JAIST Repository

https://dspace.jaist.ac.jp/

Title	第一原理電子状態計算による新奇硫化物熱電材料のマ テリアルデザインと電子輸送現象の研究
Author(s)	宮田,全展
Citation	
Issue Date	2017-09
Туре	Thesis or Dissertation
Text version	ETD
URL	http://hdl.handle.net/10119/14833
Rights	
Description	Supervisor:小矢野 幹夫,マテリアルサイエンス研究 科,博士

Japan Advanced Institute of Science and Technology

博士論文

第一原理電子状態計算による新奇硫化物熱電材料の

マテリアルデザインと電子輸送現象の研究

2017年4月

主指導教員	小矢野	幹夫	教授
副指導教員	下田	達也	教授
副テーマ指導教員	高村	由起子	准教授
審査委員主査	小矢野	幹夫	教授
審査委員	下田	達也	教授
審査委員	水田	博	教授
審査委員	水谷	五郎	教授
外部審査委員	尾崎	泰助	教授
外部審査委員	塩見	淳一郎	教授

北陸先端科学技術大学院大学 マテリアルサイエンス研究科

> 学籍番号 1540016 宮田 全展

Study of novel sulfide thermoelectric materials and electron transport phenomena using first-principles electronic structure calculation

Masanobu Miyata School of Material Science Japan Advanced Institute of Science and Technology

Industrial waste heat of 60% represents a huge unused but available energy resource worldwide. Notably, thermoelectric (TE) conversion, a technology of mutual conversion between thermal energy and electrical energy from the viewpoint of resolving waste heat recovery difficulties. For example, many tellurides such as Bi₂Te₃ or PbTe are well known as good TE materials for applications. They include tellurium, which is present in smaller amounts in the Earth's crust. In recent times, sulfides are attracting attention as alternatives to tellurides because sulfur is an abundant and cheap group 16 element.

The author has investigated the electronic and thermoelectric properties of high power factor sulfide Ni_{1-x}Co_xSbS (x = 0, 0.10, 0.20, and 0.40) experimentally and theoretically. For mother phase NiSbS shows a metallic conduction, however, the NiSbS shows large thermopower S of -27 μ VK⁻¹ at 300 K, indicating that the NiSbS is n-type TE material. The power factor $PF (= S^2 \cdot \rho^{-1})$ for NiSbS is extremely high, 1.9 mWK⁻²m⁻¹, at 300 K compared to that of high performance TE sulfide materials such as tetrahedrites or colusites. For the DFT calculation result, the chemical potential μ for NiSbS is located near the peak of PF, which results from the pseudo-gap electronic structure. High PF for NiSbS results from the pseudo-gap and the filling control of electron are effective to change TE properties.

The electronic and TE properties of V₄GeS₈ and the substitution system V_{4-x}Mn_xGeS₈ (x = 0.02, 0.05) was investigated experimentally and theoretically. For the mother phase V₄GeS₈, the electrical resistivity ρ decreases concomitantly with increasing temperature, and the estimated band gap E_g is 0.20(4) eV. The value S is 330 µVK⁻¹ at 300 K. The broad maximum of S is around 260 K. These results indicate V₄GeS₈ as a p-type narrow gap semiconductor. For density functional theory (DFT) calculation, the E_g is expanded from 30 to 165 meV under the rigid band approximation. The calculated S-T curve of V₄GeS₈ reproduces the experimental S-T of V₄GeS₈, which denotes that the V₄GeS₈ is a p-type narrow gap semiconductor experimentally and theoretically. The calculated ZT_{DFT} is enhanced by the hole doping of V₄GeS₈ at 340 K. For the Mn substitution V_{4-x}Mn_xGeS₈ (x = 0.02, 0.05), the S decrease, and the temperature of maximum S is shifted to higher temperature region with increasing x. The ZT enhances with increasing x. These results correspond with the calculated S-T and ZT_{DFT} of hole doped V₄GeS₈, denoting that the hole doping occurs by the substitution of V³⁺ to Mn²⁺.

The wide gap sulfide ZnCr₂S₄ and the substitution system Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.10, 0.25, 0.50, 0.75) was investigated experimentally and theoretically. The experimental ZnCr₂S₄ shows a non-conduction as an insulator, which is consistent with the DFT calculation result. For the Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.10, 0.25, 0.50, 0.75), the ρ of decreases with increasing temperature as a semiconductor behavior. The *S* shows a large negative value, indicating that these samples were a n-type TE materials. The absolute value of *S* and slope of *S* decreases with increasing *x*, denoting that the electron doping was occurred with the Ga substitution. The calculated *x* dependence of *ZT* for ZnCr₂S₄ shows that the $x \sim 0.2$ is suitable. According to this result, the author succeeded the enhancement of *ZT* for ZnCr₂S₄.

The author performed the electron transport calculation of 809 sulfides using OpenMX and BoltzTraP and handmade programs. The guideline of the material design for the high performance TE materials was established. The suitable condition of the high ZT materials is that thermopower S is between 140 and 170 μ VK⁻¹, or the Lorentz number L is 2.45 × 10⁻⁸ V²K⁻², or the B factor (= $\kappa_{el}/\kappa_{el} + \kappa_{lat}$) is 0.6. The suitable primitive cell volume is about 3000 bohr³.

Keywords: thermoelectric conversion, sulfides, first-principle calculation, electron transport calculation, 3d transition metal, high-throughput screening

目次

1章 序論	6
1.1 世界のエネルギー事情	6
1.2 熱電変換技術	7
1.3 硫化物熱電材料	8
2章 第一原理電子状態計算	11
2.1 密度汎関数理論	11
2.2 OpenMX	12
2.3BoltzTraP ^[16]	13
2.4 OpenMX と BoltzTraP をつなぐインターフェイスプログラムの開発	14
2.5 ボルツマン輸送方程式 ^[19,20]	15
2.6 ランダウアー理論 ^[21]	19
2.7 熱電材料のマテリアルデザインにおける先行研究	22
2.8 本研究の位置づけと目的	22
3 章 巨大な出力因子を示す 3d 遷移金属硫化物ウルマナイト NiSbS の電子輸送現象	23
3.1 ウルマナイト NiSbS の結晶構造	23
3.2 試料作製	23
3.3 粉末 X 線回折	25
3.4 熱電物性	28
PPMS-ACT による電気抵抗率 $ ho$ の温度依存性の測定	28
PPMS-TTO(Thermal Transport option)による定常熱流法を用いた2端子法測定	29
3.4.1 電気抵抗率 $ ho$	31
3.4.2 熱電能 S	32
3.4.3 出力因子 PF	33
3.4.4 熱伝導率	35
3.5 電子輸送計算	36
3.6 第一原理電子状態計算(E-k 関係と電子状態密度)	39
3.7 まとめ	40
4 章 狭ギャップ 3d 遷移金属硫化物 V4GeS8の熱電物性	41
4.1V4GeS8の結晶構造	41
4.2 E-k 関係·電子状態密度	42
4.3 試料作製	44
4.4 粉末 X 線回折	44

4.5.1 電気抵抗率 $ ho$	45
4.5.2 熱電能 S	48
4.5.3 熱伝導率κ	49
4.5.4 無次元性能指数 ZT の温度依存性	50
4.6 電子輸送計算	51
熱電能 S	51
電子の緩和時間 $ au_{el}$ の見積もり	53
4.7 まとめ	54
5章 ワイドギャップ硫化物スピネル $ZnCr_2S_4$ の電子輸送特性と元素置換効果	55
5.1 ZnCr ₂ S ₄ の結晶構造	55
5.2 試料作製	56
5.3 粉末 X 線回折	57
5.4 SEM-EDX	57
5.5 熱電物性	59
高温熱電物性測定装置 RZ2001i による熱電能 S と電気抵抗率 $ ho$ の測定	59
5.5.1 電気抵抗率 $ ho$	61
5.5.2 熱電能 S	63
5.5.3 熱伝導率κ	64
5.6 第一原理電子状態計算	65
5.6.1 E-k 関係	66
5.6.2 電子状態密度	68
5.7 電子輸送計算	71
5.8 まとめ	74
6章 809 種類の硫化物の電子輸送計算	75
6.1 OpenMX と BoltzTraP を用いた電子輸送計算の計算スキーム	75
6.2 電子輸送計算	77
6.3 評価関数	77
6.4 スクリーニングの妥当性	78
6.5 各電子輸送特性の相関	84
6.6 候補材料	118
$Al_{5-x}Zn_xCuS_8 \ (x = 0, 1)$	118
$Ga_{2-x}Zn_xSnS_5 \ (x = 0, \ 0.25)$	120
$MnPS_3$, $MnP_{0.5}Ge_{0.5}S_3$, $Mn_{0.5}Zn_{0.5}PS_3$	122
$Ti_2Cu_{1-x}Zr_xS_4$ (x = 0, 0.50)	125
ZrP_2S_6 , $Zr_{0.5}Ga_{0.5}P_2S_6$, $Zr_{0.5}P_{2.5}S_6$	127
$Cu_3P_{1-x}Si_xS_4 \ (x = 0, 0.5)$	130

結論	
参考文献	
≠ → → → → → → → → → → → → → → → → → → →	
Appendix	
スクリーニングで計算した硫化物のリスト	
MX TraP.sh	

1章 序論

1.1 世界のエネルギー事情

ー次産業におけるエネルギーの内,約66%が未利用排熱として無駄に捨てられている.その未 利用排熱の内,蒸気タービンを用いてエネルギー回収が困難な150℃以下の低温排熱が大きな 割合を占めており,低温排熱からエネルギーを回収する革新的なエネルギー回生技術の開発が 求められている.

Fig. 1 一次産業エネルギーの排熱の内訳^[1]

Fig. 2 未利用排熱の温度領域ごとの分布^[2]

1.2 熱電変換技術

熱電変換技術とは、電気エネルギーを熱エネルギーに変換するペルチェ効果を用いた精密温 度制御や冷却と、熱エネルギーを電気エネルギーに変換するゼーベック効果を用いた発電などを 指す.

ゼーベック効果は 1821 年に T.J. Seebeck によって発見され, ペルチェ効果は 1834 年に J.C.A. Peltier によって発見された[3]. ゼーベック効果の応用例として, 自動車などのエンジンや焼却炉 などの産業排熱から発電などが挙げられる. ペルチェ効果の応用例は, 無音の小型冷蔵庫など が挙げられる[4].

実際の応用には, Fig. 3 のように p 型熱電材料と n 型熱電材料を電極で接合した π 型素子を, 温度差方向に対して平行に並べたモジュールを用いる. この素子に直流電流を流すと, 接合部で 発熱と吸熱が生じる(ペルチェ効果, Fig. 3(b)). 一方, 素子の両端に温度差をつけると起電力を生 じる(ゼーベック効果, Fig. 3(a)).

この他にも、トムソン効果も熱電効果の一つである。トムソン効果は、場所によって温度の異なる一つの導体に電流を流したとき、導体内にモジュール熱以外の発熱または吸熱が発生する現象である。

Fig. 3 ゼーベック効果とペルチェ効果の概略図

1.3 硫化物熱電材料

熱電発電素子として応用され始めている代表的な熱電材料に Bi₂Te₃, PbTe があげられる. こ れらは,高い熱電変換性能を有するが,希少元素テルル Te を多く含有するため応用上問題とな っている.希少元素を含まない環境に環境調和型熱電材料の候補として,硫化物熱電材料があ げられる.硫化物熱電材料の主成分である硫黄 S は,元素周期表上で Te と同じ 16 族に属する ため性質が似ており,かつ地殻に豊富に存在するため安価である[5].近年,硫化物熱電材料は 精力的に研究が行われており,高い熱電性能を示す硫化物熱電材料がいくつか報告されている. [6]

Fig. 4 元素ごとの地殻埋蔵量

Fig. 5 硫化物熱電材料の無次元性能指数 ZT の温度依存性

近年,特に注目を集めている硫化物熱電材料としてテトラヘドライト Cu₁₂Sb₄S₁₃[7]やコルーサイト Cu₂₆V₂M₆S₃₂ (*M* = Sn, Ge)[8]がある.

これらは硫化物熱電材料の中で最高の性能を示す物質群であるが,その材料設計指針は実験による経験則に基づくものであった.具体的には

- 高い結晶対称性を有するため化学ポテンシャル µ 近傍のバンドの縮重度が高くなり、出力 因子が増強される
- ② 単位胞中に含まれる原子数が多いため、全フォノンモード数に対して光学フォノンモードの 割合が増え、フォノンの平均群速度が低減することから低い熱伝導率を示す
- ③ 3d 遷移金属の 3d 軌道と硫黄 S の 3p 軌道の混成軌道から成る鋭い状態密度が生じること によって出力因子が向上する

である. どれも基本的な固体物性の知識から得られる単純な材料設計指針ではあるが, これらに 基づいて創製されたテトラヘドライトやコルーサイトは ZT で1に近い性能を示すという実績がある. しかし応用の観点からすると, さらなる高性能硫化物熱電材料の創製を行うためには上記のよ うな経験的な材料設計指針だけでなく、より材料の電子物性・フォノン物性に踏み込んだマテリア ルデザインを行う必要がある。そのため近年では大規模計算機を活用した第一原理計算により 材料の熱電物性・フォノン物性を予測し、より効率よく材料探索を行おうとする流れができ始めて いる。本稿では、第一原理計算を用いた最新のマテリアルデザインの研究について紹介し、本研 究の目的と位置づけについて述べる。

2章 第一原理電子状態計算

2.1 密度汎関数理論

電子の多体問題を解くうえで、系の基底状態を一電子近似の電子密度分布 $\rho(r)$ の汎関数として表現するのが密度汎関数理論である.密度汎関数理論は背理法を用いて Hohenberg, Kohn によって証明され、その後、証明の不十分な部分について Levy による修正を経て証明が完成された. [9, 10]さらに、Hohenberg, Kohn によって $\rho(r)$ を求め、波動関数 $\varphi(r)$ 、エネルギー固有値 E(r)を一意に決定する具体的な計算手法として Kohn-Sham 方程式が考案されたことで実用的なものとなった.現在、密度汎関数理論は電子状態計算において世界で最も広く用いられている.密度汎関数理論の最大の利点は、他の第一原理計算手法である波動関数理論、量子モンテカルロ法、多体グリーン関数法などと比べ、低計算コストで比較的高精度な計算が行える点である.一方で基底状態しか計算できないことやバンドギャップを過小評価するといった欠点も存在する.次に密度汎関数理論を用いた第一原理電子状態計算の具体的な流れについて示す.この手法では、初期条件として $\rho(r)$ を与え Kohn-Sham 方程式を自己無撞着場(Self-Consistent field = SCF)で解くことで、最終的に基底状態の $\varphi(r)$ 、E(r)を得る.計算の概略図をFig. 6 にしめす.

Fig. 6 SCF 計算の流れ

2.2 OpenMX

OpenMX (Open source package for Material eXplorer)は密度汎関数理論に基づく第一原理計 算ソフトウェアパッケージである[11]. ノルム保存擬ポテンシャル・最適化擬原子基底関数[12][13] を用いているため低計算コスト・高精度な第一原理計算を実現している. 現在(2017 年 5 月)の最 新バージョンは OpenMX3.8.3 である. OpenMX はバンド計算のみならず様々な DFT, MD 計算を 行うことができる強力なツールである. ここでは特に熱電変換材料の電子輸送特性を議論するう えで重要な計算オプションと計算の概略図を Fig. 7 に示す.

- ▶ バンド分散
- ▶ 電子状態密度
- 様々な交換相関ポテンシャル(LDA, LSDA, GGA)
- スピン軌道相互作用の計算
- ▶ 有効ハバードポテンシャル Ueffを取り入れた電子相関の強い系の計算
- Full-auto variable cell relaxation
- > 非平衡·平衡グリーン関数を用いた透過率の計算
- ➢ Band unfolding 法
- ➢ Order N 法
- ➢ Wannier 関数の計算

Fig. 7 OpenMX を用いた電子輸送計算までの流れ

現状, OpenMX を用いて熱電物性を計算するには、電子の透過率を計算し、ランダウアー理論 に基づくソフトウェア QTWARE^[14]を用いて計算するか、 Wannier 関数を計算し、ボルツマン理論 に基づくソフトウェア Wannier90^[15]を用いて計算することが可能である。

2.3BoltzTraP^[16]

BoltzTraP はボルツマン理論に基づく電子輸送計算コードである. 熱電変換材料の電子輸送計 算において最も広く使用されているオープンソースコードであり, 結晶構造の情報・固有値解・k 点 を元に緩和時間近似における電子輸送特性を計算することが可能である. 具体的には, 熱電能 S, 電気伝導率 σ_{tel}^{-1} , 電子熱伝導率 $\kappa_{el}\tau_{el}^{-1}$, ホール係数 R_{H} , 電子比熱 C_{el} , パウリ常磁性磁化率 χ_{el} が計算可能である. τ_{el} は電子の緩和時間である. 以下に熱電特性を計算するうえで重要な計算 機能を列挙する.

- 各電子輸送特性(S, στel⁻¹, κelτel⁻¹, R_H, Cel, χel)の計算
- ▶ バンドギャップ Egを可変パラメータとした電子輸送係数の計算
- ▶ 電荷ドーピング量を可変パラメータとした電子輸送係数の計算
- ▶ 化学ポテンシャルの温度依存性の計算

テンソル成分を分解することで各結晶方位の熱電性能の計算も可能性である. リジッドバンドモ デルのもと, 非占有軌道をシフトさせ任意のバンドギャップでの電子輸送計算, doping level を変 えての化学ポテンシャル μ の温度依存性・電子輸送特性の化学ポテンシャル依存性も計算可能 であり, 熱電特性を計算するのに非常に充実している.

BoltzTraP 単一ではバンド計算ができないため電子輸送計算を行うには他のソフトウェアを用い てあらかじめ *E-k* 関係を計算する必要がある.現在,WIEN2k^[17],VASP^[18]といった電子状態計算 ソフトウェアは BoltzTraP とのインターフェイスが完備されており,各ソフトウェアで得られた出力結 果を直接 BoltzTraP の入力ファイルとして用いることが可能である.しかし,これらのソフトウェアは 高精度ではあるが計算コストが高かったり,有償であることから広く一般ユーザーが電子輸送計 算を行うには不十分である.そのため,オープンソースコードであり低計算コスト・高精度な電子状 態計算が実行可能な OpenMX と BoltzTraP をつなぐインターフェイスを開発できれば,より広く一 般ユーザーが電子輸送計算を実行でき,第一原理計算と熱電変換の両分野の相互活性につな がることが期待できる.

13

2.4 OpenMX と BoltzTraP をつなぐインターフェイスプログラムの開発

メインプログラムは OpenMX の出力ファイル(.out ファイル)から必要な情報を抜き出して整理し, BoltzTraP の入力ファイル(.energy, .struct, .intrans ファイル)を生成するプログラムである. .energy フ ァイルには固有値解と k 点の情報, .struct ファイルには結晶構造の情報, .intrans ファイルには電 子輸送計算の計算条件の情報が格納されている.

メインプログラム(プログラム名: MX TraP.sh)の概要図を Fig. 8 に示す.

.energy ファイルについては $k \, {
m k}(k = \sqrt{k_x^2 + k_y^2 + k_z^2})$ が重ならないよう k 点と固有値解のセットを取得する必要がある.特にノンコリニア DFT の場合は k 点が原点に対して対称であり,注意が

必要である. プログラム内では, 例えば k 点が奇数個でかつ全ての k 点を並べると

(*k_x*, *k_x*, *k_x*) = (-1,-1,-1), (-0.9,-0.9,-0.9), ...,(0, 0, 0), ..., (0.9, 0.9, 0.9), (1, 1, 1) であるなら, プログラム ではノルムが同じ *k* 点は省略し, (*k_x*, *k_x*, *k_x*) = (-1,-1,-1), (-0.9,-0.9,-0.9), ...,(0, 0, 0)までの *k* 点と固 有値解を取得している. *k* 点が偶数個の場合は

(*k_x*, *k_x*, *k_x*) = (-1,-1,-1), (-0.9,-0.9,-0.9), ...,(-0.1, -0.1), (0.1, 0.1, 0.1)..., (0.9, 0.9, 0.9), (1, 1, 1) の内, (*k_x*, *k_x*, *k_x*) = (-1,-1,-1), (-0.9,-0.9,-0.9), ...,(-0.1, -0.1, -0.1)までの *k* 点と固有値解を取得してい る. .struct ファイルの単位胞ベクトルは, BoltzTraP のプログラム内で座標系(デカルト座標)・方向 余弦が定義されているので, その定義に従って単位胞ベクトルを記述する必要がある. また単位 は Bohr である.

2.5 ボルツマン輸送方程式[19,20]

量子力学が発達する前に考案されたドルーデ理論をもとに、量子力学的なフェルミ統計を考慮 して考案されたのがボルツマン輸送方程式である. 緩和時間 τ の取り扱いには古典論的な緩和 時間近似を用いているため、ボルツマン輸送方程式は半古典論と言われている. 厳密にはフェル ミの黄金律を用いて τ を k 点一つ一つについてそれぞれ厳密に計算すれば、緩和時間近似を用 いずにボルツマン輸送方程式を解くことも可能である.

次にボルツマン輸送方程式を用いた電子輸送係数の導出過程について示す.ドルーデ理論では、電子の散乱確率は電子の運動量に比例すると仮定したが、ボルツマン輸送方程式では運動 量空間だけでなく実空間についても電子の分布を考慮する.系が全体で定常状態にあるとき

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{diffusion}} + \left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{field}} + \left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{scatter}} = 0 \quad (1)$$

が成り立つ. f(r,k)はある時間における電子分布を表す. 第1項目は温度分布によって化学ポテ ンシャル µ に偏りが生じ, 電子分布が実空間で偏ることを意味している. 第2項目は外部電場 E によって電子の運動量に偏りが生じ, 運動量空間の電子分布に偏りが生じることを意味している. 第3項目は電子の散乱確率にかかわる項である. 定常状態ではこれら3項の和は0になる. 次 にそれぞれの項について考察を進める.

系の実空間に局所的に温度分布が生じると、温度に応じてµが変化し実空間においてµに偏り が生じる.しかし、定常状態ではµは実空間のどこを調べても等しくなくてはならず、偏りを打ち消 すように電子拡散が生じる.電流方向を正と定義し、実空間の分布の微小時間変化を考えて第一 項目を変形すると

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{diffusion}} = \frac{f(\boldsymbol{r} - \delta \boldsymbol{r}, \boldsymbol{k}) - f(\boldsymbol{r}, \boldsymbol{k})}{\delta t}$$
$$= \frac{\frac{\partial r}{\partial t} \{f(\boldsymbol{r} - \delta \boldsymbol{r}, \boldsymbol{k}) - f(\boldsymbol{r}, \boldsymbol{k})\}}{\frac{\partial r}{\partial t} \delta t}$$
$$= \frac{\boldsymbol{v}\{f(\boldsymbol{r} - \delta \boldsymbol{r}, \boldsymbol{k}) - f(\boldsymbol{r}, \boldsymbol{k})\}}{\partial r}$$
$$= -\boldsymbol{v} \nabla f(\boldsymbol{r}, \boldsymbol{k})$$
$$= -\boldsymbol{v} \frac{\partial}{\partial T} \frac{\partial T}{\partial \boldsymbol{r}} f(\boldsymbol{r}, \boldsymbol{k})$$
$$= -\boldsymbol{v} \frac{\partial}{\partial T} f(\boldsymbol{r}, \boldsymbol{k}) \nabla T$$
(2)

ここでフェルミディラックの分布関数を $f_{FD}(\boldsymbol{r}, \boldsymbol{k})$,平衡状態からの電子分布のズレを $\phi(\boldsymbol{r}, \boldsymbol{k})$ と置く

$$f(\mathbf{r}, \mathbf{k}) - f_{\rm FD}(\mathbf{r}, \mathbf{k}) = \phi(\mathbf{r}, \mathbf{k})$$
(3)

式(2)(3)より

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{diffusion}} = -\boldsymbol{v}\frac{\partial}{\partial T}f_{\text{FD}}(\boldsymbol{r},\boldsymbol{k})\boldsymbol{\nabla}T - \boldsymbol{v}\frac{\partial}{\partial T}\phi(\boldsymbol{r},\boldsymbol{k})\boldsymbol{\nabla}T \qquad (4)$$

ここでは、実空間の電子分布は µ の温度依存性によって生じることを考慮して、温度微分の形に 変形している。(4)の第 2 項目は微小量なので無視する。最終的に(4)式は温度とエネルギーが線 形関係にあるとして(線形応答理論)以下のように変形できる。

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{diffusion}} = \boldsymbol{\nu} \frac{\partial f_{\text{FD}}(\boldsymbol{r},\boldsymbol{k})}{\partial \varepsilon} \left(\frac{\varepsilon - \mu}{T} + \frac{\partial \mu}{\partial T}\right)$$
(5)

次に式(1)の第2項目について式変形を行う.式変形は第1項目とほぼ同様である.

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{field}} = \frac{f\left(\boldsymbol{r},\boldsymbol{k}-\frac{\mathrm{d}\boldsymbol{k}}{\mathrm{d}t}\delta t\right) - f(\boldsymbol{r},\boldsymbol{k})}{\delta t}$$
$$= \frac{\frac{\partial \boldsymbol{k}}{\partial t} \{f(\boldsymbol{r},\boldsymbol{k}-\mathrm{d}\boldsymbol{k}) - f(\boldsymbol{r},\boldsymbol{k})\}}{\frac{\partial \boldsymbol{k}}{\partial t}\delta t}$$
$$= -\frac{\partial \boldsymbol{k}}{\partial t} \nabla_{\boldsymbol{k}} f(\boldsymbol{r},\boldsymbol{k}) \tag{6}$$

ここで,

$$\hbar \mathbf{k} = m\mathbf{v}$$

$$\frac{\partial \mathbf{k}}{\partial t} = \frac{1}{\hbar}m\frac{\partial \mathbf{v}}{\partial t} = \frac{1}{\hbar}(-|e|\mathbf{E} - |e|\mu_0\mathbf{H})$$
(7)

かつ、磁場の項を無視すると、(3)(6)(7)より

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{field}} = \frac{|\boldsymbol{e}|\boldsymbol{E}}{\hbar} \boldsymbol{\nabla}_{\boldsymbol{k}} f_{\text{FD}}(\boldsymbol{r},\boldsymbol{k}) + \frac{|\boldsymbol{e}|\boldsymbol{E}}{\hbar} \boldsymbol{\nabla}_{\boldsymbol{k}} \phi(\boldsymbol{r},\boldsymbol{k})$$
(8)

ここで、線形応答理論を用いて波数をエネルギー項で書き換えると

$$\nabla_{k} f_{\rm FD}(\boldsymbol{r}, \boldsymbol{k}) = \frac{\partial}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \boldsymbol{k}} f_{\rm FD}(\boldsymbol{r}, \boldsymbol{k})$$
(9)

ここで

$$\varepsilon = \frac{\hbar^2 k^2}{2m}$$
$$\frac{\partial \varepsilon}{\partial k} = \frac{\hbar^2 k}{m} = \frac{\hbar m v}{m} = \hbar v \tag{10}$$

(8)(9)(10)より

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{field}} = |\boldsymbol{e}|\boldsymbol{E}\boldsymbol{v}\frac{\partial f_{\text{FD}}(\boldsymbol{r},\boldsymbol{k})}{\partial\varepsilon} + |\boldsymbol{e}|\boldsymbol{E}\boldsymbol{v}\frac{\partial\phi(\boldsymbol{r},\boldsymbol{k})}{\partial\varepsilon}$$
(11)

(11)の第二項目はオームの法則に一致しない微小量なので無視をする.

電子の緩和時間 τ がすべての波数 k で等しく, フェルミディラックの分布関数の位相空間分布の

偏りの大きさに電子の散乱確率(=1/t)が比例するという緩和時間近似を用いて式(1)の第三項目 は以下のように書き表せる.

$$\left(\frac{\partial f(\boldsymbol{r},\boldsymbol{k})}{\partial t}\right)_{\text{scatter}} = \frac{1}{\tau} \{f(\boldsymbol{r},\boldsymbol{k}) - f_{\text{FD}}(\boldsymbol{r},\boldsymbol{k})\} = \frac{\phi(\boldsymbol{r},\boldsymbol{k})}{\tau}$$
(12)

以上, (1)に(5)(11)(12)を代入すると,

$$\boldsymbol{v}\frac{\partial f_{\rm FD}(\boldsymbol{r},\boldsymbol{k})}{\partial\varepsilon}\left(\frac{\varepsilon-\mu}{T}+\frac{\partial\mu}{\partial T}\right)+|\boldsymbol{e}|\boldsymbol{E}\boldsymbol{v}\frac{\partial f_{\rm FD}(\boldsymbol{r},\boldsymbol{k})}{\partial\varepsilon}+\frac{\phi(\boldsymbol{r},\boldsymbol{k})}{\tau}=0$$
(13)

となる. (13)の方程式を満たす電子の平均群速度 v を求め, 電流密度の定義式j = -n|e|v|に代入すると最終的に,

$$\boldsymbol{j} = \left\{ \int \boldsymbol{\sigma}(\varepsilon, T) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) \mathrm{d}\varepsilon \right\} \boldsymbol{E} + \left\{ -\frac{1}{|\boldsymbol{e}|T} \int \boldsymbol{\sigma}(\varepsilon, T) (\varepsilon - \mu) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) \mathrm{d}\varepsilon \right\} (-\nabla T)$$
(14)

ただし、フェルミ面上の積分成分 $\sigma(\varepsilon, T)$ を

$$\sigma(\varepsilon,T) = \frac{|e|^2}{4\pi^3\hbar} \int_{S} \frac{\boldsymbol{\nu}\boldsymbol{\nu}\tau}{\boldsymbol{\nu}_{\perp}} \mathrm{d}S_{\text{fermisurface}}$$

と置いた. $\sigma(\varepsilon, T)$ はスペクトル伝導度と呼ばれる. ここで, 電気伝導率 σ , 熱電能 S の定義式は

$$\begin{aligned} \boldsymbol{j} &= \boldsymbol{\sigma} \boldsymbol{E} \\ \boldsymbol{E} &= \boldsymbol{S} \boldsymbol{\nabla} T \end{aligned} \tag{15}$$

であることに注目すると、式(14)で温度勾配がない時(**P**T = **0**)

$$\boldsymbol{j} = \left\{ \int \sigma(\varepsilon, T) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) d\varepsilon \right\} \boldsymbol{E}$$

$$\sigma = \int \sigma(\varepsilon, T) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) d\varepsilon$$
(16)

また, **j** = 0の時

$$E = -\frac{1}{|e|T} \frac{\int \sigma(\varepsilon, T)(\varepsilon - \mu) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon}\right) d\varepsilon}{\left\{\int \sigma(\varepsilon, T) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon}\right) d\varepsilon\right\}} \nabla T$$

$$S = -\frac{1}{|e|T} \frac{\int \sigma(\varepsilon, T)(\varepsilon - \mu) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon}\right) d\varepsilon}{\left\{\int \sigma(\varepsilon, T) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon}\right) d\varepsilon\right\}}$$
(17)

と求まる. 電子熱伝導率については, 電荷が μ より大きいエネルギーを運ぶことで電荷が熱を運ぶことになるので, 式(14)の両辺に($\varepsilon - \mu$)/(-e)をかけることで単位電荷あたりの熱流密度 \mathbf{j}_Q の方程式に書き換えることができる.

$$\mathbf{j}_{\mathrm{Q}} = \frac{1}{-|e|} \left\{ \int \sigma(\varepsilon, T)(\varepsilon - \mu) \left(-\frac{\partial f_{\mathrm{FD}}}{\partial \varepsilon} \right) \mathrm{d}\varepsilon \right\} \mathbf{E} + \left\{ -\frac{1}{e^{2}T} \int \sigma(\varepsilon, T)(\varepsilon - \mu)^{2} \left(-\frac{\partial f_{\mathrm{FD}}}{\partial \varepsilon} \right) \mathrm{d}\varepsilon \right\} (-\nabla T)$$
(18)

ここで(17)の E を(18)に代入すると

$$\boldsymbol{j}_{Q} = \left(-\frac{1}{e^{2}T} \frac{\left\{ \int \boldsymbol{\sigma}(\varepsilon, T)(\varepsilon - \mu) \left(-\frac{\partial f_{FD}}{\partial \varepsilon} \right) d\varepsilon \right\}^{2}}{\int \boldsymbol{\sigma}(\varepsilon, T) \left(-\frac{\partial f_{FD}}{\partial \varepsilon} \right) d\varepsilon} + \frac{1}{e^{2}T} \int \boldsymbol{\sigma}(\varepsilon, T)(\varepsilon - \mu)^{2} \left(-\frac{\partial f_{FD}}{\partial \varepsilon} \right) d\varepsilon} \right) (-\nabla T)$$
(19)

熱伝導率κは

$$\boldsymbol{j}_{\mathrm{Q}} = \boldsymbol{\kappa}(-\boldsymbol{\nabla}T) \tag{20}$$

で定義されるので, (19) (20)で比べると

$$\kappa = -\frac{1}{e^2 T} \frac{\left\{ \int \sigma(\varepsilon, T)(\varepsilon - \mu) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) d\varepsilon \right\}^2}{\int \sigma(\varepsilon, T) \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) d\varepsilon} + \frac{1}{e^2 T} \int \sigma(\varepsilon, T)(\varepsilon - \mu)^2 \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon} \right) d\varepsilon$$
(20)

と求まる. 以上, *S*, *σ*, *к*elをまとめると

$$K_{\rm n} = \int \sigma(\varepsilon, T)(\varepsilon - \mu)^n \left(-\frac{\partial f_{\rm FD}}{\partial \varepsilon}\right) d\varepsilon$$

$$\sigma = K_0, S = -\frac{1}{|e|T} \frac{K_1}{K_0}, \kappa = \frac{1}{e^2 T} \left(K_2 - \frac{K_1^2}{K_0}\right)$$
(20)

となる.

2.6 **ランダウアー理論**^[21]

ランダウアー理論で用いるモデルを Fig. 9 に示す.

Fig.9 ランダウアー理論のモデル

モデルは大きく分けて3つの領域で区分されており、中央に散乱体(本研究の場合は NiSbS の 単位胞)があり、両端は電子浴につながれた左電極・右電極で形成されている。電子は左電極か ら流れて散乱体を一部の電子が透過して右電極に一次元的に流れていく。この時、散乱体の中 で電子は不純物などによって弾性散乱されてもよいが、電子-電子散乱や電子-フォノン散乱など の非弾性散乱は生じないものとする。このモデルにおいて、散乱体を流れる電流*I*、熱流*I*_Qは以下 のようにあらわせる。

$$I = -\frac{2e}{h} \int T(\varepsilon) \{ f_{\rm FD}(\varepsilon, \mu_{\rm L}) - f_{\rm FD}(\varepsilon, \mu_{\rm R}) \} d\varepsilon$$
(21)

$$I_{\rm Q} = I \cdot \left(\frac{\varepsilon - \mu}{-e}\right) = \frac{2}{h} \int T(\varepsilon)(\varepsilon - \mu) \{f_{\rm FD}(\varepsilon, \mu_{\rm L}) - f_{\rm FD}(\varepsilon, \mu_{\rm R})\} \,\mathrm{d}\varepsilon \tag{22}$$

ここで、 μ_L 、 μ_R はそれぞれ左電極と右電極の化学ポテンシャルであり、 μ は左右電極の平均の 化学ポテンシャルである. また、透過率 $T(\varepsilon)$ は左電極から流れてきた電子が散乱体を透過する確 率を表す. 左右の電極の化学ポテンシャルの差 $\Delta\mu$ や温度差 ΔT が十分に小さい場合、 μ や T が $f_{FD}(\varepsilon,\mu)$ に対して線形であるとすると(線形応答理論)、式(21)(22)は以下のように書き換えられる.

$$I = -\frac{2e}{h} \int T(\varepsilon) \left\{ \frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \mu} \Delta \mu + \frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial T} \Delta T \right\} d\varepsilon$$
(23)

$$I_{\rm Q} = I \cdot \left(\frac{\varepsilon - \mu}{-e}\right) = \frac{2}{h} \int T(\varepsilon)(\varepsilon - \mu) \left\{\frac{\partial f_{\rm FD}(\varepsilon, \mu)}{\partial \mu} \Delta \mu + \frac{\partial f_{\rm FD}(\varepsilon, \mu)}{\partial T} \Delta T\right\} d\varepsilon \quad (24)$$

ここで $\Delta T = 0$ の場合を考えると

$$I = -\frac{2e}{h} \int T(\varepsilon) \left\{ \frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \mu} \Delta \mu \right\} d\varepsilon$$
(25)

$$I_{\rm Q} = \frac{2}{h} \int T(\varepsilon)(\varepsilon - \mu) \left\{ \frac{\partial f_{\rm FD}(\varepsilon, \mu)}{\partial \mu} \Delta \mu \right\} d\varepsilon$$
(26)

となる.線形応答理論より

$$\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial\mu} = -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial\varepsilon}$$
(27)

$$\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial T} = \frac{\varepsilon - \mu}{T} \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\}$$
(28)

の関係が成り立つことから、式(27)を(25)に代入すると電気コンダクタンス G が

$$G = \left(\frac{I}{V}\right)_{\Delta T=0} = -\Delta \mu \frac{2\mathbf{e}}{h} \cdot \frac{-e}{\Delta \mu} \int T(\varepsilon) \left\{-\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon}\right\} d\varepsilon$$

$$= \frac{2e^2}{h} \int T(\varepsilon) \left\{-\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon}\right\} d\varepsilon$$
(29)

ここでは $V = \Delta \mu / (-e)$ の関係式を用いた.次にI = 0の場合を考えると、式(23)より

$$\frac{2e}{h}\Delta T \int T(\varepsilon) \left\{ \frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial T} \right\} d\varepsilon = -\frac{2e}{h}\Delta \mu \int T(\varepsilon) \left\{ \frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \mu} \right\} d\varepsilon$$
(30)

ここで, 式(30)に(27)(28)を代入すると

$$\Delta T = -T\Delta \mu \frac{\int T(\varepsilon) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon}{\int T(\varepsilon)(\varepsilon-\mu) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon}$$
(31)

ここで熱電能 S は

$$S = \left(-\frac{V}{\Delta T}\right)_{I=0} = \frac{\Delta\mu}{-e} \cdot \frac{1}{T\Delta\mu} \frac{\int T(\varepsilon)(\varepsilon - \mu) \left\{-\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial\varepsilon}\right\} d\varepsilon}{\int T(\varepsilon) \left\{-\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial\varepsilon}\right\} d\varepsilon}$$

$$= -\frac{1}{eT} \frac{\int T(\varepsilon)(\varepsilon - \mu) \left\{-\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial\varepsilon}\right\} d\varepsilon}{\int T(\varepsilon) \left\{-\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial\varepsilon}\right\} d\varepsilon}$$
(32)

と求まる. ここで I = 0 として ΔT を導出し, S を定式化した. これは外部電場が 0 の状態で温度場 が生じたときにそれに比例する電場(熱電場)が生じ、その比例係数を熱電能 S と呼ぶという S の 定義そのものである. 物理的には, 温度場が生じることで局所的に μ の勾配が生じ, それを打ち 消すように電場(熱電場)が発生することを意味する. この際, 外部電場は 0 である. (I = 0) 最後に熱コンダクタンス K_{el} は

$$K_{\rm el} = \left(\frac{l_Q}{\Delta T}\right)_{I=0} = \frac{2\Delta\mu}{h\Delta T} \int T(\varepsilon)(\varepsilon - \mu) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon + \frac{2}{hT} \int T(\varepsilon)(\varepsilon - \mu)^2 \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon \\ = \frac{\frac{2\Delta\mu}{h} \int T(\varepsilon)(\varepsilon - \mu) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon}{\int T(\varepsilon) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon} + \frac{2}{hT} \int T(\varepsilon)(\varepsilon - \mu)^2 \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon$$
(33)
$$= -\frac{1}{T} \frac{\left(\frac{2}{h}\right)^2 \left\{ \int T(\varepsilon)(\varepsilon - \mu) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon \right\}^2}{\frac{2}{h} \int T(\varepsilon) \left\{ -\frac{\partial f_{\rm FD}(\varepsilon,\mu)}{\partial \varepsilon} \right\} d\varepsilon} d\varepsilon$$

と求まる.

$$K_{\rm n} = \frac{2}{h} \int T(\varepsilon) (\varepsilon - \mu)^n \left(-\frac{\partial f_{\rm FD}(\varepsilon, \mu)}{\partial \varepsilon} \right) d\varepsilon$$
(34)

と置いて(29)(32)(33)を整理すると、

$$G = e^{2}K_{0}, \quad S = -\frac{1}{eT}\frac{K_{1}}{K_{0}}, \quad K_{el} = -\frac{1}{T}\frac{K_{1}^{2}}{K_{0}} + \frac{1}{T}K_{2} = \frac{1}{T}\left(-\frac{K_{1}^{2}}{K_{0}} + K_{2}\right)$$
(35)

と求まる.

2.7 熱電材料のマテリアルデザインにおける先行研究

近年,計算科学の急速な発展に伴い第一原理計算を活用した高性能熱電材料の探索の研究 が行われ始めている.

Georg K. H. Madsen は多数の化学両論組成の無機化合物について電子の緩和時間 $\tau_{el} = 2 \times 10^{-14}$ sec., 格子熱伝導率 $\kappa_{lat} = 2 \text{ WK}^{-1}\text{m}^{-1}$ を適用し,候補材料として LiZnSb が ZT~2 を示す可能 性を示した.^[22] また,Wei Chen らは大規模計算機を用いた第一原理電子状態計算により約 48000 種類の化学両論組成の無機化合物の電子物性について報告している^[23].電子の緩和時間と格子熱伝導率を定数として取り扱うことで定性的に実験結果を再現出来ている例もあるが,GGA によるバンドギャップの過小評価や緩和時間をユニバーサルな値として 10^{-14} sec.を採用して いるため,定量的な物性の予測は達成できていない.P. Gorai らは 2 元系の化合物に限定して, ボルツマンの輸送方程式を用いた材料のスクリーニングを行い,ZnSb, CdSb, ZnAs といったいく つかの高性能熱電材料の候補を選定することに成功している.^[24]

フォノン物性のアプローチからは J. Carrete らがマシンラーニングを用いたハイスループットスク リーニングよって 79,000 種のハーフホイスラー材料から低い格子熱伝導率を示す候補材料を 75 種類まで絞り込むことに成功した.^[25]世古らは、第一原理計算から約 100 種類の物質について室 温における熱伝導率を計算し、マシンラーニングによって熱伝導率の予測モデルを構築した. 得 られたモデルを約 55000 種類の物質群に対して適用し、0.5 WK⁻¹m⁻¹ 以下の超低熱伝導率物質を 高速・高精度に選定することに成功した^[26]. またナノスケールであれば、塩見らが Si-(Si or Ge)間 において 60000 種類を超える候補パターンの中から熱抵抗を下げる最適なナノ構造体を AGF 法 とベイズ最適化を組み合わせた計算手法を用いて選定することに成功している.^[27]

以上,計算機シミュレーションを用いた高性能熱電材料の探索の研究の現状について紹介した が,現在の材料スクリーニングは定量的に熱電物性を予測するまでは至っておらず,スクリーニ ングが適応されている材料系にも偏りがあるのが現状である.

2.8 本研究の位置づけと目的

本研究では、未だ計算科学を活用した材料探索があまり行われていない「硫化物」に注目し、 実験と第一原理計算と両面から新奇硫化物熱電材料を探索する.

化学量論比だけでなく、各サイトを異種元素で置換した置換系試料も含む種々の硫化物に対し 高効率で大規模な電子輸送計算を行い、多数の電子輸送特性の中から相関関係を明らかにす るとともに、新奇熱電材料の探索指針の確立を目指す.また、得られた電子輸送特性から材料の スクリーニングを行い、候補となる高性能硫化物熱電材料を選定するとともに、適用した材料スク リーニング手法が従来の高性能熱電材料に対しどの程度有効かを明らかにし、その妥当性を考 察する.

3 章 巨大な出力因子を示す 3d 遷移金属硫化物ウルマナイト

NiSbS の電子輸送現象

3.1 ウルマナイト NiSbS の結晶構造

Figure 10 に NiSbS の結晶構造を示す. 晶系は立方晶で空間群は $P2_13$ と高い結晶対称性を有 する. 格子パラメータはa = b = c = 5.934 Å, $\alpha = \beta = \gamma = 90^{\circ}$ である.^[28,29] 単位胞内に Ni, Sb, S を 4 ずつ含み, Ni を中心としてみると Sb, S が 3 つずつ配位し 8 面体を形成する. S と 3d 遷移 金属 Ni を含むため, S の 3p 軌道と Ni の 3d 軌道の共鳴により, 化学ポテンシャル μ 近傍に大き な状態密度を持つ可能性がある.

Fig. 10 遷移金属硫化物ウルマナイト NiSbS の結晶構造

3.2 試料作製

本研究で作製した試料は溶融法で作製した.使用した原料を Table 1 に示す.高温ではカルコゲンの硫黄 S が気化し,アンプル内の内圧が上昇することで破裂する危険性がある.そのため,アンプル内に封入する S の量を 0.4 g 以下とした. ほかの元素は S の量に対して化学量論比に基づいて秤量した. これらの原料を石英管に真空封入(3.0×10⁻⁶ tor 以下)し,アンプルを作製した. そのアンプルをマッフル炉に入れ加熱・反応させ多結晶体を作製した.

試料合成の温度プログラムは Fig. 11-12 の通りである. 溶融時 250℃で2 時間保持する理由は, S を他の元素と反応させ, S の気化による内圧の上昇を抑えるためである. 最高温度で 10 時間保 持し, その後炉冷した. 最高温度は母相と Co 置換で異なり, 母相の NiSbS では 780℃, Co 置換 した試料では 1000℃とした. 溶融後はワイヤーソウと#2000 のサンドペーパーを用いて加工・研磨 し電気抵抗率測定用, 熱電物性測定用の試料を作製した. この時, 全ての測定で電流, 熱流の

Fig. 12 Ni_{1-x}Co_xSbS (x = 0.10, 0.20, 0.40)の反応温度プログラム

原料	純度 / %	形状	製造
Co	99.9	Powder	レアメタリック
Ni	99.99	Shot	レアメタリック
S	99.99	Powder	高純度化学研究所
Sb	99.999	Powder	高純度化学研究所

Table 1 試料の原料の純度と詳細

3.3 粉末 X 線回折

作製した試料の結晶構造を, 粉末 X 線回折装置(Rugaku 株式会社・Smart lab)で確認した. 粉 末 X 線回折法(XRD)の測定条件は Table 2 のとおりである.

X 線源	CuKα線(λ=1.5418 Å)
管球電圧	30 kV
管球電流	40 mA
スキャン速度	2.5 deg. / min (一部 5.0 deg. / min)
スキャン角度	10 - 120 deg.

Table 2 粉末 XRD 測定の測定条件

Figure 13 に Ni サイトを Co で置換した試料 Ni_{1-x}Co_xSbS (x = 0, 0.1, 0.2, 0.4)の XRD pattern を 示す. Ni_{1-x}Co_xSbS (x = 0, 0.1, 0.2, 0.4)の回折ピークは全て母相 NiSbS 由来のものであり, x = 0.20 まで単相であった. x = 0.40 では,不純物相として NiSb₂(黒三角), CoSbS(赤三角), CoSb (緑 三角)の回折ピークがわずかにみられた.^[30,31] そのため Ni サイトに対する Co の固溶限界は x = 0.40 以下であると考えられる.

Fig. 13 Ni_{1-x}Co_xSbS (x = 0, 0.10, 0.20, 0.40) \mathcal{O} XRD pattern

Figure 14 に Ni_{1-x}Co_xSbS (x = 0, 0.10, 0.20, 0.40)の XRD パターンから算出した格子定数 a の x 依存性を示す. a は x の増加に伴いほぼ単調に減少する. 実線は Ni³⁺, Co³⁺の八面体共有結 合半 $r_{Ni^{3+}}, r_{Co^{3+}}$ [^{32]}を用いて見積もった NiSbS の格子定数の計算値の x 依存性である.

$$a = a_{\rm NiSbS} - (r_{\rm Ni^{3+}} - r_{\rm Co^{3+}})x \tag{36}$$

a の計算値は実験値をよく再現しており,実験の試料では Ni³⁺が Co³⁺に置換されていることを示 している. これは, Ni_{1-x}Co_xSbS (*x* = 0, 0.10, 0.20, 0.40)は硬いが割れやすく, 共有結合性が高いこ とが実験から示唆されていることと矛盾しない.

Fig. 14 Ni_{1-x}Co_xSbS (x = 0, 0.10, 0.20, 0.40)の格子定数 a の x 依存性

3.4 熱電物性

PPMS-ACT による電気抵抗率 ρ の温度依存性の測定

作製した試料の電気抵抗率 ρ を、4 端子法を用いて Physical Property Measurement System (PPMS, 日本カンタム・デザイン株式会社)の AC-Transport オプションで測定した. サンプルへの 端子の配線には φ 50 µm の金線を用いた. 金線の固定には金ペーストを使用し、ペーストは 150 °Cに温めたホットプレートの上で 10 分以上乾燥させた. さらに再びペーストを上塗り・乾燥す ることで十分固定した(Fig. 15). また、パックには Fig. 16 のように配線した. 金線とパックとの固定 には銀ペースト(徳力化学研究所)を使用した. 測定には、温度を 1.0 K / min でスイープさせなが ら 3 - 340 K の温度領域で行った.

Fig. 16 PPMS – ACT の配線図

PPMS-TTO(Thermal Transport option)による定常熱流法を用いた2端子法測定

電気抵抗率 ρ の測定後, 熱電能 *S*, 熱伝導率 κ の測定には定常熱流法をもちいて 2 端子法で行った. 測定には PPMS の Thermal Transport Option(TTO)を使用した.

ー対のリードディスクを, Bi-Sn はんだを用いて試料の両端に固定した. リードディスクと試料を はんだで接合する際は, リードディスクと試料を Bi-Sn はんだで片面接着後, ホットプレートで 250 - 270°Cで 15 分間加熱し, 両面で合計 30 分加熱した. その後でリートディスクの端子部分を曲げ, 温度計とヒーターを取り付けた. 配線やリードディスクがパックカバー内側に接触しないようにセッ トし, PPMS 本体にセットした.

熱電物性の測定条件を Table 3 に示す. 熱流が確実に流れるようにサンプルのサイズを変え熱 抵抗調節した.

Fig. 17 PPMS-TTO 用サンプルの端子イメージ図

	Min	Max
Period	30 sec	1430 sec
Heater power	0.001 mW	50 mW
Temp. Rise		1.0 ~ 3.0 %
Period Ratio	15	
印加電流周波数	70 Hz	97 Hz
測定温度範囲	5 K	340 K
降温速度		0.2 K / min

Table 3 PPMS-TTO におけるS, κの測定条件

3.4.1 電気抵抗率 ρ

Figure 18 に Ni_{1-x}Co_xSbS (x = 0, 0.10, 0.20, 0.40)の電気抵抗率 ρ の温度依存性を示す. 母相 NiSbS は, 室温で 0.40 μ Ωm と非常に低い値を示し, 温度の上昇に伴い ρ が増大する金属的振舞 いを示す. Co の置換量の増大に伴い, 残留抵抗 ρ_0 が増大するが, 温度係数はほとんど変化しな い. これは Co が伝導電子の散乱中心として働くとともに, 室温におけるフォノンによる散乱機構は Co 置換によって変化しないことを示している.

Fig. 18 Ni_{1-x}Co_xSbS (x = 0,0.1,0.2,0.4)の電気抵抗率ρの温度依存性

3.4.2 熱電能 S

Figure 19 に Ni_{1-x}Co_xSbS (*x* = 0, 0.10, 0.20, 0.40)の熱電能 *S* の温度依存性を示す. 母相 NiSbS の *S* の符号は 90 K で正から負の値に転じる. これは NiSbS が 90 K 以下では正孔の寄与が支配 的であり, 90 K 以上では電子の寄与が支配的なマルチキャリア系であることを示している. 90 K 以上では温度上昇に伴い *S* は増大し, 300 K で-27 μVK⁻¹と比較的大きな負の値を示す n 型で ある.

Fig. 19 Ni_{1-x}Co_xSbS (x = 0, 0.10, 0.20, 0.40)の S の温度依存性

90 K 以下の低温における正の S は正孔のフォノンドラッグの影響であると考えられる.^[19] 式(37) にフォノンドラッグとキャリア密度の関係式を示す.

$$S_{\rm ph} = \frac{C_{\rm L}}{nq'} \tag{37}$$

 S_{ph} はフォノンドラッグによる熱電能, C_L は格子比熱, nはキャリア密度, qはキャリアの電荷(電子であれば-|e|,正孔であれば|e|)を表す.式(37)によればフォノンドラッグはマイナーキャリアの寄与が支配的であり,これはNiSbSのSが90K以下の低温でマイナーキャリアの正孔の寄与が支配的であることを示している. x = 0.10, 0.20ではCo置換によりSの絶対値が減少し,符号反転する温度が高温側にずれる. x = 0.40では低温での正のSの絶対値は非常に小さくなり,全ての温度領域で負の値を示す.

3.4.3 出力因子 PF

Figure 20 に NiSbS の出力因子 *PF* の温度依存性を示す. NiSbS の *PF* は低温で極大値を持ち, 温度上昇に伴い減少したのち, 90K 以上で再び増大し, 300 K では約 1.9 mWK⁻²m⁻¹という非常に大きな値を示す.

Fig. 20 NiSbS の出力因子 PF の温度依存性

Figure 21 に種々の硫化物熱電材料の *PF* の最大値とその温度をまとめたもの示す. NiSbS は n 型硫化物熱電材料の中で最も高く、その値は高性能硫化物熱電材料として知られるテトラヘドラ イトやコルーサイトよりも大きい. これは NiSbS が非常に低い ρ を示すのにも関わらず、比較的 S が大きいことに起因する. Ni サイトを Co で置換すると残留抵抗が増大し、S の絶対値が減少する ため *PF* の絶対値は大きく減少する.

Fig. 21 種々の硫化物熱電材料の PF の最大値^[7,8, 33-40]

3.4.4 熱伝導率

Figure 22 に Ni_{1-x}Co_xSbS (x=0, 0.10, 0.20, 0.40)の熱伝導率 κ の温度依存性を示す. 母相 NiSbS の κ は室温で 22.5 WK⁻¹m⁻¹ と高い. Co 置換した試料は, 母相と比べ κ は全体的に減少する. κ が 低減したのは, Co 置換により残留抵抗が増加し, 電子熱伝導率が減少したためと考えられる. 格子熱伝導率は低温では, 置換により 50 K 付近のピークが小さくなる. 多結晶やサファイヤ・石英 などの結晶ではこのピークは大きく, アモルファスや合金ではピークは見られない. これは温度上 昇に伴いフォノンの運動量が増大し, フォノンが粒界や非晶質部分に当たって散乱されるためで ある. 結晶性が良ければフォノンの運動量が増大してもフォノンは散乱されず, さらに温度が上昇 するとフォノンの運動量ベクトルが第一 BZ を出たり, 第一 BZ 境界付近のフォノンが励起され始 めるため, ウムクラップ過程(U 過程)が生じる. U 過程が生じると T^1 に比例して κ は減少するので, 結晶性が良い材料は低温で κ はピークを持つ.^[41] 45 K 付近のピークが小さくなるのは Co 置換に よる合金化のためである.

Fig. 22 Ni_{1-x}Co_xSbS(x = 0, 0.10, 0.20, 0.40)の熱伝導率кの温度依存性
3.5 電子輸送計算

NiSbS および Ni_{0.75}Co_{0.25}SbS についてランダウアー理論に基づく電子輸送計算を行った. 平衡 グリーン関数による電子の透過率 $T(\varepsilon)$ を計算する際の計算条件を Table 4 に示す. フェルミ分布 の温度 T は 300 K に設定した.

	擬原子基底関	伝導方向に垂直な	$\operatorname{Im} \{T(\varepsilon)\}$	エネルギーメ
	数	Kgrid		ッシュ
NiSbS	Ni6.0S-s2p2d2	20×20	$1.0 \times 10^{-6} \text{ eV}$	20 meV
	Sb7.0-s2p2d2f1			
	S7.0-s2p2d2			
Ni _{0.75} Co _{0.25} SbS	Ni6.0S-s2p2d2			
	Co6.0S-s2p2d2			
	Sb7.0-s2p2d2f1			
	S7.0-s2p2d2			

Table 4 電子の透過率 T(ε)の計算条件

Figure 23(a)に熱電能 *S* の化学ポテンシャル μ 依存性を示す. x = 0 では, *S* は T = 300 K では-22 μ VK⁻¹と比較的大きな負の値を示し, x = 0.25 では T = 300 K で *S* は-3 μ VK⁻¹と小さく, 実験の *S* をほぼ定量的に再現する.

Figure 23(b)に電気コンダクタンス *G* の化学ポテンシャル μ 依存性を示す. $\mu = 0$ における *G* は x = 0 ほうが x = 0.25 に比べて 1.6 倍ほど大きい. Co 置換による格子サイズの変化などが影響す るため *G* の絶対値の比較は単純には困難であるが, 定性的には 300 K における実験の ρ を再現 する.

Figure 23(c)に電子熱コンダクタンス K_{el} の μ 依存性を示す. $\mu = 0$ における K_{el} は x = 0 ほうが x = 0.25 に比べて大きい. これは Co 置換における実験の κ_{el} の減少と矛盾しない.

Figure 23(d)に *GS*² の μ 依存性を示す. $\mu = 0$ における *GS*² は x = 0 ではほぼピーク値を取る. *GS*² は出力因子 *PF* に比例する量であることから, 電子輸送計算からも NiSbS が高い *PF* を示す ことが予想される. x = 0.25 では $\mu = 0$ における *GS*² はちょうどピークとピークの谷間に来ているこ とから, Co 置換によって *PF* が大幅に減少することが予想され,実験結果と矛盾しない.

Fig. 23 (a)Ni_{1-x}Co_xSbS (x = 0, 0.25)の熱電能 S の μ 依存性, (b)電気コンダクタンス G の μ 依存性, (c)電子熱コンダクタンス K_{el} の μ 依存性, (d) GS^2 の μ 依存性

Ni_{1-x}Co_xSbS (x = 0, 0.25)の電子の透過率 $T(\varepsilon)$ のエネルギー依存性を Fig. 24 に示す. x = 0 はフ ェルミエネルギー E_F 近傍で $T(\varepsilon)$ の絶対値・傾きが大きい. 定性的には $T(\varepsilon)$ の絶対値が大きいほど 電気伝導率 σ が高く, 傾きが大きいほどは S が大きくなるため, NiSbS の出力因子 PF が高いこと が計算からも示唆される. x = 0.25 では $T(\varepsilon)$ の絶対値・傾きが x = 0 に比べ減少していることから, x = 0.25 では x = 0 と比べ PF が減少することを示している. これは実験結果と定性的に一致する.

Fig. 24 Ni_{1-x}Co_xSbS (x = 0, 0.25)の電子の透過率 T(ε)のエネルギー依存性

3.6 第一原理電子状態計算(E-k 関係と電子状態密度)

本研究では NiSbS の詳細な電子構造を明らかにするため, OpenMX を用いて第一原理電子状態計算を行った. 準ニュートン法^[42-45]により構造最適化を行い, スピン-軌道相互作用を考慮した. Table 5 に計算条件を示す.

	擬原子基底関数	Kgrid	Cutoff energy
NiSbS	Ni6.0S-s2p2d2	11×11×11	300 Ryd
	Sb7.0-s2p2d2f1		
	S7.0-s2p2d2		
Ni _{0.75} Co _{0.25} SbS	Ni6.0S-s2p2d2		
	Co6.0S-s2p2d2		
	Sb7.0-s2p2d2f1		
	S7.0-s2p2d2		

Table 5 NiSbS の第一原理電子状態計算の計算条件

Figure 25(a)(b) に Ni_{1-x}Co_xSbS (x = 0, 0.25) の *E-k* 関係を示す. NiSbS の化学ポテンシャル μ は 伝導体中に位置し金属的である. これは実験の ρ の結果と矛盾しない. Γ-M-R 点間に正孔ポケッ ト(赤矢印)があり, NiSbS のマイナーキャリアが正孔であることを示している. Co で置換した x = 0.25 では, M 点のバンド分裂によって正孔ポケットが生じている. x = 0 における Γ-M 点間の E = 0.15 eV, x = 0.25 における Γ-M 点間の E = 0 eV におけるバンドの一部が分裂している.

Figure 25(c)(d) に Ni_{1-x}Co_xSbS (x = 0, 0.25)の電子状態密度 DOS を示す. x = 0 では E = -0.1 eV に擬ギャップが生じており, μ は擬ギャップの上端に位置し, これが電子輸送計算における GS² の ピークの起源であると考えられる. x = 0.25 では, x = 0 に比べて DOS は全体的に 0.11 eV 程度高 エネルギー側にシフトする. これは Co がアクセプターとして働いていることを示唆している. μ は擬 ギャップの谷間に位置しており, GS² の減少を説明する.

Fig. 25 Ni_{1-x}Co_xSbS (x = 0, 0.50) の E-k 関係と電子状態密度

3.7 まとめ

遷移金属硫化物 NiSbS が室温付近で非常に高い出力因子 *PF* を示す n 型熱電材料であることを実験と理論の両面から明らかにした.詳細な第一原理電子状態計算と電子輸送計算から, NiSbS の高い *PF* の起源が μ 近傍の擬ギャップ構造であることを明らかにした.^[46]

4章 狭ギャップ 3d 遷移金属硫化物 V4GeS8の熱電物性

4.1V₄GeS₈の結晶構造

Figure 26 に V₄GeS₈の結晶構造を示す. 晶系は立方晶で空間群 F4-3m であり, 単位胞あたり に V が 16 個(16e サイト), Ge が 4 個(4a サイト), 硫黄 S が 32 個(16e サイト)合計 52 個もの多数 の原子を含み, [V₄S₄]と[GeS₄]の二つのクラスターが NaCl 型に配列する.^[47]

Fig. 26 V4GeS8の結晶構造

4.2 E-k 関係·電子状態密度

OpenMX を用いて V₄GeS₈の第一原理電子状態計算を行った. 交換相関ポテンシャルは GGA-PBE を用い, Variable cell relaxation (VCR)^[48, 49]を行い, 格子パラメータを最適化した. スピン-軌 道相互作用を考慮に入れている. Table 6 に計算条件を示す.

	擬原子基底関数	Kgrid	Cutoff energy
V ₄ GeS ₈	V6.0-s3p3d3f1	$16 \times 16 \times 16$	500 Ryd
	Ge7.0-s4p4d3f2		
	S7.0-s4p3d3f2		

Table 6 V₄GeS₈の第一原理電子状態計算の計算条件

Figure 27 に V₄GeS₈ の *E-k* 関係を示す. Κ-Γ 点間が価電子帯の上端, Γ 点に伝導帯の下端が あり, 間接遷移型の半導体であることがわかる. 後述する DOS とバンドギャップの大きさが若干 異なるが, これは VCR の際に結晶の対称性が若干崩れたため, *k* 点がわずかにずれたことに起 因する.

Fig. 27 V₄GeS₈の *E-k* 関係

Figure 28 に V₄GeS₈ の DOS および構成元素 V, Ge, S それぞれの部分電子状態密度(PDOS)の エネルギー依存性を示す. V₄GeS₈ は μ 近傍で V の 3d 軌道と S の 3p 軌道から成る構成軌道に 由来する鋭い DOS が支配的である. バンドギャップ E_g は約 30 meV であり狭ギャップという特徴 的な電子構造を有する.

Fig. 28 V4GeS8の電子状態密度(DOS)と構成元素から成る部分状態密度(PDOS)

4.3 試料作製

本研究で作製した試料は溶融法で作製した. 出発原料として単体の V, Ge, Mn, S(それぞれの 条件を書く)を化学量論比に従って入れ, 石英管に真空封入した. 石英管内の圧力は 3.0×10⁻⁶torr 以下である. 700°Cで 3 日間加熱・反応させることで粉末状の多結晶体を作製し, それらを 400°C・300MPa の条件下で 15 分間ホットプレスすることでペレット状の測定試料を得た.

原料	純度 / %	形状	製造
V	99.9	Powder	高純度化学研究所
Ge	99.999	Powder	高純度化学研究所
S	99.99	Powder	高純度化学研究所
Mn	99.99	Powder	レアメタリック

Table 7 試料の原料の純度と詳細

4.4 粉末 X 線回折

Figure 29 にホットプレス後の V₄GeS₈ およびの置換系試料 V_{4-x}Mn_xGeS₈ (x = 0.02, 0.05)の XRD パターンを示す. 得られた回折ピークはシミュレーションから得られたものと一致し, 単相試料であることがわかる. 置換量が微小であるため回折ピークのシフトは見られなかった.

Fig. 29 V4GeS8 および V サイトを Mn で置換した試料の XRD pattern

4.5 熱電物性

4.5.1 電気抵抗率 ρ

Figure 30 に 4 端子法で測定した V_4 GeS₈の ρ の温度依存性を示す. ρ は温度上昇に伴い減少 する半導体的振る舞いを示した.これは電子状態計算の結果と定性的に一致する.

Fig. 30 V₄GeS₈のρの温度依存性

Figure 31 に V₄GeS₈ およびの置換系試料 V_{4-x}Mn_xGeS₈ (x = 0.02, 0.05)の ln ρ - T^{-1} を示す. ln ρ - T^{-1} 曲線は温度上昇に伴いわずかに曲がる. これは温度上昇に伴い広がったフェルミ分布が伝導帯 にかかるためである. ln ρ - T^{-1} 曲線から見積もられた V₄GeS₈ の活性化エネルギー E_a は約 0.10(2) eV, バンドギャップ E_g は約 0.20(4) eV であり, V₄GeS₈ が狭ギャップ半導体であることを示してい る. これは第一原理電子状態計算の結果と矛盾しない. Mn 置換では ln ρ - T^{-1} 曲線は直線的であ る.

Figure 32 に V₄GeS₈ および正孔ドープした V₄GeS₈の電子状態のモデルを示す. Mn 置換の ln ρ - T^1 曲線が直線的なのは, Mn 置換によって正孔ドープが生じて価電子帯のより深くまで μ がシフト したため, 温度上昇によってフェルミ分布が広がっても価電子帯に μ がかからないことが原因であ ると考えられる.

Fig. 31 V4GeS8 およびの置換系試料 V4-xMnxGeS8 (x = 0.02, 0.05)の lnp-T¹

Fig. 32 V₄GeS₈ および正孔ドープした V₄GeS₈ の電子状態のモデル

4.5.2 熱電能 S

Figure33 に V₄GeS₈ および Mn 置換した V_{4.x}Mn_xGeS₈(x = 0.02, 0.05)の S の温度依存性を示す. x = 0 では 300 K で 330 μ VK⁻¹ と大きな正の値を示し,約 260 K でピークを示す. これは両極性拡 散により電子・正孔が生じていることを示しており、V₄GeS₈が狭ギャップ半導体であることを示唆し ている. x = 0.02, 0.05 では x の増大に伴い S の絶対値は減少し、S のピークは高温側にシフトす る.

Fig. 33 V4GeS8 および Mn 置換した V4-xMnxGeS8(x = 0.02, 0.05)の S の温度依存性

4.5.3 熱伝導率κ

Figure 34 に V_{4x}Mn_xGeS₈ (x = 0, 0.02, 0.05) の熱伝導率 κ の温度依存性を示す. T = 300 K にて すべての試料で κ は 0.7 以下という非常に低い値を示した. 試料の相対密度がどれも 80%程度と 低いため, その影響も大きいがそれを踏まえてもかなり小さい κ を示すといえる. この低い κ 原因は, 単位格子内の原子数が 52 個と多く音響フォノンモードに比べ光学フォノンモード数が多いため, フ ォノンの平均群速度が低下したためと考えられる. ヴィーデマン・フランツ則から電子と格子の熱 伝導度の寄与の分離を試みたが, ρ が大きいことから熱伝導はほぼすべてが格子によるものと分 かった. T = 30 K において κ がピークを持つ原因としては, V_{4x}Mn_xGeS₈ (x = 0, 0.02, 0.05)が低温 で構造相転移を生じている可能性が考えられる.

Fig. 34 V_{4-x}Mn_xGeS₈ (x = 0, 0.02, 0.05) の熱伝導率 κの温度依存性

4.5.4 無次元性能指数 ZT の温度依存性

Figure 35 に V_{4-x}Mn_xGeS₈(*x* = 0, 0.02, 0.05)の無次元性能指数 *ZT* の温度依存性を示す. すべての試料で *ZT* は温度上昇に伴い増大する振る舞いを示した. *x* の増大に伴い, 最高温度 340 K における *ZT* は増大する.

Fig. 35 V_{4-x}Mn_xGeS₈ (x = 0, 0.02, 0.05)の ZT の温度依存性

4.6 電子輸送計算

V₄GeS₈について OpenMX を用いて計算した *E-k* 関係,電子状態密度の情報をもとに BoltzTraP を用いた電子輸送計算を行った. BoltzTraP の入力パラメータであるフーリエ補完係数は 10 に設 定し,フーリエ補完によって *k* 点数を 10 倍にした. (ここでのフーリエ補完係数は直接 *k* 点数と比 例するように BoltzTraP 内で調整されている.)

熱電能 S

Figure 36 に電子輸送計算より得られた T = 300 K における S の μ 依存性 ($E_g = 30, 165$ meV) を示す.第一原理計算で得られたバンドギャップ $E_g = 30$ meV で計算した S は μ を挟んでピークを 持ち,その絶対値の最大値はおよそ 150 μ VK⁻¹程度である.これは実験の T = 300 K での S の値 の半分以下であり,交換相関ポテンシャルが GGA の範疇で得られる電子状態では実験値のよう な大きな S は得られないことを示している.この原因は第一原理電子状態計算で求めた E_g が実 験の試料より小さいことが考えられる.密度汎関数理論による第一原理電子状態計算では電子 の自己相互作用が正しく取り扱われていないため E_g を 40%程度に過小評価する傾向がある. [a22]本研究では E_g をフィッティングパラメータとして, E_g を変えながら S-T 曲線を計算し,実験値 の S-T をもっともよく再現する $E_g = 165$ meV を採用した.この値は実験の ln ρ - T^1 より見積もっ た 0.20(4) eV と矛盾しない.以降の電子輸送特性については $E_g = 165$ meV として計算した. $E_g = 165$ meV での S- μ のピークは増大し, μ 近傍で 300 μ VK⁻¹を超えるピーク値を取ることがわかる.

Fig. 36 V₄GeS₈の μ 依存性($E_g = 30, 165 \text{ meV}$)

Figure 37 に V₄GeS₈ およびリジッドバンド的に正孔ドープした *S* の温度依存性を示す. 計算から 求めた *S*-*T* 曲線は約 260 K でピークを持ち, 300 K における *S* の絶対値は 330 μ VK⁻¹と実験値と よく一致する. V₄GeS₈ にリジッドバンド的に正孔をドープすると *S* の絶対値が減少し, *S*-*T* のピーク 温度は高温側にシフトする. ドープした正孔の密度が $p = 3.80 \times 10^{20}$, 7.00 × 10²⁰ cm⁻³ の時, V₄. _xMn_xGeS₈ (x= 0.02, 0.05) の実験の *S*-*T* の傾向をよく再現する. 以上のことから, V サイトを Mn で 置換することで V³⁺が Mn²⁺に置換され, V₄GeS₈ に正孔ドープが生じていると考えられる.

Fig. 37 V4GeS8 およびリジッドバンド的に正孔ドープした S の温度依存性

電子の緩和時間 *τ*el の見積もり

第一原理計算から ZT を定量的に計算するには電子輸送計算の結果とは別に電子の緩和時間 τ_{el} ,および格子熱伝導率 κ_{lat} の情報が必要となるが τ_{el} の情報を第一原理電子状態計算から得ることはできない. 電子輸送計算から緩和時間で規格化された電気伝導率 $\sigma \tau_{el}^{-1}$ は計算でき,実験では電気伝導率 σ を測定することができる. そのため,両者を比較することで μ 近傍における平均の τ_{el} を計算することができる. 本研究ではこの方法を用いて, μ 近傍における平均の τ_{el} を見積もった. 実験の ρ と計算値の $\sigma \tau_{el}^{-1}$ の比較から $\tau_{el} = 9.3 \times 10^{-18}$ sec. と求まった. これは Al などの一般な金属材料の $\tau_{el} \sim 10^{-14}$ sec. と比較すると非常に小さい. τ_{el} が非常に小さい理由としてはV₄GeS₈の測定試料は多結晶体であり,絶縁体や粒界といった介在物が存在するため極端に短い τ_{el} となっている可能性がある. τ_{el} を長くするにはV₄GeS₈の単結晶を作る必要があると考えられる.

Figure 38 に *T* = 340 K における電子輸送計算から求めた無次元性能指数 *ZT*_{DFT}の μ 依存性 を示す. τ_{el} は 9.3 × 10⁻¹⁸ sec. を用い,格子熱伝導率 κ_{hat} は実験値から求めたものを用いた. *x* = 0 では μ は *ZT*_{DFT} のピークのちょうど中腹に位置し,正孔ドープすることで *ZT* が 2 倍程度まで増大 することが予想される.これは V_{4-x}Mn_xGeS₈ (*x*= 0.02, 0.05)の実験値の *ZT* の結果を説明するも のである. 以上, V サイトを Mn で置換することで正孔ドープが生じ, *ZT* が増大することを実験と 計算の両面から明らかにした.

Fig. 38 T = 340 K における電子輸送計算から求めた無次元性能指数 ZT_{DFT} の μ 依存性

4.7 まとめ

第一原理電子状態計算と実験の両面から遷移金属硫化物 V₄GeS₈ の熱電物性について以下 のことを明らかにした.

- 単体元素を石英管に真空封入したものを加熱・反応させることで母相 V4GeS8 および V サイトを Mn で置換した V4-xMnxGeS8(x = 0.02, 0.05)の単相試料を得ることに成功した.
- V₄GeS₈ はバンドギャップ E_g=0.20(4)の狭ギャップ半導体であり、V サイトを Mn で置換することで V³⁺が Mn²⁺に置換され、正孔ドープが生じることを明らかにした。
- 電子輸送計算から V₄GeS₈ に正孔ドープを行うことで ZT が向上する材料の設計指針を確立し、実際に V サイトを Mn で置換することで V₄GeS₈ に正孔ドープを行い ZT を向上させることに成功した。

5章 ワイドギャップ硫化物スピネル ZnCr₂S₄の電子輸送特性と

元素置換効果

5.1 ZnCr₂S₄の結晶構造

Figure 39 に ZnCr₂S₄の結晶構造を示す. 晶系は立方晶, 空間群はFd3mであるスピネル構造 を有する. Zn の周りに硫黄 S が 4 つ配位し 4 面体を, Cr の周りに S が 6 つ配位し 8 面体を形成 する.^[50] ブラベー格子あたり Zn が 8 個, Cr が 16 個, S が 32 個, 合計 56 個もの多数原子を含む ため, 比較的低い熱伝導率を示すことが期待できる.

Fig. 39 ZnCr₂S₄の結晶構造

5.2 試料作製

本研究で作製した試料は溶融法で作製した. 出発原料として単体の Zn, Cr, Ga, S を化学量論 比に従って入れ, 石英管に真空封入した. 石英管内の圧力は 3.0×10⁻⁶ torr 以下である. 800°C で 1 日加熱・反応させることでインゴット状の多結晶体を作製した. 得られたインゴットを粉砕・撹 拌し, 290 MPa でコールドプレスを行いペレット状にしたうえで再び石英管に真空封入し, 800°Cで 1 日 anneal 処理を行った. この粉砕+コールドプレス+anneal 処理を 2 回行うことで単相の多結晶 体試料を得た. それらを 400°C・300MPa の条件下で 15 分間ホットプレスすることでペレット状の測 定試料を得た.

原料	純度 / %	形状	製造
Zn	99.999	Powder	高純度化学研究所
Cr	99.99	Powder	高純度化学研究所
S	99.99	Powder	高純度化学研究所
Ga	99.999	Powder	レアメタリック

Table 8 試料の原料の純度と詳細

Fig. 40 加熱・反応プロセスの温度プロファイ Fig. 41 Anneal プロセスの温度プロファイル

5.3 粉末 X 線回折

Figure 42 に粉砕+コールドプレス+anneal 処理を 2 回行った $ZnCr_2S_4$ および粉砕+コールドプレス+anneal 処理を 2 回行い, その後 Hot press した $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)の XRD pattern を示す. x = 0, 0.10, 0.25, 0.50 まではほぼ単相試料を得ることに成功した. x = 0.75 ではわずかに不純物相が析出する.

Fig. 42 Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.10, 0.25, 0.50, 0.75) \mathcal{O} XRD pattern

5.4 SEM-EDX

Figure 43-46 に $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)の SEM-EDX のマッピング像を示す. x = 0.10, 0.50 の試料で Zn, Ga, Cr, S はそれぞれ均一な分布が見られ, 偏析や組成ムラは見られなかった. 酸素 O の像が全体に見られることから, 試料がわずかに酸化している可能性がある. x = 0.25 ではわずかではあるが, 同一箇所に Cr, O の偏析が見られ, Cr-O 化合物が析出している可能性がある. x = 0.75 では Cr のみスペクトルが見える箇所があり, Cr リッチな部分が確認された.

Fig. 43 $x = 0.10 \text{ } \mathcal{O}$ SEM-EDX

Fig. 44 x = 0.25 \mathcal{O} SEM-EDX

Fig. 45 x = 0.50 **Ø** SEM-EDX

Fig. 46 *x* = 0.75 **Ø** SEM-EDX

5.5 熱電物性

高温熱電物性測定装置 RZ2001i による熱電能 Sと電気抵抗率 ρの測定

ZnCr₂S₄の熱電物性の測定は前述の PPMS の測定(340 K 以下)に加えて, 高温熱電物性測定 装置 RZ2001i(株式会社オザワ科学製, 石川県工業試験場 所有)による室温から 400°C (~673 K)までの熱電能 S と電気伝導率 ρ の温度依存性を測定した. Figure 47 に装置のセットアップのつ いて示す. 測定には N₂フロー下(200 ml / min)で行い, Fig. 48 に示すように温度一定下で試料両 端に温度差 ΔT を付け, 熱起電力 ΔV の ΔT 依存性を測定し, その傾きを取ることで熱電能 S を算 出した. 電気抵抗率 ρ の測定は 4 端子法で行い, 高温側の Pt 電極から低温側の Pt 電極に電流 を流し, その時の電圧降下を V(-), V(+)端子間で測定した.

Fig. 47 RZ2001i の試料セットアップ

Fig. 48 熱電能 Sの測定における ΔVの ΔT 依存性

5.5.1 電気抵抗率 ρ

母相 ZnCr₂S₄ のペレット試料は室温で電気抵抗が数 M Ω と非常に大きく絶縁体的であった. Figure 49 に Zn サイトを Ga で置換した Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75)の ρ の温度依存 性について示す. すべての試料は温度上昇に伴い ρ が減少する半導体的振る舞いを示した. 340 - 673 K 以上の高温測定ではどの試料も1回目の昇温測定より2回目の昇温測定の方が ρ が増大した. これは試料の酸化,相の変化が原因であると考えられる.

Fig. 49 Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75)の ρの温度依存性

Figure 50 に $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)の $ln\rho - T^{1/2}$ プロットを示す. 3-340 K の温 度領域において x = 0.10, 0.50 は直線的である. x = 0.25, 0.75 も低温ではプロットは直線的である が,高温になると曲がっていくプロットを得た. 340 K 以上ではどの試料も,測定点が少ないものの の,一回目の昇温過程ではプロットは概ね直線的である.以上のことから $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)では伝導機構はホッピング伝導が支配的であることが分かった.^[51]

Fig. 50 $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)の $ln\rho$ - $T^{-1/2}$ プロット

5.5.2 熱電能 S

Figure 51 に $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)の S の温度依存性を示す. S はすべての 試料で負の値を示し、n 型である. 200-600 K の温度領域では S はほぼ直線的に増大する. x の 増大に伴い S の絶対値と温度係数は減少する. これは Zn サイトを Ga で置換することで電子ドー プが生じキャリア密度が増大したためと考えられる. 340 - 673 K での測定で1回目の昇温測定よ り 2 回目の昇温測定の S ほうが絶対値が大きいのは、酸化や相の変化によってキャリア密度が 減少したことが原因と考えられる.

Fig. 51 Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75)のSの温度依存性

5.5.3 熱伝導率κ

Figure 52 に $Zn_{1-x}Ga_xCr_2S_4$ (x = 0.10, 0.25, 0.50, 0.75)の κ の温度依存性および T = 300 K にお けるкの置換量 x の依存性を示す. いずれの試料も T = 300 K で kt 1.5 WK⁻¹m⁻¹ 以下と低い. x = 0.25 が比較的高いκを示すのは、電気抵抗率 ρ の減少により電子熱伝導率κει の寄与が大きくな ったためと考えられる.x=0.50でxが最も小さくなるのは合金散乱が最も顕著になり, Kelと格子熱 伝導率 Klat が減少したためと考えられる.

のкの温度依存性

Fig. 52 Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K における Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50, 0.75) Fig. 53 T = 300 K におり 0.10, 0.25, 0.50, 0.75)のKの x 依存性

5.6 第一原理電子状態計算

ZnCr₂S₄の熱電物性をより詳細に明らかにするため、OpenMX を用いた第一原理電子状態計算 を行い, *E-k* 関係,電子状態密度を計算した.得られた計算結果をもとに BoltzTraP を用いた電子 輸送計算を行った.第一原理電子状態計算では ZnCr₂S₄ は T = 0 K における格子定数・原子座 標・基本並進ベクトルのなす角(α , β , η を準ニュートン法を用いて最適化した.等価な Zn サイトの うちーつを Ga で置換した Zn_{0.5}Ga_{0.5}Cr₂S₄ は T = 0 K において格子定数・原子座標を最適化した. 交換相関ポテンシャルは GGA-PBE を用い、スピンー軌道相互作用を考慮した.Table 9 に第一 原理電子状態計算の計算条件を示す.電子輸送計算で用いたフーリエ補完係数は 10 に設定し、 フーリエ補完によって k 点を 10 倍に増やした.(ここでのフーリエ補完係数は直接 k 点数と比例す るように BoltzTraP 内で調整されている.)

	擬原子基底関数	Kgrid	Cutoff energy
ZnCr ₂ S ₄	Zn6.0H-s4p3d2	$15 \times 15 \times 15$	500 Ryd
	Cr6.0-s3p3d3f1		
	S7.0-s4p3d3f2		
$Zn_{0.5}Ga_{0.5}Cr_2S_4$	Zn6.0H-s4p3d2		
	Ga7.0-s3p3d3f1		
	Cr6.0-s3p3d3f1		
	S7.0-s4p3d3f2		

Table 9 ZnCr₂S₄の第一原理電子状態計算の計算条件

5.6.1 E-k 関係

Figure 54 に ZnCr₂S₄ の *E-k* 関係を示す. *μ* は禁制帯中に位置し, 真性半導体的である. 価電子 帯の上端および伝導帯の下端はいずれも X 点であることから直接遷移型の半導体であることが 示唆される.

Fig. 54 ZnCr₂S₄の *E-k* 関係

Figure 55 に Zn_{0.5}Ga_{0.5}Cr₂S₄ の *E-k* 関係を示す. *μ* は伝導体中に位置し, 金属的である. W, K, U, L 点でバンド分裂が顕著である.

Fig. 55 Zn_{0.5}Ga_{0.5}Cr₂S₄の *E-k* 関係

5.6.2 電子状態密度

Figure 56 に Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.50)の DOS を示す. x = 0 では μ は禁制帯中に位置し、真 性半導体的であるが x = 0.50 では DOS が全体にシフトし、 μ は伝導体中に位置し金属的である. これは Zn サイトを Ga で置換することで μ を制御できることを示している. これは、実験における ZnCr₂S₄ が絶縁体的で、Zn サイトを Ga 置換すると電気伝導性を示すことを定性的に再現する.

Fig. 56 $Zn_{1-x}Ga_xCr_2S_4 (x = 0, 0.50)\mathcal{O}$ DOS

Figure 57 に ZnCr₂S₄の DOS と各構成元素 Zn, Cr, S の部分状態密度(PDOS)を示す. μ 近傍 で最も大きな寄与を持つのは Cr の PDOS で次いで支配的なのは S の PDOS であり, μ 近傍では CrとSの混成軌道から成る DOS が最も支配的である.

Fig. 57 ZnCr₂S₄の DOS と構成元素 Zn, Cr, S のそれぞれの PDOS

Figure 58-60 に Zn, Cr, S の軌道角運動量ごとの PDOS を示す. μ 近傍で寄与の大きい Cr, S はそれぞれ 3d 軌道, 3p 軌道の寄与が最も大きく, μ 近傍では Cr の 3d と S の 3p 軌道による混 成軌道が最も支配的であることが分かった.

との PDOS

Fig. 60 S の軌道角運動量ごと の PDOS

Figure 61 に Zn_{0.5}Ga_{0.5}Cr₂S₄の DOS と構成元素 Zn, Ga, Cr, S のそれぞれの PDOS を示す. 置換 した Ga の DOS は広いエネルギー範囲で小さい. 母相 ZnCr₂S₄と同様に Cr, S の寄与が大きい.

Fig. 61 Zn_{0.5}Ga_{0.5}Cr₂S₄の DOS と構成元素 Zn, Ga, Cr, S のそれぞれの PDOS

Figure 62-65 に Zn, Ga, Cr, S の軌道角運動量ごとの PDOS を示す. 母相 ZnCr₂S₄と同様に Cr の 3d, S の 3p 軌道の寄与が大きい.

Fig. 62 Zn の軌道角運動量ご との PDOS

Fig. 63 Ga の軌道角運動量ご との PDOS

Fig. 64 Cr の軌道角運動量ご との PDOS

Fig. 65 S の軌道角運動量ごとの PDOS

5.7 電子輸送計算

Figure 66 に Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.50)の Sの μ 依存性を示す. x = 0, 0.5 ともに S は 300 K で 負の値を示し, n 型の熱電材料であることを示している. これは, 実験結果と定性的に一致する. x= 0 では μ は禁制帯中に位置するため S は計算上大きく, Zn サイトを Ga で置換することで μ は 伝導体中に移動するため S の絶対値は小さくなる結果を得た.

Fig. 66 Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.5)の Sの µ 依存性
Figure 67 にリジッドバンド的に電子ドープした ZnCr₂S₄の熱電能 S の計算値の温度依存性に ついて示す. 温度依存性を計算するにあたりフェルミ分布と μ の温度依存性を考慮した. ZnCr₂S₄ にリジッドバンド的に電子ドープすると S の絶対値と温度係数が減少する傾向を得た. これは, 実 験における Zn サイトを Ga で置換した試料の S-T の傾向と一致する. これは実験で作製した Zn サイトを Ga で置換した試料では電子ドープが生じていることを示している. 300 K 以下の低温域で はほぼ S の計算値は実験値を定量的に再現した. 300 K 以上の高温域では全体に過小評価する 傾向が見られた. これは, 高温になるに従ってフェルミ分布の分散が大きくなり, 式(20)の積分す るエネルギー領域が広くなることで緩和時間の温度依存性・エネルギー依存性が顕著になり, 緩 和時間近似が成り立たなくなったためと考えられる.

Fig. 67 リジッドバンド的に電子ドープした ZnCr₂S₄の熱電能 S の温度依存性

Figure 68 に Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.50)の電子構造のみで決まる最大の無次元性能指数 Z_{el}T (= $\sigma S^2/\kappa_{el}$)の μ 依存性を示す. x = 0 では, μ は Z_{el}T の谷間に位置しており, Z_{el}T は n 型で最大約 40, p 型で最大約 65 と大きな値を示す. x = 0.5 では, μ に対する Z_{el}T の形状は変わらず, x = 0 と比べ μ は谷間から右側の山の裾野までシフトする. これは 0 < x < 0.5 の間で x の値を最適化することで, Z_{el}T の極大値に μ をシフトさせることが可能であることを示している.

Fig. 68 Zn_{1-x}Ga_xCr₂S₄ (x = 0, 0.5)の Z_{el}Tの μ 依存性

Figure 69 に Zn_{1-x}Ga_xCr₂S₄の 400°Cにおける実験値の ZT と ZnCr₂S₄にリジッドバンド的に電子 をドープした ZT_{DFT}の x 依存性を示す. ZT_{DFT} は電子の緩和時間 τ_{el} は 5.0×10⁻¹⁵ sec. とし, 格子 熱伝導率 κ_{lat} は 1 WK⁻¹m⁻¹の定数として固定した. 計算上 Zn サイトを Ga で置換することで μ が高 エネルギー側に電子 2 個分シフトしたため, Zn をひとつ Ga で置換することで電子数が 2 個増え ると仮定した. 実験値の ZT は熱伝導率 kt 340 K の PPMS-TTO の測定値を用いた.

得られた ZT の x 依存性は実験と計算で定性的に傾向が一致した. 絶対値が一致しなかったの は、計算で想定した τ_{el} が実際の緩和時間より長かったためと考えられる. 緩和時間が小さい理由 としては、試料が多結晶体であるために粒界や介在物の影響を受けて τ_{el} が減少した可能性が考 えられる. より高性能化を行うためには ZnCr₂S₄の単結晶を作製する必要があると考えられる.

Fig. 69 400°Cにおける Zn_{1-x}Ga_xCr₂S₄の ZT の実験値と計算値の x 依存性

5.8 まとめ

ワイドギャップ硫化物スピネル ZnCr₂S₄ および Zn サイトを Ga で置換した試料について, 実験と 第一原理電子状態計算を用いて以下のことを明らかにした.

- ZnCr₂S₄ および Zn サイトを Ga で置換した Zn_{1-x}Ga_xCr₂S₄ (x = 0.10, 0.25, 0.50)の単相試料の 合成に成功した
- ZnCr₂S₄ は絶縁体的であり、Zn サイトを Ga で置換すると電子ドープが生じ半導体的になる n 型硫化物熱電材料であることを明らかにした
- ▶ 電子輸送計算よりGaの最適置換量を見積もり材料設計の指針を確立し、ZTを向上させることに成功した

6章 809 種類の硫化物の電子輸送計算

6.1 OpenMX と BoltzTraP を用いた電子輸送計算の計算スキーム

高効率に高性能熱電材料を探索するにはより多くの材料についての電子輸送特性を計算する ことが必要である.本研究では、OpenMX+BoltzTraP による電子輸送計算のインターフェイスプロ グラムを開発したことで、OpenMX で求めた電子状態をもとに電子輸送特性(σ tel⁻¹, *S*, κ eltel⁻¹)を計 算することが可能となった. Figure 70 に OpenMX と BoltzTraP を用いた電子輸送計算の計算ス キームの概要を示す.

Fig. 70 OpenMX と BoltzTraP を用いた電子輸送計算の計算スキームの概要

結晶構造の情報(.cif ファイル)は Material project^[52]より取得し, OpenMX を用いて結晶構造の 構造最適化を行った後, 第一原理電子状態計算により*E-k* 関係と電子状態密度を得た. 得られた *E-k* 関係をもとに BoltzTraP を用いて緩和時間近似の範疇で電子輸送計算を行い, 化学ポテンシ ャル μ における電子輸送特性を集計した. 構造最適化には準ニュートン法を用い, 格子定数・原 子座標・格子ベクトルの角度を全て同時に最適化した. OpenMX ではスピン-軌道相互作用と構造 最適化の計算を同時に行うことができないため, 構造最適化を行ったのち, 得られた結晶構造を 用いてスピン軌道相互作用を考慮に入れて再計算した. フェルミ分布の温度は 300 K に設定した. Kgrid のメッシュ幅は約 0.050 bohr⁻¹/ mesh に設定した. (メッシュ数は整数値なので厳密にメッシュ 幅を統一することはできない.) 平面波のエネルギーは 500 Ryd に設定した. また, 化学両論組 成のものだけでなく, 等価なサイトを一つ異種元素で置換した硫化物についても計算を行った. 第 一原理電子状態計算の際に用いた擬原子基底関数の一覧を Table 10 に示す. 擬原子基底関数 は OpenMX の単体元素のバルクについての EvsCell volume のベンチマーク計算において用いら れたものを参照した.^[53] ベンチマーク計算では比較的軽い基底のセットと重い基底のセットで実施されているが,本研究では基底の過完備による overcompleteness が生じるのを防ぐため,比較的軽い基底のセットを参照した.

元素	擬原子基底関数
Al	A17.0-s3p3d2
Si	Si7.0-s2p2d1
Р	P7.0-s3p3d2f1
S	S7.0-s3p3d2f1
Ti	Ti7.0-s3p3d2
V	V6.0-s3p3d2
Cr	Cr6.0-s3p3d2
Mn	Mn6.0-s3p3d3
Fe	Fe6.0S-s2p2d1
Со	Co6.0S-s2p3d2f1
Ni	Ni6.0S-s3p3d2f1
Cu	Cu6.0S-s2p2d2
Zn	Zn6.0S-s2p2d2
Ga	Ga7.0-s2p2d2
Ge	Ge7.0-s3p3d3f2
Zr	Zr7.0-s3p2d2
Nb	Nb7.0-s3p2d2
Мо	Mo7.0-s3p2d2f1
Sn	Sn7.0-s2p2d3f1
Та	Ta7.0-s3p2d2f1
W	W7.0-s3p2d2f1

Table 10 OpenMX と BoltzTraP を用いた電子輸送計算で用いた基底関数

6.2 電子輸送計算

得られた $\sigma \tau_{el}$ ⁻¹, *S*, $\kappa_{el}\tau_{el}$ ⁻¹をもとにローレンツ数 *L*, 出力因子 *PF* (= σS^2), 電子構造で決まる最大 の無次元性能指数 *Z*_{el}*T*, および無次元性能指数 *ZT* を計算した. *PF* と *ZT* の計算の際には τ_{el} と κ_{hat} はエネルギー・温度に依存せず, $\tau_{el} = 5 \times 10^{-15} \text{sec.}$, $\kappa_{hat} = 1 \text{ WK}^{-1} \text{m}^{-1}$ と仮定した.

$$Z_{\rm el}T = \frac{S^2\sigma}{\kappa_{\rm el}}T, \qquad ZT = \frac{S^2\sigma}{\kappa_{\rm el}}T \cdot \frac{1}{1 + \frac{\kappa_{\rm lat}}{\kappa_{\rm el}}} = Z_{\rm el}T \cdot \frac{1}{1 + \frac{\kappa_{\rm lat}}{\kappa_{\rm el}}}$$
(38)

$$L = \frac{\kappa_{\rm el}}{\sigma T} \tag{39}$$

式(38)に示すように、 $Z_{el}T$ はしばしば A factor と呼ばれ緩和時間近似の範疇であれば電子輸送特性のみで計算できる. *ZT*は式変形すると $Z_{el}T$ と $(1/(1+\kappa_{lat}/\kappa_{el}))の積で表すことができ、 <math>(1/(1+\kappa_{lat}/\kappa_{el}))$ はしばしば B factor と呼ばれ数学的に 1 を超えない. 以上から高い *ZT* を示す材料は高い $Z_{el}T$ と 1 に近い B factor を兼ね備えた材料に他ならない.

電子輸送計算では温度は T = 673 K(約 400°C)に設定した. これは実験における高温測定において硫黄 S が蒸発しないと考えられる最高温度である. BoltzTraP には固有値数をフーリエ補完によって増やすことが可能であり、本研究ではフーリエ補完係数を 10 に設定することによって k 点数を 10 倍に増やした. (ここでのフーリエ補完係数は直接 k 点数と比例するように BoltzTraP 内で調整されている.)

6.3 評価関数

候補となる熱電材料をスクリーニングするのに用いる評価関数として ZelT (= A factor), B factor, ZT が特に重要である.

式(38)からわかるように $Z_{el}T$ は電子構造で決まる最大の無次元性能指数であり, $Z_{el}T$ が大きけ れば大きいほど有望な熱電材料である可能性が高い. しかし, $Z_{el}T$ は熱電能 S のバンドギャップ E_g 依存性を反映するため, Fig. 71 に示すように E_g の大きくなるほど $Z_{el}T$ のピークが増大する. そ のため巨大な $Z_{el}T$ を示すからといって必ずしも良い熱電材料というわけではなく, 単なるギャップ の広い材料である可能性もある. 一方, B factor は数学的に 1 以上にならないため 1 に近ければ 近いほど良い熱電材料であることを示しているが電子状態計算の場合は格子熱伝導率・電子の 緩和時間を一定として取り扱わざるを得ないため, 定量性に欠ける. また, いくら B factor が 1 に 近くても $Z_{el}T$ が小さい場合には ZT は小さくなってしまうという欠点が存在する.

本研究では上記を踏まえ,最も評価関数として適しているものとして, $ZT (= Z_eT \times B \text{ factor})$ を 採用した.ただし格子熱伝導率を 1 WK⁻¹m⁻¹・電子の緩和時間 5.0×10⁻¹⁵ sec.で一定として取り扱 っている. ZT は Fig. 72 に示すように E_g がフェルミ分布の分散に比べて十分に広い場合には E_g に依存しない.以降,上記の条件に従って計算された ZT は評価関数 ZT_{DFT}と呼ぶことにする.

Fig. 71 $Z_{el}T$ の μ 依存性 ($E_g = 240, 480 \text{ meV}$) Fig. 72 ZT_{DFT} の μ 依存性 ($E_g = 240, 480 \text{ meV}$)

6.4 スクリーニングの妥当性

本研究で用いた評価関数 *ZT*_{DFT} は格子熱伝導率を1WK⁻¹m⁻¹・電子の緩和時間 5.0×10⁻¹⁵ sec. で一定とする大胆な近似を用いている. そのため, 材料のスクリーニングにおいて実際に高性能 熱電材料を探索するうえで評価関数 *ZT* がどこまで材料のスクリーニングが有効であるか検証す る必要がある.

本研究では、高性能熱電材料として知られている Bi₂Te₃^[54], PbTe^[55], SnSe^[56], Cu₁₂Sb₄S₁₃(テトラ ヘドライト)^[7], Cu₂₆V₂Ge₆S₃₂(コルーサイト)^[8]および本研究であまり高い ZT を示さないことが明らか となった NiSbS, V₄GeS₈ について本研究の評価関数 ZT_{DFT} を用いて電子輸送特性の評価を行っ た.

Figure 73, 74 に $Bi_2 Te_3$ (実験値 $E_g = 0.15$ eV, 計算値 $E_g = 0.098$ eV)^[57]の電子輸送計算の結 果を示す. 実験値(~ 0.9 - 1)と比較するとやや過小評価ではあるが, 性能の高い a, b 軸方向の ZTDFT は 300 K で 0.33 程度とオーダーは一致する. フェルミ分布の分散がバンドギャップと同程度 の狭ギャップ半導体の場合, DFT による E_g の過小評価が Sの過小評価につながり, 実験の E_g を 用いた場合と比べ ZT_{DFT} はかなり過小評価すると予想されたが, 結果として 3%程度過小評価す る程度であった. よって, $E_{g} \sim 100$ meV 狭ギャップ半導体であっても ZT_{DFT} はそれほど E_{g} の影響 を受けないことが分かった.

の ZT の u 依存性

Fig. 73 実験値 $E_g = 0.15$ eV を用いた Bi₂Te₃ Fig. 74 DFT 計算の $E_g = 0.098$ eV を用いた Bi2Te3の ZTの μ 依存性

Figure 74 に PbTe の電子輸送特性を示す. PbTe の ZT は μ 近傍に極大値を持ち T = 673 K で 1.6 に達する(p型). これは報告されている PbTe の実験値[58]と一致する.

Fig. 74 PbTe の ZT の µ 依存性

Figure 75, 76 に T = 673 K における SnSe(Pnma)の ZT_{DFT} の μ 依存性を示す. SnSe は低温相 (Pnma,~800 K)ではそれほど ZT は高くないが, それでも T=673 K でおよそ ZT=0.5 (p型, b 軸) に達する. 評価関数 ZTDFT では p 型で最大 1 程度の値でありオーダーは概ね合う.[59]

SnSe(Pnma)の ZT_{DFT}の μ 依存性

Fig. 75 実験値 $E_g = 0.860$ eV を用いた Fig. 76 計算値 $E_g = 0.627$ eV を用いた SnSe(Pnma)の ZT_{DFT}の μ 依存性

Figure 77 に T = 923 K における SnSe(*Cmcm*)の ZT_{DFT} の μ 依存性を示す. の最大値は結晶軸 によって異なるが, 平均値は p, n 型ともに 1.0 - 1.5 のピークを持つ. これは報告されている実験値 ^[59]と概ね一致する.

Fig. 77 計算値 Eg = 0.365 eV を用いた SnSe(Cmcm)の ZTDFT の µ 依存性

Figure 78 にテトラヘドライト Cu₁₂Sb₄S₁₃の ZT_{DFT} の μ 依存性を示す. T = 673 K において ZT_{DFT} は最大で約 0.7 程度である. これは実験値と一致する.^[7]

Fig. 78 T = 673K における Cu₁₂Sb₄S₁₃の ZT_{DFT}の μ 依存性

Figure 79 に T = 673 K におけるコルーサイト Cu₂₆V₂Ge₆S₃₂ の ZT_{DFT} の μ 依存性を示す. ZT_{DFT} は最大で約 0.8 であり、これは実験値とよく一致する.^[8]

Fig. 79 T = 673 K におけるコルーサイト Cu₂₆V₂Ge₆S₃₂の ZT_{DFT}の μ 依存性

Figure 80, 81 に本研究にて世界で初めて実験値の *ZT*を明らかにした NiSbS, V₄GeS₈ の *ZT*_{DFT} の μ 依存性を示す. NiSbS は μ 近傍で *ZT*_{DFT} は 0.01 程度であり低い *ZT* の実験値定性的に再現 する. 一方で V₄GeS₈ は μ 近傍で 0.2-0.25 と比較的高い *ZT*_{DFT}を示し, 実験値と一致しなかった.

Fig. 81 V₄GeS₈の ZT_{DFT}の μ 依存性

評価関数 ZT_{DFT} は高性能熱電材料 Bi_2Te_3 , PbTe, SnSe, $Cu_{12}Sb_4S_{13}$, $Cu_{26}V_2Ge_6S_{32}$ に対し 0.3-2 程度の高い値を示し、本研究の実験で良い性能を示さなかった NiSbS では 0.01 以下の低い値を 示し、高性能熱電材料をスクリーニングするうえで有効である. ただし、 V_4GeS_8 , $ZnCr_2S_4$ のように ZT_{DFT} ではハイスコアであっても、実際に ZT が低いものある.

6.5 各電子輸送特性の相関

数, $V_{p,c}$ は基本単位胞の体積, M は $T=0$ K 基本単位胞の total spin moment である.												
	S	$\sigma \tau_{\rm el}^{-1}$	$\kappa_{\rm el} \tau_{\rm el}^{-1}$	PF	$Z_{\rm el}T$	В	L	<i>n</i> _{atom}	$V_{\rm p.c}$	$V_{\rm p.c}/$	М	ZT
						factor				natom		
S	\backslash	0	0	0	0	0	0	Δ	Δ	×	0	0
$\sigma \tau_{\rm el}^{-1}$	\backslash			?	0	0		0	0	0	?	0
$\kappa_{\rm el} \tau_{\rm el}^{-1}$				0	0			0	0	0	?	0
PF	\backslash					0	0	0	Δ	?	?	
$Z_{\rm el}T$						0	0			?	?	0
В	\setminus			\backslash			0	×	Δ	×	Δ	0
factor												
L	\backslash							×	Δ	×	0	0
<i>n</i> _{atom}	\backslash											?
V _{p.c}												
V _{p.c} /	\setminus											
natom												
М												
ZT												

Table 11 に各パラメータの相関関係をまとめたものを示す. n_{atom} は基本単位胞に含まれる原子数, V_{nc} は基本単位胞の体積, Mは T=0 K 基本単位胞の total spin moment である.

Table 11 各電子輸送特性の相関関係

Figure 82 に σ_{tel}^{-1} の *S* の依存性を示す. σ_{tel}^{-1} は *S* の小さい原点付近では大きな値を取り, *S* の 増大に伴い減少する. これはキャリア密度の減少に伴い σ_{tel}^{-1} が減少し, *S* が増大するという自由 電子モデルと定性的に一致する.

Fig. 82 _{のでel}⁻¹の S の依存性

Figure 83 に $\kappa_{el}\tau_{el}^{-1}$ のSの依存性を示す.Sの絶対値の増大に伴い $\kappa_{el}\tau_{el}^{-1}$ は減少する.

Fig. 83 Keltel⁻¹のSの依存性

Figure 84 に $Z_{el}T$ の S 依存性を示す. S の絶対値の増大に伴い $Z_{el}T$ は増大する. 分布が明らかに偏っており, 1000 μ VK⁻¹程度まで $Z_{el}T$ が増大しそれ以上で飽和し始める群, 200 μ VK⁻¹程度 で飽和し始める群の二つが見られる.

Fig. 84 ZelT の S 依存性

Figure 85 に B factor の S 依存性を示す. B factor は S が小さいほど大きい. およそ ±200 μVK⁻¹ 程度までは B factor はそれほど変化しないが, 絶対値がそれ以上大きくなると急激 に減少する.

Fig. 85 B factor の S 依存性

Figure 86 にローレンツ数 L の S の依存性を示す.両者には相関がみられ, L が 2.45 × 10⁻⁸ V²K⁻² ² 付近では S はほとんどの場合は±200 μ VK⁻¹ である. S の増大に伴い L は増大し, S の絶対値が 200 μ VK⁻¹ 以上の領域では L は 10⁻⁷-10⁻⁶ V²K⁻²オーダーとなるものが多い.

Fig. 86 L の S 依存性

Figure 87 に単位胞あたりの原子数 n_{atom} に対する S の依存性を示す. 両者に明らかな相関は見られない. S の絶対値が 1000 μ VK⁻¹を超えるものはほとんどが $n_{\text{atom}} < 15$ の系であった.

Fig. 87 単位胞あたりの原子数 natom に対する S の依存性

Figure 88 に単位胞の体積 $V_{p,c}$ に対する S の依存性を示す. 両者に明らかな相関は見られなかった. S の絶対値が 1000 μ VK⁻¹を超える系のほとんどが $V_{p,c}$ < 3000 bohr³ であった.

Fig. 88 単位胞の体積 V_{p.c.}に対する S の依存性

Figure 89 原子一個当たりが占める体積 $V_{p.c.} n_{atom}^{-1}$ の S の依存性を示す. 両者に明らかな相関 は見られなかった.

Fig. 89 原子一個当たりが占める体積 V_{p.c.} n_{atom}-1 の S の依存性

Figure 90 にスピン磁気モーメント *M* に対する *S* の依存性を示す. 両者には明らかな相関がみられ, *M* が大きい系は *S* が小さいものが多かった. *S* はアップスピンバンドとダウンスピンバンドの重み付き平均で効いてくるので, スピン分極の大きい系は DOS の分散が大きく *S* が小さくなると考えられる.

Fig. 90 スピン磁気モーメント M に対する S の依存性

Figure 91 に *ZT* の *S* 依存性について示す両者には明らかな相関がみられた. ZT は S の絶対 値の増大に伴い増大し,およそ 140 – 170 μVK⁻¹程度でピークを持つ. これは *ZT* が最大となる *S* が 140 – 170 μVK⁻¹程度であることを示しており,材料設計の一つの指針となりうると考えられる.

Fig. 91 ZT の S 依存性

Figure 92 に出力因子 *PF* の σ_{rel}^{-1} の依存性を示す. 両者には明らかな相関がみられ, σ_{rel}^{-1} の増大に伴い *PF* は増大する.

Fig. 92 *PF* の στ_{el}⁻¹ の依存性

Figure 93 に $Z_{el}T$ の σ_{tel}^{-1} の依存性を示す. 両者には明らかな相関がみられた. σ_{tel}^{-1} の 10^{11} - $10^{13} \Omega^{-1} m^{-1} s^{-1}$ のオーダーでは $Z_{el}T$ が 10 を超えるような系がいくつか見られた. σ_{tel}^{-1} が増大するに したがって $Z_{el}T$ は減少し $\sigma_{tel}^{-1} = 10^{13} \cdot 10^{20} \Omega^{-1} m^{-1} s^{-1}$ の領域では最高でも $Z_{el}T = 1$ 程度となった. 多くの材料が $\sigma_{tel}^{-1} = 10^{18} \cdot 10^{21} \Omega^{-1} m^{-1} s^{-1}$ のオーダーである.

Fig. 93 ZelTの στel⁻¹の依存性

Figure 94 に B factor の σ_{rel}^{-1} の依存性を示す. 両者にはヴィーデマン・フランツ則を介して相関 がもともとあるのである程度傾向が出るのは当たり前であるが, 傾向から外れているものはヴィー デマン・フランツ則から外れた系である. ヴィーデマン・フランツ則から外れると, B factor が小さく なる傾向がある.

Fig. 94 B factor の *o*_{*t*el}⁻¹の依存性

Figure 95 に n_{atom} の $\sigma_{\tau_{\text{el}}}^{-1}$ の依存性を示す. 両者には明らかに相関があり, n_{atom} が大きいもの は $\sigma_{\tau_{\text{el}}}^{-1}$ は小さく, n_{atom} の増大に伴い $\sigma_{\tau_{\text{el}}}^{-1}$ も増大する.

Fig. 95 n_{atom}の στ_{el}⁻¹の依存性

Figure 96 に $V_{p.c.}$ の σtei^{-1} の依存性を示す. 両者には明らかに相関がみられる. $V_{p.c.}$ が大きいものは σtei^{-1} が小さく, $V_{p.c.}$ の減少に伴い σtei^{-1} が増大する傾向を示した.

Fig. 96 V_{p.c.}の στ_{el}-1 の依存性

Figure 97 に原子 1 個当たりが占める体積 $V_{p.c.} n_{atom}^{-1}$ に対する σ_{tel}^{-1} の依存性を示す. 両者には 明らかに相関があり, $V_{p.c.} n_{atom}^{-1} = 150 \text{ bohr}^3 \text{ atom}^{-1}$ 程度が σ_{tel}^{-1} 最もが大きくなる傾向を示した.

Fig. 97 原子 1 個当たりが占める体積 $V_{\text{p.c.}} n_{\text{atom}}^{-1}$ に対する $\sigma \tau_{\text{el}}^{-1}$ の依存性

Figure 98 に *PF* の $\kappa_{el}\tau_{el}^{-1}$ 依存性を示す.両者には明らかな相関がみられた. $\kappa_{el}\tau_{el}^{-1}$ の増大に伴い *PF* は増大し、およそ $\kappa_{el}\tau_{el}^{-1} = 3 \times 10^{14}$, 5×10^{15} WK⁻¹m⁻¹ 付近にピークを持つ.

Fig. 98 *PF* の_{Kel}τ_{el}⁻¹ 依存性

Figure 99 に *ZT* の σ_{tel}^{-1} の依存性を示す. 両者には明らかな相関がみられた. σ_{tel}^{-1} の増大に伴い ZT は増大し, $\sigma_{tel}^{-1} \sim 2 \times 10^{19} \Omega^{-1} m^{-1} s^{-1}$ でピークを持つ.

Fig. 99 ZT の *o*tel⁻¹ の依存性

Figure 100 に $Z_{el}T$ の $\kappa_{el}\tau_{el}^{-1}$ の依存性を示す. $Z_{el}T$ は $\kappa_{el}\tau_{el}^{-1}$ の低いところでは 100 を超える大きな値を示すが、 $\kappa_{el}\tau_{el}^{-1}$ の増大に伴い減少し、 $\kappa_{el}\tau_{el}^{-1} \ge 10^{10}$ WK⁻¹m⁻¹では $Z_{el}T$ の最高値は 1 程度となる. $\kappa_{el}\tau_{el}^{-1} \ge 3 \times 10^{14}$ WK⁻¹m⁻¹ では $Z_{el}T$ はさらに減少する.

Fig. 100 ZelT の Keltel⁻¹ の依存性

Figure 101 に n_{atom} の $\kappa_{\text{el}\tau_{\text{el}}}^{-1}$ の依存性を示す.両者には明らかな相関がみられた. n_{atom} の大きなところでは $\kappa_{\text{el}\tau_{\text{el}}}^{-1}$ は小さく, n_{atom} が大きくなるにつれて $\kappa_{\text{el}\tau_{\text{el}}}^{-1}$ が増大する傾向を示した.

Fig. 101 n_{atom} の $\kappa_{\text{el}}\tau_{\text{el}}^{-1}$ の依存性

Figure 102 に $V_{p.c.}$ の $\kappa_{el}\tau_{el}^{-1}$ の依存性を示す. 両者には相関がみられた. $\kappa_{el}\tau_{el}^{-1} = 10^9 \text{ WK}^{-1}\text{m}^{-1}$ ¹s⁻¹から $V_{p.c.}$ は増大し, およそ $\kappa_{el}\tau_{el}^{-1} = 10^{12} \text{ WK}^{-1}\text{m}^{-1}\text{s}^{-1}$ 付近でピークを持つ傾向を示した.

Fig. 102 V_{p.c.}の_{Kel}τ_{el}⁻¹の依存性

Figure 103 に $V_{p.c.} n_{atom}^{-1}$ に対する $\kappa_{el}\tau_{el}^{-1}$ の依存性を示す. 両者には明らかな相関がみられた. $V_{p.c.} n_{atom}^{-1} = 150 \text{ bohr}^3 \operatorname{atom}^{-1}$ で $\kappa_{el}\tau_{el}^{-1}$ は最も大きくなる傾向を示した.

Fig. 103 V_{p.c.} n_{atom}⁻¹に対するK_{el}τ_{el}⁻¹の依存性

Figure 104 にスピン磁気モーメント M に対する $\kappa_{el}\tau_{el}^{-1}$ の依存性を示す. 両者には明らかな相関 は見られなかった.

Fig. 104 スピン磁気モーメント *M* に対する*K*_{el}*t*_{el}⁻¹の依存性

Figure 105 に *ZT* の $\kappa_{el}\tau_{el}^{-1}$ の依存性を示す. 両者には明らかな相関がみられた. $\kappa_{el}\tau_{el}^{-1} = 10^{6}$ -10⁹ WK⁻¹m⁻¹s⁻¹の領域ではあまり傾向が見られないが, $\kappa_{el}\tau_{el}^{-1} \ge 10^{9}$ WK⁻¹m⁻¹s⁻¹の領域では $\kappa_{el}\tau_{el}^{-1}$ ¹ の増大に伴い *ZT* は増大し, およそ $\kappa_{el}\tau_{el}^{-1} = 3 \times 10^{14}$ WK⁻¹m⁻¹s⁻¹ でピークを持つ傾向を示した. $\kappa_{el}\tau_{el}^{-1}$ がそれ以上になると*ZT* は $\kappa_{el}\tau_{el}^{-1}$ の増大に伴い減少する傾向を示した.

Fig. 105 ZT のKeltel⁻¹の依存性

Figure 106 にローレンツ数 *L* の *PF* 依存性を示す. 両者には明らかな相関がみられた. *PF* の増 大に伴い *L* は減少し, *PF* が最も大きくなる領域では $L \sim L_0$ となる傾向を示した. これは高い *PF* を 得る指針として $L \sim L_0$ であることが条件であることを示しており, 材料の設計指針となりうる.

Fig. 106 ローレンツ数 L の PF 依存性

Figure 107 に B factor の *PF* 依存性を示す. 両者には明らかな相関がみられた. *PF* の増大に 伴い B factor は 1 に漸近する傾向を示した. これは 1 に近い B factor を得るためには *PF* が高い 必要があることを示しており, 材料設計の指針として有用であると考えられる.

Fig. 107 B factor の *PF* 依存性

Figure 108 に n_{atom} に対する *PF* の依存性を示す. 両者には相関がみられた. *PF* の低い領域で は比較的 n_{atom} は様々な値を取るが, *PF* の増大に伴い n_{atom} は減少する傾向を示した.

Fig. 108 natom に対する PF の依存性

Figure 109 に $V_{p.c.}$ の *PF* 依存性を示す. 両者には相関がみられた. *PF* = 10⁻⁹ WK⁻¹m⁻¹ 程度から *PF* の増大に伴い $V_{p.c.}$ は増大し, 10⁻⁶ WK⁻¹m⁻¹ 程度でピークを持つ傾向を示した.

Fig. 109 V_{p.c.}の PF 依存性

Figure 110 に $V_{p.c.} n_{atom}^{-1}$ に対する *PF* 依存性を示す. 両者にはあまり相関がみられなかった. PF の増大に伴いわずかに $V_{p.c.} n_{atom}^{-1}$ の平均が減少傾向にあるように見える.

Fig. 110 V_{p.c.} n_{atom}⁻¹に対する PF 依存性

Figure 111 にスピン磁気モーメント M に対する PF の依存性を示す. 両者に明らかな相関は見られないが, M が小さい方が PF は高くなる傾向が見られた.

Fig. 111 スピン磁気モーメント M に対する PF の依存性

Figure 112 に B factor に対する $Z_{el}T$ の依存性を示す. 両者には明らかな相関がみられた. $Z_{el}T$ が 1 以下の場合は B factor の最大値はほぼ 1 であるが, $Z_{el}T$ が 1 より大きくなると B factor は著しい現象を示した. これは、単純に $Z_{el}T$ が高いだけでは高い ZT は得られないことを示しおり、材料設計の指針となると考えられる.

Fig. 112 B factor に対する ZelTの依存性

Figure 113 に *L* に対する $Z_{el}T$ の依存性を示す. 両者には明らかな相関がみられた. $Z_{el}T$ が 1 以下の領域では *L* は 10⁻⁸ ~ 10⁻⁶オーダーの幅広い領域の値を取るが, それ以上になると *L* の取りうる幅は減少し, $Z_{el}T$ が最も高くなる領域では $L \sim L_0$ に近い値を取る傾向を示した.

Fig. 113 L に対する ZelT の依存性

Figure 114 に n_{atom} に対する $Z_{\text{el}}T$ の依存性を示す.両者には相関のようなものが見られた. n_{atom} の小さな領域では $Z_{\text{el}}T$ は様々な値を取るが, n_{atom} の増大に伴い $Z_{\text{el}}T$ の振れ幅は減少する.

Fig. 114 natom に対する ZelT の依存性

Figure 115 に $V_{p.c.}$ に対する $Z_{el}T$ の依存性を示す. 両者には相関がみられた. $V_{p.c.}$ が小さい領域では $Z_{el}T$ は幅広い値を取るが, $V_{p.c.}$ が増大するにつれ $Z_{el}T$ の取りうる値の幅は減少し, $V_{p.c.}$ が最も大きくなる領域では $Z_{el}T$ は 0.01~1 の振れ幅となる.

Fig. 115 V_{p.c.}に対する ZelT の依存性

Figure 116 に $V_{p.c.} n_{atom}^{-1}$ に対する $Z_{el}T$ の依存性を示す. 両者にはあまり相関がみられなかったが, $Z_{el}T$ が最も大きくなる領域では $V_{p.c.} n_{atom}^{-1}$ は 150 – 200 bohr³atom⁻¹ 程度であった.

Fig. 116 V_{p.c.} n_{atom}⁻¹に対する Z_{el}T の依存性

Figure 117 にスピン磁気モーメント *M* に対する $Z_{el}T$ の依存性を示す. 両者には相関がみられた. $M \sim 0 \mu_{\rm B}$ では $Z_{el}T$ は様々な値を取るが, *M* が増大すると $Z_{el}T$ の取りうる値の幅は減少し, *M* が最も大きい時は $Z_{el}T$ は 0.01 程度と小さい.

Fig. 117 スピン磁気モーメント *M*に対する *Z*el*T* の依存性
Figure 118 に ZT に対する Z_{el}T の依存性を示す. 両者には明らかな相関がみられた. 最も分布 が多いのは ZT \propto Z_{el}T の領域でこれは B factor ~ 1 の領域である. この関係より ZT が大きいた めには Z_{el}T の大きさよりも B factor が 1 に近いことが重要であることを意味する. これは, 材料設 計の指針として重要である.

Fig. 118 ZT に対する ZelT の依存性

Figure 119 に *L* に対する B factor の依存性を示す. 両者には明らかな相関がみられた. B factor が 10^{-6} 以下の領域では相関があまり見られないが, それ以上では B factor の上昇に伴い *L* は減 少し, B factor が最も大きくなる領域では $L \sim L_0$ となる. これは 1 に近い B factor を示す材料の設計指針として有用であると考えられる.

Fig. 119 L に対する B factor の依存性

Figure 120 に n_{atom} にたいする B factor の依存性について示す. 両者には相関は見られなかった.

Fig. 120 natom にたいする B factor の依存性

Figure 121 に $V_{p.c.}$ に対する B factor の依存性を示す. 両者には相関がみられた. B factor が 10-5 以上では B factor の増大に伴い $V_{p.c.}$ は増大し, B factor が 10⁻³程度でピークを示す.

Fig. 121 V_{p.c}に対する B factor の依存性

Figure 122 に $V_{p,c}n_{atom}$ -1 に対する B factor 依存性について示す. 両者には明らかな相関はなかった. $V_{p,c}n_{atom}$ -1 が 100 – 150 bohr³atom-1 で B factor が最も大きくなる.

Fig. 122 V_{p.c.}n_{atom}⁻¹に対する B factor 依存性

Figure 123 にスピン磁気モーメント *M* に対する B factor の依存性を示す. 両者には相関がみら れた. 磁気モーメント *M* が大きいものは B factor が大きい材料が多い傾向が得られた.

Fig. 123 スピン磁気モーメント *M* に対する B factor 依存性

Figure 124 に *ZT* の B factor 依存性を示す. 両者には相関がみられた. B factor の増大に伴い *ZT* は増大する振る舞いを示した. Fig を原点付近について拡大したものを示す. B factor = 0.65 程度で *ZT* は最大となる.

Fig. 124 ZT の B factor 依存性

Figure 125 に n_{atom}のローレンツ数 L の依存性を示す. 両者に相関は見られなかった.

Fig. 125 natom のローレンツ数 L の依存性

Figure 126 に $V_{p.c.}$ の *L* 依存性を示す. 両者に明らかな相関は見られなかった. $V_{p.c.}$ が大きいものは *L* は L_0 から外れるものが多かった.

Fig. 126 V_{p.c.}の L 依存性

Figure 127 に $V_{p,c,n_{atom}}$ に対する *L* 依存性を示す. 両者に明らかな相関はなかった. 多くの系 $M_L = L_0$ を取ることが分かった.

Fig. 127 V_{p.c.}*n*_{atom}⁻¹に対する *L* 依存性

Figure 128 にスピン磁気モーメント M の L 依存性を示す. 両者には明らかな相関がみられた. $M \neq 0$ はほとんどの系が $L \sim L_0$ という傾向を示した.

Fig. 128 スピン磁気モーメント MのL 依存性

Figure 129 に *ZT* の *L* 依存性を示す. $L \sim L_0$ のときに最も *ZT* は大きくなる. $L = L_0$ から離れれれ ば離れるほど *ZT* は減少する. 以上から高い *ZT* を示す材料は $L \sim L_0$ であることが分かった. これ は高性能熱電材料を探索する指針となると考えられる.

Fig. 129 ZT の L 依存性

Figure 130 に ZT の n_{atom} 依存性を示す. 両者には相関がみられた. ZT は $n_{\text{atom}} \sim 12$ 程度で最大となり, n_{atom} の増大に伴い ZT は減少する傾向を示した.

Fig. 130 ZT の natom 依存性

Figure 131 に ZT に対する $V_{p.c.}$ の依存性を示す. 両者には相関がみられた. ZT が最も大きくなるのは $V_{p.c.} \sim 2000 - 3000$ bohr³の領域である. $V_{p.c.}$ が 3000 bohr³より大きな領域では ZT の取りうる値の振れ幅は減少し, $V_{p.c.}$ が最大となる領域では ZT ~ 10⁻⁴ オーダーと小さい.

Fig. 131 ZT に対する Vp.c.の依存性

Figure 132 に *ZT* に対する $V_{p,c}n_{atom}^{-1}$ の依存性を示す. 両者に明らかな傾向は見られなかった. $V_{p,c}n_{atom}^{-1} = 100 - 200$ borh³ atom⁻¹の領域では *ZT* は $V_{p,c}n_{atom}^{-1}$ に依存しないといえる.

Fig. 132 ZT に対する V_{p.c.}n_{atom}-1の依存性

809 種類の硫化物について電子輸送計算を行い,各電子輸送特性の相関について調べた.その結果高い ZT を示す条件として以下のことが明らかとなった.

 S = 140 – 170 μVK⁻¹, ローレンツ数 L = 2.45 × 10⁻⁸ V²K⁻², B factor は 0.6 程度のいずれかー つでも満たしていれば ZT が高くなる可能性があり、単位格子の体積 V_{p.c.}は 3000 bohr³ 程度 が高い ZT を損ねない値である. 6.6 候補材料

本研究では評価関数 ZT_{DFT}を用いて 673 K(400°C)における高性能硫化物熱電材料の候補を選定した. 候補材料の結晶構造と電子状態密度・電子輸送計算の結果を示す.

 $Al_{5-x}Zn_{x}CuS_{8} (x = 0, 1)$

Figure 133 に Al₅CuS₈の結晶構造^[60]を示す. 晶系は Cubic で空間群はF43mである. 構成元素 が Al, Cu, S と比較的安価で軽元素である. 単位胞に含まれる原子数が多いことに加え, 軽元素 のみで構成されているため, わずかな重元素を添加または置換することで非調和なフォノンが生じ, フォノンの散乱確率を上げることで熱伝導率の低減を狙うことも可能である.

Fig. 133 Al₅CuS₈の結晶構造

Figure 134 に $Al_{5-x}Zn_xCuS_8$ (x = 0, 1)の DOS と構成元素 Al, Zn, Cu, S のそれぞれの PDOS を示 す. 価電子帯上端の DOS は Cu-S の混成軌道が支配的である. Al サイトを Zn で置換することで μ が価電子帯上端までシフトする.

Fig. 134 Al_{5-x}Zn_xCuS₈ (x = 0, 1)の DOS と構成元素 Al, Zn, Cu, S のそれぞれの PDOS

Figure 135 に Al_{5-x}Zn_xCuS₈ (x = 0, 1)の ZT_{DFT} の μ 依存性を示す. x = 0 では μ は禁制帯中に位置するため ZT_{DFT} はほぼ 0 である. Al サイトを Zn で置換することが可能であれば, μ を ZT_{DFT} のピーク付近までシフトさせることが可能である.

Fig. 135 Al_{5-x}Zn_xCuS₈ (x = 0, 1)の ZT_{DFT} の μ 依存性

 $Ga_{2-x}Zn_xSnS_5 (x = 0, 0.25)$

Figure 136 に Ga₂Sn₂S₅の結晶構造^[61]を示す. 晶系は orthorhombic で空間群は Pna21 である.

Fig. 136 Ga₂Sn₂S₅の結晶構造

Figure 137 に Ga_{2-x}Zn_xSnS₅ (x = 0, 0.25)の DOS と構成元素 Ga, Zn, Sn, S のそれぞれの PDOS を示す. x = 0 では μ は禁制帯中に位置し Ga サイトを一部 Zn で置換することで μ が価電子帯の上端までシフトする. 価電子帯上端では Sn-S の混成軌道が支配的である.

Fig. 137 Ga_{2-x}Zn_xSnS₅ (x = 0, 0.25)の DOS と構成元素 Ga, Zn, Sn, S のそれぞれの PDOS

Figure 138 に Ga_{2-x}Zn_xSnS₅ (x = 0, 0.25)の ZT_{DFT} の μ 依存性を示す. x = 0 では μ において ZT_{DFT} はほぼ 0 だが, Ga サイトを一部 Zn で置換することが可能であれば μ を ZT_{DFT} のピーク付近まで シフトさせることができる.

Fig. 138 Ga_{2-x}Zn_xSnS₅ (x = 0, 0.25)の ZT_{DFT} の μ 依存性

$MnPS_{3},\ MnP_{0.5}Ge_{0.5}S_{3},\ Mn_{0.5}Zn_{0.5}PS_{3}$

Figure 139 に MnPS₃の結晶構造^[62]を示す. 晶系は monoclinic で空間群は C2/m である.

Fig. 139 MnPS3 の結晶構造

Figure 140-142 に MnPS₃, MnP_{0.5}Ge_{0.5}S₃, Mn_{0.5}Zn_{0.5}PS₃の DOS と構成元素のそれぞれの PDOS を示す. MnPS₃ は擬ギャップ近傍に μ が位置し, μ 近傍の DOS は Mn-S の混成軌道が支配的で ある. P サイトの一部を Ge で置換, または Mn サイトの一部を Zn で置換すると DOS の様相が全 体的に大きく変わり, μ 近傍に Mn-S の鋭い DOS が立つ.

Fig. 140 MnPS₃の DOS と構成元素 Mn, P, S Fig. 141 MnP_{0.5}Ge_{0.5}S₃の DOS と構成元素 Mn, のそれぞれの PDOS

P, Ge, S のそれぞれの PDOS

Fig. 142 Mn_{0.5}Zn_{0.5}PS₃の DOS と構成元素 Mn, Zn, P, S のそれぞれの PDOS

Figure 143-145 に MnPS₃, MnP_{0.5}Ge_{0.5}S₃, Mn_{0.5}Zn_{0.5}PS₃の ZT_{DFT} の μ 依存性を示す. MnPS₃は ZT_{DFT} のピークが 0.1 程度と比較的小さいが, P サイトを Ge で一部置換することができれば, μ 近傍で ZT_{DFT} は 0.45 という大きな値を取る. (T = 673 K) また, Mn サイトを一部 Zn で置換できれば 同様に μ 近傍の ZT_{DFT} が 0.35 という大きな値を取る.

0.6

0.5

0.4

0.3

0.2

0.1

0

 $ZT_{\rm DFT}$

 $\mathsf{MnP}_{0.5}\mathsf{Ge}_{0.5}\mathsf{S}_3$

T = 673 K

 $\tau_{\rm el} = 5.0 \times 10^{-15}$ sec.

1 WK⁻¹m

-2.0 -1.5 -1.0 -0.5

Fig. 143 MnPS₃の ZT_{DFT}の μ 依存性

Fig. 144 MnP_{0.5}Ge_{0.5}S₃の ZT_{DFT}の μ 依存性

0 0.5

 μ / eV

1.0 1.5 2.0

Fig. 145 Mn_{0.5}Zn_{0.5}PS₃の ZT_{DFT}の μ 依存性

 $Ti_2Cu_{1-x}Zr_xS_4$ (*x* = 0, 0.50)

Figure 146 に Ti₂CuS₄の結晶構造^[63]を示す. 晶系は Cubic で空間群はFd3mである.

Figure 147 に Ti₂Cu_{1-x}Zr_xS₄ (x = 0, 0.50)の DOS と構成元素 Ti, Cu, Zr, S のそれぞれの PDOS を示す. x = 0, 0.50 どちらも μ 近傍の DOS は Ti の PDOS が支配的である. Cu サイトを一部 Zr で置換した x = 0.50 は DOS が全体的に大きく変化する.

Fig. 147 Ti₂Cu_{1-x}Zr_xS₄ (x = 0, 0.50)の DOS と構成元素 Ti, Cu, Zr, S のそれぞれの PDOS

Fig. 146 Ti₂CuS₄の結晶構造

Figure 148 に Ti₂Cu_{1-x}Zr_xS₄ (x = 0, 0.50)の ZT_{DFT} の μ 依存性を示す. x = 0 では μ における ZT_{DFT} の値は小さく、ピーク値もそれほど大きくない. Cu サイトを一部 Zr で置換することができれば、 μ 近傍の ZT_{DFT} は 0.5 程度まで大きくなる.

Fig. 148 Ti₂Cu_{1-x}Zr_xS₄ (x = 0, 0.50)の ZT_{DFT} の μ 依存性

ZrP₂S₆, Zr_{0.5}Ga_{0.5}P₂S₆, Zr_{0.5}P_{2.5}S₆

Figure 149 に ZrP₂S₆の結晶構造^[64]を示す. 晶系は tetragonal で空間群は P42/m である.

Fig. 149 ZrP₂S₆の結晶構造

Figure 150-153 に ZrP₂S₆, Zr_{0.5}Ga_{0.5}P₂S₆, Zr_{0.5}P_{2.5}S₆, Zr_{0.5}Al_{0.5}P₂S₆ の DOS と構成元素 Zr, Ga, P, S のそれぞれの PDOS を示す. 価電子帯の上端の DOS はいずれの化合物も S の PDOS が支配 的である. ZrP₂S₆ では μ は禁制帯中に位置する. Zr サイトを一部 Ga, Al で置換すると μ は価電 子帯上端までシフトする. Zr と P の組成比を Zr リッチになるようずらしても同様に μ は価電子帯 上端までシフトする.

Fig. 150 ZrP₂S₆の DOS と構成元素 Zr, P, S の それぞれの PDOS

Fig. 151 Zr_{0.5}Ga_{0.5}P₂S₆の DOS と構成元素 Zr, Ga, P, S のそれぞれの PDOS

Fig. 152 Zr_{0.5}P_{2.5}S₆の DOS と構成元素 Zr, P, S のそれぞれの PDOS

Fig. 153 Zr_{0.5}Al_{0.5}P₂S₆の DOS と構成元素 Zr, Al, P, S のそれぞれの PDOS

Figure 154-157 に ZrP₂S₆, Zr_{0.5}Ga_{0.5}P₂S₆, Zr_{0.5}P_{2.5}S₆ の ZT_{DFT} の μ 依存性を示す. ZrP₂S₆ では μ における ZT_{DFT} はほとんど 0 であるが, Zr サイトを一部 Ga, Al で置換できれば μ における ZT_{DFT} の値は 0.3-0.4 程度まで増大する. ZT_{DFT} のピークの値は 0.4-0.6 程度である. Zr と P の組成比を Zr リッチになるようずらしても同様である.

Fig. 154 ZrP₂S₆の ZT_{DFT}の μ 依存性

Fig. 155 Zr_{0.5}Ga_{0.5}P₂S₆の ZT_{DFT}の μ 依存性

Fig. 156 Zr_{0.5}P_{2.5}S₆の ZT_{DFT}の μ 依存性

Fig. 157 Zr_{0.5}Al_{0.5}P₂S₆の ZT_{DFT}の μ 依存性

 $Cu_3P_{1-x}Si_xS_4$ (x = 0, 0.5)

Figure 158 に Cu₃PS₄の結晶構造^[65]を示す. 晶系は orthorhombic で空間群は Pmn21 である.

Fig. 158 Cu₃PS₄の結晶構造

Figure 159 に Cu₃P_{1-x}Si_xS₄ (x = 0, 0.5)の DOS と構成元素 Cu, P, Si, S のそれぞれの PDOS を示 す. x = 0 では μ は禁制帯中に位置するが, P サイトの一部を Si で置換した x = 0.5 では μ は価電 子帯の上端までシフトする. 価電子帯上端の DOS はいずれもCu-S の混成軌道が支配的である.

Fig. 159 Cu₃P_{1-x}Si_xS₄ (x = 0, 0.5)の DOS と構成元素 Cu, P, Si, S のそれぞれの PDOS

Figure 160 に Cu₃P_{1-x}Si_xS₄ (x = 0, 0.5)の ZT_{DFT} の μ 依存性を示す. x = 0 では μ における ZT_{DFT} はほぼ 0 である. μ に隣接する ZT_{DFT} のピークは 0.7 程度であるので, μ をピークまでシフトするこ とができれば ZTを大幅に増大させられる可能性がある. P サイトの一部を Si で置換することがで きれば x = 0.5 では μ における ZT_{DFT} は 0.25 程度まで大きくなり, μ は ZT_{DFT} のピークをまたぐの で Si の置換量を調整すれば μ を ZT_{DFT} ~ 0.7 のピークまでシフトさせることが可能である.

Fig. 160 Cu₃P_{1-x}Si_xS₄ (x = 0, 0.5)の ZT_{DFT} の μ 依存性

結論

本研究で,実験と第一原理電子状態計算の両面から 3d 遷移金属硫化物 NiSbS, V₄GeS₈, ZnCr₂S₄の熱電物性について以下のことを明らかにした.

<NiSbS>

- 遷移金属硫化物 NiSbS が室温付近で非常に高い出力因子 PF を示す n 型熱電材料でこと を実験と理論の両面から明らかにした。
- NiSbS の高い PF の起源が μ 近傍の擬ギャップ構造であることを明らかにした.

 $<V_4GeS_8>$

- V₄GeS₈はバンドギャップ E_g=0.20(4)の狭ギャップ半導体であり、V サイトを Mn で置換することで正孔ドープが生じることを明らかにした。
- 電子輸送計算から V₄GeS₈ に電子ドープを行うことで ZT が向上する材料の設計指針を確立し、実際に V サイトを Mn で置換することで V₄GeS₈ に正孔ドープを行い ZT を向上させることに成功した。

<ZnCr₂S₄>

- ZnCr₂S₄ は絶縁体的であり、Zn サイトをGa で置換すると電子ドープが生じ半導体的になる n 型硫化物熱電材料であることを明らかにした
- 電子輸送計算よりGaの最適置換量を見積もり材料設計の指針を確立し、ZTを向上させることに成功した

また,809 種類の硫化物について電子輸送計算を行うことに成功し,以下のことを明らかにした.

- 評価関数 ZT_{DFT} は高性能熱電材料 Bi₂Te₃, PbTe, SnSe, Cu₁₂Sb₄S₁₃, Cu₂₆V₂Ge₆S₃₂ に対し 0.3-2 程度の高い値を示し、本研究の実験で良い性能を示さなかった NiSbS では 0.01 以下の低い値を示し、高性能熱電材料をスクリーニングするうえで有効である.ただし、V₄GeS₈, ZnCr₂S₄のように ZT_{DFT} ではハイスコアであっても、実際に ZT が低いものある.
- > $S = 140 170 \mu V K^{-1}$, ローレンツ数 $L = 2.45 \times 10^{-8} V^2 K^{-2}$, B factor は 0.6 程度のいずれかー つでも満たしていれば *ZT* が高くなる可能性がある.
- 格子熱伝導率を下げるためできる限り大きな単位胞を持つ材料が好ましいが、単位格子の 体積 V_{p.c}は 3000 bohr³ 程度が高い ZT を損ねない上限値である.
- 候補材料として Al_{5-x}Zn_xCuS₈, Ga_{2-x}Zn_xSnS₅, MnP_{0.5}Ge_{0.5}S₃, Mn_{0.5}Zn_{0.5}PS₃, Ti₂Cu_{1-x}Zr_xS₄, Zr_{0.5}Ga_{0.5}P₂S₆, Zr_{0.5}P_{2.5}S₆, Zr_{0.5}Al_{0.5}P₂S₆, Cu₃P_{1-x}Si_xS₄の選定に成功した.

<実験と計算で合わなかったこと>

- ▶ 電子の緩和時間 τ_{el}, 格子熱伝導率 κ_{lat}を定数として取り扱ったため, ZT の実験値を定量的に 計算することはできなかった. ただし, 本研究で評価を行った材料系の多くでは ZT のオーダ ーは一致する.
- 300 K 以上の高温域では, 熱電能 S の温度依存性は計算値が実験値から外れる傾向があった.これは高温になるに従ってフェルミ分布の分散が大きくなり, 式(20)の積分するエネルギー領域が広くなることで緩和時間の温度依存性・エネルギー依存性が顕著になり, 緩和時間近似が成り立たなくなったためと考えられる.

参考文献

- [1] Oregon State University, http://oregonstate.edu/.
- [2] T. Shindo et al., 東芝レビュー 63 (2008) 7.
- [3] 坂田亮 編,「熱電変換工学-基礎と応用-」(リアライズ社, 2001),第1章.
- [4] 坂田亮 編,「熱電変換工学-基礎と応用-」(リアライズ社,2001),第3章.
- [5] G. B. Haxel et al., USGS Fact Sheet, 087-02(2002).
- [6] 谷口 彰敏 編,「熱電変換材料 実用・活用を目指した設計と開発」,(情報機構, 2014).
- [7] K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).
- [8] K. Suekuni, F. S. Kim, H. Nishiate, M. Ohta, H. I. Tanaka, and T. Takabatake, Appl. Phys. Lett. 105, 132107 (2014).
- [9] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- [10] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- [11] T. Ozaki, Phys. Rev., B 67, 155108 (2003).
- [12] T. Ozaki, Phys. Rev. B 67, 155108, (2003).
- [13] T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
- [14] http://www.rs.tus.ac.jp/takahiro/QTWare.html.
- [15] http://www.wannier.org/.
- [16] Georg K.H. Madsena, David J. Singhb, Computer Physics Communications 175, 67–71(2006).
- [17] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN 2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (Austria: Techn. Universitat, Wien, 2001).
- [18] G. Kresse, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169–11186 (1996).
- [19] Ziman J. M. 1979 Principles of the Theory of Solids 2nd ed. (Cambridge, U.K.: Cambridge University Press) Chap. 7.4.
- [20] 坂田亮 編,「熱電変換-基礎と応用-」(裳華房, 2005), 第2章.
- [21] Datta S. 1995 Electronic Transport in Mesoscopic System (Cambridge, U.K.: Cambridge University Press) Chap. 2.
- [22] G.K.H.Madsen, J.Am.Chem.Soc., 128, 12140-12146(2006).
- [23] S. Wang, Z. Wang, W. Setyawan, N. Mingo and S. Curtarolo, Phys. Rev. X, 1, 021012(2011).
- [24] P. Gorai, P. Parilla, E. S. Toberer and V. Stevanovic ', Chem. Mater., 27, 6213–6221(2015).
- [25] J. Carrete, W. Li, N. Mingo, S. Wang and S. Curtarolo, Phys. Rev. X, 4, 011019(2014).
- [26] S. Atsuto, T. Atsushi, H. Hiroyuki, T. Koji, C. Laurent, T. Isao, PRL 115, 205901(2015).
- [27] S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda, J. Shiomi, Physical Review X, 7, 021024(2017).
- [28] Foecker A J, Jeitschko W, Journal of Solid State Chemistry, 162, 69-78 (2001).

- [29] Momma K. and Izumi F., J. Appl. Crystallogr. 44, 1272(2011).
- [30] J. F. Rowland, E. J. Gabe, and S. R. Hall, Can. Mineral. 13, 188(1975).
- [31] L. J. Cabri, D. C. Harris, and J. M. Stewart, Can. Mineral. 10, 232(1970).
- [32] L. Pauling, The Characteristics of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960) 3rd ed., Chap. 7.9.
- [33] Lu X. et al., Adv. Energy Mater. 3, 342 (2013).
- [34] Ohta M. et al., Acta Materialia 60, 7232 (2012).
- [35] Ohta M. et al., Journal of ELECTRONIC MATERIALS, Vol. 39, No. 9, 2117 (2010).
- [36] Ge Zhen-Hua et al., Chem. Commun., 47, 12697 (2011).
- [37] Zhao L- et al., J. Am. Chem. Soc., 133, 2047 (2011).
- [38] Biswas K., Adv. Energy Mater., 2, 634 (2012).
- [39] Tsujii N. et al., Journal of ELECTRONIC MATERIALS, Vol. 43, No. 6, 2371(2014).
- [40] Ohta M. et al., Journal of ELECTRONIC MATERIALS, Vol. 38, No. 7, 1287(2009).
- [41] 小林 俊一·大塚 洋一 著,「低温技術 第2版」(東京大学出版会, 1987).
- [42] C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970).
- [43] R. Fletcher, Comput. J. 13, 317 (1970).
- [44] D. Goldfarb, Math. Comput. 24, 23 (1970).
- [45] D. F. Shanno, Math. Comput. 24, 647 (1970).
- [46] M. Miyata, T. Ozaki, S. Nishino, and M. Koyano, J. J. Appl. Phys. 56. (2), 021801 (2017).
- [47] D. Johrendt, Z. Anorg. Allg. Chem. 624, 952-958 (1998).
- [48] A. Banerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 89, 52 (1985).
- [49] P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem) 114, 31 (1984).
- [50] H. Haeuseler et al., JOURNALOF SOLID STATE CHEMISTRY 72, 324-329(1988).
- [51] ネビル モット,「非晶質材料の電気伝導」(現代工学社, 1988), 第3章.
- [52] https://materialsproject.org/
- [53] http://www.jaist.ac.jp/~t-ozaki/vps_pao2013/
- [54] S. Nakajima, J. Phys. Chem. Solids 24, 479(1963).
- [55] Rogacheva E.I., Krivulkin I.M., Popov V.P., Lobkovskaya T.A., Phys. Status Solidi A, 148, K65-K67, (1995)
- [56] G. Ding, G. Gao & K. Yao, Scientific Reports 5, Article number: 9567 (2015).
- [57] M. Yamamoto, P. Technical Journal, 58, No.3(2012).
- [58] S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworski, C. Uher, V. P. Dravid, J. P. Heremans, and M. G. Kanatzidis, J. Am. Chem. Soc., 133, 16588–16597(2011).
- [59] Li-Dong Zhao, Shih-Han Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid & M. G. Kanatzidis, Nature, 508, 373–377(2014).
- [60] Mähl D., Pickardt J., Reuter B. Z. Anorg. Allg. Chem., 491, 203-207, (1982).

- [61] Mazurier, A.; Thevet, F.; Jaulmes, S. Structure de pentasulfure de digallium et de dietain, Acta Crystallographica C (39,1983-), **39**, 814-816 (1983).
- [62] Ouvrard G., Brec R., Rouxel J., Mater. Res. Bull., 20, 1181-1189, (1985).
- [63] James A.C.W.P., Goodenough J.B., Clayden N.J., Banks P.M. Mater. Res. Bull., 24, 143-155, (1989).
- [64] Simon A., Peters K., Peters E.M., Hahn H. Z. Anorg. Allg. Chem., 491,295-300(1982).
- [65] Marzik J.V., Hsieh A.K., Dwight K., Wold A., J. Solid State Chem., 49,43-50(1983).

謝辞

本研究は北陸先端科学技術大学院大学 先端科学技術研究科 小矢野幹夫 教授のご指導の 下に行われました。

本研究を通じて様々な助言や的確な指摘を頂けたことを深く感謝いたします.また,研究者としての姿勢,意識といった人間性の面でのご指導を頂けたことは貴重な体験でした.また東大物性研 尾崎泰助 教授には,計算科学の初学者であった私に対し,0から懇切丁寧に OpenMX 等の扱い方をご指導いただきました.また,学会発表などの事で幾度となく貴重なご指導を頂きました. 深く感謝御礼致します.

九州大学 末國晃一郎 准教授には, 直接の教え子でないにもかかわらず, 幾度となく私に研 究に関するアドバイスをくださいました. ここに深く御礼申し上げます.

実験を行う際に欠かせない測定装置を管理し,有事の際も手を尽くしてくださった岩崎秀夫教授,液体感材の安定供給に努めてくださった本学液化室の技術職員 木村一郎 氏にも大変お 世話になりましたことを感謝いたします.

北陸先端科学技術大学院大学 先端科学技術研究科の前之園信也 教授, 石川県工業試験 場の豊田丈紫氏, 日本触媒 赤塚威夫氏, 株式会社白山の皆様, 石川県工業試験場の皆様には NEDO を通したディスカッションだけでなく, 様々な場面で研究について多大なご指導を賜りまし た. ここに感謝御礼申し上げます.

本研究室博士課程 西野俊佑氏, アダマンド株式会社 有賀智紀氏, 並びに卒業生・現役修 士学生一同には実験・物性の基礎についてご指導・助言いただきました. ここに深くお礼申し上げ ます.

Appendix

スクリーニングで計算した硫化物のリスト

表記例:Nbsite_Cudope_NbSnS2 = 「NbSnS2 の Nb サイトをひとつ Cu で置換した化合物」 mp-??? symmetrized SOC はファイル名のラベルなので特に意味はない.

Zr_PS3_2_mp-8203_symmetrized_SOC Psite_Tadope_Ti_PS3_2_mp-13666_symmetrized_SOC ZrSiS_mp-3938_symmetrized_SOC ZrP2S7_mp-31014_symmetrized_SOC Nbsite Cudope NbSnS2 mp-9586 symmetrized SOC Mnsite_Sdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Alsite_Sidope_Al5CuS8_mvc-16094_symmetrized_SOC Snsite Zrdope Sn PS3 2 mp-36381 symmetrized SOC Zn2GeS4 mp-675748 symmetrized SOC Cosite Sndope Ga2CoS4 mp-4152 symmetrized SOC SnGeS3 mp-5045 symmetrized SOC Znsite_Gedope_Zn2GeS4_mp-675748_symmetrized_SOC Alsite Tadope AlPS4 mp-27462 symmetrized SOC Gesite Sdope Zn2GeS4 mp-675748 symmetrized SOC Alsite_Sidope_Al5CuS8_mp-35267_symmetrized_SOC Zrsite_Sidope_Zr_PS3_2_mp-8203_symmetrized_SOC NbCu3S4_mp-5621_symmetrized_SOC Zn2 PS3 3 mp-27656 symmetrized SOC Cosite Sdope Ga2CoS4 mp-4152 symmetrized SOC AlPS4 mp-27462 symmetrized SOC Znsite_Sndope_Zn2GeS4_mp-675748_symmetrized_SOC Psite_Gadope_Ti_PS3_2_mp-13666_symmetrized_SOC Mnsite_Zndope_Mn_GaS2_2_mp-20025_symmetrized_SOC Znsite Sidope Zn2GeS4 mp-675748 symmetrized SOC Cosite Zrdope Ga2CoS4 mp-4152 symmetrized SOC Zn_GaS2_2_mp-34467_symmetrized_SOC Cusite Tadope GaCuS2 mp-5238 symmetrized SOC Crsite Tidope CrPS4 mp-542096 symmetrized SOC Zn3_PS4_2_mp-30311_symmetrized_SOC Zn_GaS2_2_mp-5350_symmetrized_SOC Alsite_Gadope_AlPS4_mp-27462_symmetrized_SOC Crsite Cudope CrPS4 mp-542096 symmetrized SOC Mnsite Nbdope MnPS3 mp-8613 symmetrized SOC Tisite_Tadope_Ti2CuS4_mp-3951_symmetrized_SOC Gesite_Sidope_Zn2GeS4_mp-675748_symmetrized_SOC Gasite_Aldope_Ga2Sn2S5_mp-14280_symmetrized_SOC Snsite Wdope NbSnS2 mp-9586 symmetrized SOC Ga2Sn2S5 mp-14280 symmetrized SOC Nisite_Nbdope_Ti3NiS6_mp-13994_symmetrized_SOC Psite_Nbdope_Ti_PS3_2_mp-13666_symmetrized_SOC Psite_Aldope_Sn_PS3_2_mp-36381_symmetrized_SOC Cusite Gedope Ti2CuS4 mp-3951 symmetrized SOC Tisite Zndope Ti PS3 2 mp-13666_symmetrized SOC Nisite Tadope Ni3 SnS 2 mp-5528_symmetrized SOC Tisite_Sndope_Ti_PS3_2_mp-13666_symmetrized_SOC Snsite_Zndope_Ga2Sn2S5_mp-14280_symmetrized_SOC Snsite_Sidope_Sn_PS3_2_mp-36381_symmetrized_SOC Snite_Gedope_Ga2Sn2S5_mp-14280_symmetrized_SOC Fesite_Codope_Ta9_FeS3_2_mp-3652_symmetrized_SOC AlCuS2 mp-4979 symmetrized SOC Tisite_Gedope_Ti3NiS6_mp-13994_symmetrized_SOC Mnsite Sndope Mn GaS2 2 mp-20025 symmetrized SOC Gesite_Zrdope_Zn2GeS4_mp-675748_symmetrized_SOC CuBS2_mp-12954_symmetrized_SOC Znsite_Zrdope_Zn2GeS4_mp-675748_symmetrized_SOC Tisite Fedope Ti PS3 2 mp-13666 symmetrized SOC Psite Tadope AlPS4 mp-27462 symmetrized SOC Gesite_Tidope_Zn2GeS4_mp-675748_symmetrized_SOC Crsite_Sdope_Nb4CrS8_mp-5306_symmetrized_SOC Mnsite_Pdope_MnPS3_mp-8613_symmetrized_SOC Tisite Zrdope Ti3NiS6 mp-13994 symmetrized SOC

Cusite_Gadope_Ti_CuS_4_mp-29091_symmetrized_SOC Psite_Aldope_Ti_PS3_2_mp-13666_symmetrized SOC Alsite Pdope AlPS4 mp-27462 symmetrized SOC Ssite Aldope Sn PS3 2 mp-36381 symmetrized SOC Cusite_Nhdope_GaCuS2_mp-5238_symmetrized_SOC Znsite_Aldope_Zn2GeS4_mp-675748_symmetrized_SOC Gasite_Codope_Mn_GaS2_2_mp-20025_symmetrized_SOC Cusite Modope Ti CuS 4 mp-29091 symmetrized SOC Psite Vdope CrPS4 mp-542096 symmetrized SOC Nisite Wdope Ti3NiS6 mp-13994 symmetrized SOC Gesite Sndope Zn2GeS4 mp-675748 symmetrized SOC Gasite_Sidope_GaCuS2_mp-5238_symmetrized_SOC Snsite Sidope Ga2Sn2S5 mp-14280 symmetrized SOC Tisite Zrdope Ti PS3 2 mp-13666 symmetrized SOC Cusite_Crdope_GaCuS2_mp-5238_symmetrized_SOC Nisite Pdope_Ti3NiS6_mp-13993_symmetrized_SOC Snsite Sdope Sn_PS3 2 mp-36381 symmetrized SOC Snsite Sidope SnGeS3 mp-5045 symmetrized SOC Mnsite Tidope Ta4MnS8 mp-3581 symmetrized SOC Znsite_Tidope_Zn2GeS4_mp-675748_symmetrized_SOC Cosite_Zndope_Ga2CoS4_mp-4152_symmetrized_SOC Mnsite Tadope Mn GaS2 2 mp-20025 symmetrized SOC Nb PS4 2 mp-28130 symmetrized SOC Cosite_Wdope_Co2NiS4_mp-22658_symmetrized_SOC Fesite_Tidope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Gasite_Gedope_Mn_GaS2_2_mp-20025_symmetrized_SOC Cusite Crdope Ti_CuS_4 mp-29091 symmetrized SOC Nisite Vdope Ni3 SnS 2 mp-5528 symmetrized SOC Snsite_Tidope_Sn_PS3_2_mp-36381_symmetrized_SOC Tisite_Vdope_Ti2CuS4_mp-3951_symmetrized_SOC Tisite_Pdope_Ti3NiS6_mp-13993_symmetrized_SOC Ta9 NiS3 2 mp-3824 symmetrized SOC Snsite_Sdope_Ga2Sn2S5_mp-14280_symmetrized_SOC V2NiS4 mp-4909 symmetrized SOC Ti_PS3_2_mp-13666_symmetrized_SOC Cusite_Nbdope_Cu3PS4_mp-3934_symmetrized_SOC Znsite Gadope Zn2GeS4 mp-675748 symmetrized SOC Alsite_Gedope_Al5CuS8_mvc-16094_symmetrized_SOC Fesite_Gedope_Ta4FeS8_mp-554416_symmetrized_SOC Snsite_Sidope_ZrSnS3_mp-17324_symmetrized_SOC Psite_Fedope_Cu3PS4_mp-3934_symmetrized_SOC Tisite Gedope Ti PS3 2 mp-13666 symmetrized SOC Snsite Pdope SnGeS3 mp-5045 symmetrized SOC Crsite Zrdope CrPS4 mp-542096 symmetrized SOC Nisite_Cudope_Co2NiS4_mp-22658_symmetrized_SOC Alsite_Gedope_Al5CuS8_mp-35267_symmetrized_SOC Nisite_Tadope_Ti3NiS6_mp-13994_symmetrized_SOC Cusite_Aldope_Cu3PS4_mp-3934_symmetrized_SOC Gesite_Tadope_Zn2GeS4_mp-675748_symmetrized_SOC Psite_Cudope_Ti_PS3_2_mp-13666_symmetrized_SOC Gesite_Fedope_Zn2GeS4_mp-675748_symmetrized_SOC Cosite Gedope Ga2CoS4 mp-4152 symmetrized SOC Mnsite_Gedope_Mn_GaS2_2_mp-20025_symmetrized_SOC Nb_PS4_2_mp-559923_symmetrized_SOC Mnsite_Nbdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Psite Codope Cu3PS4 mp-3934 symmetrized SOC Fesite Sndope Ta9 FeS3 2 mp-3652 symmetrized SOC Nisite_Sdope_Ti3NiS6_mp-13994_symmetrized_SOC Znsite_Modope_Zn2GeS4_mp-675748_symmetrized_SOC Gasite_Codope_GaCuS2_mp-5238_symmetrized_SOC Ga2CoS4 mp-4152 symmetrized SOC

Mnsite Codope Mn_GaS2 2 mp-20025 symmetrized SOC Nisite Zndope Ni3 SnS 2 mp-5528 symmetrized SOC Al5CuS8_mvc-16094_symmetrized_SOC Al5CuS8_mp-35267_symmetrized_SOC Gasite_Pdope_Ga2Sn2S5_mp-14280_symmetrized_SOC Snsite Tadope Sn_PS3_2 mp-36381 symmetrized SOC Gasite Nidope Mn GaS2 2 mp-20025 symmetrized SOC Psite_Vdope_Ti_PS3_2_mp-13666_symmetrized_SOC Crsite_Vdope_CrPS4_mp-542096_symmetrized_SOC Gasite Zndope Mn GaS2 2 mp-20025 symmetrized SOC Sn_PS3_2_mp-36381_symmetrized SOC Psite_Cudope_Cu3PS4_mp-3934_symmetrized_SOC Psite Tadope Cu3PS4 mp-3934 symmetrized SOC Nisite_Codope_Ti3NiS6_mp-13993_symmetrized_SOC Psite Mndope CrPS4 mp-542096 symmetrized SOC Nisite Zrdope Ti3NiS6 mp-13994 symmetrized SOC Zrsite Sidope ZrSnS3 mp-17324 symmetrized SOC Nisite_Wdope_Ni3_SnS_2_mp-5528_symmetrized_SOC Cusite_Aldope_GaCuS2_mp-5238_symmetrized_SOC Crsite Pdope Nb4CrS8 mp-5306 symmetrized SOC Snsite Vdope NbSnS2 mp-9586 symmetrized SOC Tasite_Cudope_TaSnS2_mp-4538_symmetrized_SOC Alsite_Codope_AlPS4_mp-27462_symmetrized_SOC Mnsite Modope MnPS3 mp-8613 symmetrized SOC Nisite Sidope Ti3NiS6 mp-13994 symmetrized SOC Cusite Tadope Cu3PS4 mp-3934 symmetrized SOC Nbsite_Wdope_NbSnS2_mp-9586_symmetrized_SOC Tasite_Aldope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Cusite_Sidope_Ti2CuS4_mp-3951_symmetrized_SOC Mnsite Sdope MnPS3 mp-8613 symmetrized SOC Gasite Aldope GaCuS2 mp-5238 symmetrized SOC Nbsite_Aldope_Nb2PS10_mp-648932_symmetrized_SOC Cu3PS4_mp-3934_symmetrized_SOC Znsite Crdope Zn2GeS4 mp-675748 symmetrized SOC Nbsite_Vdope_NbSnS2_mp-9586_symmetrized_SOC Psite Mndope_Ti_PS3_2_mp-13666_symmetrized_SOC Tasite_Sdope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Cosite_Sidope_Co2NiS4_mp-22658_symmetrized_SOC Nisite Modope_Ti3NiS6 mp-13994 symmetrized SOC Nisite Zrdope Ni3 SnS 2 mp-5528 symmetrized SOC Alsite Sidope AlPS4 mp-27462 symmetrized SOC Mnsite_Wdope_Ta4MnS8_mp-3581_symmetrized_SOC Alsite_Sndope_Al5CuS8_mvc-16094_symmetrized_SOC Fesite Cudope Ta4FeS8 mp-554416 symmetrized SOC Alsite Sndope Al5CuS8 mp-35267 symmetrized SOC Tisite_Vdope_Ti3NiS6_mp-13994_symmetrized_SOC Fesite_Nidope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Alsite_Vdope_AlPS4_mp-27462_symmetrized_SOC Cusite Pdope GaCuS2 mp-5238 symmetrized SOC Tasite_Pdope_Ta9_FeS3_2_mp-3652_symmetrized_SOC ZrSnS3_mp-17324_symmetrized_SOC Cosite_Pdope_Ga2CoS4_mp-4152_symmetrized_SOC Nbsite_Zndope_Nb4CrS8_mp-5306_symmetrized_SOC Gasite Tadope Mn GaS2 2 mp-20025 symmetrized SOC Cosite Gadope Co2NiS4 mp-22658 symmetrized SOC Snsite_Cudope_NbSnS2_mp-9586_symmetrized SOC Tisite_Gedope_Ti3NiS6_mp-13993_symmetrized_SOC Nisite_Modope_Ni3_SnS_2_mp-5528_symmetrized_SOC Crsite Zrdope Nb4CrS8 mp-5306 symmetrized SOC Gasite_Wdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Gasite_Nbdope_GaCuS2_mp-5238_symmetrized_SOC Nisite_Codope_Ti3NiS6_mp-13994_symmetrized_SOC Cosite_Aldope_Co2NiS4_mp-22658_symmetrized_SOC Psite_Wdope_Sn_PS3_2_mp-36381_symmetrized_SOC Gasite_Vdope_GaCuS2_mp-5238_symmetrized_SOC Gasite_Cudope_GaCuS2_mp-5238_symmetrized_SOC Cosite_Gedope_Co2NiS4_mp-22658_symmetrized_SOC Gasite Mndope GaCuS2 mp-5238 symmetrized SOC Psite_Nbdope_AlPS4_mp-27462_symmetrized_SOC Nisite_Aldope_Ni3_SnS_2_mp-5528_symmetrized_SOC Tisite_Modope_Ti3NiS6_mp-13994_symmetrized_SOC Crsite_Nbdope_CrPS4_mp-542096_symmetrized_SOC Gasite Codope Ga2CoS4 mp-4152 symmetrized SOC

Psite Sdope CrPS4 mp-542096 symmetrized SOC Nisite Fedope_Ti3NiS6_mp-13993_symmetrized_SOC Fesite Sdope Ta9 FeS3 2 mp-3652 symmetrized SOC Nisite Nbdope Ni3 SnS 2 mp-5528 symmetrized SOC Snsite Gedope NbSnS2 mp-9586 symmetrized SOC Alsite Pdope Al5CuS8 mp-35267 symmetrized SOC Alsite_Nidope_Al5CuS8_mp-35267_symmetrized_SOC Cusite_Sidope_Ti_CuS_4_mp-29091_symmetrized_SOC Snsite Pdope Sn PS3 2 mp-36381 symmetrized SOC Alsite Pdope Al5CuS8 mvc-16094 symmetrized SOC Snsite Gedope Sn PS3 2 mp-36381 symmetrized SOC Snsite_Mndope_Sn_PS3_2_mp-36381_symmetrized_SOC Mnsite_Zrdope_Ta4MnS8_mp-3581_symmetrized_SOC Nbsite_Modope_NbSnS2_mp-9586_symmetrized_SOC Alsite Nbdope AlPS4 mp-27462 symmetrized SOC Psite Cudope CrPS4 mp-542096 symmetrized SOC Alsite Nidope Al5CuS8 mvc-16094 symmetrized SOC Znsite_Tadope_Zn2GeS4_mp-675748_symmetrized_SOC Cosite_Tidope_Ga2CoS4_mp-4152_symmetrized_SOC Snsite Aldope NbSnS2 mp-9586 symmetrized SOC Zrsite Sndope ZrSnS3 mp-17324 symmetrized SOC Gasite Aldope Ga2CoS4 mp-4152 symmetrized SOC Snsite Codope NbSnS2 mp-9586 symmetrized SOC Psite_Sdope_Sn_PS3_2_mp-36381_symmetrized_SOC Snsite Gedope ZrSnS3 mp-17324 symmetrized SOC Nisite Fedope Ti3NiS6 mp-13994 symmetrized SOC Gasite_Pdope_GaCuS2_mp-5238_symmetrized_SOC Nisite_Crdope_Ti3NiS6_mp-13994_symmetrized_SOC Tisite_Sidope_Ti3NiS6_mp-13993_symmetrized_SOC Cosite Sndope Co2NiS4 mp-22658 symmetrized SOC Mnsite_Tidope_Mn_GaS2_2_mp-20025_symmetrized_SOC Tisite_Tadope_Ti3NiS6_mp-13994_symmetrized SOC Gasite Cudope Mn GaS2 2 mp-20025 symmetrized SOC Nisite Sidope Ti3NiS6 mp-13993 symmetrized SOC Gasite_Cudope_Ga2CoS4_mp-4152_symmetrized_SOC Znsite Wdope Zn2GeS4 mp-675748 symmetrized SOC Zrsite_Tidope_Zr_PS3_2_mp-8203_symmetrized_SOC Cusite_Codope_GaCuS2_mp-5238_symmetrized_SOC Cusite Pdope Cu3PS4 mp-3934 symmetrized SOC Psite Tidope MnPS3 mp-8613 symmetrized SOC Cosite_Wdope_Ga2CoS4_mp-4152_symmetrized_SOC Gasite_Crdope_Ga2CoS4_mp-4152_symmetrized_SOC Tisite_Sdope_Ti3NiS6_mp-13993_symmetrized_SOC Mnsite Wdope Mn GaS2 2 mp-20025 symmetrized SOC Alsite Sdope Al5CuS8 mvc-16094 symmetrized SOC Psite_Mndope_Cu3PS4_mp-3934_symmetrized_SOC Snsite_Zndope_ZrSnS3_mp-17324_symmetrized_SOC Tasite_Crdope_Ta4MnS8_mp-3581_symmetrized_SOC Gesite Nbdope Zn2GeS4 mp-675748 symmetrized SOC Psite_Cudope_Nb2PS10_mp-648932_symmetrized_SOC Mn_GaS2_2_mp-20025_symmetrized_SOC Cusite_Crdope_Cu3PS4_mp-3934_symmetrized_SOC Cosite_Mndope_Ga2CoS4_mp-4152_symmetrized_SOC Psite Mndope AlPS4 mp-27462 symmetrized SOC Cosite_Tidope_Co2NiS4_mp-22658_symmetrized_SOC Nisite_Tidope_Ni3_SNS_2_mp-5528_symmetrized_SOC Psite_Modope_MnPS3_mp-8613_symmetrized_SOC Alsite_Tadope_Al5CuS8_mvc-16094_symmetrized_SOC Gasite Vdope Mn GaS2 2 mp-20025 symmetrized SOC Nisite_Pdope_Ti3NiS6_mp-13994_symmetrized_SOC Fesite_Cudope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Psite_Sdope_AIPS4_mp-27462_symmetrized_SOC Gasite_Mndope_Mn_GaS2_2_mp-20025_symmetrized_SOC Alsite Tadope Al5CuS8 mp-35267 symmetrized SOC Znsite Mndope Zn2GeS4 mp-675748 symmetrized SOC Tasite_Pdope_Ta4MnS8_mp-3581_symmetrized_SOC Nbsite_Aldope_NbSnS2_mp-9586_symmetrized_SOC Gasite Sndope GaCuS2 mp-5238 symmetrized SOC Cosite_Nidope_Co2NiS4_mp-22658_symmetrized_SOC Snsite_Pdope_Ga2Sn2S5_mp-14280_symmetrized_SOC Psite_Nbdope_Cu3PS4_mp-3934_symmetrized_SOC VCu3S4_mp-3762_symmetrized_SOC Tisite Sidope Ti3NiS6 mp-13994 symmetrized SOC

Zrsite_Gedope_ZrSnS3_mp-17324_symmetrized_SOC Gasite Modope Mn GaS2 2 mp-20025 symmetrized SOC Nisite_Crdope_Ti3NiS6_mp-13993_symmetrized_SOC Zrsite_Wdope_ZrSnS3_mp-17324_symmetrized_SOC Nbsite_Vdope_Mn_NbS2_3_mp-10199_symmetrized_SOC Cosite Zndope Co2NiS4 mp-22658 symmetrized SOC Cusite Mndope Cu3PS4 mp-3934 symmetrized SOC Psite_Nbdope_Sn_PS3_2_mp-36381_symmetrized_SOC Crsite Vdope Nb4CrS8 mp-5306 symmetrized SOC Snsite Nidope NbSnS2 mp-9586 symmetrized SOC Tisite Zrdope Ti3NiS6 mp-13993 symmetrized SOC Alsite_Crdope_Al5CuS8_mp-35267_symmetrized_SOC Tisite_Nbdope_Ti3NiS6_mp-13994_symmetrized_SOC Tisite_Wdope_Ti3NiS6_mp-13994_symmetrized_SOC Snsite Nbdope Ga2Sn2S5 mp-14280 symmetrized SOC Crsite Tadope CrPS4 mp-542096 symmetrized SOC Cusite_Nidope_GaCuS2 mp-5238 symmetrized SOC Psite_Sdope_Ti_PS3_2_mp-13666_symmetrized_SOC Znsite_Pdope_Zn2GeS4_mp-675748_symmetrized_SOC Nisite Modope_Ti3NiS6 mp-13993 symmetrized SOC Nisite Tidope Ti3NiS6 mp-13993 symmetrized SOC Psite_Crdope_Sn_PS3_2_mp-36381_symmetrized_SOC Zrsite_Zndope_ZrSnS3_mp-17324_symmetrized_SOC Crsite_Gedope_CrPS4_mp-542096_symmetrized_SOC Nb3VS6_mp-15958_symmetrized_SOC Nisite Wdope Ti3NiS6 mp-13993 symmetrized SOC Snsite_Sdope_NbSnS2_mp-9586_symmetrized_SOC Cusite_Wdope_GaCuS2_mp-5238_symmetrized_SOC Nisite_Tidope_Ti3NiS6_mp-13994_symmetrized_SOC Snsite Zndope NbSnS2 mp-9586 symmetrized SOC Cusite Sdope GaCuS2 mp-5238 symmetrized SOC Gasite_Sdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Psite_Cudope_Nb_PS4_2_mp-28130_symmetrized_SOC Gasite_Tadope_GaCuS2_mp-5238_symmetrized_SOC Gasite_Tidope_Mn_GaS2_2_mp-20025_symmetrized_SOC Nbsite Wdope Nb4CrS8 mp-5306 symmetrized SOC Tasite_Sdope_Ta4MnS8_mp-3581_symmetrized_SOC Alsite_Crdope_Al5CuS8_mvc-16094_symmetrized_SOC Fesite Nbdope Ta9 FeS3 2 mp-3652 symmetrized SOC Zrsite Crdope ZrSnS3 mp-17324 symmetrized SOC Psite_Nbdope_MnPS3_mp-8613_symmetrized_SOC Crsite_Sdope_CrPS4_mp-542096_symmetrized_SOC Fesite_Zndope_Ta4FeS8_mp-554416_symmetrized_SOC Psite Zndope Cu3PS4 mp-3934 symmetrized SOC Nisite Zrdope Ti3NiS6 mp-13993 symmetrized SOC Fesite_Modope_Ta9_FeS3_2_mp-3652_symmetrized_SOC ZrGeS_mp-4997_symmetrized_SOC Psite_Zrdope_Sn_PS3_2_mp-36381_symmetrized_SOC Nisite Crdope Ni3 SnS 2 mp-5528 symmetrized SOC Tisite_Nidope_Ti_PS3_2_mp-13666_symmetrized SOC Cusite_Sdope_Ti2CuS4_mp-3951_symmetrized_SOC Cusite_Sdope_Cu3PS4_mp-3934_symmetrized_SOC Mnsite_Cudope_Ta4MnS8_mp-3581_symmetrized_SOC Alsite Nbdope Al5CuS8 mvc-16094 symmetrized SOC Fesite_Sidope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Cosite_Modope_Co2NiS4_mp-22658_symmetrized_SOC Znsite_Codope_Zn2GeS4_mp-675748_symmetrized_SOC Crsite_Fedope_Nb4CrS8_mp-5306_symmetrized_SOC Nisite Cudope Ti3NiS6 mp-13994 symmetrized SOC Mn_NbS2_3_mp-10199_symmetrized_SOC Tasite_Zndope_Ta4FeS8_mp-554416_symmetrized_SOC Gasite_Nbdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Zrsite_Gadope_ZrSnS3_mp-17324_symmetrized_SOC Tisite Sndope Ti3NiS6 mp-13993 symmetrized SOC Alsite_Nbdope_Al5CuS8_mp-35267_symmetrized_SOC Cusite_Zrdope_GaCuS2_mp-5238_symmetrized_SOC Crsite_Nbdope_Nb4CrS8_mp-5306_symmetrized_SOC Nisite Aldope Ti3NiS6 mp-13993 symmetrized SOC Tasite Modope Ta4MnS8 mp-3581 symmetrized SOC Nbsite_Nidope_NbSnS2_mp-9586_symmetrized_SOC Tasite_Gedope_Ta4MnS8_mp-3581_symmetrized_SOC Nisite_Fedope_Co2NiS4_mp-22658_symmetrized_SOC Gasite Sidope Ga2CoS4 mp-4152 symmetrized SOC

Snsite Nbdope NbSnS2 mp-9586 symmetrized SOC Nisite Sdope Ni3 SnS 2 mp-5528 symmetrized SOC Gasite Sdope Ga2CoS4 mp-4152 symmetrized SOC Psite_Aldope_AlPS4_mp-27462_symmetrized_SOC Gasite Zrdope GaCuS2 mp-5238 symmetrized SOC Cosite_Tadope_Co2NiS4_mp-22658_symmetrized_SOC Cosite_Nbdope_Co2NiS4_mp-22658_symmetrized_SOC Gasite Gedope Ga2Sn2S5 mp-14280 symmetrized SOC Nbsite_Sndope_NbSnS2_mp-9586_symmetrized_SOC Psite Nidope Cu3PS4 mp-3934 symmetrized SOC Tasite Cudope Ta4MnS8 mp-3581 symmetrized SOC Tasite_Wdope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Cusite_Vdope_Ti2CuS4_mp-3951_symmetrized_SOC Psite Crdope CrPS4 mp-542096 symmetrized SOC Tisite Sdope Ti3NiS6 mp-13994 symmetrized SOC Mnsite Gadope Mn GaS2 2 mp-20025 symmetrized SOC Tisite_Cudope_Ti3NiS6_mp-13993 symmetrized SOC Nisite_Sndope_Ni3_SnS_2_mp-5528_symmetrized_SOC Tisite Sndope Ti3NiS6 mp-13994 symmetrized SOC Crsite Zndope CrPS4 mp-542096 symmetrized SOC Nisite Vdope Ti3NiS6 mp-13994 symmetrized SOC Tasite_Nbdope_Ta4MnS8_mp-3581_symmetrized_SOC Psite_Zndope_Ti_PS3_2_mp-13666_symmetrized_SOC Fesite_Pdope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Tasite Modope Ta9 FeS3 2 mp-3652 symmetrized SOC Snsite Pdope NbSnS2 mp-9586 symmetrized SOC Zrsite Codope ZrSnS3 mp-17324 symmetrized SOC Tasite_Zndope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Snsite_Fedope_Sn_PS3_2_mp-36381_symmetrized_SOC Cusite Mndope Ti CuS 4 mp-29091 symmetrized SOC Tasite Mndope Ta4MnS8 mp-3581 symmetrized SOC Ta4MnS8 mp-3581 symmetrized SOC Nisite Pdope Ni3 SnS 2 mp-5528 symmetrized SOC Cosite_Gadope_Ga2CoS4 mp-4152 symmetrized SOC Tasite_Sndope_Ta4MnS8_mp-3581_symmetrized_SOC Mn NbS2 4 mp-3669 symmetrized SOC Nisite_Nbdope_Ti3NiS6_mp-13993_symmetrized_SOC Nb3FeS6 mp-22613 symmetrized SOC Nisite Mndope Ti3NiS6 mp-13994 symmetrized SOC Tasite Vdope Ta4MnS8 mp-3581 symmetrized SOC Nisite_Vdope_Ti3NiS6_mp-13993_symmetrized_SOC Cusite_Gadope_Ti2CuS4_mp-3951_symmetrized_SOC Crsite_Tadope_Nb4CrS8_mp-5306_symmetrized_SOC Snsite Aldope Ga2Sn2S5 mp-14280 symmetrized SOC Tisite Crdope Ti3NiS6 mp-13993 symmetrized SOC Tasite_Cudope_Ta4FeS8_mp-554416_symmetrized_SOC Nisite_Mndope_Co2NiS4_mp-22658_symmetrized_SOC Snsite_Zrdope_NbSnS2_mp-9586_symmetrized_SOC Fesite Crdope Ta9 FeS3 2 mp-3652 symmetrized SOC Crsite Mndope CrPS4 mp-542096 symmetrized SOC Psite_Vdope_MnPS3_mp-8613_symmetrized_SOC Mnsite_Tadope_Ta4MnS8_mp-3581_symmetrized_SOC Alsite_Gadope_Al5CuS8_mp-35267_symmetrized_SOC Alsite Gadope Al5CuS8 mvc-16094 symmetrized SOC Tasite_Wdope_Ta4MnS8_mp-3581_symmetrized_SOC Psite_Codope_Ti_PS3_2_mp-13666_symmetrized_SOC Gasite Tadope Ga2CoS4 mp-4152 symmetrized SOC Tisite_Nidope_Ti3NiS6_mp-13993_symmetrized_SOC Snsite Sidope NbSnS2 mp-9586 symmetrized SOC Gasite Vdope Ga2Sn2S5 mp-14280 symmetrized SOC Nbsite_Gedope_NbSnS2_mp-9586_symmetrized_SOC Cusite_Vdope_Ti_CuS_4_mp-29091_symmetrized_SOC Gasite_Zrdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Gasite Wdope Ga2CoS4 mp-4152 symmetrized SOC Cusite Gadope Cu3PS4 mp-3934 symmetrized SOC Snsite_Tidope_NbSnS2_mp-9586_symmetrized_SOC Cusite_Pdope_Ti2CuS4_mp-3951_symmetrized_SOC Snsite Modope Sn PS3 2 mp-36381 symmetrized SOC Nbsite Sdope NbSnS2 mp-9586 symmetrized SOC Tisite_Wdope_Ti3NiS6_mp-13993_symmetrized_SOC Gasite_Nidope_GaCuS2_mp-5238_symmetrized_SOC Snsite_Codope_Sn_PS3_2_mp-36381_symmetrized_SOC Cusite Gedope Cu3PS4 mp-3934 symmetrized SOC

Gasite Pdope Ga2CoS4 mp-4152 symmetrized SOC Nisite Mndope Ni3 SnS 2 mp-5528 symmetrized SOC Cusite_Fedope_GaCuS2_mp-5238_symmetrized_SOC Psite Nidope Ti PS3_2 mp-13666 symmetrized SOC Tisite Nbdope Ti3NiS6 mp-13993 symmetrized SOC Cusite Modope GaCuS2 mp-5238 symmetrized SOC Gesite Codope Zn2GeS4 mp-675748 symmetrized SOC Tisite_Vdope_Ti3NiS6_mp-13993_symmetrized_SOC Psite_Nbdope_CrPS4_mp-542096_symmetrized_SOC Crsite Aldope Nb4CrS8 mp-5306 symmetrized SOC Cusite Aldope Ti2CuS4 mp-3951 symmetrized SOC Cusite Gedope Ti_CuS 4 mp-29091 symmetrized SOC CrPS4_mp-542096_symmetrized_SOC Gesite_Zndope_Zn2GeS4_mp-675748_symmetrized_SOC Fesite Gedope Ta9 FeS3 2 mp-3652 symmetrized SOC Ssite Pdope Sn PS3 2 mp-36381 symmetrized SOC Ti3NiS6 mp-13994 symmetrized_SOC Snsite_Tadope_NbSnS2_mp-9586_symmetrized_SOC Tisite_Wdope_Ti2CuS4_mp-3951_symmetrized_SOC Crsite Nidope Nb4CrS8 mp-5306 symmetrized SOC GaCuS2 mp-5238 symmetrized SOC Alsite Sndope AlPS4 mp-27462 symmetrized SOC Nbsite_Vdope_Nb4CrS8_mp-5306_symmetrized_SOC Cusite_Zndope_Ti2CuS4_mp-3951_symmetrized_SOC Tisite Modope Ti PS3 2 mp-13666 symmetrized SOC Cosite Modope Ga2CoS4 mp-4152 symmetrized SOC Cusite_Modope_Cu3PS4_mp-3934_symmetrized_SOC Cosite_Aldope_Ga2CoS4_mp-4152_symmetrized_SOC Mnsite_Aldope_Mn_GaS2_2_mp-20025_symmetrized_SOC Mnsite Modope Mn GaS2 2 mp-20025 symmetrized SOC Gasite Crdope Mn GaS2 2 mp-20025 symmetrized SOC Tisite_Cudope_Ti3NiS6_mp-13994_symmetrized SOC Snsite_Zrdope_Ga2Sn2S5_mp-14280_symmetrized_SOC Nisite Zndope Ti3NiS6 mp-13994 symmetrized SOC Tasite_Sidope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Tasite_Sndope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Cusite Zndope GaCuS2 mp-5238 symmetrized SOC Nisite Gedope Ti3NiS6 mp-13994 symmetrized SOC Gasite Sdope GaCuS2 mp-5238 symmetrized SOC Tasite Gadope Ta4MnS8 mp-3581 symmetrized SOC Mnsite Gedope MnPS3 mp-8613 symmetrized SOC Gasite_Gedope_Ga2CoS4_mp-4152_symmetrized_SOC Gasite_Tidope_GaCuS2_mp-5238_symmetrized_SOC Fesite Mndope Ta9 FeS3 2 mp-3652 symmetrized SOC Crsite Gadope Nb4CrS8 mp-5306 symmetrized SOC Cusite_Wdope_Cu3PS4_mp-3934_symmetrized_SOC Nisite_Sdope_Ti3NiS6_mp-13993_symmetrized_SOC Crsite_Tidope_Nb4CrS8_mp-5306_symmetrized_SOC Tasite Zndope Ta4MnS8 mp-3581 symmetrized SOC Alsite_Vdope_Al5CuS8_mp-35267_symmetrized_SOC Tisite_Modope_Ti3NiS6_mp-13993_symmetrized_SOC Gesite_Pdope_Zn2GeS4_mp-675748_symmetrized_SOC Tasite_Aldope_TaSnS2_mp-4538_symmetrized_SOC Ti3NiS6 mp-13993 symmetrized SOC Alsite Vdope Al5CuS8 mvc-16094 symmetrized SOC NbSnS2 mp-9586 symmetrized SOC Nbsite Zrdope Nb4CrS8 mp-5306 symmetrized SOC Cosite_Cudope_Co2NiS4_mp-22658_symmetrized_SOC Ta9 FeS3 2 mp-3652 symmetrized SOC Nbsite Zndope Mn NbS2 3 mp-10199 symmetrized SOC Nisite_Tidope_Co2NiS4_mp-22658_symmetrized_SOC Gasite_Sndope_Mn_GaS2_2_mp-20025_symmetrized_SOC Nisite_Sndope_Ti3NiS6_mp-13993_symmetrized_SOC Mnsite Pdope Ta4MnS8 mp-3581 symmetrized SOC Gesite_Wdope_Zn2GeS4_mp-675748_symmetrized_SOC Nisite_Sndope_Ti3NiS6_mp-13994_symmetrized_SOC Nbsite_Tidope_Nb4CrS8_mp-5306_symmetrized_SOC Nisite Gadope Ti3NiS6 mp-13994 symmetrized SOC Tisite_Tadope_Ti3NiS6_mp-13993_symmetrized_SOC Mnsite_Vdope_MnPS3_mp-8613_symmetrized_SOC Nb4CrS8_mp-5306_symmetrized_SOC Zrsite_Vdope_ZrSnS3_mp-17324_symmetrized_SOC Tasite Sidope Ta4MnS8 mp-3581 symmetrized SOC

Nisite_Gedope_Ti3NiS6_mp-13993_symmetrized_SOC Co2NiS4 mp-22658 symmetrized SOC Cusite_Gedope_GaCuS2_mp-5238_symmetrized_SOC Cusite Pdope Ti CuS 4 mp-29091 symmetrized SOC Gesite Nidope Zn2GeS4 mp-675748 symmetrized SOC Cusite Sndope GaCuS2 mp-5238 symmetrized SOC Cusite_Sndope_Ti2CuS4_mp-3951_symmetrized_SOC Mnsite Sidope MnPS3 mp-8613 symmetrized SOC Snsite_Gadope_Ga2Sn2S5_mp-14280_symmetrized_SOC Gasite Sndope Ga2CoS4 mp-4152 symmetrized SOC Gasite Gedope GaCuS2 mp-5238 symmetrized SOC Nisite Aldope Ti3NiS6 mp-13994 symmetrized SOC Gasite_Vdope_Ga2CoS4_mp-4152_symmetrized_SOC Gesite Modope Zn2GeS4 mp-675748 symmetrized SOC V4NiS8_mp-696867_symmetrized_SOC Crsite Gedope Nb4CrS8 mp-5306 symmetrized SOC Snsite_Wdope_Sn_PS3_2_mp-36381_symmetrized_SOC Alsite_Sdope_Al5CuS8_mp-35267_symmetrized_SOC Tasite_Zrdope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Psite_Wdope_Ti_PS3_2_mp-13666_symmetrized_SOC Gasite Wdope GaCuS2 mp-5238 symmetrized SOC Alsite_Mndope_AlPS4_mp-27462_symmetrized_SOC Crsite_Mndope_Nb4CrS8_mp-5306_symmetrized_SOC Tasite_Tidope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Psite Mndope Sn PS3 2 mp-36381 symmetrized SOC Nisite Crdope Co2NiS4 mp-22658 symmetrized SOC Gesite Vdope Zn2GeS4 mp-675748 symmetrized SOC Gasite_Modope_Ga2CoS4_mp-4152_symmetrized_SOC Cosite_Vdope_Ga2CoS4_mp-4152_symmetrized_SOC Mnsite Vdope Mn GaS2 2 mp-20025 symmetrized SOC Mnsite Vdope Ta4MnS8 mp-3581 symmetrized SOC Nbsite_Gadope_NbSnS2_mp-9586_symmetrized_SOC Nbsite_Codope_NbSnS2_mp-9586_symmetrized_SOC Psite Wdope AlPS4 mp-27462 symmetrized SOC Alsite Cudope Al5CuS8 mvc-16094 symmetrized SOC Crsite Wdope Nb4CrS8 mp-5306 symmetrized SOC Zrsite_Tidope_ZrSnS3_mp-17324_symmetrized_SOC Nisite_Cudope_Ni3_SnS_2_mp-5528_symmetrized_SOC Mnsite Fedope Mn GaS2 2 mp-20025 symmetrized SOC Cosite Fedope Ga2CoS4 mp-4152 symmetrized SOC Psite_Vdope_Sn_PS3_2_mp-36381_symmetrized_SOC Mnsite_Crdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Gasite_Nbdope_Ga2CoS4_mp-4152_symmetrized_SOC Psite Sidope CrPS4 mp-542096 symmetrized SOC Cosite Crdope Ga2CoS4 mp-4152 symmetrized SOC Psite_Modope_Sn_PS3_2_mp-36381_symmetrized_SOC Mnsite_Aldope_Ta4MnS8_mp-3581_symmetrized_SOC Nisite_Gedope_Ni3_SnS_2_mp-5528_symmetrized_SOC Tasite Aldope Ta4MnS8 mp-3581 symmetrized SOC Gasite Mndope Ga2CoS4 mp-4152 symmetrized SOC Crsite_Pdope_CrPS4_mp-542096 symmetrized SOC Nbsite_Zrdope_NbSnS2_mp-9586_symmetrized_SOC Psite_Vdope_Cu3PS4_mp-3934_symmetrized_SOC Cusite Gadope GaCuS2 mp-5238 symmetrized SOC Mnsite Aldope MnPS3 mp-8613 symmetrized SOC Nisite_Sdope_Co2NiS4_mp-22658_symmetrized_SOC Psite_Zndope_CrPS4_mp-542096_symmetrized_SOC Nisite_Zndope_Ti3NiS6_mp-13993_symmetrized_SOC Tisite Crdope Ti2CuS4 mp-3951 symmetrized SOC Psite Nidope AlPS4 mp-27462 symmetrized SOC Tisite_Mndope_Ti_PS3_2_mp-13666_symmetrized_SOC Cosite Tadope Ga2CoS4 mp-4152 symmetrized SOC Mnsite_Crdope_MnPS3_mp-8613_symmetrized_SOC Tisite Codope Ti3NiS6 mp-13993 symmetrized SOC Tisite_Aldope_Ti3NiS6_mp-13993_symmetrized_SOC Crsite_Aldope_CrPS4_mp-542096_symmetrized_SOC Alsite_Cudope_Al5CuS8_mp-35267_symmetrized_SOC Nisite Gadope Ni3 SnS 2 mp-5528 symmetrized SOC Nisite Fedope Ni3 SnS 2 mp-5528 symmetrized SOC Cusite_Sndope_Cu3PS4_mp-3934_symmetrized_SOC Cosite_Pdope_Co2NiS4_mp-22658_symmetrized_SOC Mnsite Nbdope Ta4MnS8 mp-3581 symmetrized SOC Cusite Sidope GaCuS2 mp-5238 symmetrized SOC

Psite Tadope Sn PS3 2 mp-36381 symmetrized SOC Nbsite Zndope NbSnS2 mp-9586 symmetrized SOC Alsite_Crdope_AlPS4_mp-27462_symmetrized_SOC Tisite Sidope Ti2CuS4 mp-3951 symmetrized SOC Crsite Modope Nb4CrS8 mp-5306 symmetrized SOC Cusite Wdope Ti2CuS4 mp-3951 symmetrized SOC Psite Modope Ti PS3 2 mp-13666 symmetrized SOC Gesite Cudope Zn2GeS4 mp-675748 symmetrized SOC Snsite Aldope SnGeS3 mp-5045 symmetrized SOC Nisite Mndope Ti3NiS6 mp-13993 symmetrized SOC Nbsite Pdope NbSnS2 mp-9586 symmetrized SOC Gasite Nbdope Ga2Sn2S5 mp-14280 symmetrized SOC Nisite_Tadope_Ti3NiS6_mp-13993_symmetrized_SOC Mnsite Modope Ta4MnS8 mp-3581 symmetrized SOC Nisite Sidope Ni3 SnS 2 mp-5528 symmetrized SOC Psite Cudope AlPS4 mp-27462 symmetrized SOC Cosite Zrdope Co2NiS4 mp-22658 symmetrized SOC TaSnS2_mp-4538_symmetrized_SOC Cosite_Nbdope_Ga2CoS4_mp-4152_symmetrized_SOC Znsite_Vdope_Zn2GeS4_mp-675748_symmetrized_SOC Mnsite Cudope MnPS3 mp-8613 symmetrized SOC Mnsite Tadope MnPS3 mp-8613 symmetrized SOC Fesite Gadope Ta4FeS8 mp-554416 symmetrized SOC Psite_Zndope_Sn_PS3_2_mp-36381_symmetrized_SOC Nisite_Cudope_Ti3NiS6_mp-13993_symmetrized_SOC Cusite Tidope GaCuS2 mp-5238 symmetrized SOC Mnsite_Zndope_Ta4MnS8_mp-3581_symmetrized_SOC Snsite Modope NbSnS2 mp-9586 symmetrized SOC Psite_Vdope_AIPS4_mp-27462_symmetrized_SOC Tisite_Gadope_Ti3NiS6_mp-13994_symmetrized_SOC Nisite Codope Ni3 SnS 2 mp-5528 symmetrized SOC Co3 SnS 2 mp-19807 symmetrized SOC Nisite Modope Co2NiS4 mp-22658 symmetrized SOC Tisite Wdope Ti PS3_2 mp-13666 symmetrized SOC Crsite_Cudope_Nb4CrS8_mp-5306_symmetrized_SOC Znsite Nbdope Zn2GeS4 mp-675748 symmetrized SOC Psite_Fedope_Sn_PS3_2_mp-36381_symmetrized_SOC Cosite_Nidope_Ga2CoS4_mp-4152_symmetrized_SOC Tisite Aldope Ti3NiS6 mp-13994 symmetrized SOC Gasite_Aldope_Mn_GaS2_2_mp-20025_symmetrized_SOC Mnsite_Nidope_Mn_GaS2_2_mp-20025_symmetrized_SOC Cusite_Vdope_Cu3PS4_mp-3934_symmetrized_SOC Psite_Zrdope_Ti_PS3_2_mp-13666_symmetrized_SOC Ssite_Gadope_Sn_PS3_2_mp-36381_symmetrized_SOC Gasite_Sidope_Mn_GaS2_2_mp-20025_symmetrized_SOC Alsite_Fedope_AIPS4_mp-27462_symmetrized_SOC Gesite_Crdope_Zn2GeS4_mp-675748_symmetrized_SOC Alsite_Modope_AlPS4_mp-27462_symmetrized_SOC Tasite Zndope TaSnS2 mp-4538 symmetrized SOC Alsite_Wdope_Al5CuS8_mp-35267_symmetrized_SOC Fesite_Aldope_Ta9_FeS3_2_mp-3652_symmetrized_SOC Cusite_Zrdope_Cu3PS4_mp-3934_symmetrized_SOC Tisite_Pdope_Ti3NiS6_mp-13994_symmetrized_SOC Mnsite Gadope MnPS3 mp-8613 symmetrized SOC Cosite_Vdope_Co2NiS4_mp-22658_symmetrized_SOC Ti9ZnS16_mp-531696_symmetrized_SOC Alsite_Wdope_Al5CuS8_mvc-16094_symmetrized_SOC Snsite_Mndope_NbSnS2_mp-9586_symmetrized_SOC Nbsite Tadope NbSnS2 mp-9586 symmetrized SOC Crsite_Zndope_Nb4CrS8_mp-5306 symmetrized SOC Tasite_Tidope_TaSnS2_mp-4538_symmetrized_SOC Cusite Tidope Cu3PS4 mp-3934 symmetrized SOC Crsite_Sidope_Nb4CrS8_mp-5306_symmetrized_SOC Fesite Gadope Ta9 FeS3 2 mp-3652 symmetrized SOC Crsite_Gadope_CrPS4_mp-542096_symmetrized_SOC Tisite_Zndope_Ti3NiS6_mp-13993_symmetrized_SOC Cusite_Tidope_Ti_CuS_4_mp-29091_symmetrized_SOC Crsite Sndope Nb4CrS8 mp-5306 symmetrized SOC Tisite Mndope Ti3NiS6 mp-13993 symmetrized SOC Ta3SnS6_mp-9132_symmetrized_SOC Psite_Gadope_AlPS4_mp-27462_symmetrized_SOC Mnsite_Zrdope_MnPS3_mp-8613_symmetrized_SOC Ti2CuS4 mp-3951 symmetrized SOC

Gasite Modope GaCuS2 mp-5238 symmetrized SOC Snsite Crdope Sn PS3 2 mp-36381 symmetrized SOC Znsite_Fedope_Zn2GeS4_mp-675748_symmetrized_SOC Psite_Gadope_Cu3PS4_mp-3934_symmetrized_SOC Zrsite Modope ZrSnS3 mp-17324 symmetrized SOC Mnsite Sndope MnPS3 mp-8613 symmetrized SOC Nbsite_Sidope_NbSnS2_mp-9586_symmetrized_SOC Cusite_Sdope_Ti_CuS_4_mp-29091_symmetrized_SOC MnPS3_mp-8613_symmetrized_SOC Nisite Codope Co2NiS4 mp-22658 symmetrized SOC Psite Tidope Sn PS3 2 mp-36381 symmetrized SOC Tasite_Pdope_TaSnS2_mp-4538_symmetrized_SOC Nisite_Gadope_Ti3NiS6_mp-13993_symmetrized SOC Tisite_Mndope_Ti2CuS4_mp-3951_symmetrized_SOC Gasite_Tidope_Ga2CoS4_mp-4152_symmetrized_SOC Psite Codope Sn PS3 2 mp-36381 symmetrized SOC Alsite Nidope AIPS4 mp-27462 symmetrized SOC Snsite_Crdope_NbSnS2_mp-9586_symmetrized_SOC Nisite Zrdope Co2NiS4 mp-22658 symmetrized SOC Nisite_Wdope_Co2NiS4 mp-22658 symmetrized SOC Cusite Crdope Ti2CuS4 mp-3951 symmetrized SOC Snsite_Gadope_ZrSnS3_mp-17324_symmetrized_SOC Tisite_Sdope_Ti2CuS4_mp-3951_symmetrized_SOC Tasite Tidope Ta4MnS8 mp-3581 symmetrized SOC Psite Sndope AlPS4 mp-27462 symmetrized SOC Cusite Nidope Cu3PS4 mp-3934 symmetrized SOC Psite Tidope CrPS4 mp-542096 symmetrized SOC Cosite_Fedope_Co2NiS4_mp-22658_symmetrized SOC Nbsite_Fedope_NbSnS2_mp-9586_symmetrized_SOC Gasite Modope Ga2Sn2S5 mp-14280 symmetrized SOC Cusite Zndope Cu3PS4 mp-3934 symmetrized SOC Snsite_Tidope_ZrSnS3_mp-17324_symmetrized_SOC Tasite Cudope Ta9 FeS3 2 mp-3652 symmetrized SOC Cosite Sdope Co2NiS4 mp-22658 symmetrized SOC Cosite Crdope Co2NiS4 mp-22658 symmetrized SOC Alsite Modope Al5CuS8 mp-35267 symmetrized SOC Crsite Sndope CrPS4 mp-542096 symmetrized SOC Alsite Gedope AlPS4 mp-27462 symmetrized SOC Tasite Zrdope Ta4MnS8 mp-3581 symmetrized SOC Psite Aldope Cu3PS4 mp-3934 symmetrized SOC Psite_Gedope_AlPS4_mp-27462_symmetrized_SOC Psite_Crdope_Ti_PS3_2_mp-13666_symmetrized_SOC Nisite_Pdope_Co2NiS4_mp-22658_symmetrized_SOC Psite Gedope Sn PS3 2 mp-36381 symmetrized SOC Snsite Gadope NbSnS2 mp-9586 symmetrized SOC Alsite_Modope_Al5CuS8_mvc-16094_symmetrized_SOC Alsite_Wdope_AlPS4_mp-27462_symmetrized_SOC Crsite_Modope_CrPS4_mp-542096_symmetrized_SOC Tisite Gadope Ti3NiS6 mp-13993 symmetrized SOC Tisite_Nbdope_Ti_PS3_2_mp-13666_symmetrized_SOC Mnsite_Pdope_Mn_GaS2_2_mp-20025_symmetrized_SOC Cusite_Zndope_Ti_CuS_4_mp-29091_symmetrized_SOC Nbsite_Tidope_NbSnS2_mp-9586_symmetrized_SOC Ni3 SnS 2 mp-5528 symmetrized SOC Cusite Fedope Ti2CuS4 mp-3951 symmetrized SOC Gasite Zndope Ga2CoS4 mp-4152 symmetrized SOC Psite Wdope Cu3PS4 mp-3934 symmetrized SOC Snsite_Zrdope_ZrSnS3_mp-17324_symmetrized_SOC Cusite Modope Ti2CuS4 mp-3951 symmetrized SOC Psite_Tidope_Ti_PS3_2_mp-13666_symmetrized_SOC Cusite_Mndope_GaCuS2_mp-5238_symmetrized_SOC Psite_Zrdope_CrPS4_mp-542096_symmetrized_SOC Cusite_Mndope_Ti2CuS4_mp-3951_symmetrized_SOC Tisite_Tadope_Ti_PS3_2_mp-13666_symmetrized_SOC Psite_Modope_Cu3PS4_mp-3934_symmetrized_SOC Psite_Aldope_CrPS4_mp-542096_symmetrized_SOC Nb3SnS6 mp-557640 symmetrized SOC Psite Gadope CrPS4 mp-542096 symmetrized SOC Gasite Fedope GaCuS2 mp-5238 symmetrized SOC Crsite_Wdope_CrPS4_mp-542096_symmetrized_SOC Nb3GeS6 mp-867739 symmetrized SOC Gasite Zndope GaCuS2 mp-5238 symmetrized SOC Alsite Codope Al5CuS8 mvc-16094 symmetrized SOC

Alsite Codope Al5CuS8 mp-35267 symmetrized SOC Psite Sdope Cu3PS4 mp-3934 symmetrized SOC Mnsite_Gedope_Ta4MnS8_mp-3581_symmetrized_SOC Zrsite Vdope Zr PS3 2 mp-8203 symmetrized SOC Tisite Aldope Ti2CuS4 mp-3951 symmetrized SOC Zrsite_Mndope_ZrSnS3_mp-17324_symmetrized_SOC Zrsite_Pdope_ZrSnS3_mp-17324_symmetrized_SOC Zrsite_Nbdope_ZrSnS3_mp-17324_symmetrized_SOC Co2CuS4_mp-3925_symmetrized_SOC Mnsite Sndope_Ta4MnS8_mp-3581_symmetrized_SOC Psite Fedope AIPS4 mp-27462 symmetrized SOC Alsite_Mndope_Al5CuS8_mvc-16094 symmetrized SOC Alsite_Mndope_Al5CuS8_mp-35267_symmetrized_SOC Gasite_Zrdope_Ga2Sn2S5_mp-14280_symmetrized_SOC Gasite Cudope Ga2Sn2S5 mp-14280 symmetrized SOC Cusite Sidope Cu3PS4 mp-3934 symmetrized SOC Crsite Sidope CrPS4 mp-542096 symmetrized SOC Alsite_Tidope_Al5CuS8_mvc-16094_symmetrized_SOC Psite_Tidope_AlPS4_mp-27462_symmetrized_SOC Snsite Aldope ZrSnS3 mp-17324 symmetrized SOC Tisite Pdope Ti2CuS4 mp-3951 symmetrized SOC Alsite_Tidope_Al5CuS8_mp-35267_symmetrized_SOC Nbsite_Mndope_NbSnS2_mp-9586_symmetrized_SOC Mnsite_Gadope_Ta4MnS8_mp-3581_symmetrized_SOC Psite Sidope AIPS4 mp-27462 symmetrized SOC Cosite Cudope Ga2CoS4 mp-4152 symmetrized SOC Mnsite_Cudope_Mn_GaS2_2_mp-20025_symmetrized SOC Gesite Gadope Zn2GeS4 mp-675748 symmetrized SOC Gasite_Sdope_Ga2Sn2S5_mp-14280_symmetrized_SOC Gasite Sidope Ga2Sn2S5 mp-14280 symmetrized SOC Nbsite_Zrdope_Mn_NbS2_3_mp-10199_symmetrized_SOC Psite Crdope Cu3PS4 mp-3934 symmetrized SOC Cusite_Vdope_GaCuS2_mp-5238_symmetrized_SOC Psite Sndope Sn PS3 2 mp-36381 symmetrized SOC Gasite_Crdope_GaCuS2_mp-5238_symmetrized_SOC Cusite_Nbdope_Ti2CuS4_mp-3951_symmetrized_SOC Nbsite Wdope Mn NbS2 3 mp-10199 symmetrized SOC Psite_Gedope_CrPS4_mp-542096_symmetrized_SOC Alsite Zrdope Al5CuS8 mvc-16094 symmetrized SOC Snsite Vdope Sn PS3 2 mp-36381 symmetrized SOC Alsite_Zrdope_Al5CuS8_mp-35267_symmetrized_SOC Nisite_Zndope_Co2NiS4_mp-22658_symmetrized_SOC Mnsite_Tidope_MnPS3_mp-8613_symmetrized_SOC Mnsite Sdope Ta4MnS8 mp-3581 symmetrized SOC Gasite Tidope Ga2Sn2S5 mp-14280 symmetrized SOC Znsite_Cudope_Zn2GeS4_mp-675748_symmetrized_SOC Psite_Sidope_Sn_PS3_2_mp-36381_symmetrized_SOC Psite_Sndope_Cu3PS4_mp-3934_symmetrized_SOC Snsite Aldope Sn PS3 2 mp-36381 symmetrized SOC Zrsite Cudope Zr PS3 2 mp-8203 symmetrized SOC Zrsite_Tadope_ZrSnS3_mp-17324_symmetrized_SOC Tisite_Codope_Ti2CuS4_mp-3951_symmetrized_SOC Mnsite_Sidope_Ta4MnS8_mp-3581_symmetrized_SOC

Psite Gedope Cu3PS4 mp-3934 symmetrized SOC Cusite Nidope Ti2CuS4 mp-3951 symmetrized SOC Psite_Gedope_Ti_PS3_2_mp-13666_symmetrized_SOC Psite_Gadope_MnPS3_mp-8613_symmetrized_SOC Nisite Nbdope Co2NiS4 mp-22658 symmetrized SOC Alsite Zrdope AlPS4 mp-27462 symmetrized SOC Psite Tidope Cu3PS4 mp-3934 symmetrized SOC Psite_Sidope_Ti_PS3_2_mp-13666_symmetrized_SOC Psite_Zrdope_Cu3PS4_mp-3934_symmetrized_SOC Snsite Sdope ZrSnS3 mp-17324 symmetrized SOC Cusite Tadope Ti2CuS4 mp-3951 symmetrized SOC Nbsite_Crdope_NbSnS2_mp-9586_symmetrized_SOC Zrsite_Zndope_Zr_PS3_2_mp-8203_symmetrized_SOC Alsite_Tidope_AlPS4_mp-27462_symmetrized_SOC Zrsite Cudope ZrSnS3 mp-17324 symmetrized SOC Psite Sndope Ti PS3 2 mp-13666 symmetrized SOC Tasite_Sidope_TaSnS2_mp-4538_symmetrized SOC Psite_Zrdope_AlPS4_mp-27462_symmetrized_SOC Psite_Zndope_AlPS4_mp-27462_symmetrized_SOC Tisite_Gadope_Ti_PS3_2_mp-13666_symmetrized_SOC Nisite Gedope Co2NiS4 mp-22658 symmetrized SOC Cusite Tidope Ti2CuS4 mp-3951 symmetrized SOC Psite_Sidope_Cu3PS4_mp-3934_symmetrized_SOC Snsite_Gadope_Sn_PS3_2_mp-36381_symmetrized_SOC Snsite Cudope Ga2Sn2S5 mp-14280 symmetrized SOC Zrsite Sdope Zr PS3 2 mp-8203 symmetrized SOC Gesite_Aldope_Zn2GeS4_mp-675748_symmetrized_SOC Gasite Zndope Ga2Sn2S5 mp-14280 symmetrized SOC Psite_Modope_AlPS4_mp-27462_symmetrized_SOC Zrsite Aldope Zr PS3 2 mp-8203 symmetrized SOC Zrsite Pdope Zr PS3_2_mp-8203_symmetrized_SOC Gesite_Mndope_Zn2GeS4_mp-675748_symmetrized SOC Nisite_Sidope_Co2NiS4_mp-22658_symmetrized_SOC Zrsite Aldope ZrSnS3 mp-17324 symmetrized SOC Nisite Sndope Co2NiS4 mp-22658 symmetrized SOC Mnsite Zndope MnPS3 mp-8613 symmetrized SOC Alsite_Zndope_AlPS4_mp-27462_symmetrized_SOC Nisite_Aldope_Co2NiS4_mp-22658_symmetrized_SOC Zrsite Gadope Zr PS3 2 mp-8203 symmetrized SOC Alsite Cudope AIPS4 mp-27462 symmetrized SOC Nisite_Tadope_Co2NiS4_mp-22658_symmetrized_SOC Snsite_Pdope_ZrSnS3_mp-17324_symmetrized_SOC Nisite_Gadope_Co2NiS4_mp-22658_symmetrized_SOC Psite Gedope MnPS3 mp-8613 symmetrized SOC Alsite Zndope Al5CuS8 mp-35267 symmetrized SOC Alsite_Zndope_Al5CuS8_mvc-16094_symmetrized_SOC Cusite_Zrdope_Ti2CuS4_mp-3951_symmetrized_SOC Nisite_Vdope_Co2NiS4_mp-22658_symmetrized_SOC Snsite Cudope ZrSnS3 mp-17324 symmetrized SOC Psite_Crdope_AlPS4_mp-27462_symmetrized_SOC

計 809 種類
MX_TraP.sh

#! /bin/csh

===Outputfile List=== echo -e "= =¥n" ls -c *out echo -e "= =¥n" echo -n 'Please enter the outputfile name ; Outputfile name = ' read outputfile #input if ['echo \$outputfile|grep .out'] ; then File_Name=\$(echo -e "\$outputfile" | cut -d "." -f 1) #file name gain Path=\$(pwd) echo -n "\$File Name" #Directly of file name is made mkdir \$File_Name #copy OpenMXoutputfile to directly cp \$outputfile \$File_Name #go to directly cd \$Path/\$File Name rm \$File_Name.energy $spinpolarization_swich=\$(grep~scf.SpinPolarization~\$outputfile~|~sed~-e~'s/^[~]*//g'~|~sed~'s/[`ti~]$+/`ti/g'~|~cut~-f~2)~\#$ if [\$spinpolarization_swich = NC]; then ##if 1 echo -e "scf.SpinPolarization is Non-colliner" else ###else 1 echo -e "scf.SpinPolarization is colliner" fi ###fi1 if [\$spinpolarization_swich = NC]; then ###Non-colliner or not### ##if 2 ####Start:::Non-colliner###### echo -e "Please wait. Generating .energy file ..." kloopmax=\$(grep kloop \$outputfile | tail -n 1 | cut -c 10-20) if [`expr \$kloopmax % 2` == 0] ; then ##if 3####Noncollier: Number of k-grid is odd####### kloopmaxpositive='expr \$kloopmax / 2' ####Noncollier: Number of k-grid is odd###### else ##3new ####Noncollier: Number of k-grid is devide####### kloopmaxpositive='expr ¥(\$kloopmax - 1 ¥) / 2' ####Noncollier: Number of k-grid is devide####### fi #3new total_kpoints=`expr \$kloopmaxpositive + 1` rm \$File_Name.energyso touch \$File_Name.energyso touch \$File_Name.energysodammy touch \$File_Name.energysodammy_1 touch \$File_Name.energysodammy_2 touch \$File_Name.energysodammy_3 touch \$File_Name.energysodammy_4 touch \$File_Name.energysodammy_5 touch \$File_Name.energysodammy_6 touch \$File Name.energysodammy 7 touch \$File_Name.energysodammy_8 touch \$File_Name.energyso_1 touch \$File_Name.energyso_2 touch \$File_Name.energyso_3 touch \$File_Name.energyso_4 touch \$File_Name.energyso_5 touch \$File_Name.energyso_6 touch \$File_Name.energyso_7 touch \$File_Name.energyso_8 cp \$outputfile \$File_Name.out1 cp \$outputfile \$File_Name.out2 cp \$outputfile \$File_Name.out3 cp \$outputfile \$File_Name.out4 cp \$outputfile \$File_Name.out5 cp \$outputfile \$File_Name.out6

#

```
cp $outputfile $File_Name.out7
cp $outputfile $File_Name.out8
Amari=`expr $kloopmaxpositive % 8`
Amari_2='expr $kloopmaxpositive - $Amari'
Parallel_1=`expr ¥( $Amari_2 / 8 ¥) ¥* 1`
Parallel_2=`expr ¥( $Amari_2 / 8 ¥) ¥* 2`
Parallel_3=`expr ¥( $Amari_2 / 8 ¥) ¥* 3`
Parallel_4='expr ¥( $Amari_2 / 8 ¥) ¥* 4'
Parallel_5=`expr ¥( $Amari_2 / 8 ¥) ¥* 5`
Parallel_6=`expr ¥( $Amari_2 / 8 ¥) ¥* 6`
Parallel_7=`expr ¥( $Amari_2 / 8 ¥) ¥* 7`
Parallel_1_='expr $Parallel_1 + 1'
Parallel_2_=`expr $Parallel_2 + 1`
Parallel_3_=`expr $Parallel_3 + 1`
Parallel_4_=`expr $Parallel_4 + 1`
Parallel\_5\_`expr \$Parallel\_5+1`
Parallel_6_=`expr $Parallel_6 + 1`
Parallel_7_=`expr $Parallel_7 + 1`
wait
#############################kloop = 1 ~ 1/8kloopmaxpositive#
for i in `seq 0 $Parallel_1`
do
touch eigen_1 &
touch eigen2 1 &
touch TEST1_1 &
touch TEST2_1 &
touch TEST3_1 &
touch TEST4_1 &
touch test3 1 &
touch test4_1 &
touch test5 1 &
wait
echo "Non-colliner::kloop kx ky kz:$i/$Parallel 1"
grep "kloop="$i$ -A 1 $File_Name.out1 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_1 &
grep "kloop="\$i\$ -A \ 1 \ \$File\_Name.out1 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 4t \ ] \ \$+/\ 4t/g' \ | \ cut \ -f \ 5 > TEST2\_1 \ \& tail \ -n \ 1 \ edt \ sed \ 's/[\ 4t \ ] \ sed \ 's/[\ 4t \ ] \ sed \
grep "kloop="$i$ -A 1 $File_Name.out1 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_1 &
wait
paste TEST1_1 TEST2_1 TEST3_1 > TEST4_1
wait
j=`expr $i + 1`
ei=$(grep "kloop="$j$ -B 2 $File_Name.out1 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k=`expr $ei + 1`
P='expr $ei + 4'
wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
grep "kloop="$i$ -A $P $File_Name.out1| grep "kloop="$j$ -B $k | head -n $ei | sed 's/[¥t] ]$+/$t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_1 \& f(x) = 1 \\ f
wait
sort -n test3_1 > test4_1
cat \ test4\_1 \ | \ wc > eigen\_1
cat eigen_1 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_1
paste TEST4_1 eigen2_1 > TEST5_1
cat TEST5_1 test4_1 > test5_1
wait
cat test5_1 $File_Name.energysodammy_1 >> $File_Name.energyso_1
wait
rm test3 1 &
rm test4_1 &
rm test5_1 &
rm TEST1 1 &
rm TEST2_1 &
rm TEST3_1 &
rm TEST4_1 &
rm TEST5_1 &
rm eigen_1 &
rm eigen2_1 &
```

```
rm $File_Name.energysodammy_1
touch $File_Name.energysodammy_1
wait
done &
##########################kloop = 1/8kloopmaxpositive + 1 \sim 2/8kloopmaxpositive \# 1 \sim 1/8kloopmaxpositive + 1 \sim 1/8kloop
for i2 in `seq $Parallel_1_ $Parallel_2`
do
touch eigen_2 &
touch eigen2 2 &
wait
echo "Non-colliner::kloop kx ky kz:$i2/$Parallel_2"
grep "kloop="\$i2\$ - A 1 \$File\_Name.out2 ~ | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] ¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] ¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] ¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] ¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] ¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] ¥+/¥t/g' | cut -f 3 > TEST1_2 \& tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[¥t ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X = tail -n 1 | sed 's/[Xt ] X 
grep "kloop="$i2$ -A 1 $File_Name.out2 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_2 &
wait
paste \ TEST1\_2 \ TEST2\_2 \ TEST3\_2 > TEST4\_2
j2=`expr $i2 + 1`
ei2=$(grep "kloop="$j2$ -B 2 $File_Name.out2 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k2='expr $ei2 + 1'
P2='expr $ei2 + 4'
wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
grep = "kloop="\$i2\$ - A \$P2 \$File\_Name.out2| grep "kloop="\$j2\$ - B \$k2 | head - n \$ei2 | sed 's/[¥t] ¥+/¥t/g' | cut - f3 | awk '{ OFMT = "%.14f"} {print \$1*2}' > test3_2 \& test3_2 = test3_2 \& test3_2 = test3_2 & te
wait
sort -n test3_2 > test4_2
cat test4_2 | wc > eigen_2
cat\ eigen\_2 \mid sed\ 's/[\times t]\times +/\times t/g' \mid cut\ -f2 \quad > eigen2\_2
paste TEST4_2 eigen2_2 > TEST5_2
cat TEST5_2 test4_2 > test5_2
wait
cat test5_2 $File_Name.energysodammy_2 >> $File_Name.energyso_2
rm test3 2 &
rm test4_2 &
rm test5_2 &
rm TEST1_2 &
rm TEST2_2 &
rm TEST3 2 &
rm TEST4_2 &
rm eigen_2 &
rm eigen2_2 &
rm TEST5 2 &
rm $File_Name.energysodammy_2
wait
done &
for i3 in `seq $Parallel_2_ $Parallel_3`
do
touch eigen_3 &
touch eigen2_3 &
wait
echo "Non-colliner::kloop kx ky kz:$i3/$Parallel_3"
grep "kloop="\$i3\$ - A \ 1 \ \$File\_Name.out3 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1\_3 \ \&
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_3 &
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_3 &
wait
paste TEST1 3 TEST2 3 TEST3 3 > TEST4 3
j3=`expr $i3 + 1`
ei3=$(grep "kloop="$j3$ -B 2 $File_Name.out3 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k3='expr $ei3 + 1'
P3=`expr $ei3 + 4`
 wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
```

```
grep "kloop="$i3$ -A $P3 $File_Name.out3| grep "kloop="$j3$ -B $k3 | head -n $ei3 | sed 's/[¥t ]¥+/¥t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_3 &
wait
sort -n test3_3 > test4_3
cat test4_3 | wc > eigen_3
cat\ eigen\_3 \mid sed\ 's/[{\tt \t}t\ ]{\tt \t}+/{\tt \t}t/g'\mid cut\ {\tt \t}f2 \quad > eigen2\_3
paste TEST4_3 eigen2_3 > TEST5_3
cat TEST5_3 test4_3 > test5_3
wait
cat test5_3 $File_Name.energysodammy_3 >> $File_Name.energyso_3
rm test3 3 &
rm test4_3 &
rm test5_3 &
rm TEST1_3 &
rm TEST2_3 &
rm TEST3 3 &
rm TEST4_3 &
rm TEST5_3 &
rm eigen_3 &
rm eigen2_3 &
rm $File Name.energysodammy 3
touch $File_Name.energysodammy_3
wait
done &
for i4 in `seq $Parallel_3_ $Parallel_4`
do
touch eigen_4 &
touch eigen2 4 &
wait
echo "Non-colliner::kloop kx ky kz:$i4/$Parallel_4"
grep "kloop="\$i4\$ - A \ 1 \ \$File\_Name.out4 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ \$+/\ \$t/g' \ | \ cut \ -f \ 3 > TEST1\_4 \ \&
grep "kloop="$i4$ -A 1 $File_Name.out4 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_4 &
grep "kloop="$i4$ -A 1 $File_Name.out4 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_4 &
wait
paste TEST1_4 TEST2_4 TEST3_4 > TEST4_4
j4=`expr $i4 + 1`
ei4=$(grep "kloop="$j4$ -B 2 $File_Name.out4 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k4='expr $ei4 + 1'
P4=`expr $ei4 + 4`
wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
grep "kloop="$i4$ -A $P4 $File_Name.out4| grep "kloop="$j4$ -B $k4 | head -n $ei4 | sed 's/[¥t ] ¥+/¥t/g' | cut -B | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_4 &
wait
sort -n test3 4 > test4 4
cat test4_4 | wc > eigen_4
cat eigen_4 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_4
paste TEST4_4 eigen2_4 > TEST5_4
cat TEST5_4 test4_4 > test5_4
wait
cat\ test5\_4\ \$File\_Name.energysodammy\_4 >> \$File\_Name.energyso\_4
rm test3_4 &
rm test4_4 &
rm test5 4 &
rm TEST1_4 &
rm TEST2 4 &
rm TEST3 4 &
rm TEST4 4 &
rm TEST5 4 &
rm eigen_4 &
rm eigen2 4 &
rm $File_Name.energysodammy_4
touch $File_Name.energysodammy_4
wait
done &
```

```
for i5 in `seq $Parallel_4_ $Parallel_5`
do
touch eigen_5 &
touch eigen2 5 &
 wait
echo "Non-colliner::kloop kx ky kz:$i5/$Parallel_5"
grep "kloop="$i5$ -A 1 $File_Name.out5 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_5 &
grep "kloop="\$i5\$ - A \ 1 \ \$File\_Name.out5 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[``tail \ ]``+/``tt'g' \ | \ cut \ -f \ 5 > TEST2\_5 \ \& TEST3\_5 \ \ TEST3\_5 \ \ T
grep "kloop="$i5$ -A 1 $File_Name.out5 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_5 &
wait
paste TEST1_5 TEST2_5 TEST3_5 > TEST4_5
j5=`expr $i5 + 1`
ei5=$(grep "kloop="$j5$ -B 2 $File_Name.out5 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k5='expr $ei5 + 1'
P5='expr $ei5 + 4'
wait
\#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
grep "kloop="$i5$ -A $P5 $File_Name.out5| grep "kloop="$j5$ -B $k5 | head -n $ei5 | sed 's/[¥t ] ¥+/¥t/g' | cut -B | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_5 &
wait
sort -n test3_5 > test4_5
cat test4_5 | wc > eigen_5
cat eigen_5 | sed 's/[\frac{1}{4}]\frac{1}{4}/\frac{1}{4}/\frac{1}{4} cut -f2 > eigen2_5
paste TEST4_5 eigen2_5 > TEST5_5
cat \; TEST5\_5 \; test4\_5 > test5\_5
wait
cat\ test5\_5\ \$File\_Name.energysodammy\_5>>\$File\_Name.energyso\_5
rm test3 5 &
rm test4_5 &
rm test5_5 &
rm TEST1_5 &
rm TEST2 5 &
rm TEST3_5 &
rm TEST4_5 &
rm TEST5 5 &
rm eigen_5 &
rm eigen2_5 &
rm $File_Name.energysodammy_5
touch $File_Name.energysodammy_5
wait
done &
for i6 in `seq $Parallel 5 $Parallel 6`
do
touch eigen_6 &
touch eigen2_6 &
wait
echo "Non-colliner::kloop kx ky kz:$i6/$Parallel_6"
 grep "kloop="\$i6\$ - A 1 \$File\_Name.out6 | tail -n 1 | sed 's/[\$t ]\$+/ \$t/g' | cut - f 3 > TEST1_6 \& tail - tail 
grep "kloop="\$i6\$ - A \ 1 \ \$File\_Name.out6 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ t \ ] \ \ +/\ \ \ t/g' \ | \ cut \ \ -f \ 5 \ > \ TEST2\_6 \ \&
grep "kloop="\$i6\$ - A \ 1 \ \$File\_Name.out6 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 7 \ > \ TEST3\_6 \ \& \ TEST3\_6 \ Bar{schedule} 
wait
paste TEST1_6 TEST2_6 TEST3_6 > TEST4_6
j6=`expr $i6 + 1`
ei6=$(grep "kloop="$j6$ -B 2 $File_Name.out6 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k6=`expr $ei6 + 1`
P6='expr $ei6 + 4'
 wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
grep "kloop="$i6$ -A $P6 $File_Name.out6| grep "kloop="$j6$ -B $k6 | head -n $ei6 | sed 's/[¥t ]¥+/¥t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_6 &
wait
sort -n test3_6 > test4_6
cat test4_6 | wc > eigen_6
```

```
cat eigen_6 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_6
paste TEST4_6 eigen2_6 > TEST5_6
cat TEST5_6 test4_6 > test5_6
wait
cat\ test5\_6\ \$File\_Name.energysodammy\_6 >> \$File\_Name.energyso\_6
rm test3 6 &
rm test4_6 &
rm test5 6 &
rm TEST1 6 &
rm TEST2 6 &
rm TEST3_6 &
rm TEST4 6 &
rm TEST5_6 &
rm eigen_6 &
rm eigen2 6 &
rm $File_Name.energysodammy_6
touch $File_Name.energysodammy_6
wait
done &
for i7 in `seq $Parallel_6_ $Parallel_7`
do
touch eigen 7 &
touch eigen2_7 &
wait
echo "Non-colliner::kloop kx ky kz:$i7/$Parallel_7"
grep "kloop="$i7$ -A 1 $File_Name.out7 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_7 &
grep "kloop="$i7$ -A 1 $File_Name.out7 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_7 &
wait
paste TEST1_7 TEST2_7 TEST3_7 > TEST4_7
i7=`expr $i7 + 1`
ei7=$(grep "kloop="$j7$ -B 2 $File_Name.out7 | head -n 1 | sed 's/[¥t ]\pm+/¥t/g' | cut -f 2)
k7=`expr $ei7 + 1`
P7=`expr $ei7 + 4`
wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
wait
sort -n test3_7 > test4_7
cat \ test4\_7 \mid wc > eigen\_7
cat eigen_7 | sed 's/[\frac{1}{4}] \frac{1}{4} cut -f2 > eigen2_7
paste TEST4_7 eigen2_7 > TEST5_7
cat TEST5 7 test4 7 > test5 7
wait
cat\ test5\_7\ \$File\_Name.energysodammy\_7 >> \$File\_Name.energyso\_7
rm test3_7 &
rm test4_7 &
rm test5_7 &
rm TEST1 7 &
rm TEST2_7 &
rm TEST3_7 &
rm TEST4 7 &
rm TEST5_7 &
rm eigen_7 &
rm eigen2_7 &
rm $File_Name.energysodammy_7
touch $File_Name.energysodammy_7
wait
done &
for i8 in `seq $Parallel_7_ $kloopmaxpositive`
do
```

```
touch eigen 8 &
touch eigen2_8 &
wait
echo "Non-colliner::kloop kx ky kz:$i8/$kloopmaxpositive"
grep "kloop="\$i\$\$ - A \ 1 \ \$File\_Name.out\$ | tail -n \ 1 | sed 's/[\$t \ ]\$+/\$t/g' | cut \ -f \ 3 > TEST1\_8 \ \&
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_8 &
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_8 &
wait
paste TEST1_8 TEST2_8 TEST3_8 > TEST4_8
i8=`expr $i8 + 1`
ei8=$(grep "kloop="$j8$ -B 2 $File_Name.out8 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k8=`expr $ei8 + 1`
P8='expr $ei8 + 4'
 wait
#kloop = i(=kloopmax/2 because kpoint is symmetry at the origin), #
grep "kloop="\$i8\$ - A \$P8 \$File\_Name.out8| grep "kloop="\$j8\$ - B \$k8 | head - n \$ei8 | sed 's/[¥t ] ¥+/¥t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2}' > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2} | > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ OFMT = "%.14f'} { print $1*2} | > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | awk '{ FMT = "%.14f'} { print $1*2} | > test3_8 \& lead - n \$ei8 | sed 's/[¥t ] */+t/g' | cut - f3 | sed 's/[¥t ] */+t/g' | cut - f3 | sed 's/[
wait
sort -n test3_8 > test4_8
cat test4_8 | wc > eigen_8
cat eigen_8 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_8
paste TEST4_8 eigen2_8 > TEST5_8
cat TEST5_8 test4_8 > test5_8
wait
cat\ test5\_8\ \$File\_Name.energysodammy\_8>>\ \$File\_Name.energyso\_8
rm test3_8 &
rm test4_8 &
rm test5_8 &
rm TEST1_8 &
rm TEST2_8 &
rm TEST3_8 &
rm TEST4 8 &
rm TEST5_8 &
rm eigen 8 &
rm eigen2_8 &
rm $File_Name.energysodammy_8
touch $File Name.energysodammy 8
wait
done &
 wait
$File_Name.energyso_1 $File_Name.energyso_2 $File_Name.energyso_3 $File_Name.energyso_4 $File_Name.energyso_5 $File_Name.energyso_6
cat
\label{eq:spile_name.energyso_8} \end{tabular} $File_Name.energyso_8 > $File
wait
 sed -i "1s/^/$total_kpoints¥n/" $File_Name.energyso
sed -i '1s/^/Energy file of BoltzTrap for OpenMX¥n/' $File Name.energyso
echo -e ".energy file for BoltzTraP has been generated.¥n"
rm $File_Name.energysodammy_1
rm $File_Name.energysodammy_2
rm $File_Name.energysodammy_3
rm $File_Name.energysodammy_4
rm $File_Name.energysodammy_5
rm $File Name.energysodammy 6
rm $File_Name.energysodammy_7
rm $File_Name.energysodammy_8
rm $File_Name.energyso_1
rm $File_Name.energyso_2
rm $File_Name.energyso_3
rm $File_Name.energyso_4
rm $File Name.energyso 5
rm $File_Name.energyso_6
rm $File_Name.energyso_7
rm $File_Name.energyso_8
rm $File_Name.out1
rm $File_Name.out2
rm $File Name.out3
```

rm \$File Name.out4 rm \$File_Name.out5 rm \$File Name.out6 rm \$File_Name.out7 rm \$File_Name.out8 touch \$File Name.struct LatticeUnit=\$(grep Atoms.UnitVectors.Unit \$File_Name.out | sed 's/[¥t]¥+/¥t/g' | sed 's/^[¥t]*//' | cut -f 2) if grep 'a1 =' \$outputfile >/dev/null; then grep "a1 = " -A 2 \$outputfile | sed -e 's/^]*//g' | sed 's/[¥t]¥+/¥t/g' | head -n 3 | awk '{ OFMT = "%.14f'} {print \$3*1.889725989, \$4*1.889725989, \$5*1.889725989} } \$File Name struct else if [\$LatticeUnit = Ang -o \$LatticeUnit = ang]; then #if 6 awk '/<Atoms.UnitVectors//Atoms.UnitVectors>// Soutputfile | grep '\\$S' | tail -n 4 | head -n 3 | awk '{ OFMT = "%.14f'} {print \$1*1.889725989, \$2*1.889725989, \$3*1.889725989}' > \$File_Name.struct else #else 6 $awk \ '/ \\ Atoms. Unit \\ Vectors /, \\ Atoms. Unit \\ Vectors /, \\ Atoms. Unit \\ Vectors /, \\ Atoms. \\ Unit \\ Vectors /, \\ \\ Support \\ S$ fi #fi 6 fi echo -e "1" >> \$File_Name.struct echo -e "1 0 0 0 1 0 0 0 1" >> \$File_Name.struct sed -i '1s/^/Structure file of BoltzTrap for OpenMX¥n/' \$File_Name.struct echo -e ".struct file for BoltzTraP has been generated.¥n" touch \$File_Name.intrans touch \$File Name.intrans $Electron_number = \$(grep "Number of States" \$output file | sed 's/[\$t] \$ + /\$t/g' | cut - f 6 | awk ' \{s = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0 < 0)? - 1:1; print int(\$0*s*100+0.5)/1000/s; \}') = (\$0*0)? - 1:1; print int(\$0*0)? -$ ElectronicTemperature=\$(grep scf.ElectronicTemperature \$File_Name.out | sed 's/[¥t] ¥+/¥t/g' | sed 's/^[¥t]*//' | cut -f 2) echo -e "GENE # Format of DOS¥n" > \$File_Name.intrans_ echo -e "0 0 0 0.0 # iskip (not presently used) idebug setgap shiftgap¥n" >> \$File_Name.intrans_ echo -e "\$Chemicalpotential 0.0005 0.4 \$Electron_number # Fermilevel (Ry), energygrid, energy span around Fermilevel, number of electrons*in" >> \$File_Name.intrans_ echo -e "CALC # CALC (calculate expansion coeff), NOCALC read from file¥n" >> \$File Name.intrans echo -e "10 # lpfac, number of latt-points per k-point¥n" >> \$File_Name.intrans_ echo -e "BOLTZ # run mode (only BOLTZ is supported) ¥n" >> \$File Name.intrans echo -e ".30 # (efcut) energy range of chemical potential¥n" >> \$File_Name.intrans_ echo -e "\$ElectronicTemperature \$ElectronicTemperature # Tmax, temperature grid¥n" >> \$File_Name.intrans_ # energyrange of bands given individual DOS output sig_xxx and dos_xxx (xxx is band number) In" >> \$File_Name.intrans_ echo -e "-1. echo -e "HISTO¥n" >> \$File_Name.intrans_ grep -v '^\$s*' \$File_Name.intrans_ > \$File_Name.intrans rm \$File_Name.intrans_ echo -e ".intrans file for BoltzTraP has been generated¥n" echo -e "Conversion has been finished.¥n" echo -e "Directory is \$File Name¥n" #####END:::Non-colliner ###### rm \$File_Name.energysodammy else ##else 2 ####Start::Colliner ##### if [\$spinpolarization_swich = on -o \$spinpolarization_swich = ON -o \$spinpolarization_swich = On]; then #if 4 ##Start:: spinpolarization on### ###Up spin#### echo -e "Please wait. Generating .energyup file ..." kloopmax=\$(grep kloop \$outputfile | tail -n 1 | cut -c 10-20) klooopmax='expr \$kloopmax - 1' klooooopmax='expr \$kloopmax + 1' rm \$File Name.energyup & touch \$File_Name.energyup & touch \$File Name.energydammy 1 & touch \$File_Name.energydammy_2 & touch \$File_Name.energydammy_3 & touch \$File Name.energydammy 4 & touch \$File_Name.energydammy_5 & touch \$File Name.energydammy 6 & touch \$File_Name.energydammy_7 & touch \$File_Name.energydammy_8 & touch \$File_Name.energy_1 & touch \$File Name.energy 2 &

```
touch $File_Name.energy_5 &
touch $File_Name.energy_6 &
touch $File_Name.energy_7 &
touch $File_Name.energy_8 &
cp $outputfile $File_Name.out1 &
cp $outputfile $File_Name.out2 &
cp $outputfile $File_Name.out3 &
cp $outputfile $File_Name.out4 &
cp $outputfile $File_Name.out5 &
cp $outputfile $File_Name.out6 &
cp $outputfile $File_Name.out7 &
cp $outputfile $File_Name.out8 &
Amari=`expr $kloopmax % 8`
Amari_2='expr $kloopmax - $Amari'
Parallel_1=`expr ¥( $Amari_2 / 8 ¥) ¥* 1`
Parallel_2=`expr ¥( $Amari_2 / 8 ¥) ¥* 2`
Parallel_3=`expr ¥( $Amari_2 / 8 ¥) ¥* 3`
Parallel_4=`expr ¥( $Amari_2 / 8 ¥) ¥* 4`
Parallel_5=`expr ¥( $Amari_2 / 8 ¥) ¥* 5`
Parallel_6=`expr ¥( $Amari_2 / 8 ¥) ¥* 6`
Parallel_7=`expr ¥( $Amari_2 / 8 ¥) ¥* 7`
Parallel_8=`expr ¥( $Amari_2 / 8 ¥) ¥* 8`
Parallel_1_=`expr $Parallel_1 + 1`
Parallel_2_=`expr $Parallel_2 + 1`
Parallel_3_=`expr $Parallel_3 + 1`
Parallel_4_=`expr $Parallel_4 + 1`
Parallel_5_=`expr $Parallel_5 + 1`
Parallel\_6\_`expr \ Parallel\_6+1`
Parallel_7_=`expr $Parallel_7 + 1`
wait
###kloop = i ~ 1/8(max-Amari)####
for i in `seq 0 $Parallel_1`
do
touch eigen_1 &
touch eigen2 1 &
touch TEST1_1 &
touch TEST2 1 &
touch TEST3_1 &
touch TEST4 1 &
touch test3_1 &
touch test4 1 &
touch test5 1 &
wait
echo "Colliner_upspin::kloop kx ky kz:$i/$Parallel_1"
wait
paste TEST1_1 TEST2_1 TEST3_1 > TEST4_1
j=`expr $i+1`
ei=$(grep "kloop="$j$ -B 2 $File_Name.out1 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k=`expr $ei + 1`
P='expr $ei + 4'
grep "kloop="$i$ -A $P $File_Name.out1| grep "kloop="$j$ -B $k | head -n $ei | sed 's/[¥t ]¥+/¥t/g'| cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_1 &
wait
sort -n test3_1 > test4_1
cat test4_1 | wc > eigen_1
cat eigen_1 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_1
paste \ TEST4\_1 \ eigen2\_1 > TEST5\_1
cat \; TEST5\_1 \; test4\_1 > test5\_1
cat\ test5\_1\ \$File\_Name.energydammy\_1 >> \$File\_Name.energy\_1
```

touch \$File_Name.energy_3 & touch \$File_Name.energy_4 &

```
wait
rm test3_1 &
rm test4_1 &
rm test5_1 &
rm TEST1_1 &
rm TEST2_1 &
rm TEST3_1 &
rm TEST4_1 &
rm TEST5_1 &
rm eigen2_1 &
rm eigen 1 &
rm $File_Name.energydammy_1
touch $File_Name.energydammy_1
wait
done &
###kloop = i \sim 1/8(max-Amari)####
for i2 in `seq $Parallel_1_ $Parallel_2`
do
touch eigen_2 &
touch eigen2_2 &
touch TEST1_2 &
touch TEST2 2 &
touch TEST3_2 &
touch TEST4_2 &
touch test3_2 &
touch test4_2 &
touch test5_2 &
wait
echo "Colliner_upspin::kloop kx ky kz:$i2/$Parallel_2"
grep "kloop="\$i2\$ - A \ 1 \ \$File\_Name.out2 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1_2 \ \&
grep "kloop="$i2$ -A 1 $File_Name.out2 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_2 &
grep "kloop="$i2$ -A 1 $File_Name.out2 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_2 &
wait
paste TEST1_2 TEST2_2 TEST3_2 > TEST4_2
j2=`expr $i2 + 1`
ei2=$(grep "kloop="$j2$ -B 2 $File_Name.out2 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k2=`expr $ei2 + 1`
P2=`expr $ei2 + 4`
wait
sort -n test3_2 > test4_2
more test4_2 | wc > eigen_2
more eigen_2 | sed 's/[\pm t ]\pm +/\pm t/g' | cut -f2 > eigen2_2
paste TEST4_2 eigen2_2 > TEST5_2
cat TEST5 2 test4 2 > test5 2
cat test5_2 $File_Name.energydammy_2 >> $File_Name.energy_2
wait
rm test3_2 &
rm test4_2 &
rm test5_2 &
rm TEST1_2 &
rm TEST2_2 &
rm TEST3_2 &
rm TEST4 2 &
rm TEST5_2 &
rm eigen2_2 &
rm eigen 2 &
rm $File_Name.energydammy_2
touch $File_Name.energydammy_2
wait
done &
3
```

```
###kloop = i \sim 1/8(max-Amari)####
 for i3 in `seq $Parallel_2_ $Parallel_3`
 do
 touch eigen_3 &
 touch eigen2_3 &
 touch TEST1 3 &
 touch TEST2_3 &
 touch TEST3_3 &
 touch TEST4_3 &
 touch test3 3 &
 touch test4_3 &
 touch test5_3 &
 wait
 echo "Colliner_upspin::kloop kx ky kz:$i3/$Parallel_3"
 grep "kloop="\$i3\$ - A 1 \$File\_Name.out3 ~ | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_3 \& TEST1_3 = 1 \\ \label{eq:starses}
 grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_3 & the set of t
 wait
 paste TEST1_3 TEST2_3 TEST3_3 > TEST4_3
j3=`expr $i3 + 1`
 ei3=$(grep "kloop="$j3$ -B 2 $File_Name.out3 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
 k3='expr $ei3 + 1'
 P3='expr $ei3 + 4'
 wait
 sort -n test3_3 > test4_3
 more test4_3 | wc > eigen_3
 more eigen_3 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_3
 paste TEST4_3 eigen2_3 > TEST5_3
 cat TEST5_3 test4_3 > test5_3
 cat\ test5\_3\ \$File\_Name.energydammy\_3 >> \$File\_Name.energy\_3
 wait
rm test3_3 &
rm test4_3 &
 rm test5_3 &
rm TEST1_3 &
 rm TEST2_3 &
rm TEST3_3 &
 rm TEST4_3 &
rm TEST5_3 &
 rm eigen2_3 &
 rm eigen_3 &
 rm $File_Name.energydammy_3
 wait
 done &
 \#\#\#kloop = i \sim 1/8(max\text{-}Amari)\#\#\#\#
 for i4 in `seq $Parallel_3_ $Parallel_4`
 do
 touch eigen_4 &
 touch eigen2_4 &
 touch TEST1 4 &
 touch TEST2_4 &
 touch TEST3 4 &
 touch TEST4_4 &
 touch test3_4 &
 touch test4 4 &
 touch test5_4 &
  wait
 echo "Colliner_upspin::kloop kx ky kz:$i4/$Parallel_4"
 grep "kloop="\$i4\$ - A \ 1 \ \$File\_Name.out4 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ t] \ \ +/\ \ +/\ \ t/g' \ | \ cut \ -f \ 3 > TEST1\_4 \ \& tail \ \ heightarrow \ \ \ \ heightarrow \ \ \ heightarrow \ \ heightarro
 grep "kloop="\$i4\$ - A \ 1 \ \$File\_Name.out4 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ t] \ \$+/\ \ t/g' \ | \ cut \ -f \ 5 > TEST2\_4 \ \& \ \ t=1.5 \ \ t=1.5
```

```
155
```

```
wait
paste TEST1_4 TEST2_4 TEST3_4 > TEST4_4
j4=`expr $i4 + 1`
ei4=$(grep "kloop="$j4$ -B 2 $File_Name.out4 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k4=`expr $ei4 + 1`
P4=`expr $ei4 + 4`
grep "kloop="$i4$ -A $P4 $File_Name.out4| grep "kloop="$j4$ -B $k4 | head -n $ei4 | sed 's/[\pt ] \pt+\tau t_1'] eut -f3 | awk '{ OFMT = "%.14f" } print $1*2}' > test3_4 & \& tau t_1' = tau t_2' & bar t_2' & 
wait
sort -n test3_4 > test4_4
more test 4 \mid wc > eigen 4
more eigen_4 | sed 's/[\frac{1}{4} ]\frac{1}{4}+/\frac{1}{4} (cut -f2 > eigen2_4
paste TEST4_4 eigen2_4 > TEST5_4
cat TEST5_4 test4_4 > test5_4
cat\ test5\_4\ \$File\_Name.energydammy\_4 >> \$File\_Name.energy\_4
wait
rm test3_4 &
rm test4 4 &
rm test5_4 &
rm TEST1_4 &
rm TEST2_4 &
rm TEST3_4 &
rm TEST4_4 &
rm TEST5_4 &
rm eigen2 4 &
rm eigen_4 &
rm $File_Name.energydammy_4
touch $File_Name.energydammy_4
wait
done &
*****
###kloop = i ~ 1/8(max-Amari)####
for i5 in `seq $Parallel_4_ $Parallel_5`
do
touch eigen_5 &
touch eigen2_5 &
touch TEST1_5 &
touch TEST2_5 &
touch TEST3_5 &
touch TEST4 5 &
touch test3_5 &
touch test4 5 &
touch test5_5 &
wait
echo "Colliner_upspin::kloop kx ky kz:$i5/$Parallel_5"
grep "kloop="\$i5\$ - A \ 1 \ \$File\_Name.out5 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1\_5 \ \&
grep "kloop="$i5$ -A 1 $File_Name.out5 | tail -n 1 | sed 's/[¥t] ¥+/¥t/g' | cut -f 5 > TEST2_5 &
grep "kloop="$i5$ -A 1 $File_Name.out5 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_5 &
wait
paste TEST1_5 TEST2_5 TEST3_5 > TEST4_5
j5=`expr $i5 + 1`
ei5=$(grep "kloop="$j5$ -B 2 $File_Name.out5 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k5='expr $ei5 + 1'
P5='expr $ei5 + 4'
grep "kloop="\$i5\$ - A \$P5 \$File\_Name.out5| grep "kloop="\$j5\$ - B \$k5 | head - n \$ei5 | sed 's/[\pt ] \pt + \pt u'g' | cut - f3 | awk '{ OFMT = "%.14f"} { print \$1*2}' > test3_5 & \& translow = tran
wait
sort -n test3_5 > test4_5
more test4_5 | wc > eigen_5
more eigen 5 | sed 's/[\frac{1}{4}]\frac{1}{4}+/\frac{1}{4}/g' | cut -f2 > eigen 2 5
paste TEST4_5 eigen2_5 > TEST5_5
cat TEST5 5 test4 5 > test5 5
cat\ test5\_5\ \$File\_Name.energydammy\_5 >> \$File\_Name.energy\_5
wait
rm test3_5 &
rm test4 5 &
```

```
rm test5_5 &
rm TEST1_5 &
rm TEST2_5 &
rm TEST3_5 &
rm TEST4_5 &
rm TEST5 5 &
rm eigen2_5 &
rm eigen_5 &
rm $File_Name.energydammy_5
touch $File_Name.energydammy_5
wait
done &
*****
###kloop = i ~ 1/8(max-Amari)####
for i6 in `seq $Parallel_5_ $Parallel_6`
do
touch eigen_6 &
touch eigen2_6 &
touch TEST1 6 &
touch TEST2_6 &
touch TEST3_6 &
touch TEST4_6 &
touch test3_6 &
touch test4_6 &
touch test5_6 &
wait
echo "Colliner_upspin::kloop kx ky kz:$i6/$Parallel_6"
grep "kloop="\$i6\$ - A \ 1 \ \$File\_Name.out6 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ \$+/\ \$t/g' \ | \ cut \ -f \ 3 > TEST1_6 \ \& tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ \$+/\ \$t/g' \ | \ cut \ -f \ 3 > TEST1_6 \ \& tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ \$+/\ \$t/g' \ | \ cut \ -f \ 3 > TEST1_6 \ \& tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ \$+/\ \$t/g' \ | \ sed \ s
wait
paste TEST1_6 TEST2_6 TEST3_6 > TEST4_6
j6=`expr $i6 + 1`
ei6=$(grep "kloop="$j6$ -B 2 $File_Name.out6 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k6=`expr $ei6 + 1`
P6=`expr $ei6 + 4`
wait
sort -n test3_6 > test4_6
more test4_6 | wc > eigen_6
more eigen_6 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_6
paste TEST4_6 eigen2_6 > TEST5_6
cat TEST5_6 test4_6 > test5_6
cat\ test5\_6\ \$File\_Name.energydammy\_6 >> \$File\_Name.energy\_6
wait
rm test3_6 &
rm test4_6 &
rm test5_6 &
rm TEST1_6 &
rm TEST2_6 &
rm TEST3_6 &
rm TEST4_6 &
rm TEST5_6 &
rm eigen2_6 &
rm eigen_6 &
rm $File_Name.energydammy_6
touch \ \$ File\_Name.energydammy\_6
wait
done &
*****
\#\#\#kloop = i \sim 1/8(max\text{-}Amari)\#\#\#\#
for i7 in `seq $Parallel_6_ $Parallel_7`
```

```
do
```

```
touch eigen 7 &
touch eigen2_7 &
touch TEST1_7 &
touch TEST2_7 &
touch TEST3_7 &
touch TEST4 7 &
touch test3_7 &
touch test4 7 &
touch test5_7 &
wait
echo "Colliner_upspin::kloop kx ky kz:$i7/$Parallel_7"
grep "kloop="$i7$ -A 1 $File_Name.out7 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_7 &
grep "kloop="\$i7\$ - A \ 1 \ \$File\_Name.out7 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ tail \ -f \ 5 > TEST2\_7 \ \& \ TEST2\_7 \ \ with the set \ set \ bar{star} \ set \ set \ bar{star} \ set \ s
wait
paste TEST1_7 TEST2_7 TEST3_7 > TEST4_7
j7=`expr $i7 + 1`
ei7=$(grep "kloop="$j7$ -B 2 $File_Name.out7 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k7=`expr $ei7 + 1`
P7='expr $ei7 + 4'
 \label{eq:green} whoop="$i7$ -A $P7 $File_Name.out7| grep "kloop="$j7$ -B $k7 | head -n $ei7 | sed 's'[¥t] ¥+/¥t/g'| cut -B | awk '{ OFMT = "%.14f''} {print $1*2}' > test3_7 & kreen $1.50$ are strained as a strained of the strained as a 
wait
sort -n test3_7 > test4_7
more test4 7 | wc > eigen 7
more eigen_7 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_7
paste \ TEST4\_7 \ eigen2\_7 > TEST5\_7
cat TEST5_7 test4_7 > test5_7
cat\ test5\_7\ \$File\_Name.energydammy\_7 >> \$File\_Name.energy\_7
wait
rm test3_7 &
rm test4_7 &
rm test5_7 &
rm TEST1 7 &
rm TEST2_7 &
rm TEST3_7 &
rm TEST4_7 &
rm eigen2_7 &
rm eigen_7 &
rm TEST5_7 &
rm $File_Name.energydammy_7
touch $File_Name.energydammy_7
wait
done &
\#\#\#kloop = i \sim 1/8(max-Amari)\#\#\#\#
for i8 in `seq $Parallel_7_ $kloooopmax
do
touch eigen_8 &
touch eigen2_8 &
touch TEST1 8 &
touch TEST2_8 &
touch TEST3_8 &
touch TEST4 8 &
touch test3_8 &
touch test4 8 &
touch test5_8 &
wait
echo "Colliner_upspin::kloop kx ky kz:$i8/$kloooopmax"
grep "kloop="\$i\$\$ - A \ 1 \ \$File\_Name.out\$ \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1\_8 \ \&
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_8 &
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_8 &
wait
paste TEST1_8 TEST2_8 TEST3_8 > TEST4_8
j8=`expr $i8 + 1`
```

```
ei8=$(grep "kloop="$j8$ -B 2 $File_Name.out8 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k8='expr $ei8 + 1'
P8=`expr $ei8 + 4`
grep "kloop="$i8$ -A $P8 $File_Name.out8| grep "kloop="$j8$ -B $k8 | head -n $ei8 | sed 's/[¥t ] ¥+/¥t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_8 &
wait
sort -n test3 8 > test4 8
more test4_8 | wc > eigen_8
more eigen_8 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_8
paste TEST4_8 eigen2_8 > TEST5_8
cat TEST5 8 test4 8 > test5 8
cat test5_8 $File_Name.energydammy_8 >> $File_Name.energy_8
wait
rm test3_8 &
rm test4_8 &
rm test5 8 &
rm TEST1_8 &
rm TEST2_8 &
rm TEST3_8 &
rm TEST4_8 &
rm TEST5_8 &
rm eigen2_8 &
rm eigen 8 &
rm $File_Name.energydammy_8
touch $File_Name.energydammy_8
wait
done &
wait
cat $File_Name.energy_1 $File_Name.energy_2 $File_Name.energy_3 $File_Name.energy_4 $File_Name.energy_5 $File_Name.energy_6 $File_Name.energy_7
File\_Name.energy\_8>\\File\_Name.energyup
wait
#####kloop = max####
touch $File Name.energydammy
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1 &
grep "kloop="$kloopmax$ -A 1 $outputfile || tail -n 1 || sed 's/[¥t ]¥+/¥t/g' || cut -f 5 > TEST2 &
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3 &
wait
paste TEST1 TEST2 TEST3 > TEST4
ei=$(grep "kloop="$kloo<br/>oopmax$ -B 2 $outputfile | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
U='expr $ei + 2'
grep = "kloop="kloopmaxs - A \\ SU \\ soutput \\ file| tail -n \\ sei | sed 's[[t] ] + / \\ \frac{1}{2} + /
wait
sort -n test3 > test4
more test4 \mid wc > eigen
more eigen | sed 's/[\frac{1}{4} ]\frac{1}{4}+/\frac{1}{4}/g' | cut -f2 > eigen2
paste TEST4 eigen2 > TEST5
cat TEST5 test4 > test5
cat test5 $File_Name.energydammy >> $File_Name.energyup
rm test3 &
rm test4 &
rm test5 &
rm TEST1 &
rm TEST2 &
rm TEST3 &
rm TEST4 &
rm TEST5 &
rm $File_Name.energydammy
touch $File_Name.energydammy
sed -i "1s/^/$klooooopmax¥n/" $File Name.energyup
sed -i '1s/^/Energy file of BoltzTrap for OpenMX¥n/' $File_Name.energyup
echo -e ".energyup file for BoltzTraP has been generated.¥n"
rm $File_Name.out1
rm $File_Name.out2
rm $File_Name.out3
rm $File Name.out4
```

rm \$File Name.out5 rm \$File_Name.out6 rm \$File_Name.out7 rm \$File_Name.out8 rm \$File_Name.energy_1 rm \$File_Name.energy_2 rm \$File_Name.energy_3 rm \$File_Name.energy_4 rm \$File_Name.energy_5 rm \$File_Name.energy_6 rm \$File_Name.energy_7 rm \$File_Name.energy_8 rm \$File_Name.energydammy_1 rm \$File_Name.energydammy_2 rm \$File_Name.energydammy_3 rm \$File_Name.energydammy_4 rm \$File_Name.energydammy_5 rm \$File_Name.energydammy_6 rm \$File_Name.energydammy_7 rm \$File_Name.energydammy_8 rm eigen & rm eigen2 & ###Down spin#### echo -e "Please wait. Generating .energydn file ..." kloopmax=\$(grep kloop \$outputfile | tail -n 1 | cut -c 10-20) kloooopmax=`expr \$kloopmax - 1` klooooopmax=`expr \$kloopmax + 1` rm \$File_Name.energydn & touch \$File Name.energydn & touch \$File_Name.energydammy_1 & touch \$File_Name.energydammy_2 & touch \$File_Name.energydammy_3 & touch \$File_Name.energydammy_4 & touch \$File_Name.energydammy_5 & touch \$File_Name.energydammy_6 & touch \$File_Name.energydammy_7 & touch \$File_Name.energydammy_8 & touch \$File_Name.energy_1 & touch \$File_Name.energy_2 & touch \$File_Name.energy_3 & touch \$File_Name.energy_4 & touch \$File_Name.energy_5 & touch \$File_Name.energy_6 & touch \$File_Name.energy_7 & touch \$File Name.energy 8 & cp \$outputfile \$File_Name.out1 & cp \$outputfile \$File_Name.out2 & cp \$outputfile \$File_Name.out3 & cp \$outputfile \$File_Name.out4 & cp \$outputfile \$File_Name.out5 & cp \$outputfile \$File_Name.out6 & cp \$outputfile \$File_Name.out7 & cp \$outputfile \$File_Name.out8 & Amari='expr \$kloopmax % 8' Amari_2='expr \$kloopmax - \$Amari' Parallel_1=`expr ¥(\$Amari_2 / 8 ¥) ¥* 1` Parallel_2=`expr ¥(\$Amari_2 / 8 ¥) ¥* 2` Parallel_3=`expr ¥(\$Amari_2 / 8 ¥) ¥* 3` Parallel 4='expr ¥(\$Amari 2 / 8 ¥) ¥* 4' Parallel_5=`expr ¥(\$Amari_2 / 8 ¥) ¥* 5` Parallel_6=`expr ¥(\$Amari_2 / 8 ¥) ¥* 6` Parallel_7=`expr ¥(\$Amari_2 / 8 ¥) ¥* 7` Parallel_8=`expr ¥(\$Amari_2 / 8 ¥) ¥* 8` Parallel_1_=`expr \$Parallel_1 + 1` $Parallel_2_`expr \$Parallel_2+1`$

```
Parallel_3_=`expr $Parallel_3 + 1`
Parallel_4_=`expr $Parallel_4 + 1`
Parallel\_5\_`expr \$Parallel\_5+1`
Parallel_6_=`expr $Parallel_6 + 1`
Parallel\_7\_`expr \ Parallel\_7+1`
wait
******
###kloop = i ~ 1/8(max-Amari)####
for i in `seq 0 $Parallel_1`
do
touch eigen_1 &
touch eigen2_1 &
touch TEST1_1 &
touch TEST2_1 &
touch TEST3 1 &
touch TEST4_1 &
touch test3_1 &
touch test4_1 &
touch test5_1 &
wait
echo "Colliner_donwspin::kloop kx ky kz:$i/$Parallel_1"
grep "kloop="$i$ -A 1 $File_Name.out1 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_1 &
grep "kloop="$i$ -A 1 $File_Name.out1 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_1 &
grep "kloop="$i$ -A 1 $File_Name.out1 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_1 &
wait
paste TEST1_1 TEST2_1 TEST3_1 > TEST4_1
j=`expr $i + 1`
ei=$(grep "kloop="$j$ -B 2 $File_Name.out1 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k=`expr $ei + 1`
P='expr $ei + 4'
grep "kloop="$i$ -A $P $File_Name.out1| grep "kloop="$j$ -B $k | head -n $ei | sed 's/[¥t ]¥+/¥t/g' | cut -f4 | awk '{ OFMT = "%.14f'} {print $1*2}' > test3_1 &
wait
sort -n test3_1 > test4_1
cat test4_1 | wc > eigen_1
cat eigen_1 | sed 's/[¥t ]\frac{1}{4} cut -f2 > eigen2_1
paste TEST4_1 eigen2_1 > TEST5_1
cat TEST5 1 test4 1 > test5 1
cat test5_1 File_Name.energydammy_1 >> File_Name.energy_1
wait
rm test3_1 &
rm test4 1 &
rm test5_1 &
rm TEST1_1 &
rm TEST2 1 &
rm TEST3_1 &
rm TEST4 1 &
rm TEST5_1 &
rm eigen2_1 &
rm eigen 1 &
rm $File_Name.energydammy_1
touch $File_Name.energydammy_1
wait
done &
###kloop = i \sim 1/8(max-Amari)####
for i2 in `seq $Parallel_1_ $Parallel_2
do
touch eigen_2 &
touch eigen2_2 &
touch TEST1_2 &
touch TEST2_2 &
touch TEST3_2 &
touch TEST4 2 &
```

```
touch test3 2 &
touch test4_2 &
touch test5_2 &
wait
echo "Colliner_donwspin::kloop kx ky kz:$i2/$Parallel_2"
grep "kloop="$i2$ -A 1 $File_Name.out2 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_2 &
wait
paste TEST1_2 TEST2_2 TEST3_2 > TEST4_2
j2=`expr $i2 + 1`
ei2=$(grep "kloop="$j2$ -B 2 $File_Name.out2 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k2=`expr $ei2 + 1`
P2='expr $ei2 + 4'
wait
sort -n test3_2 > test4_2
more test4_2 | wc > eigen_2
more eigen_2 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_2
paste TEST4_2 eigen2_2 > TEST5_2
cat TEST5_2 test4_2 > test5_2
cat\ test5\_2\ \$File\_Name.energydammy\_2 >> \$File\_Name.energy\_2
wait
rm test3_2 &
rm test4_2 &
rm test5_2 &
rm TEST1_2 &
rm TEST2_2 &
rm TEST3_2 &
rm TEST4_2 &
rm TEST5_2 &
rm eigen2_2 &
rm eigen_2 &
rm $File_Name.energydammy_2
wait
done &
\#\#\#kloop = i \sim 1/8(max\text{-}Amari)\#\#\#\#
for i3 in `seq $Parallel_2_ $Parallel_3`
do
touch eigen_3 &
touch eigen2_3 &
touch TEST1_3 &
touch TEST2_3 &
touch TEST3_3 &
touch TEST4_3 &
touch test3_3 &
touch test4 3 &
touch test5_3 &
wait
echo "Colliner_donwspin::kloop kx ky kz:$i3/$Parallel_3"
grep "kloop="\$i3\$ - A 1 \$File\_Name.out3 ~ | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_3 \& TEST1_3 = 1 \\ \label{eq:starses}
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_3 &
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_3 &
wait
paste TEST1_3 TEST2_3 TEST3_3 > TEST4_3
j3='expr $i3 + 1'
ei3=$(grep "kloop="$j3$ -B 2 $File_Name.out3 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k3=`expr $ei3 + 1`
P3='expr $ei3 + 4'
 \label{eq:green} whoop="$i3$ -A $P3 $File_Name.out3| grep "kloop="$j3$ -B $k3 | head -n $ei3 | sed 's'[¥t] ¥+?¥t/g' | cut -f4 | awk '{ OFMT = "%.14f''} {print $1*2}' > test3_3 & \& tagget = 
wait
sort -n test3_3 > test4_3
```

```
more test4_3 | wc > eigen_3
more eigen_3 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_3
paste TEST4_3 eigen2_3 > TEST5_3
cat TEST5_3 test4_3 > test5_3
cat\ test5\_3\ \$File\_Name.energydammy\_3 >> \$File\_Name.energy\_3
wait
rm test3_3 &
rm test4 3 &
rm test5_3 &
rm TEST1 3 &
rm TEST2_3 &
rm TEST3_3 &
rm TEST4_3 &
rm TEST5_3 &
rm eigen2_3 &
rm eigen_3 &
rm $File_Name.energydammy_3
touch $File_Name.energydammy_3
wait
done &
###kloop = i \sim 1/8(max-Amari)####
for i4 in `seq $Parallel_3_ $Parallel_4`
do
touch eigen_4 &
touch eigen2_4 &
touch TEST1_4 &
touch TEST2_4 &
touch TEST3_4 &
touch TEST4 4 &
touch test3_4 &
touch test4 4 &
touch test5_4 &
wait
echo "Colliner_donwspin::kloop kx ky kz:$i4/$Parallel_4"
grep "kloop="$i4$ -A 1 $File_Name.out4 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_4 &
grep "kloop="\$i4\$ - A \ 1 \ \$File\_Name.out4 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ t] \ \ +/\ \ \ t/f'/g' \ | \ cut \ -f \ 7 > TEST3\_4 \ \&
wait
paste TEST1_4 TEST2_4 TEST3_4 > TEST4_4
j4='expr $i4 + 1'
ei4=$(grep "kloop="$j4$ -B 2 $File_Name.out4 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k4=`expr $ei4 + 1`
P4='expr $ei4 + 4'
grep "kloop="Si4S - A \ SP4 \ SFile Name.out4| grep "kloop="Sj4S - B \ Sk4 | head - n \ Sei4 | sed 's/[¥t] \ J \ ++/\ t/g' | cut - f4 | awk ' (OFMT = "%.14f") \ frint \ S1*2' > test3_4 \ \& STA = Sta \ STA \ STA = Sta \ STA = Sta \ STA \ STA \ STA = Sta \ S
wait
sort -n test3_4 > test4_4
more test4_4 | wc > eigen_4
more eigen_4 | sed 's/[\pmt ]\pm+/\pmt/g' | cut -f2 > eigen2_4
paste TEST4_4 eigen2_4 > TEST5_4
cat TEST5_4 test4_4 > test5_4
cat\ test5\_4\ \$File\_Name.energydammy\_4 >> \$File\_Name.energy\_4
wait
rm test3_4 &
rm test4 4 &
rm test5_4 &
rm TEST1_4 &
rm TEST2 4 &
rm TEST3_4 &
rm TEST4_4 &
rm TEST5_4 &
rm eigen2_4 &
rm eigen_4 &
rm $File_Name.energydammy_4
```

```
touch $File_Name.energydammy_4
 wait
 done &
 *****
   ###kloop = i \sim 1/8(max-Amari)#####
 for i5 in `seq $Parallel_4_ $Parallel_5`
 do
 touch eigen_5 &
touch eigen2 5 &
 touch TEST1_5 &
 touch TEST2_5 &
 touch TEST3_5 &
 touch TEST4_5 &
 touch test3 5 &
 touch test4_5 &
 touch test5_5 &
 wait
 echo "Colliner_donwspin::kloop kx ky kz:$i5/$Parallel_5"
 grep "kloop="\$i5\$ - A \ 1 \ \$File\_Name.out5 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1\_5 \ \&
 grep "kloop="i5 - A 1 $File_Name.out5 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_5 & 2.5 m s = 100 m s
 grep "kloop="\$i5\$ - A \ 1 \ \$File\_Name.out5 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ \$+/\ \$t/g' \ | \ cut \ -f \ 7 > TEST3_5 \ \& TEST3_5 \ \ T
 wait
paste TEST1_5 TEST2_5 TEST3_5 > TEST4_5
j5='expr $i5 + 1'
 ei5=$(grep "kloop="$j5$ -B 2 $File_Name.out5 | head -n 1 | sed 's/[t ]+/t/g' | cut -f 2)
 k5='expr $ei5 + 1'
 P5=`expr $ei5 + 4`
grep "kloop="\$i5\$ - A \$P5 \$File\_Name.out5| grep "kloop="\$j5\$ - B \$k5 | head - n \$ei5 | sed 's/[\pt ] \pt + \pt u'g' | cut - f4 | awk '{ OFMT = "%.14f"} { print \$1*2}' > test3_5 & \& translow = 10^{-10} \ cms =
 wait
 sort -n test3_5 > test4_5
 more test4_5 | wc > eigen_5
 more eigen_5 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_5
paste TEST4_5 eigen2_5 > TEST5_5
 cat \; TEST5\_5 \; test4\_5 > test5\_5
cat test5_5 $File_Name.energydammy_5 >> $File_Name.energy_5
 wait
rm test3_5 &
rm test4_5 &
rm test5_5 &
rm TEST1_5 &
rm TEST2_5 &
rm TEST3_5 &
 rm TEST4_5 &
rm TEST5 5 &
 rm eigen2_5 &
rm eigen_5 &
rm $File_Name.energydammy_5
 wait
 done &
 ****
 ###kloop = i ~ 1/8(max-Amari)####
 for i6 in `seq $Parallel_5_ $Parallel_6`
do
 touch eigen_6 &
 touch eigen2_6 &
 touch TEST1 6 &
 touch TEST2_6 &
 touch TEST3 6 &
 touch TEST4_6 &
 touch test3_6 &
 touch test4_6 &
 touch test5_6 &
```

```
164
```

wait echo "Colliner_donwspin::kloop kx ky kz:\$i6/\$Parallel_6" $grep "kloop="\$i6\$ - A \ 1 \ \$File_Name.out6 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \] \ \$+/\ \$t/g' \ | \ cut \ -f \ 3 > TEST1_6 \ \& tail \ -h \ 1 \ bar{star} \ bar{star}$ wait paste TEST1_6 TEST2_6 TEST3_6 > TEST4_6 j6=`expr \$i6 + 1` ei6=\$(grep "kloop="\$j6\$ -B 2 \$File_Name.out6 | head -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 2) k6='expr \$ei6 + 1' P6='expr \$ei6 + 4' grep "kloop="\$i6\$ -A \$P6 \$File_Name.out6| grep "kloop="\$j6\$ -B \$k6 | head -n \$ei6 | sed 's[$\frac{1}{2}$ +/ $\frac{1}{2$ wait sort -n test3_6 > test4_6 more test $6 \mid wc > eigen 6$ more eigen_6 | sed 's/[¥t]¥+/¥t/g' | cut -f2 > eigen2_6 $paste \ TEST4_6 \ eigen2_6 > TEST5_6$ cat TEST5_6 test4_6 > test5_6 $cat\ test5_6\ \$File_Name.energydammy_6 >> \$File_Name.energy_6$ wait rm test3_6 & rm test4 6 & rm test5_6 & rm TEST1 6 & rm TEST2_6 & rm TEST3_6 & rm TEST4_6 & rm TEST5_6 & rm eigen2_6 & rm eigen_6 & rm \$File_Name.energydammy_6 touch \$File_Name.energydammy_6 wait done & **** $\#\#\#kloop = i \sim 1/8(max-Amari)\#\#\#\#$ for i7 in `seq \$Parallel_6_ \$Parallel_7 do touch eigen_7 & touch eigen2_7 & touch TEST1 7 & touch TEST2_7 & touch TEST3_7 & touch TEST4 7 & touch test3_7 & touch test4 7 & touch test5_7 & wait echo "Colliner_donwspin::kloop kx ky kz:\$i7/\$Parallel_7" $grep "kloop="\$i7\$ - A 1 \$File_Name.out7 | tail -n 1 | sed 's/[\$t]\$+/ \$t/g' | cut -f 3 > TEST1_7 \& TEST1_7 = TEST1_7 \\ \label{eq:starses}$ grep "kloop="\$i7\$ -A 1 \$File_Name.out7 | tail -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 5 > TEST2_7 & grep "kloop="\$i7\$ -A 1 \$File_Name.out7 | tail -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 7 > TEST3_7 & wait paste TEST1_7 TEST2_7 TEST3_7 > TEST4_7 j7='expr \$i7 + 1' ei7=\$(grep "kloop="\$j7\$ -B 2 \$File_Name.out7 | head -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 2) k7=`expr \$ei7 + 1` P7=`expr \$ei7 + 4` $\label{eq:green} $$ rkloop="$i7$ -A $P7 $File_Name.out7| grep "kloop="$j7$ -B $k7 | head -n $ei7 | sed 's[\pm t] ++4t/g' | cut -f4 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_7 & t$ wait sort -n test3_7 > test4_7 more test4_7 | wc > eigen_7 more eigen_7 | sed 's/[¥t]¥+/¥t/g' | cut -f2 > eigen2_7 paste TEST4_7 eigen2_7 > TEST5_7

```
cat TEST5_7 test4_7 > test5_7
cat test5_7 $File_Name.energydammy_7 >> $File_Name.energy_7
wait
rm test3_7 &
rm test4_7 &
rm test5_7 &
rm TEST1_7 &
rm TEST2_7 &
rm TEST3_7 &
rm TEST4_7 &
rm eigen2_7 &
rm eigen_7 &
rm TEST5_7 &
rm $File_Name.energydammy_7
touch $File_Name.energydammy_7
wait
done &
###kloop = i \sim 1/8(max-Amari)#####
for i8 in `seq $Parallel_7_ $kloooopmax`
do
touch eigen_8 &
touch eigen2_8 &
touch TEST1_8 &
touch TEST2_8 &
touch TEST3_8 &
touch TEST4_8 &
touch test3 8 &
touch test4_8 &
touch test5 8 &
wait
echo "Colliner_donwspin::kloop kx ky kz:$i8/$kloooopmax"
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_8 &
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_8 &
wait
paste TEST1_8 TEST2_8 TEST3_8 > TEST4_8
j8=`expr $i8 + 1`
ei8=$(grep "kloop="$j8$ -B 2 $File_Name.out8 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k8=`expr $ei8 + 1`
P8=`expr $ei8 + 4`
grep "kloop="$i8$ -A $P8 $File_Name.out8| grep "kloop="$j8$ -B $k8 | head -n $ei8 | sed 's[\pm t] ++\pm t/g' | cut -f4 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_8 \& table ta
wait
sort -n test3_8 > test4_8
more test4_8 | wc > eigen_8
more eigen_8 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_8
paste TEST4_8 eigen2_8 > TEST5_8
cat TEST5_8 test4_8 > test5_8
cat\ test5\_8\ \$File\_Name.energydammy\_8>>\$File\_Name.energy\_8
wait
rm test3_8 &
rm test4_8 &
rm test5 8 &
rm TEST1_8 &
rm TEST2 8 &
rm TEST3_8 &
rm TEST4_8 &
rm TEST5 8 &
rm eigen2_8 &
rm eigen_8 &
rm $File_Name.energydammy_8
touch $File_Name.energydammy_8
wait
done &
```

wait

```
cat $File_Name.energy_1 $File_Name.energy_2 $File_Name.energy_3 $File_Name.energy_4 $File_Name.energy_5 $File_Name.energy_6 $File_Name.energy_7
$File_Name.energy_8 > $File_Name.energydn
  wait
#####kloop = max####
touch $File_Name.energydammy
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]\frac{1}{4} (g' | cut -f 3 > TEST1 &
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2 &
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3 &
wait
paste TEST1 TEST2 TEST3 > TEST4
ei=$(grep "kloop="$klooopmax$ -B 2 $outputfile | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
U='expr $ei + 2'
grep = "kloop="kloopmaxs - A $U $outputfile| tail -n $ei | sed 's[{t} ]{+/{t}/g' | cut -f4 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3 & kreve test3 & 
 wait
sort -n test3 > test4
more test4 | wc > eigen
more eigen | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2
paste TEST4 eigen2 > TEST5
cat TEST5 test4 > test5
cat test5 $File Name.energydammy >> $File Name.energydn
rm test3 &
rm test4 &
rm test5 &
rm TEST1 &
rm TEST2 &
rm TEST3 &
rm TEST4 &
rm TEST5 &
rm $File_Name.energydammy
sed -i "1s/^/$klooooopmax¥n/" $File_Name.energydn
sed -i '1s/^/Energy file of BoltzTrap for OpenMX¥n/' $File Name.energydn
echo -e ".energydn file for BoltzTraP has been generated.¥n"
touch $File Name.struct
LatticeUnit=$(grep Atoms.UnitVectors.Unit $File_Name.out | sed 's/[¥t ]¥+/¥t/g' | sed 's/^[ ¥t]*//' | cut -f 2)
 if grep 'a1 =' $outputfile >/dev/null; then
  grep "a1 = " -A 2 sutput file | sed -e'(s/) | sed 's/[t] +/t/g' | head -n 3 | awk '{ OFMT = "%.14f"} {print $3*1.889725989, $4*1.889725989, $5*1.889725989}' > 0.5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.889725989, $5*1.88972598, $5*1.88972598, $5*1.8897269, $5*1.8897269, $5*1.8897269, $5*1.8897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.897269, $5*1.8972
$File Name.struct
else
if [ $LatticeUnit = Ang -o $LatticeUnit = ang ] ; then #if 6
   awk '/<Atoms.UnitVectors//Atoms.UnitVectors>/' $outputfile | grep '\S' | tail -n 4 | head -n 3 | awk '{ OFMT = "%.14f"} {print $1*1.889725989, $2*1.889725989,
$3*1.889725989}' > $File_Name.struct
 else #else 6
  awk 1/<Atoms.UnitVectors//Atoms.UnitVectors// Soutputfile | grep ¥S' | tail -n 4 | head -n 3 | awk 1 OFMT = "%.14f" { print $1, $2, $3}' > $File Name.struct
fi #fi 6
fĭ
echo -e "1" >> $File_Name.struct
echo -e "1 0 0 0 1 0 0 0 1" >> $File_Name.struct
 sed -i '1s/^/Structure file of BoltzTrap for OpenMX¥n/' $File_Name.struct
echo -e ".struct file for BoltzTraP has been generated.¥n"
touch $File Name.intrans
 touch $File Name.intrans
Chemicalpotential = \$(grep Chemical \$output file | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 6| awk '{ OFMT = "%.14f'}{print \$1*2}')
 Electron\_number = \$(grep "Number of States" \$output file | sed 's/[\$t] \$+/ \$t/gt' | cut - f 6 | awk ' \{s=(\$0<0)?-1:1; print int(\$0*s*1000+0.5)/1000/s; \}') = 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5
ElectronicTemperature \$File\_Name.out \mid sed 's/[\$t] \$+/\$t/g' \mid sed 's/^{[} \$t] *//' \mid cut -f 2)
echo -e "GENE
                                                                                                    # Format of DOS¥n" > $File_Name.intrans_
 echo -e "0 0 0 0.0
                                                                                          # iskip (not presently used) idebug setgap shiftgap¥n" >> $File_Name.intrans_
echo -e "$Chemicalpotential 0.0005 0.4 $Electron number # Fermilevel (Ry), energygrid, energy span around Fermilevel, number of electrons¥n">> $File Name.intrans
 echo -e "CALC
                                                                                             # CALC (calculate expansion coeff), NOCALC read from file¥n" >> $File_Name.intrans_
echo -e "10
                                                                                                   # lpfac, number of latt-points per k-point¥n" >> $File Name.intrans
echo -e "BOLTZ
                                                                                                   # run mode (only BOLTZ is supported)¥n" >> $File_Name.intrans_
echo -e ".30
                                                                                              # (efcut) energy range of chemical potential #n" >> $File_Name.intrans
 echo -e "$ElectronicTemperature $ElectronicTemperature
                                                                                                                                                                               # Tmax, temperature grid¥n" >> $File_Name.intrans_
 echo -e "-1.
                                                                                              # energyrange of bands given individual DOS output sig_xxx and dos_xxx (xxx is band number)¥n" >> $File_Name.intrans_
```

echo -e "HISTO¥n" >> \$File_Name.intrans_ grep -v '^¥s*\$' \$File_Name.intrans_ > \$File_Name.intrans rm \$File_Name.intrans_ echo -e ".intrans file for BoltzTraP has been generated.¥n" echo -e "Conversion has been finished.¥n" echo -e "Directory is \$File_Name¥n" rm \$File_Name.out1 & rm \$File_Name.out2 & rm \$File_Name.out3 & rm \$File Name out4 & rm \$File_Name.out5 & rm \$File_Name.out6 & rm \$File_Name.out7 & rm \$File_Name.out8 & rm \$File_Name.energy_1 & rm %File_Name.energy_2 & rm \$File_Name.energy_3 & rm \$File_Name.energy_4 & rm \$File_Name.energy_5 & rm \$File_Name.energy_6 & rm \$File_Name.energy_7 & rm \$File_Name.energy_8 & rm \$File_Name.energydammy_1 & rm \$File_Name.energydammy_2 & rm \$File_Name.energydammy_3 & rm \$File_Name.energydammy_4 & rm \$File_Name.energydammy_5 & rm \$File_Name.energydammy_6 & rm \$File_Name.energydammy_7 & rm \$File_Name.energydammy_8 & rm eigen & rm eigen2 & wait else #4 ##Start:: Average band (up down spin) ### echo -e "Please wait. Generating .energy file ..." kloopmax=\$(grep kloop \$outputfile | tail -n 1 | cut -c 10-20) klooopmax=`expr \$kloopmax - 1` klooooopmax='expr \$kloopmax + 1' rm \$File_Name.energy touch \$File_Name.energy touch \$File_Name.energydammy_1 touch \$File_Name.energydammy_2 touch \$File_Name.energydammy_3 touch \$File Name.energydammy 4 touch \$File_Name.energydammy_5 touch \$File_Name.energydammy_6 touch \$File_Name.energydammy_7 touch \$File_Name.energydammy_8 touch \$File_Name.energy_1 touch \$File_Name.energy_2 touch \$File_Name.energy_3 touch \$File_Name.energy_4 touch \$File_Name.energy_5 touch \$File_Name.energy_6 touch \$File_Name.energy_7 touch \$File_Name.energy_8 cp \$outputfile \$File_Name.out1 cp \$outputfile \$File Name.out2 cp \$outputfile \$File_Name.out3 cp \$outputfile \$File_Name.out4 cp \$outputfile \$File_Name.out5 cp \$outputfile \$File_Name.out6 cp \$outputfile \$File_Name.out7

cp \$outputfile \$File Name.out8

```
Amari='expr $kloopmax % 8'
 Amari_2='expr $kloopmax - $Amari'
 Parallel_1=`expr ¥( $Amari_2 / 8 ¥) ¥* 1`
 Parallel_2=`expr ¥( $Amari_2 / 8 ¥) ¥* 2`
 Parallel_3=`expr ¥( $Amari_2 / 8 ¥) ¥* 3`
 Parallel_4=`expr ¥( $Amari_2 / 8 ¥) ¥* 4`
 Parallel_5=`expr ¥( $Amari_2 / 8 ¥) ¥* 5`
 Parallel_6='expr ¥( $Amari_2 / 8 ¥) ¥* 6'
 Parallel_7=`expr ¥( $Amari_2 / 8 ¥) ¥* 7`
 Parallel_8=`expr ¥( $Amari_2 / 8 ¥) ¥* 8`
 Parallel_1_=`expr $Parallel_1 + 1`
 Parallel\_2\_`expr \$Parallel\_2+1`
 Parallel_3_=`expr $Parallel_3 + 1`
 Parallel_4_=`expr $Parallel_4 + 1`
 Parallel_5_=`expr $Parallel_5 + 1`
 Parallel\_6\_`expr \ Parallel\_6+1`
 Parallel_7\_`expr \ Parallel_7+1`
 wait
 ******
 ###kloop = i \sim 1/8(max-Amari)#####
 for i in `seq 0 $Parallel_1`
do
 touch eigen_1 &
 touch eigen2_1 &
 touch TEST1_1 &
 touch TEST2_1 &
 touch TEST3_1 &
 touch TEST4_1 &
 touch test3 1 &
 touch test4_1 &
 touch test5 1 &
  wait
 echo "Colliner::kloop kx ky kz:$i/$Parallel_1"
 grep "kloop="\$i\$ -A \ 1 \ \$File\_Name.out1 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[¥t \ ]¥+/¥t/g' \ | \ cut \ -f \ 3 > TEST1_1 \ \& tail \ -h \ 1 \ bar{stars} \ bar{
 grep "kloop="\$i\$ - A \ 1 \ \$File\_Name.out1 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ t \ ]\ \ +/\ \ t/g' \ | \ cut \ -f \ 5 > TEST2\_1 \ \& \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ \ t \ t \ \ t \ \ t \ t 
 wait
 paste TEST1_1 TEST2_1 TEST3_1 > TEST4_1
j=`expr i + 1`
 ei=$(grep "kloop="$j$ -B 2 $File_Name.out1 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
 k='expr $ei + 1'
 P='expr $ei + 4'
 grep \quad "kloop="\$i\$ - A \$P \$File\_Name.out1| grep \\ "kloop="\$j\$ - B \$k | head - n \$ei | sed \\ 's/[¥t] \\ $$'+/$Ug' | cut - f3 | awk '{ OFMT = "%.14f''} print \\ $$1*2' > test3_1 & \& test3_1 & best \\ $$'' > test3_1 & best \\ $
 wait
 sort -n test3_1 > test4_1
 cat test4_1 | wc > eigen_1
 cat eigen_1 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_1
 paste \ TEST4\_1 \ eigen2\_1 > TEST5\_1
 cat TEST5 1 test4 1 > test5 1
 cat\ test5\_1\ \$File\_Name.energydammy\_1 >> \$File\_Name.energy\_1
 wait
rm test3_1 &
rm test4_1 &
 rm test5_1 &
rm TEST1_1 &
rm TEST2_1 &
rm TEST3_1 &
rm TEST4 1 &
 rm TEST5_1 &
 rm eigen2_1 &
 rm eigen_1 &
 rm $File_Name.energydammy_1
 touch $File_Name.energydammy_1
 wait
```

******* $###kloop = i \sim 1/8(max-Amari)####$ for i2 in `seq \$Parallel_1_ \$Parallel_2` do touch eigen_2 & touch eigen2_2 & touch TEST1 2 & touch TEST2 2 & touch TEST3_2 & touch TEST4 2 & touch test3_2 & touch test4_2 & touch test5 2 & wait echo "Colliner::kloop kx ky kz:\$i2/\$Parallel_2" grep "kloop="\$i2\$ -A 1 \$File_Name.out2 | tail -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 3 > TEST1_2 & grep "kloop="\$i2\$ -A 1 \$File_Name.out2 | tail -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 7 > TEST3_2 & wait paste TEST1_2 TEST2_2 TEST3_2 > TEST4_2 j2=`expr \$i2 + 1` ei2=\$(grep "kloop="\$j2\$ -B 2 \$File_Name.out2 | head -n 1 | sed 's/[¥t]¥+/¥t/g' | cut -f 2) k2='expr \$ei2 + 1' P2=`expr \$ei2 + 4` grep "kloop="\$i2\$ -A \$P2 \$File_Name.out2 | grep "kloop="\$j2\$ -B \$k2 | head -n \$ei2 | sed 's/[¥t]]¥+/¥t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print \$1*2}' > test3_2 & wait sort -n test3 2 > test4 2 more test4_2 | wc > eigen_2 more eigen_2 | sed 's/[¥t]¥+/¥t/g' | cut -f2 > eigen2_2 paste TEST4_2 eigen2_2 > TEST5_2 cat TEST5 2 test4 2 > test5 2 cat test5_2 \$File_Name.energydammy_2 >> \$File_Name.energy_2 wait rm test3_2 & rm test4_2 & rm test5_2 & rm TEST1_2 & rm TEST2_2 & rm TEST3_2 & rm TEST4_2 & rm TEST5_2 & rm eigen2_2 & rm eigen 2 & rm \$File_Name.energydammy_2 touch \$File_Name.energydammy_2 wait done & $###kloop = i \sim 1/8(max-Amari)#####$ for i3 in `seq \$Parallel_2_ \$Parallel_3` do touch eigen_3 & touch eigen2 3 & touch TEST1_3 & touch TEST2_3 & touch TEST3 3 & touch TEST4_3 & touch test3 3 & touch test4_3 & touch test5_3 & wait echo "Colliner::kloop kx ky kz:\$i3/\$Parallel_3"

done &

```
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 3 > TEST1_3 &
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_3 &
grep "kloop="$i3$ -A 1 $File_Name.out3 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_3 &
wait
paste TEST1_3 TEST2_3 TEST3_3 > TEST4_3
j3='expr $i3 + 1'
ei3=$(grep "kloop="$j3$ -B 2 $File_Name.out3 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k3=`expr $ei3 + 1`
P3=`expr $ei3 + 4`
wait
sort -n test3_3 > test4_3
more test 4 | wc > eigen 3
more eigen_3 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_3
paste TEST4_3 eigen2_3 > TEST5_3
cat TEST5_3 test4_3 > test5_3
cat test5_3 File_Name.energydammy_3 >> File_Name.energy_3
wait
rm test3_3 &
rm test4_3 &
rm test5_3 &
rm TEST1_3 &
rm TEST2_3 &
rm TEST3_3 &
rm TEST4_3 &
rm TEST5_3 &
rm eigen2 3 &
rm eigen_3 &
rm $File_Name.energydammy_3
touch $File_Name.energydammy_3
wait
done &
3
******
\#\!\#\!\#\!kloop = i \sim 1/8(max\text{-}Amari) \#\!\#\!\#\!\#
for i4 in `seq $Parallel_3_ $Parallel_4
do
touch eigen_4 &
touch eigen2_4 &
touch TEST1 4 &
touch TEST2_4 &
touch TEST3 4 &
touch TEST4_4 &
touch test3_4 &
touch test4 4 &
touch test5_4 &
wait
echo "Colliner::kloop kx ky kz:$i4/$Parallel_4"
grep "kloop="$i4$ -A 1 $File_Name.out4 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_4 &
wait
paste TEST1_4 TEST2_4 TEST3_4 > TEST4_4
j4='expr $i4 + 1'
ei4=$(grep "kloop="$j4$ -B 2 $File_Name.out4 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k4='expr $ei4 + 1'
P4='expr $ei4 + 4'
grep "kloop="$i4$ -A $P4 $File_Name.out4| grep "kloop="$j4$ -B $k4 | head -n $ei4 | sed 's[{t} ] ++/t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_4 \& tagget backstard the set of th
wait
sort -n test3_4 > test4_4
more test4_4 | wc > eigen_4
more eigen_4 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_4
paste \ TEST4\_4 \ eigen2\_4 > TEST5\_4
cat \; TEST5\_4 \; test4\_4 > test5\_4
cat\ test5\_4\ \$File\_Name.energydammy\_4 >> \$File\_Name.energy\_4
```

```
wait
rm test3_4 &
rm test4_4 &
rm test5_4 &
rm TEST1_4 &
rm TEST2_4 &
rm TEST3_4 &
rm TEST4_4 &
rm TEST5_4 &
rm eigen2_4 &
rm eigen_4 &
rm $File_Name.energydammy_4
touch $File_Name.energydammy_4
wait
done &
*****
###kloop = i \sim 1/8(max-Amari)####
for i5 in `seq $Parallel_4_ $Parallel_5`
do
touch eigen_5 &
touch eigen2_5 &
touch TEST1_5 &
touch TEST2_5 &
touch TEST3_5 &
touch TEST4_5 &
touch test3 5 &
touch test4_5 &
touch test5_5 &
wait
echo "Colliner::kloop kx ky kz:$i5/$Parallel_5"
grep "kloop="\$i5\$ - A \ 1 \ \$File\_Name.out5 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1\_5 \ \&
grep "kloop="$i5$ -A 1 $File_Name.out5 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_5 &
wait
paste TEST1_5 TEST2_5 TEST3_5 > TEST4_5
j5=`expr $i5 + 1`
ei5=$(grep "kloop="$j5$ -B 2 $File_Name.out5 | head -n 1 | sed 's/[¥t ]\pm+/¥t/g' | cut -f 2)
k5=`expr $ei5 + 1`
P5=`expr $ei5 + 4`
 \label{eq:green} $$ rkloop="$i5$ -A $P5 $File_Name.out5| grep "kloop="$j5$ -B $k5| head -n $ei5| sed 's[{t}] ++/t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_5 & test3
wait
sort -n test3 5 > test4 5
more test4_5 | wc > eigen_5
more eigen_5 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_5
paste TEST4_5 eigen2_5 > TEST5_5
cat TEST5 5 test4 5 > test5 5
cat test5_5 $File_Name.energydammy_5 >> $File_Name.energy_5
wait
rm test3_5 &
rm test4_5 &
rm test5_5 &
rm TEST1_5 &
rm TEST2_5 &
rm TEST3_5 &
rm TEST4_5 &
rm TEST5_5 &
rm eigen2_5 &
rm eigen 5 &
rm $File_Name.energydammy_5
touch $File_Name.energydammy_5
wait
done &
```

```
###kloop = i \sim 1/8(max-Amari)####
 for i6 in `seq $Parallel_5_ $Parallel_6`
 do
 touch eigen 6 &
 touch eigen2_6 &
 touch TEST1 6 &
 touch TEST2_6 &
 touch TEST3_6 &
 touch TEST4_6 &
 touch test3 6 &
 touch test4_6 &
 touch test5_6 &
 wait
 echo "Colliner::kloop kx ky kz:$i6/$Parallel_6"
 grep "kloop="\$i6\$ - A \ 1 \ \$File\_Name.out6 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 5 > TEST2\_6 \ \& TEST2\_6 \ Barbon \ Same \ Sam
 wait
 paste \ TEST1\_6 \ TEST2\_6 \ TEST3\_6 > TEST4\_6
j6=`expr $i6 + 1`
 ei6=$(grep "kloop="$j6$ -B 2 $File_Name.out6 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
 k6='expr $ei6 + 1'
 P6=`expr $ei6 + 4`
 wait
 sort -n test3_6 > test4_6
 more test4_6 | wc > eigen_6
 more eigen_6 | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2_6
 paste TEST4_6 eigen2_6 > TEST5_6
 cat TEST5_6 test4_6 > test5_6
cat test5_6 File_Name.energydammy_6 >> File_Name.energy_6
 wait
rm test3_6 &
rm test4_6 &
 rm test5_6 &
rm TEST1_6 &
 rm TEST2_6 &
rm TEST3_6 &
 rm TEST4_6 &
rm TEST5_6 &
 rm eigen2_6 &
 rm eigen_6 &
rm $File_Name.energydammy_6
 touch \ \$ File\_Name.energydammy\_6
 wait
 done &
 \#\#\#kloop = i \sim 1/8(max\text{-}Amari)\#\#\#\#
 for i7 in `seq $Parallel_6_ $Parallel_7`
 do
 touch eigen_7 &
 touch eigen2_7 &
 touch TEST1 7 &
 touch TEST2_7 &
 touch TEST3 7 &
 touch TEST4_7 &
 touch test3_7 &
 touch test4 7 &
 touch test5_7 &
  wait
 echo "Colliner::kloop kx ky kz:$i7/$Parallel_7"
 grep "kloop="\$i7\$ - A \ 1 \ \$File\_Name.out7 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ \$+/\ \$t/g' \ | \ cut \ -f \ 3 > TEST1_7 \ \& tail \ -n \ 1 \ | \ sed \ 's/[\ \$t \ ] \ sed \ se
 grep "kloop="\$i7\$ - A \ 1 \ \$File\_Name.out7 \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ \ t] \ \$+/\ \ t/g' \ | \ cut \ -f \ 5 > TEST2\_7 \ \& \ \ t=1.5 
 grep "kloop="$i7$ -A 1 $File_Name.out7 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_7 & the set of t
```

```
wait
paste TEST1_7 TEST2_7 TEST3_7 > TEST4_7
j7=`expr $i7 + 1`
ei7=$(grep "kloop="$j7$ -B 2 $File_Name.out7 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k7=`expr $ei7 + 1`
P7='expr $ei7 + 4'
 grep "kloop="\$i7\$ - A \$P7 \$File\_Name.out7| grep "kloop="\$j7\$ - B \$k7 | head - n \$ei7 | sed 's/[\pt] + + + t/g' | cut - f3 | awk '{ OFMT = "%.14f"} { print \$1*2}' > test3_7 & \& translow = translow
wait
sort -n test3_7 > test4_7
more test4 7 | wc > eigen 7
more eigen_7 | sed 's/[\frac{1}{4} ]\frac{1}{4} (cut -f2 > eigen2_7
paste TEST4_7 eigen2_7 > TEST5_7
cat TEST5_7 test4_7 > test5_7
cat\ test5\_7\ \$File\_Name.energydammy\_7 >> \$File\_Name.energy\_7
wait
rm test3_7 &
rm test4_7 &
rm test5_7 &
rm TEST1_7 &
rm TEST2_7 &
rm TEST3_7 &
rm TEST4 7 &
rm eigen2_7 &
rm eigen_7 &
rm TEST5_7 &
rm $File_Name.energydammy_7
touch $File Name.energydammy 7
wait
done &
###kloop = i ~ 1/8(max-Amari)####
for i8 in `seq $Parallel_7_ $kloooopmax`
do
touch eigen_8 &
touch eigen2 8 &
touch TEST1_8 &
touch TEST2 8 &
touch TEST3_8 &
touch TEST4 8 &
touch test3_8 &
touch test4 8 &
touch test5 8 &
wait
echo "Colliner::kloop kx ky kz;$i8/$kloooopmax"
grep "kloop="\$i\$\$ - A \ 1 \ \$File\_Name.out\$ \qquad | \ tail \ -n \ 1 \ | \ sed \ 's/[\ 1 \ ] \ +/\ t/g' \ | \ cut \ -f \ 3 > TEST1\_8 \ \&
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 5 > TEST2_8 &
grep "kloop="$i8$ -A 1 $File_Name.out8 | tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3_8 &
wait
paste TEST1_8 TEST2_8 TEST3_8 > TEST4_8
j8=`expr $i8 + 1`
ei8=$(grep "kloop="$j8$ -B 2 $File_Name.out8 | head -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 2)
k8=`expr $ei8 + 1`
P8='expr $ei8 + 4'
grep "kloop="$i8$ -A $P8 $File_Name.out8| grep "kloop="$j8$ -B $k8 | head -n $ei8 | sed 's/[¥t ]¥+/¥t/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3_8 &
wait
sort -n test3_8 > test4_8
more test4_8 | wc > eigen_8
more eigen_8 | sed 's/[¥t ]\frac{1}{4}/¥t/g' | cut -f2 > eigen2_8
paste TEST4_8 eigen2_8 > TEST5_8
cat TEST5 8 test4 8 > test5 8
cat test5_8 File_Name.energydammy_8 >> File_Name.energy_8
wait
rm test3_8 &
rm test4_8 &
```

```
rm test5 8 &
rm TEST1_8 &
rm TEST2_8 &
rm TEST3_8 &
rm TEST4_8 &
rm TEST5 8 &
rm eigen2_8 &
rm eigen_8 &
rm $File Name.energydammy 8
touch $File_Name.energydammy_8
wait
done &
wait
File\_Name.energy\_8>\\File\_Name.energy
wait
#####kloop = max####
touch $File_Name.energydammy
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]\frac{1}{y}-/¥t/g' | cut -f 3 > TEST1 &
grep "kloop="$kloopmax$ -A 1 $outputfile | tail -n 1 | sed 's/[¥t ]\frac{1}{2}+/¥t/g' | cut -f 5 > TEST2 &
grep "kloop="$kloopmax$ -A 1 $outputfile ~~| tail -n 1 | sed 's/[¥t ]¥+/¥t/g' | cut -f 7 > TEST3 &
wait
paste TEST1 TEST2 TEST3 > TEST4
ei=$(grep "kloop="$klooopmax$ -B 2 $outputfile | head -n 1 | sed 's/[¥t ]+/¥t/g' | cut -f 2)
U=`expr $ei + 2`
grep = "kloop="kloopmaxs - A $U $outputfile| tail -n $ei | sed 's[{t} ]{+/{t}/g' | cut -f3 | awk '{ OFMT = "%.14f"} {print $1*2}' > test3 & det are a set of the se
wait
sort -n test3 > test4
more test4 \mid wc > eigen
more eigen | sed 's/[¥t ]¥+/¥t/g' | cut -f2 > eigen2
paste TEST4 eigen2 > TEST5
cat TEST5 test4 > test5
cat test5 $File_Name.energydammy >> $File_Name.energy
rm test3 &
rm test4 &
rm test5 &
rm TEST1 &
rm TEST2 &
rm TEST3 &
rm TEST4 &
rm TEST5 &
rm $File_Name.energydammy
touch $File_Name.energydammy
sed -i "1s/^/$klooooopmax¥n/" $File Name.energy
sed -i '1s/^/Energy file of BoltzTrap for OpenMX¥n/' $File_Name.energy
echo -e ".energy file for BoltzTraP has been generated.¥n"
touch $File_Name.struct
LatticeUnit=\$(grep Atoms.UnitVectors.Unit\$File\_Name.out \mid sed 's/[\$t ]\$+/\$t/g' \mid sed 's/^[ \$t ]*//' \mid cut -f 2)
if grep 'a1 =' $outputfile >/dev/null; then
  grep "a1 = " -A 2 $outputfile | sed -e 's/^ ] *//g' | sed 's/[¥t ]¥+/¥t/g' | head -n 3 | awk '{ OFMT = "%.14f'} {print $3*1.889725989, $4*1.889725989, $5*1.889725989}; >>
$File_Name.struct
else
if [ $LatticeUnit = Ang -o $LatticeUnit = ang ]; then #if 6
  awk '/<Atoms.UnitVectors//Atoms.UnitVectors>/' Soutputfile | grep '\$S' | tail -n 4 | head -n 3 | awk '{ OFMT = "%.14f"} {print $1*1.889725989, $2*1.889725989,
$3*1.889725989}' > $File Name.struct
else #else 6
 fi #fi 6
fi
echo -e "1" >> $File_Name.struct
echo -e "1 0 0 0 1 0 0 0 1" >> $File_Name.struct
sed -i 'l s/^/Structure file of BoltzTrap for OpenMX n' \ File_Name.struct
echo -e ".struct file for BoltzTraP has been generated.¥n"
touch $File Name.intrans
```

touch \$File Name.intrans $Chemicalpotential = (grep Chemical output file | tail - n 1 | sed 's/[¥t] ¥+/¥t/g' | cut - f 6 | awk ' (OFMT = "%.14f") {print $1*2}') = (f + 1) + (f + 1$ $Electron_number = \$(grep "Number of States" \$output file \mid sed 's [\fill triangle f \ set s \ set s$ ElectronicTemperature=\$(grep scf.ElectronicTemperature \$File_Name.out | sed 's/[¥t]¥+/¥t/g' | sed 's/^[¥t]*//' | cut -f 2) echo -e "GENE # Format of DOS¥n" > \$File_Name.intrans_ echo -e "0 0 0 0.0 # iskip (not presently used) idebug setgap shiftgap¥n" >> \$File_Name.intrans_ echo -e "\$Chemicalpotential 0.0005 0.4 \$Electron_number # Fermilevel (Ry), energygrid, energy span around Fermilevel, number of electrons*in" >> \$File_Name.intrans_ echo -e "CALC # CALC (calculate expansion coeff), NOCALC read from file¥n" >> \$File_Name.intrans_ echo -e "10 # lpfac, number of latt-points per k-point¥n" >> \$File_Name.intrans_ echo -e "BOLTZ # run mode (only BOLTZ is supported)¥n" >> \$File_Name.intrans_ echo -e ".30 # (efcut) energy range of chemical potential¥n" >> \$File_Name.intrans echo -e "\$ElectronicTemperature \$ElectronicTemperature # Tmax, temperature grid¥n" >>> \$File_Name.intrans_ echo -e "-1. # energyrange of bands given individual DOS output sig_xxx and dos_xxx (xxx is band number)¥n" >> \$File_Name.intrans_ echo -e "HISTO¥n" >> \$File_Name.intrans_ grep -v '^\$s*' \$File_Name.intrans_ > \$File_Name.intrans rm \$File_Name.intrans_ echo -e ".intrans file for BoltzTraP has been generated.¥n" echo -e "Conversion has been finished.¥n' echo -e "Directory is \$File_Name¥n" rm \$File_Name.out1 & rm \$File_Name.out2 & rm \$File Name.out3 & rm \$File_Name.out4 & rm \$File Name.out5 & rm \$File_Name.out6 & rm \$File_Name.out7 & rm \$File_Name.out8 & rm \$File_Name.energy_1 & rm \$File Name.energy 2 & rm \$File_Name.energy_3 & rm \$File Name.energy 4 & rm \$File_Name.energy_5 & rm \$File_Name.energy_6 & rm \$File_Name.energy_7 & rm \$File_Name.energy_8 & rm \$File_Name.energydammy & rm \$File_Name.energydammy_1 & rm \$File_Name.energydammy_2 & rm \$File_Name.energydammy_3 & rm \$File_Name.energydammy_4 & rm \$File_Name.energydammy_5 & rm \$File_Name.energydammy_6 & rm \$File_Name.energydammy_7 & rm \$File_Name.energydammy_8 & rm eigen & rm eigen2 & wait ##END:: spinpolarization on### fi #fi4 fi #fi 2 exit 0 else echo "Enter the .out file !!" exit 1

fi

研究業績

<刊行論文>

- <u>M. Miyata</u>, T. Ozaki, S. Nishino, and M. Koyano, J. J. Appl. Phys. 56. (Online December, 2016) [Full paper].
- M. Koyano, S. Mizutani, Y. Hayashi, S. Nishino, <u>M. Miyata</u>, T. Tanaka, and K. Fukuda, Journal of Electronic Materials, (Accepted, 2016).
- S. Nishino, <u>M. Miyata</u>, K. Ohdaira, M. Koyano, T. Takeuchi, Journal of Electronic Materials 45, 1821–1826 (2016).
- 4. M. Singh, <u>M. Miyata</u>, S. Nishino, D. Mott, M. Koyano and S. Maenosono, Nanomaterials 5, 1820-1830 (2015).
- S. Verma, M. Singh, D. Ahuja, H. Shimose, S. Nishino, <u>M. Miyata</u>, D. Mott, M. Koyano, and S. Maenosono, J. J. Appl. Phys. 53, 120301 (2014).
- H. Shimose, M. Singh, D. Ahuja, W. Zhao, S. Shan, S. Nishino, <u>M. Miyata</u>, K. Higashimine, D. Mott, M. Koyano, J. Luo, C. J. Zhong, and S. Maenosono, J. Phys. Chem. C 120, 5869–5875 (2016).

<国際学会>

- <u>M. Miyata</u>, T. Ozaki, and M. Koyano, The 35th International Conference and The 1st Asian Conference on Thermoelectrics (ICT/ACT 2016), (29 May - 2 June, 2016, Wuhan, China).
- M. Miyata, 2015 EU-Japan Workshop on Next-Generation Nanomagnetic Medicine (2015 年 11 月 24 日, 石 川県金沢市広坂 2 丁目 1 番 1 号 しいのき迎賓館 3 階 セミナールーム).
- <u>M. Miyata</u>, and Mikio Koyano, India-Japan Bilateral Conference BICON-2015 (Utsav Auditorium Biyani Girls College, Vidhyadhar Nagar, Jaipur, India). <招待講演>
- <u>M. Mivata</u>, T. Ozaki, S. Nishino, and M. Koyano, The 34th International Conference on Thermoelectrics, (June 28-July 2, 2015, Dresden, Germany).
- <u>M. Miyata</u>, T. Ozaki, S. Nishino and M, Koyano, The 3rd OpenMX/QMAS Workshop 2015 (11-13 May, 2015, ISSP, University of Tokyo, Kashiwa). <招待講演>
- 6. T. Ozaki, Y. Shiihara, and M. Miyata, The 2nd OpenMX developer's meeting in KAIST (2016).
- A. Ito, C. Shijimaya, K. Higashimine, <u>M. Miyata</u>, D. Mott, T. Akatsuka, H. Ono, M. Koyano, and S. Maenosono, The 2016 MRS Fall Meeting, 27 November - 2 December 2016, Boston, USA.
- A. Ito, C. Shijimaya, K. Higashimine, M. Ohta, <u>M. Miyata</u>, D. Mott, T. Akatsuka, H. Ono, M. Koyano, and S. Maenosono, The 2016 MRS Fall Meeting, 27 November 2 December 2016, Boston, USA.
- M. Koyano, S. Mizutani, Y. Hayashi, S. Nishino, <u>M. Miyata</u>, T. Tanaka, and K. Fukuda, The 35th International Conference and The 1st Asian Conference on Thermoelectrics (ICT/ACT 2016), (29 May - 2 June, 2016, Wuhan, China).
- M. Koyano, T. Ohkuma, S. Mizutani, Y. Hayashi, <u>M. Miyata</u>, S. Nishino, T. Tanaka, and K. Fukuda, The 34th International Conference on Thermoelectrics, (June 28-July 2, 2015, Dresden, Germany).
- 11. S. Nishino, M. Miyata, K. Ohdaira, M. Koyano, and T. Takeuchi, The 34th International Conference on

Thermoelectrics, (June 28-July 2, 2015, Dresden, Germany).

- M. Singh, K. Gupta, S. Nishino, <u>M. Miyata</u>, D. Mott, M. Koyano, and S. Maenosono, PACIFICHEM 2015, 15-20 December 2015, Honolulu, Hawaii, USA.
- D. Mott, M. Singh, D. Ahuja, H. Shimose, S. Nishino, <u>M. Mivata</u>, M. Koyano, and S. Maenosono, The 7th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN 2014), (2-6 November 2014, Halong City, Vietnam).

<国内学会>

- <u>宮田 全展</u>, 尾崎 泰助, 小矢野 幹夫, 第 77 回応用物理学会秋季学術講演会(2016 年 9 月 13-16 日, 朱 鷺メッセ, 新潟コンベンションセンター).
- 2. <u>宮田 全展</u>, 尾崎 泰助, 小矢野 幹夫, 第 13 回 日本熱電学会学術講演会(2016 年 9 月 5-7 日, 東京理科 大学葛飾キャンパス), <**優秀ポスター賞受賞**>
- 3. <u>宮田 全展</u>, 東大物性研, 理論インフォーマルセミナー(2016 年 8 月 26 日, 物性研究所本館 6 階 第 5 セミ ナー室).
- <u>宮田 全展</u>,西野 俊佑,尾崎 泰助,小矢野 幹夫,第 63 回応用物理学会春期学術講演会(2016 年 3 月 19-22 日,東京工業大学大岡山キャンパス).
- <u>宮田 全展</u>, 西野 俊佑, 山本 晃生, 尾崎 泰助, 竹内 恒博, 小矢野 幹夫, 第 76 回応用物理学会秋季学 術講演会(2015 年 9 月 13 日~16 日, 名古屋国際会議場).
- <u>宮田 全展</u>,西野 俊佑,尾崎 泰助,小矢野 幹夫,第 12 回日本熱電学会学術講演会(TSJ2015)(2015 年 9月 7~8日,九州大学筑紫地区総合研究棟).
- 7. <u>宮田 全展</u>, 尾崎 泰助, 西野 俊佑, 小矢野 幹夫, 2015 年 第 62 回応用物理学会春季学術講演会(2015 年 3月13日, 東海大学湘南キャンパス).
- <u>宮田 全展</u>,西野 俊佑,尾崎 泰助,小矢野 幹夫,第十一回日本熱電学会学術講演会(TSJ2014)(2014年 9月 29-30 日,物質・材料研究機構千現地区).
- 9. <u>宮田 全展</u>,尾崎 泰助,小矢野 幹夫,第 75 回応用物理学会秋季学術講演会(2014 年 9 月 17-20 日,北 海道大学 札幌キャンパス).
- 10. <u>宮田 全展</u>, 尾崎 泰助, 小矢野 幹夫, 2014 年 第 61 回応用物理学会春季学術講演会(2014 年 3 月 17-20 日, 青山学院大学相模原キャンパス).
- 伊藤 麻絵,四十万谷 智子,東嶺 孝一,太田 道広,<u>宮田 全展</u>,モット デリック,赤塚 威夫,小野 博信, 小矢野 幹夫,前之園 信也,第 67 回コロイドおよび界面化学討論会 (2016 年 9 月 22 日~9 月 24 日・北 海道教育大学旭川校).
- 12. 小矢野 幹夫, **宮田 全展**, Pham Xuan Thi, 第 77 回応用物理学会秋季学術講演会(2016 年 9 月 16 日, 朱 鷺メッセ, 新潟コンベンションセンター).
- 13. 秋山 拓海, <u>宮田 全展</u>, 西野 俊佑, 伊藤 暢晃, 大島 義文, 小矢野 幹夫, 第 63 回応用物理学会春期学 術講演会(2016 年 3 月 19-22 日, 東京工業大学大岡山キャンパス).
- 水谷 慎吾,林 祐司,西野 俊佑, <u>宮田 全展</u>,小矢野 幹夫,田中 哲史,福田 克史,第 63 回応用物理学 会春期学術講演会(2016 年 3 月 19-22 日,東京工業大学大岡山キャンパス).

- 15. 林 祐司,水谷 慎吾,西野 俊佑, <u>宮田 全展</u>,小矢野 幹夫,田中 哲史,福田 克史,第 63 回応用物理学 会春期学術講演会(2016 年 3 月 19-22 日,東京工業大学大岡山キャンパス).
- 16. 佐久間 佑,西野 俊佑, <u>宮田 全展</u>,小矢野 幹夫,第 63 回応用物理学会春期学術講演会(2016 年 3 月 19-22 日,東京工業大学大岡山キャンパス).
- 17. 西野 俊佑, 野澤 尚樹, 山口 世力, 宮田 全展, 大平 圭介, 小矢野 幹夫, 第 76 回応用物理学会秋季学 術講演会(2015年9月13日~16日, 名古屋国際会議場).
- 秋山 拓海, **宮田 全展**, 西野 俊佑, 大島 義文, 小矢野 幹夫, 第 76 回応用物理学会秋季学術講演会
 (2015年9月13日~16日, 名古屋国際会議場).
- 西野 俊佑, 野澤 尚樹, 山口 世力, <u>宮田 全展</u>, 大平 圭介, 小矢野 幹夫, 第 12 回日本熱電学会学術講 演会(TSJ2015)(2015 年 9 月 7~8 日, 九州大学筑紫地区総合研究棟).
- 20. 佐久間 佑, 西野 俊佑, <u>宮田 全展</u>, 小矢野 幹夫, 第 12 回日本熱電学会学術講演会(TSJ2015)(2015 年 9月7~8日, 九州大学筑紫地区総合研究棟).
- 秋山 拓海, **宮田 全展**, 西野 俊佑, 大島 義文, 伊藤 暢晃, 小矢野 幹夫, 第 12 回日本熱電学会学術講 演会(TSJ2015)(2015 年 9 月 7~8 日, 九州大学筑紫地区総合研究棟).
- 22. D. Mott, M. Singh, K. Gupta, <u>M. Miyata</u>, M. Koyano, and S. Maenosono, 第 66 回コロイドおよび界面化学討 論会, (10-12 September 2015, 鹿児島大学, 鹿児島).
- M. Singh, D. Ahuja, S. Nishino, <u>M. Mivata</u>, D. Mott, M. Koyano, and S. Maenosono, 日本化学会第 95 春季 年会, (26-29 March 2015, 日本大学理工学部, 船橋, 千葉).
- 24. 西野 俊佑, 広石 尚也, <u>宮田 全展</u>, 大平 圭介, 小矢野 幹夫, 竹内 恒博, 2015 年 第 62 回応用物理学
 会春季学術講演会(2015 年 3 月 12 日, 東海大学湘南キャンパス).
- 25. 大熊高光,水谷慎吾,林祐司, <u>宮田 全展</u>,西野俊佑,小矢野幹夫,田中哲史,福田克史,2015 年 第62 回
 応用物理学会春季学術講演会(2015 年 3 月 13 日,東海大学湘南キャンパス).
- 26. 西野 俊佑,大熊 高光, 宮田 全展,小矢野 幹夫,大平 圭介,第十一回日本熱電学会学術講演会
 (TSJ2014)(2014年9月29-30日,物質・材料研究機構千現地区).

<その他>

- 第一原理電子状態計算ソフトウェアパッケージ OpenMX と電子輸送計算コード BoltzTraP をつなぐインター フェイスプログラムの開発・一般公開 http://www.openmx-square.org/(予定).
- 新エネルギー・産業技術総合開発機構(NEDO),「遷移金属硫化物ナノ粒子熱電変換材料の研究開発」,研 究員として参画し,対象材料の第一原理電子状態計算・試料合成(一部)を担当.
- 3. 新エネルギー・産業技術総合開発機構(NEDO),「シリサイド系多孔質熱電変換材料を用いた高効率熱電変換素子の研究開発」,研究員として参画し,対象材料の第一原理電子状態計算を担当.

<財団法人等からの助成金>

- 1. H27 年度, 丸文財団, 国際交流助成金, 総額 200,000 円.
- 2. H28 年度, 吉田科学技術財団, 国際研究集会派遣研究者助成金, 総額 115,000 円.
- 3. H29 年度, 村田学術振興財団, 海外派遣援助, 総額 200,000 円.
- 4. H29 年度, 日本熱電学会, 第 36 回熱電国際会議助成事業, 総額 90,000 円