
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 安全なメッセージ暗号化と認証に関する研究

Author(s) Mazumder, Rashed

Citation

Issue Date 2017-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/14829

Rights

Description Supervisor:宮地　充子, 情報科学研究科, 博士

Study on Secure Message Encryption and

Authentication

Rashed MAZUMDER

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

Study on Secure Message Encryption and

Authentication

Rashed MAZUMDER

Supervisor: Professor Atsuko Miyaji

School of Information Science
Japan Advanced Institute of Science and Technology

September, 2017

Abstract

An important problem in cryptography is to satisfy secure data communication over
an insecure channel. Usually, computing technologies such as E-mail, on-line Banking,
ATMs, Mobile Applications, IoT, Big data, Cloud Network, VANET, and MANET re-
quire secure and efficient cryptographic solutions. Now-a-days, the trade-off between
security and efficiency is the most significant issue for designing a handy cryptographic
solution. Generally, the cryptographic solution should be suitable to implement in va-
riety of platforms like IoT environment, cloud network, metropolitan area network, big
data environment, and smart city. In addition, it should satisfy reasonable efficiency with
satisfactory security margin. Under symmetric key cryptography, certain tools are used
to keep secure data communication. Among these tools, one of the important tool is
cryptographic compression function.

The Cryptographic Compression Function (CCF) is used as a component of cryp-
tographic hash (CH). The cryptographic hash is defined as to proceed data from an
arbitrary domain to a fixed domain. Applications of the CH are enormous such as mes-
sage verification, password verification, and pseudo-random generation. Generally, the
CCF is built by scratch or block-cipher. Interestingly, the block-cipher based CCF is
more apposite than the scratch based CCF because of direct hardware implementation
of block-cipher. Depending on the output size of block-cipher, there are two more groups
such as single block-length (SBL) and double block-length (DBL). However, the SBL
is not appropriate because of the birthday-bound attack. On the contrary, the DBL has
three more sub-groups depending on the key size such as (n,n), (n,2n) block-cipher based
CCF, and (n, k) light-weight cipher based CCF. Under the (n,n) CCF, there are certain
familiar schemes such as MDC-2, MDC-4, MJH, and Bart-12. The most of the schemes
of (n,n) based CCF can not support variable size of message encryption. In addition,
padding mechanism is mandatory for small and flexible size of message. These familiar
schemes have less collision security bound and less efficiency-rate. Oppositely, the exist-
ing schemes of (n,2n) block-cipher CCF are classified under two classes which are based
on rigorous security bound and efficiency. Usually, the efficiency-rate (r) is defined as

r = ∣m∣

n×#E where ∣m∣ means length of message, n directs block-length, and #E indicates
number of calling block-cipher. The schemes of Weimar-DM, Hirose-DM, Tandem-DM,
and Abreast-DM are members of the rigorous security bound group. These schemes are
secure under the ideal cipher model (ICM). However, the security assumption of the ICM
is very rigid. Hence, adversary model is weak under this security proof model. In addition,
the ICM is close to the ideal world rather than the real world. On the contrary, Nandi
and ISA-09 belongs to the efficiency class. These schemes need three calls of block-cipher.
In addition, key scheduling is KS = 3. Moreover, the operating mode is serial. From the
above discussions of CCF, the desired targets are:

� Upper security bound, Higher efficiency-rate, Less call of block-ciphers, Less key
scheduling, and Better security proof model (close to the real world)

i

Next, we use Cryptographic Compression Function as a building tool in the domain
of Authenticated Encryption (AE). Generally, Authenticated Encryption is a procedure
that satisfies both data privacy and authenticity. The AE has many applications in the
field of secure data communication such as e-banking, mobile banking, IoT, big data,
and cloud network. Generally, AE consists of two modules such as Encryption and De-
cryption. Input of encryption module is respectively message, key, nonce, and optional
associated data (AD). Usually, nonce is defined as the counter or unique number. On the
contrary, cipher-text and authentication tag are output of encryption module. Generally,
this tag is noted as T (n-bit value) that is used for message authentication. Moreover,
cipher-text, key, authentication tag, and optional AD are the input of decryption module.
In addition, if authentication tag is matched for the supplied cipher-text then output of
decryption module is plain-text else error. According P. Rogaway, there is another con-
cept of IV (Initialization of vector) that can be used instead of nonce and AD. Hence,
we define probabilistic-IV-based AE or IV-based AE in short as an authenticated en-
cryption algorithm that has a random IV without associated data whose security goal
is indistinguishability with random bits with respect to an adaptive-chosen-plaintext-
and-known-IV attack, unlike the common security goal of AE with nonce and associated
data, which is indistinguishability with an adaptive-chosen-plaintext-and-IV attack. Un-
der these circumstances, we classified two groups of probabilistic-IV-based AE and nonce
respect (including AD) AE. Under the nonce, AD based AE schemes, there are two more
subgroups in respect of security notions such as nonce respect and nonce reuse. Usually,
nonce respect means the value of each nonce is unique like counter. Oppositely, if nonce
value is repeated, then it is called nonce reuse. In the domain of nonce, AD based AE,
the most important argument is whether the AE is secure and authentic under the nonce
reuse. Interestingly, E. Fleischmann et al. claimed that nonce reuse is acceptable in the
aspect of security notions of AE through the scheme of McOE. Following that, several
schemes have been proposed like APE, PoE, TC, COPA, and ElmE-D. However, Hoang
et al. proved that usage of nonce reuse is not secure and proper in the aspect of security
notions of online AE. Hence, a door is re-opened for security notions of nonce respect in
AE. Usually, nonce and AD based AE satisfies rigorous security bound. However, over-
head costs are increased because of strong security model. Under the recent trends of
information technology, the IoT, big data, and cloud network are emerging applications.
Interestingly, the main challenges of IoT-end devices, big-data end devices and cloud net-
work low level devices are to keep a certain level of security margin with low cost. Thus,
the AE should satisfy the properties of low cost and resources also including reasonable
security bound. We actually try to address that using secure cryptographic compression
function its possible to build secure and efficient authenticated encryption. In addition, we
have some proposals of authentication mode under the authenticated encryption scheme
those have opportunity to provide higher authenticity security margin.

� Propose certain ideas of AE that are based on cryptographic compression function,
Better efficiency, Application based AE (light, heavy scheme, and secure scheme),
Parallel operating mode, Less call of block-cipher function.

In addition, Small Domain Message Encryption (SDE) is another application of CCF.
It is one of the most prominent branch of message encryption where message domain
should be small. Usually, it is defined as to encrypt short message where plain-text and
cipher-text are equal in length including similar format. The SDE is widely implementable

ii

under personal identification, and ATMs. There are certain familiar schemes those are
based on card shuffling algorithm where block-cipher is used as primitive. The schemes
of Swap-or-not shuffle, Mix and Cut, Thorp shuffle, and SRS are based on block-cipher
(e. g. AES), where the number of calling block-ciphers or functions are high. Hence,
these schemes are not efficient for encryption under the resource constrained devices and
IoT-end devices. From the above discussions of TDE, the desired targets are:

� Supports small encryption function, Satisfy partial security margin

Keywords. Cryptographic Compression Function, Authenticated Encryption, Small
Domain Encryption, Collision Resistance, Efficiency-rate

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Professor Atsuko
Miyaji for the continuous support during my doctoral study. Moreover, her patience,
motivation, and immense knowledge in the field of cryptography and security makes me
confident to explore new direction in the world of cryptography. Her guidance helped me
in all the time of research and writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.
Ryuhei Uehara, Prof. Mineo Kaneko, Prof. Eiichiro Fujisaki, and Dr. Mitsuru Matsui
for their insightful comments and encouragement, but also for the hard question which
incented me to widen my research from various perspectives.

I thank to all Miyaji-lab members for their different types of supports in the research
related works. In addition, I would like to convey my heartiest thanks to Assistant
Professor Chunhua Su, Jiageng Chen, and Satoru Tanaka for their great support during
my PhD works.

We are very much grateful to all anonymous reviewers of the conferences and journals
for their valuable comments. This Ph.D work has been partially supported by JAIST
Doctoral Research Fellow (DRF) program. I am honoured to Japan Association for
Mathematical Sciences Foundation (JAMS) because of their research-funding to me for
attending several conferences.

Last but not the least, I would like to thank my family: my beloved wife and daughter,
my parents and to my brothers for supporting me spiritually throughout the Ph.D work
including writing this thesis. Moreover, Special thanks to Bangladeshi community people
of JAIST, and Kanazawa in Japan.

iv

Dedication

This theses is dedicated to all Employees of JAIST who helped me in every steps of my
life in JAIST. In addition, dedicate to all the Japanese people outside of JAIST who made
my life comfortable and easier in Japan.

v

Contents

Abstract i

Acknowledgement iv

Dedication v

1 Introduction 1
1.1 Backgrounds . 1
1.2 Motivations . 3
1.3 Summary of Contributions . 5
1.4 Organization . 8

2 Preliminaries 10
2.1 Encryption Modes . 12

2.1.1 Security of Encryption Modes . 14
2.2 Authenticity Modes . 15

2.2.1 Security Notion of Authentication . 15
2.3 Building Modes of Compression Function . 19

2.3.1 Security Notions of Compression Function 21
2.4 Building modes of Small Domain Encryption 24

2.4.1 Security Notions of SDE . 25

3 Existing Research Works 26
3.1 Previous Works in Cryptographic Compression Function 26
3.2 Previous Works in Authenticated Encryption 28
3.3 Previous Works in Small Domain Encryption 31

4 Some Probable Secure Constructions of Compression Function (CF) 32
4.1 An Upper Bounded Secure Scheme of CF . 33

4.1.1 Proposed First Scheme of Compression Function (FS) 33
4.2 A Pair of Constructions of Compression Function 43

4.2.1 Proposed Second Scheme of Compression Function (SS) 43
4.2.2 Proposed Third Scheme of Compression Function (TS) 49
4.2.3 Efficiency Analysis Second and Third Scheme 53

4.3 A Light Scheme of (n,n) block-cipher compression Function 54
4.3.1 Proposed Fourth Scheme of Compression Function 54

vi

5 A Pair of Constructions of Authenticated Encryption 61
5.1 Probabilistic-IV based AE . 62
5.2 Preliminaries for Serial Authenticated Encryption 62

5.2.1 Proposed Scheme of Serial-AE: Semi-Parallel-T.G 63
5.2.2 Proposed Scheme of Serial-AE: Serial-T.G 66
5.2.3 Proposed Scheme of Serial-AE: Parallel-T.G 69

5.3 Security Proof Sketch: The scheme of Serial-AE 71
5.3.1 Privacy Security: The Scheme of Serial-AE 71
5.3.2 Authenticity Security: The Scheme of Serial-AE 71

5.4 Security Analysis of the scheme of Serial-AE 73
5.4.1 Privacy Security Analysis: The Scheme of Serial-AE 73
5.4.2 Authenticity Security Analysis: Serial-AE: Semi-Parallel-T.G 76
5.4.3 Authenticity Security Analysis: Serial-AE: Serial-T.G 79
5.4.4 Authenticity Security Analysis: Serial-AE: Parallel-T.G 81

5.5 Nonce Respect Authenticated Encryption . 82
5.6 Preliminaries for the scheme of Parallel-AE 82

5.6.1 Proposed Scheme of Parallel-AE: Semi-Parallel-T.G 82
5.6.2 Proposed Scheme of Parallel-AE: Serial-T.G 86

5.7 Security Proof Sketch: The Scheme of Parallel-AE 88
5.7.1 Privacy Security: The Scheme of Parallel-AE 88
5.7.2 Authenticity Security: The Scheme of Parallel-AE 88

5.8 Security Analysis of the Scheme of Parallel-AE 90
5.8.1 Privacy Security Analysis: The Scheme of Parallel-AE 90
5.8.2 Authenticity Security Analysis: The Scheme of Parallel-AE: Serial-

T.G . 91
5.9 Contribution Analysis (Current Result) . 93

6 Small and Variable Message Encryption 96
6.1 A Concept of Construction of Small Domain Encryption 96
6.2 Definition of the Proposed Scheme of SETM 97
6.3 Security Analysis of the SETM . 99

7 Conclusion and Future Works 104

References 106

Publications 113

vii

Chapter 1

Introduction

Cryptography is a process of encoding data that is readable by valid senders and receivers
[1, 2]. Encryption/Decryption is the major concern issue under the cryptography [1, 2, 3].
Generally, cryptography is used to satisfy secure data communication over an insecure
channel. For example, computer aided services such as e-mail, e-banking, e-learning, on-
line shopping, IoT, cloud network, and big data require secure and efficient cryptographic
solutions [4, 5, 6, 7]. One of the cracking issue is the trade-off between security and effi-
ciency for designing a cryptographic solution. Furthermore, encryption/decryption modes
play significant roles for any cryptographic solution. Usually, three types of encryption
mode are available such as symmetric cryptography, asymmetric cryptography, and dig-
ital envelope. However, our thesis arena is limited under the symmetric cryptography.
One of the prominent cryptographic tools is Cryptographic compression function (CCF).
In addition, the CCF is a useful tool for building Authenticated Encryption (AE) and
Small domain encryption (SDE). Our primary works are focused for proposing secure and
efficient cryptographic compression function. Next, we make a drive to use cryptographic
compression function for building secure and efficient schemes of authenticated encryption
and small domain encryption.

1.1 Backgrounds

Cryptographic Compression Function. A cryptographic (CH) hash function is a
kind of hash function. It is suitable to use in the application of cryptography because of
it’s certain properties [58, 59, 60, 61]. Usually, it is noted as an algorithm where it takes
arbitrary size of message and output a fixed size of message [62, 63, 64, 73]. In addition, it
is assumed as a one-way function where inversion is infeasible [62, 63, 64]. There are many
usage of CH such as password verification, message authentication, key derivation, and
data identifier [2, 25, 61, 62, 63, 64, 70]. Now-a-days, it is an important cryptographic tool
under the IoT-end device and resource constrained device [7, 66, 80]. The effectiveness
of the CH depends on the internal structure. Generally, the internal structure depends
on the compression function which we define here as cryptographic compression function
(CCF). The CCF can be built by scratch or block-cipher [61, 63, 65]. However, the
block-cipher based CCF is more suitable than the scratch based CCF because of direct
hardware implementation of the block-cipher [25, 39]. Under the block-cipher, there
are two branches such as single block length (SBL) and double block length (DBL).
Interestingly, the DBL is more secure than the SBL due to birthday attack [25, 39, 64].

1

The DBL has three sub-branches. In addition, these sub-branches are classified based on
the key size of the block-cipher. An (n,n), (n,2n), and lightweight-cipher are the sub-
branches under the DBL [26, 27]. Our research is focused on the (n,n) and (n,2n) block-
cipher based CCF. These block-cipher based CCF have some common properties such
as key scheduling, number of block-ciphers, operational mode, security margin, padding
oracle attack, and efficiency-rate. According to these properties, we made two groups of
efficiency and security. Moreover, we evaluate existing all familiar schemes based on these
two groups.

In addition, cryptographic compression function can be used as a building tool of
authenticated encryption (AE). The AE is suitable for maintaining secure data commu-
nication [8, 9, 10, 49, 50, 52]. Usually, it has many usage in the applications of data and
computer communication [8, 9, 10, 11, 12]. From the very beginning of security system,
encryption is used in the defense organization of advanced countries like USA, Germany,
France, Russia, and Japan [13, 90, 91]. Moreover, it is useful in the e-governance frame-
work also [4, 14, 15]. Interestingly, the usage of encryption is becoming more popular
in the domain of public life such as e-mail, e-banking, e-learning, and on-line shopping
[4, 14, 15]. Now-a-days, data communication plays very important role in every nodes of
life [2, 3, 4, 16, 17, 18]. Therefore, security and privacy are prime concern issues now-a-
days. However, security and privacy issues are very complex and excessive during imple-
mentation time because of multi types and dimensions of applications [17, 37, 39, 40, 44].
For example, the characteristics of big data, IoT, and cloud network are based on multiple
attributes. Thus, it is very tough job to design a flexible cryptographic solution under
big data or cloud network. Usually, different types of devices are used to seek data peri-
odically in the arena of big data, IoT, and cloud network. Therefore, there is a chance for
an intruder to inject fake data. In addition, an intruder can steal information data from
the insecure channel. An authenticated encryption is an important cryptographic tool.
Usually, it is used to satisfy data privacy and data integrity under any insecure channel.
In the domain of big data and cloud network a large number of data are needed to process
via distributed network. As a result, data revocation (inject false data) and alteration of
data are very common phenomena. So, authenticated encryption can play a major role
under these scenarios. For example, the city (HoPe) takes a decision to merge all hos-
pital’s information including patients, doctors, and staffs. Hence, patient keeps a single
medical card that can connect to central. In addition, all records are kept in the central
that can access by authorized person like doctors. However, if all nodes (hospitals) are
connected through cloud network then there are chances to inject false data and revoke
sensitive data of patient in respect of adversary. Actually, shared network increases the
risk of data falsification or data revocation. Therefore, authenticated encryption can be
a good choice to maintain security and integrity in this kind of shared network. It can
check data integrity (protect: inject false data) and data privacy.

In this current decade including upcoming decade, IoT is an important technology in
the field of data communication [40, 71, 72]. There are many kinds of devices are used
under the IoT [40, 71, 72]. Most of the devices are resource constrained device where
memory and power capacity are limited [3, 40, 71, 72]. For example, RfID-tag, IoT-end
device, and wireless sensor network devices are the resource constrained device that have
many usage in our daily life. In addition, credit card, personal information number card,
student card, and resident card are also important in our daily life. However, the cracking
indicators are the behavior of these devices: whether these are secure and efficient. The

2

main challenges are to keep balance among cost, security margin, and efficiency. Now-
a-days, researchers are trying to invent efficient crypto-device. Under this circumstance,
encryption cost plays an important role. Hence, small domain encryption (SDE) is very
important in the context of IoT [30, 31, 32, 33, 34]. Generally, SDE is defined as a
procedure where small size of message can be encrypted. In addition, the size of message
and cipher are equal [35, 36]. Moreover, SDE keeps the same format for the plain-text
and cipher-text.

1.2 Motivations

Cryptographic Compression Function has certain properties such as collision re-
sistance, preimage resistance, efficiency rate, number of calling block-cipher, operational
mode, and key scheduling that reflect the effectiveness of the block-cipher based CCF
[23, 24, 25, 39, 54, 55, 56]. Hence, we studied these properties and tried to find out the
gaps. For example, the parameter of key scheduling is very vital for any schemes of CCF.
Usually, single key schedule consumes 176-bytes of memory [74]. In the aspect of resource
constrained device and IoT-end device, to keep the less key scheduling is very important.
Moreover, the higher efficiency-rate encloses that the scheme is efficient. On the contrary,
CR and PR are vital in the aspect of security. These two directs the security margin of
any scheme. Under the (n,n) block-cipher based CCF, there are certain familiar schemes
such as MDC-s, MDC-4, MJH, and Bart-12 [38, 68, 69, 70]. The MDC-2 and MDC-4 are
the pioneer schemes under the domain of (n,n) block-cipher. The MDC-2 needs double
key scheduling including 1/2 efficiency-rate. It needs padding mechanism for variable
length of message encryption [38, 68, 69]. The CR is bounded as O (2n/2) for MDC-2.
Moreover, the MDC-4 needs to execute four block-ciphers. The key scheduling of MDC-4
is four. It also needs the padding mechanism for flexible size of message. Another pioneer
scheme is MJH. It needs single key scheduling. In addition, it is bounded as O (2n/2) for
collision resistance. Most recently, there is another scheme of Bart-12 [59]. It has upper
security margin. However, it needs three calls of block-cipher. Moreover, the number
of key scheduling is three. Under these circumstances, a new scheme is needed under
(n,n) block-cipher that can satisfy less key scheduling and higher security margin. In
addition, it can support padding free encryption for variable size of message. Under the
(n,2n) block-cipher, there are some well-known schemes such as Weimar, Hirose, Tandem,
Abreast, Nandi, and ISA09. The most recent and best scheme is the Weimar-DM [25]. It
has double key scheduling including 1/2 efficiency-rate. In addition, it is secure under the
ideal cipher model (ICM: close to ideal world) where ICM has rigid security assumption.
Interestingly, there is another security model (WCM: weak cipher model) that has less
strict security assumption. Hence, it is close to the real world [62, 63]. The rest of the
schemes of Hirose, Tandem, and Abreast are also secure under the ICM [28, 29, 39, 53].
For the schemes of Nandi and ISA09 are good in the aspect of efficiency-rate [64, 65].
However, the number of key scheduling is three for these two schemes. In addition, three
calls of block-cipher are required for a single set of message encryption. According to the
above discussions, there are certain gaps under the group of security margin and efficiency.
For the group of security margin, there is an opportunity to propose a scheme of CCF
that can satisfy upper security bound. In addition, it is expected to be secure under the
security model of ICM, WCM, and ext. WCM. On the contrary, there is a possibility to

3

propose a higher efficient scheme of CCF that can satisfy less call of block-cipher and key
scheduling.

Authenticated Encryption is built by scratch or block-cipher. Many of existing
constructions are based on a block-cipher because we can use a well established block-
cipher such as AES as a component. Usually, block-cipher based authenticated encryption
is suitable for IoT and resource constrained device’s encryption [7, 43]. We classify the
AE in two categories. For the first one, we define probabilistic-IV-based AE or IV-based
AE in short as an authenticated encryption algorithm that has a random IV without
associated data whose security goal is indistinguishability with random bits with respect
to an adaptive-chosen-plaintext-and-known-IV attack, unlike the common security goal of
AE with nonce and associated data, which is indistinguishability with an adaptive-chosen-
plaintext-and-IV attack. The second one is based on nonce based AE including associated
data. In addition, IV-based AE is expected to be more suitable for resource constrained
devices that the nonce and AD based AE due to its weaker security model. But, nonce
and associated data based AE is more secure than that of the IV-based AE. Actually,
construction of AE depends on application properties and characteristics. There are
certain block-cipher based authenticated encryption such as McOE, PoE, OAE, CLOC,
COPA, COBRA, SILC, and PPAE [11, 12, 42, 43, 46, 48, 77, 92]. At first we emphasize
IV-based AE because it is expected to be a light solution due its weaker security model.
Next, we also draw an attention on nonce and associated data based AE because of better
security margin. In 2012, McOE scheme has been proposed by E. Fleischmann et. al.
where nonce can be repeated [11]. Thus, many schemes have been proposed based on
these concepts. If nonce can be repeated then it is light for resource constrained device
encryption like IV. Interestingly, V. T. Hoang et. al. claimed in the scheme of OAE that
nonce-reused is not valid concept for secure AE [42]. Therefore, doors are re-opened for
doing research under the unique nonce based AE and IV based AE. Furthermore, there
are certain parameters that reflect the effectiveness of the AE schemes such as efficiency-
rate, number of calling encryption functions in encryption mode and authenticity mode,
and operational mode (Parallel/Serial) [42, 45, 46, 47]. Hence, these properties should
evaluate for identifying the efficient construction of authenticated encryption. Under
these circumstances, we found certain gaps between existing familiar schemes of AE and
properties of efficiency after brief study of the existing works such as operational mode
(parallel/serial) in authentication of AE, less call of block-cipher in authentication of
AE, and probabilistic-IV based AE. In addition, we try to focus how we can use secure
cryptographic compression function as a building tool of authenticated encryption.

Small Domain Encryption can be built by traditional block-cipher or scratch
[30, 31, 32, 33, 34]. For example, AES or DES are the examples of traditional block-
cipher. Generally, the size of AES and DES are fixed including key size like 256, 192,
128, and 64 bits. Just think of 16 or 24 bits message, you are going to use 64 or 128
bit block-cipher. Under this condition, the key management costs are increasing. In
addition, storage and operation costs are increased also. Furthermore, certain lightweight-
ciphers are popular in recent days. However, the key size of these ciphers are 32, 48,
64, and 128 bits. Actually, predefined block-cipher is not appropriate for small domain
encryption. According to the above discussions, small block-ciphers are suitable for small
domain encryption. But the problem is security. Usually, small block-cipher is more
efficient rather than the security. Thus, small block-cipher based SDE is efficient but
not secure enough. Interestingly, there are some studies where it is found that resource

4

constrained devices rely on the less execution time, less power consumption, and less
number of gates rather than the rigorous security bound. In respect of authenticated
encryption and cryptographic compression function, inadequate studies have been done
under the small domain encryption. At first, J.Black and P.Rogaway addressed this
burning issue in [31]. However, there was no follow-up studies after that proposal for
the long time. Interestingly, the SDE issue become popular when applications of IoT are
increasing. Next B.Morris, P.Rogaway, T.Stegers proposed a SDE oriented construction
where block-cipher e. g. AES/DES is used as primitive [30, 31, 32]. The execution time
of this scheme is O (log3N) [30, 31, 32]. Moreover, this scheme is required to call a large
number of block-ciphers. Recently a scheme has been proposed by V.T.Hoang, B.Morris,
and P.Rogaway that satisfies the small domain message encryption including the format
preserving encryption [30, 31, 32, 33]. This scheme is based on card shuffling of Swap-
or-Not. In addition, this scheme needs to execute block-cipher also. Moreover, it invokes
a large number of block-cipher (e. g. AES). The security of this scheme is bounded by
q = (1 − ε)2n (q ∶ number of query, n ∶ block-length) [30, 31, 32, 33]. There is an another
scheme of Mix-and-Cut that is proposed by T.Ristenpart and S.Yilek [32, 33, 34, 35].
Interestingly, it follows by a card shuffling algorithm where the basic primitive is block-
cipher. The encryption time of the Mix-and-Cut is O (log2N) [32, 33, 34, 35]. The one of
the best construction is Sometimes-Recursive Shuffle (SRS). It is proposed by B.Morris,
P.Rogaway [32, 33, 34, 35]. In addition, the execution time of this scheme (O (logN)).
It needs less call of block-cipher (1000 calls of block-cipher) in compare to all schemes
[34, 35]. This scheme needs 80K clock cycles, or 25µsec of recent Intel processor [34, 35].
Therefore, it can be said that the SRS is not light for resource-constrained device and
IoT-end device. Generally, the constructions of SDE can be classified into two domains
such as partial security domain and full security domain. Under these circumstances, it
is obvious that most of the schemes are feasible for heavy system rather than the light
system. Thus, we rethink about the SDE based construction that can encrypt short
message. In addition, it takes less resources. Moreover, it preserves the size of message
and cipher-text.

1.3 Summary of Contributions

Under the Cryptographic Compression Function, we define two classes such as group of
security bound and group of efficiency. Under the group of security margin, we pro-
posed our first scheme that satisfies higher security margin [54]. In addition, it satisfies
single key scheduling. Moreover, the proposed first scheme is secure under three types
of security model such as ideal, weak, and extended.weak cipher model. Interestingly,
extended.weak cipher model (ext. WCM) is proposed by us in [54]. Under the group
of efficiency, we proposed our second CCF construction. This construction has upper
efficiency-rate. Moreover, it satisfies less key scheduling and less number of calling block-
ciphers. For the (n,n) block-cipher based CCF, we proposed two more constructions.
We noted as third and fourth scheme of CCF [57]. The proposed third scheme support
variable message encryption. In addition, it is free from padding mechanism. More-
over, it has higher efficiency-rate. However, the security bound is less than the proposed
fourth scheme’s collision security bound. The proposed fourth scheme needs three calls
of block-ciphers. Moreover, it needs double key scheduling.

5

Under the Authenticated Encryption, we proposed a scheme of IV-based AE. It sat-
isfies padding free mechanism. In addition, it satisfies inverse freeness of block-cipher.
The encryption mode of the first scheme of AE is based on serial operation. Under the
first scheme, we proposed three variants of authentication mode or tag generation. The
encryption mode of the first scheme needs (n) + n × F prng + 2 functions. In addition, the
first variant authentication of the first AE scheme needs (n − 1) + 1 block-cipher func-
tion. The first variation of authentication runs in semi-parallel approach. The proposal
of second variant needs (n + 1)+3 block-cipher function for authentication. However, the
second variant runs in serial mode and needs more resources. But this proposal can be an
interesting future work because of getting upper authenticity security margin. However,
we do not provide detail security proof under this work. The main principle is: we use
3n → 2n-bit secure compression function for the second variant of authentication under
the first scheme. And we show that this cryptographic compression function is secure
under preimage and collision resistance. In addition, the most attractive variant is third
variant which runs in parallel and needs only two calls of block-cipher for generating tag
under the first (Serial Scheme) scheme of AE.

For clear understanding, we mention the name of first scheme of authenticated encryp-
tion (AE) as Serial-AE. In addition, the variation of tag generation under the Serial-AE
is named as Semi-Parallel Tag generation (Semi-Parallel-T.G). Hence, in combine it is
formed as Serial-AE: Semi-Parallel-T.G. According to the above explanation rest of the
constructions are defined as: Serial-AE: Serial-T.G and Serial-AE: Parallel-T.G., where
Serial-T.G means tag generation is based on serial operation and Parallel-T.G represents
parallel tag generation operation. In principle, encryption mode is similar for all con-
structions.

Our proposed second scheme is based on nonce respect. It operates in parallel ap-
proach. In principle, it does not suitable for associated data. However, it can only
supports n-bit associated data in its initialization phase. Hence, it is suitable for IoT
applications. The second scheme’s encryption mode requires (n) + n × GF + 2 calling
functions. Moreover, the second scheme of AE has two variants of authentication mode.
The first variant authentication needs (n − 1) + 1 block-cipher function. And, it operates
in semi-parallel. The second variation of authentication under the second scheme of AE
depends on serial operation. It needs n + 2 block-cipher function. Actually, the proposal
of second variant authentication under the second scheme is an opportunity where we
can achieve better authenticity security margin. However, the detail security proof is not
provided in this work. But, we provide a security proof sketch where we show that this
variant can achieve upper authenticity security margin.

For clear understanding, we mention the name of second scheme of authenticated en-
cryption (AE) as Parallel-AE. In addition, the first variation of tag generation under the
Parallel-AE is named as Semi-Parallel Tag generation (Semi-Parallel-T.G). Hence, in
combine it is formed as Parallel-AE: Semi-Parallel-T.G. According to the above expla-
nation rest of the construction is defined as: Parallel-AE: Serial-T.G., where Serial-T.G
represents serial tag generation operation. In principle, encryption mode is similar for all
constructions.

Under the Small Domain Encryption, we proposed a scheme, which is based on small
keyed function. Our proposed scheme can encrypt small chunk of message. It can encrypt
arbitrary size of message without padding. It preserves the length of plain-text and cipher-
text. Moreover, it is light in operation because of using small keyed function. Additionally,

6

it satisfies partial security margin.

7

1.4 Organization

This thesis consists of 7 chapters as depicted in Figure 1.1. In Chapter 2, we discuss
preliminaries where we mention the basic definitions in the cryptographic tool, security
notions, mathematical notions, and cryptographic primitives. We briefly discuss the ex-
isting contributions under the CCF, AE, and SDE in Chapter 3. In chapter 4, we propose

Introduction - Basic of cryptography
- Our research areas
- Fact findings and results
- Gist of our research

Preliminaries - Basic notions
- Security notions
- Crypto-primitives
- Basic definitions

Backgrounds

Authenticated Encryption (AE)
- Existing research works
- Advantages and dis-adv.
- Motivational facts

Cryptographic Compression
Function (CCF)
- Existing research works
- Advantages and dis-adv.
- Motivational facts

Small Domain Encryption (SDE)
- Existing research works
- Advantages and dis-adv.
- Motivational facts

AE
- Serial AE: Less resources are

needed in Authentication mode

CCF - Upper security margin
based CCF

- Weaker security model
- Higher efficiency based CCF
- Padding free CCF

SDE
- Light solution

(Scratch based and
AE and CCF compatible)

Chapter
1

Chapter
2

Chapter
3

Chapter
4

Chapter
5

Chapter
6

Conclusions
- Contributions
- Limitations
- Future works

Chapter
7

- Parallel AE: Less resources are
needed in Authentication mode

Efficient also

Figure 1.1: Flow Chart of the Thesis Book

better security based (n,2n) cryptographic compression function [54]. However, it is
extended version of [53] paper. In addition, we propose another scheme of (n,2n) crypto-
graphic compression function that satisfies upper efficiency. Under the (n,n) block-cipher
compression function, we propose a scheme that satisfies upper security margin, padding
free property, and better efficiency [57]. Furthermore, we propose another construction

8

of (n,n) block-cipher compression function that is secure under ideal cipher model, and
weak cipher model [56].

In chapter 5, we propose a serial authenticated encryption (Serial-AE). Under the
Serial-AE, we have three variants of Tag Generation (T.G: Authentication) such as Semi-
Parallel-T.G, Serial-T.G, and Parallel-T.G. Therefore, in combine form these are as Serial-
AE: Semi-Parallel-T.G, Serial-AE: Serial-T.G, and Serial-AE: Parallel-T.G. The scheme
of Serial-AE is proposed in [49]. However, we have certain observations in Doctoral Pre-
liminary Defense under this scheme. Therefore, we make corrections and revise in this
document as Serial-AE: Semi-Parallel-T.G, Serial-AE: Serial-T.G, and Serial-AE: Parallel-
T.G.
Furthermore, our proposed second scheme of authenticated encryption is named as Parallel-
AE. Under the Parallel-AE, we have two variants Tag Generation (T.G) such as Semi-
Parallel-T.G, and Serial-T.G. Therefore, in combine these are Parallel-AE: Semi-Parallel-
T.G, Parallel-AE: Serial-T.G. However, we have certain observations in Doctoral Prelim-
inary Defense under the scheme of Parallel-AE. Hence, we make corrections and revise in
this document as Parallel-AE: Semi-Parallel-T.G, and Parallel-AE: Serial-T.G.

In chapter 6, we propose a solution of small domain encryption [51]. Finally, we
conclude and draw certain future works under the chapter 7.

9

Chapter 2

Preliminaries

Our study is focused on secure message encryption and authentication. For encryption
and authentication, one of the strongest tool is authenticated encryption. In addition,
cryptographic compression functions is used for data encryption. Moreover, the tool of
small domain encryption is suitable for small and flexible message encryption. Authenti-
cated Encryption is a special encryption process that simultaneously preserves confiden-
tiality and authenticity of the data [11, 12, 19, 20, 21]. It has two basic modules such
as encryption and tag generation. Encryption module satisfies the data confidentiality.
In addition, MAC or tag generation fulfils the data authenticity. There are certain stan-
dards for the authenticated encryption (Figure 2.1) according to [41, 43, 46, 47]. Usually,
encryption module can be based on Initialization vector (IV) or Nonce (security aspect)
[45]. IV-based encryption module is noted as C = (E/F)KIV (m), where E/F , C, IV , K
and m mean block-cipher/function, cipher-text, initialization vector, key and message.
This encryption module is called probabilistic encryption scheme also [41, 43, 45] and
denoted as C = EK

R (m) (R ∶ random number).

Encryption

Confidentiality

Tag

Authenticity


Authenticated
Encryption

 Electronic Code Block (ECB）
 Cipher Block Chaining (CBC）
 Cipher Feedback (CFB)
 Output Feedback (OFB)
 Counter (CTR)
 XEX-based tweaked-codebook

mode with cipher-text stealing
(XTS)

 CBC-MAC
 Cipher-based MAC (C-MAC)
 Hash-based MAC (H-MAC)
 Galois-based MAC (G-MAC)
 Parallelizable MAC(P-MAC)

 Counter with CBC
MAC (CCM)

 Galois counter MAC
(GCM)

 Offset Codebook
Mode based MAC
(OCB)

Some Standards Some Standards

Some Standards

Figure 2.1: Certain Basic Modes for Confidentiality and Authenticity [1, 2, 43, 45]

On the contrary, there is another nonce based encryption scheme. Generally, nonce
based encryption is denoted as C = (E/F)KN (m) where N stands for nonce. For the
tag generation or message authentication code (MAC): T = (E/F)K (M) is used, where

T stands for tag. Moreover, nonce based MAC is denoted as T = (E/F)KN (M). Fi-

10

nally, nonce based authenticated encryption with associated data represents as C =
(E/F)KN,A (M).

Cryptographic Compression Function (CCF). A cryptographic hash a special type
cryptographic function that takes arbitrary length of string and returns a fixed size of
string [58, 72, 73, 74]. In addition, it is hard to invert [60, 61, 62]. In the modern
cryptography, there are many applications those are based on cryptographic hash such as
message authentication, password verification, file identifier, pseudo-random generation,
and key derivation [53, 60, 61, 66]. There are certain basic characteristics of cryptographic
hash such as: Usually, cryptographic hash is deterministic such that similar message has
always similar hash value. In addition, it operates very fast for computing hash in respect
of given message. Moreover, it is infeasible to backtrack. Furthermore, change of a single
bit of message makes a great impact on the new hash value. Additionally, to find different
message under a hash value is not feasible [60, 61, 62, 63]. Generally, a cryptographic hash
is built by compression function. We denoted the compression function as cryptographic
compression function (CCF) (Figure 2.2).

M
1m lm  

*
or || 01lm

IV
IV

1c lc

 Damgrad iterative structuremerkle

input

output

C

Cryptographic Hash

1iF lF

Cryptographic hash

Component function

Compression function

1iF

Step-1

Step-2

Step-3

S

T

E

P

Step-2





blockcipher

scratch
SHA, MD

Step-3

blockcipher
Usually Follow

PGV Constructions

select any one
component function

1
initial vector

1 || . . . ||i lm m

:

Compression Function

iF

 , n n  , 2n n

Figure 2.2: Basic of Cryptographic Hash [25, 39, 55, 56]

A cryptographic compression function is called as one-way function also. It invokes two
fixed size of messages and return a fixed size of processed data [25, 39, 60]. In addition,
to generate a set of input from the output is infeasible [58, 59, 60]. Moreover, it has
certain differences with the conventional compression function. The CCF is used in the
MerkleDamgard construction for making cryptographic hash [25, 39, 60, 61, 62].

Small Domain Encryption (SDE). The small domain encryption is one of the most
prominent branches in message encryption [30, 31, 32, 33, 34]. Usually, small domain
encryption is defined as to encrypt short message [31, 32, 33]. For example, the length of

11

the message is shorter than the regular block-size of AES/DES [27, 33, 34]. In addition,
the final length of plain-text and cipher-text should be equal. Moreover, the format of
plain-text and cipher-text should be unique in certain cases [32, 33, 34]. Day by day,
the applications of small domain encryption are increasing, such as personal identifica-
tion, credit card, and debit card [33, 34]. Therefore, it is a great challenge to construct
an efficient and secure scheme of SDE. There are some traditional block-cipher such as
AES/DES. Generally, these are suitable as a primitive for big size of data encryption.
However, the situation is quite different for message encryption under the resource con-
strained devices in real life application [30, 31, 32]. Usually, a small chunk of message
needs to encrypt for example 8, 16, 24, 32 bits. Usually, the key size of AES/DES is 128,
192 or 256 bits. Even for lightweight-cipher, the key size is 32, 48, 64, 96 bits. Under these
circumstances, key and energy managements are the biggest challenges for the resource
constrained devices. Therefore, the concept of SDE is very vital. However, the security
is low under the SDE because of small size of the key. On the contrary, the efficiency is
better because of low resource requirements. According to [30, 31, 32, 35, 36], the im-
plementation of resource constrained devices depends on the speed, memory-utilization,
power consumption, and number of gate operation rather than the rigorous security bound
in certain cases.

2.1 Encryption Modes

Actually, there are notable six constructions for encryption mode [8, 11, 12, 19, 45].
Usually, these constructions should follow for proposing an encryption mode of AE. One
of the simple and oldest encryption mode is ECB (Electronic Codebook). In the following
Figure 2.3 we describe the summary of the notable encryption modes.

Block-ciphers/Functions. Usually, block-cipher is used under the encryption mode for
encrypting message [11, 12, 19, 20, 21]. A block-cipher is a kind of function where it
follows the principle of E ∶ K × {0,1}n → {0,1}n. Generally, K directs the key set and n
means the message and cipher-text length for the desire block-cipher. On the contrary,
the inverse of block-cipher is denoted as D = E−1 ∶ K × {0,1}n → {0,1}n. In addition, it
returns the cipher-text by invoking plain-text and key. Furthermore, any one can use n
to n mapping function such as F ∶ {0,1}k ×{0,1}n → {0,1}n where F directs the function.
In addition, k and n mean key and message/cipher-text length.

Basic security of block-cipher. Generally, the security of block-cipher depends on the
randomness of the key set and random permutation on n bits. Let there is an adversary
A that tries to access on EK and π. In addition, Perm(n) directs the permutation on
n-bit strings. Under this circumstance, adversary tries to distinguish between EK and π.
Hence, the advantage of adversary is denoted as:

Advprp
E (A) = Pr [K←$K ∶ AEK(⋅)⇒ 1] −Pr [π←$Perm (n) ∶ Aπ (⋅) ⇒ 1] (2.1)

On the contrary, the basic security of block-cipher is re-defined in respect of random
function instead of random permutation. Under this circumstance, the advantage of
adversary is quantified as:

Advprf
E (A) = Pr [K←$K ∶ AEK(⋅)⇒ 1] −Pr [ρ←$Func (n,n) ∶ Aπ (⋅) ⇒ 1] (2.2)

12

ECB
Message is clustered and each
chunk of message is encrypted
individually. The positive point is
simple and parallel. However, the
main disadvantage is identical
encryption.

CBC
Message is partitioned into
several blocks and each chunk of
message is XoR-ed with previous
ciphertext. IV needs to use in the
first block. Main drawback: it
operates in serial mode.

CFB
CFB mode is closely related to
CBC. It is suitable for stream
cipher. Main advantage is padding
free construction. Decryption can
be parallelized. Plaintext XoR-ed
with encrypted value.

OFB
OFB mode satisfies a
synchronous stream cipher. It
generates keystreams blocks.
Then ciphertext is built by XoR
operation with plaintext. IV is
needed and operates in serial.

CTR
CTR mode is called as integer
counter mode (ICM) also. CTR is
flexible for multi-processor
machine. Every iteration, unique
nonce or counter value is required.
It operates in parallel fashion.

XTS
XTS is based on tweakable block-
cipher. It is secure as a strong PRP.
It is also IV based encryption.
XTS takes input: key, tweak (tw),
and plaintext. It satisfies parallel
mode.

 - plaintext p
 - ciphertext c

 - key k

 

- block-cipher

 /function /E F

1c 2c 3c

/E F /E F /E F

1p 2p 3p

1k
2k

3k

1c 2c 3c

/E F /E F /E F

1p 2p 3p

1k
2k

3k

IV

1c 2c 3c

/E F /E F /E F

1p
2p 3p

1k
2k

3k

IV

1c 2c 3c

/E F /E F /E F

1p
2p 3p

1k
2k

3k

IV

1c 2c 3c

/E F /E F /E F

1p
2p 3p

1k
2k

3k

nonce+counter nonce+counter nonce+counter

1c 2c 3c

 1,twE k

1p 2p 3p

1k
2k

3k
 2 ,twE k  3,twE k

Figure 2.3: Basic Encryption Modes [8, 11, 12, 19, 45]

However, Func(n,n) directs the set of all functions from n-bit strings to n-bit strings. Ac-
cording to PRP to PRF switching lemma, the adversarial (A) advantage over Pr [Aπ → 1]−
Pr [Aρ → 1] is q2/2n+1 in respect of at most q number of queries [20, 21, 48].

13

2.1.1 Security of Encryption Modes

There are certain basic security notions based on encryption modes and characteristics of
IV, nonce, and tweak. Generally, these are probabilistic-IV based encryption, nonce-based
encryption, tweak-able block-cipher.

Probabilistic Encryption. Let probabilistic-IV-based AE or IV-based AE in short as an
authenticated encryption which has a random IV without associated data whose security
goal is indistinguishability with random bits with respect to an adaptive-chosen-plaintext-
and-known-IV attack, unlike the common security goal of AE with nonce and associated
data, which is indistinguishability with an adaptive-chosen-plaintext-and-IV attack. It is
noted as C ← (E/F)IVK (m). The IV should be used in each iteration for each chunk of
message. In addition, IV treats as set of uniform strings which are selected randomly.
Furthermore, it assumes that user and adversary have no control on IV [19, 45]. This no-
tion formalized by Bellare, Desai, Jokipii, and Rogaway [22, 45]. Nonce-based Encryption.

Nonce-based encryption is noted as C ← (E/F)NK (m). Nonce should be unique for each
iteration of message encryption. In addition, user has control on the nonce. A counter is a
kind of nonce [22, 45]. It was first proposed by Rogaway [22, 45]. Tweak-able Encryption.
Tweak-able encryption invokes tweak property of block-cipher instead of IV and nonce.
It is noted as C ← (E/F)TK (m). Usually, it invokes message, key and tweak and return
cipher-text. In reverse, message is provided in respect of cipher-text, key and tweak. First
this notion is formalized by Liskov, Rivest, and Wagner [45, 63]. However, we are concern
for probabilistic and nonce-based encryption. Hence, we mention the security principles
for these two types.

Security of Probabilistic Encryption Scheme

SemCPA security is considerable for the IV based encryption mode [19, 45]. Usually,
SemCPA means semantic security with respect to an adversarial advantage for chosen
plain-text attack [19, 45]. Under the IV based encryption, the IV is uniformly distributed
and chosen randomly. According to the grammar of encryption mode, there are three types
of input such as key, message and IV . However, user or adversary has no control on IV
under the IV based encryption mode. Hence, user can provide only two input such as
message and key. Under these circumstances, let there is an adversary A. In addition,
notation of IV based encryption is E ∶ K × {0,1}n × X → Y. Furthermore, two types of
oracle are considered such as Real and Ideal oracles. For the real oracle, key K is selected
randomly from the set of K. In addition, a message chunk m is used as input of encryption
mode (m ∈ X). As an inside operation, a random IV is selected as IV←${0,1}n. Hence,
output of IV encryption mode under the real world is C ← (E/F)IVK (m). If m ∉ X
then oracle returns null value. On the contrary, message m is the input for the random
oracle model. In addition, IV and C are selected randomly from the random oracle.
Moreover, if m ∉ X then random oracle terminate from the process. The adversary A
tries to distinguish the output of real oracle from the output of random oracle. Hence, the
advantage of adversary is defined from the success probability of distinguishing between
two output domain. Mathematically, it is noted as:

Advind
E (A) ≤ Pr [AEK(⋅) → 1] −Pr [A$(⋅) → 1] (2.3)

Usually, security of IV based encryption mode depends on the value of Advind
E (A). If

Advind
E (A) is small then informally one can claim that the IV based encryption mode is

14

reasonably secure.

Security of Nonce-based Encryption Scheme

Under the nonce-based encryption, nonce is chosen randomly. In addition, it is assumed
that nonce never repeats. Generally, three types of input are used in encryption mode
such as key, message, and nonce. In this domain, user has control on these three input.
However, adversary has access on these input also. Generally, nonce based encryption
is noted as E ∶ K × U × X → Y. For security notion, real oracle and random oracle are
used for nonce-based encryption mode. Under the real oracle, K provides random key. A
message (m ∈ X) directly used in the encryption mode. Moreover, nonce (N ∈ U) is also
used as input of nonce-based encryption mode. Therefore, the output of the real world
is C ← (E/F)NK (m). However, if m ∉ X and N ∉ U then real oracle returns invalid. In
the random oracle model, input m ∈ X and N ∈ U are used. In the respect of these two
input oracle computes C. In addition, random oracle commits null character if m ∉ X and
N ∉ U satisfies. Actually, the task of A is to distinguish the output of real oracle from
the output of random oracle. In addition, the advantage of adversary is formalized from
the success probability of distinguishing the two domain’s output. Hence, the advantage
is denoted as:

Advind
E (A) ≤ Pr [AEK(⋅, ⋅) → 1] −Pr [A$(⋅, ⋅) → 1] (2.4)

The value of Advind
E (A) directs the security margin. Generally, Advind

E (A) should be nom-
inal. In addition, nonce-based encryption mode achieves marginal security if Advind

E (A)
is small [19, 45].

2.2 Authenticity Modes

Message authentication code or tag generation is a special kind of procedure where
K (Key) and m (message) are used as input. In the respect K and m, the output is

T . Formally, MAC is defined as MAC (E/F) ∶ K ×M→ {0,1}∣T ∣
.

According to the syntax, one can claim that MAC is deterministic. However, MAC
can be probabilistic, stateful or nonce-based [19, 45]. Usually, a MAC has three steps
such as key generation algorithm that selects a key randomly, MAC generation algo-
rithm that outputs a tag under the given key and message, and verification of crated
tag including message [ref]. There are many cryptographic primitives to generate MAC
algorithms. Among them HMAC, block-cipher, OMAC, CBC-MAC, CMAC, and PMAC
are prominent [19, 45] (Figure 2.4). Moreover, UMAC and VMAC are constructed based
on universal hashing which are faster in operation [19, 45].

2.2.1 Security Notion of Authentication

Basic security notion for MAC depends on two phases. Moreover, it is simple and easy
to explain. Usually, MAC is noted as T ← (E/F)K (M). In addition, two types of oracle
are given to adversary A for making query. However, key K is chosen randomly from
the uniform distribution string set of K [19, 20, 45]. The core task for the adversary is
to make a query to the MAC verification oracle for getting output 1. However, M is
not the member of MAC generation algorithm under the MAC generation oracle. Under

15

CMAC
CMAC (Cipher-based Message
Authentication Code) is
a block-cipher based message
authentication code algorithm.
CMAC is used to provide
authenticity and integrity of
binary data.

CBC-MAC
CBC-MAC is a method of
constructing MAC using a
block-cipher. Serial fashion is
used for encryption. A change
to any of the message- bits will
affect the final output. Hence,
to know desire value without
knowing the key is infeasible.

It has six types of algorithms such as MAC-1,
MAC-2, MAC-3, MAC-4, MAC-5, MAC-6.
We draw Raw CBC-MAC figure.

HMAC
(keyed-hash

message
authentication

code)

HMAC is a specific type of
message authentication code. It
invokes cryptographic hash
function and secret key. It is
first formalized by Mihir
Bellare. Usually, security of
HMAC depends on size of the
used secret key.

GMAC
(Galois/Counte

r MAC)

GMAC is nonce-based
message authentication code
scheme. It is symmetric key
based. It is widely used due to
its efficiency. GCM is apposite
for protecting packetized data
because it has min. latency and
operation overhead.

PMAC
(Parallelizable

MAC)

PMAC is a MAC algorithm,
which was created by Phillip
Rogaway. PMAC is similar in
functionality to the OMAC
algorithm. PMAC satisfies
provable security underlying
the block-cipher. It operates in
parallel fashion.

1c 2c 3c

/E F /E F /E F

1p 2p 3p

1k
2k

3k
K

TAG

T

/E F /E F /E F

1p 2p

1k
2k

3k

T

ipad

opad

1K M

H

2K X

Y T

3p
1p 2p

3p

H H H

N

TAG

T

1p

1c
2c 3c

/E F /E F /E F

2p
3p

.F M .F M .F M

4p
.F M

1 2 3c c c 

/E F

T

Figure 2.4: Basic Authenticity Modes [19, 20, 45, 47, 48]

A

D

V

E

R

S

A

R

Y

 

 MAC : Tag

 Generation

T

 MAC : Tag

 Verification

T

Asks for iM

   Reply: /i iK
T E f M

 Query for ,j jM T

   If, /

 return 1 0

i j jK
T T E f M

then else



Figure 2.5: Basic Security of MAC [19, 20, 45, 47, 48]

16

MAC (Tag)
Generation

Under this oracle, adversary
sends a request for generating
tag under the given message
(Mi). In response, the oracle
returns tag which is called as
MAC.

MAC (Tag)
Verification

This oracle take input as Mj

and Tj. It returns 1 if tags are
collide in respect of generated
tag.

   Then,

/

Let

K

M

T E F M





   /

 retu

If

rn 1 0

j ji K
T E F M

then

T

else



Figure 2.6: Scenario for MAC security [19, 20, 45, 47, 48]

these circumstances, (M,T) is called as pair of forgery. Generally, adversary is looking
to do forgery. In addition, adversary’s probability of finding a forgery is defined as the
advantage of adversary. Moreover, it is noted as Advmac

E/F (A). Furthermore, the total
resources are qgen, qver, and t which are defined as respectively number of queries come
from the MAC generation oracle and number of queries come from the MAC verification
oracle, and execution time [19, 20, 21, 49, 50].

Authenticated Encryption with Associated Data. Authenticated encryption with associ-
ated data is formalized under this section. Usually, authenticated encryption (AE) is
defined as:

E ∶ K ×N ×A ×X → X (2.5)

In addition, K, N , A, and X means respectively key set, nonce set, associated-data
set, and set of message space. Authenticated encryption invokes key, nonce, associated-
data, and message as input and returns cipher-text. For example, encryption function
is C ← EN,A

K (M) where K ∈ K, N ∈ N , A ∈ A, M ∈ X . On the contrary, decryption

function is noted as D = E−1 ∶ M ← DN,A
K (C) where K ∈ K, N ∈ N , A ∈ A, C ∈ X .

However, DN,A
K (C) → M is valid if C ← EN,A

K (M) satisfies for M ∈ X . In addition,

DN,A
K (C) → invalid when there is no M for C ← EN,A

K (M).

Security Notions of Authenticated Encryption with Associated Data.
PRF Security. An experiment Exp (v) is defined where v = 0 or 1. A function FnK

is defined as FnK ∶ K ×X → Y where key (K) is chosen randomly. On the contrary, a
random function is formalized as Rfn [X,Y] ∶ the set of all functions fromX to Y . For
example, under the experiment Exp (v) the function FnK will be executed where v = 0.
Moreover, the random function (Rfn) will be executed under the Exp (v) when v = 1.
Under these circumstances, there is an adversary A that tries to distinguish between FnK
and Rfn. Therefore, the advantage of adversary is quantified as:

AdvPRF [A] = [Pr [Exp (0) → 1] −Pr [Exp (1) → 1]] is negligible (2.6)

Furthermore, FnK is PRF secure iff the condition of 2.6 is satisfied.
PRP Security. The block-cipher is defined as E. Moreover, inverse of block-cipher is

denoted as D = E−1. The block-cipher function is E/D ∶K×X → Y where K is selected as
randomly. Furthermore, there is an random permutation like Rnp. In addition, random

17

CCM

Counter with CBC-MAC
(CCM) mode of operation
is the first generation
scheme. Usually, it is said
that CCM is a generic
authenticated encryption
block-cipher mode. CCM
is defined for use with the
AES block cipher. In
addition, AES-CCM has
four inputs: an AES key, a
nonce, a plaintext, and
associated-data. AES-
CCM returns the output of
cipher-text and MAC (tag).

GCM

GCM is the combination
of counter mode and
Galois MAC mode. The
Galois field multiplication
is used for authentication.
In addition, it operates in
parallel. It has additional
useful properties. For
example, it is capable of
acting as a stand-alone
MAC, authenticating
messages when there is no
data to encrypt, including
no modifications.

OCB

OCB is a block-cipher
based AE that provides
privacy and authenticity
for the data. OCB is
notable because of faster
operation. OCB satisfies
on-line property. In
addition, it is needed to
know the length of A or M
for encryption, and for
decryption length of A and
C are needed.

N A P

countlen format

1 2 3 N N N 1 2 3 B B B

ECB CBCMAC

C T MSB

1 2 3 0 Y Y Y Y

3c
1c 2c

H H H

N

TAG

T

1A 2A

H H

KE KE KE

N N N

P P P
KE

3c

/E F /E F /E F

1p 2p 3p

1k
2k

3k

2c
1c

  

  

T

/E F

checksum



Auth

tag

Final

Figure 2.7: Certain Basic Constructions of AEAD [19, 20, 21, 45]

permutation depends on the random permutation properties of the key space. Under the
experiment Exp (v), the block-cipher will be executed when v = 0. Additionally, random
permutation will be run under the experiment when v = 1. However, there is an adversary
A that tries to distinguish between block-cipher and random permutation. Moreover, the

18

PRP advantage of adversary is bounded as:

AdvPRP [A] = [Pr [Exp (0) → 1] −Pr [Exp (1) → 1]] is negligible (2.7)

Privacy. Privacy security is based on encryption oracle. The advantage of adversary
is denoted as:

Advpriv
E (A) ≤ Pr [K←$K ∶ AEK(⋅,⋅,⋅) → 1] −Pr [A$(⋅,⋅,⋅) → 1] (2.8)

Adversarial query to encryption oracle contains N , A, and M . In addition, it returns the
C. Usually, this oracle is defined as real world. On the contrary, adversary makes query
to random oracle gets uniformly distributed set of strings. Generally, this domain is called
as ideal world. However, the main challenge for the adversary is to distinguish the real
world from the ideal world. The basic assumptions are: adversary can not repeats query.
Moreover, it is based on unique nonce and associated-data.

Authenticity. For the authenticity security notion, adversary is able to access encryp-
tion and decryption oracle. Adversary forges if it makes a query of (N, AC) to the oracle
and the reply is DN,A

K (C) ≠ invalid. In addition, (N, A, M) → C is not member of
encryption oracle. Therefore, the advantage of adversary is quantified as:

Advauth
E (A) ≤ Pr [K←$K ∶ AEK(⋅,⋅,⋅),DK(⋅,⋅,⋅)forges] (2.9)

2.3 Building Modes of Compression Function

Basic Building Elements or Primitives for
the Cryptographic Compression Function

Block-cipher Scratch
For example:

 SHA, MD

For example:

 AES, DES

Figure 2.8: Basic Primitives for building CCF [58, 59, 60, 61, 79]

According to the Figure 2.2, let the message is M . The size of message is l < n,
where n means the size of F in Step-1. The main task is to encrypt the message (M)
through cryptographic hash. Hence, M is partitioned as m1, m2, . . .mi, (where i ≤ l).
Then MerkleDamgard construction is needed to organize the set of cryptographic com-
pression function (F), where message is encrypted in serial fashion under the crypto-
graphic hash. Next the question is how to build the compression function (F) or what
the primitives are. Generally, this F can be built by the primitives of block-cipher or
scratch (Figure 2.2, Step-2).

According to the Figure 2.9, block-cipher has two types such as single block-length
and double-block-length [25, 63, 64, 65]. Usually, single block-length block-cipher returns
the output which size is equal to block-length. On the contrary, the double block-length

19

Types
of

Blockcipher

Output： Equal to block-length

Drawback: Birthday attack

Output: Double of block-length

Advantage: Better security bound

Double Block-length

Blockcipher (n, k):
- Block length: n
- Key length: (k = n)

 , n n

n

k

y

input

output

Blockcipher (n, k)
- Block length: n
- key length: (k = 2n)

 , 2n n

n

k

y

input

output

Single Block-length
no use now

Lightweight-cipher
- (n, k): block and key

length
- usually, key length

small like 32, 48 bits

n

kinput

y
 , n k

Figure 2.9: Types of Block-cipher [1, 2, 3, 55, 56]

block-cipher generates the output that size is double of block-length. Because of birthday-
bound attack, single block-length block-cipher has no usage now [4, 25, 80]. However,
double block-length block-cipher is appropriate for building cryptographic compression
function. Interestingly, double block-length block-cipher has three classes. First one is
defined as block-cipher(n,n) where n directs the size of block-length (message) and k
means key-length [53, 64, 65]. Moreover, block-cipher(n,2n) is the second-one, where
key size is double of block-length. Usually, this (n,2n) block-cipher is good for making
cryptographic compression function in the aspect of security-margin because of greater
key size. The third and last one is lightweight-cipher. This concept becomes popular
under the resource constrained devices very recently. Generally, the lightweight-cipher
supports small size of block-length and key-length. Moreover, AES and DES are used in
the (n,n) and (n,2n) block-cipher in the perspective of implementation [25, 39, 55, 56].
On the contrary, lightweight-cipher is suitable for invoking PRESENT, XTEA, TWINE,
KATAN, and KASUMI [62, 68, 80, 81].

There is another way or primitive to build CCF (Figure 2.8). Usually, this is called as
scratch. The scratch is based on random function like universal function, SHA-series, and
MD-series. The main advantage of the scratch function is the size flexibility. Usually, it
supports greater size of message including long key. However, in the aspect of hardware
implementation block-cipher is more appropriate than the scratch because of direct im-
plementation of block-cipher [25, 49, 50, 55, 56].

Basic Properties of Cryptographic Compression Function. According to the Figure 2.10,
there are two broad aspects of properties for the cryptographic compression function.

20

Efficiency Security

 Key scheduling
key schedules per blockcipher

 Collision resistance (CR)
find an output for different two input

 Number of blockciphers (#E)
no. of blockcipers are used in compression function

 Preimage resistance (PR)
find a collision for a predefined output

 Operational mode (OM)
multiple blockciphers run in serial/parallel  Padding oracle attack (PA)

length extension attack, when extra bit is added Efficiency-rate (r)
message length # blocklengthr E 

Figure 2.10: Classifications and Properties of CCF

First we notify here security and second one is efficiency. Under the security aspect there
are three parameters such as collision resistance, preimage resistance, and second preim-
age resistance [60, 61, 62]. Moreover, efficiency-rate, number of key scheduling, number of
calling block-ciphers or function, and padding-free are the parameters under the efficiency
[49, 50, 55, 56].

Collision resistance is an important security notions for any cryptographic compression
function. Usually, it is defined as a procedure where adversary tries to find M and M ′

(M,M ′ ∶ message) such that F (M) = F (M ′) when M ≠ M ′ [60, 61, 62]. In addition,
to find F (M) = F (M ′) is infeasible for adversary. Moreover, if adversary tries to find
F (M ′) = C ′ for the given the value of C such that (F (M ′) → C ′) = C [25, 39, 60,
61, 62]. Actually, this is also hard to find for the adversary [25, 39, 60]. Moreover, to
find M ′ such that F (M ′) = F (M) for the given M is difficult for the adversary under
the second preimage resistance [39, 61, 62]. Under the efficiency aspect, the efficiency
rate (r), number of block-cipher (# E), number of key scheduling (KS) are prominent
[25, 39, 53, 55, 56]. The efficiency rate is defined as (r = ∣m∣/#E × n) where r means the
symbol of efficiency-rate, ∣m∣ ∶ message length, #E ∶ number of calling block-cipher per
message encryption [25, 39]. Moreover, Key scheduling comes from the required number
of key sets for single message encryption or compression [25, 39, 53, 55].

2.3.1 Security Notions of Compression Function

For cryptographic compression function, there are certain standard security notions such
as collision resistance, preimage resistance, and second preimage resistance. Generally,
two models are used for security proof of the CCF. The first one is based on block-cipher
and the second-one is random oracle (based on random function). The block-cipher based
model has two major variants such as ideal cipher model (ICM) and weak cipher model
(WCM).

Ideal cipher model (ICM)

Under the ideal cipher model, a block-cipher is defined as block (n, k) where n and k directs

respectively block-length and key-length. Let E ∶ {0,1}k × {0,1}n → {0,1}n be a block-

cipher of block (n, k). Moreover, E (k, ⋅) is a permutation under the every K ∈ {0,1}k. Let
BL (n, k) is the set for all block-ciphers block (n, k). Generally, E is selected randomly
from BL (n, k). Furthermore, two types of operations are available under BL (n, k) such

21

as encryption query and decryption query [25, 39, 61]. Usually, the input of encryption
query is message and key where output is cipher-text. In addition, cipher-text and key
are used as input of decryption query. On the contrary, the output of he decryption
operation is message. For example, E ∶ (m,k) → c directs the encryption query where
m, k, and c represents message, key, and cipher-text. However, D = E−1 is denoted as
decryption query [ref]. Usually, a database is used to keep the query records. Moreover,
three elements are stored under a single transaction such as key, message, and cipher-
text. In addition, it is assumed that similar query has no chance to be executed for
the second time [25, 39, 61, 62]. For example, if [E ∶ (mj, kj) → cj contains under the
encryption query then there is no chance to evaluate D = E−1 ∶ (cj, kj) →? query. We
noted block-cipher as Blockkn also.

Weak cipher model (ICM)

Weak cipher model is the fabrication of ideal cipher model [63]. It was first introduced
by Liskov in [54, 61, 63] as weak ideal compression function. After that Hirose and
Kuwakado re-formalized the concept of weak ideal compression function into weak cipher
model [62]. Let BL (n, k) be the block-cipher like ideal cipher model. Moreover, three
types of operations exist instead of two types of operation. The first-one is defined as
encryption query. In addition, the decryption query is the second-one. Moreover, key
disclosure query is available under the weak cipher model [61, 62, 63]. For example,
E ∶ (mi, ki) → ci and D = E−1 ∶ (cj, kj) → mj are the encryption and decryption query.
Furthermore, key disclosure query is Ek ∶ (ml, cl) → kl. In principle, duplicate query can
not be queried under the weak cipher model also.

Security definition of compression function

There are some famous constructions standards under the PGV [60, 61, 62, 63]. Usually, it
is obvious to follow those standard constructions for creating a block-cipher based crypto-
graphic compression function (Figure 2.11). Generally, collision resistance and preimage
resistance are used for mentioning security notions for any cryptographic compression
function (Figure 2.12). Collision resistance is defined as to find two different input under
a single output [60, 61, 62, 63]. However, the task is infeasible to the adversary in respect
of computational time and resources. Moreover, to find a message (m′) for the given hash
value (Hgiven) such that H (m′) =Hgiven is called preimage resistance [25, 39, 61].

Collision Resistance of CCF. Assume there is an adversary A that is allowed to access
through the block-cipher (BL (n, k)). If the output of the compression function are c1

and c2 under the fE (m1, k1) → c1 and fE (m2, k2) → c2. Then there is an experiment
(expcoll (A)) that output iff the following criteria satisfies:

fE (m1, k1, c1,) = fE (m2, k2, c2,) ∧ {(m1, k1, c1,) ≠ (m2, k2, c2,)}

, where fE is a block-cipher compression function and m, c, and k are the elements
of message, cipher-text and key. The advantage of A is to find a collision under the fE.
Let AdvcollfE

(A) = Pr [expcoll (A) → 1] (coll ∶ collision). The advantage of adversary A is
evaluated by the number of queries that are allowed to ask block-cipher oracle. Hence,
Advcoll

fE
(q) = maxA {Advcoll

fE
(A)} where the maximum is taken from all the adversaries

that ask at most q oracle queries [60, 61, 62, 63].

22

1f

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

2CR= 2nq

 h

z

E m m





 hz E m

m h



 

 hz E m h

m

 



 hz E m h

h m

 

 

 m

z

E h h





 mz E h

h m



 

 m

z

E h

h

 





 

 

 mz E h m

h m

 

 

 h m

z

E h h





 h m

z

E h m





 m

z

E h m m



 

 h m

z

E m h





Figure 2.11: Famous 12 PGV Constructions out of 64 [60, 61, 62]

If
Collision Resistance

Satisfies

For a Cryptographic
Compression Function

Then it satisfies
Collision resistance for
Cryptographic Hash

If
Preimage Resistance

Satisfies

For a Cryptographic
Compression Function

Then it satisfies
Preimage resistance for

Cryptographic Hash

Figure 2.12: Basics of Security Standards [60, 61, 62, 63]

Preimage Resistance of CCF. Adversary A is able to access the block-cipher. Fur-
thermore, A randomly selects a set of value: rd1 and rd2. If x′ and y′ are the responses

23

form the block-cipher oracle then an experiment exppre (A) is defined where pre stands
for preimage. In addition, the output of the defined experiment is 1 iff the following
condition satisfies:

fE (x′, y′,m) = (rd1, rd2)
, where fE is a block-cipher based compression function. The advantage of adversary
for finding a preimage under fE is defined by AdvprefE

(A) = Pr [exppre (A) → 1]. Further-
more, the advantage of A is quantified in respect of the total number of queries. Hence,
AdvprefE

(q) = maxA {AdvprefE
(A)} where the maximum is taken from all the adversaries

that ask at most q queries [60, 61, 62, 63].

2.4 Building modes of Small Domain Encryption

The scheme of small domain encryption can be built by block-cipher or scratch. Usually,
small domain encryption means {0,1}n × {0,1}k → {0,1}n where the length of n is small
like 16, 24 or 32 bits. One can use traditional block-cipher. However, it needs padding.
In addition, waste of resources because of using 128-bit AES for 32 bits message [31, 32,
33]. Therefore, bit by bit encryption is being used through certain well defined shuffling
algorithms [33, 34, 35] such as Knuth shuffle, Thorp shuffle [32], Swap-or-not shuffle, Mix-
and-cut shuffle [33], SRS shuffle [35]. On the contrary, Feistel network or general Feistel
network are used to build the scheme of small domain encryption [30, 36].

Name MN

abc 123-45-678

cde 678-45-123

efg 987-12-567

Enc. MN

908-121-567

809-651-345

321-213-543
MN: My Number

Key cryptographic challenge:
 Construct efficient ‘x’ for:

-- MN: My number, SSN
-- Credit card
-- Access point

? 'x'

Enc. MN: Encrypted MN

 Any small size
 Equal size of message and cipher-text
 Padding free
 Same Format

Properties of small domain
message encryption

Figure 2.13: Basics SDE [30, 31, 32, 33, 35, 36]

Moreover, a small keyed-function is defined as f ∶K×M →M whereK means key space
and M directs message space. In addition, fk (⋅) = f (k, ⋅) is a permutation over M for
every k ∈K.It is assumed that there is an adversary A that can access an encryption (Enc)
oracle of the proposed scheme and an oracle of random function (RO). The advantage of
an adversary is defined to distinguish between the output of random-oracle and the output
of the proposed scheme. Moreover, the adversary has access on ideal permutation ($).
Hence, Advcca

f (A) = Pr [AEnc(⋅)

$
= 1] − Pr [ARO(⋅)

π = 1]. We assume adversary A has non-

adaptive query feature. In addition, chosen plain-text attack by any adversary is defined
as each query runs under encryption query [31, 32, 33, 35]. Furthermore, we define PRNG
functions as fpr1 and fpr2 . The operation of PRNG functions is fpr1,2→u,r{0,1}n, where
u ∶ uniform r ∶ random.

24

2.4.1 Security Notions of SDE

'x'

 random

from under FK

k

K  using

 random

permutation

   

1st Game 2nd Game

 Imagine two games:
-- In 1st game, chooses a random key k from K using an oracle FK(·)
-- 2nd game, chooses a random permutation π on using an oracle for π(·).

Target: To distinguish between the outputs of these two games are
negligible in respect of adversary

Figure 2.14: Security Model of SDE [30, 31, 32, 33, 35, 36]

The security notions (SN) is defined as SETM [f] = (SETM-E, SETM-D), where
SETM-E and SETM-D directs respectively encryption and decryption oracle. Encryption
oracle takes M and delivers C. Furthermore, decryption oracle receives cipher-text as in-
put and passes message through ideal permutation. In addition, adversary A has access to
random oracle that releases correspondingM or C by random permutation (Figure 2.14).
Therefore, the advantage of adversary is defined as:

AdvSN (A)=def.Pr [ASETM−E(⋅),SETM−D(⋅)

$
→ 1] −Pr [ARO(⋅)

π → 1]

In addition, the first probability depends on key space and randomness of A. Moreover,
the second-one relies on random-bits oracle and A.

25

Chapter 3

Existing Research Works

In this modern cryptography, message encryption and authentication are noted as ”Swiss
Army Knife of Cryptography” [2, 37, 44]. In each sector of information technology, mes-
sage encryption and authentication are essential. For example, the verify process of
integrity for files or messages, verification of the password, file/data identifier, pseudo-
random generation, key derivation, social card security, credit card security, and ATM
card security. In this chapter, we briefly discuss the motivations for our works through
three sections. In addition, these motivations are based on the existing works of authen-
ticated encryption, cryptographic compression function, and small domain encryption.

3.1 Previous Works in Cryptographic Compression

Function

According to the construction properties, block-cipher based cryptographic compression
function is broadly categorized into two groups such as (n,n) and (n,2n) block-cipher
based compression function [58, 59, 60, 61, 79]. According to the Table 3.1, the security
bound of Weimar-DM is the best. However, the key scheduling is twice. On the contrary,
Hirose-DM satisfies single key scheduling. In addition, all scheme’s mode are Davies
Meyer (DM). Moreover, the proof technique of these scheme is based on ideal cipher
model (ICM). Interestingly, the assumption of ICM is very rigid. Hence, it is not suitable
in respect of real world. There is another proof technique of weak cipher model which
has less strict assumption. Therefore, WCM is close to the real world. Under these
circumstances, there is a scope to provide a new scheme that can provide better security
bound. In addition, it can satisfy single key scheduling property. Moreover, there is
another possibility to introduce weak cipher model security proof technique. However,
the WCM has certain dis-advantage such as: under any single instance only single type
query is allowed. Hence, there is a fact to provide more realistic security proof.

The parameters of CR, PR, r, #E, OM , and KS are vital for any satisfactory
scheme of block-cipher based compression function [39, 54, 55, 56]. Firstly, certain gaps
are identified from the current familiar schemes based on the above parameters. Thus, the
importance of the findings are shown in the field of efficient and secure communication.
For example, the key scheduling cost is analysed in respect of construction of compression
function. Usually, 176 bytes are needed for operating of single key scheduling [74]. Hence,
minimization of key scheduling is a common practice. Additionally, the operation mode is

26

Table 3.1: Result Analysis of Different (n,2n) block-cipher based Compression Function
[25, 39, 54, 55, 58, 64, 66]

CF CR PR KS PT OM r #E

Weimar 3n→ 2n 2126.23 2252.5 2 ICM DM 1/2 2

Hirose 3n→ 2n 2124.55 2251 1 ICM DM 1/2 2

Abreast 3n→ 2n 2124.42 2246 2 ICM DM 1/2 2

Tandem 3n→ 2n 2120.87 2246 2 ICM DM 1/2 2

ISA-09 4n→ 2n O(2n) - 3 ICM DM 2/3 3

Nandi 4n→ 2n O(2n) - 3 ICM DM 2/3 3

CF : Compression Function
CR: Collision Resistance
PR: Preimage Resistance
KS: Key Schedule
PT : Proof Technique
OM : Operation Mode
MM : Matyas Meyer Oseas
DM : Davies Meyer
r: Efficiency rate
#E: Number of calling block-ciphers/functions

very crucial for resource limited devices, where the parallel mode can provide maximum
support in respect of memory system [25, 39, 55, 56, 62]. Moreover, the efficiency-rate
needs to reach the landmark (r = 1) [25, 39]. There are some well-known schemes of
block-cipher compression function such as Weimar, Hirose, Tandem, Abreast, Nandi,
and ISA09 (Table 3.1). For example, Weimar-DM provides tight security bound such as
q = 2126.23 [25]. Moreover, it follows double key scheduling including 1/2 efficiency-rate.
The scheme of Hirose delivers marginal security bound as q = 2124.55 but it ensures a single
key scheduling. However, the CR and PR bound of the Tandem-DM and Abreast-DM
are not satisfactory as that of the Weimar, and Hirose [25, 39]. Moreover, the efficiency-
rate of Tandem-DM and Abreast-DM is 1/2 like Weimar, and Hirose [28, 29]. Though the
scheme of Nandi is bounded by q = O (22n/3) but it provides higher efficiency-rate (r = 2/3)
[64]. Additionally, the construction of ISA09 provides better efficiency-rate (r = 2/3)
[65]. According to the above discussions and Table 3.1, most of the existing schemes
have rigorous security margin. However, the efficiencies are low for the constructions of
Weimar, Hirose, Tandem and Abreast. On the other hand, the schemes of Nandi and
ISA09 satisfies higher efficiency-rate. Moreover, the constructions of Nandi and ISA09
satisfies KS = 3 and #E = 3 [64, 65]. On the contrary, the OM is serial for Nandi and
ISA09 schemes. Thus, the overall efficiencies are not adequate for the ISA09 and Nandi
schemes. Under these circumstances, there is a scope to provide an efficient scheme of
compression function.

Under the (n,n) block-cipher compression function there are many constructions such
as MDC-2, MDC-4, MJH, Bart-12, and SKS-15 (Table 3.2). Generally, certain features

27

Table 3.2: Comparison of the Existing Familiar Compression Function: Based on (n,n)
block-cipher [27, 38, 56, 57, 59, 70]

CF r #E KS CR PR OM PF RM
MDC-2 3n→ 2n 1/2 2 2 O(2

n
2) O(2n) P × 176 × 2

MDC-4 3n→ 2n 1/4 4 4 O(2 5n
8) O (2

5n
4) P × 176 × 4

MJH 3n+c → 2n 1/2 2 1 O(2
n
2) O(2n) P × 176 × 2

Bart-12 3n→ 2n 1/3 3 3 O(2n) O (2
3n
2) S × 176 × 3

SKS 3n→ 2n 1/3 3 1 O(2n) O(22n) P × 176 × 3

CF: Compression function, KS: Key Scheduling
CR: Collision resistance, PR: Preimage resistance
#E: Number of blockcipher calls
r: Efficiency rate
OM: Operational mode, P: Parallel, S: Serial
PF: Padding free, RM: Required memory in bytes

are used to identify the better (n,n) block-cipher compression function. We summarize
those features and make two groups of efficiency and security. The group of efficiency has
certain sub-branches such as key scheduling, number of block-ciphers call, operational
mode and efficiency-rate. On the contrary, the security group is focused for collision
resistance (CR), preimage resistance (PR), and padding oracle attack. Initially, we ad-
dress the point of efficiency (Table 3.2). Hence, there is a scope to reduce the storage
for key scheduling. Moreover, the less call of block-cipher utilizes less memory resources.
Additionally, the efficiency-rate should be close to 1. On the other hand, the parallel
mode scheme is suitable for faster operation. The current familiar schemes of MDC-2,
MDC-4, Bart, and MJH have lower efficiency-rate (Table 3.2). In certain cases, the num-
bers of block-cipher call are high. Moreover, the key scheduling is high also (Table 3.2).
Thereafter, we point out the issue of security. The current schemes of MDC-2, MDC-4,
MJH have lower collision and preimage security bound. Furthermore, the Bart-12 and
SKS-15 have higher security bound. However, the efficiency-rate of Bart-12 and SKS-15 is
not satisfactory. Interestingly, the current familiar schemes need padding mechanism for
variable size of message (n ≠m). Hence, the schemes of MDC-2, MDC-4, MJH, Bart-12
and SKS-15 are not risk free from padding oracle attack [41, 75, 76]. On the contrary,
supporting short and flexible message encryption under different platform are important
features for the resource constrained device, and IoT-end device [83, 84, 85, 86, 87, 88, 89].
Thus the block-cipher compression function should have capability to encrypt short mes-
sage. However, the current schemes can not deal variable message encryption without
padding because of internal constructions. Furthermore, the security bound of the exist-
ing schemes is based on block-length (fixed size, e. g.n-bits) rather than the flexible size
of message.

3.2 Previous Works in Authenticated Encryption

Authenticated encryption plays very vital role in encryption and authentication of mes-
sage [19, 20, 21, 22]. There are many schemes under the authenticated encryption

28

[11, 12, 19, 20, 21, 22]. We classified two types of AE. The first one is defined as
probabilistic-IV-based AE or IV-based AE in short as an authenticated encryption al-
gorithm that has a random IV without associated data whose security goal is indistin-
guishability with random bits with respect to an adaptive-chosen-plaintext-and-known-IV
attack, unlike the common security goal of AE with nonce and associated data, which is
indistinguishability with an adaptive-chosen-plaintext-and-IV attack. And the second one
is nonce based authenticated encryption. Moreover, nonce based authenticated encryp-
tion is classified into two group in respect of security notion such as nonce reuse and nonce
respect. Generally, IV-based authenticated encryption is efficient for encryption process
under the resource constrained device due to its weaker security model. Most recently,
majority of the works of authenticated encryption are based on nonce and associated data
such as McOE, COPA, COBRA, OTR, CLOC, PoE, and SILC [11, 12, 43, 46, 47, 77, 92].
These schemes need extra overhead cost to withstand a strong adversary that can choose
nonce. Additionally, a finite field multiplication is used in the construction of the OCB
and OTR. Hence, the actual efficiency is decreased for the OTR schemes [47]. The privacy
security of the block-cipher based message authenticated encryption is O (2n/2) for most
of the constructions [47]. Moreover, many constructions need padding mechanism for
encryption of arbitrary (variable) length of message. However, the padding mechanism
itself has certain drawbacks such as padding oracle attack, and length extension attack
[75, 76]. In addition, a bunch of sensors, actuators, and RFID-tags are active in the
domain of IoT. The existing familiar constructions use various kind of primitive such as
block-cipher, scratch, ideal permutation, hash for component function of encryption. For
example, McOE-X has two variants of McOE-D and McOE-G which are based on respec-
tively THC-CBC and HCBC-2 [11]. Moreover, the OAE(1,2) and PoE used block-cipher
also [12, 42]. The construction of F.PRF used tweak-able block-cipher in the component
function and the APE used ideal permutations [21, 78]. In addition, the schemes of CO-
BRA, and OTR used feistel block-cipher network [47, 77]. Therefore, there is a scope for
proposing a new variant of primitive in component function for the message authenticated
encryption where authenticated encryption runs under IV instead of nonce and associated
data. Moreover, it can satisfy low resources for authentication mode.

Under the category of nonce and associated data based authenticated encryption there
are bunch of schemes. Interestingly, many of recently proposed schemes claim security
in a nonce-reuse scenario [11, 12]. The scheme of McOE brings a breakthrough in the
domain of nonce reuse AE [12]. Thereafter, a bunch of schemes have been proposed
based on the properties of the McOE such as COPA, PoE, APE, and ELmE (Table 3.3).
However, Hoang et. al. showed that the concept of nonce reusing is no more secure
for any online authentication scheme [12]. In addition, Hoang et. al. claimed that the
online characteristic is a parameter of efficiency. Therefore, a window is re-opened for
on-line and nonce respect AE. Furthermore, the McOE needs block-cipher inversion and
it’s privacy security is bounded by O (2n/2). Most recently, there are two more proposals
such as CLOC and SILC [43, 46]. The constructions of CLOC and SILC are good for short
input. Additionally, these two schemes are free from block-cipher inversion. However, the
operation mode of CLOC and SILC is serial.

In addition, numbers of calling function or block-cipher is very important to evaluate
the efficiency of authenticated encryption. Usually, numbers of calling function or block-
cipher means the required numbers of function for encrypting a chunk of message and
cipher-text [45, 46]. For example, the scheme of OTR [47] needs a+m calls of block-cipher

29

Table 3.3: Certain Existing Researches on Authenticated Encryption
S. N. O.M #Bc r N1 N2 M. Merits

COPA [77] Parallel a + 2m + 2 2 - Y
Parallel, Supports
Nonce misuse

PoE [12]
Non-
Sequential

(m × 2HF)∗ +m - - Y
Non-Sequential,
CCA Secure

COBRA [92] Parallel (m +GF)∗ + 1 + 2 - - Y
Parallel, inverse
freeness of
block-cipher

McOE [11] Serial (m + 1)∗ 1 Y Y
Supports Nonce
Reuse Security
Notion

CLOC [43] Serial a + 2m + 1 2 Y -
Optimized Resources,
Suitable for Short
Input

SILC [46] Serial a + 2m + 3 2 Y -
Reduces Resources
than CLOC like
Tweaking function

OTR [47] Parallel (a +m)∗ 1 Y - Parallel, Rate 1

APE [78] Serial (a +m)∗ - Y

Permutation based,
Nonce Reuse,
Suitable for
Constrained device

ElmE [93] Parallel a + 2m + 1 2 - Y
Fully Parallel,
Nonce Reuse

EAX [94] Serial a +m +N 2 Y -
Simpler, Efficient
than CCM

1. S. N.: Scheme Name, O.M: Operational Mode, r: Efficiency-rate,
2. #Bc: Number of calling function (depends on number of associated data, message),
3. N1: Nonce respect, N2: Nonce reuse, M. Merits: Main Merits,
4. a, m, N : Number of Associated-data, Message, and Nonce
5. HF : Universal hash function, GF : Finite Field Multiplication
6. ∗: May varies

or function. According to the construction of [47], each chunk of message (m) needs one
call of block-cipher or function. In addition, one call of block-cipher is required to encrypt
one chunk of associated-data (a). Therefore, the total number of required block-ciphers is
a +m. Generally, #Bc is evaluated through the above way. Moreover, the efficiency-rate
(r) is defined as r = message size/numbers of function × function-length. Most recently,
block-cipher inverse freeness becomes an important criteria for any authenticated encryp-
tion. It reduces the resource-cost for computing inversion of block-cipher/permutation.
Therefore, there are certain scopes to propose nonce-respect authenticated encryption
that can satisfy less call of block-cipher. In addition, it can satisfy inverse freeness of
block-cipher.

30

3.3 Previous Works in Small Domain Encryption

Small domain encryption is one of the blazing issue in the arena of modern cryptography
[30, 31, 32, 33]. Usually, block-cipher is used to develop a scheme of small domain en-
cryption. There are certain traditional block-cipher such as AES/DES. Generally, these
are suitable as a primitive for big size of data encryption. However, the situation is quite
different for message encryption under the resource constrained devices in real life ap-
plication [35, 36, 51]. Usually, a small chunk of message needs to encrypt for example
8, 16, 24, 32 bits. Generally, the key size of AES/DES is 128, 192 or 256 bits. Even
for lightweight-cipher, the key size is 32, 48, 64, 96 bits [7, 80, 81]. Under this circum-
stance, key and storage management cost are increased. Therefore, the concept of SDE
is important for resource constrained devices. However, the security is low under the
SDE because of the small size of the key. On the contrary, the efficiency is higher. In
certain cases, the implementation of resource constrained devices depends on the speed,
memory-utilization, power consumption, and number of gate operation rather than the
rigorous security bound in certain cases.

In 2002, J.Black and P.Rogaway formally addressed the issue of small domain en-
cryption, including format preserving encryption for the first time in [31]. Following that
B.Morris, P.Rogaway, T.Stegers proposed a construction of [32]. The basic primitive
of this scheme is block-cipher e. g. AES/DES. The encryption time of this scheme is
O (log3N) [34]. In addition, it needs a certain number of calling AES block-ciphers.
Later, another construction was proposed by V.T.Hoang, B.Morris, and P.Rogaway
in [34]. This scheme satisfies small domain message encryption. In addition, it also
satisfies the format preserving encryption. It uses Swap-or-Not shuffle algorithm [33,
34]. However, the basic primitive is block-cipher as well. It also needs a large num-
ber of calling block-cipher (e. g. AES). The security margin of this scheme is q =
(1 − ε)2n (q ∶ number of query, n ∶ block-length) [33, 34, 35]. In the next year, T.Ristenpart
and S.Yilek proposed a scheme of Mix-and-Cut [33]. Interestingly, it is also based on a
card shuffling algorithm where the basic primitive is a block-cipher. Moreover, the en-
cryption time of this scheme is O (log2N) [33, 34, 35]. Most recently, the scheme of
Sometimes-Recursive shuffle has been proposed by B.Morris, P.Rogaway [35]. Authors
of the SRS-construction re-conceptualized the scheme of Mix-and-Cut [33]. In addition,
the SRS is the best scheme in respect of low encryption time (O (logN)) and full security
margin [35]. However, it needs 1000 calls of AES block-ciphers. Authors of [35] claimed
that the resources are required to call 1000 of AES is 80K clock cycles, or 25µsec, on
a recent Intel processor. Hence, the SRS is also heavy for resource-constrained device
and IoT-end device. According to the above discussions, the mentioned constructions
are broadly classified into two groups such as partial security margin and full security
margin. The schemes of Thorp-shuffle, and Swap-or-Not are under the partial security
margin group. On the contrary, Knuth-shuffle, Mix-and-Cut, and SRS are the member
of the full security margin group. Most recently, two more proposals are available such
as FNR and BPS [30, 36]. In addition, the scheme of FNR is based on classical Feistel
structure where Galois Field GF(2n) is used. Furthermore, the scheme of BPS is based on
tweak block-cipher and it uses general Feistel structure [30]. Under these circumstances,
there is an opportunity to propose a scheme of small domain encryption that can satisfy
less resource. In addition, it can provide better efficiency.

31

Chapter 4

Some Probable Secure Constructions
of Compression Function (CF)

A cryptographic hash is an important tool in the area of a modern cryptography [25,
39, 53, 59]. It comprises a compression function (CF), where the compression function
can be built by a scratch or block-cipher. There are some familiar schemes of block-
cipher compression function such as Weimar, Hirose, Tandem, Abreast, Nandi, ISA-09
[25, 28, 29, 39, 64, 65]. Interestingly, the security proof of all the mentioned schemes are
based on the ideal cipher model (ICM), which depends on ideal environment [61, 67].
Therefore, it is desired to use such a proof technique model, which is closed to the real
world such as weak cipher model (WCM). Hence, we propose our first scheme that is
based on (n,2n) block-cipher compression function. In addition, it is secure under the
ideal cipher model, weak cipher model and extended weak cipher model (ext. WCM).
Additionally, the majority of the existing schemes need multiple key schedules, where
the proposed first scheme and the Hirose-DM follow single key scheduling property. The
efficiency-rate of our scheme is r = 1/2. Moreover, the number of block-cipher calls of the
first scheme is 2 and it runs in parallel mode.

A constrained device is an emerging technology that has enormous applications in
our daily life such as access control, inventory control, luggage tracking, bar-code reader,
and IoT [14, 37, 40, 71, 72, 80]. However, it has certain drawbacks of low memory and
less computing power [37, 53, 55, 56, 68, 74]. Thus, one of the cracking challenge is
to provide efficient and secure cryptographic solution for the constrained device in the
aspect of security issue. An (n,n) block-cipher based cryptographic compression function
is applicable to provide provable security to the constrained device. Though, there are
many constructions of (n,n) block-cipher such as MDC-2, MDC-4, MJH, Bart-12, and
SKS-15 [29, 38, 59, 79]. However, most of the familiar schemes are not suitable for short
and variable message encryption without padding due to internal structures. Furthermore,
the security margin is provided based on block length rather than the flexible message
size. Therefore, we present two different (n,n) block-cipher compression function schemes.
The second scheme (SS) satisfies better efficiency such as less call of block-cipher, less
key scheduling, and higher efficiency-rate. On the contrary, the third scheme (TS) has
upper security bound. Moreover, both of the schemes are suitable for small and variable
message encryption (message size = tn, such that t < 1, n ∶ block length), which is handy
for the constrained device.

Under the (n,n) block-cipher compression function, most of the schemes are secure

32

under the ideal cipher model. In addition, the scheme of MJH and Bart-12 are secure
under the Finite-Field-Multiplicative model. Both of the models are based on strong
assumptions. Hence, we propose an (n,n) block-cipher based compression function which
is secure under the weak cipher model. In addition, we also show that the proposed fourth
scheme is secure under the ideal cipher model. Generally, weak cipher model has less strict
assumptions than that of the ideal cipher model. Therefore, WCM is more close to the
real world.

4.1 An Upper Bounded Secure Scheme of CF

Our proposed first scheme is secure under the three types of security model. Secondly,
it follows single key scheduling and it’s number of block-cipher call is 2. Additionally,
the efficiency rate of proposed scheme is 1/2. We compare our first scheme of (n,2n)
block-cipher based compression function with existing familiar schemes in Table 4.1.

Table 4.1: Comparison among the First Scheme and Existing Familiar Schemes [25, 28,
29, 39, 56, 64, 65]

Security Proof Technique

Scheme Name CF KS r ICM WCM ext. WCM
First Scheme 3n→ 2n 1 1/2 √ √ √

Weimar 3n→ 2n 2 1/2 √
N.Y. N.Y.

Hirose 3n→ 2n 1 1/2 √
N.Y. N.Y.

Abreast 3n→ 2n 2 1/2 √
N.Y. N.Y.

Tandem 3n→ 2n 2 1/2 √
N.Y. N.Y.

Nandi 4n→ 2n 3 2/3 √
N.Y. N.Y.

ISA-09 4n→ 2n 3 2/3 √
N.Y. N.Y.

CF = Compression function, N.Y. = Not yet
KS =Key scheduling, Efficiency rate = r
ICM, WCM, ext.WCM = Ideal, Weak, extended weak (cipher model)

4.1.1 Proposed First Scheme of Compression Function (FS)

1lx 

lm

lx

ly1ly 

lm 1
lz

2
lz

upper
keyE

lower
keyE

 

 

 

125.31

126.7

125.42

NEW

1
KS 1, = , # 2

2

black-bold dash: key input

=2 ICM

CR= =2 WCM

=2 ext. WCM

hash function

=compression function

, chianing values

message

r E

q

q

q

H

F

x y

m

 













NEWH

F

no. of blockcipher callE 

FS

FS

Figure 4.1: Block Diagram of the First Proposed Scheme (FS)

33

The proposed first scheme follows two calls of block-cipher call, where key scheduling
is single. It satisfies the class of (n, 2n) block-cipher because of key size is double of the
block-length. It runs under the Matyas Meyer Oseas mode (MMO). The definition and
block diagram of this scheme are notified in Definition 4.1 and Figure 4.1.

Definition 4.1. Let E ∈ Blockkn be a block-cipher, where k = key length and n =
block length. The HFS is a hash that is constructed by F . Let F = {0,1}n × {0,1}2n →
{0,1}2n

be a block-cipher based compression function. In this scheme, two independent
block-ciphers are used for a single iteration such as Eupper

key and Elower
key . Therefore, the final

output of HFS is:

HFS (xl−1, yl−1,ml) = xl, yl such that,

xl = z1
l ⊕ml, yl = z2

l ⊕ m̄l [where, z1
l ← Eupper

x̄l−1∣∣ȳl−1
(m) , z2

l ← Elower
x̄l−1∣∣ȳl−1

(m̄)]

In addition, we proposed a new security proof model of ext.WCM. In this section,
we define this new security model. An Extended weak cipher model (ext.WCM) fol-
lows the basic properties of the ICM and WCM. It adds a new feature for making the
adversary powerful, where the adversary can ask any type of query for a single instance
(Table 4.2 and Figure 4.2). Additionally, the assumptions of the ext.WCM is weaker than
the ICM and WCM. Under the ext.WCM, the adversary gets a set of message and corre-
sponding encrypted message (ciphertext) based on a key. However, the query process is
based on non-adaptive. The block-cipher oracle is defined as ext.WCMk,m,c (⋅), where the
adversary can ask and gets a set of key (k), message (m) and cipher-text (c).

Table 4.2: Operation Characteristics of the Security Proof Model

A →allowed for Game.
Such that, Game (G):
Input: [x, x′]
where, x ≠ x′ ∧ H (x) =
H (x′)

ICM WCM ext. WCM

Allow,
A → Ef/Eb

for G

Allow,
A → Ef for G then,
A → Eb for G then,
A → Ek for G

Allow,
A → Ef/Eb//Ek

for G

Security Proof of Collision Resistance of the First Scheme (ICM Based)

An adversary A can make two types of query such as forward query (Ef) and backward
query (Eb) [39, 61, 62, 63]. Under the ICM, a game is defined as GamecollICM (Algorithm 1),
where adversary A tries to find (x, y,m) and (x′, y′,m′). Therefore, the adversary gets
success iff HFS (x, y,m) = HFS (x′, y′,m′) where, (x, y,m) ≠ (x′, y′,m′). In addition, the
GamecollICM is categorized into three sub-games (Table 4.3). Adversary A runs through
these three subgames for getting success. However, the first subgame stands for dual
queries. Under the first subgame, adversary tries to find two different queries for a col-
lision. Secondly, the subgame of subGamecollsole,ICM is responsible for finding a collision
within a single query. Finally, a collision through initial chaining values are occurred by
the third subgame.

Theorem 4.1. Let HFS be a two calls of 2n bit key block-cipher compression function.
The task of adversary A is to find collision under the compression function F (HFS).

34

1lx 

lm

lx

ly

1ly 

lm
1

lz

2

lz

upper

keyE

lower

keyE

ICM
 

       0 0

searching for ,

such that:

, , , ,

l l

l l l l l l

x y

H x y H x y H x y x y

 

     

/f bE E /f bE E /f bE E

1l  2l 

1lx 

lm

lx

ly1ly 

lm
1

lz

2

lz

upper

keyE

key

lowerE

 

   

searching for ,

such that:

, ,

l l

l l l l

x y

H x y H x y

 

  

WCMbE

1l  2l 
bE bE

fE

1l  2l 

fE
fE

kE

1l  2l 
kE kE

2 2,x y
1 1,x y ,q qx y

1 1,x y

2 2,x y1 1,x y ,q qx y

2 2,x y1 1,x y ,q qx y

1lx 

lm

lx

ly1ly 

lm
1

lz

2

lz
ext.

WCM
/ /f b kE E E / /f b kE E E

1l  2l 

2 2,x y
1 1,x y ,q qx y

 

       0 0

searching for ,

such that:

, , , ,

l l

l l l l l l

x y

H x y H x y H x y x y

 

     

2 2,x y ,q qx y

upper

keyE

key

lowerE

Figure 4.2: Security Proof Model

Table 4.3: Branches of GamecollICM

Branch name Condition

subGamecolldual,ICM

(xl, yl,ml) ≠ (xl′ , yl′ ,ml′)∧
HNEW (xl, yl,ml) =HNEW (xl′ , yl′ ,ml′)

subGamecollsole,ICM

xl = yl, when

HNEW (xl−1, yl−1,ml) = (xl, yl)

subGamecollpri,ICM

(xl, yl) = (x0, y0) ,when

HNEW (xl−1, yl−1,ml) = (xl, yl)

Hence, the advantage of A is bounded after q pairs of queries as:

AdvICM
coll

HFS (q) ≤ q2 + q
(2n − 2q)2 +

2q

(2n − 2q)

Proof. Let an adversary A can ask any relevant query and never makes any duplicate
query through Ef or Eb. It can ask upto l-th queries, where l ≤ q.

subGamecolldual,ICM . Adversary A uses the ICM oracle for Ef or Eb query. At first,
the adversary checks whether the most recent query is collide with the previous any
queries or not. Let the current iteration is l, where the outputs are xl, yl. For example,
l′∣(l′ < l ≤ q) is previously executed any iteration and the corresponding output are xl′ , yl′ .
If (xl, yl) = (xl′ , yl′) is satisfied then a trigger will be defined and the subGamecolldual,ICM will
be over. Otherwise, the adversary A stores the value of xl, yl into the query database (Q)
and goes for next iteration. Let the outcome of l′-th iteration are xl′ ← Eupper

x̄l′−1∣∣ȳl′−1
(ml′)⊕ml′

and yl′ ← Elower
x̄l′−1∣∣ȳl′−1

(m̄l′) ⊕ m̄l′ . For an iteration of l ∣(l′ < l ≤ q) , the output are xl ←
Eupper
x̄l−1∣∣ȳl−1

(ml)⊕ml and yl ← Elower
x̄l−1∣∣ȳl−1

(m̄l)⊕ m̄l. If (xl′ , yl′) and (xl, yl) collides each other

then a trigger will be defined as tricolldual,ICM . However, the xl, yl come from the set size

2n−(2l − 2) and 2n−(2l − 1). Hence, under the trigger of tricolldual,ICM the probability will be

35

l − 1/(2n − (2l − 2))× (2n − (2l − 1)). More explicitly, under the subGamecolldual,ICM through

tricolldual,ICM , the following states are responsible for collision:

{(xl = xl′) ∧ (xl = yl′)} ∨ {(yl = yl′) ∧ (yl = xl′)} (4.1)

where,
xl = Eupper

x̄l−1∣∣ȳl−1
(ml) ⊕ml, xl′ = Eupper

x̄l′−1∣∣ȳl′−1
(ml′) ⊕ml′

yl = Elower
x̄l−1∣∣ȳl−1

(m̄l) ⊕ m̄l, yl′ = Elower
x̄l′−1∣∣ȳl′−1

(m̄l′) ⊕ m̄l′

Therefore, the probability of collision under the l-th query will be Pr [Tricolldual,ICM] =
Pr [tricoll2,dual,ICM ,⋯, tricollq,dual,ICM], which implies that,

q

∑
l=2

Pr[Tricolll,dual,ICM] =
q

∑
l=2

2(l − 1)
(2n − 2l − 2) (2n − 2l − 1) ≤

q

∑
l=2

2(l − 1)
(2n − 2l)2 ≤ q2

(2n − 2q)2 (4.2)

subGamecollsole,ICM . The subGamecollsole,ICM is responsible for finding a collision within l-
th iteration of query, where l ≤ q. Assume that, the output are xl and yl at the point
of l-th iteration. Therefore, there is a chance for creating a collision when xl = yl.
If collision occurs, a trigger (tricollsole,ICM) will be called. Therefore, the probability of

collision under the subgame (subGamecollsole,ICM) through tricollsole,ICM is Pr [Tricollsole,ICM] =
Pr [tricoll1,sole,ICM , tri

coll
2,sole,ICM , . . , tri

coll
q,sole,ICM]. After q pairs of queries, it implies that,

q

∑
l=1

Pr[Tricolll,sole,ICM] =
q

∑
l=1

1

(2n − 2l − 2) (2n − 2l − 1) ≤
q

∑
l=1

1

(2n − 2l)2 ≤ q

(2n − 2q)2 (4.3)

subGamecollpri,ICM . Usually, the initial vectors or chaining values need to provide at
the beginning of encryption process. Therefore, the generated output can be collide with
the initial or primary values at the any phase of l. For example, in the iteration of
l ∣(l ≤ q) , the outcome are xl = Eupper

x̄l−1∣∣ȳl−1
(ml) ⊕ml and yl = Elower

x̄l−1∣∣ȳl−1
(m̄l) ⊕ m̄l. If collision

occurs for x0, y0 and xl, yl, a trigger will be defined as tricollpri,ICM and query process will

be terminated from the subGamecollpri,ICM . Hence, the probability of collision under l-th

query will be Pr [Tricollpri,ICM] = Pr [tricoll1,pri,ICM , tri
coll
2,pri,ICM , . . , tri

coll
q,pri,ICM]. After q pairs of

queries, it implies that,

q

∑
l=1

Pr[Tricolll,pri,ICM] =
q

∑
l=1

2

(2n − 2l) ≤ 2q

(2n − 2q) (4.4)

Adding the value of 4.2, 4.3 and 4.4, Theorem 4.1 is satisfied.

Security Proof of Collision Resistance of the First Scheme (WCM Based)

An adversary A will make an additional query Ek with Ef and Eb under the WCM, where
Ek is defined as a key-disclosure query [62]. According to the WCM, the adversary A is
able to make any relevant query with non-repetition. A GamecollWCM (Algorithm 2) will
be defined for finding collision under the WCM. The target of the adversary A is to find
X,Y such that H (X) = H (Y), where X,Y = input, H = hash outout. Additionally, the
GamecollWCM will be classified into three subgames (Table 4.4), where subGamecoll

forw(Ef),WCM

36

Algorithm 1 (GamecollICM)
1: Initailization ∶ l = 0, q = 2n, Q ∶ Empty query database
2: procedure GamecollICM

3: Execution: Ef or Eb

4: Answer: from ICM oracle
5: Ef/Eb → xl = (z1

l ⊕ml) = Eupper
x̄l−1∣∣ȳl−1

(ml) ⊕ml

6: Ef/Eb → yl = (z2
l ⊕ m̄l) = Elower

x̄l−1∣∣ȳl−1
(m̄l) ⊕ m̄l

7: switch (input) do
8: case 1
9: assert(subGamecolldual,ICM)
10: if l′ < l ≤ q then
11: searching for (xl′ , yl′) from Q
12: if {(xl, yl) = (xl′ , yl′)} → Awins then
13: call: collision event tricolldual,ICM and break: from subGamecolldual,ICM

14: end if
15: else
16: store: (xl, yl) → Q
17: end if
18: case 2
19: assert(subGamecollsole,ICM)
20: if {(l ≤ q) ∧ (xl = yl)} → Awins then
21: call: collision event tricollsole,ICM and break:from subGamecollsole,ICM

22: else
23: store: (xl, yl) → Q
24: end if
25: case 3
26: assert(subGamecollpre,ICM)
27: if {(l ≤ q) ∧ (xl, yl) = (x0, y0)} → Awins then
28: call: collision event tricollpri,ICM and break: from subGamecollpri,ICM

29: else
30: store: (xl, yl) → Q
31: end if
32: end procedure

Table 4.4: Branches of GamecollWCM

Branch name Condition

subGamecoll
forw(Ef),WCM

Ef → (x, y,m) ≠ (x′, y′,m′)
∧HNEW (x, y,m) =HNEW (x′, y′,m′)

subGamecoll
back(Eb),WCM

Eb → (x, y,m) ≠ (x′, y′,m′)
∧HNEW (x, y,m) =HNEW (x′, y′,m′)

subGamecoll
key(Ek),WCM

Ek → (x, y,m) ≠ (x′, y′,m′)
∧HNEW (x, y,m) =HNEW (x′, y′,m′)

37

is defined for finding collision through cipher-text and subGamecoll
back(Eb),WCM

is used for ex-

ploring plain-text. Additionally, the adversaryA will execute the game of subGamecoll
key(Ek),WCM

for getting collision through the key-disclosure query.
Theorem 4.2. Let HFS be a two calls of 2n bit key block-cipher hash function.

It invokes the block-cipher based compression function F , where the advantage of the
adversary A is to find collision under HFS (F). Therefore, the adversarial advantage is
bounded after q pairs of queries as:

AdvWCMcoll

HFS (q) ≤ 3q (q − 1)
22n

Proof. Let A be the adversary that can make query upto l-th queries, where l ≤ q.
The collision probability of these three subgames will be evaluated under the adversary
A in the following way.

Algorithm 2 (GamecollWCM)
1: Initailization ∶ l = 0, q = 2n, Q ∶ Empty query database
2: procedure GamecollWCM

3: run: subGamecollforw,WCM , subGamecollback,WCM and subGamecollkey,WCM

4: function subGamecoll
forw(Ef),WCM

5: for (l ≤ q) do
6: run an oracle (Ef) from WCM
7: reply:
8: Ef → xl = (z1

l ⊕ml) = Eupper
x̄l−1∣∣ȳl−1

(ml) ⊕ml

9: Ef → yl = (z2
l ⊕ m̄l) = Elower

x̄l−1∣∣ȳl−1
(m̄l) ⊕ m̄l

10: Check for collision hit event:
11: if l′ < l ≤ q then
12: searching for (xl′ , yl′) from Q
13: if (xl, yl) = (xl′ , yl′) → Adversary wins then
14: introduce event tricoll

Ef ,WCM
and terminate from

subGamecoll
forw(Ef),WCM

15: end if
16: else
17: keep: (xl, yl) → Q
18: end if
19: end for
20: end function
21: function subGamecoll

back(Eb),WCM

22: run an oracle (Eb) from WCM
23: do same procedure as subGamecoll

forw(Ef),WCM
but use a different oracle

24: end function
25: function subGamecoll

key(Ek),WCM

26: run an oracle (Ek) from WCM
27: do same procedure as subGamecoll

forw(Ef),WCM
but use a different oracle

28: end function
29: end procedure

38

subGamecoll
forw(Ef),WCM

. The adversary A will execute the subGamecoll
forw(Ef),WCM

,

where a forward query returns the query result and stores a couple of output into the
Q. There are three basic phases under the subGamecoll

forw(Ef),WCM
such as making query,

checking and trigger/store. In the first phase, the adversary is allowed to make query
through Ef under the WCM. Then in second phase, A checks whether the last output
pair collides with the previous any query pair. The third phase depends on the second
phase where a trigger will be called if collision occurs. On the contrary, the output pair
will be stored into Q and the adversary will be allowed for next query. For example, the
adversary A gets a couple of outputs (xl′ , yl′) at the l′-th iteration. Let there is an another
iteration of l∣ (l′ < l), where output pair will be xl, yl. If (xl, yl) = (xl′ , yl′) then a collision

will be occurred and a trigger (tricoll
Ef ,WCM

) will be called. However, the sets of queries
are:

Ef→WCM (l′ < q) ∶ xl′ = z1
l′ ⊕ml′ = Eupper

x̄l′−1,ȳl′−1
(ml′) ⊕ml′ , yl′ = z2

l′ ⊕ m̄l′ = Elower
x̄l′−1,ȳl′−1

(m̄l′) ⊕ m̄l′

Ef→WCM (l′ < l < q) ∶ xl = z1
l ⊕ml = Eupper

x̄l−1,ȳl−1 (ml) ⊕ml, yl = z2
l ⊕ m̄l = Elower

x̄l−1,ȳl−1 (m̄l) ⊕ m̄l

Hence, the conditions of collision are:

{ (z1
l′ ⊕ml′ = z1

l ⊕ml)∨
(z2
l′ ⊕ m̄l′ = z1

l ⊕ml)
} ∧ { (z1

l′ ⊕ml′ = z2
l ⊕ m̄l)∨

(z2
l′ ⊕ m̄l′ = z2

l ⊕ m̄l)
} (4.5)

From 4.5, the collision probability is:

q

∑
l=2

Pr [Tricolll,Ef ,WCM] =
q

∑
l=2

2(l − 1)
(2n − 2l)2 ≤

q

∑
l=2

2(l − 1)
(2n)2 ≤ q (q − 1)

22n
(4.6)

subGamecoll
back(Eb),WCM

. Let the adversary A will execute the subGamecoll
back(Eb),WCM

,

where backward query will be provided an output pair. A trigger (tricoll
Eb,WCM

) will be

defined, if collision occurs. According to this subgame and the previous explanation of
the subGamecoll

forw(Ef),WCM
, the collision probability is:

q

∑
l=2

Pr [Tricolll,Eb,WCM] =
q

∑
l=2

2(l − 1)
(2n − 2l)2 ≤

q

∑
l=2

2(l − 1)
(2n)2 ≤ q (q − 1)

22n
(4.7)

subGamecoll
key(Ek),WCM

. The explanation of probability of subGamecoll
key(Ek),WCM

is as

that of the subGamecoll
forw(Ef),WCM

. Therefore, the probability of collision is:

q

∑
l=2

Pr [Tricolll,Ek,WCM] =
q

∑
l=2

2(l − 1)
(2n − 2l)2 ≤

q

∑
l=2

2(l − 1)
(2n)2 ≤ q (q − 1)

22n
(4.8)

Adding the values of 4.6, 4.7 and 4.8, Theorem 4.2 is proved.

Security Proof of Collision Resistance of the First Scheme (ext.WCM)

According to the definition of ext.WCM, the adversary A will make three types of query
under a single instance non-adaptively (Table 4.5), where the adversary has no chance for
repeated query. A Gamecoll

(Ef ,Eb,Ek),ext.WCM
(Algorithm 3) will be defined in this section

for providing the security proof of the proposed scheme and it is categorized into three
subgames with their task into Table 4.5.

39

Table 4.5: Branches of Gamecoll
(Ef ,Eb,Ek),ext.WCM

Branch name Condition

outersubGamecoll
(Ef /Eb/Ek),ext.WCM

Ef,b,k→ext.WCMk,m,c (⋅) ⇒
(xl, yl,ml) ≠ (xl′ , yl′ ,ml′)∧
HNEW (xl, yl,ml)
=HNEW (xl′ , yl′ ,ml′)

inner,IV subGamecoll
(Ef /Eb/Ek),ext.WCM

Ef,b,k→ext.WCMk,m,c (⋅) ⇒
xl = yl
when,
HNEW (xl−1, yl−1,ml) = (xl, yl)
∨
(xl, yl) = (x0, y0)
when,
HNEW (xl−1, yl−1,ml) = (xl, yl)
and (x0, y0) = initial value

Theorem 4.3. Let HFS be a two calls of 2n bit key block-cipher hash function,
where it consists of block-cipher compression function F . The advantage of adversary A
is to find collision through HFS (F) after q pairs of queries. Therefore, the adversarial
advantage is bounded as:

Advext.WCMcoll

HFS (q) = q2 − q/2N2+3q/N

Proof. Let adversary A asks any relevant query and never makes any duplicate query
through Ef/Eb/Ek. Under the ext.WCM model, the query is being asked non-adaptively
at first. Therefore, adversary looks for collision based on those executed queries.

outersubGamecoll
(Ef /Eb/Ek),ext.WCM

. The subgame of outersubGamecoll
(Ef /Eb/Ek),ext.WCM

will

be assigned for finding collision under any iteration of the query process l∣ (l ≤ q). For an
example, at the point of l′ (l′ ≤ q)-th iteration, the resultant output are xl′ , yl′ . However,
in the iteration of l∣ (l′ < l ≤ q), the output are xl, yl. If the adversary A finds that there
is a collision between xl′ , yl′ and xl, yl then a trigger will be called. Hence, the conditions
of collision are:

(A→make query (Ef ,Eb,Ek)) ∧ (for two iterations of queries (l, l′) ∣(l′ < l ≤ q)) (4.9)

Furthermore, 4.9 can be derived as:

z1
l (E

upper
x̄l−1,ȳl−1 (ml)) = z1

l′ (E
upper
x̄l′−1,ȳl′−1

(ml′)) or z1
l (E

upper
x̄l−1,ȳl−1 (ml)) = z2

l′ (Elower
x̄l′−1,ȳl′−1

(, m̄l′))
z2
l (Elower

x̄l−1,ȳl−1 (m̄l)) = z2
l′ (Elower

x̄l′−1,ȳl′−1
(m̄l′)) or z2

l (Elower
x̄l−1,ȳl−1 (m̄l)) = z1

l′ (E
upper
x̄l′−1,ȳl′−1

(ml′))
(4.10)

If, 4.10 occurs then outertricoll
(Ef ,Eb,Ek),ext.WCM

will be called. Hence, the probability of

collision under the subgame of outersubGamecoll
(Ef /Eb/Ek),ext.WCM

is:

Pr [outerTricoll
(Ef ,Eb,Ek),ext.WCM] = Pr [outertricoll1,(Ef ,Eb,Ek),ext.WCM ,⋯,outertricollq,(Ef ,Eb,Ek),ext.WCM]

(4.11)

40

From 4.11,
q

∑
l=1

Pr [outerTricolll,(Ef ,Eb,Ek),ext.WCM] =
q

∑
l=1

(l − 1)
(22n) ≤ q

2 − q
2.22n (4.12)

innersubGamecoll
(Ef /Eb/Ek),ext.WCM

. Let, there is an iteration l, where l ≤ q. Under the

l-th iteration, the output is z1
l = E

upper
x̄l−1,ȳl−1 (ml) ⇒ ml ⊕ z1

l = xl and z2
l = Elower

x̄l−1,ȳl−1 (m̄l) ⇒
m̄l ⊕ z2

l = yl.
There is a chance to make collision between xl and yl. So, a trigger (innertricoll

(Ef ,Eb,Ek),ext.WCM
)

will be called when a collision occurs. Hence,

Pr [innerTricoll
(Ef ,Eb,Ek),ext.WCM] = Pr [innertricoll1,(Ef ,Eb,Ek),ext.WCM ,⋯,innertricollq,(Ef ,Eb,Ek),ext.WCM]

(4.13)
From 4.13, the collision probability is:

q

∑
l=1

Pr [innerTricolll,(Ef ,Eb,Ek),ext.WCM]=
q

∑
l=1

1

2n
≤ q

2n
(4.14)

Algorithm 3 (Gamecoll
(Ef ,Eb,Ek),ext.WCM

)
1: Initailization ∶ l = 0, q = 2n, Q ∶ Empty query database

2: procedure (Gamecoll
(Ef ,Eb,Ek),ext.WCM

)
3: for (l ≤ q) do
4: Execution: Ef/Eb/Ek through ext.WCMk,m,c (⋅)
5: Answer from ext. WCM oracle
6: Ef/Eb/Ek → xl = (Eupper

xl−1∣∣yl−1
(ml) ⊕ml)

7: Ef/Eb/Ek → yl = (Eupper
x̄l−1∣∣ȳl−1

(m̄l) ⊕ m̄l)
8: Store into Q
9: end for
10: (∗calling three subgames∗)
11: CALL → outersubGamecoll

(Ef ,Eb,Ek),ext.WCM

12: searching for (xl, yl) and (xl′ , yl′) from Q
13: if {(xl, yl) = (xl′ , yl′)} → Awins then
14: call outertricoll

(Ef ,Eb,Ek),ext.WCM
and terminate outersubGamecoll

(Ef ,Eb,Ek),ext.WCM

15: end if
16: CALL → innersubGamecoll

(Ef ,Eb,Ek),ext.WCM

17: searching for (xl, yl)
18: if (xl = yl) → Awins then
19: call innertricoll

(Ef ,Eb,Ek),ext.WCM
and terminate innersubGamecoll

(Ef ,Eb,Ek),ext.WCM

20: end if
21: CALL → ivGamecoll

(Ef ,Eb,Ek),ext.WCM

22: searching for (xl, yl)
23: if {(xl, yl) = (x0, y0)} → Awins then
24: call ivtricoll

(Ef ,Eb,Ek),ext.WCM
and terminate ivsubGamecoll

(Ef ,Eb,Ek),ext.WCM

25: end if
26: end procedure

41

ivsubGamecoll
(Ef /Eb/Ek),ext.WCM

. Under this subgame, there is a possibility for a collision

such as (xl, yl) = (x0, y0). Therefore, the probability of collision is:

q

∑
l=1

Pr [ivTricolll,(Ef ,Eb,Ek),ext.WCM]=
q

∑
l=1

2

2n
≤ 2q

2n
(4.15)

Therefore, Theorem 4.3 is proved by taking the union bound of 4.12, 4.14 and 4.15.

42

4.2 A Pair of Constructions of Compression Function

In this section, we propose two schemes of (n,n) block-cipher based compression function
for short message encryption. The second scheme is defined as SS and later one is noted as
TS. The proposed second scheme has higher efficiency rate, less call of block-ciphers and
less key scheduling (Table 4.6 and Table 4.7). It operates in parallel. On the contrary, the
third scheme is bounded for upper security margin (Table 4.7). Both of the schemes are
padding free construction for short and variable size of message. Moreover, the proposed
two schemes follow the Davies Meyer mode (DM) and satisfy the feature of double key
scheduling (KS).

Table 4.6: Comparison: FS, SS and other (n,n) based blockciphers scheme [27, 38, 56,
59, 69]

CF r #E KS CR PR OM PF RM
MDC-2 3n→ 2n 1/2 2 2 O(2

n
2) O(2n) P × 176 × 2

MDC-4 3n→ 2n 1/4 4 4 O(2 5n
8) O (2

5n
4) P × 176 × 4

MJH 3n+c → 2n 1/2 2 1 O(2
n
2) O(2n) P × 176 × 2

Bart 3n→ 2n 1/3 3 3 O(2n) O (2
3n
2) S × 176 × 3

SKS 3n→ 2n 1/3 3 1 O(2n) O(22n) P × 176 × 3

CF: Compression function
KS: Key Scheduling
CR: Collision resistance
PR: Preimage resistance
#E: Number of blockcipher calls
r: Efficiency rate
OM: Operational mode, P: Parallel, S: Serial
PF: Padding free
RM: Required memory in bytes

Table 4.7: Characteristics of Second Scheme and Third Scheme
CF KS CR PR #E r OM PF RM

SS 2n + tn→ 2n 2 O(2tn/2) O(2tn) 2 t Parallel
√

176 × 2

TS 2n + tn→ 2n 2 O(2tn) O(22tn) 3 t/3 Serial
√

176 × 3

CF, KS, CR, PR, #E, r, OM, PF, RM (refer to Tabel 4.6)

4.2.1 Proposed Second Scheme of Compression Function (SS)
In this section, we define the construction of SS through diagram and definitions of Figure
4.3 and Definition 4.2, 4.3. We use two set of short message under a single compression
function of SS. The key scheduling is double but construction is based on (n,n) block-
cipher. It consists of two calls of block-cipher per compression function. Furthermore, the
SS follows the Davies Meyer (DM) mode. There are certain notations which are related

43

to proposed second scheme such as F SS: Compression function, N = 2n: Domain size,
A: Adversary, Q: Query Triplet, ⊕: XoR operation, coll: collision, cvi,j, cvi,j: Chaining
value, B: Adversary, Q: Query database, ADV: Advantage of Adversary, Ci: coll. event,
and Pr [⋅]: Probability.

(n, n)

(n, n)

   1, 1 0,1
n

icv

 1,icv

2,icv

1,iy

2,iy

 1 0,1
tn

im 

   2, 1 0,1
n

icv



 2 0,1
tn

im 

Figure 4.3: Second scheme (SS)

Definition 4.2. Let E ∈ Blockkn be a block-cipher taking k-bit key and an n-bit block
size. The compression function of F SS ∶ {0,1}n × {0,1}n−tn × {0,1}2tn → {0,1}2n (t < 1) is
defined as:

F SS (cv1, cv2,m
1,m2) = (Ecv2∣∣m1 (cv1) ⊕ cv1,Ecv2∣∣m2 (cv1) ⊕ cv1)

Definition 4.3. Let F SS ∶ {0,1}n × {0,1}n−tn × {0,1}2tn → {0,1}2n
be a compression

function where (cv1,i, cv2,i,m1
i ,m

2
i) = F SS (cv1,i, cv2,i,m1

i ,m
2
i). The notations are cv1,i ∈

{0,1}n, cv2,i ∈ {0,1}n−tn, (m1,m2) ∈ {0,1}tn. Therefore, F SS consists of ((n +m) = k,n)
ideal block cipher E as like,

F SS
u (cv1,i−1, cv2,i−1,m1

i) = E(cv1,i−1, cv2,i−1∣∣m1
i) ⊕ cv1,i−1

F SS
l (cv1,i−1, cv2,i−1,m2

i) = E(cv1,i−1, cv2,i−1∣∣m2
i) ⊕ cv1,i−1

Security Analysis of the Second Scheme (SS)

A computationally unbounded adversary A is given oracle access to a block-cipher E/E−1.
In block-cipher oracle, all block-cipher’s key (n-bit) and block-data (n-bit) are uniformly
distributed. The query history of A is the set of triples, where Q consists xi ∶ plaintext,
yi ∶ ciphertext, and ki ∶ key. The queries are stored in query database Q. Therefore,
adversary A gets success for finding a collision under any i-th iteration. For example, there
exist two distinct set of queries such as w ← (cv1,i−1, cv2,i−1,m1

i), x ← (cv1,i−1, cv2,i−1,m2
i),

y ← (cv1,j−1, cv2,j−1,m1
j) and z ← (cv1,j−1, cv2,j−1,m2

j). Hence, A gets success iff,

F SS (w) = F SS (y) , F SS (w) = F SS (z) or F SS (x) = F SS (y) , F SS (x) = F SS (z)
when, (w ≠ x ≠ y ≠ z)

Collision security of SS. An adversary A is allowed to make any relevant query to
E/E−1 under the ideal cipher model (ICM). However, A is not allowed for duplicate
query. For example, adversary never makes a query of E (k, x) = y if y is already part of

44

E−1 (k, y) = x query. Adversary A is limited to make an arbitrary query upto q. Therefore,
A tries to find a collision under F SS (compresion function of the second scheme) through
the block-cipher oracle. The output (cv1,i, cv2,i) of compression function (F SS) depends
both on the plain-text and cipher-text including key for any i-th iteration. Thus, one
of these is fixed by an adversarial query. On the other hand, the rest of the values
are determined randomly from the block-cipher oracle. Usually, the adversary makes a
query through block-cipher oracle, where size of plain-text or cipher-text is n bit. Yet,
we use short message (tn such that t < n) in the SS scheme. Hence, it is necessary to
accommodate the feature of short message in query response mechanism. Firstly, we try
to address the traditional query response mechanism. For example, the collision length is
n-bit when adversary finds a collision. If collision occurs under any n-bit, hence it is not
problem for adversary to find a collision under tn-bit. However, A doesn’t allow to get
success for finding collision through tn-bit message directly. Under this circumstance, we
invoke adversary B which works based on the query response of A.

,1 ,2 i iq q

1,1 1,2 q q

,1 ,2 q qq q

 

for single message, adversary

makes query to single oracle

in each iteration of compression

function Stam's conjunction

(n, n)

(n, n)

   1, 1 0,1
n

icv

 1,icv

2,icv

1,iy

2,iy

 1 0,1
tn

im 

   2, 1 0,1
n

icv



 2 0,1
tn

im 

?

Figure 4.4: SS Security Analysis (single message set)

The adversary A calls adversary B. Thereafter, B is allowed to access the query
response database of A. Furthermore, the adversary B is allowed to search the query,
where size is tn-bits instead of n-bits. Thus, the query database is being reduced 2n

to 2tn. Hence, B is more powerful than A due to less size of database. For example,
adversary A makes a query and get the output (cv1,i, cv2,i) ∈ {0,1}n. Therefore, the
adversary B takes that output and tries to prune tn-bit from n-bit. If it finds a collision
under tn-bit block size then the adversary B wins. Moreover, B sends true to adversary
A and adversary A stops the query process. On the contrary, adversary B sends false to
adversary A. In this way adversary B tries to find a collision for the size of tn bit instead
of n bit. Hence, it is clear that the adversary B gets more advantage and the result is
more tight.

Theorem 4.4. Let F SS be a block length compression function specified in Definition
4.2, 4.3. Therefore, an adversary A is defined for finding a collision under F SS. Hence,
the advantage of adversary is upper bounded after q queries such as:

ADVcollFSS (q) ≤ 2(q (q − 1)
22tn

+ q

2tn
+ 2q

2tn
)

Proof. There are three cases for defining the security issues of the SS scheme. We
define and explain these cases in the following ways.

Case 1 (c1). For any iteration of i (j < i < q), we assume C be the event of collision-
hit under the F SS. The conditions of collision-hit for different two types of query are as

45

follows:
y1,i ⊕ cv1,(i) = y1,j ⊕ cv1,(j) ∧ y1,i ⊕ cv1,(i) = y2,j ⊕ cv1,(j)

y2,i ⊕ cv1,(i) = y1,j ⊕ cv1,(j) ∧ y2,i ⊕ cv1,(i) = y2,j ⊕ cv1,(j)

Let Collc1 be the event that find a collision for different two sets of queries under the F SS.
Thus, the probability of collision events are Pr [Collc1] = Pr[C2 ∨C3 ∨ ∨Cq]. Hence,

Pr[Collc1i] ≤
q

∑
i=2

2(i − 1)
(2tn − (2i − 1)2)

≤
q

∑
i=2

2 (i − 1)
22tn

⇒ q (q − 1)
22tn

(4.16)

Case 2 (c2). This case is defined for single query for the iteration of i (i ≤ 1), where the
collision condition is cv1,(i) = cv2,(i). Let Collc2 be the event that find a collision for single
set of query under F SS. Therefore, the probability of collision events are Pr [Collc2] =
Pr[C1 ∨C2 ∨ ∨Cq]. Hence,

Pr[Collc2i] ≤
q

∑
i=1

1

(2tn − i) ≤ q

2tn
(4.17)

(n, n)

(n, n)

   1, 1 0,1
n

icv



1,icv

2,icv

1,iy

2,iy

,1 ,2 i iq q

1,1 1,2 q q

,1 ,2 q qq q

,1 ,2 i iq q 

1,1 1,2 q q 

,1 ,2 q qq q 

 
 

 upper

lower

E Blockcipher

E Blockcipher
E Blockcipher

 

 
 

 1 0,1
tn

im 

   2, 1 0,1
n

icv



 2 0,1

tn

im 

adversary is allowed to ask

two independent oracles for

a paired message per iteration

of the compression function

Figure 4.5: Collision security analysis of SS

Case 3 (c3). For any iteration of i, there is chance to occur a collision through initial
chaining values. The conditions are as follows:

{(cv1,i, cv2,i, ki) → y1,i} ,{(cv1,i, cv2,i, k
′
i) → y2,i} = (cv0,1, cv0,2) ∨ (cv0,2, cv0,1)

We assume that Collc3 be the event for finding a collision through initial vector values
under F SS. Therefore, the probability of collision events are Pr [Collc3] = Pr[C1 ∨ C2 ∨
..... ∨Cq]. It implies that,

Pr[Collc3i] ≤
q

∑
i=1

2

2tn
≤ 2q

2tn
(4.18)

Taking the union bound of 4.16, 4.17, and 4.18 we get,

q (q − 1)
22tn

+ q

2tn
+ 2q

2tn
(4.19)

The above result (Figure 4.4) comes from two block-ciphers response according to
single set of message. However, we use two set of different messages under two block-
ciphers. According to Stam’s principle, usually oracle response follows through single

46

message [26]. Due to use of two set of messages, adversary can ask two different oracles
according to each message. Therefore, adversary calls two oracles for query under each
iteration of compression function. Thus, the collision-hit probability comes from the upper
and lower block based two independent oracles (Figure 4.5). The value of 4.19 is valid
for single oracle. Hence, the upper block and lower block probability are as follows:

u

Pr
colli

= q (q − 1)
22tn

+ q

2tn
+ 2q

2tn
(4.20)

l

Pr
colli

= q (q − 1)
22tn

+ q

2tn
+ 2q

2tn
(4.21)

Finally, adding the values of 4.20, and 4.21 Theorem 4.4 is proved.
Preimage Security of SS. Let A be an adversary that tries to find a preimage for

predetermine output (δ). The preimage security proof of SS is followed by Armknecht
[58]. Adversary A asks a pair of queries through E/E−1. Thus, it is needed to bound the
probability for preimgae-hit under i-th query pair. The adversary wins iff the output of
compression function collides with the δ. For example, the compression function output
are cv1,i, cv2,i. Therefore, the condition of preimage-hit is:

(cv1,i, cv2,i) = δ ∈ {rsv1, rsv2}

where, rsv1, rsv2 ∶ randomly selected value by the adversary A.
Theorem 4.5. Let F SS be a block length compression function. A is an adversary

for finding preimage-hit under the F SS. The advantage of A is bounded after q queries
such as:

ADVpre
FSS (q) ≤ 2 (16/22tn)

Proof. The adversary A maintains a query database Q in the form of cv1,i, cv2,i. If
the size of database reaches to N/2 (N ∶ size of database (2n)) then all remaining queries
under this key are given for free to the adversary. The first half of N/2 is called normal
query database and later one is defined as super query database [25, 58]. Thereafter, the
successful conditions (Figure 4.6) of preimage-hit for the adversary are:

{(cv1,i−1 ⊕ y1,i = cv1,i) = rsv1} ∧ {(cv1,i−1 ⊕ y2,i = cv2,i) = rsv2}

{(cv1,i−1 ⊕ y1,i = cv2,i) = rsv2} ∧ {(cv1,i−1 ⊕ y2,i = cv1,i) = rsv1}
The above conditions can be occurred under the following any event:

� Normal query win under the Normal query database

� Super query win under the super query database

Therefore, we need to find out the preimage-hit probability under the above events. More-
over, we need to take the union bound of the above two results such as:

Pr [Normal query win (Q)] +Pr [Super query win (Q)]

Case 1 (c1). Adversary A makes forward or backward query such as:

Ecv1,i−1∣∣m1(cv2,i−1),E−1
cv1.i−1∣∣m2(c̄v2,i−1)

where, the goal is to find the Normal query win(Q). According to definition of normal
query and adjacent query [58], the set size of fresh value is needed to evaluate. Under
this circumstances, two sub cases can be happened such as:

47

(n, n)

(n, n)

   1, 1 0,1
n

icv

 1,icv

2,icv

1,iy

2,iy

 1 0,1
tn

im 

   2, 1 0,1
n

icv



 2 0,1
tn

im 

 Adversary
 1 2,rsv rsv

  

  

  

  

1, 1 1, 1, 1

1, 1 2, 2, 2

1, 1 1, 2, 2

1, 1 2, 1, 1

i i i

i i i

i i i

i i i

cv y cv rsv

cv y cv rsv

cv y cv rsv

cv y cv rsv









    
  
   
 

    
 
   
 

arbitrary select

Figure 4.6: Preimage Security Analysis of SS

� Sub-Case 1.1. For example, A makes a forward Ecv2,i−1∣∣m̄1(cv1,i−1) query, where
at most (2tn/2 − 1) queries could be answered previously. Therefore, the query of
Ecv2,i∣∣m2 (cv1,i) and corresponding answer comes from the set size (2tn/2 − 1). If ad-
versary fails to find any preimage-hit under this scenario, it implies that super query
will be occurred. Hence, the value of y1,i and y2,i come uniformly and independently

from the set size 2tn/2. Thus, the probability is 2/2tn/2.

� Sub-Case 1.2. If cv1,i−1 ⊕ y1,i = cv1,i satisfies, then the probability for the free query
E ¯cv2,i−1∣∣m2 (cv1,i−1) comes from the set size (2tn/2 + 1). Hence, the probability is
1/2tn/2 = 2

2tn .

Therefore,
Pr [Normal query win (Q)] = 8/22tn (4.22)

Case 2 (c2). In this case, we try to find the probability of preimage-hit under the
super query database. For example, the value of Ecv2,i−1∣∣m1(⋅) and Ecv2,i−1∣∣m2(⋅) already
have been known on exactly 2tn/2 points. Therefore, Ecv2,i−1∣∣m1(⋅) is the part of super and
the corresponding Ec̄v2,i−1∣∣m2(⋅) query must be the member of the super query domain.
From the above discussions, the probability of Ecv2,i−1∣∣m1 (cv1,i) = cv1,i is either 0 or 2

2tn .
The probability is 0, if the cv1,i is not in the part of super query. It means cv1,i is the part
of normal query. On the contrary, the result comes from the set size 2tn/2 due to super
query. Therefore, the probability is 2

2tn . For simplicity, the conditions of preimage-hit
under case-2 are:

{(y1,i ⊕ cv1,i−1 ∈ cv1,i) = rsv1 ∧ (y2,i ⊕ cv1,i−1 ∈ cv1,i) = rsv2}∨

{(y1,i ⊕ cv1,i−1 ∈ cv2,i) = rsv2 ∧ (y2,i ⊕ cv1,i−1 ∈ cv2,i) = rsv1}

� Sub-Case 2.1. For the query of Ecv2,i−1∣∣m1 (cv1,i−1) ⊕ cv1,i−1 = cv1,i, the answer comes
from the set size 2tn/2. Hence, the probability is 2

2tn . Moreover, the probability of
Ecv2,i−1∣∣m2 (cv1,i−1)⊕ cv1,i−1 = cv1,i is 2

2tn . Hence, the total probability of this subcase

is (2
2tn

)2
.

� Sub-Case 2.2. According to subcase 2.2, the total probability of Ecv2,i−1∣∣m1 (cv1,i−1)⊕
cv1,i−1 = cv2,i and Ecv2,i−1∣∣m2 (cv1,i−1) ⊕ cv1,i−1 = cv2,i is (2

2tn
)2

.

Now, we analyse the probability of case-1 and case-2 with the cost of super query
occurrence. The colliding cost of super query is 2tn/2. Hence, the probability of collision

48

of super queries is at most q/(2tn/2). Thus,

Pr [Super query win (Q)] ≤ q/(2tn/2) × (2tn/2) × 2 × (2

2tn
) = 8q

22tn
(4.23)

Taking the union bound of 4.22 and 4.23 the adversarial advantage is 16q
22tn . This is true

for single oracle. However, we use two set of message in our scheme. Hence, the adversary
gets chance to make query from two oracles for preimgae-hit. Therefore, the probability
of preimage-hit under F SS is 2 × (16q

22tn
) (Theorem 4.5 is satisfied).

4.2.2 Proposed Third Scheme of Compression Function (TS)
In this section, we define third scheme (TS). It is based on three calls of (n,n) block-
cipher. By construction, the TS (Figure 4.7) invokes a single set of message per iteration
through three block-cipher. The message size is tn-bits, where t < 1.

1,2,3
SSE

1E

 1 0,1
n

ip    1 0,1
n

ir  0,1
tn

im 

 1 1,| |i ip p n tn   

 0,1
tn

m

 1 1,| |i ir r n tn   

 0,1
tn

m

2E 3E

 0,1
n

ip 

 1 0,1
n

ip  

 1 0,1
n

ir 

 0,1
n

ir 

Figure 4.7: Block Diagram of Proposed Third scheme (TS)

Definition 4.4. Let E ∈ Blockkn be a block cipher, where key size and block size are
respectively k-bit and n-bit. The compression function F TS ∶ {0,1}n × {0,1}n × {0,1}tn →
{0,1}2n (t < 1) consists of three block-ciphers which are defined as follows :

ETS
1,2,3 =
E1,m∣∣pi−1 (ri−1) ⊕ ri−1 → xi,
E2,m̄∣∣ri−1 (xi) ⊕ xi → pi,
E3,m̄∣∣ri−1 (pi−1) ⊕ pi−1 → ri

where, (∣pi−1∣ = n − tn (forE1) ; ∣ri−1∣ = n − tn (for E2, E3)). Therefore,

F TS (pi−1, ri−1,m)

= (E2,m̄∣∣ri−1 (E1,m∣∣pi−1 (ri−1)) ⊕ (E1,m∣∣pi−1 (ri−1)) ,
E3,m̄∣∣ri−1 (ri−1) ⊕ (ri−1)

)

49

Security Analysis of the Third Scheme (TS)

Collision security of TS. Adversary A is a collision finding experiment based on ideal
cipher model oracle. It can make any query E or E−1. On the iteration of i, the scenario
looks Qi ∈ (note that mi−1, ki−1, ci−1) or Qi ∈ (ci−1, ki−1,mi−1) where m, k, c respectively
stands for plain-text, key, cipher-text. The responses are stored in Q such that Q ∈
(Q1,Q2, ...Qi), where i < q. Adversary A gets success iff, F TS (m,k, c) = F TS (m′, k′, c′).
According to definition of TS, the above condition rewrite as F TS (p, r,m) = F TS (p′, r′,m′).

Theorem 4.6. Let F TS be a compression function consists of triple block-cipher.
An adversary A is defined to find collisions under the F TS after q queries. Hence, the
advantage of A is bounded by:

ADVcollFTS (q) ≤ 3q2 − 5q

(2n−
√
tn − 3q)2 +

q

(2n−tn − 3q)

Proof. Adversary A is allowed to make any relevant query to E/E−1 under the
ideal cipher model. In addition, adversary A is computationally unbounded in respect of
memory and time. Furthermore, it is bounded in respect of time and memory. We use
three calls of block-cipher under the ESS

1,2,3. The output of three block-ciphers fed into
final output of ESS

1,2,3. Therefore, we will find out the probability of collision under three
calls of block-cipher. For example, the output (p, r) of F TS comes from ETS

1,2,3. At first we
define the conditions of collision occurrence (Figure 4.8). There are two main conditions
for causing collision such as non-matching pair and matching query. The non-matching
conditions are defined as (a < b < i < q):

{(pa+1 = rb+1) ∧ (pa+1 = ri+1)} ∨ {(pb+1 = ri+1) ∧ (pb+1 = ra+1)}∨
{(pi+1 = rb+1) ∧ (pi+1 = ra+1)}

When,

[f (pa, ra,m) , f (pb, rb,m) , f (pi, ri,m) ∣s.t. (pa, ra,m) ≠ (pb, rb,m) ≠ (pi, ri,m)]

That means three different set of queries are needed to occur collision. Moreover, matching
query means a couple of output makes collision for any single set of query. Hence,

pi+1 = ri+1 ∣(F TS (pi, ri,mi) = (pi+1, ri+1))

Additionally, a collision can be occurred through initial chaining values. Usually a set of
chaining values inject in compression function for initialization. Thus, an opportunity is
arisen for making collision through p0, r0 under any iteration of i∣ (i ≥ 1).

non-matching query. Let the collision event is Ci. According to the definition of non-
matching collision, three calls of block-cipher are used under F TS (ETS

1,2,3). Hence, the
event (Ci) is created for any i (a < b < i < q). Thereafter, the probability is:

Pr[Ci] =
2tn × 3(i − 3)

(2n − 3i)(2n − 3i)
Let C be the event that find a collision under non-matching query through F TS for q
queries. Thus, the probability of collision events are Pr[C] = Pr[C3 ∨ C4 ∨ ∨ Cq].
Thereafter,

q

∑
i=3

Pr[Ci]=
q

∑
i=3

2tn × 3 (i − 3)
(2n − 3i) (2n − 3i) ≤ 3q (q − 2)

(2n−
√
tn − 3q)2 (4.24)

50

SS
collision security

analysis

 Aq  Bq

 Cq  Dq

 Aq  Bq

 Aq

 Cq

 0,0q  0,1q

 

Oracle

E Blockcipher

 

   

   

   

   

1 1

1 1 1

non-matching query example

, , ,

, ,

. . , ,

when, , ,

SS
A i B i A B

SS
C D C D

A B C D

A B i C D

F q q q q

F q q q q

s t q q q q

q q q q

 

 

   









 

   

   1

matching query example

, ,

. .

SS
A i B i A B

A B A B i

F q q q q

q q s t q q

 

 



 

 

   

    
 

0,0 0,1 0,0 0,1

1

chaining value collision example

, ,

when,

SS
A i B i A B

A B

A B i

F q q q q

q q q q q q

q q

 

 



    



Figure 4.8: Collision Security Analysis of TS

matching query. For matching query, we define collision an event Ci. The probability of
Ci will be 2tn/(2n − 3i) according to the definition of matching query condition. Therefore,
C be the events of collision occur for q queries such as:

Pr[C] = Pr[C1 ∨C2 ∨ ∨Cq]

Hence, the probability is:

q

∑
i=1

Pr[Ci]=
q

∑
i=1

2tn

(2n − 3i) ≤ q

(2n−tn − 3q) (4.25)

collision with initial chaining value. Under this condition, the initial chaining values
are p0, r0. Therefore, a collision can be occurred under any i-th iteration iff:

(pi = (p0 ∧ r0) ∨ ri = (p0 ∧ r0))

We define a collision event Ci. Therefore, the probability of Ci is 2 × 2tn × 1/(2n − 3i) ×
1/(2n − 3i). Let, C be the events for colliding pair for q queries such as Pr[C] = Pr[C1 ∨
C2 ∨ ∨Cq]. Hence, the probability of collision events is:

q

∑
i=1

Pr[Ci]=
q

∑
i=1

2tn × 2

(2n − 3i) (2n − 3i) ≤ 2tn+1 × q
(2n − 3q)2 (4.26)

Adding the values of 4.24, 4.25, and 4.26 Theorem 4.6 is satisfied.
Preimage Security of TS. Let adversary A tries to find a preimage-hit for pre-define

output of p′, r′. Initially, A selects arbitrarily p′, r′. The adversary can ask query through
E and E−1. In any point of i-th iteration, there is a chance to occur preimage-hit for
F TS (p, r,m) = (p′, r′) (Figure 4.9).

Theorem 4.7. Let F TS be a block length compression function (E ∈ Blockkn), where
adversary A is defined for finding a preimage-hit. The advantage of adversary is bounded
after q queries such as:

ADVpre

FTS(q) ≤
q (q − 2)

(2n − 3q)2 × 2−tn
+ q − 2

(2n−tn − 3q)

51

1,2.3
SSE

1E

 1 0,1
n

ip    1 0,1
n

ir  0,1
tn

im 

 1 1,| |i ip p n tn   

 0,1
tn

m

 1 1,| |i ir r n tn   

 0,1
tn

m

2E 3E

 0,1
n

ip 

 1 0,1
n

ip  

 1 0,1
n

ir 

 0,1
n

ir 

 Adversary

 ,p r 

 

 select by adversary

 randomly

 begining point query process

   

   

 1 1

 :

 , or

 ,

 : ,

i

i

i i

basic scenario

p p r

r p r

for the query p r 

 

 

Figure 4.9: Preimage Security Analysis of TS

Proof. An adversary A selects randomly p′, r′ for preimage attack. Therefore, the
adversary needs to execute three calls of block-cipher according to the definition of our
proposed scheme. If FTS (p, r,m) = (p′, r′), we can say that adversary get success for
preimage-hit. Our define conditions are:

(pa+1 = p′) , (pa+1 = r′) ∧ (ra+1 = p′) , (ra+1 = r′)∨
(pb+1 = p′) , (pb+1 = r′) ∧ (rb+1 = p′) , (rb+1 = r′)∨
(pi+1 = p′) , (pi+1 = r′) ∧ (ri+1 = p′) , (ri+1 = r′)

When,

[f (pa, ra,m) , f (pb, rb,m) , f (pi, ri,m) ∣s.t. (pa, ra,m) ≠ (pb, rb,m) ≠ (pi, ri,m)]

We assume that the preimage hit event is Prei. According to the above conditions of F TS,
Prei can be occurred at any point of i-th iteration (a < b < i < q). Therefore, the events of
preimage-hit for q queries are:

Pr [Pre] = Pr [Pre3 ∨Pre4 ∨ ∨Preq]

Hence, the probability is:

q

∑
i=3

Pr[Prei] =
q

∑
i=3

2tn × 3 (i − 3)
(2n − 3i) (2n − 3i) ≤ q (q − 2)

2−tn × (2n − 3q)2 (4.27)

After execution of three calls of block-cipher, there is chance to occur p′ = r′. Let, Pre
be the event for occurring this scenario. Therefore, the probability of preimage-hit events
are:

Pr [Pre] = Pr [Pre3 ∨Pre4 ∨ ∨Preq]
Hence, the probability is:

q

∑
i=3

Pr [Prei] =
q

∑
i=3

2tn

(2n − 3i) ≤ q − 2

(2n−tn − 3q) (4.28)

Adding the values of 4.27and 4.28 Theorem 4.7 is satisfied.

52

Table 4.8: Comparison of efficient rate for different schemes [27, 38, 56, 59, 69]
SS message size (2tn) efficiency-rate

t = 1/2 0.5
t = 2/3 0.66
t = 3/4 0.75

TS message size (tn) efficiency-rate
t = 1/2 0.166
t = 2/3 0.22
t = 3/4 0.25

message size (m = n) efficiency-rate
MDC-2 m m/2n = 0.5
MDC-4 m m/4n = 0.25
MJH m m/2n = 0.5

Bart-12 m m/3n = 0.33
SKS-15 m m/3n = 0.33

4.2.3 Efficiency Analysis Second and Third Scheme

In this section, we explain the efficiency analysis of different schemes. The efficiency-rate is
defined as r = (message size)/(blocklength) × (number of blockcipher call). The schemes
of MDC-2, MDC-4, MJH, Bart-12 are not fit for variable and short message. Therefore,
the message size is n-bit per compression function for the above mentioned schemes. On
the contrary, the proposed schemes of SS and TS are suitable for short and variable
message. According to the definition of SS and TS, the message size are respectively 2tn
and tn (t < 1). That’s why the efficiency of SS and TS also varies (based on message size).
In Table 4.8, we mention the efficiency rate of various schemes.

53

4.3 A Light Scheme of (n,n) block-cipher compres-

sion Function

In this section, we proposed fourth scheme (FrS) of (n,n) block-cipher hash that satisfies
a single key scheduling with better security bound (Table 4.9). We use three calls of
block-cipher through the Davies Meyer (DM) mode. The result of collision resistance and
preimage resistance are O(2n) and O (22n) under the ICM. Additionally, the proposed
scheme is bounded by CR = O(2n) and PR = O (2n) under the WCM. The efficiency rate
of proposed scheme is 1/3.

Table 4.9: Comparison study of existing schemes and new scheme
(Aspect: Security Proof) [27, 38, 56, 59, 69]

Scheme
Name

ICM WCM FFM
CR PR CR PR CR PR

FrS O(2n) O(2n) O(2n) O(2n) - -
MDC-2 O(2n/2) O(2n) - - - -
MDC-4 O(25n/8) O(25n/4) - - - -
MJH - - - - O(2n/2) O(2n)
Bart - - - - O(2n) O(23n/2)
MSR O(2tn) O(22tn) - - - -
CIDM O(2n) O(22n) - - - -

4.3.1 Proposed Fourth Scheme of Compression Function

In this section, we proposed fourth scheme of (n,n) block-cipher cryptographic com-
pression function as FrS (Figure 4.10). It satisfies a single key scheduling (KS = 1).
It is based on three calls of (n,n) block-cipher under the Davies Meyer mode (DM)
(message goes as key input). The efficiency rate of our scheme is 1/3.

1E

 0,1
n

m

2E

3E

 1 0,1
n

ix  

 1 0,1
n

iy  

 0,1
n

i 

 0,1
n

i 

 
2

||
n

i i 

 0,1
n

   0,1
n

ix 

 0,1
n

iy 

 0,1
n



 0,1
n



upper

lower

Figure 4.10: Proposed Fourth Scheme

Definition 4.5. Let, E ∈ Blockkn be the block-cipher, where (k,n) ∈ {0,1}n means key
and block length. The compression function FEFrS(HFrS) ∶ {0,1}n × {0,1}n × {0,1}n →

54

{0,1}2n
contains of three block-ciphers, defined as follows:

E1 ← E1 (mi, xi−1) = αi
E2 ← E2 (mi, yi−1) = βi
E3 ← E3 (mi, γi) = µi
where,
xi ← ϕi ⊕ xi−1 ∣ϕi←⊗upper {(αi∣∣βi)}
γi←⊗lower {(αi∣∣βi)}
yi ← µi ⊕ yi−1

RRRRRRRRRRRRRR
upper, lower ∈ {0,1}n

Finally,
HFrS (xi−1, yi−1,mi)

= (E1 (xi−1,mi) ∣∣E2 (yi−1,mi)→⊗ϕ⊕ xi−1 → xi,
E3 (γi,mi) → µ⊕ yi−1 → yi

)

Security Analysis of the Proposed Fourth scheme

Usually, the ICM is widely used for the security proof of block-cipher hash [61, 62, 63].
The WCM is better than the ICM for its weaker assumption [61, 62, 63]. The target of
the adversary will be unique under the both security proof models. We assume that the
adversary A can get access to the block-cipher (Blockkn) oracle. It tries to find a collision
under HFrS (FEFrS) through the following conditions (Table 4.10).

Table 4.10: Conditions of collision occurrence
Conditions (x, y ∶ chaining value, x0, y0 ∶ initial value,m ∶ message)
1. (xi−1, yi−1,mi) , (xi′−1, yi′−1,mi′) ∣i′ < i < q
HFrS (xi−1, yi−1,mi) =HFrS (xi′−1, yi′−1,mi′)
∣(xi−1, yi−1,mi) ≠ (xi′−1, yi′−1,mi′)

2. (xi−1, yi−1,mi) ∣i < q ;HFrS (xi−1, yi−1,mi) → (xi = yi)
3. (xi−1, yi−1,mi) ∣i < q ; HFrS (xi−1, yi−1,mi) = x0, y0

Collision Security Analysis (ICM based). Under the ICM, the adversary A is allowed
to make two types of query to the oracle of block-cipher (Block (n, k)) such as forward
and backward query. An adversary A can get cipher-text through forward query, where
a backward query provides plain-text. The query is noted as Qi∣i < q. After each iter-
ation, a query will be stored at Q∣(Q ∈ Qi,Qi+1, . . ,Qq) ∧ (1 < i ≤ q) , where query looks
Q ∈ (x, y,m) [x, y,m = chaining value, message]. We will follow the certain conditions
from 5.10 for finding collision hit under the ICM.

Theorem 4.8. Let HFrS be a block-cipher hash function consists of compression
function FEFrS (Definition 4.5 and Figure 4.10). The task of the adversary A is to find
collision through HFrS after q queries. Therefore, the adversarial advantage is bounded
as:

Advcoll
HFrS(q) ≤

q2 − 2q

(2n − 3q)2

55

Proof. The adversary A will ask to the block-cipher oracle until it doesn’t get success.
As for example, after i′-th query the query set looks (Qi′ ∈ (x′, y′,m′)). For next any
iteration, there is a chance to find a query (Qi ∈ (x, y,m))∣ (i′ < i) that produces the same
output as the output of i′ iteration. There are two more conditions for collision hit, which
are available in the Table 4.10.

Condition-1. For the first condition, it needs two iterations of HFrS. It means, the
adversary A tries to find a collision (Table 4.10) for two different set of query. We assume
that Evcoll

condtion-1 be the event for finding a collision under the HFrS (FEFrS). Our scheme
needs three calls of block-cipher per iteration by construction. Therefore, the collision
probability for a event of Evcoll

condition-1∣ (i′ < i) will be:

Pr[Evcoll
condition-1] =

i

(2n − 3i)(2n − 3i)

If Evcoll
condition-1∣ (i′ < i) be the event of finding a collision under the FEFrS

, then the prob-
ability of collision events after q queries will be Pr[Evcoll

condition-1] = Pr[Evcoll
3,condtion-1 ∨

Evcoll
4,condition-1 ∨ . . . ∨Evcoll

q,condition-1].

=
q

∑
i=3

Pr[Evcoll
i,condition-1] =

q

∑
i=3

i

(2n − 3i) (2n − 3i) ≤ (q − 2) (q − 3)
(2n − 3q)2 (4.29)

Condition-2. According to Table 4.10, there is a scope for collision hit within a single
query. Let, Evcoll

condition-2 be the event for finding a collision under the HFrS (FEFrS), where
three calls of block-cipher will be executed per iteration. Hence, the collision probability
for the event of Evcoll

condition-2 will be Pr [Evcoll
condition-2] = 1

(2n−3i)(2n−3i) . The probability of
collision events are:

Pr[Evcoll
condition-2] = Pr[Evcoll

3,condition-2 ∨Evcoll
4,condition-2 ∨ ∨Evcoll

q,condition-2]

=
q

∑
i=3

Pr[Evcoll
i,condtion-2] =

q

∑
i=3

1

(2n − 3i)(2n − 3i) ≤ (q − 2)
(2n − 3q)2 (4.30)

Condition-3. We know for any block-cipher based hash (compression function), it
needs initialization value. Let, there is a possibility for the adversary to get a collision
under these initializing values at any stage of query process. We assume that Evcollcondition-3

be the event for finding a collision against the set of initialization value through HFrS

(FEFrS). The collision probability for the event of Evcoll
condition-3 will be:

Pr[Evcoll
condition-3] =

2

(2n − 3i)(2n − 3i)

Therefore, the probability of collision events are:

Pr[Evcoll
condition-3] = Pr[Evcoll

3,condition-3 ∨Evcoll
4,condition-3 ∨ . . . ∨Evcoll

q,condition-3] =
q

∑
i=3

Pr[Evcoll
i,condition- 3] =

q

∑
i=3

2

(2n − 3i)(2n − 3i) ≤ 2 (q − 2)
(2n − 3q)2 (4.31)

Taking the values of 4.29, 4.30, and 4.31 Theorem 4.8 is satisfied.
Preimage Security Analysis(ICM based). The preimage resistance of the (n,n) block-

cipher hash usually is bounded by O (2n) [61, 62, 63]. The probability of preimage hit

56

comes from the set size of 1/(2n − q) where the parameters are defined as (2n = domain size)
and (q = number of query) [25, 39]. If the number of query goes to the equal value of 2n,
the denominator will be 0 and result will be useless. The above problem is first addressed
by [58] in Asiacrypt 2011. Also authors of [58] provide a new technique for eliminating this
problem as well as better preimage security bound. We will follow the proof technique of
[58] for our scheme’s security proof and implement according to our scheme’s definition.
We assume that a A be the adversary that can ask a set of pair-query to the block-cipher
oracle. Initially, A picks the value of (x′, y′) randomly. The target of A is to find the
probability for any iteration (i ≤ q), where HFrS(x, y,m) = {(x′, y′)}.

Theorem 4.9. Let HFrS (FEFrS) be a double block length compression function and A
be an adversary to find a preimage hit under the HFrS after q queries. Then the advantage
of adversary A is bounded as:

Advpre

HFrS (q) ≤ 8(q − 2)2
/(2n − 3q)2 + 4q2

22n

Proof. According to the [58], we will take the concept of query classification. The
query classification is classified as super query and normal query [25, 58]. The normal
query is based on adaptive query, where non-adaptive method is true for super query
[25, 58]. At first, adversary A will ask to the oracle adaptively until the size of database
reaches into N/2. Then the rest of the queries provide to the adversary as free [25,
58], where database size will be N/2. In the later half, the query will be asked non-
adaptively. If the preimage hit occurs in the database of normal query, then it is defined
as NormalQueryWin otherwise it is called SuperQueryWin [25, 58]. Therefore, we need
to find out the probability of hitting for NormalQueryWin and SuperQueryWin.

Condition-1. For NormalQueryWin, the adversary A will ask to the oracle through
either forward or backward query. We assume that A makes a forward query. The result
will be come from the set size (N − 3i)/2 (due to three calls of blockcipher). Therefore,

the probability of the output (xi, yi∣ (i ≤ N/2)) will be 2 × 2/(N − 3i). Let Ev
pre(forward)
condition-1

be the event of preimage hitting. Hence, the probability of preimage hitting events are
Pr[Evpre(forward)

condtion-1] = Pr[Evpre
3,condtion-1 ∨Ev

pre
4,condtion-1 ∨ ∨Ev

pre
q,condtion-1].

=
q

∑
i=3

Pr[Evpre(forward)
i,condtion-1] =

q

∑
i=3

4

(2n − 3i) ≤ 4 (q − 2)
(2n − 3q) (4.32)

For any forward query (encryption), there is a chance to occur a preimgae hit under the

backward query (decryption). If Ev
pre(backward)
condition-1 be the event of preimage hit, then the

probability will be:

q

∑
i=3

Pr[Evpre(backward)
i,condtion-1] =

q

∑
i=3

2

(2n − 3i) ≤ 2 (q − 2)
(2n − 3q) (4.33)

From 4.32 and 4.33,

Pr [Condition-1] = 8(q − 2)2

(2n − 3q)2 (4.34)

Condition-2. For SuperQueryWin [25, 58], the adversary A will pick the value of
xi, yi non-adaptively from the super query database, where domain size is N/2. The sub
conditions of condition-2 are as follows for either forward or backward query:

HFrS (xi−1, yi−1) = (xi, yi) = (x′/y′) (4.35)

57

HFrS (xi−1, yi−1) = (xi, yi) = (y′/x′) (4.36)

We assume that Ev
pre(forward)
condition-2 be the event of preimage hit. Then the probability of preim-

age hitting events are Pr[Evpre(forward)
condtion-2] = Pr[Evpre

3,condtion-2∨Ev
pre
4,condtion-2∨. . . ∨Ev

pre
q,condtion-2].

=
q

∑
i=3

Pr[Evpre(forward)
i,condtion-2] =

q

∑
i=1

2

2n
≤ 2q

2n
(4.37)

The result of 4.36 is (as same explanation of 4.37):
q

∑
i=3

Pr[Evpre(backward)
i,condtion-2] =

q

∑
i=3

2

2n
≤ 2q

2n
(4.38)

Therefore, from 4.37 and 4.38,

Pr [Condition-2] = 4q2

22n
(4.39)

Finally, adding the values of 4.34 and 4.39, Theorem 4.9 is satisfied.

Collision Security Analysis (WCM based). The adversary A is allowed to make three
types of query under the WCM. These are defined as forward, backward and key-disclosure
query (E,E−1,Ek). The query is noted as Qi∣i < q and defined as Q ∈ (x, y,m). The
Q∣((Q ∈ Qi,Qi+1, . . , Qq) ∧ (1 < i ≤ q)) be the query database, where after each iteration
query has been stored.

Theorem 4.10. Let HFrS be a block-cipher based hash consists of a compression
function FEFrS (Definition 4.5 and Figure 4.10) and A be an adversary to find a collision
hit under the HNEW. After q queries, the advantage of adversary A is bounded as:

Advcoll
HFrS (q) ≤

3q2 − 12q

(2n − 3q)2

Proof. The adversary A can make forward, backward and key-disclosure query under
the WCM. In forward query, the adversary can ask for cipher-text through plain-text and
key. A backward query returns the plain-text and key-disclosure query is responsible for
the key. Under any j-th iteration, a query will be Qj ∈ {xj−1, yj−1,mj}. We assume there
is another iteration i∣ (j < i < q), where query looks Qi ∈ {xi−1, yi−1,mi}. For finding a
collision under Qj ∈ {xj−1, yj−1,mj} and Qi ∈ {xi−1, yi−1,mi} the probable conditions are:

HFrS (xj−1, yj−1,mj) =HFrS (xi−1, yi−1,mi)
∨HFrS (xj−1, yj−1,mj) = (x0, y0) ∣(xj−1, yj−1,mj) ≠ (xi−1, yi−1,mi)

(4.40)

forward query. Under the forward query, we assume that Evcoll
forward be the event for

finding a collision through HFrS (FEFrS). Our scheme needs three calls of block-cipher
per iteration by construction. According to 4.40, the collision probability for the event of
Evcoll

forward∣ (j < i) is:

Pr[Evcoll
forward] =

i

(2n − 3i)(2n − 3i) +
1

(2n − 3i)(2n − 3i)

58

If Evcoll
forward∣ (j < i) be the event for finding a collision under the FEFrS

for q pairs of queries.
Then the probability of collision events are Pr[Evcoll

forward] = Pr[Evcoll
3,forward∨Evcoll

4,forward∨. . . ∨
Evcoll

q,forward].

=

q

∑

i=3

Pr[Evcoll
i,forward] =

q

∑

i=3

i

(2n − 3i) (2n − 3i)
+

1

(2n − 3i) (2n − 3i)
≤

q2
− 4q + 3

(2n − 3q)2
(4.41)

backward query. According to the 4.40 and including similar explanation of the forward
query, the probability of backward query is:

=

q

∑

i=3

Pr[Evcoll
i,backward] =

q

∑

i=3

i

(2n − 3i) (2n − 3i)
+

1

(2n − 3i) (2n − 3i)
≤

q2
− 4q + 3

(2n − 3q)2
(4.42)

key-disclosure query. According to the 4.40 and including similar explanation of the
forward query, the probability of key-disclosure is:

=

q

∑

i=3

Pr[Evcoll
i,key−disclosure] =

q

∑

i=3

i

(2n − 3i) (2n − 3i)
+

1

(2n − 3i) (2n − 3i)
≤

q2
− 4q + 3

(2n − 3q)2
(4.43)

Adding the results of 4.41, 4.42 and 4.43, Theorem 4.10 is proved.

Preimage Security Analysis (WCM based). In preimage security analysis, adversary
A randomly selects (x′, y′) at the beginning point of query process. Therefore, adversary
looks for the query-input of x, y,m that can produce the output of HFrS (x, y,m) such
that HFrS (x, y,m) = (x′, y′)

Theorem 4.11. Let HFrS be a block-cipher based compression function and A be an
adversary to find a preimage hit under the HFrS (FEFrS) after q pairs of queries. Hence,
the advantage of A is bounded as:

Advpre

HFrS (q) ≤
2q − 4

(2n − 3q)2

Proof. Adversary A can make forward, backward or key-disclosure query for finding
the following condition:

HFrS (x, y,m) = (x′, y′) ,where (i < q) (4.44)

forward query. Under the forward query, we assume that Evpre
forward be the event for

finding a preimage hit through the HFrS (FEFrS). According to the 4.44, the preimage hit
probability is:

Pr[Evpre
forward] =

2

(2n − 3i)(2n − 3i)
If Evpre

forward∣ (i < q) be the event for finding a preimage hit through FEFrS
for q pairs of

queries. Then the probability of preimage hitting events are Pr[Evpre
forward] = Pr[Evpre

3,forward∨
Evpre

4,forward ∨ . . . ∨Ev
pre
q,forward].

=
q

∑
i=3

Pr[Evpre
i,forward] =

q

∑
i=3

2

(2n − 3i) (2n − 3i) ≤ 2q − 4

(2n − 3q)2 (4.45)

59

backward query. As same explanation of the forward query, the probability of backward
query is:

=
q

∑
i=3

Pr[Evpre
i,backward] =

q

∑
i=3

2

(2n − 3i) (2n − 3i) ≤ 2q − 4

(2n − 3q)2 (4.46)

key-disclosure query. The probability of the key-disclosure query is:

=
q

∑
i=3

Pr[Evpre
i,key-disclosure] =

q

∑
i=3

2

(2n − 3i) (2n − 3i) ≤ 2q − 4

(2n − 3q)2 (4.47)

Adding the results of 4.45, 4.46 and 4.47, Theorem 4.11 is satisfied.

60

Chapter 5

A Pair of Constructions of
Authenticated Encryption

An authentication encryption (AE) scheme satisfies to transfer an authenticated data
between two parties or more [1, 2, 3]. There are vast applications of the AE such as access
control, encryption, enhancing trust between multiple parties, and assure the originality of
a message [11, 12, 19, 20]. However, the main challenge of the AE is to maintain low-cost
features for it’s construction. Furthermore, there is another emerging issue of IoT in the
field of data and network communication [7, 82, 86, 87, 88]. The numbers of application of
the IoT are increasing expeditiously, where various kinds of device have been used such as
IoT-end device, constrained device, and RfID. Moreover, the main challenge of the IoT-
end devices, and resource constrained devices is to keep a certain level of security bound
including minimum cost. However, the IoT-end devices, resource constrained devices, and
RfID have lack of resources such as memory, power, and processors. Interestingly, the AE
can play a vital role between data acquisition (sensors, actuators) and data aggregation of
usual platform of the IoT. Thus, the construction of the AE should satisfies the properties
of low-cost, least resources and less operating-time. Though, there are many familiar
constructions of AE such as OTR, McOE, POE, OAE, APE, COPE, CLOC, and SILK
but most of the schemes depend on the features of nonce and associate data. In the
aspect of security, the usage of nonce and associated data are adequate. However, these
two features increase the overhead cost. Therefore, we propose a simple construction of
probabilistic-IV based AE (First Scheme: FS) where block-cipher compression function
is used as encryption function.

Security, privacy and data integrity are the critical issues in Big Data application of
IoT-enable environment and cloud-based services. There are many upcoming challenges to
establish secure computations for Big Data applications. Authenticated encryption (AE)
plays one of the core roles for Big Data’s confidentiality, integrity, real-time security,
authenticity [7, 12, 95]. There are many proposals in the research area of authenticated
encryption. Among those schemes, one of the prominent issues is security notion of nonce-
reuse in AE. Interestingly E.Fleischmann et.al. claimed that the scheme of McOE satisfies
the properties of nonce-reuse AE. However, the concept of nonce-reuse online AE is recon-
ciled later by V.T.Hoang et.al. in Crypto2015. Therefore, we consider the issue of nonce
respect and probabilistic-IV in authenticated encryption and propose two simple construc-
tions, which are efficient in certain contexts and suitable for IoT applications. Our first
scheme is based on probabilistic-IV. This scheme operates in serial. Hence, we notify this

61

scheme as Serial-AE also. In addition, it is expected to be a light solution due its weaker
security model. The first scheme (Serial-AE) needs n+n× fprng + 2 resources for encryp-
tion mode. Moreover, we provide three types (variant) of tag generation (authentication)
under the first scheme. The first variant needs (n − 1) + 1 calling of block-cipher and it
operates in semi-parallel. On the contrary, the second variant of tag generation is based
on serial operation and it needs (n + 1) + 3 calling of block-cipher to create tag. And
the third variant needs only two calls of block-cipher function. Our second scheme (SS)
is based on nonce respect AE and it operates in parallel mode. Therefore, we call this
scheme as Parallel-AE also. It only supports fixed size of associated data like n-bit in the
initialization phase. Under this context, it is suitable for IoT application. The second
scheme (Parallel-AE) needs of resources m + (m ×GF) + 2 for encryption. Moreover, we
provide two types of tag generation under the second scheme (Parallel-AE). The first
variant runs in semi-parallel. It needs (n − 1)+1 calling of function. The second variant is
based cryptographic compression function (3n→ 2n) -bit where n+2 encryption functions
are needed.

5.1 Probabilistic-IV based AE

The first scheme of AE is based on probabilistic-IV. It is secure under the weaker security
model. It runs in serial mode. Hence we call this scheme as Serial-AE also. In addition,
we provide three variants (types) of tag generation (authentication) under the scheme of
Serial-AE. These are named as Semi-Parallel Tag generation (Semi-Parallel-T.G), Serial
Tag generation (Serial-T.G), and Parallel Tag generation (Parallel-T.G). Hence, in com-
bine form these are Serial-AE: Semi-Parallel-T.G, Serial-AE: Serial-T.G, and Serial-AE:
Parallel-T.G. In principle, encryption mode is similar for all constructions. More clearly,
the scheme of Serial-AE consists the part of encryption and tag generation. And, we
provide three variants of tag generation under the scheme of Serial-AE, where encryption
part is fixed.

5.2 Preliminaries for Serial Authenticated Encryp-

tion

At first, we mention that we provide three variants of authentication or tag generation un-
der the scheme of Serial-AE where encryption part is unique. Under the scheme of Serial-
AE, M is defined as message set where mj

i ∈M such that (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈

{1,2} , i ≤ l. On the contrary, cipher-text (C) is noted as cji ∈ C such that (c1
1, c

2
1) , .., (c1

l , c
2
l)

where j ∈ {1,2} , i ≤ l. Moreover, T is defined as final Tag. We also define certain operators
such as ⊕: ex-or, and ●: inverse. We define block-cipher (E) in the scheme of Serial-AE
as Ek⊕a (b) → c. In principle, our assumption is c← Ek⊕a (b) ≠ c′ ← Ek⊕b (a). Moreover, we
define a PRNG function (F prng) in the encryption mode of the fist scheme. The operation
of F prng is to take n-bit string and return 2n-bit random string. In mathematically, we
can deduce like F prng (x) → y1, y2 where x, y1, y2 ∈ {0,1}n. In principle, the first scheme
operates in serial mode. Under the scheme of Serial-AE, n numbers of block-cipher plus
n×fprng functions plus 2 initialization block-ciphers are needed for encryption part. How-
ever, the cost of tag generation (authentication) under the scheme of Serial-AE is varied

62

because three types of authentication.

5.2.1 Proposed Scheme of Serial-AE: Semi-Parallel-T.G

The scheme of Serial-AE: Semi-Parallel-T.G is noted as AEFS
T.V 1 where FS: First Scheme,

T tag, V 1: First variant (Fig. 5.1). This scheme has three phases. The first phase (PH-1)
is responsible for initialization. The second phase is based on an encryption module of
e-AEFS

T.V 1. The task of this phase is to generate cipher-text and tag. Moreover, third phase
(PH-3) represents a decryption module (d-AEFS

T.V 1) of Serial-AE: Semi-Parallel-T.G. In
addition, the scheme of Serial-AE: Semi-Parallel-T.G follows serial operation but the au-
thentication mode is based on semi-parallel. Algorithm 4 is called as initialization or
Phase 1 (PH1). Encryption and decryption module are defined by algorithm 5 and 6.
Explanation of authentication Procedure of Semi-Parallel T.G There are list of:
(xi,1, xi,2, xi+1,1, xi+1,2,, xl,2, xl,1) ∈ x that are generated in encryption module of the
Serial-AE: Semi-Parallel-T.G (Fig. 5.2, Algorithm 5, 6). Then, we re-index x like
(x1, x2,, xl, xl+1, xl′) ∈ x. For example, we take x as (x1,1, x1,2, x2,1, x2,2,, x4,1, x4,2) ∈
x. Then, we re-index x like (x1, x2,x7, x8) ∈ x.
Explanation of “For Each Level do: xi ← Ek⊕x2i−1 (x2i) [for, i ∈ {1,2, .., ∣x∣/2}]” com-
mand (Algorithm 5, 6: Line 13):
We encrypt (x1, x2,, x7, x8) ∈ x pair by pair in each level (Fig. 5.1). In level 1, en-
crypt operation will perform like x1 ← Ek⊕x1 (x2) , x2 ← Ek⊕x3 (x4) , x3 ← Ek⊕x5 (x6) , x4 ←
Ek⊕x7 (x8). In level 2, operation is like x1 ← Ek⊕x1 (x2) , x2 ← Ek⊕x3 (x4). Finally, the
encryption is x1 ← Ek⊕x1 (x2) in level 3. This x1 is the final input of creating Tag (T).
For this, we encrypt x1 and c1

l ⊕ iv1
l , c

2
l ⊕ iv2

l as T ← Ek⊕c2
l
⊕iv2

l
(x1 ⊕ c1

l ⊕ iv1
l). Moreover, if

number of x is odd then the last xi=l is encrypted with x1 of top level. In principle, our
assumption is like c← Ek⊕a (b) ≠ c′ ← Ek⊕b (a).

T

2 2
l lc iv

level-1

level-2

level-3

level-4

5x 6x 7x 8x

1x 2x
3x 4x

1x
2x

1x

1x 2x
3x 4x

1 1
l lc iv

Figure 5.1: Explanation of Semi-Parallel-T.G

63

1
0iv

2
0iv

0,1a

0,2a

1
0iv

2
0iv

2
1c

1
1c1

1m

2
1m

1
1x1,1a

 prngF 

1 2 1 2 1 2
1 1 2 2

1 2 3 1 '

, , , ,....., ,

re-indexing of the above values like:

, , ,....., , ,

l l

l l l

x x x x x x x

x

x x x x x x x





1x 2x
3x 4x 5x 6x 7x 8x

1x 2x 3x 4x

1x 2x

1x

T

1
0c

1
0iv

2
0c

2
0iv

1,2a
2
1x

1
1

2
1

2
2c

1
2c1

2m

2
2m

1
2x2,1a

 prngF 

1
1c

1
1iv

2
1c

2
1iv

2,2a
2
2x

1
2

2
2

2
lc

1
lc1

lm

2
lm

1
lx,1la

 prngF 

1
1lc 

2
1lc 

,2la
2
lx

1
l

2
l prngF 

1
0c

2
0c

1 1
l lc iv

1
1liv 

2
2liv 

2 2
l lc iv

2
liv

1
liv

Figure 5.2: Proposed Scheme of Serial-AE: Semi-Parallel-T.G

Algorithm 4 Phase-1 (PH-1) for the Scheme of Serial-AE: Semi-Parallel-T.G

1: Initialization: iv′10, iv
′2
0

2: a0,1 ← Ek⊕iv′10 (iv
′2
0) , a0,2 ← Ek⊕iv′10 (iv

′
2

0)
3: iv1

0 ← a0,1 ⊕ iv′10, iv2
0 ← a0,2 ⊕ iv′10

4: c1
0, c

2
0 ← F prng (a0,1 ⊕ a0,2)

Algorithm 5 Encryption module for the Scheme of Serial-AE: Semi-Parallel-T.G

1: Call PH-1
2: Encrypt M
3: Partitioning: mj

i ∈M s. t. (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈ {1,2} , i ≤ l

4: for i = 1 to l do
5: µ1

i ← iv1
i−1 ⊕ c1

i−1, µ
2
i ← iv2

i−1 ⊕ c2
i−1

6: ai,1 ← Ek⊕µ1i (µ
2
i) , ai,2 ← Ek⊕µ1i (µ

2
i)

7: xi,1 ← ai,1 ⊕ µ1
i , xi,2 ← ai,2 ⊕ µ1

i

8: c1
i ← xi,1 ⊕m1

i , c
2
i ← xi,2 ⊕m2

i

9: iv1
i , iv

2
i ← F prng (xi,1 ⊕ xi,2)

10: end for
11: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l), x← (x1

1, x
2
1,, x

1
l , x

2
l)

12: re-indexing of x like (x1, x2,, xl, xl+1, xl′)
13: for Each Level do xi ← Ek⊕x2i−1 (x2i) [for, i ∈ {1,2, .., ∣x∣/2}]
14: end for
15: T ← Ek⊕c2

l
⊕iv2

l
(x1 ⊕ c1

l ⊕ iv1
l)

16: Return (C, T)

64

Algorithm 6 Decryption module for the Scheme of Serial-AE: Semi-Parallel-T.G

1: Call PH-1
2: Decrypt C
3: Partitioning: cji ∈ C s. t. (c1

1, c
2
1) , . , (c1

l , c
2
l) , where j ∈ {1,2} , i ≤ l

4: for i = 1 to l do
5: µ1

i ← iv1
i−1 ⊕ c1

i−1, µ
2
i ← iv2

i−1 ⊕ c2
i−1

6: ai,1 ← Ek⊕µ1i (µ
2
i) , ai,2 ← Ek⊕µ1i (µ

2
i)

7: xi,1 ← ai,1 ⊕ µ1
i , xi,2 ← ai,2 ⊕ µ1

i

8: m1
i ← xi,1 ⊕ c1

i , m
2
i ← xi,2 ⊕ c2

i

9: iv1
i , iv

2
i ← F prng (xi,1 ⊕ xi,2)

10: end for
11: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l), x← (x1

1, x
2
1,, x

1
l , x

2
l)

12: re-indexing of x like (x1, x2,, xl, xl+1, xl′)
13: for Each Level do xi ← Ek⊕x2i−1 (x2i) [for, i ∈ {1,2, .., ∣x∣/2}]
14: end for
15: T ← Ek⊕c2

l
⊕iv2

l
(x1 ⊕ c1

l ⊕ iv1
l)

16: If T is valid then return M or �

65

5.2.2 Proposed Scheme of Serial-AE: Serial-T.G

Under the scheme of Serial-AE, we have three types of tag generation. In this section, we
propose the second variant of tag generation including encryption under the scheme of
Serial-AE. The second variant of tag generation is based on serial operation and named
as Serial-T.G. Hence, the scheme of Serial-AE: Serial-T.G is noted as AEFS

T.V 2 where FS:
First Scheme, T : tag, V 2: Second variant (Fig. 5.3). This scheme has three phases.
The first phase is called from the algorithm 4. The two other phases are encryption and
decryption module. The encryption module of e-AEFS

T.V 2 generates cipher-text and tag.
Moreover, decryption module (d-AEFS

T.V 2) of the scheme of Serial-AE produces valid tag
or not. For the explanation of encryption and decryption module, algorithm 7 and 8 are
used. The variant of tag generation is based on 3n → 2n bit cryptographic block-cipher
compression function.

Under the encryption mode, our defined block-cipher E1,2 are operated like Ek⊕a (b) → c.
We assume that c ← Ek⊕a (b) ≠ c′ ← Ek⊕b (a). In addition, we use E block-cipher in
the authentication mode or tag generation. The operation of E is different from the
E . Actually, E works as Ek (b) → c. In final stage of tag generation, we use three
calls of block-cipher under W . We define the cryptographic compression function (W)
like γ1 ← Ek⊕β (VF), γ2 ← Ek⊕VF (ZF), and γ3 ← Ek⊕ZF

(β). Then, t1 ← γ1 ⊕ γ2 where
t2 ← γ2 ⊕ γ3.

K

K

1

2

1
0iv

2
0iv

,1ia

,2ia

1
0iv

2
0iv

K

K

2
ic

1
ic1

2

1
im

2
im

1
0iv

2
0iv

,1ix,1ia

,2ix,2ia

K

K

2
1ic 

1
1ic 

1

2

1
im

2
im

1,1ix 

1,1ia 

1,2ix 1,2ia 

K

K

2
lc

1
lc1

2

1
im

2
im

,1lx,1la

,2lx,2la

1,1liv 

1,2liv 

 prngF 

1
iiv

2
iiv  prngF 

1
1iiv 

2
1iiv 

1E
K K K

1
0IV

K

K

K

K 5

3

4



1 2 1 1 2
1 1 2 ... l l Fc c c c c V     

1t

2t

T
FZ

1E 1E 1E

2
1c1

1c 2
lc W

1
1

2
1

2
l

Figure 5.3: Proposed Scheme of Serial-AE: Serial-T.G

Phase-1 (PH-1) We run initialization and get iv′10 and iv′20. Then call two block-ciphers

and get a0,1 ← Ek⊕iv′10 (iv
′2
0) , a0,2 ← Ek⊕iv′10 (iv

′2
0). Finally, we get iv1

0 ← a0,1 ⊕ iv′10, iv2
0 ←

a0,2 ⊕ iv′10.

66

Algorithm 7 Encryption module: Serial-AE: Serial-T.G

1: Call PH-1 (Page 66)
2: Encrypt M
3: Partitioning: mj

i ∈M s. t. (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈ {1,2} , i ≤ l

4: for i = 1 to l do
5: ai,1 ← Ek⊕iv1i−1 (iv

2
i−1) , ai,2 ← Ek⊕iv1i−1 (iv

2
i−1)

6: xi,1 ← ai,1 ⊕ iv1
i−1, xi,2 ← ai,2 ⊕ iv1

i−1

7: iv1
i , iv

2
i ← F prng (xi,1 ⊕ xi,2)

8: c1
i ← xi,1 ⊕m1

i , c
2
i ← xi,2 ⊕m2

i

9: end for
10: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l)

11: β ← Ek (iv1
0)

12: for i = 1 to l do
13: for j = 1 to 2 do
14: αji ← β ⊕ cji
15: β ← Ek (β ⊕ cji)
16: end for
17: end for
18: VF ← (c1

1 ⊕ c2
1 ⊕ ⋅ ⋅ ⋅ ⊕ c1

l ⊕ c2
l ⊕ β)

19: ZF ← (iv1
0 ⊕ α1

1 ⊕ α2
1 ⊕ ⋅ ⋅ ⋅ ⊕ α1

l ⊕ α2
l ⊕ β)

20: γ1 ← Ek⊕β (VF) , γ2 ← Ek⊕VF (ZF) , γ3 ← Ek⊕ZF
(β)

21: t1 ← γ1 ⊕ γ2, t2 ← γ2 ⊕ γ3

22: T ← t1 ⊕ t2
23: Return C, T

67

Algorithm 8 Decryption module: Serial-AE: Serial-T.G

1: Call PH-1 (Page 66)
2: Decrypt C
3: Partitioning: cji ∈ C s. t. (c1

1, c
2
1) , . , (c1

l , c
2
l) , where j ∈ {1,2} , i ≤ l

4: for i = 1 to l do
5: ai,1 ← Ek⊕iv1i−1 (iv

2
i−1) , ai,2 ← Ek⊕iv1i−1 (iv

2
i−1)

6: xi,1 ← ai,1 ⊕ iv1
i−1, xi,2 ← ai,2 ⊕ iv1

i−1

7: iv1
i , iv

2
i ← F prng (xi,1 ⊕ xi,2)

8: m1
i ← xi,1 ⊕ c1

i , m
2
i ← xi,2 ⊕ c2

i

9: end for
10: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l)

11: β ← Ek (iv1
0)

12: for i = 1 to l do
13: for j = 1 to 2 do
14: αji ← β ⊕ cji
15: β ← Ek (β ⊕ cji)
16: end for
17: end for
18: VF ← (c1

1 ⊕ c2
1 ⊕ ⋅ ⋅ ⋅ ⊕ c1

l ⊕ c2
l ⊕ β)

19: ZF ← (iv1
0 ⊕ α1

1 ⊕ α2
1 ⊕ ⋅ ⋅ ⋅ ⊕ α1

l ⊕ α2
l ⊕ β)

20: γ1 ← Ek⊕β (VF) , γ2 ← Ek⊕VF (ZF) , γ3 ← Ek⊕ZF
(β)

21: t1 ← γ1 ⊕ γ2, t2 ← γ2 ⊕ γ3

22: T ← t1 ⊕ t2
23: If T is valid then return M or �

68

5.2.3 Proposed Scheme of Serial-AE: Parallel-T.G

In this section, we define the third variant of tag generation including encryption mode
under the scheme of Serial-AE. Our define tag generation is based on parallel mode. We
notify this as Parallel-T.G. Therefore, in combine we can call as Serial-AE: Parallel-T.G
(Figure 5.4). It has three phases. The first phase (Phase-1) is called as initialization.
In addition, algorithm 9 represents the first phase. Moreover, 10 and 11 represent the
encryption and decryption mode. Our define block-cipher E is worked as Ek⊕a (b) → c.
In principle, our assumption is c← Ek⊕a (b) ≠ c← Ek⊕b (a).

In the initialization phase, we use two calls of block-ciphers including a PRNG function.
The block-ciphers are used to build two secret values of c0,1 and c0,2. In addition, the
PRNG function is called to build two more secret values of iv1

0, iv
2
0 using the values of a0,1

and a0,2. In the encryption mode, we use cipher-text as feed forward in the next iteration.
Hence, every output of each iteration depends on the previously generated cipher-text.
In the tag generation, we xor the last output of iv1

l , iv
1
l with c1

l , c
1
l .

E

1
1m

1
1m

1
0iv

2
0iv

1,1a

1,2a

 prngF 

E

1
0c

2
0c

1
1c

2
1c

E

1
2m

2
2m

2
1iv

2,1a

2,2a

 prngF 

E

1
1c

2
1c

1
2c

2
2c

1
1iv1,1

1,2

2,1

2,2

E

1
lm

2
lm

2
1liv 

,1la

,2la

 prngF 

E

1
1lc 

2
1lc 

1
lc

2
lc

1
1liv  ,1l

,2l
2
1iv

1
1iv

2
2iv

1
2iv

2
liv

1
liv

1
0iv

2
0iv

0,1a

0,2a

1
0iv

2
0iv

E

E

E 1t

E

2
liv

1t


2t


2t

T

1
lc

 prngF 

1
0c

2
0c

2
lc

1
liv

Figure 5.4: Proposed Scheme of Serial-AE: Parallel-T.G

Algorithm 9 Phase-1 (PH-1) of Serial-AE: Parallel-T.G

1: Initialization: iv′10, iv
′2
0

2: a0,1 ← E
k⊕iv′

1
0
(iv′20) , a0,2 ← Ek⊕iv′10 (iv

′
2

0)
3: c1

0 ← a0,1 ⊕ iv′
1

0, c
2
0 ← a0,2 ⊕ iv′10

4: iv1
0, iv

2
0 ← F prng (a0,1 ⊕ a0,2)

69

Algorithm 10 Encryption module under Serial-AE: Parallel-T.G

1: Call PH-1
2: Encrypt M
3: Partitioning: mj

i ∈M s. t. (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈ {1,2} , i ≤ l

4: for i = 1 to l do
5: ρi,1 ← iv1

i−1 ⊕ c1
i−1, ρi,2 ← iv2

i−1 ⊕ c2
i−1

6: ai,1 ← Ek⊕ρi,1 (ρi,2) , ai,2 ← Ek⊕ρi,1 (ρi,2)
7: ivi,1, ivi,2 ← F prng (ai,1 ⊕ ai,2)
8: c1

i ← ai,1 ⊕m1
i , c

2
i ← ai,2 ⊕m2

i

9: end for
10: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l)

11: ρt1 ← iv1
l ⊕ c1

l , ρt2 ← iv2
l ⊕ c2

l

12: t1 ← Ek⊕ρt1 (ρt2) , t2 ← Ek⊕ρt1 (ρt2)
13: T ← t1 ⊕ t2
14: Return (C, T)

Algorithm 11 Decryption module under Serial-AE: Parallel-T.G

1: Call PH-1
2: Encrypt M
3: Partitioning: mj

i ∈M s. t. (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈ {1,2} , i ≤ l

4: for i = 1 to l do
5: ρi,1 ← iv1

i−1 ⊕ c1
i−1, ρi,2 ← iv2

i−1 ⊕ c2
i−1

6: ai,1 ← Ek⊕ρi,1 (ρi,2) , ai,2 ← Ek⊕ρi,1 (ρi,2)
7: ivi,1, ivi,2 ← F prng (ai,1 ⊕ ai,2)
8: m1

i ← ai,1 ⊕ c1
i , m

2
i ← ai,2 ⊕ c2

i

9: end for
10: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l)

11: ρt1 ← iv1
l ⊕ c1

l , ρt2 ← iv2
l ⊕ c2

l

12: t1 ← Ek⊕ρt1 (ρt2) , t2 ← Ek⊕ρt1 (ρt2)
13: T ← t1 ⊕ t2
14: If T is valid then return M or �

70

5.3 Security Proof Sketch: The scheme of Serial-AE

Under this section, we provide the basic security proof sketch of the Serial-AE. At first,
we provide privacy security proof sketch. The privacy security proof sketch is similar for
both three variants of authentication under the Serial-AE. Later, we provide authenticity
security proof sketch. However, it varies because of three different types of authentication.
In summary, the first variant of tag generation (Semi-Parallel-T.G) under the scheme of
Serial-AE can achieve birthday bound security margin because 2n → n-bit compression
function. In addition, it is expected upper authenticity security under the second variant
of tag generation (Serial-T.G) due to the property of 3n → 2n-bit cryptographic com-
pression function. The third variant (Parallel-T.G) is most efficient under the scheme of
Serial-AE. We provide the authenticity security proof of Semi-Parallel-T.G, and Parallel-
T.G. However, authenticity security proof of second variant (Serial-T.G) under the scheme
of Serial-AE is informal in this work.

5.3.1 Privacy Security: The Scheme of Serial-AE

Privacy security proof sketch of the scheme of Serial-AE is similar under the authentication
mode of Semi-Parallel-T.G, Serial-T.G, and Parallel-T.G. Because, the encryption mode
is similar for these three variants of authentication. However, the privacy security depends
on the random behaviour of encryption mode. We encrypt message pair by pair in every
iteration under the two calls of block-cipher. Hence, it depends on the behaviour of
random output properties of block-cipher. If output is random then the scheme of Serial-
AE satisfies the privacy security bound. On the contrary, the input characteristics of
block-cipher is also important. It should be random also. Actually, our proposed scheme
of Serial-AE is based on serial operation. Hence, it is infeasible to change the order of
input in the encryption module in respect of the adversary. In addition, we use PRNG
function in every iteration of encryption mode for generating fresh and unique input of
next cycle.

5.3.2 Authenticity Security: The Scheme of Serial-AE

In this section, we mention the security proof sketch of authenticity. Basically, two prop-
erties ensure the authenticity of any authenticated encryption. First one is the random
characteristics of input of any cryptographic compression function which is used in authen-
tication of AE. Secondly, the standard security notions (collision resistance and preimage
resistance) of cryptographic compression function that is used in authentication.

Semi-Parallel-T.G (First Variant of Authentication: The scheme of Serial-AE)

According to the construction of the scheme of Serial-AE: Semi-Parallel-T.G, we use
(n − 1) encryption to generate input for cryptographic compression function. Our process
is based on semi-parallel mode. In every level, we encrypt pair by pair (see 5.2.1). In
principle, we assume that c← Ek⊕a (b) ≠ c′ ← Ek⊕b (a). Hence, it is infeasible to change the
order of values in respect of adversary. Hence, our assumption is input of cryptographic
compression function is random. Our compression function is based on 2n → n-bit. In
addition, our cryptographic compression function is secure in respect of collision resistance

71

and preimage resistance. Therefore, it is expected to achieve birthday-bound authenticity
security margin for Semi-Parallel-T.G under the scheme of Serial-AE.

Serial-T.G (Second Variant of Authentication under the scheme of Serial-AE)

On the contrary, We use n + 1 block-cipher function under the second variant authenti-
cation (Serial-T.G) of the scheme of Serial-AE. In the aspect of adversary, it is infeasible
to change the order of input for cryptographic compression function because of serial op-
eration like CBC. Hence, the input of our define cryptographic compression is random.
Next, our cryptographic compression function is based on three calls of block-cipher and it
takes 3n-bit input. Under these circumstances, it produces 2n-bit output. If cryptographic
compression function satisfies the standard security notions like collision resistance, and
preimage resistance then it can be said that the scheme of authenticated encryption satis-
fies the authenticity security bound. In addition, it is expected to achieve upper integrity
margin because of 3n→ 2n-bit compression function.

Parallel-T.G (Third Variant of Authentication under the scheme of Serial-AE)

We use only 2 calls of block-cipher function in third variant of authentication (Parallel-T.G)
under the scheme of Serial-AE. In the aspect of adversary, it is infeasible to change the
order of input for cryptographic compression function because of serial operation like
CBC. Actually, we use each cipher-text value as a feed forward in the next iteration of
encryption mode. In addition, the output of each iteration generates the value of pair
iv using F prng function. Hence, each new value of iv depends on the value of previous
cipher-text. As a result, the input of our define cryptographic compression is random.
Next, our cryptographic compression function is based on two calls of block-cipher. If our
defined cryptographic compression function satisfies the standard security notions like
collision resistance, and preimage resistance then it can be said that the first scheme of
authenticated encryption satisfies the authenticity security bound.

72

5.4 Security Analysis of the scheme of Serial-AE

Privacy Security Notion of the scheme of Serial-AE. We assume adversary A is unique IV
based game and gets the access from E .AEFS

T (Encryption procedure of proposed scheme).
For example, adversary A asks to the real oracle (E .AEFS

T) and random oracle ($). Under
the real oracle, i-th query consists of unique IV , and plain-text (Mi). Furthermore, the
reply is (C,T) ← E .AEFS

T (IV,M). On the contrary, the adversarial query to random ora-

cle is IV,M , where the feedback is (C,T)←$ {(0,1)∣M ∣ × (0,1)∣2n∣}. Hence, the advantage

of the privacy security assumption for the adversary A is bounded as:

Advpriv

AEFS
T

(A) = Pr [AE.AEFS
T (.,.),ICM = 1] −Pr [A$(.,.),π,π−1 = 1] ,

where the initial probability comes from randomness of the key of the proposed scheme.
In addition, the later-one comes from the random oracle. Furthermore, adversary is not
allowed for duplicate query.

Integrity Security Notion of the Scheme of Serial-AE. The authenticity of the proposed
authentication scheme AEFS

T is defined as successful generation of a valid tag (IV ,C,T)
by the adversary A. However, A is allowed to ask query to the encryption E .AEFS

T and
decryption oracles D.AEFS

T . We assume that the following equations of 5.1 and 5.2 are
encryption and decryption queries. These queries are executed by the adversary A.

(IV1,M1) , ⋅⋅, (IV3,M3) , ⋅ ⋅ ⋅ ⋅, (IVqE ,MqE) (5.1)

(IV ′
1,C

′
1) , ⋅⋅, (IV ′

3,C
′
3) , ⋅ ⋅ ⋅⋅, (IV ′

qD ,C
′
qD) (5.2)

Therefore, the query contents of A are qE , qD. Let, there is an experiment EXPauth
sim , which

outputs 1 iff the adversary successfully forges. Hence, the mathematical notion of the
authenticity for the adversary A is:

Advauth
AEFS

T
(A) = Pr [EXPauth

FS (A) = 1] (5.3)

However, A forges and returns bit-string (IV ′
i,C ′

i, T ′
i) for decryption query under the

certain condition of (IV ′
i,C ′

i, T ′
i) ≠ (IVj,Cj, Tj)∣ 1 ≤ j ≤ qD.

5.4.1 Privacy Security Analysis: The Scheme of Serial-AE

Privacy security of the AEFS
T is defined as the probability of distinguish between cipher-

text and random string by adversary A, where A is based on unique IV and FS directs the
scheme of Serial-AE. We define certain simulators for finding the advantage of adversary
A. Initially, we find the probability of collision for each simulation based game. Then
we find the difference between two consecutive simulators. Finally, we take the union
bound of all the differentiate values. Generally, we follow the proof technique of [21,
47, 48]. In addition, we customized the privacy security proof technique according to
our construction’s definition, operation, and nature. Thereafter, we briefly presented the
privacy security proof of the proposed first construction in this subsection.

Theorem 5.1. Let AEFS
T be the proposed authenticated encryption (Serial-AE),

where n ≥ 1 and E .AEsim
T be encryption algorithm. An adversary A is allowed to access

73

random oracle (π/π−1). However, adversary A can query upto q. The advantage of A is
to distinguish E .AEFS

T from random oracle, that is noted as:

Advpriv

AEFS
T

(A) = Pr [AE.AEFS
T (.,.),ICM = 1] −Pr [A$(.,.),π/π−1 = 1] ≤ σ/2n−1 + σ2/22n + q/2n

keypoints: σ is the maximum number of queries including q and ideal permutation.
Proof. We use certain simulators for finding the advantage of adversary. In the

beginning, simulator S1 simulates the E .AEFS
T authenticated encryption under ideal ci-

pher model. Furthermore, the simulator S6 simulates the random oracle. The rest of the
simulators are S2, S3, S4, and S5. Adversary A tries to distinguish the consecutive sim-
ulators using COLL event. The advantage of distinguishing two consecutive simulators
is evaluated as the probability of the COLL event. Therefore, we get the advantage of
adversary A for finding the difference between AEFS

T and random oracle by adding the
probability of all the COLL events. Additionally, if collisions occur then new value will be
taken from uniform distribution of random oracle, Furthermore, K will be chosen in each
simulators from the block-cipher’s random key set. In addition, IV will be generated in
each iteration by F prng for randomness.

First Simulator (S1) . The proposed authenticated encryption scheme of E .AEFS
T is

simulated by S1. The queries of E .AEFS
T are executed under the ideal cipher oracle model

for each internal operation. Hence, the each output is random and unique, which is used
for next input. Therefore, the S1 and AEFS

T seems to be identical. Hence,

Pr [AS1 = 1] = Pr [AE.AEFS
T

ICM = 1] (5.4)

Second Simulator (S2) . Under the second simulator S2, the output of ICM simulate
the random permutation based input and output. However, the output of F prng is based
on random function, which can’t assure the uniqueness for each iteration. If any collision
occurs, then a collision event is defined. Therefore, the distinguish between these two
simulators is the probability of the COLL event.

Second Simulator  2

sim

: ,

: .AE

: ,
T

IV M

C T

Input

Operation

Output

def.if collision 

 ICMcreate database

Stores all the queries:

 excluding

 colliding queries

 including unique

 value after collision

:ask

new value
uniformly distributed

set of strings

from uniform

distribution

Figure 5.5: Simulator S2

Additionally, we define a database DBICM, which stores all the queries (Figure 5.5).
In addition, the queries are queried by σ times under the E .AEFS

T . Therefore,

Pr [AS2 = 1] −Pr [AS1 = 1] = Pr [COLL] ≤ σ/2n (5.5)

Third Simulator (S3) . The E .AEFS
T is being simulated by the simulator S3 and executes

query through random function. Moreover, S3 renew and synchronize the database of

74

DBICM from the last phase of oracle by deleting the collide values. Therefore, the S3 and
S2 are indistinguishable in the perspective of the adversary A.

Pr [AS2 = 1] = Pr [AS3 = 1] (5.6)

Fourth Simulator (S4) . Under this simulator we check the randomness of internal iter-
ation of the AEFS

T . There are two issues such as cipher-text and IV . These two should be
random and unique for each iteration of authenticated encryption. According to our first
construction (E .AEFS

T), the block-cipher output should be random and unique because
of PRP characteristic. The key is being chosen from the block-cipher BLOCK(N ,K).
Therefore, the vital fact is message (mi). Though, the adversary can control the message
(mi), but it can not control the value of xi,1 and xi,2 because of the block-cipher output
characteristics. Hence, the XOR of xi,1, xi,2 and m1

i , m
2
i produce the random cipher-text

(c1
i , c

2
i). The rest of the issue is unique IV . According to our construction, IV is gener-

ated from the output of the block-ciphers. We generate unique and random IV from the
function of F prng. However, collision can be occurred under the four scenarios such as:

� collision for output (internal) of block-cipher

� collision for output (external) of block-cipher

� collision for input of F prng

� key attack

Generally, the recovery system of each scenario is similar and simple. If collision occurs
under a scenario then unique and random value will be inherited from the uniformly
distributed set.

▷ Internal collision of block-cipher: Under this state, xi,1 can be collide with xi,2 under
any iteration of i. In that case, the event COLLinternal is called. Therefore,

Pr [COLLinternal] = Pr [COLL1 ∨ COLL2 ∨ ...COLLσ]
≤ Pr [COLL1] +Pr [COLL2] + ...Pr [COLLσ]
≤ σ ⋅ (1/2n)

(5.7)

▷ External collision of block-cipher: Under this state, xi,1, xi,2 and xj,1, xj,2 can be
collide for different two iterations of i, j where i < j. Therefore,

Pr [COLLexternal] = Pr [COLL1 ∨ COLL2 ∨ ... ∨ COLLσ]
≤ Pr [COLL1] +Pr [COLL2] + ... +Pr [COLLσ]
≤ σ (σ − 1)/(2n − 1)2

(5.8)

▷ collision for input of F prng: According to the construction of the proposed scheme,
the i-th iteration’s input of F prng depends on the i − 1-th output of F prng. Thus,
there is a chance to make a collision of i-th iteration’s input or i − 1-th iteration’s
output. Hence,

Pr [COLLF prng] = Pr [COLL1 ∨ COLL2 ∨ ... ∨ COLLσ]
≤ Pr [COLL1] +Pr [COLL1] + ...+Pr [COLLσ]
≤ σ/2n

(5.9)

75

▷ Key attack: Under this state, the key can be attacked, where the probability is:

Pr [key-attack] ≤ q/2n (5.10)

Therefore, we take the union bound of 5.7, 5.8, 5.9, 5.10. In addition, we stores all the
queries into DBπ/π−1 except the colliding queries.

Pr [AS4 = 1] −Pr [AS3 = 1] =
Pr [COLLinternal + COLLexternal + COLLFUiv + key-attack] ≤
Pr [COLLinternal] +Pr [COLLexternal] +Pr [COLLFUiv] +Pr [key-attack]

≤ σ/2n−1 + σ2/22n + 1/2n (5.11)

Fifth Simulator (S5) . The E .AEFS
T runs under the ideal cipher model. In addition, it

deletes the collide values under the last phase of oracle and takes the fresh and new value
from the set of strings of uniform distribution. Therefore, the simulator S5 and S4 are
indistinguishable in the aspect of adversary A.

Pr [AS5 = 1] = Pr [AS4 = 1] (5.12)

Sixth Simulator (S6) . In this module, we synchronize the database of DBICM across
the last phase of oracle for E .AEFS

T . In addition, the simulator S6 perfectly simulates the
random oracle. On the contrary, the simulator S5 inherits the proposed scheme E .AEFS

T

under the ideal cipher oracle model, where all current values are uniformly distributed.
Because, all the collide values are deleted already under the simulator 1 to 4. Thus, S6

and S5 are indistinguishable in favour of adversary A. Hence,

Pr [AS6 = 1] = Pr [AS5 = 1] = Pr [A$

π,π−1] (5.13)

Finally, Theorem 5.1 is satisfied under the union bound of 5.5, and 5.11.

5.4.2 Authenticity Security Analysis: Serial-AE: Semi-Parallel-
T.G

The authenticity of AEFS
T scheme is defined to successful inject of false data (IV ′

i′ ,C
′
i′) in-

stead of valid data (IVi,Ci) through an adversary and gets success for valid tag. The AEFS
T

has encryption and decryption oracle respectively E .AEFS
T and D.AEFS

T . Additionally, it
has access to the random oracle (π/π−1). We assume that encryption and decryption
queries look IV,M and IV,C,T . Therefore, the adversarial query contents are qE , qD.
Let, there is an experiment EXPauth

FS , which outputs 1 iff the adversary successfully forges
when (IV ′,C ′, T ′) ≠ (IV ′,C ′, T ′). Hence, the mathematical notion of the authenticity for
the adversary A is:

Advauth
AEFS

T
(A) = Pr [EXPauth

FS (A) = 1] (5.14)

Briefly, A forges and returns bit-string (IV ′
i,C ′

i, T ′
i) using encryption and decryption

query under the certain condition of (IV,C,T) ≠ (IV ′,C ′, T ′).
Theorem 5.2. Let AEFS

T be the proposed authenticated encryption, where E .AEFS
T

and D.AEFS
T be encryption and decryption algorithm respectively. The adversary A is

76

allowed to access the oracle of AEFS
T (E .AEFS

T , D.AEFS
T) and random oracle. The advantage

of A is noted as the success probability of injecting false data instead of valid data through
the defined experiment EXP. Hence, the advantage is bounded as:

Pr [Advauth
AEFS

T (E.AEFS
T ,D.AEFS

T),ICM
(A) = 1] ≤ Advpriv

AEFS
T

+ σ2/22n+q/2n

Proof. Let adversary A has access both the encryption and decryption oracle. Under
the decryption oracle, A is not allowed to make an encryption query if it is already
existed. The advantage of adversary is evaluated as the success probability of (IV,C,T) ≠
(IV ′,C ′, T ′), when it gets valid T . For simplicity, we assume two games of D.GAME-1
and D.GAME-2 for finding the authenticity advantage of adversary A. The first game
directs the collision of cipher-text and randomness of cipher-text (Fig. 5.6). The collision
of tag explains under the game of D.GAME-2.

T

2 2
l lc iv

level-1

level-2

level-3

level-4

5x 6x 7x 8x

1x 2x
3x 4x

1x
2x

1x

1x 2x
3x 4x

1 1
l lc iv

Figure 5.6: Tag Generation Process: Semi-Parallel-T.G under Serial-AE

D.GAME-1. At first, we explain the scenario of the authentication phase. The
tag T depends on the input that is generated in the top level of authentication pro-
cess (Fig. 5.5). If this input is random then the output T will be secure also. Un-
der these circumstances, we will explain form the bottom level of process of authen-
tication. The set of values (xi,1, xi,2, xi+1,1, xi+1,2,, xl,2, xl,1) ∈ x are generated in en-
cryption/decryption module of the first scheme (Fig. 5.2, Algorithm 8, 9). Then, we
re-indexing z like (x1, x2,, xl, xl+1, xl′) ∈ x. For tag generation, we will use these val-
ues. These values are random because of the random properties of block-cipher. We
process these values from the bottom of authentication process. We re-encrypt pair by
pair like a← Ek⊕x1 (x2), b← Ek⊕x3 (x4), c← Ek⊕x5 (x6),, L1← Ek⊕xl−1 (xl).

The first point is weather the value of a, b, c, . . . , L1 are random or not. According
to the property of block-cipher these values are random and unique. The second point is
if order of re-encrypt changes then is there any chances to create similar final input for the
tag generation. In this stage, we explain it. At first, we take the bottom level for example.
In the bottom level, re-encryptions are a ← Ek⊕x1 (x2), b ← Ek⊕x3 (x4), c ← Ek⊕x5 (x6), .
. . . ., L1 ← Ek⊕xl−1 (xl). Interestingly, ω ← Ek⊕x1 (x2) ≠ ω′ ← Ek⊕x2 (x1) is true under
the block-cipher property. Under these circumstances, our assumption is re-ordering is

77

also infeasible in respect of adversary. Adversary can only randomly assume the output
of each re-encryption. Third point is even the order of cipher-text is changed then similar
output can not be generated. Because by definition the building principle of x depends
on the previous values of cipher-text like is xji ← ai,j ⊕ µji where µ comes from the xor of
ivi−1 and last generated cipher-text ci−1.

So, we will find out the collision probability in every level under the first game. For ex-
ample, in the iteration of i and j: for each level, do xi ← Ek⊕x2i−1 (x2i) [for, i ∈ {1,2, .., ∣x∣ /2}]
and for each level, do xj ← Ek⊕x2j−1 (x2j) [for, j ∈ {1,2, .., ∣x∣ /2}] such that,

⎡⎢⎢⎢⎢⎢⎣

for each level,
do xi ← Ek⊕x2i−1 (x2i) ;
[for, i ∈ {1,2, .., ∣x∣ /2}]

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

for each level,
do xj ← Ek⊕x2j−1 (x2j) ;
[for, j ∈ {1,2, .., ∣x∣ /2}]

⎤⎥⎥⎥⎥⎥⎦
We define an event COLL to find out the probability of making collision under the iteration
of i and j. Hence, the probability of collision under the event COLL is:

Pr [COLLD.Game1] ≤
σ

∑
i=1

2 (i − 1)
(2n − i) ≤ σ (σ − 1)

(2n − σ)2 (5.15)

D.GAME-2. The generated tag can be collide under any iteration of decryption. We
assume the generated tag is T for the iteration i. Furthermore, T ′ is under i′-th iteration.
Thus, the collision probability is as follows:

Pr [COLLD.Game-2] ≤ q/2n (5.16)

Finally, Theorem 5.2 is satisfied under the union bound of 5.15, 5.16 including privacy
security advantage.

78

5.4.3 Authenticity Security Analysis: Serial-AE: Serial-T.G

In this section, we show the brief proof sketch of authenticity (Serial-T.G) under the
scheme of Serial-AE (Fig. 5.7). We make two sections here. In the first section, we re-
encrypt cipher-text for creating the input of tag generation. In the second section, we use
the last generated output as an input of cryptographic compression function and generates
the Tag. At first, we will show that the input of cryptographic compression function is
random. Furthermore, we will show that the cryptographic compression function of tag
generation satisfies the security notion of collision and preimage resistance.

1E
K K K

1
0IV

K

K

K

K 5

3

4



1 2 1 1 2
1 1 2 ... l l Fc c c c c V     

1t

2t

T
FZ

1E 1E 1E

2
1c1

1c 2
lc W

1
1

2
1

2
l

Figure 5.7: Second Variant Authentication under the First Scheme

Under the first section, there are input of β and ZF . These input are generated through
a series of re-encryption process. Let there are iteration of i, and s where β, are ZF are
defined as:

i = 1 to l
⎧⎪⎪⎪⎨⎪⎪⎪⎩

j = 1 to 2

{ αji ← β ⊕ cji ,
β ← Ek (β ⊕ cji)

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
x = 1 to i − 1
⎧⎪⎪⎪⎨⎪⎪⎪⎩

y = 1 to2

{ αyx ← β ⊕ cyx,
β ← Ek (β ⊕ cyx)

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Under this circumstance, the collision scenario for any two different i-th and j-th query
of β and ZF are:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i = 1 to l
⎧⎪⎪⎪⎨⎪⎪⎪⎩

j = 1 to 2

{ αji ← β ⊕ cji ,
β ← Ek (β ⊕ cji)

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x = 1 to i − 1
⎧⎪⎪⎪⎨⎪⎪⎪⎩

y = 1 to 2

{ αyx ← β ⊕ cyx,
β ← Ek (β ⊕ cyx)

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎦

We define an event COLL to find out the probability of making collision under the iteration
of i and x. Hence, the probability of collision under the event COLL is:

Pr [COLL] ≤
q

∑
i=1

2 (i − 1)
(2n − (2i − 2)) (2n − (2i − 1)) ≤ q2 − q

(2n − 2q)2

79

In addition, the third input is the xor of all cipher-text and β. Even adversary can change
the order of cipher-text but the value of β will be changed in that case. Hence, the third
input (VF) is also random. So, the collision probability for the third input is 1/2n. Under

these circumstances, total collision probability under the first section is q2−q

(2n−2q)2
+ 1

2n .

In the next phase, we will show that W is the secure cryptographic compression func-
tion under collision and preimage resistance. It actually works as one way hash, where
component functions are three block-ciphers. It takes 3n-bit input and generates 2n-bit
output. Now we will show that the input of cryptographic compression function or tag
generation produces random output. In addition, the output of cryptographic compres-
sion function satisfies the preimage and collision resistance security notions. According
to the construction of the second variant authentication of the first scheme, the preimage
resistance scenario is:
Let adversary A is allowed to randomly choose a pair of value such as u1 and u2. Hence, it
is needed to find out the collision probability ofW (φ) ← Ek⊕β (VF) ,Ek⊕VF (ZF) ,Ek⊕ZF

(β)
where φ ∋ β,VF , ZF and W is a cryptographic hash that is made by the component func-
tion of three calls of block-cipher.

Under these circumstances, u1, u2 be the two points where adversary tries to find
inversion. In addition, adversary is tried to find out β,VF , ZF such that F (β,VF , ZF) =
(u1, u2). Under the ideal cipher model, adaptive query is allowed until the domain size of
N/2. Then, the rest of the queries are given as free to the adversary, where adversary can
make query in non-adaptive fashion. Furthermore, the adjacent query triplet is defined
as (k ⊕ β,VF , γ1) , (k ⊕ VF , ZF , γ2) , (k ⊕ZF , β, γ3). Therefore, we need to find out the
probability of collision under the domain of adaptive query (NormalQueryWin) and non-
adaptive query (SuperQueryWin). Under the NormalQueryWin, the query of response of
(k ⊕ β,VF , γ1) query can come from the set size at most N/2 − 2. Hence, the probability
of collision is approximately 2/N . Because of adjacent query triplet the total probability
is 3 × 2/N . Therefore, the total probability under the NormalQuerywin is 6/N2. For the
SuperQueryWin probability is 6/N2. Hence, the total preimage security is bounded by
12/N2.

In the second section, we point out the collision resistance of the second variant
of authentication under the second scheme. Generally, collision resistance is defined
as to find x and x′ is infeasible such that F (x) = F (x′) when x ≠ x′. According
to the construction of the second variant of the first scheme, adversary tries to find
(k ⊕ β,VF) , (k ⊕ VF , ZF) , (k ⊕ZF , β) and (k ⊕ β′, V ′

F) , (k ⊕ V ′
F , Z

′
F) , (k ⊕Z ′

F , β
′) s. t.:

[E (k ⊕ β,VF) ,E (k ⊕ VF , ZF) ,
E (k ⊕ZF , β)

] = [E (k ⊕ β′, V ′
F) ,E (k ⊕ V ′

F , Z
′
F) ,

E (k ⊕Z ′
F , β

′)]

Under these conditions, the collision probability is Pr [COLL] ≤ q2−q

(2n−3q)2
. Hence, the

cryptographic compression function is secure under collision resistance.

80

5.4.4 Authenticity Security Analysis: Serial-AE: Parallel-T.G

We provide a brief proof sketch of authenticity of the scheme of Serial-AE: Parallel-T.G.
In our proof sketch, we make two categories. Under the first category, we show that the
input of tag generation process is random. In addition, we show that the module of tag
generation process satisfies collision and preimage resistance security bound.

Under the first category, at first we need to explain how the input of tag generation
is created. Actually, we use certain values that are generated in the encryption mode.
According to the Figure 5.4, we explain the following example. Let there are couple of
values iv1

i and iv2
i under iteration of i. Moreover, there are pair of created cipher-text like

c1
i and c2

i under this iteration of i. Interestingly, the values of iv1
i and iv2

i depend on the
previously generated cipher-text c1

i−1 and c2
i−1. In this way, we can find that the pair of

values iv1
l and iv2

l depend the previously generated cipher-text of c1
1, c

2
1, c

1
2, c

2
2, ..., c

1
l−1, c

2
l−1

due to block-cipher property and serial operation under encryption mode. Therefore, we
can claim that to change the order of cipher-text in respect of adversary is infeasible.
Hence, we use iv1

l and iv2
l values for creating tag.

Under the second category, we show how we create the tag generation module. We use
two calls of block-cipher. In addition, our tag generation module is based on block-cipher
cryptographic compression function. Hence, if our tag generation module is secure under
collision resistance and preimage resistance security bound then we can claim that our
proposed scheme (Serial-AE: Parallel-T.G) is secure for authentication also. Our define
block-cipher in the tag generation module is E. The working principle of E is Ek⊕a (b) → c.
In addition, our basic assumption is c ← Ek⊕a (b) ≠ c′ ← Ek⊕b (a). In the worst case, the
adversary can change the order of c1

l and c2
l . Because, iv1

l and iv2
l depend on the values

upto c1
l−1 and c2

l−1. Interestingly, iv1
l and iv2

l do not depend on the values of c1
l and c2

l . To
overcome this problem, we xor c1

l ⊕ iv1
l and c2

l ⊕ iv2
l . These xor values are used as input

of our tag generation module. Moreover, our define block-cipher E satisfy the property
of c ← Ek⊕a (b) ≠ c′ ← Ek⊕b (a). Under these circumstances, the final input of our tag
generation module are ρt1 ← c1

l ⊕ iv1
l and ρt2 ← c2

l ⊕ iv2
l . Hence, intermediate of tag t1 and

t2 are defined as t1 ← Ek⊕ρt1 (ρt2) and t2 ← Ek⊕ρt1 (ρt2). Therefore, adversary even change
the order of c1

l and c2
l but it can not produce similar intermediate tag.

81

5.5 Nonce Respect Authenticated Encryption

The second scheme is based on nonce respect and operates in parallel. Hence we call this
scheme as Parallel-AE. Under the scheme of Parallel-AE, we propose two different types of
tag generation (authentication) such as Semi-parallel tag generation (Semi-Parallel-T.G),
and Serial tag generation (Serial-T.G). Therefore, in combine these are as Parallel-AE:
Semi-Parallel-T.G, and Parallel-AE: Serial-T.G. It can support only fixed size of n-bit
associated data. Hence, it is suitable for IoT application in certain cases. The first type
of authentication or tag generation needs total (n − 1) + 1 calling function. In addition,
second variant is based on 3n→ 2n-bit compression function, where we use double keyed
function f and it needs total n + 2 encryption functions.

5.6 Preliminaries for the scheme of Parallel-AE

M is defined as message set where mj
i ∈ M such that (m1

1,m
2
1) , . , (m1

l ,m
2
l) , where j ∈

{1,2} , i ≤ l. In addition, C is defined as set of cipher-text where cji ∈ C such that
(c1

1, c
2
1) , . , (c1

l , c
2
l) , where j ∈ {1,2} , i ≤ l. Moreover, T is defined as final Tag. In our

proposal, we use function Fk. The operation like Fk is Fk ∶ c ← Fk⊕a (b). In addition, our
assumption is c← Fk⊕a (b) ≠ c′ ← Fk⊕b (a).

In our proposal, we use Galois field operation [19, 21, 47, 77]. An n-bit string X may
be viewed as an element of GF(2n) by taking X as a coefficient vector of a polynomial
in GF(2n). Following [19, 21, 47], we write 2X to denote the multiplication of 2 and
X over GF(2n), where 2 denotes the generator of the field GF(2n), by seeing 2 as x
in the polynomial representation. This operation is called doubling. Similarly we write
3X (where the corresponding polynomial is x + 1) and 22X to denote as 2X ⊕X. The
doubling can be efficiently computed by one-bit shift with conditional XOR of a constant,
and other constant multiplications can be done by combining doubling and XOR, as
shown above. Throughout the paper we assume n = 128 and the corresponding field
GF(2n) is defined over the polynomial x128 + x7 + x2 + x1 + 1, which is lexicographically-
first primitive polynomial and is quite popular for doubling-based tweaks [19, 21, 47, 77].
For example, we create δ in the Algorithm 1 of initialization phase. Hence, we define
LSHi (δ) = δ, LSHi+1 (δ) = 2δ, , and LSHl (δ) = 2l−1δ. Moreover, LSHi (δ′) = 3δ,
LSHi+1 (δ′) = 2 ⋅ 3δ, , and LSHl (δ′) = 2l−1 ⋅ 3δ.

5.6.1 Proposed Scheme of Parallel-AE: Semi-Parallel-T.G

In this section, we propose the first variant of tag generation under the second scheme of
Parallel-AE. This variant is based on Semi-Parallel mode. Hence tag generation process
is called as Semi-Parallel-T.G. In combine, the scheme is called as Parallel-AE: Semi-
Parallel-T.G. We represent this scheme as AESS

T.V 1 where SS: Second Scheme, T : tag, V 1:
First variant of authentication (Fig. 5.8). In addition, there are three phases under the
scheme of Parallel-AE: Semi-Parallel-T.G. The first phase (PH-1) is responsible for ini-
tialization. The second phase simulates encryption module of e-AESS

T.V 1 where cipher-text
and tag are generated. Furthermore, third phase (PH-3) represents a decryption module
(d-AESS

T.V 1) of the scheme of Parallel-AE: Semi-Parallel-T.G. For the explanation of all
phases, algorithm 12, 13 and 14 are used. In addition, we define keyed function Fk. Our
defined function is operated as Fk ∶ Fk⊕a (b) → c under the encryption mode. In principle,

82

our assumption is c← Fk⊕a (b) ≠ c′ ← Fk⊕b (a).
Explanation of Authentication Procedure of Semi-Parallel-T.G. There are list
of (z1

1 , z
2
1 , z

1
2 , z

2
2 ,, z

1
l , z

2
l) ∈ z that are generated in encryption module of the scheme of

Parallel-AE (Fig. 5.9, algorithm 13, 14). Then, we re-index z like (z1, z2,zl, zl+1, zl′) ∈
z. For example, we take z like (z1

1 , z
2
1 , z

1
2 , z

2
2 ,, z

1
4 , z

2
4) ∈ z. Then, we re-index z like

(z1, z2,z7, z8) ∈ z.
Explanation of “For Each Level do: zi ← Fk⊕z2i−1 (z2i) [for, i ∈ {1,2, .., ∣z∣/2}]” com-
mand (Algorithm 13, 14: Line 16):
We encrypt (z1, z2,, z7, z8) ∈ z pair by pair in each level (Fig. 5.8). In level-1, en-
crypt operation is performed like z1 ← Fk⊕z1 (z2) , z2 ← Fk⊕z3 (z4) , z3 ← Fk⊕z5 (z6) , z4 ←
Fk⊕z7 (z8). In level-2, operation is liked z1 ← Fk⊕z1 (z2) , z2 ← Fk⊕z3 (z4). In level-3, en-
cryption is z1 ← Fk⊕z1 (z2). This z1 is the final input of creating Tag (T). For this, we
encrypt z1 and secret value of δ ⊕ η as Fk⊕z1 (δ ⊕ η) → T . In principle, our assumption is
c← Fk⊕a (b) ≠ c′ ← Fk⊕b (a).

kF

T

 

kF

kF kF

kF kF kF kF
level-1

level-2

level-3

level-4

1z 2z 3z 4z 5z 6z 7z 8z

1z 2z 3z
4z

1z 2z

1z

Figure 5.8: Model of Semi-Parallel-T.G (authentication) under the scheme of Parallel-AE

Algorithm 12 Phase-1 (PH-1) of Parallel-AE: Semi-Parallel-T.G

1: Initialization: N0 and A0

2: δ ← Fk⊕N0
(A0) ⊕A0

3: η ← Fk⊕N0
(A0) ⊕A0

4: Return: δ, η

83

 iLSH 

 iLSH  

,1i ,2i

 1iLSH 

1,1i  1,2i 

0N

0A

 

0A

 lLSH 

,1l ,2l

kF

1
im 2

im

1
ic 2

ic

1
1im 

2
1im 

1
1ic 

2
1ic 

1
lm 2

lm

1
lc 2

lc

,1ix ,2ix 1,1ix  1,2ix 
,1lx ,2lx

kF
kF kF kF kF kF kF

1 2 1 2 1 2
1 1 2 2

1 2 3 1

, , , ,....., ,

Re indexing of the above like:

, , ,......, , ,..,

l l

l l l

z z z z z z z

z

z z z z z z z







kF

T

 

kF

kF kF

kF kF kF kF

1z 2z 3z 4z 5z 6z 7z 8z

1z 2z 3z
4z

1z 2z

1z

 

 

 ,

1 to

1 to 2
j j

i i j i

for i l

for j

z c

 
 

   
  

     

 1iLSH 
  lLSH  

Figure 5.9: Proposed Second Scheme of Parallel-AE: Semi-Parallel-T.G

Algorithm 13 Phase-2 (PH-2) Encryption of Parallel-AE: Semi-Parallel-T.G

1: Encrypt M and call PH-1
2: Partitioning: mj

i ∈M such that (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈ {1,2} , i ≤ l

3: for i = 1 to l do
4: xi,1 ← Fk⊕LSHi(δ′)

(LSHi (δ))
5: xi,2 ← Fk⊕LSHi(δ′) (LSHi (δ))
6: τi,1 ← xi,1 ⊕LSHi (δ) , τi,2 ← xi,2 ⊕LSHi (δ)
7: c1

i ← xi,1 ⊕m1
i , c

2
i ← xi,2 ⊕m2

i

8: end for
9: for i = 1 to l do
10: for j = 1 to 2 do
11: zji ← τi,j ⊕ cji
12: end for
13: end for
14: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l), z ← (z1

1 , z
2
1 ,, z

1
l , z

2
l)

15: re-indexing of z like (z1, z2,, zl, zl+1, zl′)
16: for Each Level do zi ← Fk⊕z2i−1 (z2i) [for, i ∈ {1,2, .., ∣z∣/2}]
17: end for
18: T ← Fk⊕z1 (δ ⊕ η)
19: Return (C, T)

84

Algorithm 14 Phase-2 (PH-2) Decryption of Parallel-AE: Semi-Parallel-T.G

1: Decrypt C and call PH-1
2: Partitioning: cji ∈ C such that (c1

1, c
2
1) , . , (c1

l , c
2
l) , where j ∈ {1,2} , i ≤ l

3: for i = 1 to l do
4: xi,1 ← Fk⊕LSHi(δ′)

(LSHi (δ))
5: xi,2 ← Fk⊕LSHi(δ′) (LSHi (δ))
6: τi,1 ← xi,1 ⊕LSHi (δ) , τi,2 ← xi,2 ⊕LSHi (δ)
7: m1

i ← xi,1 ⊕ c1
i , m

2
i ← xi,2 ⊕ c2

i

8: end for
9: for i = 1 to l do
10: for j = 1 to 2 do
11: zji ← τi,j ⊕ cji
12: end for
13: end for
14: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l), z ← (z1

1 , z
2
1 ,, z

1
l , z

2
l)

15: re-indexing of z like (z1, z2,, zl, zl+1, zl′)
16: for Each Level do zi ← Fk⊕z2i−1 (z2i) [for, i ∈ {1,2, .., ∣z∣/2}]
17: end for
18: T ← Fk⊕z1 (δ ⊕ η)
19: If T is valid then return M or �

85

5.6.2 Proposed Scheme of Parallel-AE: Serial-T.G

We propose second variant of tag generation in this section including encryption mode.
This tag generation is based on serial operation. Hence we call this as Serial-T.G. In com-
bine, this scheme is called as Parallel-AE: Serial-T.G. We represent this scheme as AESS

T.V 2

where SS: Second Scheme, T : tag, V 2: Second variant (Fig. 5.11). The initialization
phase is called from the algorithm 12. The encryption module e-AESS

T.V 2 and decryption
module (d-AESS

T.V 2) are followed by 15 and 16. The second variant authentication under
the second scheme of Parallel-AE is based on 3n → 2n-bit cryptographic compression
function. In this second variant of tag generation, we define a function f . This function
f is different from the function Fk. The property of f : It has double size of key like
2n-bit instead of n-bit. We actually, define this f as cryptographic compression function.
The operation of f is f ∶ ({0,1}n × {0,1}n) × {0,1}n → {0,1}n. More clearly, it works as
fa∣∣b (c) → d where k = a∣∣b. And our basic assumption is d← fa∣∣b (c) ≠ d′ ← fb∣∣a (c).

 iLSH 

 iLSH  

1
i

 1iLSH 

0N

0A

 

0A

 lLSH 

kF

1
im 2

im

1
ic 2

ic

1
1im 

2
1im 

1
1ic 

2
1ic 

1
lm 2

lm

1
lc 2

lc

,1ix ,2ix 1,1ix  1,2ix  ,1lx ,2lxkF
kF kF kF kF

kF kF

f

f

0

0

1
1c

2
1c

1 2
1 1  1

1

f

f

1

1

1
2c

2
2c

2

2

f

f

1l 

1l 

1
lc

2
lc

l

l

1 2
2 2  1 2

l l 
f

f
2t

0 0  T

1tl

l

 1iLSH 
  lLSH  

2
i

1
1i 

2
1i 

1
l

2
l

Figure 5.10: Proposed Scheme of Parallel-AE: Serial-T.G

86

Algorithm 15 Phase-2 (PH-2): Encryption mode of Parallel-AE: Serial-T.G

1: Encrypt M and call PH-1 (Algorithm15)
2: Partitioning: mj

i ∈M such that (m1
1,m

2
1) , . , (m1

l ,m
2
l) , where j ∈ {1,2} , i ≤ l

3: for i = 1 to l do
4: xi,1 ← Fk⊕LSHi(δ′)

(LSHi (δ))
5: xi,2 ← Fk⊕LSHi(δ′) (LSHi (δ))
6: τ 1

i ← xi,1 ⊕LSHi (δ) , τ 2
i ← xi,2 ⊕LSHi (δ)

7: c1
i ← xi,1 ⊕m1

i , c
2
i ← xi,2 ⊕m2

i

8: end for
9: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l)

10: τ ← (τ 1
1 , τ

2
1 , τ

1
2 , τ

2
2 , ..., τ

1
l , τ

2
l)

11: δ0 ← δ, η0 ← η
12: for i = 1 to l do
13: δi ← f

(ηi−1⊕c2i)∣∣(τ
1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i), ηi ← f

(ηi−1⊕c2i)∣∣(τ
1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i)

14: end for
15: t1 ← fηl∣∣(δ0⊕η0) (δl) , t2 ← fηl∣∣(δ0⊕η0) (δl)
16: T ← t1 ⊕ t2
17: Return (C, T)

Algorithm 16 Phase-3 (PH-3): Decryption mode of Parallel-AE: Serial-T.G

1: Decrypt C and call PH-1 (Algorithm15)
2: Partitioning: cji ∈ C such that (c1

1, c
2
1) , . , (c1

l , c
2
l) , where j ∈ {1,2} , i ≤ l

3: for i = 1 to l do
4: xi,1 ← Fk⊕LSHi(δ′)

(LSHi (δ))
5: xi,2 ← Fk⊕LSHi(δ′) (LSHi (δ))
6: τ 1

i ← xi,1 ⊕LSHi (δ) , τ 2
i ← xi,2 ⊕LSHi (δ)

7: m1
i ← xi,1 ⊕ c1

i , m
2
i ← xi,2 ⊕ c2

i

8: end for
9: C ← (c1

1, c
2
1, c

1
2, c

2
2, ..., c

1
l , c

2
l)

10: τ ← (τ 1
1 , τ

2
1 , τ

1
2 , τ

2
2 , ..., τ

1
l , τ

2
l)

11: δ0 ← δ, η0 ← η
12: for i = 1 to l do
13: δi ← f

(ηi−1⊕c2i)∣∣(τ
1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i), ηi ← f

(ηi−1⊕c2i)∣∣(τ
1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i)

14: end for
15: t1 ← fηl∣∣(δ0⊕η0) (δl) , t2 ← fηl∣∣(δ0⊕η0) (δl)
16: T ← t1 ⊕ t2
17: If T is valid then return M or �

87

5.7 Security Proof Sketch: The Scheme of Parallel-

AE

Under this section, we provide basic security proof sketch of the second scheme of Parallel-
AE. At first, we provide privacy security proof sketch. Actually, we provide three types tag
generation under this second scheme of Parallel-AE. But, the privacy security proof sketch
is similar for three types of authentication (T.G: tag generation) under the scheme of
Parallel-AE. Later, we provide authenticity security proof sketch for different three types
of authentication (tag generation). However, it varies because of three design variations.
In summary, the first variation of authentication (Semi-Parallel-T.G) under the scheme of
Parallel-AE can achieve birthday bound security margin because 2n→ n-bit compression
function. In addition, the second variant authentication (Parallel-T.G) has birthday
bound authenticity security margin. The third variant authentication (Serial-T.G) is
based on 3n → 2n-bit compression function. Hence, it is expected to achieve higher
authenticity security margin.

5.7.1 Privacy Security: The Scheme of Parallel-AE

Privacy security proof sketch of the scheme of Parallel-AE is similar under the first, second,
and third variant of authentication (Semi-Parallel-T.G, Parallel-T.G, and Serial-T.G).
Because, the encryption mode is unique for three variants authentication. However, the
privacy security depends on random behaviour of encryption mode. We encrypt message
pair by pair in every iteration under the two calls of keyed function. Hence, it depends
on the behaviour of random output properties of keyed function. If output is random
then the second scheme satisfies privacy security margin. On the contrary, the input
characteristics of PRF function is also important. It should be random also. Actually,
our proposed second scheme is based on parallel operation. We use GF operation in every
rotation of encryption for generating unique and fresh nonce values. Hence, it is difficult
to change the order of input in the encryption module in respect of the adversary. Under
these circumstances, it is expected to achieve birthday-bound privacy security margin
under the second scheme.

5.7.2 Authenticity Security: The Scheme of Parallel-AE

In this section, we mention the security proof sketch of authenticity. Basically, we assume
two properties ensure the authenticity of any authenticated encryption. First one is the
random characteristics of input of any cryptographic compression function for generat-
ing tag. And the second one is standard security notions of cryptographic compression
function such as collision resistance, and preimage resistance.

First Variation of Authentication: Semi-Parallel-T.G

According to the construction of the second scheme of Parallel-AE and the first variant
of tag generation (authentication), we use (n − 1) encryption for generating input of
cryptographic compression function. Our process is based on semi-parallel. In every level,
we encrypt pair by pair (see 5.6.1). In addition, our basic assumption is c ← Fk⊕a (b) ≠
c′ ← Fk⊕b (a). Hence, it is infeasible to change the order in respect of adversary. Therefore,

88

the input of cryptographic compression is random. Our compression function is based on
2n → n-bit. In addition, it satisfies collision and preimage resistance. Therefore, it is
expected to achieve birthday-bound authenticity security margin.

Second Variation of Authentication: Serial-T.G

According to the construction of the scheme of Parallel-AE and the second variant au-
thentication (Serial-T.G), we need total n+2 encryption call for generating tag. However,
the authentication process is serial. It is based on 3n → 2n-bit compression function. In
addition, the input of tag generation are satisfied random characteristic because of MD
fashion cryptographic compression function. Hence, it is expected to get better authen-
ticity security notion.

89

5.8 Security Analysis of the Scheme of Parallel-AE

5.8.1 Privacy Security Analysis: The Scheme of Parallel-AE

Privacy security of the proposed second scheme of Parallel-AE is defined as to distinguish
between the output of encryption module and the output of random oracle RO in respect
of adversary A. In addition, the characteristics of A are unique nonce and associated
data. Our security proof is based on multiple games, where first game runs the proposed
scheme and last game directs the random oracle. For example, adversary A is allowed to
ask (N1,m1) (Nl,ml).

Theorem 5.3. Let AESS
T be the proposed second authenticated encryption scheme

(Parallel-AE) where n ≥ 1. We assume there is an adversary A that is allowed to ask
proposed scheme oracle (based on ideal permutation). In addition, it is allowed to make
query on random oracle (RO). Furthermore, A can query at most q, where total number of
query is σ. Under these circumstances, the advantage of adversary is defined to distinguish
between E .AESS

T and RO. Therefore, the advantage is quantified as:

Advpriv

AESS
T

(A) ≤ σ (σ − 1)/22n + σ/2n + 3/2n

Proof. Our mentioned security proof is based on multiple games. In addition, it is
very simple and easy to understand. The first game is noted as game1. The task of this
game is to implement the proposed scheme. In this way, we define certain games for
different issues. Moreover, the last game is noted as game4. The purpose of this game
is to inherit the random oracle. We actually show the transition of game1 to game4.
Moreover, there are certain collision events of this transition process. The probability of
these collision events are defined as the advantage of an adversary. In addition, the fresh
values are selected from the set of uniform distribution (U , V , Y) if any collision occurs.

game1. This game invokes the proposed scheme AESS
T . In addition, it receives input

as N,M , where the output are C,T (under ideal permutation). Hence,

Pr [AAESS
T

π → 1] = Pr [Agame1 → 1] (5.17)

game2. This game is executed under random permutation. Hence, there are certain
chances to collide some values. Hence, the advantage of adversary is:

Pr [Agame2 → 1] −Pr [Agame1 → 1] ≤ σ/2n (5.18)

game3. According to our scheme’s construction, there is a chance to make collision
for different two iteration’s outputs. In addition, a pair of output is produced in each
iteration. Hence, there is another chance to collide within pair. Moreover, a collision
can be occurred under initialization values. Furthermore, a collision can be occurred
under tag generation. We assume an event HiT for making any collision. Hence, for
different two iterations the probability of collision is Pr [HiT] ≤ σ (σ − 1)/22n. Next, the
collision probability under single iteration is Pr [HiT] ≤ σ/2n. Furthermore, the collision
probability under initialization values is Pr [HiT] ≤ 2/2n. Additionally, Pr [HiT] ≤ 1/2n is
the collision probability value under the tag generation. However, if any collision occurs
then fresh values will be randomly chosen from the set of uniformly distributed strings
(U , V , Y). The union bound of all the collision events are defined as to distinguish between
game2 and game3.

90

game4. This game inherits the random oracle. Literally, the last game doesn’t contain
any collide events. In addition, all values are fresh and unique. Hence, the difference
between game3 and game4 is nominal. Fianally,

Pr [ARO → 1] = Pr [Agame3 → 1]

Therefore, Theorem 5.3 is satisfied by taking the union bound of the probability of
all collision events.

5.8.2 Authenticity Security Analysis: The Scheme of Parallel-
AE: Serial-T.G

In this section, we show an informal proof sketch of authenticity under the second scheme
of third variant authentication (Serial-T.G) (Fig. 5.12). We make two groups here. In
the first group, we process or re-encrypt cipher-text. In the second group, we use the
last encrypted value of the first group as input of tag generation. At first, we show that
the input of tag generation is random. Next, we show that the output of cryptographic
compression function or tag generation satisfies collision and preimage resistance.

f

f

0

0

1
1c

2
1c

1 2
1 1  1

1

f

f

1

1

1
2c

2
2c

2

2

f

f

1l 

1l 

1
lc

2
lc

l

l

1 2
2 2  1 2

l l 
f

f
2t

0 0  T

1tl

l

Figure 5.11: Tag Generation: Serial-T.G of the scheme of Parallel-AE

At first, under the first group for any iteration output is δi ← f
(ηi−1⊕c2i)∣∣(τ

1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i),

ηi ← f
(ηi−1⊕c2i)∣∣(τ

1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i). In addition, this operation mode of the first group is se-

rial. Hence, the last output of δl and ηl depend on the intermediate all state’s output
randomness. Due to the block-cipher property, all intermediate output are random also.
Under this circumstance, the collision scenario for any two different i-th and j-th query
of δl and ηl are:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

for (1 to l)
δi ← f

(ηi−1⊕c2i)∣∣(τ
1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i) ,

ηi ← f
(ηi−1⊕c2i)∣∣(τ

1
i ⊕τ

2
i)

(δi−1 ⊕ c1
i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

for (1 to l)
δj ← f

(ηj−1⊕c2j)∣∣(τ
1
j ⊕τ

2
j)

(δj−1 ⊕ c1
j) ,

ηj ← f
(ηj−1⊕c2j)∣∣(τ

1
j ⊕τ

2
j)

(δj−1 ⊕ c1
j)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

We define an event COLL to find out the probability of making collision under the
iteration of i and j. Hence, the probability of collision under the event COLL is:

Pr [COLL] ≤
q

∑
i=1

2 (i − 1)
(2n − (2i − 2)) (2n − (2i − 1)) ≤ q2 − q

(2n − 2q)2

91

Hence, we can claim that the last output or input of cryptographic compression func-
tion is random. Under this circumstance, next we will show that the input of cryptographic
compression function or tag generation produces random output. In addition, the output
of cryptographic compression function satisfies the preimage resistance security notions.
According to the construction of the third variant authentication of the second scheme,
the preimage resistance scenario is:
Let adversary A can arbitrary choose a pair of value such as z1 and z2. Hence, it
is needed to find out the collision probability of F (p1, p2, p3) = z1, z2. For example,
F (W) ← fηl∣∣(δ0⊕η0) (δl) , fηl∣∣(δ0⊕η0) (δl) where δl, ηl, (δ0 ⊕ η0) ∈W and F is a cryptographic

hash that is made by the component function of two calls of f . Under these circumstances,
z1, z2 be the two points where inversion is needed. That means, adversary is tried to find
out δl, ηl, (δ0 ⊕ η0) such that F (δl, ηl, (δ0 ⊕ η0)) = (z1, z2). For simplification, we write as
F (δ, η, (δ0 ⊕ η0)) = (z1, z2). Under the ideal cipher model, at first query is allowed in
adaptive fashion. When, the query response size becomes N/2 then the rest of the queries
are given to free. The later half will be queried in non-adaptive fashion. In addition,
adjacent query pair looks including response: (ηl∣∣ (δ0 ⊕ η0) , δl, t1) , (ηl∣∣ (δ0 ⊕ η0) , δl, t2).
Moreover, adversary gets success if the following condition is true:

t1, t2 = z1 and t1, t2 = z2

Therefore, we need to find out the probability of collision under the domain of adaptive
query (NormalQueryWin) and non-adaptive query (SuperQueryWin). Under the Nor-
malQueryWin, the query of response of (ηl∣∣ (δ0 ⊕ η0) , δl) query can come from the set
size at most N/2−2. Hence, the probability of collision is approximately 2/N . Because of
adjacent query the total probability is 2×2/N . On the contrary, there is a chance to get a
collision between (t1 = t2) = (z1, z2). The probability of this event is 2/N . Hence, the total
probability under the NormalQuerywin is 8/N2. For the SuperQueryWin probability is
8/N2 [25]. Hence, the total preimage security is bounded by 16/N2.

In this phase, we will show the security of collision resistance. Under the collision
resistance, it is hard to find x and x′ such that F (x) = F (x′) when x ≠ x′. According
to the construction of the third variant of the second scheme, adversary tries to find
(ηl∣∣ (δ0 ⊕ η0) , δl) , (ηl∣∣ (δ0 ⊕ η0) , δl) and (ηl′ ∣∣ (δ′0 ⊕ η′0) , δl′) , (ηl′ ∣∣ (δ0′ ⊕ η0′) , δl′) such that:

f (ηl∣∣ (δ0 ⊕ η0) , δl) , f (ηl∣∣ (δ0 ⊕ η0) , δl) = f (ηl′ ∣∣ (δ′0 ⊕ η′0) , δl′) , f (ηl′ ∣∣ (δ0′ ⊕ η0′) , δl′)

, when (ηl∣∣ (δ0 ⊕ η0) , δl) , (ηl∣∣ (δ0 ⊕ η0) , δl) ≠ (ηl′ ∣∣ (δ′0 ⊕ η′0) , δl′) , (ηl′ ∣∣ (δ0′ ⊕ η0′) , δl′). Un-

der these conditions, the collision probability is Pr [COLL] ≤ 3q2−q

(2n−2q)2
. Hence, the crypto-

graphic compression function is secure under collision resistance also.

92

5.9 Contribution Analysis (Current Result)
A cryptographic hash (CH) is an algorithm that invokes an arbitrary domain of the
message and returns fixed size of an output. It has enormous applications in the field
of cryptography. The construction of the CH depends on a compression function, where
the compression function is constructed through a scratch or block-cipher. In principle,
we try to use compression function as a building tool of authenticated encryption. In
addition, we show that the result of the proposed schemes are almost similar to other
prominent existing schemes in certain cases (Table 5.1). Moreover, both of the proposed
schemes do not support associated data in principle. Hence, we compare our schemes
in respect of encryption mode, authenticity mode, privacy security where we exclude the
issue of associated data.

Table 5.1: Comparison Study
S. N. O.M TCC r Privacy Sec.

COPA [77] Parallel a + 2m + 2 2 O(2n/2)
PoE [12]

Non-
Sequential

(m × 2HF)∗ +m - O(2n/2)
COBRA [92] Parallel (m +GF)∗ + 1 + 2 - O(2n/2)
McOE [11] Serial (m + 1)∗ 1 O(2n/2)
CLOC [43] Serial a + 2m + 1 2 O(2n/2)
SILC [46] Serial a + 2m + 3 2 O(2n/2)
OTR [47] Parallel (a +m)∗ 1 O(2n/2)
APE [78] Serial (a +m)∗ - O(2n/2)
ElmE [93] Parallel a + 2m + 1 2 O(2n/2)
First Scheme∗ (V 1) Serial (m × fprng) + 2m + 2 + fprng 2+c O(2n/2)
Second Scheme∗∗ (V 1) Parallel m + (m ×GF) + (m − 1) 2 O(2n/2)

1. S. N.: Scheme Name, O.M: Operational Mode, r: Efficiency-rate,
2. TTC: Total Cost Counting, c: Stands for PRNG cost
3. a, m, N : Number of Associated-data, Message, and Nonce,
4. HF : Universal hash function, GF : Finite Field Multiplication, ∗: May varies,
5. First Scheme∗ (V 1): Probabilistic-IV-based AE (Does not supprt Associated data)
6. Second Scheme∗∗ (V 1): Primarily Nonce respect AE (AD is fixed (n-bit only))

Next, we show that we have certain advantages under some contexts (Fig. 5.12). We
proposed three different types of authentication (T.G: tag generation) under the first
scheme of Serial-AE such as Semi-Parallel-T.G, Serial-T.G, and Parallel-T.G. The first
variant of tag generation (Semi-Parallel-T.G) needs less resources (Fig. 5.13). However,
the second variant of tag generation (Serial-T.G) needs more resources and it is based on
3n→ 2n-bit cryptographic compression function. Finally, the third variant (Parallel-T.G)
under the first scheme of Serial-AE needs two calls of block-cipher. The proposed second
construction of Parallel-AE has two variants of tag generation (authentication). The
first variant (Semi-Parallel-T.G) needs less resources and operates in semi-parallel. The
second variant of tag generation needs more resources and it (Serial-T.G) is based on
3n → 2n-bit compression function. This variant is our conceptual work where we expect

93

higher authenticity security margin can be achieved.
Figure 5.12 is created by the tag generation (authentication) analysis of the different

types of authenticated encryption constructions. For example, the scheme of authen-
ticated encryption OTR: It needs one call of block-cipher function for tag generation
including certain pre-computation cost of GF. Another example is CLOC: It needs n + 1
call of block-cipher function for creating Tag (authentication).

Cost for
Encryption Mode

Tag Generation (Authentication Mode)

Semi-Parallel-T.G Serial-T.G Parallel-T.G

Serial-AE

(Proposed First
Scheme: FS)

Operational Mode

Cost for Tag
Generation

Tag Generation (Authentication Mode)

CLOC Operational Mode Serial

Encryption Cost n+1

SILC Operational Mode Serial

Encryption Cost n+2

OTR Operational Mode Parallel

Encryption Cost 1 (may vary)

COBRA Operational Mode Parallel

Encryption Cost n+2 (may vary)

COPA Operational Mode Parallel

Encryption Cost n+2

prng

 Encryption +

2

n

n F 
 1 1n  

Semi-Parallel Serial Parallel

 1 3n   2

Cost for
Encryption Mode

Tag Generation (Authentication Mode)

Semi-Parallel-T.G Serial-T.G

Parallel-AE

(Proposed
Second

Scheme: SS)

Operational Mode

Cost for Tag
Generation

 Encryption +

Pre-computation

of GF + 2

n

 1 1n  

Semi-Parallel Serial

*2n 

 T.G

 T.G

 For T.G

 For T.G

*GF : It is already computed in encryption mode,n *2 : Key Size of function is Doublen 

Figure 5.12: Significance of the Proposed Schemes [43, 46, 47, 77, 92]: Note. Our
Proposed Schemes are not based on Associated-Data

We have two proposals of authenticated encryption such as Serial-AE (Based on
Probabilistic-IV) and Parallel-AE (Based on nonce-respect). The first scheme of Serial-
AE has three different types of tag generation (T.G) such as Semi-Parallel-T.G, Serial-
T.G, and Parallel-T.G. Moreover, the proposed second scheme of Parallel-AE places two
distinct types of tag generation or authentication. These are Semi-Parallel-T.G, and
Serial-T.G. We compare all these tag generation results with existing certain familiar
scheme’s tag generation outcomes. For example, the third variant of tag generation
(Parallel-T.G) of the first scheme (Serial-AE) need less resources for creating tag like
two calls of block-cipher. On the contrary, the proposal of the third variant of tag gen-
eration or authentication (Serial-T.G) of the second scheme (Parallel-AE) needs more
resources because of 3n → 2n-bit compression function. Interestingly, this proposal is an
important idea to get better authenticity security margin. However, we do not provide

94

formal security proof under this variant. But we show that the cryptographic compres-
sion function of Serial-T.G variant satisfies the collision and preimage resistance security
bound.

Future Target. Our next target is to provide rigorous authenticity security proof
for the second and third variant (Serial-T.G, Parallel-T.G) of the scheme of Serial-AE.
In addition, We will provide rigorous security proof of the second variant authenticity
(Serial-T.G) of the second scheme. However, the current results are based on theoreti-
cal analysis. Hence, our next target is to simulate these schemes and compare with the
existing schemes in respect of time complexity and hardware efficiency.

95

Chapter 6

Small and Variable Message
Encryption

In modern cryptography, message encryption is an important tool for providing data-
privacy and authenticity. In many applications, it is used such as password storage, data
integrity check, wireless network, automated teller machine card, and credit card. Usually,
the size of a message is arbitrary. In addition, many techniques and constructions are
available for the variable and fixed size of message encryption. Interestingly, we address
the issue of small domain message encryption (SDE). Generally, the existing constructions
are based on blockcipher such as AES/DES and scratch function. Hence, these solutions
are reasonable for the bigger size of data. However, these are heavy and expensive for the
small size of message encryption under the platform of Internet of Technology-end device
(IoT), and resource constrained devices. In addition, the size of plaintext and ciphertext
should be equal for satisfying the property of small domain encryption. Actually, J.Black
and P.Rogaway formally addressed the above issues for the first time. Following that
certain schemes have been launched under the SDE such as Mix-and-Cut shuffle, Swap-
or-Not, Thorp-Shuffle, and FNR. Moreover, Sometimes-Recursive shuffle (SRS) is the
pioneer construction yet in respect of low encryption time. However, it needs to execute
1000 calls of AES for achieving full security. Therefore, the construction of SRS is also
heavy and expensive for the IoT environment and resource constrained devices. Under
these circumstances, we propose a simple scheme that follows by Fiestel structure. The
internal format is based on small keyed-function. Our construction can encrypt small size
of a message. Furthermore, the size of plaintext and ciphertext are equal.

6.1 A Concept of Construction of Small Domain En-

cryption

Our proposed scheme is based on small keyed-function and noted as SETM where SETM
directs ”simple encryption for tiny message”. In addition, SETM can encrypt a small
domain of message. It follows the Feistel structure. Furthermore, we inspired to build
the SETM from the constructions of [30, 31, 36]. In addition, our construction is member
of a partial security margin group. Our proposed construction satisfies the following
objectives:

� It can encrypt small chunk of message

96

� It can encrypt arbitrary size message without padding

� It preserves the equal length of plain-text and cipher-text

� It is light due to use of small keyed-function

There are certain notations such as f : Small keyed function, tr: Truncation func-
tion, ∣∣: Concatenation, q: query, M,C: Message, Cipher-text, ⊞: XoR, A: Adversary,
k: Size of key, n: Size of message, ⊗: X-NoR operation, α: message size (∣ml∣ = α,α < n)
(arbitrary size message), and cend: cipher, cend←tr (cl,1 ⊕ cl,2) (arbitrary size message).
Furthermore, we assume X is a finite set of strings where x is uniformly distributed
as X←$x. Moreover, Y satisfies Y←$y for y. In our proposed scheme, two calls of keyed-
functions are used. Therefore, r = 2, where r directs the number of calling functions in each
iteration. However, the Feistel structure is not secure under r = 2 [96, 97]. Usually, it is
secure when it satisfies r > 2 [96, 97]. Under this circumstance, the value of r is variable in
our security proof for providing better security margin. We define a small keyed-function
as f ∶ K ×M →M where K means key space and M directs message space. In addition,
fk (⋅) = f (k, ⋅) is a permutation over M for every k ∈K. We assume there is an adversary
A that can access an encryption (Enc) oracle of the proposed scheme and an oracle of ran-
dom function (RO). The advantage of an adversary is defined to distinguish between the
output of random-oracle and the output of the proposed scheme. Moreover, the adversary

has access on ideal permutation ($). Hence, Advcca
f (A) = Pr [AEnc(⋅)

$
= 1]−Pr [ARO(⋅)

π = 1].
We assume adversary A has non-adaptive query feature. In addition, chosen plain-text
attack by any adversary is defined as each query runs under encryption query [ref]. Fur-
thermore, we define PRNG functions as fpr1 and fpr2 . The operation of PRNG functions
is fpr1,2→u,r{0,1}n, where u ∶ uniform r ∶ random.

6.2 Definition of the Proposed Scheme of SETM

In this section, we define the proposed scheme through Figure 6.1 and Definition 1.
We assume the proposed scheme is based on a small keyed function such as fk1,k21,2 ∶
{0,1}n → {0,1}n (e. g. n ∶ 8-bits). Our proposed scheme operates in Feistel structure
fashion through two calls of the function. We inspired to take the advantage of the Feistel
structure from [30, 31, 36]. Moreover, the proposed scheme encrypts small size of the mes-
sage without padding. In addition, the length of the input-message and output-ciphertext
are equal.

Definition 6.1. Let f ∶ {0,1}k × {0,1}n → {0,1}n be a small keyed-function where k
indicates the key length and n directs the blocklength. We use Feistel structure. Hence,
we need two keyed-functions. These two functions are named as fk11 and fk22 . These two

functions follow the function of f . Hence, fk1,k21,2 ∶ {0,1}k × {0,1}n → {0,1}n. In addition,
we use two more PRNG functions (fpr1 , fpr2). Under these circumstances, the output

97

(ci,1, ci,2) of the proposed scheme is defined as follows:

ci,1 ← zi,1
where, zi,1 ← wi,1 ⊗mi,1, wi,1 ← fpri,1 (yi,1) ,
yi,1 ← xi,1 ⊞mi,2, xi,1 ← f

ki,1
1 (ki,1,mi,2) ,

ci,2 ← zi,2
where, zi,2 ← wi,2 ⊗mi,2,
wi,2 ← fpri,2 (yi,2) , yi,2 ← xi,2 ⊞ τi,
xi,2 ← f

ki,2
2 (ki,2, τi) , τi ← zi,1 ⊞mi,1

Figure 6.1: Proposed Scheme of SETM

We describe the encryption process of the fixed-size message by algorithm 18. In
addition, algorithm 19 represents a decryption method of the fixed-size ciphertext. Fur-
thermore, algorithm 20 and 21 direct the encryption and decryption process for flexible
size of message/ciphertext respectively.

Figure 6.2: Encryption Process for the SETM

98

Algorithm 17 Process of Encryption-1
1: EncryptM
2: Partition ∶

mi,j,mi+1,j+1, ...,ml−1,j,ml,j+1 ∈M [i ≤ l, j = 1]
and ∀mi,j satisfies the property of ∣mi,j ∣ = ∣fki,1,ki,21,2 ∣

3: for i = 1 to l do
4: xi,1 ← f

ki,1
1 (ki,1,mi,2), yi,1 ← xi,1 ⊞mi,2

5: wi,1 ← fpri,1 (yi,1), zi,1 ← wi,1 ⊗mi,1

6: ci,1 ← zi,1
7: xi,2 ← f

ki,2
2 (ki,2, τi) , τi ← zi,1 ⊞mi,1

8: yi,2 ← xi,2 ⊞ τi, wi,2 ← fpri,2 (yi,2)
9: zi,2 ← wi,2 ⊗mi,2

10: ci,2 ← zi,2
11: end for
12: ci,1∣∣ci,2∣∣ ⋅ ⋅ ⋅ ∣∣ci,l → C
13: if ∣C ∣ = ∣M ∣ then
14: Return ∶ C
15: else
16: Return ∶ �
17: end if

Algorithm 18 Process of Decryption-1
1: DecryptC
2: Partition ∶

ci,j, ci+1,j+1, ..., cl−1,j, cl,j+1 ∈ C [i ≤ l, j = 1]
and ∀ci,j satisfies the property of ∣ci,j ∣ = ∣fki,1,ki,21,2 ∣

3: for i = 1 to l do
4: xi,1 ← f

ki,1
1 (ki,1, ci,2), yi,1 ← xi,1 ⊞ ci,2

5: wi,1 ← fpri,1 (yi,1), zi,1 ← wi,1 ⊗ ci,1
6: mi,1 ← zi,1
7: xi,2 ← f

ki,2
2 (ki,2, τi) , τi ← zi,1 ⊞ ci,1

8: yi,2 ← xi,2 ⊞ τi, wi,2 ← fpri,2 (yi,2)
9: zi,2 ← wi,2 ⊗ ci,2
10: mi,2 ← zi,2
11: end for
12: mi,1∣∣mi,2∣∣ ⋅ ⋅ ⋅ ∣∣mi,l →M
13: if ∣M ∣ = ∣C ∣ then, Return: M
14: else
15: Return: �
16: end if

6.3 Security Analysis of the SETM

We define a game (GE) that has two players such as Pl1 and Pl2. Moreover, there
is an adversary A under this game. In addition, Pl1 simulates the proposed scheme

99

Algorithm 19 Process of Encryption-2
1: EncryptM
2: Partition ∶

mi,j,mi+1,j+1, ...,ml−1,j,ml,j+1 ∈M [i ≤ l, j = 1]
3:

▷ Condition-1 ∶ ∣M ∣ ≥ l ∣mi,j ∣
⎡⎢⎢⎢⎢⎢⎣

∣mi,j ∣ = fki,1,ki,21,2

and l is the
number of partition

⎤⎥⎥⎥⎥⎥⎦

▷ Satisy the following Condition-2:

∣mi,j ∣ = ∣fki,1,ki,21,2 ∣ (where, i = l − 1)
and ∣mi,j ∣ < ∣fki,1,ki,21,2 ∣ (where, i = l)
and Let, ml,j = { }∣α∣ (where, α ≤ n)

4: for i = 1 to l − 1 do
5: xi,1 ← f

ki,1
1 (ki,1,mi,2), yi,1 ← xi,1 ⊞mi,2

6: wi,1 ← fpri,1 (yi,1), zi,1 ← wi,1 ⊗mi,1

7: ci,1 ← zi,1
8: xi,2 ← f

ki,2
2 (ki,2, τi) , τi ← zi,1 ⊞mi,1

9: yi,2 ← xi,2 ⊞ τi, wi,2 ← fpri,2 (yi,2)
10: zi,2 ← wi,2 ⊗mi,2

11: ci,2 ← zi,2
12: end for
13: for i = l do
14: partition ml,j ∶ {ml,1}∣⌊α/2⌋∣

and {ml,2}∣α−⌊α/2⌋∣

15: let ⌊α/2⌋ = θ,α − ⌊α/2⌋ = δ
16: g∣n−δ∣←tr(∣n∣→∣n−δ∣) {(cl−1,2)∣n∣}
17: xl,1 ← f

kl,1
1 (kl,1,{ml,2}∣δ∣∣∣g∣n−δ∣)

18: yl,1 ← xl,1 ⊞ {ml,2}∣δ∣
, wl,1 ← fprl,1 (yl,1)

19: zl,1 ← wl,1 ⊗ {ml,1}∣θ∣
, cl,1 ← zl,1

20: xl,2 ← f
kl,2
2 (kl,2, τl) , τl ← zl,1 ⊞ {ml,1}∣θ∣

21: yl,2 ← xl,2 ⊞ τl, wl,2 ← fprl,2 (yl,2)
22: zl,2 ← wl,2 ⊗ {ml,2}∣δ∣

, cl,2 ← zl,2
23: end for
24: G1 ← ([cl,1 ⊕ cl,2]∣n∣→tr{cend}∣α∣)
25: G2 ← ci,1∣∣ci,2∣∣ ⋅ ⋅ ⋅ ∣∣cl−1,1∣∣cl−1,2∣∣cend

26: C ← G2

27: if ∣C ∣ = ∣M ∣ then then return C else �
28: end if

(SETM-E (⋅) ,D (⋅)) and gives feedback to A. On the contrary, Pl2 mimics random-
oracle (RO) and returns corresponding input-output to the adversary. The advantage
of an adversary is defined as the success probability for distinguishing of the output
of two players. In addition, we assume that N = 2n and q ∈ (1, ...,N), where A can

100

Algorithm 20 Process of Decryption-2
1: DecryptC
2: Partition ∶

ci,j, ci+1,j+1, ..., cl−1,j, cl,j+1 ∈ C [i ≤ l, j = 1]
3:

▷ Condition-1 ∶ ∣C ∣ ≥ l ∣ci,j ∣
⎡⎢⎢⎢⎢⎢⎣

∣ci,j ∣ = fki,1,ki,21,2

and l is the
number of partition

⎤⎥⎥⎥⎥⎥⎦

▷ Satisy the Condition-2 as followed:

∣ci,j ∣ = ∣fki,1,ki,21,2 ∣ (where, i = l − 1)
and ∣ci,j ∣ < ∣fki,1,ki,21,2 ∣ (where, i = l)
and Let, cl,j = { }∣α∣ (where, α ≤ n)

4: for i = 1 to l − 1 do
5: xi,1 ← f

ki,1
1 (ki,1, ci,2), yi,1 ← xi,1 ⊞ ci,2

6: wi,1 ← fpri,1 (yi,1), zi,1 ← wi,1 ⊗ ci,1
7: mi,1 ← zi,1
8: xi,2 ← f

ki,2
2 (ki,2, τi) , τi ← zi,1 ⊞ ci,1

9: yi,2 ← xi,2 ⊞ τi, wi,2 ← fpri,2 (yi,2)
10: zi,2 ← wi,2 ⊗ ci,2
11: mi,2 ← zi,2
12: end for
13: for i = l do
14: partition cl,j ∶ {cl,1}∣⌊α/2⌋∣

and {cl,2}∣α−⌊α/2⌋∣

15: let ⌊α/2⌋ = θ,α − ⌊α/2⌋ = δ
16: g∣n−δ∣←tr(∣n∣→∣n−δ∣) {(ml−1,2)∣n∣}
17: xl,1 ← f

kl,1
1 (kl,1,{cl,2}∣δ∣∣∣g∣n−δ∣)

18: yl,1 ← xl,1 ⊞ {cl,2}∣δ∣
, wl,1 ← fprl,1 (yl,1)

19: zl,1 ← wl,1 ⊗ {cl,1}∣θ∣
, ml,1 ← zl,1

20: xl,2 ← f
kl,2
2 (kl,2, τl) , τl ← zl,1 ⊞ {cl,1}∣θ∣

21: yl,2 ← xl,2 ⊞ τl, wl,2 ← fprl,2 (yl,2)
22: zl,2 ← wl,2 ⊗ {cl,2}∣δ∣

, ml,2 ← zl,2
23: end for
24: G1 ← ([ml,1 ⊕ml,2]∣n∣→tr{mend}∣α∣)
25: G2 ←mi,1∣∣mi,2∣∣ ⋅ ⋅ ⋅ ∣∣ml−1,1∣∣ml−1,2∣∣mend

26: M ← G2

27: if ∣M ∣ = ∣C ∣ then then return M else �
28: end if

ask at most q queries. Therefore, the advantage of A is quantified as AdvSN
SETM(f) (A) =

Pr [ASETM-E(⋅),D(⋅)

$
→ 1]−Pr [ARO

π → 1]. Furthermore, we generalize the value of r (rounds)
for satisfying higher security under fk11 , fk32 , fk33 , ..., fkll → (fk1,k2,..,kr1,2,...,r) (where, 2 ≤ r ≤ l).

101

Theorem 6.1. Let N = 2n, q ∈ (1, ...,N) and r > 2. Furthermore, adversary A has
access to SETM-E (⋅) ,D (⋅) and RO through $ and π. Under these circumstances, the
advantage of A is to distinguish between SETM and RO. Hence, the advantage of A is
bounded as:

AdvSN
SETM(f) (A) = Pr [ASETM-E(⋅),D(⋅)

$
→ 1]−

Pr [ARO
π → 1] ≤ q

r+1
(4q

2n
)r + 3q

2nr

Proof. The security proof concept of the proposed construction is simple and easy. We
assume, adversary (A) has access to the proposed construction and random oracle. We
define a Stage-0 (ST0). Under this stage, player 1 (Pl1) simulates the proposed scheme.
In addition, there are two more stages such as Stage-1 (ST1) and Stage-2 (ST2), where
ST2 directs the random oracle. We will show the transition of ST0 to ST2. Furthermore,
there are certain collisions for transition of these stages. Actually, these collisions are
defined as cost to distinguish between the proposed scheme and random oracle. The
collision events will be removed from the query storage and new values will be injected
from the set of uniform distribution.

Stage-0 (ST0). There are two players of Pl1 and Pl2 under the game GE. However,
Pl1 is used for current stage only. Furthermore, Pl1 simulates the proposed construction
in this stage. In addition, Pl1 invokes the input of random key, message and the feedbacks
corresponding ciphertext and vice-versa to the adversary. The proposed construction’s
queries are based on random function. Therefore,

Pr [ASETM-E(⋅),D(⋅)

$
← 1] = Pr [AST0

π ← 1] (6.1)

Stage-1 (ST1). Under this stage, queries are executed through random function.
Hence, the output should be unique. The output of ST1 and ST0 are identical until
certain collisions are occurred. These collisions are based on some conditions such as a
pair of distinct query (PDQ), single query (SQ), and initialization query (IQ).

� PDQ. We assume that CPDQ be the event of finding a collision under ST1. Let the
output of iteration under i and j (i < j) are (ci,1, ci,2) and (cj,1, cj,2) respectively.
If CPDQ be the event of finding a collision pair under the ST1. Therefore, the
probability of collision (coll) is Pr [coll], where Pr [coll] = (4i/2n) Moreover, after r
rounds, Pr [CPDQ

l] = Pr [coll2 ∨ coll3 ∨ . . . ∨ collq] = ∑qi=2 (4i/2n)
r = q

r+1(4q/2n)
r
.

� SQ. We assume that CSQ be the event of finding a collision under this stage for
a single query. It is defined as there is a chance to collide between ci,1 and ci,2 for
any iteration of i. Hence we assume that the output of i-th iteration are ci,1 and
ci,2. If CSQ be the event of finding a collision pair under the ST1. Therefore, the
probability of collision (coll) is Pr [coll], where Pr [coll] = (1/2n) Furthermore, after
r rounds, Pr [CSQ

l] = Pr [coll1 ∨ coll2 ∨ . . . ∨ collq] = ∑qi=1 (1/2n)
r = 1

2nr (q).

� IQ. Generally, two chaining values are used in every iteration of the proposed
construction. For example, c0,1 c0,2 be initial values of the proposed scheme. Hence,
there is a chance of hitting a collision against these two values. The condition
of this collision occurrence is (ci,1 = (c0,1 or c0,2) ∨ ci,2 = (c0,1 or c0,2)). We assume
that CIQ be the event under this stage of the proposed scheme, where Pr[CIQ

l] =
Pr[coll1 ∨ coll2 ∨ coll3 ∨ ∨ collq] =

q

∑
i=0

(2
2n

)r ≤ 2q/2nr after r rounds.

102

The collide queries are removed from the query storage. In addition, fresh and unique
output is invoked from the uniform distribution of the set. Therefore the difference
between the ST0 and ST1 is defined as the probability of collision events such as

Pr [AST1
π ← 1] −Pr [AST0

π ← 1] ≤ q

r + 1
(4q

2n
)
r

+ 3q

2nr
(6.2)

Stage-2 (ST2). Under this stage, player 2 (Pl2) simulates the random oracle. Hence,
the output of ST2 and ST1 are identical in respect of the adversary. Therefore,

Pr [AST2
π ← 1] = Pr [AST1

π ← 1]

In addition, we call random oracle based simulation which is played by player 2 as well.
Therefore,

Pr [ARO
π ← 1] = Pr [AST2

π ← 1]
Finally, Theorem 6.1 is satisfied by taking the union bound 6.1 and 6.2.

103

Chapter 7

Conclusion and Future Works

In modern cryptography, Cryptographic compression function has enormous applications
such as password storage, data integrity check, and file identifier. Based on the exist-
ing schemes, we categorized cryptographic compression function into two fields such as
group of security bound and group of efficiency. Under the group of security bound, there
are bunch of schemes those are secure under ideal cipher model. However, ideal cipher
model needs strong assumption. Hence, it is far from the real world scenario. In addi-
tion, weak cipher model based proof technique satisfies less strict assumption. Therefore,
it is relatively close to the real world. Still, there are certain problems under the weak
cipher model. Hence, we proposed a new proof technique that needs less assumption than
that of the weak cipher model. Furthermore, we proposed an (n,2n) block-cipher based
compression function and proved that it is secure under respectively ideal cipher model,
weak cipher model, and extended weak cipher model. There is another tropical issue of
variable message encryption through cryptographic compression function. Most of the
existing schemes are based on block-cipher. Hence, the size of message also depends of
block-size. If message size does not fit with the block size then padding is necessary. How-
ever, padding itself has certain dis-advantages such as padding oracle attack. Therefore,
we proposed schemes of (n,n) block-cipher based compression function. Our proposed
schemes can encrypt variable size of message. Moreover, these proposed schemes satisfy
reasonable security bound. Under the (n,n) block-cipher compression function, there
are some prominent schemes such as MDC-2, MDC-4, MJH, and Bart-12. These exist-
ing schemes are secure under ideal cipher model and finite field multiplication model.
Therefore, we proposed an (n,n) block-cipher based compression function. This pro-
posed construction is secure under weak cipher model. Moreover, it satisfies upper bound
of collision and preimage security. Under the group of efficiency, the familiar schemes
have upper efficiency-rate. However, those schemes key scheduling are higher. Moreover,
number of calling block-ciphers are upper also. Therefore, we proposed an (n,2n) block-
cipher based cryptographic compression function for providing better efficiency-rate, less
key scheduling, and less call of block-ciphers.

In the next phase, we are focus for practical implementation of cryptographic com-
pression function. Cryptographic compression function can be a useful tool of creating
an application of authenticated encryption. Under the authenticated encryption, message
authentication and encryption are vital tool for assuring secure communication. Under
the authenticated encryption, many researches are running based on rigorous security
bound. On the contrary, to satisfy efficiency is one of the challenging tasks under the

104

platform of resource constrained device and IoT. Moreover, there are lots of researches
have been done on the issue of none-reuse and nonce-respect security notions for AE.
However, little works have been done on probabilistic-IV based authenticated encryption
which are secure under weaker security model. Interestingly, IV-based authenticated en-
cryption is expected to suitable under the resource constrained device because of weaker
security model. In addition, it satisfies reasonable security bound. Briefly studying the
schemes of authenticated encryption, we classify two groups. First one is probabilistic
IV-based authenticated encryption and second-one is nonce based authenticated encryp-
tion. In addition, we focus for efficiency-rate of AE. Furthermore, we address the issue of
number of calling block-ciphers/function for encrypting message under the AE. Moreover,
pointing out that the construction of AE is inverse freeness of block-cipher or not. Un-
der the IV-based authenticated encryption, we proposed scheme that satisfies reasonable
privacy security bound. In addition, it satisfies inverse free of block-cipher. Moreover,
our proposed construction efficiency-rate is 2. Furthermore, we use block-cipher based
compression function as encryption primitive for our IV-based authenticated encryption
scheme. On the contrary, our proposed nonce based authenticated encryption depends
on nonce-respect. We show our scheme needs less call of block-cipher/function in au-
thentication mode in certain case. In addition, efficiency-rate is 1. Moreover, it satisfies
satisfiable privacy security bound.

Small domain encryption (SDE) is one of the hot cryptographic topics. It has large
number of usage in the field of commercial arena. Most of the existing familiar construc-
tions of small domain encryption are based on block-cipher. Hence, the size of message
depends on block-cipher. In addition, there are two branches of SDE such as partial
security based SDE and full security based SDE. Under the full security based SDE, the
best security bounded scheme needs 1000 calls of AES. However, this phenomena is not
satisfying in respect of efficiency. We proposed a construction that is based on small
function such as 8, 16, or 20 bits.

Future Perspective in respect of Application. The cryptographic compression
function plays very vital role directly in the application field of cryptography. Hence, it
is also interesting to prove that the existing constructions are secure and efficient enough
under the IoT environment and big data platform. The most recent and upcoming chal-
lenges for authenticated encryption are enormous. It is very interesting to understand how
the AE co-ops with the technology of IoT. Moreover, it is quite interesting that AE ab-
sorbs under the big data application also. Moreover, our AE work in this domain is based
on theoretical approach. In addition, we provide informal security approach for achieving
upper authenticity security margin under certain variants of authentication. Under these
circumstances, we will provide formal rigorous security margin in the continuation of this
work. Furthermore, we will simulate the proposed AE schemes and compare with the
existing familiar schemes in respect of time complexity and hardware requirements. For
small domain encryption, our proposed scheme is based on small function. Hence, it needs
to implement in real life. In addition, to observe that the actual hardness of security and
efficiency.

105

Bibliography

[1] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin
, “Hash Functions and RFID Tags: Mind the Gap,” LNCS, CHES, vol. 5154, pp.
283-299, 2008.

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-
tography, 5th ed, CRC Press, 2001.

[3] W. Stallings, Data and Computer Communications, 10th Edition, Pearson, 2013.

[4] J. Shearer, P. Gutmann, Government, Cryptography, and the Right To Privacy, Jour-
nal of Universal Computer Science (J.UCS), Volume 2, No.3, 1996, p.113

[5] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Systems Technical
Journal, vol. 128-4, pp. 656-715, 1949.

[6] A. Riahi, E. Natalizio, Y. Challal, N. Mitton, A. Iera, “A systemic and cognitive
approach for IoT security”, IEEE explore, ICNC, pp. 183-188, 2014.

[7] H. Yoshida “On the standardization of cryptographic application techniques for
IoT devices in ITU techniques for IoT devices in ITU-T and ISO/IEC JTC 1
T and ISO/IEC JTC1, https://www.ietf.org/proceedings/94/slides/slides-94-saag-
2.pdf, 2015

[8] L. Zhang1, W. Wu, P. Wang, “Extended Models for Message Authentication,”
LNCS, ICISC, vol. 5461, pp. 286-301, 2008.

[9] P. Subpratatsavee, P. Kuacharoen, “Transaction Authentication Using HMAC-Based
One-Time Password and QR Code,” Computer Science and its Applications, vol. 330,
pp.93-98.

[10] Lorenz. M., “Authentication and Transaction Security in E-business ,” Springer, The
Future of Identity in the Information Society, vol. 262, pp. 175-197, 2008.

[11] E. Fleischmann, C. Forler, S. Lucks, “McOE: A Family of Almost Foolproof On-Line
Authenticated Encryption Schemes”, LNCS, FSE, Vol. 7549, pp. 196-215, 2012.

[12] F. Abed, S. Fluhrer, C. Forler, E. List, S. Lucks, D. McGrew, J. Wenzel, “Pipelineable
On-line Encryption”, LNCS, FSE, Vol. 8540, pp. 205-223, 2015.

[13] D. G. B. Lectures., A History of U.S. Communications Security, National Security
Agency (NSA), Volumes I, 1973, Volumes II 1981, partially released 2008, additional
portions declassified October 14, 2015

106

[14] Encryption: The Threat, Applications, and Potential Solutions, declassi-
fied FBI, NSA, and DOJ, https://ocw.mit.edu/courses/electrical-engineering-
and-computer-science/6-805-ethics-and-the-law-on-the-electronic-frontier-fall-
2005/readings/read tlp4/, 1993.

[15] M. Abomhara, G. M. Kien, “Security and privacy in the Internet of Things: Current
status and open issues, IEEE explore, PRIMS, pp. 1-8, 2014.

[16] H. K. Kim, T. H. Kim “Design on Mobile Secure Electronic Transaction Protocol
with Component Based Development,” LNCS, ICCSA, vol. 3043, pp. 461-470, 2004.

[17] L. C. Cao, “Improving Security of SET Protocol Based on ECC,” LNCS, WISM,
vol. 6987, pp. 234-241, 2011.

[18] G. Hanaoka, Y. Zheng, H. Imai, “LITESET: A light-weight secure electronic trans-
action protocol,” LNCS, Information Security and Privacy, vol. 1438, pp. 215-226,
2006.

[19] P. Rogaway, “Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC,LNCS, Asiacrypt, Vol. 3329, pp. 16-31, 2004.

[20] K. Yasuda, “A New Variant of PMAC: Beyond the Birthday Bound”, LNCS, Crypto,
Vol. 6841, pp. 596-609, 2011.

[21] Y. Naito, “Full PRF-Secure Message Authentication Code Based on Tweakable Block
Cipher”, LNCS, Provsec, Vol. 9451, pp. 167-182, 2015.

[22] M. Bellare, P. Rogaway, “The security of triple encryption and a framework for code-
based game-playing proofs,” LNCS, EUROCRYPT, vol. 4004, pp. 409-426, 2006.

[23] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu, “Cryptanalysis of the Hash Functions
MD4 and RIPEMD,” LNCS, EUROCRYPT, vol. 3494, pp. 1-18, 2005.

[24] X. Wang, X. Lai, X. Yu, “Finding Collisions in the Full SHA-1.,” CRYPTO, vol.
3621, 2005.

[25] E. Fleischmann, C. Forler, S. Lucks, J. Wenzel, “Weimar-DM: A Highly Secure
Double-Length Compression Function,” LNCS, ACISP, vol. 7372, pp. 152-165, 2012.

[26] O. Ozen, M. Stam, “Another Glance at Double-Length Hashing,” LNCS, Cryptog-
raphy and Coding, vol. 5291, pp. 176-201, 2009.

[27] X. Lai, X. Massey, L. J., “Hash function based on block ciphers,” LNCS, EURO-
CRYPT, vol. 658, pp. 55-70, 1993.

[28] J. Lee, D. Kwon, “The Security of Abreast-DM in the Ideal Cipher Model,” IEICE
Transactions, vol. 94-A(1), pp. 104-109, 2011.

[29] J. Lee, M. Stam, J. Steinberger, “The Collision Security of Tandem-DM in the Ideal
Cipher Model,” LNCS, CRYPTO, vol. 6841, pp. 561-577, 2011.

107

[30] E. Brier, T. Peyrin and J. Stern: “BPS: a Format-Preserving Encryp-
tion Proposal”, ”http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/bps/bps-spec.pdf”

[31] Black, J.A., Rogaway, P.: “Ciphers with Arbitrary Finite Domains., In: Preneel, B.
(ed.) CT-RSA, vol. 2271, pp. 114-130. Springer, 2002

[32] Morris, B., Rogaway, P., Stegers, T.: “How to Encipher Messages on a Small
Domain: Deterministic Encryption and the Thorp Shuffle, In: Halevi, S. (ed.)
CRYPTO, LNCS, vol. 5677, pp. 286-302. Springer, 2009

[33] Ristenpart, T., Yilek, S.: “The Mix-and-Cut Shuffle: Small-Domain Encryption Se-
cure against N Queries, In: Canetti, R., Garay, J.A. (eds.) CRYPTO, Part I. LNCS,
vol. 8042, pp. 392-409. Springer, 2013

[34] Hoang, V.T., Morris, B., Rogaway, P.: “An Enciphering Scheme Based on a Card
Shuffle, In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO, LNCS, vol. 7417, pp. 1-13.
Springer, 2012

[35] B. Morris and P. Rogaway: “Sometimes-Recurse Shuffle Almost-Random Permu-
tations in Logarithmic Expected Time,” LNCS, Eurocrypt, vol. 8441, pp 311-326,
2014.

[36] S. Dara and S. Fluhrer: “FNR: Arbitrary Length Small Domain Block Cipher
Proposal,” LNCS, SPACE, vol. 8804, pg. 146-154, 2014.

[37] J. Lee, K. Kapitanova, S. H. Son “The price of security in wireless sensor networks,”
ELSEVIER, Computer Network, vol. 54, no. 17, pp. 2967-2978, December 2010.

[38] J. Lee, M. Stam, “MJH: A Faster Alternative to MDC-2,” CT-RSA, vol. 6558, 213-
236, 2011.

[39] S. Hirose, “Some Plausible Constructions of Double-Block-Length Hash Functions,”
LNCS, FSE, vol. 4047, pp. 210-225, 2006.

[40] J. Y. Lee, Y. H. Huang, “A lightweight authentication protocol for Internet of
Things”, IEEE explore, ISNE, pp. 1-2, 2014.

[41] G. Kenneth, P. A. Yau, “Padding Oracle Attacks on the ISO CBC Mode Encryption
Standard,” LNCS, CT-RSA, vol. 2964, pages 305-323, 2004.

[42] V. T. Hoang, R. Reyhanitabar, P. Rogaway, V. Damian, “Online Authenticated-
Encryption and its Nonce-Reuse Misuse-Resistance,” LNCS, Crypto, vol. 9215, pp.
493-517, 2015.

[43] T. Iwata , K. Minematsu, J. Guo, S. Morioka, “CLOC: Authenticated Encryption for
Short Input,” LNCS, FSE, vol. 8540, pp. 149-167, 2015.

[44] D. Che, M. Safran, Z. Peng, “From Big Data to Big Data Mining: Challenges, Issues,
and Opportunities,” LNCS, DASFAA Workshops, vol. 7827, pp. 1-15, 2013

108

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf

[45] P. Rogaway , “Evaluation of Some Blockcipher Modes of Operation,”
http://web.cs.ucdavis.edu/ rogaway/papers/modes.pdf, 2011.

[46] T. Iwata , K. Minematsu, J. Guo, S. Morioka,
E. Kobayashi“SILC: SImple Lightweight CFB,” DIAC Competitions,
https://competitions.cr.yp.to/round2/silcv2.pdf.

[47] K. Minematsu, “Parallelizable Rate-1 Authenticated Encryption from Pseudorandom
Functions,” LNCS, Eurocrypt, vol. 8441, pp. 275-292, 2014.

[48] D. Chang, S. R. Manjunath, S. K. Sanadhya, “PPAE: Practical Parazoa Authen-
ticated Encryption Family,” LNCS, Provsec, vol. 9451, pp. 198-211, 2015.

[49] R. Mazumder, A. Miyaji and C. Su, “A Simple Authentication Encryption Scheme,”
Concurrency and Computation: Practice and Experience, Wiley Publishers, DOI:
10.1002/cpe.4058, pp. 1-10, 2016

[50] R. Mazumder, A. Miyaji, C. Su: “A Blockcipher based Authentication Encryption,”
4th International Cross-Domain Conference on Availability, Reliability and Security
in Information Systems (CD-ARES), LNCS, vol. 9817, pp.106-123, 2016

[51] R. Mazumder, A. Miyaji and C. Su, “A Simple Construction of Encryption for a Tiny
Domain Message,” 51st Annual Conference on Information Sciences and Systems
(CISS), IEEE, Accepted, pp , 2017

[52] R. Mazumder, A. Miyaji and C. Su, “Probably Secure Keyed-Function based Authen-
ticated Encryption Schemes for Big Data,” submitted to Special Issue in International
Journal of Foundation of Computer Science (February 2017), Accepted.

[53] A. Miyaji, R. Mazumder, “A new (n, 2n) Double Block Length Hash Function based
on Single Key Scheduling,” IEEE explore, AINA, pp. 564-570, 2015.

[54] R. Mazumder, A. Miyaji, “A New Scheme of Blockcipher Hash”, IEICE Transac-
tions, Vol. 99-D (4), 2016.

[55] A. Miyaji, R. Mazumder, T. Sawada“A New (n, n) Blockcipher Hash Function:
Apposite for Short Messages”, IEEE Explore, AsiaJCIS, pp. 56-63, 2014.

[56] R. Mazumder, A. Miyaji, “A Single Key Scheduling based Compression Function”,
LNCS, CRiSIS, pp. 207-222, vol. 9572, 2015.

[57] J. Chen, R. Mazumder, A. Miyaji and C. Su, “Variable message encryption through
blockcipher compression function,” Concurrency and Computation: Practice and
Experience, Wiley Publishers, DOI: 10.1002/cpe.3956, pp. 1-10, 2016

[58] F. Armknecht, E. Fleischmann, M. Krause, J. Lee, M. Stam, J. Steinberger, “The
Preimage Security of Double-Block-Length Compression Functions,” LNCS, ASI-
ACRYPT, vol. 7073, pp. 233-251, 2011.

[59] B. Mennink, “Optimal Collision Security in Double Block Length Hashing with Single
Length Key,” LNCS, ASIACRYPT, vol. 7658, pp. 526-543, 2012.

109

[60] J. A. Black, P. Rogaway, T. Shrimpton, “Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV,” LNCS, CRYPTO, vol. 2442, pp.
320-335, 2002.

[61] J. A. Black, P. Rogaway, T. Shrimpton, M. Stam, “An Analysis of the Block cipher-
Based Hash Functions from PGV,” LNCS, J.CRYPTOL, vol. 23, pp. 519-545, 2010.

[62] S. Hirose, H. Kuwakado., “Collision Resistance of Hash Functions in a Weak Ideal
Cipher Model,” IEICE Transactions, vol. 95 A(1), pp. 251-255, 2012.

[63] M. Liscov, “Constructing an ideal hash function from weak ideal compression func-
tion,” LNCS, SAC, vol. 4356, pp. 358-375, 2006.

[64] M. Nandi, W. Lee, K. Sakurai, S. Lee, “Security Analysis of a 2/3-Rate Double
Length Compression Function in the Black-Box Model,” LNCS, FSE, vol. 3557, pp.
243-254, 2005.

[65] J. Lee, S. Hong, J. Sung, H. Park, “A New Double-Block-Length Hash Function Using
Feistel Structure,” LNCS, ISA, vol. 5576, pp. 11-20, 2009.

[66] F. Abed, C. Forler, E. List, S. Lucks, J. Weznel “Counter-b DM: A Provably Secure
Family of Multi-Block-Length Compression Functions,” LNCS, vol. 8469, pp. 440-
458, 2014.

[67] D. Yevgeniy, P. Prashant, “On the Relation Between the Ideal Cipher and the
Random Oracle Models,” LNCS, Theory of Cryptography, vol. 3876, pp. 184-206,
2006.

[68] H. Kuwakado, S. Hirose, “Hashing Mode Using a Lightweight Blockcipher, LNCS,
Cryptography and Coding”, vol. 8308, pp. 213-231, 2013.

[69] L. R. Knudsen, F. Mendel, C. Rechberger, S. S. Thomsen, “Cryptanalysis of
MDC-2”, LNCS, Eurocrypt, Vol. 5479, pp. 106-120, 2009.

[70] E. Fleischmann, C. Forler, and S. Lucks “The Collision Security of MDC-4, LNCS,
Africacrypt, vol. 7374, pp. 252-269, 2012.

[71] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, “Internet of Things for
Smart Cities, IEEE Internet of Things Journal, volume-1, issue 1, pp. 22 - 32, 2014.

[72] L. D. Xu, W. He, S. Li, “Internet of Things in Industries: A Survey, IEEE
Transactions on Industrial Informatics, volume-10, issue 4, pp. 2233 - 2243, 2014.

[73] J. S. Coron, Y. Dodis, E. List, S. Lucks, J. Weznel, “Merkle-Damgard revisited:
How to construct a hash function,” LNCS, Crypto, vol. 3621, pp. 430-448, 2005.

[74] D. Joan, R. Vincent, “The Design of Rijndael, AES-The Advanced Encryption
Standard”, ISBN 978-3-662-04722-4, Springer Press, 2002.

[75] A. K. L. Yau, K. G. Paterson, C. J. Mitchell, “Padding Oracle Attacks on CBC-Mode
Encryption with Secret and Random IVs,” LNCS, FSE, vol. 3557, pp. 299-317, 2005.

110

[76] T. Lee, J. Kim, C. Lee, J. Sung, S. Lee, D. Hong, “Padding Oracle Attacks on
Multiple Modes of Operation,” LNCS, ICISC, vol. 3506, pages 343-351, 2004.

[77] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser, K. Yasuda,
“Parallelizable and Authenticated Online Ciphers”, LNCS, Asiacrypt, vol. 8269, pp.
424-443, 2013.

[78] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, K. Yasuda,
“APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography”,
LNCS, FSE, vol. 8540, pp. 168-186, 2014.

[79] J. W. Bos, O. Ozen, M. Stam, “Efficient Hashing Using the AES Instruction Set”,
LNCS, CHES, vol. 6917, pp. 507-522, 2011.

[80] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, H. Yoshida, “A
Lightweight 256-Bit Hash Function for Hardware and Low-End Devices: Lesamnta-
LW”, LNCS, ICISC, vol. 6829, pp. 151-168, 2010.

[81] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata
“The 128-bit Blockcipher CLEFIA”, IACR archive, Extended Abstract,
https://www.iacr.org/archive/fse2007/45930182/45930182.pdf

[82] L. Barreto, A. Celesti, M. Villari, M. Fazio, A. Puliafito, “An Authentication
Model for IoT Clouds”, IEEE explore, ASONAM, pp. 1032-1035, 2015.

[83] D. V. Bailey, J. Brainard, S. Rohde, C. Paar, “Wireless Authentication and
Transaction-Confirmation Token, Springer, ICETE, vol. CCIS 130, pp. 186-198,
2011.

[84] L. Atzori, A. Iera, G. Morabito, “The Internet of Things: A survey, ELSEVIER,
Computer Networks, vol. 54, issue. 15, pp. 27872805, 2010

[85] Z. Zhou1, K. F. Tsang, Z. Zhao, W. Gaalou, “Data intelligence on the Internet of
Things,” Springer, Pers Ubiquit Comput, DOI 10.1007/s00779-016-0912-1, 2016

[86] P. Coppola, V. D. Mea, L. D. Gaspero, R. Lomuscio, D. Mischis, S. Mizzaro, E. Nazzi,
I. Scagnetto, L. Vassena, “AI Techniques in a Context-Aware Ubiquitous Environ-
ment,” Springer, Computer Communications and Networks, pp 157-180, 2009.

[87] K. Zhao, L. Ge, “A Survey on the Internet of Things Security,” IEEE explore, 9th
CIS, 978-1-4799-2548-3, pp. 663-667, 2013.

[88] B. Mennink, “Embedded Security for Internet of Things ,” IEEE explore, 2nd
NCETACS,978-1-4244-9578-8, pp. 1-6, 2011.

[89] D. Burak “Parallelization of a Block Cipher Based on Chaotic Neural Networks”,
LNAI, ICAISC, pp. 192-201, 2015.

[90] L. Adrienne, World War I, Espionage Information: Encyclopedia of Espionage,
Intelligence, and Security, Advameg, Inc. Retrieved 2015.

111

[91] Cohen, Fred. A Short History of Cryptography., http://all.net/edu/curr/ip/Chap2-
1.html, 1995.

[92] E. Andreeva, A. Luykx, B. Mennink, K. Yasuda, “COBRA: A Parallelizable Authen-
ticated Online Cipher Without Block Cipher Inverse”, LNCS, FSE, vol. 8540, pp.
187-204, 2014.

[93] N. Datta, M. Nandi, “ELmE: A Misuse Resistant Parallel Authenticated Encryption”,
ACISP, LNCS, Volume: 8544, pp. 306-321, 2014.

[94] M. Bellare, P. Rogaway, and D. Wagner, “The EAX Mode of Operation”, LNCS,
FSE, vol. 3017, pp. 389-407, 2004.

[95] D. Gligoroski, H. Mihajloska, S. Samardjiska, H. Jacobsen, R. E. Jensen, and M.
El-Hadedy, “π Cipher: Authenticated Encryption for Big Data”, LNCS, NordSec,
vol. 8788, pp. 110-128, 2014.

[96] M. Naor, O. Reingold,On Construction of Pseudorandom Permutations: LubyRackoff
Revisited, J, CRYPTOLOGY, Vol.12, pg.29-66, 1999.

[97] Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-random
permutations, Eurocrypt, Vol.2656, pp.544-561, 2003.

112

Publications

LIST OF INTERNATIONAL JOURNALS

[1] R. Mazumder, A. Miyaji: “A New Scheme of Blockcipher Hash,” IEICE Trans.,
Information and Systems. Vol. E99-D, No.4, pp. 796-804 (2016).

[2] J. Chen, R. Mazumder, A. Miyaji and C. Su: “Variable Message Encryption through
Blockcipher Compression Function,” Concurrency and Computation: Practice and
Experience, Wiley Publishers, DOI: 10.1002/cpe.3956, Vol. 29, Issue. 7, pp. 1-10
(2016).

[3] R. Mazumder, A. Miyaji and C. Su: “Probably Secure Keyed-Function based Au-
thenticated Encryption Schemes for Big Data,” Submitted to Special Issue in Inter-
national Journal of Foundation of Computer Science, World Scientific Publishers,
(February 2017) [Accepted].

[4] R. Mazumder, A. Miyaji and C. Su: “A Simple Authentication Encryption Scheme,”
Concurrency and Computation: Practice and Experience, Wiley Publishers, DOI:
10.1002/cpe.4058, pp. 1-10 (2017).

LIST OF INTERNATIONAL CONFERENCES

[5] R. Mazumder, A. Miyaji: “A new (n, 2n) Double Block Length Hash Func-
tion based on Single Key Scheduling,” 29th IEEE International Conference on
Advanced Information Networking and Applications (AINA), IEEE, pp. 564-570
(2015). [Gwangju, South Korea]

[6] J. Chen, R. Mazumder, A. Miyaji: “A Single Key Scheduling Based Compression
Function,” 10th International Conference on Risks and Security of Internet and
Systems (CRiSIS), Lecture Notes in Computer Science, 9572, Springer-Verlag, pp.
207-222 (2015). [Lesvos Island, Greece]

[7] R. Mazumder, A. Miyaji, C. Su: “An Efficient Construction of a Compression
Function for Cryptographic Hash,” 4th International Cross-Domain Conference on
Availability, Reliability and Security in Information Systems (CD-ARES).,Lecture
Notes in Computer Science, 9817, Springer-Verlag, pp. 124-140 (2016). [Salzburg,
Austria]

[8] R. Mazumder, A. Miyaji and C. Su: “A Simple Construction of Encryption for
a Tiny Domain Message,” 51st Annual Conference on Information Sciences and

113

Systems (CISS), IEEE, DOI: 10.1109/CISS.2017.7926080, pp. 1-6, (2017). [John
Hopkins University, Baltimore, USA]

[9] R. Mazumder, A. Miyaji and C. Su: “A Re-visited Construction of Nonce and
Associated-data based Authenticated Encryption,” US-Japan Workshop on Col-
laborative Global Research on Applying Information Technology under 37th IEEE
International Conference on Distributed Computing Systems (ICDCS 2017), Ac-
cepted, (2017). [Atlanta, GA, USA]

114

	Abstract
	Acknowledgement
	Dedication
	Introduction
	Backgrounds
	Motivations
	Summary of Contributions
	Organization

	Preliminaries
	Encryption Modes
	Security of Encryption Modes

	Authenticity Modes
	Security Notion of Authentication

	Building Modes of Compression Function
	Security Notions of Compression Function

	Building modes of Small Domain Encryption
	Security Notions of SDE

	Existing Research Works
	Previous Works in Cryptographic Compression Function
	Previous Works in Authenticated Encryption
	Previous Works in Small Domain Encryption

	Some Probable Secure Constructions of Compression Function (CF)
	An Upper Bounded Secure Scheme of CF
	Proposed First Scheme of Compression Function (FS)

	A Pair of Constructions of Compression Function
	Proposed Second Scheme of Compression Function (SS)
	Proposed Third Scheme of Compression Function (TS)
	Efficiency Analysis Second and Third Scheme

	A Light Scheme of (n, n) block-cipher compression Function
	Proposed Fourth Scheme of Compression Function

	A Pair of Constructions of Authenticated Encryption
	Probabilistic-IV based AE
	Preliminaries for Serial Authenticated Encryption
	Proposed Scheme of Serial-AE: Semi-Parallel-T.G
	Proposed Scheme of Serial-AE: Serial-T.G
	Proposed Scheme of Serial-AE: Parallel-T.G

	Security Proof Sketch: The scheme of Serial-AE
	Privacy Security: The Scheme of Serial-AE
	Authenticity Security: The Scheme of Serial-AE

	Security Analysis of the scheme of Serial-AE
	Privacy Security Analysis: The Scheme of Serial-AE
	Authenticity Security Analysis: Serial-AE: Semi-Parallel-T.G
	Authenticity Security Analysis: Serial-AE: Serial-T.G
	Authenticity Security Analysis: Serial-AE: Parallel-T.G

	Nonce Respect Authenticated Encryption
	Preliminaries for the scheme of Parallel-AE
	Proposed Scheme of Parallel-AE: Semi-Parallel-T.G
	Proposed Scheme of Parallel-AE: Serial-T.G

	Security Proof Sketch: The Scheme of Parallel-AE
	Privacy Security: The Scheme of Parallel-AE
	Authenticity Security: The Scheme of Parallel-AE

	Security Analysis of the Scheme of Parallel-AE
	Privacy Security Analysis: The Scheme of Parallel-AE
	Authenticity Security Analysis: The Scheme of Parallel-AE: Serial-T.G

	Contribution Analysis (Current Result)

	Small and Variable Message Encryption
	A Concept of Construction of Small Domain Encryption
	Definition of the Proposed Scheme of SETM
	Security Analysis of the SETM

	Conclusion and Future Works
	References
	Publications

