make all the functions meet their deadlines

Under normal workload conditions, the desired schedule
should make sure that every triggered function can be com-
pleted before its deadline.

8Fi 2 F , 9pa 2 P
s⌧eia + tc⌧eia di

where symbol s⌧eia is the start execution time of task ⌧ei on
processor pa, and tc⌧eia is the number of time slots needed for
processor pa to complete task ⌧ei.

Based on this scheduling target, recall the example shown
in Fig. 3, we can get the solution model M which defines

the values of the start time of task execution on processor, sja,
and the start time of task migration through network, sjb!c, for
8fi 2 F , 8⌧j 2 Ti, 8pa 2 P, 8nb!c 2 N . Based on the model
M, we can get the scheduling results as shown in Fig. 4. This
scheduling sequence can make the function F in Fig. 3 meet
its deadline. Some characteristics of this scheduling sequence
should be noticed:

• Task ⌧1 has been executed on processor p1 from system
time t = 1 to t = 3, and it has also been executed
on processor p3 from system time t = 2 to t = 3.
This means, the SMT-based scheduling framework can
handle the parallel execution of tasks, and can make a task
repeatedly run on different processors when such repeated
execution is necessary.

• Task ⌧2 runs on processor p2 from t = 6 to t = 7.
Although task ⌧2 needs the computed results from com-
pleting task ⌧1, such computed results can not only be
obtained by completing task ⌧1 on processor p2 itself,
but also can be obtained by transferring the computed
results from other processor that has completed task ⌧1.
Specified to this example, at system time t = 6, processor
p2 gets the computed results of task ⌧1 from processor p1.

B. Maximize obtained values of completed functions

Under normal workload conditions, there exist a schedule
can make all the triggered functions meet their deadlines.
However, in practical environment, system workload may vary
widely because of dynamic changes of work environment.
Once system workload becomes too heavy so that there does
not exist a feasible schedule can make all the functions meet
their deadlines, we say the system is overloaded. When system
is overload, one reasonable scheduling target is to maximize
the obtained values of the completed functions.

Let symbol v be the obtained values of the completed
functions, and its initial value is set to be 0. For functions
with hard deadlines, system can obtain their values only when
such functions have been completed before their deadlines.

8Fi 2 FH
if 9pa 2 P, s⌧eia + tc⌧eia di

v := v + vi
end

For completing functions Fi with soft deadlines, the value that
the system can obtain is according to the coefficient functions
f(cpi� di), where cpi is the time when the system completes
the function. As more earlier completing the function, more
values the system can obtain, the completing time should
choose the earliest time that completing the function Fi among
all the processors. Based on this analysis, we can get the
formula

8Fi 2 FS, 9pa 2 P
if s⌧eia = min(s⌧eiP)

v := v + vi ⇤ f(s⌧eia + tc⌧eia � di)

end

where, function min(s⌧eiP) returns the minimum value s⌧ei

among all the processors in set P . Let symbol sv denote
the maximum obtained values of the completed functions, and

obviously, sv is no less than 0 and no larger than
P

vi for
8Fi 2 F . The constraints on the scheduling target can be
expressed as:

v = sv

C. Make hard deadline functions meet deadlines while maxi-
mizing obtained values of the completed soft deadline functions

Since hard deadline functions usually play important roles
in a real-time system, when system is under overload condi-
tion, a reasonable scheduling target is to first make sure that all
the hard deadline functions meet their deadlines, meanwhile,
maximizing obtained values of the completed soft deadline
functions. To make hard deadline functions meet deadlines,
we can get

8Fi 2 FH, 9pa 2 P
s⌧eia + tc⌧eia di

To maximize the obtained value of the completed soft dead-
line functions, the formula is similar as it for the previous
scheduling target. Let symbol v be the obtained values of the
completed functions, and its initial value is set to be 0.

8Fi 2 FS, 9pa 2 P
if s⌧eia = min(s⌧eiP)

v := v + vi ⇤ f(s⌧eia + tc⌧eia � di)

end

Let symbol sv denote the maximum obtained values of the
completed functions, and obviously, sv is no less than 0 and no
larger than

P
vi for 8Fi 2 FS . The constraints on scheduling

target can be expressed as:

v = sv

VI. RELATED WORK

The research on real-time scheduling has lasted for
decades, many research have been conducted on this area. For
research on designing scheduling for multiprocessor systems,
a comprehensive survey can be found in [5]. In [8], the
Proportionate Fair (Pfair) algorithm was introduced. Pfair
is a schedule generation algorithm which is applicable to
periodic tasksets with implicit deadlines. It is based on the
idea of fluid scheduling, where each task makes progress
proportionate to its utilization. Pfair scheduling divides the
timeline into equal length quanta or slots. Authors in [8]
showed that the Pfair algorithm is optimal for periodic tasksets
with implicit deadlines. In [9], authors extended the PFair
approach to sporadic tasksets, showing that the EPDF (earliest
pseudodeadline first) algorithm, a variant of Pfair, is optimal
for sporadic tasksets with implicit deadlines executing on two
processors, but is not optimal for more than two processors.

Some approaches focus on studying task and messages
schedule co-synthesis in switched time-triggered networks.
In [10], authors studied time-triggered distributed systems
where periodic application tasks are mapped onto different
end stations (processing units) communicating over a switched
Ethernet network. They try to solve the scheduling problem
using a MIP multi-objective optimization formulation. In [11],
authors studied the system consisting of communicating event-
and time-triggered tasks running on distributed nodes. These

tasks are scheduled in conjunction with the associated bus
messages by using dynamic and static scheduling methods,
respectively.

Hitherto, most of the presented methods are either lim-
ited to specific task model (e.g., [8, 10] limited to periodic
tasksets) or simple system architecture (e.g., [9] limited to two
processors, [11] simple bus network topologies). Compared
with these works, our proposed framework is flexible and
sufficiently general to apply to various kinds of real-time
systems and various scheduling targets, which makes that our
framework applies much more widely.

VII. CONCLUSION

In this paper, based on satisfiability modulo theories
(SMT), we provide a framework to design scheduling for real-
time systems. In the framework, the problem of scheduling
is treated as a satisfiability problem. After using first-order
language to formalize the satisfiability problem, a SMT solver
is employed to solver such a problem. An optimal schedule
can be generated based on a solution model returned by the
SMT solver. To demonstrate the practicality of the framework,
we give design guidelines for real-time systems with multi-
processor. Through the demonstration, the framework is found
flexible and sufficiently general to apply to different kinds of
real-time systems. By giving the practical design guidelines,
we believe that our framework can benefit system designers to
efficiently design scheduling.

For the future work, in order to study the performance of
the SMT-based scheduling framework in a real application,
we would like to implement the proposed framework in a real
multiprocessor real-time system.

REFERENCES

[1] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9, pp. 1250–
1258, Apr. 2009.

[2] C. Barrett, R. Sebastiani, R. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” Handbook of Satisfiability, vol. 185. IOS Press, 2009.

[3] L.d. Moura N. Bjrner, “Satisfiability Modulo Theories: An Appetizer,”
Formal Methods: Foundations and Applications, vol. 5902, pp. 23–26,
2009.

[4] S.S. Craciunas and R.S. Oliver, “SMT-based Task- and Network-level
Static Schedule Generation for Time-Triggered Networked Systems,”
Proc. 22th Int. Conf. on Real-Time Networks and Systems, NY, USA,
pp. 45–54, October, 2014.

[5] R.I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 5, pp. 35:1–
35:44, Oct. 2011.

[6] L. Moura and N. Bjrner, “Z3: an efficient SMT solver,” Proc. 14th Int.
Conf. on Tools and Algorithms for the Construction and Anal. of Syst.,
Budapest, Hungary, LNCS 4963, pp. 337–340, Springer-Verlag, 2008.

[7] B. Dutertre, “Yices 2.2,” Proc. 26th Int. Conf. on Comput. Aided
Verification, Vienna, Austria, LNCS 8559, pp. 737–744, Springer In-
ternational Publishing, 2014.

[8] S.K. Baruah, N. Cohen, G. Plaxton, and D. Varvel, “A notion of fairness
in resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[9] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” Proc. of
the Euromicro Conference on Real-Time Systems, 2000.

[10] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task- and
network-level schedule co-synthesis of Ethernet-based time-triggered
systems,” Proc. of ASP-DAC, 2014.

[11] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems,” Proc. of CODES,
2002.

	CD5C190D-5742-4E4B-A1AC-D2270009B789: On

