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Abstract16

Suppose that we are given two independent sets Ib and Ir of a graph such that
|Ib| = |Ir|, and imagine that a token is placed on each vertex in Ib. Then,
the sliding token problem is to determine whether there exists a sequence of
independent sets which transforms Ib into Ir so that each independent set in
the sequence results from the previous one by sliding exactly one token along
an edge in the graph. This problem is known to be PSPACE-complete even
for planar graphs, and also for bounded treewidth graphs. In this paper, we
thus study the problem restricted to trees, and give the following three results:
(1) the decision problem is solvable in linear time; (2) for a yes-instance, we can
find in quadratic time an actual sequence of independent sets between Ib and
Ir whose length (i.e., the number of token-slides) is quadratic; and (3) there
exists an infinite family of instances on paths for which any sequence requires
quadratic length.

Keywords: combinatorial reconfiguration, graph algorithm, independent set,17

sliding token, tree18

1. Introduction19

Recently, reconfiguration problems have attracted the attention in the field20

of theoretical computer science. The problem arises when we wish to find a21

step-by-step transformation between two feasible solutions of a problem such22

that all intermediate results are also feasible and each step conforms to a fixed23

reconfiguration rule (i.e., an adjacency relation defined on feasible solutions of24

the original problem). This kind of reconfiguration problem has been studied25
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Figure 1: A sequence ⟨I1, I2, . . . , I5⟩ of independent sets of the same graph, where the vertices
in independent sets are depicted by large black circles (tokens).

extensively for several well-known problems, including independent set [2, 5,1

7, 11, 12, 14, 16, 20, 22, 23, 25], satisfiability [10, 21], set cover, clique,2

matching [14], vertex-coloring [3, 6, 8, 25], list edge-coloring [15, 18],3

list L(2, 1)-labeling [17], subset sum [13], shortest path [4, 19], and so4

on. (See also a recent survey [24].)5

1.1. Sliding token6

The sliding token problem was introduced by Hearn and Demaine [11] as7

a one-player game, which can be seen as a reconfiguration problem for inde-8

pendent set. Recall that an independent set of a graph G is a vertex subset9

of G in which no two vertices are adjacent. (Figure 1 depicts five different in-10

dependent sets in the same graph.) Suppose that we are given two independent11

sets Ib and Ir of a graph G = (V,E) such that |Ib| = |Ir|, and imagine that a12

token (coin) is placed on each vertex in Ib. Then, the sliding token problem13

is to determine whether there exists a sequence ⟨I1, I2, . . . , Iℓ⟩ of independent14

sets of G such that15

(a) I1 = Ib, Iℓ = Ir, and |Ii| = |Ib| = |Ir| for all i, 1 ≤ i ≤ ℓ; and16

(b) for each i, 2 ≤ i ≤ ℓ, there is an edge {u, v} in G such that Ii−1 \ Ii = {u}17

and Ii\Ii−1 = {v}, that is, Ii can be obtained from Ii−1 by sliding exactly18

one token on a vertex u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E.19

Such a sequence is called a reconfiguration sequence between Ib and Ir. Figure 120

illustrates a reconfiguration sequence ⟨I1, I2, . . . , I5⟩ of independent sets which21

transforms Ib = I1 into Ir = I5. Hearn and Demaine proved that sliding22

token is PSPACE-complete for planar graphs, as an example of the application23

of their tool, called the nondeterministic constraint logic model, which can be24

used to prove PSPACE-hardness of many puzzles and games [11], [12, Sec. 9.5].25

1.2. Related and known results26

As the (ordinary) independent set problem is a key problem among thou-27

sands of NP-complete problems, sliding token plays an important role since28

several PSPACE-hardness results have been proved using reductions from it.29

In addition, reconfiguration problems for independent set (ISReconf, for30

short) have been studied under different reconfiguration rules, as follows.31

• Token Sliding (TS rule) [6, 7, 11, 12, 20, 25]: This rule corresponds to32

sliding token, that is, we can slide a single token only along an edge of33

a graph.34
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Figure 2: Two distinct independent sets Ib and Ir of the same star. This is a yes-instance for
ISReconf under the TJ rule, but is a no-instance for the sliding token problem.

• Token Jumping (TJ rule) [7, 16, 20, 25]: A single token can “jump” to1

any vertex (including a non-adjacent one) if it results in an independent2

set.3

• Token Addition and Removal (TAR rule) [2, 5, 14, 20, 22, 23, 25]: We can4

either add or remove a single token at a time if it results in an independent5

set of cardinality at least a given threshold. Therefore, under the TAR6

rule, independent sets in the sequence do not have the same cardinality.7

We note that the existence of a desired sequence depends deeply on the recon-8

figuration rules. (See Figure 2 for example.) However, ISReconf is PSPACE-9

complete under any of the three reconfiguration rules for planar graphs [6,10

11, 12], for perfect graphs [20], and for bounded bandwidth graphs [25]. The11

PSPACE-hardness implies that, unless NP = PSPACE, there exists an instance12

of sliding token which requires a super-polynomial number of token-slides13

even in a minimum-length reconfiguration sequence. In such a case, tokens14

should make “detours” to avoid violating independence. (For example, see the15

token placed on the vertex w in Figure 1(a); it is moved twice even though16

w ∈ Ib ∩ Ir.)17

We here explain only the results which are strongly related to this paper,18

that is, sliding token on trees; see the references above for the other results.19

1.2.1. Results for TS rule (sliding token)20

Kamiński et al. [20] gave a linear-time algorithm to solve sliding token21

for cographs (also known as P4-free graphs). They also showed that, for any22

yes-instance on cographs, two given independent sets Ib and Ir have a reconfig-23

uration sequence such that no token makes a detour.24

Very recently, Bonsma et al. [7] proved that sliding token can be solved in25

polynomial time for claw-free graphs. Note that neither cographs nor claw-free26

graphs contain trees as a (proper) subclass. Thus, the complexity status for27

trees was open under the TS rule.28

1.2.2. Results for trees29

In contrast to the TS rule, it is known that ISReconf can be solved in30

linear time under the TJ and TAR rules for even-hole-free graphs [20], which31

include trees. Indeed, the answer is always “yes” under the two rules when32

restricted to even-hole-free graphs (as long as two given independent sets have33
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the same cardinality for the TJ rule.) Furthermore, tokens never make detours1

in even-hole-free graphs under the TJ and TAR rules.2

On the other hand, under the TS rule, tokens are required to make detours3

even in trees. (See Figure 1.) In addition, there are no-instances for trees under4

the TS rule. (See Figure 2.) These make the problem much more complicated,5

and we think they are the main reasons why sliding token for trees was6

unsolved, even though this is certainly a natural question under the recent7

intensive algorithmic research on ISReconf [2, 5, 7, 16, 20, 23].8

1.3. Our contribution9

In this paper, we first prove that the sliding token problem is solvable10

in O(n) time for any tree T with n vertices. Therefore, we can conclude that11

ISReconf for trees is in P (indeed, solvable in linear time) under any of the12

three reconfiguration rules.13

It is remarkable that there exists an infinite family of instances on paths14

for which any reconfiguration sequence requires Ω(n2) length, although we can15

decide if it is a yes-instance in O(n) time. For example, consider a path16

(v1, v2, . . . , v8k) with n = 8k vertices for any positive integer k, and let Ib =17

{v1, v3, v5, . . . , v2k−1} and Ir = {v6k+2, v6k+4, . . . , v8k}. In this yes-instance,18

any token must be slid Θ(n) times, and hence any reconfiguration sequence re-19

quires Θ(n2) length to slide them all. As the second result of this paper, we20

give an O(n2)-time algorithm which finds an actual reconfiguration sequence of21

length O(n2) between two given independent sets for a yes-instance.22

Since the treewidth of any graph G can be bounded by the bandwidth of G,23

the result of [25] implies that sliding token is PSPACE-complete for bounded24

treewidth graphs. (See [1] for the definition of treewidth.) Thus, there exists25

an instance on bounded treewidth graphs which requires a super-polynomial26

number of token-slides even in a minimum-length reconfiguration sequence un-27

less NP = PSPACE. Therefore, it is interesting that any yes-instance on a28

tree, whose treewidth is one, has an O(n2)-length reconfiguration sequence even29

though trees require detours for transformations.30

An early version of the paper has been presented in [9]. However, we note31

that the running time of our algorithm was improved from quadratic [9] to32

linear.33

1.4. Technical overview34

We here explain our main ideas; formal descriptions will be given later.35

We say that a token on a vertex v is “rigid” under an independent set I of a36

tree T if it cannot be slid at all, that is, v ∈ I ′ holds for any independent set I ′37

of T which is reconfigurable from I. (For example, the four tokens in Figure 238

are rigid.) Our algorithm is based on the following two key points.39

(1) In Lemma 1, we will give a simple but non-trivial characterization of rigid40

tokens, based on which we can find all rigid tokens of two given indepen-41

dent sets Ib and Ir in O(n) time. Note that, if Ib and Ir have different42

placements of rigid tokens, then it is a no-instance (Observation 1).43
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Figure 3: Subtree Tu
v in the whole tree T .

(2) Otherwise, we obtain a forest by deleting the vertices with rigid tokens1

together with their neighbors (Lemma 5). We will prove in Lemma 6 that2

the answer is “yes” as long as each tree in the forest contains the same3

number of tokens in Ib and Ir.4

2. Preliminaries5

In this section, we introduce some basic terms and notation.6

2.1. Graph notation7

In the sliding token problem, we may assume without loss of generality8

that graphs are simple and connected. For a graph G, we sometimes denote by9

V (G) and E(G) the vertex set and edge set of G, respectively.10

In a graph G, a vertex w is said to be a neighbor of a vertex v if {v, w} ∈11

E(G). For a vertex v in G, let N(G, v) = {w ∈ V (G) | {v, w} ∈ E(G)},12

and let N [G, v] = N(G, v) ∪ {v}. For a subset S ⊆ V (G), we simply write13

N [G,S] =
∪

v∈S N [G, v]. For a vertex v of G, we denote by degG(v) the degree14

of v in G, that is, degG(v) = |N(G, v)|. For a subgraph G′ of a graph G, we15

denote by G \G′ the subgraph of G induced by the vertices in V (G) \ V (G′).16

Let T be a tree. For two vertices v and w in T , the unique path between v17

and w is simply called the vw-path in T . We denote by dist(v, w) the number18

of edges in the vw-path in T . For two adjacent (and hence distinct) vertices u19

and v of a tree T , let Tu
v be the subtree of T obtained by regarding u as the20

root of T and then taking the subtree rooted at v which consists of v and all21

descendants of v. (See Figure 3.) It should be noted that u is not contained in22

the subtree Tu
v .23

2.2. Definitions for sliding token24

Let Ii and Ij be two independent sets of a graph G such that |Ii| = |Ij |. If25

there exists exactly one edge {u, v} in G such that Ii\Ij = {u} and Ij \Ii = {v},26

then we say that Ij can be obtained from Ii by sliding the token on u ∈ Ii to27

its adjacent vertex v along the edge {u, v}, and denote it by Ii ↔ Ij . We note28

that the tokens are unlabeled, while the vertices in a graph are labeled. We29

sometimes omit saying (the label of) the vertex on which a token is placed, and30

simply say “a token in an independent set I.”31

A reconfiguration sequence between two independent sets I1 and Iℓ of G is32

a sequence ⟨I1, I2, . . . , Iℓ⟩ of independent sets of G such that Ii−1 ↔ Ii for i =33

2, 3, . . . , ℓ. We sometimes write I ∈ S if an independent set I of G appears in the34
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Figure 4: An independent set I of a tree T , where t1, t2, t3, t4 are (T, I)-rigid tokens and
t5, t6, t7 are (T, I)-movable tokens. For the subtree T ′, tokens t6, t7 are (T ′, I ∩ T ′)-rigid.

reconfiguration sequence S. We write I1
G↭ Iℓ if there exists a reconfiguration1

sequence S between I1 and Iℓ such that all independent sets I ∈ S satisfy2

I ⊆ V (G); we here define the notation emphasized with the graph G, because3

we will apply this notation to a subgraph of G. Note that any reconfiguration4

sequence is reversible, that is, I1
G↭ Iℓ if and only if Iℓ

G↭ I1. The length5

of a reconfiguration sequence S is defined as the number of independent sets6

contained in S. For example, the length of the reconfiguration sequence in7

Figure 1 is 5.8

Given two independent sets Ib and Ir of a graph G, the sliding token9

problem is to determine whether Ib
G↭ Ir or not. We may assume without10

loss of generality that |Ib| = |Ir|; otherwise the answer is clearly “no.” Note11

that sliding token is a decision problem asking for the existence of a recon-12

figuration sequence between Ib and Ir, and hence it does not ask for an actual13

reconfiguration sequence. We always denote by Ib and Ir the initial and target14

independent sets of G, respectively.15

3. Algorithm for Trees16

In this section, we give the main result of this paper.17

Theorem 1. The sliding token problem can be solved in linear time for trees.18

As a proof of Theorem 1, we give an O(n)-time algorithm which solves19

sliding token for a tree with n vertices.20

3.1. Rigid tokens21

In this subsection, we formally define the concept of rigid tokens, and give22

their nice characterization.23

Let T be a tree, and let I be an independent set of T . We say that a token24

on a vertex v ∈ I is (T, I)-rigid if v ∈ I ′ holds for any independent set I ′ of T25

such that I
T↭ I ′. Conversely, if a token on a vertex v ∈ I is not (T, I)-rigid,26

then it is (T, I)-movable; in other words, there exists an independent set I ′27

such that v ̸∈ I ′ and I
T↭ I ′. For example, in Figure 4, the tokens t1, t2, t3, t428

are (T, I)-rigid, while the tokens t5, t6, t7 are (T, I)-movable. Note that, even29

though t6 and t7 cannot be slid to any neighbor in T under I, we can slide them30

after sliding t5 downward.31
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Figure 5: (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u.

We then extend the concept of rigid/movable tokens to subgraphs of T . For1

any subgraph T ′ of T , we denote simply I ∩ T ′ = I ∩ V (T ′). Then, a token on2

a vertex v ∈ I ∩ T ′ is (T ′, I ∩ T ′)-rigid if v ∈ J holds for any independent set J3

of T ′ such that I ∩ T ′ T ′

↭ J ; otherwise it is (T ′, I ∩ T ′)-movable. For example,4

in Figure 4, tokens t6 and t7 are (T ′, I ∩ T ′)-rigid even though they are (T, I)-5

movable in the whole tree T . Note that, since the reconfiguration is restricted6

only to the subgraph T ′, we cannot use any vertex (and hence any edge) in T \T ′
7

during the reconfiguration. Furthermore, the vertex subset J ∪
(
I ∩ (T \ T ′)

)
8

does not necessarily form an independent set of the whole tree T .9

We now give our first key lemma, which gives a characterization of rigid10

tokens. (See also Figure 5(a) for the claim (b) below.)11

Lemma 1. Let I be an independent set of a tree T , and let u be a vertex in I.12

(a) Suppose that |V (T )| = |{u}| = 1. Then, the token on u is (T, I)-rigid.13

(b) Suppose that |V (T )| ≥ 2. Then, the token on u is (T, I)-rigid if and only14

if, for every neighbor v ∈ N(T, u), there exists a vertex w ∈ I ∩N(Tu
v , v)15

such that the token on w is (T v
w, I ∩ T v

w)-rigid.16

Proof. Obviously, the claim (a) holds. In the following, we thus assume that17

|V (T )| ≥ 2 and prove the claim (b).18

We first show the if direction. Since we can slide a token only along an edge19

of T , if the token t on u is not (T, I)-rigid (and hence is (T, I)-movable), then20

it must be slid to some neighbor v ∈ N(T, u). (See Figure 5(a).) However, by21

the assumption, there exists a vertex w ∈ I ∩N(Tu
v , v) such that the token on22

w is (T v
w, I ∩ T v

w)-rigid. We can thus conclude that t is (T, I)-rigid.23

We then show the only-if direction by taking a contrapositive. Suppose that24

u has a neighbor v ∈ N(T, u) such that either I ∩N(Tu
v , v) = ∅ or all tokens on25

w ∈ I ∩ N(Tu
v , v) are (T v

w, I ∩ T v
w)-movable. (See Figure 5(b).) Then, we will26

prove that the token t on u is (T, I)-movable; in particular, we can slide t from u27

to v. Since any token t′ on a vertex w ∈ I∩N(Tu
v , v) is (T

v
w, I∩T v

w)-movable, we28

can slide t′ to some vertex in T v
w via a reconfiguration sequence Sw in T v

w. Recall29

that only the vertex v is adjacent with a vertex in T v
w and v ̸∈ I. Therefore, Sw30

can be naturally extended to a reconfiguration sequence S in the whole tree T31

such that I ′ ∩
(
T \ T v

w

)
= I ∩

(
T \ T v

w

)
holds for any independent set I ′ ∈ S of32

T . Apply this process to all tokens on vertices in I ∩N(Tu
v , v), and obtain an33

independent set I ′′ of T such that I ′′ ∩ N(Tu
v , v) = ∅. Then, we can slide the34

token t on u to v. Thus, t is (T, I)-movable. □35
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The following lemma is useful for proving the correctness of our algorithm1

in Section 3.3.2

Lemma 2. Let I be an independent set of a tree T such that all tokens are3

(T, I)-movable, and let v be a vertex such that v ̸∈ I. Then, there exists at most4

one neighbor w ∈ I ∩N(T, v) such that the token on w is (T v
w, I ∩ T v

w)-rigid.5

Proof. Suppose for a contradiction that there exist two neighbors w and w′
6

in I ∩ N(T, v) such that the tokens on w and w′ are (T v
w, I ∩ T v

w)-rigid and7

(T v
w′ , I ∩ T v

w′)-rigid, respectively. (See Figure 6.) Since the token t on w is8

(T v
w, I ∩ T v

w)-rigid but is (T, I)-movable, there is a reconfiguration sequence St9

starting from I which slides t to v. However, before sliding t to v, St must slide10

the token t′ on w′ to some vertex in N(T v
w′ , w′). This contradicts the assumption11

that t′ is (T v
w′ , I ∩ T v

w′)-rigid. □12

3.2. Linear-time algorithm13

In this subsection, we describe an algorithm to solve the sliding token14

problem for trees, and estimate its running time; the correctness of the algorithm15

will be proved in Section 3.3.16

Let T be a tree with n vertices, and let Ib and Ir be two given independent17

sets of T . For an independent set I of T , we denote by R(I) the set of all vertices18

in I on which (T, I)-rigid tokens are placed. Then, the following algorithm19

determines whether Ib
T↭ Ir or not.20

Step 1. Compute R(Ib) and R(Ir). Return “no” if R(Ib) ̸= R(Ir); otherwise21

go to Step 2.22

Step 2. Delete the vertices in N [T,R(Ib)] = N [T,R(Ir)] from T , and ob-23

tain a forest F consisting of q trees T1, T2, . . . , Tq. Return “yes” if24

|Ib ∩ Tj | = |Ir ∩ Tj | holds for every j ∈ {1, 2, . . . , q}; otherwise return25

“no.”26

We now show that our algorithm above runs in O(n) time. Clearly, Step 227

can be done in O(n) time, and hence we will show that Step 1 can be executed28

in O(n) time.29

We first give the following property of rigid tokens on a tree, which says that30

deleting movable tokens does not affect the rigidity of the other tokens.31

8
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Lemma 3. Let I be an independent set of a tree T . Assume that the token on1

a vertex x ∈ I is (T, I)-movable. Then, for every vertex u ∈ I \ {x}, the token2

on u is (T, I)-rigid if and only if it is (T, I \ {x})-rigid.3

Proof. The if direction is trivially true, because we cannot make a rigid to-4

ken movable by adding another token. We thus show the only-if direction by5

contradiction.6

Let I ′ = I \ {x}. Suppose that u ∈ I is a closest vertex to x such that its7

token is (T, I)-rigid but (T, I ′)-movable. Let v be the neighbor of u such that8

the subtree Tu
v contains x. (See Figure 7.) Note that x ̸= v since x, u ∈ I9

and v is a neighbor of u. Since the token tu on u is (T, I)-rigid, by Lemma 110

the vertex v ∈ N(T, u) has at least one neighbor w ∈ I ∩ N(Tu
v , v) such that11

the token tw on w is (T v
w, I ∩ T v

w)-rigid. Indeed, tw is (T, I)-rigid, because tu is12

assumed to be (T, I)-rigid. Thus, we know that x ̸= w since the token tx on x13

is (T, I)-movable.14

First, consider the case where x is contained in a subtree T v
w′ for some15

neighbor w′ of v other than w. (See Figure 7(a).) Then, I ′∩T v
w = I ∩T v

w. Since16

tw is (T v
w, I ∩ T v

w)-rigid, it is also (T v
w, I

′ ∩ T v
w)-rigid. Therefore, by Lemma 117

the token tu is (T, I ′)-rigid. This contradicts the assumption that tu is (T, I ′)-18

movable.19

We thus consider the case where x ∈ V (T v
w)\{w}. (See Figure 7(b).) Recall20

that I ′ is obtained by deleting only x from I. Then, since tu is (T, I)-rigid but21

(T, I ′)-movable, there must exist a reconfiguration sequence such that the token22

tu slides and its first slide is from u to v. However, before executing this token-23

slide, we have to slide tw to some vertex in N(T v
w, w). Thus, tw is (T v

w, I
′ ∩T v

w)-24

movable, and hence it is also (T, I ′)-movable. Since tw is (T, I)-rigid and w is25

strictly closer to x ∈ V (T v
w) than u, this contradicts the assumption that u is a26

closest vertex to x such that its token is (T, I)-rigid but (T, I ′)-movable. □27

Then, the following lemma proves that Step 1 can be executed in O(n) time.28

Lemma 4. For an independent set I of a tree T with n vertices, R(I) can be29

computed in O(n) time.30

Proof. Lemma 3 implies that the set R(I) of all (T, I)-rigid tokens in I can be31

found by removing all (T, I)-movable tokens in I. Observe that, if I contains32

(T, I)-movable tokens, then at least one of them can be immediately slid to33
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one of its neighbors. That is, there is a token on u ∈ I which has a neighbor1

w ∈ N(T, u) such that N(T,w) ∩ I = {u}. Then, the following algorithm2

efficiently finds and removes such tokens iteratively.3

Step A. Define and compute degI(w) = |N(T,w) ∩ I| for all vertices w ∈4

V (T ).5

Step B. Define and computeM = {u ∈ I | ∃w ∈ N(T, u) such that degI(w) =6

1}, that is, M is the set of tokens that can be immediately slid.7

Step C. Repeat the following steps (i)–(iii) until M = ∅.8

(i) Select an arbitrary vertex u ∈ M , and remove it from M and9

I.10

(ii) Update degI(w) := degI(w)−1 for each neighbor w ∈ N(T, u).11

(iii) If degI(w) becomes one by the update (ii) above, then add12

the vertex u′ ∈ N(T,w) ∩ I into M .13

Step D. Output I. Note that, since M = ∅, all tokens in I are now (T, I)-14

rigid.15

Clearly, Steps A, B and D can be done in O(n) time. We now show that16

Step C takes only O(n) time. Each vertex in I can be selected at most once as17

u at Step C-(i). For the selected vertex u, Step C-(ii) takes O(degT (u)) time for18

updating degI(w) of its neighbors w ∈ N(T, u). Each vertex in V (T ) \ I can be19

selected at most once as w at Step C-(iii). For the selected vertex w, Step C-(iii)20

takes O(degT (w)) time for finding u′ ∈ N(T,w) ∩ I. Therefore, Step C takes21

O
(∑

v∈V (T ) degT (v)
)
= O(n) time in total. □22

Therefore, Step 1 of our algorithm can be done in O(n) time, and hence the23

algorithm runs in linear time in total.24

3.3. Correctness of the algorithm25

In this subsection, we prove that the O(n)-time algorithm in Section 3.226

correctly determines whether Ib
T↭ Ir or not, for two given independent sets Ib27

and Ir of a tree T .28

We first show the correctness of Step 1.29

Observation 1. Suppose that R(Ib) ̸= R(Ir) for two given independent sets Ib30

and Ir of a tree T . Then, it is a no-instance.31

Proof. By the definition of rigid tokens, R(Ib) = R(I ′) holds for any inde-32

pendent set I ′ of T such that Ib
T↭ I ′. Therefore, there is no reconfiguration33

sequence between Ib and Ir if R(Ir) ̸= R(Ib). □34

We then show the correctness of Step 2. We first claim that deleting the35

vertices with rigid tokens together with their neighbors does not affect the re-36

configurability.37
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Lemma 5. Suppose that R(Ib) = R(Ir) for two given independent sets Ib and1

Ir of a tree T , and let F be the forest obtained by deleting the vertices in2

N [T,R(Ib)] = N [T,R(Ir)] from T . Then, Ib
T↭ Ir if and only if Ib∩F

F↭ Ir∩F .3

Furthermore, all tokens in Ib∩F are (F, Ib∩F )-movable, and all tokens in Ir∩F4

are (F, Ir ∩ F )-movable.5

Proof. We first prove the if direction. Suppose that Ib∩F
F↭ Ir∩F , and hence6

there exists a reconfiguration sequence SF between Ib ∩ F and Ir ∩ F . Then,7

for each independent set I ∈ SF of F , the vertex subset R(Ib) ∪ I = R(Ir) ∪ I8

forms an independent set of T since F is obtained by deleting all vertices in9

N [T,R(Ib)] = N [T,R(Ir)]. Therefore, SF can be extended to a reconfiguration10

sequence between Ib and Ir of T . We thus have Ib
T↭ Ir.11

We then prove the only-if direction. Suppose that Ib
T↭ Ir, and hence12

there exists a reconfiguration sequence ST between Ib and Ir. Then, for any13

independent set I ∈ ST , we have Ib
T↭ I and I

T↭ Ir, and hence by the14

definition of rigid tokens R(Ib) = R(Ir) ⊆ I holds. Furthermore, I \ R(Ib) =15

I \R(Ir) is a vertex subset of V (F ) since no token can be placed on any neighbor16

of R(Ib) = R(Ir). Therefore, I \R(Ib) = I \R(Ir) forms an independent set of F .17

For two consecutive independent sets Ii−1 and Ii in ST , let Ii−1 \ Ii = {u} and18

Ii \ Ii−1 = {v}. Since u /∈ Ii and v /∈ Ii−1, neither u nor v are in R(Ib) = R(Ir).19

Therefore, we have u, v ∈ V (F ), and hence the edge {u, v} is in E(F ). Then,20

we can obtain a reconfiguration sequence between Ib∩F and Ir∩F by replacing21

all independent sets I ∈ ST with I ∩ F . We thus have Ib ∩ F
F↭ Ir ∩ F .22

We finally prove that all tokens in Ib ∩ F are (F, Ib ∩ F )-movable. (The23

proof for the tokens in Ir ∩F is the same.) Notice that each token t on a vertex24

v in Ib ∩ F is (T, Ib)-movable; otherwise t ∈ R(Ib). Therefore, there exists an25

independent set I ′ of T such that v ̸∈ I ′ and Ib
T↭ I ′. Then, Ib ∩ F

F↭ I ′ ∩ F26

as we have proved above, and hence t is (F, Ib ∩ F )-movable. □27

Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a28

tree T . Let F be the forest consisting of q trees T1, T2, . . . , Tq, which is obtained29

from T by deleting the vertices in N [T,R(Ib)] = N [T,R(Ir)]. Since we can slide30

a token only along an edge of F , we clearly have Ib ∩ F
F↭ Ir ∩ F if and only31

if Ib ∩ Tj
Tj↭ Ir ∩ Tj for all j ∈ {1, 2, . . . , q}. Furthermore, Lemma 5 implies32

that, for each j ∈ {1, 2, . . . , q}, all tokens in Ib ∩ Tj are (Tj , Ib ∩ Tj)-movable;33

similarly, all tokens in Ir ∩ Tj are (Tj , Ir ∩ Tj)-movable.34

We now give our second key lemma, which completes the correctness proof35

of our algorithm.36

Lemma 6. Let Ib and Ir be two independent sets of a tree T such that all37

tokens in Ib and Ir are (T, Ib)-movable and (T, Ir)-movable, respectively. Then,38

Ib
T↭ Ir if and only if |Ib| = |Ir|.39

The only-if direction of Lemma 6 is trivial, and hence we prove the if direc-40

tion. In our proof, we do not reconfigure Ib into Ir directly, but reconfigure both41
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v

u

w

Figure 8: A degree-1 vertex v of a tree T which is safe.

Ib and Ir into some independent set I∗ of T . Note that, since any reconfiguration1

sequence is reversible, Ib
T↭ I∗ and Ir

T↭ I∗ imply that Ib
T↭ Ir.2

We say that a degree-1 vertex v of T is safe if its unique neighbor u has at3

most one neighbor w of degree more than one. (See Figure 8.) Note that any4

tree has at least one safe degree-1 vertex.5

As the first step of the if direction proof, we give the following lemma.6

Lemma 7. Let I be an independent set of a tree T such that all tokens in I are7

(T, I)-movable, and let v be a safe degree-1 vertex of T . Then, there exists an8

independent set I ′ such that v ∈ I ′ and I
T↭ I ′.9

Proof. Suppose that v ̸∈ I; otherwise the lemma clearly holds. We will show10

that one of the closest tokens from v can be slid to v. Let M = {w ∈ I |11

dist(v, w) = minx∈I dist(v, x)}. Let w be an arbitrary vertex in M , and let12

(p0 = v, p1, . . . , pℓ = w) be the vw-path in T . (See Figure 9.) If ℓ = 1 and hence13

p1 ∈ I, then we can simply slide the token on p1 to v. Thus, we may assume14

that ℓ ≥ 2.15

We note that no token is placed on the vertices p0, . . . , pℓ−1 and the neighbors16

of p0, . . . , pℓ−2, because otherwise the token on w is not closest to v. Let M ′ =17

M ∩ N(T, pℓ−1). Since pℓ−1 ̸∈ I, by Lemma 2 there exists at most one vertex18

w′ ∈ M ′ such that the token on w′ is (T
pℓ−1

w′ , I ∩ T
pℓ−1

w′ )-rigid. We choose such19

a vertex w′ if it exists, otherwise choose an arbitrary vertex in M ′ and regard20

it as w′.21

Since all tokens on the vertices w′′ inM ′\{w′} are (T pℓ−1

w′′ , I∩T pℓ−1

w′′ )-movable,22

we first slide the tokens on w′′ to some vertices in T
pℓ−1

w′′ . Then, we can slide23

M

M

w

wv p
1

p
l-1

Figure 9: Illustration for Lemma 7.
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Figure 10: Illustration for Lemma 8.

the token on w′ to v (= p0) along the path (w′, pℓ−1, pℓ−2, . . . , p0). In this way,1

we can obtain an independent set I ′ such that v ∈ I ′ and I
T↭ I ′. □2

We then prove that deleting a safe degree-1 vertex with a token together3

with its neighbor does not affect the movability of the other tokens. (See also4

Figure 10.)5

Lemma 8. Let v be a safe degree-1 vertex of a tree T , and let T̄ be the subtree6

of T obtained by deleting v, its unique neighbor u, and the resulting isolated7

vertices. Let I be an independent set of T such that v ∈ I and all tokens are8

(T, I)-movable. Then, all tokens in I \ {v} are (T̄ , I \ {v})-movable.9

Proof. Since Tu
v consists of a single vertex v, the token on v is (Tu

v , I ∩ Tu
v )-10

rigid. Therefore, no token is placed on degree-1 neighbors of u other than v (see11

Figure 10), because otherwise it contradicts to Lemma 2; recall that all tokens12

in I are assumed to be (T, I)-movable.13

Let Ī = I \ {v}. Suppose for a contradiction that there exists a token in Ī14

which is (T̄ , Ī)-rigid. Let wp ∈ Ī be such a vertex closest to v, and let z be the15

vertex on the vwp-path right before wp.16

Case (1): z = u. (See Figure 10(a).)17

Recall that the token on v is (T, I)-movable, but is (Tu
v , I∩Tu

v )-rigid. There-18

fore, by Lemma 2 the token on wp must be (Tu
wp

, I ∩ Tu
wp

)-movable. However,19

this contradicts the assumption that wp is (T̄ , Ī)-rigid, because T̄ = Tu
wp

and20

Ī = I ∩ Tu
wp

in this case.21

Case (2): z ̸= u. (See Figure 10(b).)22

Let w1 be the neighbor of z on the vwp-path other than wp; let N(T, z) =23

{w1, w2, . . . , wp}. We note that the subtree T z
w1

contains the deleted star T \ T̄24

centered at u.25

We first note that the token tp on wp is (T̄
z
wp

, Ī∩T̄ z
wp

)-rigid, because otherwise26

tp can be slid to some vertex in T̄ z
wp

and hence it is (T̄ , Ī)-movable. Since27

T̄ z
wp

= T z
wp

and Ī ∩ T̄ z
wp

= I ∩ T z
wp

, the token tp is also (T z
wp

, I ∩ T z
wp

)-rigid.28

For each j ∈ {2, 3, . . . , p − 1} with wj ∈ I, since tp is (T z
wp

, I ∩ T z
wp

)-rigid29

and all tokens in I are (T, I)-movable, by Lemma 2 each token tj on wj is30

13



(T z
wj

, I ∩ T z
wj

)-movable. Then, since T z
wj

= T̄ z
wj

and I ∩ T z
wj

= Ī ∩ T̄ z
wj

, the1

token tj is (T̄ z
wj

, Ī ∩ T̄ z
wj

)-movable. Therefore, if w1 ̸∈ Ī or the token t1 on w1 is2

(T̄ z
w1

, Ī∩T̄ z
w1

)-movable, then we can slide tp from wp to z after sliding each token3

tj in Ī ∩{w1, w2, . . . , wp−1} to some vertex of the subtree T̄ z
wj

. This contradicts4

the assumption that tp is (T̄ , Ī)-rigid.5

Therefore, we have w1 ∈ Ī and a token t1 on w1 is (T̄ z
w1

, Ī ∩ T̄ z
w1

)-rigid.6

Then, t1 is (T̄ , Ī)-rigid, because t1 can be slid only to z which is adjacent with7

wp having the (T̄ z
wp

, Ī ∩ T̄ z
wp

)-rigid token tp. Since w1 is on the vwp-path in T ,8

this contradicts the assumption that tp is the (T̄ , Ī)-rigid token closest to v. □9

Proof of the if direction of Lemma 610

We now prove the if direction of the lemma by induction on the number of11

tokens |Ib| = |Ir|. The lemma clearly holds for any tree T if |Ib| = |Ir| = 1,12

because T has only one token and hence we can slide it along the unique path13

in T .14

We choose an arbitrary safe degree-1 vertex v of a tree T , whose unique15

neighbor is u. Since all tokens in Ib are (T, Ib)-movable, by Lemma 7 we can16

obtain an independent set I ′b of T such that v ∈ I ′b and Ib
T↭ I ′b. By Lemma 817

all tokens in I ′b \ {v} are (T̄ , I ′b \ {v})-movable, where T̄ is the subtree defined18

in Lemma 8. Similarly, we can obtain an independent set I ′r of T such that19

v ∈ I ′r, Ir
T↭ I ′r and all tokens in I ′r \ {v} are (T̄ , I ′r \ {v})-movable. Apply20

the induction hypothesis to the pair of independent sets I ′b \ {v} and I ′r \ {v}21

of T̄ . Then, we have I ′b \ {v} T̄↭ I ′r \ {v}. Recall that both u ̸∈ I ′b and22

u ̸∈ I ′r hold, and u is the unique neighbor of v in T . Furthermore, u ̸∈ V (T̄ ).23

Therefore, we can extend the reconfiguration sequence in T̄ between I ′b \ {v}24

and I ′r \{v} to a reconfiguration sequence in T between I ′b and I ′r. We thus have25

Ib
T↭ I ′b

T↭ I ′r
T↭ Ir.26

This completes the proof of Lemma 6, and hence completes the proof of27

Theorem 1. □28

3.4. Length of reconfiguration sequence29

In this subsection, we show that an actual reconfiguration sequence can be30

found for a yes-instance on trees, by implementing our proofs in Section 3.3.31

Furthermore, the length of the obtained reconfiguration sequence is at most32

quadratic.33

Theorem 2. Let Ib and Ir be two independent sets of a tree T with n vertices.34

If Ib
T↭ Ir, then there exists a reconfiguration sequence of length O(n2) between35

Ib and Ir, and it can be output in O(n2) time.36

As we have mentioned in Introduction, recall that there exists an infinite family37

of instances on paths for which any reconfiguration sequence requires Ω(n2)38

length, where n is the number of vertices.39
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We note that a reconfiguration sequence S can be represented by a sequence1

of edges on which tokens are slid. Therefore, the space for representing S can2

be bounded by a function linear in the length of S.3

By Theorem 1 we can determine whether Ib
T↭ Ir or not inO(n) time. In the4

following, we thus assume that Ib
T↭ Ir. Furthermore, suppose that all tokens5

in Ib are (T, Ib)-movable, and that all tokens in Ir are (T, Ir)-movable; otherwise6

we obtain the forest by deleting the vertices in N [T,R(Ib)] = N [T,R(Ir)] from7

T , and find a reconfiguration sequence for each tree in the forest, according to8

Lemma 5.9

As in the if-direction proof of Lemma 6, we choose an arbitrary safe degree-10

1 vertex v of T , and obtain an independent set I ′b of T such that v ∈ I ′b and11

Ib
T↭ I ′b, as follows.12

(a) Find a vertex w ∈ Ib which is closest to v, and let (v, p1, p2, . . . , pℓ−1, w)13

be the vw-path in T . Let M ′ = Ib ∩N(T, pℓ−1). (See also Figure 9.)14

(b) Choose a vertex w′ such that the token on w′ is (T
pℓ−1

w′ , I ∩T
pℓ−1

w′ )-rigid if15

it exists, otherwise choose an arbitrary vertex in M ′ and regard it as w′.16

(c) Slide each token on w′′ ∈ M ′ \ {w′} to some vertex in T
pℓ−1

w′′ , and then17

slide the token on w′ to v.18

In Lemma 7 we have proved that such a reconfiguration sequence from Ib to I ′b19

always exists. We apply the same process to Ir for the same safe degree-1 vertex20

v, and obtain an independent set I ′r of T such that Ir
T↭ I ′r and v ∈ I ′b ∩ I ′r.21

Repeat these processes until we obtain the same independent set I∗ of T such22

that Ib
T↭ I∗ and Ir

T↭ I∗. Note that, since any reconfiguration sequence is23

reversible, this means that we obtained a reconfiguration sequence between Ib24

and Ir.25

Therefore, to prove Theorem 2, it suffices to show that the algorithm above26

runs in O(n) time for one safe degree-1 vertex v and the reconfiguration sequence27

for sliding one token to v is of length O(n). In particular, the following lemma28

completes the proof of Theorem 2.29

Lemma 9. Let I be an independent set of a tree T , and let w ∈ I. For a30

neighbor z ∈ N(T,w), suppose that the token on w is (T z
w, I ∩ T z

w)-movable.31

Then, there exists a reconfiguration sequence Sw of length at most |V (T z
w)| from32

I to an independent set I ′ of T such that w ̸∈ I ′ and J ∩ (T \T z
w) = I ∩ (T \T z

w)33

for all J ∈ Sw. Furthermore, Sw can be output in O(|V (T z
w)|) time.34

Proof. We prove the lemma by induction on the depth of T z
w, where the depth35

of a tree is the longest distance from its root to a leaf. If the depth of T z
w36

is zero (and hence T z
w consists of a single vertex w), then the token on w is37

(T z
w, I ∩ T z

w)-rigid; this contradicts the assumption. Therefore, we may assume38

that the depth is at least one. If the depth of T z
w is exactly one, then T z

w is a39

star centered at w, and no token is placed on any neighbor of w. Thus, we can40

slide the token on w by 1 (< |V (T z
w)|) token-slides. Then, the lemma holds for41

trees T z
w with depth one.42

Assume that the depth of T z
w is k ≥ 2, and that the lemma holds for trees43

with depth at most k − 1. Since w is (T z
w, I ∩ T z

w)-movable, by Lemma 1 there44
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Figure 11: Illustration for Lemma 9.

is a vertex y ∈ N(T z
w, w) such that either I ∩N(Tw

y , y) = ∅ or all tokens on the1

vertices x in I ∩ N(Tw
y , y) are (T y

x , I ∩ T y
x )-movable. (See Figure 11.) Then,2

we can obtain a reconfiguration sequence which (1) first slides all tokens on the3

vertices x in I ∩ N(Tw
y , y) to some vertices in T y

x if I ∩ N(Tw
y , y) ̸= ∅, and (2)4

then slide the token on w to the vertex y. By applying the induction hypothesis5

to each subtree T y
x , this reconfiguration sequence is of length at most6

1 +
∑

x∈I∩N(Tw
y ,y)

|V (T y
x )| =

∣∣V (Tw
y )

∣∣,
and can be output in O(

∣∣V (Tw
y )

∣∣) time. Note that w ̸∈ I ′ holds for the obtained7

independent set I ′ of T . Thus, the lemma holds for trees T z
w with depth k. □8

We note that this lemma does not yield a reconfiguration sequence with the9

shortest length between Ib and Ir; such a reconfiguration sequence may not use10

any safe degree-1 vertex.11

4. Concluding Remarks12

In this paper, we have developed an O(n)-time algorithm to solve the slid-13

ing token problem for trees with n vertices, based on a simple but non-trivial14

characterization of rigid tokens. We have shown that there exists a reconfig-15

uration sequence of length O(n2) for any yes-instance on trees, and it can be16

output in O(n2) time. Furthermore, there exists an infinite family of instances17

on paths for which any reconfiguration sequence requires Ω(n2) length.18

The complexity status of sliding token remains open for chordal graphs19

and interval graphs. Interestingly, these graphs have no-instances such that all20

tokens are movable. (See Figure 12 for example.)21

IrIb

Figure 12: No-instance for an interval graph such that all tokens are movable.
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