JAIST Repository

https://dspace.jaist.ac.jp/

Ter mi nati on

Analysis for

nner most

Title Transformations

Author(s) Netrakom, Park

Citation

Issue Date 2017-09

Type Thesis or Dissertation

Text version

aut hor

e.net/ 10109/ 14798

URL http:/7/7 hdl handl
Rights
Description Supervisor: ggooo, oooooono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Termination Analysis for Innermost Rewriting via
Transformations

Park Netrakom (1510213)

School of Information Science,
Japan Advanced Institute of Science and Technology

August 4, 2017
Keywords: tern rewriting, innermost termination, transformation.

Aim: Innermost Termination of Transformed Systems

Term rewriting is one of simple and powerful Turing-complete computational models,
which underlies automated theorem proving (e.g. Vampire, Agda, Coq) and declarative
programming languages (e.g. CafeOBJ, OCaml, Haskell). In these applications, compu-
tation is performed with evaluation strategies. So-called eager and lazy evaluations in
functional programming are modeled as the innermost and outermost strategies in term
rewriting, respectively.

Since computation needs not to be terminating, most software is concerned about the
termination property. There are many research attempts to prove termination of term
rewrite systems automatically. In contrast, there are fewer techniques for termination
of the innermost strategy, even much fewer for that of the outermost strategy. In order
to address lack of techniques for outermost termination proofs recently transformational
approaches have emerged. In this methodology we reduce the outermost termination
problem to the innermost termination problem by transforming a given term rewrite
system.

In this research we focus on Thiemann’s transformation [6], which is one of powerful
techniques to reduce outermost termination to innermost termination. With a small
example we illustrate the transformation.

Example 1. For the running example, we consider the term rewrite system R over the
signature {f(") g1 b(®}:

1: f(f(g(x))) — =

2: g(b) — f(g(b))
The system is neither terminating nor innermost terminating, as witnessed by the infinite
rewrite sequence starting from g(b):

g(b) == f(g(b)) == f(f(g(b))) == f(f(f(g(b)))) —=r -

Here the underlined parts indicate the subterms rewritten by rule 2. However, if we
employ the outermost strategy, rewriting of the term terminates:

g(b) == f(g(b)) == f(f(g(b))) —= b

Copyright (© 2017 by Park Netrakom

In fact R has the outermost termination property. We prove it by using Thiemann’s
transformation. The transformation yields the following rewrite system R’ over the

signature {b(®) gl f1(1)> ggl)af(l)@(l), v, AW, V§1)7 Vé”; A topM}:

1 v(f(x)) = ¥i(f(z)) 2 V(g(x)) = Ve(g())
3 Vi(f(z)) = fi(V(2)) 4: Ve(g(@)) = &(V(2))
5: (g(2))) — A(z) G: g(b) — A(f(g(b)))
7o Vi(A(z)) = Az) 8: Vg(A(x)) = Alx)

9. f(A(@) = alf(z) 10 gi(a(x) — agr))
11 top(A(z)) — top(V(x))

For example, the outermost rewrite step of R

f(f(g(b))) == b

corresponds to the four innermost rewrite steps of R7:

top(V(f(f(g(b))))) —rr top(V¢(f(f(g(b)))))
—rr top(V¢(A(b)))
—gr top(A(b))

—rr top(V(b))

Since this correspondence generally holds, we can show outermost termination of the orig-
inal system R by proving innermost termination of the transformed system R”. It is also
known that the transformation is complete, meaning that if R” is innermost terminating
then R is outermost terminating.

Now the remaining question is whether one can show innermost termination of such
a transformed rewrite system. The above example clearly reveals a major problem of
the approach: This kind of transformations significantly increases the complexity of term
structure in rewrite rules. Unfortunately, even state-of-the-art termination provers tend
to fail as proof techniques cannot analyze the complex term and rewriting structures. For
example, AProVE and TTT2, the 1st and 2nd places on the termination competition in
2015, fail to prove innermost termination of the above system R7.

Approach: Transformation and Type Information

The aim of this research is to establish techniques for showing innermost termination
of systems resulting from Thiemann’s transformation. There are various transformation
techniques for termination with specific strategies [2, 1]. Most of them result in rewrite
systems similar to those of Thiemann’s transformation.

There are two major problems of transformed systems. The first problem is that one
rewrite step becomes many rewrite steps as seen in Example 1. Termination proofs are
usually established by detecting decreasing parameters. However, the intermediate steps
obfuscate the decreasingness. The second problem originates from the nature of innermost
rewriting. Majority of existing termination techniques directly or indirectly employ the
notion of reduction order, which does not fit for innermost termination proofs when the
system is non-terminating.

In order to address these problems we develop new transformation techniques. Exploit-
ing type information, we resolve the first problem about complexity of term structure.
There is a technique to introduce many-sorts to untyped rewrite systems. As proved in
the main part of the thesis, all rewrite systems induced by Thiemann’s transformation ad-
mit (proper) many-sorted signatures. Based on the sort information we can performtype-
based reachability analysis which can be integrated for various termination techniques,
such as dependency graphs (Giesl, Arts, and Ohlebusch 2002) [5], usable rules (Hirokawa
and Middeldorp 2007, Thiemann et al. 2008) [3, 7], and simple freezing (Hirokawa et al.
2013) [4].

For handling the second problem we introduce a transformation technique, dubbed
pattern separation. Instantiating rewrite rules, this transformation fills in the gap between
ordinary rewrite step and innermost rewrite step, the latter of which lacks the closure
under substitutions. By using the aforementioned type introduction technique, pattern
separation can be further improved.

Illustration

Here we illustrate these techniques, contributions of this thesis. We start with type-based
reachability analysis.

Example 2 (continued from Example 1). The next sort information can be attached to
the transformed system RT.

Via—=f A:a—f f:ra—0d gra—d
Vi:d—=>05 Vy:0—>0 A:a—d b:a
fra—wa gia—a f1:0—20 g:8—>p

top: 8 — v

Here we suppose that with other termination methods we succeeded to eliminate rules
5 and 6 from RT. Terms of form top(V(s)) no longer reaches top(A(t)) for any terms s
and t. Our type-based reachability analysis can detect this unreachability in the following
way: We interpret each term to a set of function symbols that may appear in reachable
terms. This can be computed by using the rewrite system ||R”]| on sets:

1: (v}~ {ve,f} 2: {V}~{¥s8

3: {ve,f} ~{fi, v} 4 {vg g}~ {g, V}
7 {Vs, A} ~ {2} 8: {Vv, A}~ {A}
9: {fi, A} ~ {2} 10: {g1, A}~ {2}

11: {top,A} ~» {top, V}

Because our terms are sorted, the interpretation of top(V(s)), say A, does not contain the
symbol A, and moreover the set A cannot reach a set containing A by using ||R”||. This
is sufficient to conclude the announced unreachability. The information of unreachability
is used for the computation of the dependency graph. Although we omit its explanation
here, this technique now shows innermost termination of R”.

Our running example can also be handled by pattern separation, which is our another
contribution.

Example 3 (continued from Example 1). Pattern separation replaces rule 4 of R” by its
instantiated versions:

ié Ve(g(f(x)) = g1(V(f(x))) 4.2: Vu(g(g(x))) = g1(V(g(x)))
o Vg x C

g(8(
(g(h(z))) = &1(V(h(z))) 44: Vg(glc)) = &(V(c)

Innermost termination of the resulting system can be shown by existing termination
provers (such as AProVE and TTT2). We want to stress that the character of innermost
rewrite step has been changed by the separation: As shown in the thesis, the final system
has even the termination property.
Contribution
Here is the list of our contributions:

e analysis of types for Thiemann’s transformation,

e type-based reachability analysis,

e a pattern separation technique, and

e the optimized version of pattern separation.

References

[1] J. Endrullis and D. Hendriks. From outermost to context-sensitive rewriting. In
Proceedings of the 20th International Conference on Rewriting Techniques and Appli-
cations, volume 5595 of Lecture Notes in Computer Science, pages 305-319, 2009.

2] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite
systems. Journal of Functional Programming, 14:329-427, 2004.

[3] N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features.
Information and Computation, 205:474-511, 2007.

[4] N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination and complex-
ity. Journal of Automated Reasoning, 50:279315, 1990.

[5] N. Hirokawa, A. Middeldorp, and H. Zankl. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34:21-58, 2002.

(6] R. Thiemann. From outermost termination to innermost termination. In Proceedings
of the 35th Conference on Current Trends in Theory and Practice of Computer Science,
volume 5404 of Lecture Notes in Computer Science, pages 533-545, 2009.

[7] R. Thiemann and A. Middeldorp. Innermost termination of rewrite systems by la-
beling. In Proceedings of the 7th International Workshop on Reduction Strategies in
Rewriting and Programming, volume 204 of Electronic Notes in Theoretical Computer
Science, pages 3—19, 2008.

