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Abstract

In this thesis, we study the folding and unfolding problems of polycubes. A polycube

is a kind of polyhedron that composed of identical cubes. It has an important role in the

field of computational geometry.

The first problem is about the common developments that can fold to two or more

incongruent polycubes, boxes. These developments are simple polyominoes that consist

of unit squares of four connected so that the boxes and their corresponding developments

have the same surface area. In searching for common developments that fold to two or

more boxes, we start from a relatively simple task: finding two or more boxes that their

surface areas are equal, but sizes are different.

The smallest surface area is 22 which admits to fold to two boxes of size 1×1×5 and

1×2×3. All common developments of these two boxes were enumerated by Matsui in

2011. The next smallest integer n such that surface area n can fold to two different boxes

is 30. Previous study tried to list the common developments of two different boxes of

size 1×1×7 and 1×3×3 of surface area 30, however, it failed due to the limitation of

computational power. We fill this gap and research further.

By a new algorithm on a parallel computer, we first enumerate all common develop-

ments of two boxes of size 1×1×7 and 1×3×3. Starting from the partial development of

surface area 1, we repeat adding one new unit square to all possible places of the partial

development to generate new developments. In each loop, the new developments will get

checked whether they can cover the boxes or not. The algorithm loops n times, where

n = 30.

Finally, we obtained all common developments of two boxes of size 1×1×7 and 1×3×3.

There are 1080 common developments.

Surface area 30 is consistent to the surface area of a cube of size
√
5×

√
5×

√
5. There-

fore, next, we try to find a polyomino of surface area 30 that fold to these three different

boxes. It is a great improvement from previously known one that the smallest surface

area that folds to three different boxes is greater than 500. To achieve that, we propose a
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new algorithm. It determines if a polyomino P that can fold to two boxes of size 1×1×7

and 1×3×3 can also fold to a box of size
√
5×

√
5×

√
5.

As a result, nine out of 1080 developments can fold to the cube of size
√
5×

√
5×

√
5.

While eight developments have only one way of folding to the cube of size
√
5×

√
5×

√
5,

the other development has two different ways of folding to it, for there is an angle of

26.6 degrees to the unit square’s edge clockwise and counter-clockwise. That is, the last

development can actually fold to 3 boxes in 4 different ways of folding: the box of size

1×1×7, the box of size 1×3×3, and 2 ways of the box of size
√
5×

√
5×

√
5.

In these results, there are some common developments with a special property that

they are central symmetric. We call them the centrosymmetric common developments.

The way to enumerate the centrosymmetric common developments is a bit different

from the enumeration of normal common developments, which needs more computations.

However, the size of data is relatively small, and it runs in loops of n/2 in total, where n

is its surface area.

As a result, in 2263 common developments of two boxes of 1×1×5 and 1×2×3, only

45 centrosymmetric common developments exist. We confirm the exact numbers of cen-

trosymmetric common developments from surface area 22 to surface area 54. Especially,

we show that there is no centrosymmetric common development of three different boxes

of surface area 46. The surface area 46 is the smallest candidates of three boxes of in-

tegral size of 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5. It is still open that if there is a

common development of three boxes of these sizes, and we give a partial answer to this

open problem.

The second part of this thesis is research on the “rep-cube”, which is a new notion

derived from the classic notion of “rep-tile” with the idea of the development. A rep-tile

of order k is a polygon that can be divided into k replicas congruent to each another and

similar to the original one. It was proposed by Solomon W. Golomb in 1962. In 2016,

a new notion of rep-cube was proposed. A polyomino is a rep-cube of order k if it is a

development of a cube, and it can be divided into k polyominoes such that each of them

can fold to a cube. If each of these k polyominoes has the same size, we call the original

polyomino a regular rep-cube of order k.

A recent study shows that there exist regular rep-cubes of order k for each k =
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2, 4, 5, 8, 9, 36, 50, 64, and also k = 36gk′2 for any positive integer k′ and an integer g in

{2, 4, 5, 8, 9, 36, 50, 64}. That is, there are infinitely many k that allow regular rep-cube

of order k. These results lead us to the following natural question: how many rep-cubes

of order k exist for some k?

As a consequence, we enumerate all regular rep-cubes of order 2 and 4 of surface area

12 and 24, respectively. For example, there are 33 rep-cubes of order 2 of surface area

12; that is, there are 33 dodecominoes that can fold to a cube of size
√
2×

√
2×

√
2 and

each of them can be divided to two developments of the unit cube. Similarly, there are

7185 regular rep-cubes of order 4 of surface area 24.

keywords: Polyomino; folding algorithm; enumeration; polyhedron.
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Chapter 1

Introduction and Background

In 1525, the German painter and thinker Albrecht Dürer published his masterwork on

geometry “On Teaching Measurement with a Compass and Straightedge”, which opened

the area of computational geometry with a lot of open problems [1]. That area consists

of the folding and unfolding problems. Despite a long history, it has not been studied

extensively in the mathematical literature until decades ago.

In general, we are interested in how polyhedra can be reconfigured to certain con-

straints depending on the type of object and the problem of interest. Typically, the

process of unfolding approaches a more basic shape, whereas folding complicates the

shape [2].

In the big picture of the area, there are three sections corresponding to the type of the

object being folded: linkages, origami, and polyhedra. The problem we introduce belongs

to the polyhedra area. We study the folding and unfolding problems of the polycubes,

which are polyhedra that composed of identical unit cubes in face-to-face gluing manner.

The development is the unfolding obtained by slicing the surface of the solid, and

it forms a single connected simple polygon without self-overlap [5]. In this thesis, as

developments, we only consider orthogonal polygons that consist of unit squares in edge-

to-edge gluing manner, which are called polyominoes [16].

Recently, a research presents a new paper-building design methodology using the re-

search of common development of plural boxes. Paper, as an innovative material, has

many advantages such as durability, lightweight, environment-friendly, and aesthetic prop-

erty. In particular, in resource-limited societies, these advantages are extremely impor-
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tant. The designer can simplify the paper building or part of the paper building as plural

orthogonal polyhedra, which are actually boxes. Then the designer can choose a proper

common development that can fold to these boxes to build the house.

1.1 Common Developments of Boxes

In the first half of this thesis, we study common developments that can fold to two or

more incongruent orthogonal convex polyhedra, namely, boxes. This folding problem is

very natural however quite counterintuitive; for a given polyomino that consists of unit

squares, the problem asks are there two or more ways to fold it to different simple convex

orthogonal polyhedra (Figure 1.1).

The research starts from a problem proposed by Lubiw and O’Rourke in 1996 [3],

which is about polygons that can fold to a (convex) polyhedron. In 2007, Demaine and

O’Rourke published a scholarly book, which is about geometric folding algorithms [5].

In general, we can state the development/folding problem as follows:

1 Input A polygon P and a polyhedron Q.

2 Output Determine whether P can fold to Q or not.

When Q is a tetramonohedron (a tetrahedron with four congruent triangular faces),

Akiyama and Nara gave a complete characterization of P by using the notion of tiling

[11, 12]. Except that, we have quite a few results from the mathematical viewpoint.

Hence, we can tackle this problem from the viewpoints of computational geometry and

algorithms.

For example, Demaine and O’Rourke gave an O(n3) time algorithm for a convex

polyhedron Q in [5]. Precisely, the algorithm determines if P can fold to some convex

polyhedron Q, however, it does not give the concrete shape of Q. The algorithm computes

the matching of edges for gluing in P to fold to a convex polyhedron Q, and it also

determines the vertices of Q by checking the curvature of the vertices. However, it does

not give the crease pattern of P for folding, which forms the set of edges on Q. We

remark that the shape is uniquely determined from its convexity of Q by the Alexandrov’s

Theorem (see [4]). Moreover, such a shape can be determined by the pseudopolynomial

2



Figure 1.1: A polygon folding to two boxes of size

1× 1× 5 and 1× 2× 3 in [9]. Figure 1.2: Cubigami.

time algorithm for Alexandrov’s Theorem proposed in [4]. However, the algorithm in [4]

runs in O(n456.5) time (with some geometric parameters), and hence, it is not practical

so far. Thus, we still have to decide the crease lines to make the shape by experiments.

In other words, it is quite difficult to determine the shape Q obtained from a polygon

P by folding even if we can find its edge matching of gluing. Recently, some restricted

cases were discussed in [13]; they give efficient algorithms for the cases that P is a petal

polygon, and Q is a pyramid or its variants.

From the viewpoint of computation, one natural restriction is that considering the

orthogonal polygons and polyhedra which consist of unit squares and unit cubes, respec-

tively. We call this kind of polygon as polyomino, which was proposed by Solomon W.

Golomb in 1954.

Such polygons have many applications including toys and puzzles. For example, the

puzzle “cubigami” (Figure 1.2) is a common development of all tetracubes except one

(since the last one has surface area 16, while the others have surface area 18), which

is developed by Miller and Knuth. We can find some related results in the books on

geometric folding algorithms by Demaine and O’Rourke [5, 1].

In searching for common developments that fold to two or more boxes, we start from

a relatively simple task: finding two or more boxes whose surface areas are equal, but

sizes are different.

It is easy to see that two boxes of size a × b × c and a′ × b′ × c′ can have a common

development only if they have the same surface area, i.e., when 2(ab+ bc+ ca) = 2(a′b′ +

b′c′+c′a′) holds. We can compute small surface areas that may admit to fold to two or more

3



2(ab+ bc+ ca) a× b× c

22 1× 1× 5, 1× 2× 3

30 1× 1× 7, 1× 3× 3

34 1× 1× 8, 1× 2× 5

38 1× 1× 9, 1× 3× 4

46 1× 1× 11, 1× 2× 7, 1× 3× 5

54 1× 1× 13, 1× 3× 6, 3× 3× 3

58 1× 1× 14, 1× 2× 9, 1× 4× 5

62 1× 1× 15, 1× 3× 7, 2× 3× 5

Table 1.1: A part of possible size a× b× c of boxes and its common surface area 2(ab+

bc+ ca).

boxes by a simple exhaustive search. We show a part of the table for 1 ≤ a ≤ b ≤ c ≤ 50

in Table 1.1. From the table, we can say that the smallest surface area is 22 to have a

common development of two boxes, and then their sizes are 1× 1× 5 and 1× 2× 3 [7]. In

fact, Abel et al. have confirmed that there exist 2263 common developments of two boxes

of size 1×1×5 and 1×2×3 by an exhaustive search [6]. On the other hand, the smallest

surface area that may admit to fold to three boxes is 46, which may fold to three boxes of

size 1× 1× 11, 1× 2× 7, and 1× 3× 5. However, the number of polyominoes of area 46

seems to be too huge to search. This number is strongly related to the enumeration and

counting of polyominoes [16]. The number of polyominoes of area n is well investigated

in the puzzle society, but it is known up to n = 45, which is given by the third author

of [8] (see the OEIS (https://oeis.org/A000105) for the references). Therefore, since their

common area consists of 46 unit squares, it seems to be hard to enumerate all common

developments of three boxes of size 1× 1× 11, 1× 2× 7, and 1× 3× 5.

We follow the previous research and extend it from the case of the surface area 22 in

Table 1.1. The next area after 22 in the table is 30, which admits to fold to two boxes

of size 1× 1× 7 and 1× 3× 3. When Abel et al. confirmed the area 22 in 2011, it took

around 10 hours. Thus, we cannot use the straightforward way in [6] for the area 30.

Also, if we use the same way as one for area 22 shown in [6], it will consume too much

memory. Therefore, we use a hybrid search of the breadth first search and the depth first

4



search. We first enumerate all common developments of two boxes of size 1 × 1 × 7 and

1× 3× 3. There are 1080 common developments in total.

In [14], they proposed that there was a polygon that folded to two boxes of size 1×2×4

and
√
2×

√
2× 3

√
2 (Figure 1.3). Its crease lines of the second one are not folded along

the edges of the unit squares. In this context, we can observe that the area 30 may

admit to fold to another box of size
√
5×

√
5×

√
5 by folding along the diagonal lines of

rectangles of size 1×2. This idea leads us to the problem that asks if there exist common

developments of three boxes of size 1× 1× 7, 1× 3× 3, and
√
5×

√
5×

√
5 among these

1080 common developments of two boxes of size 1× 1× 7 and 1× 3× 3.

Figure 1.3: The common development shown in [14]. (a) It folds to a box of size 1×2×4,

and (b) it also folds to a box of size
√
2×

√
2× 3

√
2.

We remark that this is a special case of the development/folding problem mentioned

above. In our case, P is one of the 1080 polygons that consists of 30 unit squares, and

Q is the cube of size
√
5×

√
5×

√
5. We can use a pseudopolynomial time algorithm for

Alexandrov’s Theorem proposed in [4], however, it runs in O(n456.5) time, which is not

practical [13]. Alexandrov’s Theorem states that every metric with the global topology

and local geometry required of a convex polyhedron is in fact the intrinsic metric of some

convex polyhedra. Thus, if P is a development of a convex polyhedron, then the shape is

uniquely determined [22].

For a given orthogonal polygon and the size of a box, to check whether the orthogonal
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polygon can fold to the box, Horiyama and Mizunashi recently developed an efficient

algorithm [21]. That algorithm runs in O((n +m) log n) time, where n is the number of

vertices in P , and m is the maximum number of line segments that appear on a crease

line. We remark that the parameter m is hidden and can be huge comparing to n. In our

case, P is a polyomino, and this hidden parameter is linear to the number of unit squares

in P .

Based on these results, we propose an efficient algorithm specialized in our case that

checks whether a polyomino P of area 30 can fold to a cube Q of size
√
5 ×

√
5 ×

√
5.

Using the algorithm, we check if these common developments of two boxes of size 1×1×7

and 1×3×3 can also fold to the third box of size
√
5×

√
5×

√
5 and obtain an affirmative

answer. We find that nine of 1080 common developments of two boxes of size 1 × 1 × 7

and 1×3×3 can fold to the third box of size
√
5×

√
5×

√
5 (Figure 3.16). Moreover, one

of the nine common developments of three boxes has another way of folding. Precisely,

the last one (Figure 3.16(9)) admits to fold to the third box of size
√
5×

√
5×

√
5 in two

different ways. These four ways of folding are depicted in Figure 3.17.

We summarize the main results:

Theorem 1. (1) There are 1080 polyominoes of area 30 that admit to fold (along the

edges of unit squares) to two boxes of size 1× 1× 7 and 1× 3× 3. (2) Among the above

1080, nine polyominoes can fold to the third box of size
√
5×

√
5×

√
5 if we admit to fold

along diagonal lines. (3) Among these nine polyominoes, one can fold to the third box in

two different ways.

In these results, there are several common developments that have a special property

that they are central symmetric. We call it the centrosymmetric common development.

The way to enumerate the centrosymmetric common developments is a bit different

to the enumeration of normal common developments, which needs more computation.

However, the size of data is relatively small. Moreover, let n be the surface area of

common developments, then the algorithm runs in n/2 loops.

Based on these observations, we enumerated all centrosymmetric common develop-

ments of surface area n for each of n = 22, 30, 34, 38, 46, 54. As results, we confirmed that

there is no centrosymmetric common development of three boxes of surface area n up to

54. These results give a partial answer to an open problem that asks if there is a common
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development of three boxes of surface area 46 (and 54).

1.2 Research of Rep-cubes

As mentioned above, the definition of polyomino is a “simply connected” set of unit

squares. This definition was introduced by Solomon W. Golomb in 1954. Since then, a

set of polyominoes has been playing an important role in recreational mathematic society

(see, e.g., [16], [18]). In Figure 82 in [18], it was shown that the set of 12 pentominoes

can fold to a cube of size
√
10×

√
10×

√
10 by gluing them properly.

Eight years after Golomb proposed the notion of polyomino, he proposed another

notion of “rep-tile” in 1962 [19]. A rep-tile of order k is a polygon that can be divided

into k replicas congruent to one another and similar to the original (see [19, Chap 19]).

Some examples of rep-tile are shown in Figure 1.4.

Figure 1.4: Rep-tiles.

Inspired by the notion of rep-tile and polyomino, a question was proposed: Is there

any polyomino that can fold to a cube and can be divided into k pieces such that each

piece is a development of a cube for some k?

To answer this question, a new notion of rep-cube was proposed in 2016 [17]. A rep-

cube of order k is a polyomino that is a development of a cube, and it can be divided
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into k polyominoes such that each of them can be folded to a cube. If each of these k

polyominoes has the same size, we call the original polyomino a regular rep-cube of order

k. It becomes another branch of the geometric folding problem.

For each of rep-cubes, crease lines for the developments may be different. Although

each polyomino consists of unit squares, the crease lines may not be orthogonal to the

edges of unit squares when it folds to a cube. For example, a regular rep-cube of order 2

folds to a cube by folding along the diagonals of unit squares, see Figure 1.5.

Figure 1.5: A regular rep-cube of order 2; each T shape can fold to a cube, and this shape

itself can fold to a cube of size
√
2×

√
2×

√
2 by folding along the dotted lines.

In [17], they show that there exist regular rep-cubes of order k for each k = 2, 4, 5, 8, 9, 36, 50, 64,

and also k = 36gk′2 for any positive integer k′ and an integer g in {2, 4, 5, 8, 9, 36, 50, 64}.

That is, there are infinitely many k that allows regular rep-cubes of order k.

In this thesis, we enumerate all regular rep-cubes of order k for small k. We mention

that the following problem is not so easy to solve efficiently: for a given polygon P ,

determine if P can fold to a cube or not. We can use a similar technique above that

checks the positional relationships of each unit square on the development in our case.

As a result, we enumerate all regular rep-cubes of order 2 and 4 of certain surface

areas. For example, there are 33 rep-cubes of order 2 of surface area 12; that is, there are

33 dodecominoes that can fold to a cube of size
√
2 ×

√
2 ×

√
2, and each of them can

be divided into two developments of a unit cube. Similarly, there are 7185 rep-cubes of

order 4 of surface area 24.

We summarize the main results of this part:

Theorem 2. (1) There are 33 regular rep-cubes of order 2 of surface area 12 that can

fold to a cube of size
√
2×

√
2×

√
2. (2) There are 7185 regular rep-cubes of order 4 of

surface area 24 that can fold to a cube of size 2× 2× 2.
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1.3 Contents of Thesis

This thesis is organized as follows. In Introduction, we give a brief introduction about the

polyominoes and polycubes, the history of the problems, and the application. The big

picture of our original problem is about the folding and unfolding problems of polygons

and polyhedra.

In Preliminaries, we give definitions to the terms we use in this thesis, and we describe

some common techniques we use in the following chapters.

In the third chapter, we describe the approach of searching for the common develop-

ments of three boxes and the results of experiments.

As one special kind of development, the centrosymmetric common developments ap-

pear to be hard to find. The way for enumerating the centrosymmetric common develop-

ments is different from the normal ones, which needs more computation.

In Chapter 4, we describe the approach of enumerating all regular rep-cubes of order 2

and 4 and the results of experiments. We also propose a new notion of uniform rep-cubes

that is a special kind of regular rep-cubes consist of pieces of the same shape.

In the last chapter, the conclusion of this thesis is given. We describe the main

contribution. Some discussions are conducted, and open challenges are given. These

challenges are worth solving, which can contribute to the computational geometry domain.

The searching for a common development of three boxes still does not come to an end.

Besides, the problem of finding regular rep-cubes of a larger order can be the future

subject.
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Chapter 2

Preliminaries

2.1 Developments

In [5], we can find the definition of the development of a polyhedron as the net. In

this thesis, we use the “development” instead of “net” since the word “net” has several

meanings. Briefly, the development is the unfolding obtained by cutting the surface of the

solid, and it forms a single connected simple polygon without self-overlap. The common

development of two (or more) solids is the development that can fold to the solids. In

this thesis, as developments, we only consider orthogonal polygons that consist of unit

squares, which are called polyominoes. A polyomino is a simple polygon that consists of

unit squares of four connected [16]. Two unit squares of the polyomino are adjacent if

they share an edge interior to the polygon [20].

Polyominoes obtained from a development by removing some unit squares are called

partial developments of it. We call a convex orthogonal polyhedron a box.

2.2 Theorems of Developments

The followings are known theorems of developments of convex polyhedra, which are useful

in our research.

Theorem 3. [9] Let P be a polygon that can fold to a box B. If P has a cut inside without

hole, we glue it and obtain P’ with no cut inside. Then P’ can also fold to B (Figure 2.1).
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Figure 2.1: Development with a cut (left), development with no cut (right).

Theorem 4. [9] Let B be an orthogonal box and P a polygon that can fold to B. Then, P

is not necessarily simple (Figure 2.2).

Figure 2.2: Development with an overlap.

Theorem 5. [9] Let B be an orthogonal box and P a polygon that can fold to B. By

Theorem 3, we assume that P contains no unnecessary cuts. We lay out P on the plane,

and let P’ be a silhouette of P. Then P is simple if and only if P’ does not contain a hole.

In this thesis, we only consider a simple polyomino without hole as a development of

a polycube. In fact, as shown in Theorem 4, there are some polyomino P which can be

obtained from a development of a box such that its silhouette P ′ is not simple, that is,

P ′ has a hole. In this case, to fold a box from P ′, we have to cut the line in P that joins

the boundary of P and the hole inside. This is another (further) topic, and we do not

consider this case.
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2(ab+ bc+ ca) a× b× c

22 1× 1× 5, 1× 2× 3

30 1× 1× 7, 1× 3× 3

34 1× 1× 8, 1× 2× 5

38 1× 1× 9, 1× 3× 4

46 1× 1× 11, 1× 2× 7, 1× 3× 5

54 1× 1× 13, 1× 3× 6, 3× 3× 3

58 1× 1× 14, 1× 2× 9, 1× 4× 5

62 1× 1× 15, 1× 3× 7, 2× 3× 5

64 1× 2× 10, 2× 2× 7, 2× 4× 4

70 1× 1× 17, 1× 2× 11, 1× 3× 8, 1× 5× 5

88 1× 2× 14, 1× 4× 8, 2× 2× 10, 2× 4× 6

90 1× 1× 22, 2× 5× 5, 3× 3× 6

94 1× 1× 23, 1× 2× 15, 1× 3× 11, 1× 5× 7, 3× 4× 5

112 1× 2× 18, 2× 2× 13, 2× 3× 10, 2× 4× 8, 4× 4× 5

118 1× 1× 29, 1× 2× 19, 1× 3× 14, 1× 4× 11, 1× 5× 9, 2× 5× 7

136 1× 2× 22, 2× 2× 16, 2× 4× 10, 2× 6× 7, 3× 4× 8

150 1× 1× 37, 1× 3× 18, 3× 3× 11, 3× 4× 9, 5× 5× 5

Table 2.1: A part of possible size a× b× c of boxes and its common surface area 2(ab+

bc+ ca).

2.3 Boxes with the Same Surface Area

In searching for common developments that fold to two or more boxes, we have a set:

P(S ) = {(a, b, c) | (ab + bc + ac) × 2 = S} (S, a, b, c are positive integers, 0<a≤b≤c).

When |P(S )|≥2, there may exist a common development of |P(S )| boxes of corresponding

size. The list of boxes with the same surface area is shown in Table 2.1.

The smallest surface area that different boxes can appear in Table 2.1 is 22 which

admits to fold to two boxes of size 1×1×5 and 1×2×3. All common developments of

these two boxes have been already known. The next smallest integer n such that surface

area n can fold to two different boxes is 30.
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2.4 The Existing Algorithm

In searching for common developments of two different boxes of size 1×1×7 and 1×3×3

of surface area 30, we applied the algorithm that connects a unit square at a time from

scratch. It starts from polyomino of one unit square. By edge-to-edge gluing unit squares,

a large number of partial common developments are generated. The algorithm stops when

the surface area of polyominoes is equal to the size of the surface area of given boxes.

2.5 Adjacency Lists of Boxes

To check whether a polyomino can cover a box without overlap or not, we use the adja-

cency list of the box.

We use an array to represent the position relationship of unit squares on the box. Every

box has its unique position relationship of unit squares. Since Alexandrov’s Theorem

implies that, if P is a development of a box, then the shape is uniquely determined. For

example, Figure 2.3 and Table 2.2 are shown as the unfolding and adjacency list of the

box of size 1 × 1 × 1. Every unit square has four unique adjacency neighbors in four

numbered directions. Thus, we can tell that a development can fold to the box or not.

Figure 2.3: An unfolding of the box of size 1× 1× 1.

2.6 Removal of Redundant Developments

During the processing, many redundant developments are generated. These redundant

developments include the rotation and the reflection of the “canonical” development.
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Table 2.2: The adjacency list of the box of size 1× 1× 1.

Square ID UP RIGHT DOWN LEFT

01 04 06 02 05

02 01 06 03 05

03 02 06 04 05

04 03 06 01 05

05 01 02 03 04

06 01 04 03 02

Figure 2.4: Polyominoes of the same shape.

The algorithm should not process and store the redundant developments to improve

the efficiency. To reduce the amount of data, all polyominoes involved in this algorithm are

made free polyominoes. Free polyominoes are polyominoes that are considered unchanged

by rigid transformation (translation, rotation, reflection or glide reflection).

In general, each polyomino can be represented in eight different ways (Figure 2.4), we

sort these shapes and pick the first one as the canonical one to store.

More precisely, the algorithm lists all rotations and reflections of a development in

matrices, then sorts these matrices by a certain ordering and picks the matrix on top to

the storing process.

The steps are shown as below.

Step 1: The algorithm puts the development in a matrix of size X × Y , such that

Y ≥ X.

Step 2: In general, each polyomino can be represented in eight different arrays, we

sort these arrays and pick the first one to store. Then the algorithm transforms the matrix

to an array, we will describe the detail later. The algorithm sorts those eight arrays and
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picks the first one to the storing process.

Top right array of Figure 2.5 is the first one after the sorting, so it is picked by the

algorithm.

Figure 2.5: Matrix representation of polyominoes of the same shape.

By this way, all rotation and the reflection of the original development are represented

as the same binary array. They are regarded as the same one polyomino in storing process.

2.7 Serialization and Storing

The polyomino Pi is represented in the matrix in processing, and we compress the matrix

into a binary array in storing to shrink the size.

Storing the matrix of the development straightforwardly consumes too much memory.

It is necessary to compress the matrix into a smaller size. Every row of the matrix of 0s

and 1s can transform to a binary number. In this way, a matrix is transformed into a

binary array. The height and width values of the matrix are put in the top of the array

for transform back to the matrix (Figure 2.6).

When we need to process this compressed development, the algorithm does the reverse

operation: First, it reads the height and width values to create an initialized matrix. Then

it reads the array, transforms the data from a binary number to a line of 0s and 1s line

by line. At last, we get the original partial development represented by a matrix.

The compressed developments are stored in a hash table to manage (Figure 2.7).
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Figure 2.6: Compression of the development.

Figure 2.7: Storage of the development.
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Chapter 3

Common Developments of Three

Boxes

In this chapter, we give the details of our algorithm for finding all common developments of

three boxes and further research of finding for the centrosymmetric common developments.

As the first step, we find all common developments of two boxes of size 1× 1× 7 and

1× 3× 3. Then, we check each polyomino in the results of the first step if it can fold to

a cube of size
√
5×

√
5×

√
5.

In the results of enumerating all common developments of three boxes of size 1×1×7,

1×3×3 and
√
5×

√
5×

√
5, there are some centrosymmetric common developments. We

find all centrosymmetric common developments of surface area from 22 to 54.

3.1 Enumerating Common Developments

3.1.1 Enumerating all Common Developments of Two Boxes of

Size 1× 1× 7 and 1× 3× 3

Here, we describe the algorithm for generating all common developments of two boxes of

size 1× 1× 7 and 1× 3× 3. The basic idea is similar to one in [6] for finding two boxes

of size 1× 1× 5 and 1× 2× 3.

Let s be the surface area of two given boxes, and Si be the set of all common partial

developments of area i of these two boxes. Then, S1 consists of a unit square, and each

Si with i > 1 is a subset of polyominoes of size i that can be computed from Si−1 by the
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breadth first search for each i = 2, 3, . . . , s.

The algorithm will check whether Pi can cover the boxes without overlap or not. We

name this Procedure CheckCover, and the details will be described in the next section.

As mentioned in Preliminaries, we use the adjacency list of the boxes in checking. We let

Bi be the adjacency list of the ith given box.

Our final goal is to obtain the set Ss that contains all common developments of surface

area s from the set S1.

More precisely, it repeats the following process for each i = 2, 3, . . .:

Algorithm 1: Outline of the exhaustive search algorithm.

Input : The surface area of two boxes, s;

the adjacency list of two boxes, B1, B2;

Output: All common developments of two boxes in Ss;

1 Initialize S1 by a set of unit square;

2 for i = 2 to s do

3 foreach partial development Pi−1 in Si−1 do

4 attach a square q1 to Pi−1 at each possible adjacency square on the

boundary of Pi−1 to obtain a new polyomino Pi;

5 if CheckCover(Pi, B1, s)==1 and CheckCover(Pi, B2, s)==1 and Pi has

no hole then

6 store Pi into Si; // Pi is a partial development of the boxes

7 return Ss;

As shown in Algorithm 1, the algorithm works in a loop as follows, it picks up a

polyomino Pi−1 in Si−1, then attaches a square q1 by edge-to-edge gluing to Pi−1 at each

possible adjacency empty square on the boundary of Pi−1 as shown in Figure 3.1. By

this step, we generate a new polyomino Pi. The polyomino Pi still needs to be examined

whether it can fold to a part of the boxes if size 1× 1× 7 and 1× 3× 3 or not. This loop

terminates at i = s when the polyomino Ps can fold to the given boxes. For example,

consider the case s = 30. When i = 1, S1 contains one unit square. When i comes to 2,

the algorithm selects one polyomino P1 from S1, since i− 1 = 1, then it attaches a square

q1 by edge-to-edge gluing to P1 clockwise, and it calls Procedure CheckCover to check the
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component can fold to part of the boxes or not. Then, the algorithm stores it into S2 if

the generated one is a partial development and no hole in it. The loop of i = 2 ends after

it tried all P1. When i comes to 3, the algorithm selects a polyomino P2 from S2 one by

one, attaches q1 to P2, calls Procedure CheckCover to check the component, checks for

holes, and stores it as a partial development to S3, and it repeats the loop. The loop

of i = 3 ends after the algorithm tried all elements of S2, then i comes to 4, 5, . . . , 30.

The algorithm simply repeats the loop of gluing, checking and storing steps. At last, the

S30 contains all common developments that can fold to two boxes of size 1 × 1 × 7 and

1× 3× 3.

Figure 3.1: Possible results of adding one square.

As mentioned in Preliminaries, to reduce the amount of data, all polyominoes involved

in the algorithm are free polyominoes. By this way, all rotations and reflections of the

canonical development are represented as the same binary array. To compress data, all

partial developments are serialized to the binary arrays and stored in a hash table in the

storing process. This method consumes less memory.

The polyomino Pi is represented in matrix of 0 and 1 in processing (Figure 3.2), and

we compress the matrix into a binary array in storing to shrink the size. We maintain the

sets Si−1 and Si in two hash tables of size O(maxi{i|Si|+ (i− 1)|Si−1|}). At the start of

each loop, we access Si−1 from one hash table and store Si into another hash table, and

make the hash table for Si−1 empty in the end of each loop. With the increasing of i,

the size of the hash tables can be incredibly huge that may cause memory overflow on a

normal personal computer (e.g. i = 17 when the surface area is 30).
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(a) (b)

Figure 3.2: Matrix and corresponding development.

3.1.2 Improving Performance by Parallel Computing

When the surface area i is not too large, we can get the Si from Si−1 by the breadth-first

search of adding a square to the Pi−1.

This simple idea works up to 22 for two boxes of size 1×1×5 and 1×2×3 in [6] since

the maximum number of |Si ∪ Si−1| takes 1.01 × 107 when i = 18. It ran in 10 hours in

2011 and 5 hours in 2014 in our experiments on a usual PC. However, for the surface area

30, it does not work even on a parallel computer (CRAY XC30) due to memory overflow

when i = 22.

Thus, we divide the computation to two phases. In the first phase, we compute Si

for each i = 2, . . . , 16. As a result, we have S16 that consists of 7486799 common partial

developments of two boxes of size 1× 1× 7 and 1× 3× 3.

In the second phase, we divide S16 into 75 disjoint subsets Sj
16 with 1 ≤ j ≤ 75.

For each Sj
16, we divide it into many small groups of common partial developments. For

example, if each small group contains 25 common partial developments. Then, a Sj
16

contains 4000 small groups when 1 ≤ j ≤ 74 (S75
16 contains rest of them). In the parallel

computer, we use 250 processes (each process on a core, in total it takes 250 cores) to

process these small groups. Each process independently calculates a small group by the

BFS algorithm at a time. On average, it takes about 40 minutes for a process to calculate

a small group of 25 common partial developments from i = 17 to i = 30. In the final step,

we merge Sj
30 with 1 ≤ j ≤ 75, remove duplicates, and obtain S30.
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Figure 3.3: The detail of parallel computing.

The program runs, in total, in about 1 month on the parallel computer (CRAY XC30),

and we obtain 1080 common developments in S30 of two boxes of size 1×1×7 and 1×3×3.

It is worthwhile to note that the total calculation time depends on the amount of requests

to the parallel computer. If there is another request with a higher priority, we may have

to wait for some time. We give the detail of the results in Section 3.2.1. If we conduct

the same calculation on a normal notebook computer with a single process, it may takes

a much longer time.

3.1.3 Enumerating all Common Developments of Three Boxes

of Size 1× 1× 7, 1× 3× 3, and
√
5×

√
5×

√
5

We check each of the common developments of two boxes of size 1× 1× 7 and 1× 3× 3,

with the Procedure CheckCover. If it can fold to the cube of size
√
5×

√
5×

√
5, then it

can fold to three boxes of size 1× 1× 7, 1× 3× 3, and
√
5×

√
5×

√
5.

Let S30 be the set of all common developments of two boxes of size 1 × 1 × 7 and

1 × 3 × 3, and B3 be the adjacency list of the cube of size
√
5 ×

√
5 ×

√
5. As shown in

Algorithm 2, the algorithm checks all common developments P30 in S30. If P30 can fold

to the third box, the cube of size
√
5×

√
5×

√
5, then algorithm stores P30 into S ′

30. At

last, all elements in S30 are checked and the algorithm outputs S ′
30, which is the set of all

common developments of three boxes of size 1× 1× 7, 1× 3× 3, and
√
5×

√
5×

√
5.
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Algorithm 2: Outline of the algorithm for checking the third box.

Input : The common developments of two boxes, S30, the adjacency list of the

cube, B3;

Output: All common developments of three boxes S ′
30;

1 foreach common development P30 in S30 do

2 if CheckCover(P30, B3, 30)==1 then

3 store Pi into S ′
30; // P30 is a common development of three boxes

4 return S ′
30;

The program runs less than 1 minute on a laptop computer, and we obtain 9 common

developments in S ′
30 of three boxes of size 1 × 1× 7, 1× 3× 3, and

√
5×

√
5×

√
5. We

give the detail of the result in Section 3.2.2.

3.1.4 Checking the Box

In this section, we give the details of Procedure CheckCover.

The previous study mainly focuses on the “normal” orthogonal polyhedra. That is,

the crease lines are orthogonal to the edges of unit squares.

Figure 3.4: The graph induced by the cube.

However, the development of the cube of size
√
5×

√
5×

√
5 cannot fold along the edges
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of unit squares, which means the previous method of checking the development can fit the

box or not is no more available. We have two algorithms for the approach of checking the

cube of size
√
5×

√
5×

√
5. The first algorithm checks for each P the vertices of the cube

on the development boundary. The angle between the folding line and an edge of a unit

square is 26.6 degrees. Besides, the vertex of the cube is made of three squares, which

means every vertex unfolded on the development should be surrounded by 3 squares.

Therefore, we need to check whether there is a development that fits such requirements:

all vertices of the cube are on the boundary of development, constituting a grid of size
√
5

of 26.6 degrees to the unit square’s edge, the number of the squares around each vertex

should be exactly 3.

The second algorithm checks the positional relationships of each unit square on the

development. Consider any polyhedron, e.g., a box, if it can be unfolded to a development

that is made of unit squares, we can get an adjacency graph of unit squares on the box

as shown in Figure 3.4. At this point, for any development, if its unit squares have the

same positional relationships as the adjacency list, it can fold to the box. Besides, the

first algorithm does not consider the dislocation of the center square, which can make a

hole and an overlap on the cube (Figure 3.5). Therefore, we apply the second algorithm

to handle it.

Figure 3.5: A hole and an overlap occur when we fold along the dotted lines to make a

cube while the number of the squares around each vertex is 3.

Procedure CheckCover can check if a polyomino Pi can fold to (a part of) the box or

not. For example, the box is the cube of size
√
5×

√
5×

√
5 (Figure 3.6), the adjacency list
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Procedure CheckCover(Pi, B, s)

Input : Polyomino Pi in Si;

adjacency list B of the given box;

integer of the surface area of the given boxes s;

Output: Whether Pi can fold to the box B or not;

1 for i = 1 to s do

2 mark the leftmost of the topmost square with number i as the start point;

3 foreach marked square in Pi do

4 mark its unmarked adjacent squares as the adjacency matrix of the box

5 if every square of Pi is marked by a unique number then

6 return 1; // Pi can fold to the cube

7 else if any square of Pi is marked by 2 or more numbers then

8 break; // Pi has an overlap to fold to the cube

9 else if 2 or more squares of Pi are marked by the same number then

10 break; // Pi has an overlap to fold to the cube

of the cube is shown as Table 3.1. The detail of the algorithm consists of 4 steps shown

as below.

Step 1: With the adjacency list of the box, the algorithm marks one unit square on

the partial development as a start point (basically, the leftmost of the topmost square for

it is always the first to be visited in traversal).

Step 2: According to the Table 3.1, the algorithm marks the “start point” with a

number.

By default, the procedure runs in s loops to try all possible numbers of the start

point. It works for ordinary boxes like 1× 1× 7 and 1× 3× 3. However, the cube of size
√
5×

√
5×

√
5 can take less trials with some special tricks (Section 3.1.4).

Step 3: Assume the partial development can fold to the part of the target box as

the start point is numbered. Then starting from the marked start point, the algorithm

marks the neighbor-squares of the start point with the corresponding neighbor numbers

on the adjacency list (Figure 3.7). If there is no neighbor of the start point in a certain

direction, then skip it.
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Figure 3.6: An unfolding of the cube of size
√
5×

√
5×

√
5.

Figure 3.7: Neighbor-squares of start point marked in step 3.
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Table 3.1: The adjacency list of the cube of size
√
5×

√
5×

√
5.

Square ID UP RIGHT DOWN LEFT

01 02 03 04 05

02 10 09 01 23

03 09 12 15 01

04 01 15 18 17

05 23 01 17 24

06 07 08 09 10

07 30 29 06 22

08 29 13 12 06

09 06 12 03 02

10 22 06 02 23

11 12 13 14 15

12 09 08 11 03

13 08 29 28 11

14 11 28 19 18

15 03 11 18 04

16 17 18 19 20

17 05 04 16 24

18 04 15 14 16

19 16 14 28 27

20 24 16 27 25

21 22 23 24 25

22 07 10 21 30

23 10 02 05 21

24 21 05 17 20

25 30 21 20 27

26 27 28 29 30

27 20 19 26 25

28 19 14 13 26

29 26 13 08 07

30 25 26 07 2226



Repeat this step, the algorithm extends the marking to further neighbor-squares of

the marked ones (Figure 3.8) until every square is uniquely marked.

Figure 3.8: Further neighbor-squares of start point marked in step 3.

Step 4: If any two squares are marked with the same number, or one square is marked

by two different numbers by two or more its neighbors, then it means an overlap occurs

and P should be discarded. After the overlap checking, we have two conditions to examine

P ; (1) all squares in connected P are marked with their unique numbers, which means

P can wrap the cube of size
√
5 ×

√
5 ×

√
5 with consistency, and (2) P has the same

area of the cube. If P only satisfies the first condition, then P is a partial development.

Otherwise, if P satisfies these two conditions, it is a common development (Figure 3.9).

Figure 3.9: Every square is marked in step 4.

After checking all 5 possible start points on P , the algorithm repeats checking on the

reflection of P since there are two ways of folding to the cube of size
√
5×

√
5×

√
5. These

two folding ways mirror each other as shown in Figure 3.10. It is necessary to check the

reflection of P .
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3.1.5 Some Tricks for the Cube of Size
√
5×

√
5×

√
5

The cube Q of size
√
5×

√
5×

√
5 is made up of six same square faces. Thus, 30 unit

squares of P are partitioned into six same groups, which is a group of a surface. Each of

these groups contains 2 small groups. One consists of only one unit square, which is the

center square of one face of Q. The other small group consists of 4 unit squares, located

on the corner. In Figure 3.6, squares 1 to 5 are on the same surface, and the square 1 is

the center square.

Once we fix the way of folding of a unit square, we can determine the square grid

defined by the folding line, which completely gives the folding lines to fold Q. For a fixed

unit square s in P , carefully counting (Figure 3.10), there are 5 choices of the situation

of s (another 5 choices for the reflection of P ). To make the algorithm runs faster, start

point can be numbered as 1˜5.

1

7

10 6 8

9

2

5 1 3

4

Figure 3.10: There are 10 choices for letting a unit square s with respect to the square

grid of size
√
5.
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3.2 Results of Enumerating Common Developments

of Boxes

3.2.1 Common Developments of Two Boxes of Size 1×1×7 and

1×3×3 of Surface Area 30

The program is compiled in C language to find the common developments of two boxes of

size 1×1×7 and 1×3×3 of surface area 30 (Figure 3.11). Since a normal PC cannot with-

stand large amounts of data generated, the running environment is the parallel computer

Cray XC30.

Figure 3.11: Boxes of size 1×1×7 and 1×3×3 of surface area 30.

Experimental results are shown in Table 3.2 and Table 3.3, and the charts in Fig-

ure 3.12 and Figure 3.14 for more intuitive expressions. The charts show the number of

partial developments changes with the increasing of the surface area.

Processing first 16 steps takes 3 hours, generating 7.5 millions of the partial common

developments as intermediate results. Processing every single development from step 17

to step 30 takes 40 minutes. Processing all 7.5 millions of developments by the parallel

computer takes about 1 month.

The number of developments of surface area s=1 to s=16 is the same as the previous

study. After the step 17, the process starts from each single partial development of the

surface area 17. We can find the number of partial developments starts increasing rapidly

from s=9, reaches its maximum at s=24, then decreases rapidly.

The final result is 1080 that is the number of common developments which can fold to
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two boxes of size 1×1×7 and 1×3×3 of surface area 30. Some examples of the common

developments are shown in Figure 3.13.

Table 3.2: The number of partial developments of surface area from 1 to 16.

Set of partial developments Number of developments

S1 1

S2 1

S3 2

S4 5

S5 12

S6 35

S7 108

S8 368

S9 1283

S10 4601

S11 16405

S12 57879

S13 200209

S14 682639

S15 2288392

S16 7486799

3.2.2 Common Developments of Three Boxes of Size 1×1×7,

1×3×3, and
√
5×

√
5×

√
5 of Surface Area 30

The program is written in C language to find the common developments of three boxes

of size 1×1×7, 1×3×3, and
√
5×

√
5×

√
5 of surface area 30 (Figure 3.15). The running

environment is ASUS A43S laptop.

Our new algorithm based on the adjacency list checked whether each of 1080 common

developments of two boxes of size 1×1×7 and 1×3×3 of surface area 30 can fold to the

30



Figure 3.12: The number of partial developments of surface area from 1 to 16.

Table 3.3: The number of partial developments of surface area from 17 to 30 (from a

randomly picked development of surface area 16).

Set of partial developments Number of developments

S17 22

S18 230

S19 1430

S20 5834

S21 16589

S22 33997

S23 50497

S24 53420

S25 38989

S26 18605

S27 5249

S28 714

S29 28

S30 1
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Figure 3.13: Some common developments of two boxes of size 1×1×7 and 1×3×3.

Figure 3.14: The number of partial developments of surface area from 17 to 30 (from a

randomly picked development of surface area 16).

Figure 3.15: Boxes of size 1×1×7, 1×3×3, and
√
5×

√
5×

√
5 of surface area 30.
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cube of size
√
5×

√
5×

√
5. As a result, nine out of 1080 developments can fold to the cube

(Figure 3.16). While eight developments have only one way of folding to the cube of size
√
5×

√
5×

√
5, the other development has two different ways of folding to the cube of size

√
5×

√
5×

√
5, for there is an angle of 26.6 degrees to the unit square’s edge clockwise and

anti-clockwise. That is, the last development can actually fold to 3 boxes of size 1×1×7,

1×3×3, and
√
5×

√
5×

√
5 in two different ways as shown in Figure 3.17.

(1) (2) (3)

(4) (5) (6)

(7) (9)(8)

Figure 3.16: Developments having three or four ways of folding to three different boxes

of surface area 30.
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Figure 3.17: The development having four ways of folding: (a)1×1×7 (b) 1×3×3 (c)
√
5×

√
5×

√
5 (d)

√
5×

√
5×

√
5.
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3.3 Enumerating Centrosymmetric Common Devel-

opments

We first note the surface area of a box of size a× b× c should be an even number since it

is 2(ab+ bc+ ac). Thus we do not need to consider centrosymmetric polyominoes of odd

surface area in this section.

Assume Pi is a centrosymmetric polyomino of surface area i, where i is an even integer.

For any square q1 on Pi, there is a corresponding square q2 that is central symmetric to q1.

Removing both q1 and q2 from Pi, we get a new centrosymmetric polyomino Pi−2 (Pi−2

should be connected and has no hole inside). Repeat this step then we can get Pi−4, Pi−6,

. . . until the smallest centrosymmetric polyomino that has no more q1 and q2 that can be

removed. Thus, we can generate all centrosymmetric partial developments of surface area

i from i− 2.

As shown in Figure 3.18, there are two possible locations for the center of symmetry

on a unit square. Since the surface area of a box is an even integer, the center of symmetry

should be on the edge, not inside the unit square. By a simple case analysis, the smallest

surface area that admits both kinds of centrosymmetric polyominoes is 4 (Figure 3.19).

Figure 3.18: Possible locations for the center of symmetry on a unit square.

Let Si be the set of all common partial developments of area i of two boxes. Let Bi

be the adjacency list of the ith given box. The differences from the previous exhaust

algorithm are, this algorithm starts from S4, and it runs in a shorter loop. First, S4

consists of three tetrominoes, which are all centrosymmetric common partial developments

(Figure 3.19). Each Si with i > 4 is a subset of polyominoes of size i that can be computed

from Si−2 by the breadth first search for each even number i = 6, 8, . . ..
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Our final goal is to obtain the set Sn that contains all centrosymmetric common

developments of surface area n from the set S4.

(a) (b) (c)

Figure 3.19: Centrosymmetric common partial developments of S4.

Algorithm 3: Outline of the exhaustive search algorithm for centrosymmetric com-

mon developments.

Input : The surface area of two boxes, s;

the adjacency list of two boxes, B1, B2;

Output: All centrosymmetric common developments in Ss;

1 Initialize S4 by three polyominoes in Figure 3.19;

2 for i = 6, 8 . . . s do

3 foreach partial development Pi−2 in Si−2 do

4 attach a square q1 to Pi−2 at each possible adjacency square on the

boundary of Pi−2 to obtain a new polyomino P ′
i ;

5 attach another square q2 to P ′
i in central symmetrical the position to q1 to

obtain a new centrosymmetric polyomino Pi;

6 if CheckCover(Pi, B1, s)==1 and CheckCover(Pi, B2, s)==1 and Pi has

no hole then

7 store Pi into Si; // Pi is a partial development of the box

8 return Ss;

This Algorithm 3 works in a loop as follows, it picks up a polyomino Pi−2 in Si−2,

then attaches a square q1 by edge-to-edge gluing to Pi−2 at each possible adjacency empty

square on the boundary of Pi−2. On the corresponding empty square that is central

symmetric to q1, it attaches another square q2 to make a new centrosymmetric polyomino

Pi as shown in Figure 3.20. The polyomino Pi still needs to be examined whether it

36



can fold to a part of the given boxes or not. This loop terminates at i = s when the

polyomino Ps can fold to the given boxes. For example, consider the case s = 22. First,

when i = 4, Si contains three centrosymmetric common developments. When i starts

from 6, the algorithm selects one polyomino P4 from S4, since i− 2 = 4, then it attaches

a square q1 by edge-to-edge gluing to P4 clockwise, and attaches another q2 on the central

symmetrical position. Then it calls Procedure CheckCover (it is the same as the previous

section) to check if the component can fold to a part of the given boxes or not. After

that, the algorithm stores it into S6 if the generated one is a partial development. Repeat

these steps. The loop of i = 6 ends after it tried all P4. Since the algorithm attaches two

squares in one loop, then i will be increased by 2. When i comes to 8, the algorithm selects

a polyomino P6 from S6 one by one, attaches q1 and q2 to P6, calls Procedure CheckCover

to check the component and stores the partial development to S8, and repeats the loop.

The loop of i = 8 ends after the algorithm tried all elements of S6, then i comes to 10,

12, 14, . . . , s. The algorithm simply repeats the loop of attaching, checking and storing

steps. At last, when s = 22, the S22 contains all centrosymmetric common developments

that can fold to two boxes of 1× 1× 5 and 1× 2× 3.

(a) (b) (c)

Figure 3.20: Attach q1 and q2 to make a new centrosymmetric polyomino Pi.

3.4 Results of Enumerating Centrosymmetric Com-

mon Developments

As a result, among 2263 common developments of two boxes of size 1×1×5 and 1×2×3,

only 45 centrosymmetric common developments exist. The exact numbers of centrosym-

metric common developments have been confirmed from surface area 22 to surface area
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Table 3.4: The number of centrosymmetric common developments for each surface area.

Surface area S Number of developments

22 (1× 1× 5 and 1× 2× 3) 45

30 (1× 1× 7 and 1× 3× 3) 3

34 (1× 1× 8 and 1× 2× 5) 28

38 (1× 1× 9 and 1× 3× 4) 148

46 (1× 1× 11 and 1× 2× 7) 20

46 (1× 2× 7 and 1× 3× 5) 1

46 (1× 1× 11 and 1× 3× 5) 3

54 (1× 1× 13 and 1× 3× 6) 46

54 (1× 1× 13 and 3× 3× 3) 97

54 (1× 3× 6 and 3× 3× 3) ≥ 1920

54, as shown in Table 3.4.

We here give two remarks. First, for the surface area 46, we have 24 centrosymmetric

common developments in total, however, there are no centrosymmetric common devel-

opments for three boxes of size 1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5. Second, for the

surface area 54, it is remarkable that while there are 46 and 98 centrosymmetric common

developments of two boxes of 1× 1× 13 and 1× 3× 6, and of 1× 1× 13 and 3× 3× 3,

respectively, there are no centrosymmetric common developments of three boxes of size

1× 1× 13, 1× 3× 6, and 3× 3× 3.

Some centrosymmetric common developments are shown in Figure 3.21 and Fig-

ure 3.22.

From the results, we summarize them to the following theorem:

Theorem 6. The centrosymmetric common developments can only fold to two boxes, and

none of them can fold to three boxes for surface area up to 54.
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(a) (b) (c)

Figure 3.21: All centrosymmetric common developments of surface area 30 that can fold

to two boxes of 1× 1× 7 and 1× 3× 3.

(a) 1× 2× 7 and 1× 3× 5 (b) 1× 1× 13 and 1× 3× 6

Figure 3.22: Centrosymmetric common developments of other surface areas.
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Chapter 4

Rep-cubes

In this chapter, we describe the exhaustive search algorithm for generating all regular

rep-cubes of order k (for k = 2 and k = 4), which consist of minimal unit squares.

4.1 Enumerating Rep-cubes

Algorithm 4: Outline of the exhaustive search algorithm.

Input : The integer of the order for the rep-cube, k;

Output: All rep-cubes in Sk;

1 Initialize S1 by 11 developments of the unit cube;

2 for i = 2 to k do

3 foreach partial development Pi−1 in Si−1 do

4 foreach development P1 in S1 do

5 attach P1 to Pi−1 at each possible adjacency square on the boundary of

Pi−1 to obtain a new polyomino Pi;

6 if CheckCoverSingle(Pi)==1 then

7 store Pi into Si; // Pi is a partial development of the box of size

8 //
√
k ×

√
k ×

√
k

9 return Sk;

Algorithm 4 gives the outline of this algorithm. It works as follows: Let Si be the set

of all polyominoes of size 6 × i such that (1) it is composed by i developments of unit
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cube, (2) it can cover a part of a cube of size
√
k ×

√
k ×

√
k. That is, S1 is the set of

all developments of one unit cube, which consists of 11 polyominoes, and each set Si with

i > 1 is a subset of polyominoes of area 6 × i that can be computed from Si−1 by the

breadth first search for each i = 2, 3, . . .. Let Pi be any polyomino in Si, e.g., P1 is one of

the 11 polyominoes in S1 (Figure 4.1).

Figure 4.1: The set S1 of all developments of one unit cube.

As in Section 3, in the term of search of development, each element in Si is called a

partial development of the cube of size
√
k ×

√
k ×

√
k.

In Procedure CheckCoverSingle, the algorithm checks if Pi can cover the cube of size
√
k ×

√
k ×

√
k without overlap. The details will be described later.

Our final goal is to obtain the set Sk that contains all regular rep-cubes of order k

from the set S1.

Figure 4.2: All possible adjacency empty squares on the boundary of a development of a

1× 1× 1 cube.

The algorithm works in a loop as follows, it picks up a polyomino Pi−1 in Si−1 and
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a polyomino P1 in S1, then attach P1 by edge-to-edge gluing to Pi−1 at each possible

adjacency empty square on the boundary of Pi−1 as shown in Figure 4.2. We note that we

have to consider not only the overlap, but also the reflection of P1 if P1 is not congruent

to its reflection. By this step, we generate a new polyomino Pi, which is a component of

i developments of the unit cube. The polyomino Pi still needs to be examined whether

it can fold to a part of the cube of size
√
k ×

√
k ×

√
k or not. This loop terminates at

i = k when the polyomino Pk can fold to a complete cube. For example, consider the

case k = 4. We already know that when i = 1, S1 contains 11 developments of the unit

cube. When i comes to 2, the algorithm selects one polyomino P1 from S1 one by one,

since i− 1 = 1, and picks another P ′
1 in S1 by the piece, note that P1 and P ′

1 can be

the same one. Then it attaches P ′
1 by edge-to-edge gluing to P1 clockwise, and it calls

Procedure CheckCoverSingle to check the component can fold to a part of the cube or

not. Then, the algorithm stores it into S2 if the generated one is a partial development.

Repeat these steps with respect to the rotation and reflection of P ′
1. The loop of i = 2

ends after it tried all combinations of P ′
1 and P1. When i comes to 3, the algorithm

selects a polyomino P2 from S2 one by one and picks P ′
1 in S1, attaches P ′

1 to P2, calls

Procedure CheckCoverSingle to check the component and stores the partial development

to S3, and it repeats the loop for the rotation and reflection of P ′
1. The loop of i = 3 ends

after the algorithm tried all combinations of P ′
1 and P2, then i comes to 4. In the loop of

i = 4, it picks a polyomino P3 from S3 and P ′
1 in S1, and repeats the gluing, checking and

storing steps. At last, the S4 contains all rep-cubes of order 4.

As mentioned in Introduction, the folding lines of the cube of size
√
k ×

√
k ×

√
k

are not necessarily along the edges of unit squares. Rep-cubes of order 2, or 4 have

different folding ways, which means we need a universal method to check whether the

partial development can fold to the box or not.

As mentioned in Preliminaries, we proposed an algorithm that can check the positional

relationships of each unit square on the development. Consider any polyhedron, if it can

be unfolded to a development that is made of unit squares, we can get an adjacency

list of unit squares on the box. Different developments of the same polyhedron keep a

part of the same adjacency list. That is, we can tell whether a polyomino can fold to a

cube like
√
k ×

√
k ×

√
k by checking the positional relationship of the unit squares in
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Procedure CheckCoverSingle.

We pick the first development P in Figure 4.4 as an example (Figure 4.3). We first

mark a unit square with the number 1 as the start point (here we pick the leftmost of the

topmost square). Then, we mark all of its neighbor-squares a number according to the

adjacency list of the cube of size
√
2×

√
2×

√
2 as Table 4.1 in all four directions. In this

step, if a marked unit square is marked again with a different number, then it means an

overlap occurs and P should be discarded. Expand this step to its farther neighbors until

every square of P is marked with a number.

Figure 4.3: Every square of P is marked with a unique number according to the adjacency

list.

After this step, if every square in connected P is marked with its unique number, P

can wrap the cube of size
√
k×

√
k×

√
k with consistency. On the other hand, if (1) one

square is marked with different numbers by its neighbors or (2) two or more squares are

marked with the same number, then an overlap occurs in this folding way of P . We check

all possible start points and directions for each P .

The polyomino Pi is represented in the matrix in processing, and we compress the

matrix into a binary array in storing to shrink the size. We maintain the sets Si−1 and

Si in two hash tables of size O(maxi{i|Si|+ (i− 1)|Si−1|}). At the start of each loop, we

access Si−1 from one hash table and store Si into another hash table, and make the hash

table for Si−1 empty in the end of each loop. With the increasing of i, the size of the

hash table can be incredibly huge that may cause memory overflow on a normal personal

computer (e.g. i = 3 when k = 5).

As mentioned in Preliminaries, to reduce the amount of data, all polyominoes involved

in the algorithm are free polyominoes. By this way, all rotation and the reflection of the

original development are represented as the same binary array. In the storing process, all
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Table 4.1: Adjacency list of cube of size
√
2×

√
2×

√
2.

Square number Up Right Down Left

1 12 11 2 3

2 1 11 5 4

3 12 1 4 6

4 3 2 5 6

5 4 2 8 7

6 3 4 7 9

7 6 5 8 9

8 7 5 11 10

9 6 7 10 12

10 9 8 11 12

11 10 8 2 1

12 9 10 1 3

partial developments are serialized to the binary arrays and stored in a hash table. This

method consumes less memory.

4.2 Results of Enumerating Rep-cubes of Order k for

k = 2, 4

As a result of finding the rep-cube of order 2, by putting two developments of a cube

aside, there are 2424 polyominoes of area 12. Among these 2424 dodecominoes, there are

33 regular rep-cubes of order 2 that can fold to a cube of size
√
2×

√
2×

√
2 and each of

them can be divided into two developments of the unit cube (Figure 4.4 and Figure 4.5).

For the case of finding the regular rep-cube of order 4, we also implement this algo-

rithm. As a result, we got the number of partial development of i pieces as Table 4.2,

which means there are 7185 rep-cubes of order 4. Some examples of these rep-cubes are

shown in Figure 4.6.
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Procedure CheckCoverSingle(Pi)

Input : Polyomino Pi in Si;

Output: Whether Pi can wrap to cube of size
√
k ×

√
k ×

√
k or not;

1 foreach square in Pi do

2 mark the square 1 as the start point

3 foreach marked square in Pi do

4 mark its unmarked adjacent squares as the adjacency matrix of the cube of

size
√
k ×

√
k ×

√
k;

5 check its marked adjacent squares has the same number as the adjacency

matrix;

6 if every square of Pi is marked by a unique number then

7 return 1; // Pi can fold to the cube

8 else if any square of Pi is marked by 2 or more numbers then

9 break; // Pi has an overlap to fold to the cube

10 else if 2 or more squares of Pi are marked by the same number then

11 break; // Pi has an overlap to fold to the cube

12 return 0;

As shown in Figure 4.4 and Figure 4.5, we can observe that 17 rep-cubes out of 33

consist of two developments of the same shape. We may call them uniform rep-cubes.

It is worth mentioning that 4 uniform rep-cubes marked in Figure 4.4 are also central

symmetrical shapes and there are no such ones in non-uniform rep-cubes. In addition,

we also find uniform rep-cubes of order 4, which are 158 in total. Ninety-eight of these

uniform rep-cubes are made of pieces of the shape shown in Figure 4.7 (b).

In Figure 1 of [17], they gave three uniform rep-cubes of order 2 (Figure 1), 4, and 9.

On the other hand, in [17], they also show a regular rep-cube of order 50 that contains all

kinds of 11 developments of a unit cube. It may be worth focusing on these special cases

for a larger k.

In the analysis of the results, we found two different patterns that make the same rep-

cube. As shown in Figure 4.8, the difference in the composition does not affect the way

of folding. Finding this kind of rep-cube can be an interesting topic for future research.
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Table 4.2: The number of partial developments of regular rep-cubes of order 4.

Set of partial developments Number of developments

S1 11

S2 2345

S3 114852

S4 7185
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Figure 4.4: All 17 uniform rep-cubes of order 2, marked rep-cubes are central symmetric.
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Figure 4.5: All regular rep-cubes of order 2 that are not uniform.
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(a) (b) (c)

Figure 4.6: Some uniform rep-cubes of order 4.

(a) 4 (b) 98 (c) 14 (d) 8 (e) 0 (f) 10 (g) 0 (h) 0 (i) 11

(j) 9 (k) 4

Figure 4.7: List of the numbers of uniform rep-cubes of order 4 made by each of 11 shapes.
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(a)

(b)

Figure 4.8: Two different patterns can make the same rep-cube of order 4.
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Chapter 5

Concluding Remarks

5.1 Contribution and Conclusion

The main contribution of our research is that we give a new algorithm for checking whether

a polyomino can fold to a box of given size.

As the applications of this new algorithm, we partially solved the problem of ”find-

ing common developments of 3 boxes,” ”checking if there are centrosymmetric common

developments of 3 boxes,” and ”enumeration of all rep-cubes for small k.”

In the previous study, Shirakawa and Uehara showed infinite families of polyominoes

that fold to three different boxes [15]. However, the smallest polyomino contained 532

unit squares. In this thesis, we show that there exist polyominoes of 30 unit squares that

fold to three boxes if we allow us to fold along slanted lines.

As a follow-up to the study, we have also found the number of centrosymmetric com-

mon developments of surface area from 22 to 54. However, all of these common develop-

ments can only fold to two boxes. This discovery may help our future research.

Serval examples of rep-cubes are shown in [17], but there is no systematic way to

find them. Previous study also proposed that regular rep-cubes of order k exist for each

k = 2, 4, 5, 8, 9, 36, 50, 64, and also k = 36gk′2 for any positive integer k′ and an integer

g in {2, 4, 5, 8, 9, 36, 50, 64}. In this thesis, we provide a collection of regular rep-cubes of

order 2 and order 4, and introduce a new notion of “uniform rep-cube”.
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5.2 Future Work

There are much future work in this area. For example, does there exist a polyomino that

folds to four or more boxes? Is there any upper bound of the number of boxes which can

be folded from one polyomino? In Theorem 2 of [23], the previous study indicates that

there is no upper bound of the number of boxes such that they share the same surface

area. However, it is still hard to imagine that one polyomino can fold to n different boxes,

for large n, e.g., 10000.

If we strictly fold along the edges of unit squares, the smallest possible surface area

that may fold to three different boxes is 46 [15], which may produce three boxes of size

1 × 1 × 11, 1 × 2 × 7, and 1 × 3 × 5. To solve this problem, we give a partial answer.

When we restrict to centrosymmetric ones, there is no polyomino that can fold to these

three boxes. It is still open for general polyominoes of surface area 46.

In the field of the rep-cubes, we wonder there is a characterization of an integer k that

whether the regular rep-cube of the order k exists or not.

General development/folding problems also remain open, and these are what we want

to know in the further study. In [10], Shirakawa et al. found a common development of

a unit cube and an almost regular tetrahedron, however, a common development of two

platonic solids are still open.
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