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Polynomial-time algorithms for Subgraph Isomorphism in small

graph classes of perfect graphsI

Matsuo Konagaya, Yota Otachi, Ryuhei Uehara

School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, 923-1292, Japan

Abstract

Given two graphs, Subgraph Isomorphism is the problem of deciding whether the first graph

(the base graph) contains a subgraph isomorphic to the second graph (the pattern graph). This

problem is NP-complete for very restricted graph classes such as connected proper interval

graphs. Only a few cases are known to be polynomial-time solvable even if we restrict the

graphs to be perfect. For example, if both graphs are co-chain graphs, then the problem can be

solved in linear time.

In this paper, we present a polynomial-time algorithm for the case where the base graphs

are chordal graphs and the pattern graphs are co-chain graphs. We also present a linear-time

algorithm for the case where the base graphs are trivially perfect graphs and the pattern graphs

are threshold graphs. These results answer some of the open questions of Kijima et al. [Discrete

Math. 312, pp. 3164–3173, 2012]. To present a complexity contrast, we then show that even if

the base graphs are somewhat restricted perfect graphs, the problem of finding a pattern graph

that is a chain graph, a co-chain graph, or a threshold graph is NP-complete.

Keywords: Subgraph isomorphism, Graph class, Polynomial-time algorithm,

NP-completeness.

1. Introduction

The problem Subgraph Isomorphism is a very general and extremely hard problem which

asks, given two graphs, whether one graph (the base graph) contains a subgraph isomorphic

to the other graph (the pattern graph). The problem generalizes many other problems such as

Graph Isomorphism, Hamiltonian Path, Clique, and Bandwidth. Clearly, Subgraph Isomor-

phism is NP-complete in general. Furthermore, by slightly modifying known proofs [5, 8], it

can be shown that Subgraph Isomorphism is NP-complete when G and H are disjoint unions

of paths or of complete graphs. Therefore, it is NP-complete even for small graph classes of

perfect graphs such as proper interval graphs, bipartite permutation graphs, and trivially perfect

graphs, while Graph Isomorphism can be solved in polynomial time for them [4, 18]. For these

graph classes, Kijima et al. [16] showed that even if both input graphs are connected and have
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Table 1: NP-complete cases of Spanning Subgraph Isomorphism.

Base Pattern Complexity Reference

Bipartite Permutation NP-complete [16]

Proper Interval NP-complete [16]

Trivially Perfect NP-complete [16]

Chain Convex NP-complete [16]

Co-chain Co-bipartite NP-complete [16]

Threshold Split NP-complete [16]

Bipartite Chain NP-complete This paper

Co-convex Co-chain NP-complete This paper

Split Threshold NP-complete This paper

Table 2: Polynomial-time solvable cases of Subgraph Isomorphism.

Base Pattern Complexity Reference

Chain O(m + n) [16]

Co-chain O(m + n) [16]

Threshold O(m + n) [16]

Bipartite permutation Chain Open

Chordal Co-chain O(mn2 + n3) This paper

Trivially perfect Threshold O(m + n) This paper

the same number of vertices, the problem remains NP-complete. They call the problem with

such restrictions Spanning Subgraph Isomorphism.

Kijima et al. [16] also found polynomial-time solvable cases of Subgraph Isomorphism in

which both graphs are chain, co-chain, or threshold graphs. Since these classes are proper

subclasses of the aforementioned hard classes, those results together give sharp contrasts of

computational complexity of Subgraph Isomorphism. However, the complexity of more subtle

cases, like the one where the base graphs are proper interval graphs and the pattern graphs are

co-chain graphs, remained open.

1.1. Our results

In this paper, we study the open cases of Kijima et al. [16], and present polynomial-time

algorithms for the following cases:

• the base graphs are chordal graphs and the pattern graphs are co-chain graphs,

• the base graphs are trivially perfect graphs and the pattern graphs are threshold graphs.

We also show that even if the pattern graphs are chain, co-chain, or threshold graphs and the

base graphs are somewhat restricted perfect graphs, the problem remains NP-complete. The

problem of finding a chain subgraph in a bipartite permutation graph, which is an open case of

Kijima et al. [16], remains unsettled. See Tables 1 and 2 for the summary of our results.

1.2. Related results

Subgraph Isomorphism for trees can be solved in polynomial time [22], while it is NP-

complete for connected outerplanar graphs [26]. Therefore, the problem is NP-complete even
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for connected graphs of bounded treewidth. On the other hand, it can be solved in polyno-

mial time for 2-connected outerplanar graphs [17]. More generally, it is known that Subgraph

Isomorphism for k-connected partial k-trees can be solved in polynomial time [11, 21]. Epp-

stein [7] gave a kO(k)n-time algorithm for Subgraph Isomorphism on planar graphs, where k and

n are the numbers of the vertices in the pattern graph and the base graph, respectively. Recently,

Dorn [6] has improved the running time to 2O(k)n. For other general frameworks, especially for

the parameterized ones, see the recent paper by Marx and Pilipczuk [19] and the references

therein.

Another related problem is Induced Subgraph Isomorphism which asks whether the base

graph has an induced subgraph isomorphic to the pattern graph. Damaschke [5] showed that

Induced Subgraph Isomorphism on cographs is NP-complete. He also showed that Induced

Subgraph Isomorphism is NP-complete for the disjoint unions of paths, and thus for proper in-

terval graphs and bipartite permutation graphs. Marx and Schlotter [20] showed that Induced

Subgraph Isomorphism on interval graphs is W[1]-hard when parameterized by the number of

vertices in the pattern graph, but fixed-parameter tractable when parameterized by the numbers

of vertices to be removed from the base graph. Heggernes et al. [14] showed that Induced

Subgraph Isomorphism on proper interval graphs is NP-complete even if the base graph is con-

nected. Heggernes et al. [15] have recently shown that Induced Subgraph Isomorphism on

proper interval graphs and bipartite permutation graphs can be solved in polynomial time if the

pattern graph is connected. Belmonte et al. [1] showed that Induced Subgraph Isomorphism on

connected trivially perfect graphs is NP-complete. This result strengthens known results since

every trivially perfect graph is an interval cograph. They also showed that the problem can be

solved in polynomial time if the base graphs are trivially perfect graphs and the pattern graphs

are threshold graphs.

2. Preliminaries

All graphs in this paper are finite, undirected, and simple. Let G[U] denote the subgraph

of G = (V, E) induced by U ⊆ V . For a vertex v ∈ V , we denote by G − v the graph obtained

by removing v from G; that is, G − v = G[V \ {v}]. The neighborhood of a vertex v is the set

N(v) = {u ∈ V | {u, v} ∈ E}. A vertex v ∈ V is universal in G if N(v) = V \ {v}. A vertex

v ∈ V is isolated in G if N(v) = ∅. A set I ⊆ V in G = (V, E) is an independent set if for all

u, v ∈ I, (u, v) < E. A set S ⊆ V in G = (V, E) is a clique if for all u, v ∈ S , (u, v) ∈ E. A pair

(X, Y) of sets of vertices of a bipartite graph H = (U,V; E) is a biclique if for all x ∈ X and

y ∈ Y , (x, y) ∈ E. A component of a graph G is an inclusion maximal connected subgraph of

G. A component is non-trivial if it contains at least two vertices. The complement of a graph

G = (V, E) is the graph Ḡ = (V, Ē) such that {u, v} ∈ Ē if and only if {u, v} < E. The disjoint

union of two graphs G = (VG, EG) and H = (VH, EH) is the graph (VG ∪ VH, EG ∪ EH), where

VG ∩ VH = ∅. For a map η : V → V ′ and S ⊆ V , let η(S ) denote the set {η(s) | s ∈ S }.

2.1. Definitions of the problems

A graph H = (VH, EH) is subgraph-isomorphic to a graph G = (VG, EG) if there exists an

injective map η from VH to VG such that {η(u), η(v)} ∈ EG holds for each {u, v} ∈ EH. We

call such a map η a subgraph-isomorphism from H to G. Graphs G and H are called the base

graph and the pattern graph, respectively. The problems Subgraph Isomorphism and Spanning

Subgraph Isomorphism are defined as follows:
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Problem 1. Subgraph Isomorphism

Instance: A pair of graphs G = (VG, EG) and H = (VH, EH).

Question: Is H subgraph-isomorphic to G?

Problem 2. Spanning Subgraph Isomorphism

Instance: A pair of connected graphs G = (VG, EG) and H = (VH, EH), where |VG | = |VH |.

Question: Is H subgraph-isomorphic to G?

2.2. Graph classes

Here we introduce the graph classes we deal with in this paper. For their inclusion relations,

see the standard textbooks in this field [3, 9, 25]. See Figure 1 for the class hierarchy.

A bipartite graph B = (X, Y; E) is a chain graph if the vertices of X can be ordered as

x1, x2, . . . , x|X| such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(x|X|). A graph G = (V, E) with V =

{1, 2, . . . , n} is a permutation graph if there is a permutation π over V such that {i, j} ∈ E if

and only if (i − j)(π(i) − π( j)) < 0. A bipartite permutation graph is a permutation graph that

is bipartite. A bipartite graph H = (X, Y; E) is a convex graph if one of X and Y can be ordered

such that the neighborhood of each vertex in the other side is consecutive in the ordering. It

is known that a chain graph is a bipartite permutation graph, and that a bipartite permutation

graph is a convex graph.

A graph is a co-chain graph if it is the complement of a chain graph. An interval graph is the

intersection graph of a family of closed intervals of the real line. A proper interval graph is the

intersection graph of a family of closed intervals of the real line where no interval is properly

contained in another. A graph is co-bipartite if its complement is bipartite. In other words,

co-bipartite graphs are exactly the graphs whose vertex sets can be partitioned into two cliques.

From the definition, every co-chain graph is co-bipartite. It is known that every co-chain graph

is a proper interval graph.

A graph is a threshold graph if there is a positive integer T (the threshold) and for every

vertex v there is a positive integer w(v) such that {u, v} is an edge if and only if w(u)+w(v) ≥ T .

A graph is trivially perfect if the size of the maximum independent set is equal to the number

of maximal cliques for every induced subgraph. It is known that a threshold graph is a trivially

perfect graph, and that a trivially perfect graph is an interval graph.

A split graph is a graph whose vertex set can be partitioned into a clique and an independent

set. A graph is chordal if every induced cycle is of length 3. Clearly, every threshold graph is a

split graph, and every split graph is a chordal graph. It is known that every interval graph is a

chordal graph. It is easy to see that any split graph (and thus any threshold graph) has at most

one non-trivial component.

A graph is perfect if for any induced subgraph the chromatic number is equal to the size of

a maximum clique. Graphs in all classes introduced in this section are known to be perfect.

3. Polynomial-Time Algorithms

In this section, we denote the number of the vertices and the edges in a base graph by n and

m, respectively. For the input graphs G and H, we assume that |VG| ≥ |VH | and |EG| ≥ |EH |,

which can be checked in time O(m + n).
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Figure 1: Graph classes.

3.1. Finding co-chain subgraphs in chordal graphs

It is known that co-chain graphs are precisely {I3,C4,C5}-free graphs [13]; that is, graphs

having no vertex subset that induces I3, C4, or C5, where I3 is the empty graph with three

vertices and Ck is the cycle of k vertices. Using this characterization, we can show the following

simple lemma.

Lemma 3.1. A graph is a co-chain graph if and only if it is a co-bipartite chordal graph.

Proof. To prove the if-part, let G be a co-bipartite chordal graph. Since G is co-bipartite, it

cannot have I3 as its induced subgraph. Since G is chordal, it does not have C4 or C5 as its

induced subgraph. Therefore, G is {I3,C4,C5}-free.

To prove the only-if-part, let G be a co-chain graph, and thus it is a co-bipartite graph.

Suppose that G has an induced cycle C of length k ≥ 4. Then k cannot be 4 or 5 since it does

not have C4 or C5. If k ≥ 6, then the first, third, and fifth vertices in the cycle form I3.

Now we can solve the problem as follows.

Theorem 3.2. Subgraph Isomorphism is solvable in O(mn2 + n3) time if the base graphs are

chordal graphs and the pattern graphs are co-chain graphs.

Proof. Let G = (VG, EG) be the base chordal graph and H = (VH, EH) be the pattern co-chain

graph. We assume that G is not complete, since otherwise the problem is trivial.

Algorithm. We enumerate all the maximal cliques C1, . . . ,Ck of G. For each pair (Ci,C j),

we check whether H is subgraph-isomorphic to G[Ci ∪ C j]. If H is subgraph-isomorphic to

G[Ci ∪ C j] for some i and j, then we output “yes.” Otherwise, we output “no.”

Correctness. It suffices to show that H is subgraph-isomorphic to G if and only if there are two

maximal cliques Ci and C j of G such that H is subgraph-isomorphic to G[Ci ∪C j]. The if-part

is obviously true. To prove the only-if-part, assume that there is a subgraph-isomorphism η

from H to G. Observe that for any clique C of H, there is a maximal clique C′ of G such that

η(C) ⊆ C′. Thus, since H is co-bipartite, there are two maximal cliques Ci and C j such that

η(VH) ⊆ Ci ∪ C j. That is, H is subgraph-isomorphic to G[Ci ∪C j].
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Running time. It is known that a chordal graph of n vertices with m edges has at most n maximal

cliques, and all the maximal cliques can be found in O(m + n) time [2, 12]. Since G[Ci ∪C j] is

a co-chain graph by Lemma 3.1, testing whether H is subgraph-isomorphic to G[Ci ∪ C j] can

be done in O(m+ n) time [16]. Since the number of pairs of maximal cliques is O(n2), the total

running time is O(mn2 + n3).

3.2. Finding threshold subgraphs in trivially perfect graphs

Here we present a linear-time algorithm for finding a threshold subgraph in a trivially per-

fect graph. To this end, we need the following lemmas.

Lemma 3.3. If a graph G has a universal vertex uG, and a graph H has a universal vertex uH,

then H is subgraph-isomorphic to G if and only if H − uH is subgraph-isomorphic to G − uG.

Proof. To prove the if-part, let η′ be a subgraph-isomorphism from H − uH to G − uG. Now we

define η : VH → VG as follows:

η(w) =















uG if w = uH,

η′(w) otherwise.

Let {x, y} ∈ EH. If uH < {x, y}, then {η(x), η(y)} = {η′(x), η′(y)} ∈ EG. Otherwise, we may

assume that x = uH without loss of generality. Since uG is universal in G, it follows that

{η(x), η(y)} = {η(uH), η(y)} = {uG, η
′(y)} ∈ EG.

To prove the only-if-part, assume that η′ is a subgraph-isomorphism from H to G. If there

is no vertex v ∈ VH such that η′(v) = uG, then we are done. Assume that η′(v) = uG for some

vertex v ∈ VH. Now we define η : VH \ {uH} → VG \ {uG} as follows:

η(w) =















η′(uH) if w = v,

η′(w) otherwise.

Let {x, y} ∈ EH. If v < {x, y}, then {η(x), η(y)} = {η′(x), η′(y)} ∈ EG. Otherwise, we may assume

without loss of generality that v = x. Since uH is universal in H, it follows that {η(x), η(y)} =

{η′(uH), η′(y)} ∈ EG.

A component of a graph is maximum if it contains the maximum number of vertices among

all the components of the graph. If a split graph has a non-trivial component, then the compo-

nent is the unique maximum component of the graph.

Lemma 3.4. A split graph H with a maximum component CH is subgraph-isomorphic to a

graph G if and only if |VH | ≤ |VG | and there is a component CG of G such that CH is subgraph-

isomorphic to CG.

Proof. First we prove the only-if-part. Let η be a subgraph-isomorphism from H to G. We

need |VH | ≤ |VG | to have an injective map from VH to VG. Since CH is connected, G[η(V(CH))]

must be connected. Thus there is a component CG such that η(V(CH)) ⊆ V(CG). Then η|V(CH ),

the map η restricted to V(CH), is a subgraph isomorphism from CH to CG.

To prove the if-part, let η′ be a subgraph-isomorphism from CH to CG. Let RH = VH \

V(CH) = {u1, . . . , ur}, and let RG = VG \ η
′(V(CH)) = {w1, . . . ,ws}. Since |VH | ≤ |VG | and

|V(CH)| = |η′(V(CH))|, it holds that r ≤ s. Now we define η : VH → VG as follows:

η(v) =















wi if v = ui ∈ RH,

η′(v) otherwise.
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Since H is a split graph, any component of H other than CH cannot have two or more vertices.

Thus the vertices in RH are isolated in H. Therefore, the map η is a subgraph-isomorphism

from H to G.

The two lemmas above already allows us to have a polynomial-time algorithm. However, to

achieve a linear running time, we need the following characterization of trivially perfect graphs.

A rooted tree is a directed tree with a unique in-degree 0 vertex, called the root. Intuitively,

every edge is directed from the root to leaves in a directed tree. A rooted forest is the disjoint

union of rooted trees. The comparability graph of a rooted forest is the graph that has the same

vertex set as the rooted forest, and two vertices are adjacent in the graph if and only if one

of the two is a descendant of the other in the forest. Yan et al. [28] showed that a graph is a

trivially perfect graph if and only if it is the comparability graph of a rooted forest, and that

such a rooted forest can be computed in linear time. We call such a rooted forest a generating

forest of the trivially perfect graph. If a generating forest is actually a rooted tree, then we call

it a generating tree.

Theorem 3.5. Subgraph Isomorphism is solvable in O(m+n) time if the base graphs are trivially

perfect graphs and the pattern graphs are threshold graphs.

Proof. Let G = (VG, EG) be the base trivially perfect graph and H = (VH, EH) be the pattern

threshold graph.

Algorithm. The pseudocode of our algorithm can be found in Algorithm 1. We use the proce-

dure SGI which takes a trivially perfect graph as the base graph and a threshold graph as the

pattern graph, and conditionally answers whether the pattern graph is subgraph-isomorphic to

the base graph. The procedure SGI requires that

• both the graphs are connected, and

• the base graph has at least as many vertices as the pattern graph.

To use this procedure, we first attach a universal vertex to both G and H. This guarantees that

both graphs are connected. We call the new graphs G′ and H′, respectively. By Lemma 3.3,

(G′,H′) is a yes-instance if and only if so is (G,H). After checking that |VG′ | ≥ |VH′ |, we use

the procedure SGI.

In SGI(G,H), let uG and uH be universal vertices of G and H, respectively. There are such

vertices since G and H are connected trivially perfect graphs [27]. Let CH be a maximum

component of H − uH. For each connected component CG of G − uG, we check whether CH is

subgraph-isomorphic to CG, by recursively calling the procedure SGI itself. If at least one of

the recursive calls returns “yes,” then we return “yes.” Otherwise we return “no.”

Correctness. It suffices to prove the correctness of the procedure SGI. If |VH | = 1, then H is

subgraph-isomorphic to G since |VG | ≥ |VH | in SGI. By Lemmas 3.3 and 3.4, H is subgraph-

isomorphic to G if and only if there is a component CG of G − uG such that CH is subgraph-

isomorphic to CG. (Recall that any threshold graph is a split graph.) The procedure just checks

these conditions. Also, when SGI recursively calls itself, the parameters CG and CH satisfy its

requirements; that is, CG and CH are connected, and |V(CG)| ≥ |V(CG)|.
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Algorithm 1 Finding a threshold subgraph H in a trivially perfect graph G.

1: G′ := G with a universal vertex

2: H′ := H with a universal vertex

3: if |VG′ | ≥ |VH′ | then

4: return SGI(G′,H′)

5: else

6: return no

Require: G and H are connected, and |VG | ≥ |VH |

7: procedure SGI(G, H)

8: if |VH | = 1 then

9: return yes

10: uG := a universal vertex of G

11: uH := a universal vertex of H

12: CH := a maximum component of H − uH

13: for all components CG of G − uG do

14: if |V(CG)| ≥ |V(H − uH)| then

15: if SGI(CG, CH) = yes then

16: return yes

17: return no

Running time. For each call of SGI(G,H), we need the following:

• universal vertices uG and uH of G and H, respectively,

• a maximum component CH of H − uH,

• the components CG of G − uG, and

• the numbers of the vertices of CG and H − uH.

We show that they can be computed efficiently by using generating forests. Basically we apply

the algorithm to generating forests instead of graphs.

Before the very first call of SGI(G,H), we compute generating trees of G and H in linear

time. Additionally, for each node in the generating trees, we store the number of its descen-

dants. This can be done also in linear time in a bottom-up fashion.

At some call of SGI(G,H), assume that we have generating trees of G and H. It is easy

to see that the root of the generating trees are universal vertices. Hence we can compute uG

and uH in constant time. By removing these root nodes from the generating trees, we obtain

generating forests of G−uG and H−uH. Each component of the generating forests corresponds

to a component of the corresponding graphs. Thus we can compute the components of G − uG

and a maximum component of H − uH, with their generating trees, in time proportional to the

number of the children of uG and uH. The numbers of the vertices of CG and H − uH can be

computed easily in constant time, because we know the number of the descendants of each

node in generating trees.

The recursive calls of SGI take only O(n) time in total since it is proportional to the number

of edges in the generating trees. Therefore, the total running time is O(m + n).
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4. NP-completeness

It is known that for perfect graphs, Clique can be solved in polynomial time [10]. Since

co-chain graphs and threshold graphs are very close to complete graphs, one may ask whether

the problem of finding co-chain graphs or threshold graphs can be solved in polynomial time

for perfect graphs. In this section, we show that this is not the case. More precisely, we show

that even the specialized problem Spanning Subgraph Isomorphism is NP-complete for the case

where the base graphs are somewhat restricted perfect graphs and the pattern graphs are co-

chain or threshold graphs.

It is known that Maximum Edge Biclique, the problem of finding a biclique with the max-

imum number of edges, is NP-complete for bipartite graphs [24]. This implies that Subgraph

Isomorphism is NP-complete if the base graphs are connected bipartite graphs and the pattern

graphs are connected chain graphs, because complete bipartite graphs are chain graphs. We

sharpen this hardness result by showing that the problem is still NP-complete if we further

restrict the pattern chain graphs to have the same number of vertices as the base graph. That

is, we show that Spanning Subgraph Isomorphism is NP-complete when the base graphs are

bipartite graphs and the pattern graphs are chain graphs.

Since the problem Spanning Subgraph Isomorphism is clearly in NP for any graph class,

we only show its NP-hardness here. All the results in this section are based on the following

theorem and lemma taken from Kijima et al. [16].

Theorem 4.1 (Kijima et al. [16]). Spanning Subgraph Isomorphism is NP-complete if

1. the base graphs are chain graphs and the pattern graphs are convex graphs,

2. the base graphs are co-chain graphs and the pattern graphs are co-bipartite graphs, or

3. the base graphs are threshold graphs and the pattern graphs are split graphs.

Lemma 4.2 (Kijima et al. [16]). If |VH | = |VG |, then H is subgraph-isomorphic to G if and only

if Ḡ is subgraph-isomorphic to H̄.

For a graph class C, let co-C denote the graph class {Ḡ | G ∈ C}. The next lemma basically

shows that if C satisfies some property, then the hardness of Spanning Subgraph Isomorphism

for C implies the hardness for co-C.

Lemma 4.3. Let C andD be graph classes such that co-C and co-D are closed under universal

vertex additions. If Spanning Subgraph Isomorphism is NP-complete when the base graphs

belong to C and the pattern graphs belong to D, then the problem is NP-complete also when

the base graphs belong to co-D and the pattern graphs belong to co-C.

Proof. Given two connected graphs G ∈ C and H ∈ D with |VG | = |VH |, it is NP-complete to

decide whether H is subgraph-isomorphic to G. By Lemma 4.2, H is subgraph-isomorphic to

G if and only if Ḡ is subgraph-isomorphic to H̄. By Lemma 3.3, Ḡ is subgraph-isomorphic

to H̄ if and only if Ḡ′ is subgraph-isomorphic to H̄′, where Ḡ′ and H̄′ are obtained from Ḡ

and H̄, respectively, by adding a universal vertex. Therefore, H is subgraph-isomorphic to G

if and only if Ḡ′ is subgraph-isomorphic to H̄′. Clearly, Ḡ′ ∈ co-C and H̄′ ∈ co-D, they are

connected, and they have the same number of vertices. Thus the lemma holds.

A graph is a co-convex graph if its complement is a convex graph. Clearly co-convex graphs

are closed under additions of universal vertices.
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Corollary 4.4. Spanning Subgraph Isomorphism is NP-complete if

1. the base graphs are co-convex graphs and the pattern graphs are co-chain graphs,

2. the base graphs are split graphs and the pattern graphs are threshold graphs.

Proof. The NP-completeness of the case (1) is a corollary to Theorem 4.1 (1) and Lemma 4.3.

To prove (2), we need Theorem 4.1 (3), Lemma 4.3, and the well-known facts that threshold

graphs and split graphs are self-complementary [9]. That is, the complement of a threshold

graph is a threshold graph, and the complement of a split graph is a split graph.

4.1. Finding chain graphs in bipartite graphs

For the case where the base graphs are bipartite graphs and the pattern graphs are chain

graphs, we cannot directly apply the combination of Theorem 4.1 (2) and Lemma 4.3 since

bipartite graphs and chain graphs are not closed under universal vertex additions. Fortunately,

we can modify the proof of Theorem 4.1 (2) in Kijima et al. [16] so that the complements of the

base graphs and the pattern graphs are also connected. Then, Lemma 4.2 implies the hardness.

We include a full proof to be self contained. We present a reduction from the following standard

strong NP-complete problem [8].

Problem 3. 3-Partition

Instance: Positive integers a1, . . . , a3m and a bound B ∈ Z+ such that
∑

j∈{1,...,3m} a j = mB and

B/4 < a j < B/2 for each j ∈ {1, . . . , 3m}.

Question: Can {1, . . . , 3m} be partitioned into m disjoint sets A(1), A(2), . . . , A(m) such that, for

1 ≤ i ≤ m,
∑

j∈A(i) a j = B?

Lemma 4.5. Spanning Subgraph Isomorphism is NP-complete if the base graphs are co-chain

graphs, the pattern graphs are co-bipartite graphs, and the complements of the base graphs

and the pattern graphs are connected.

Proof. Let I be an instance of 3-Partition. Bipartite graphs GI = (XG, YG; EG) and HI =

(XH, YH; EH) are defined as follows (see Figure 2). Both sets XG and YG of G consist of m

disjoint independent sets X
(1)

G
, . . . , X

(m)

G
and Y

(1)

G
, . . . , Y

(m)

G
such that each part is of size B, and

two vertices are adjacent if and only if one is in X
(i)

G
and the other is in Y

( j)

G
for some i and j with

i ≥ j. Similarly, both sets XH and YH of H consist of 3m disjoint independent sets X
(1)

H
, . . . , X

(3m)

H

and Y
(1)

H
, . . . , Y

(3m)

H
such that |X

(i)

H
| = |Y

(i)

H
| = ai for each i, and two vertices are adjacent if and

only if one is in X
( j)

G
and the other is in Y

( j)

G
for some j.

Now we add disjoint sets X
(0)

G
of 2B vertices and {yG} to GI, and make X

(0)

G
∪XG and {yG}∪YG

to be cliques. Similarly, we add disjoint sets X
(0)

H
of 2B vertices and {yH} to HI, and make

X
(0)

H
∪ XH and {yH} ∪ YH to be cliques. We call the resultant graphs G′I and H′I , respectively.

From the construction, G′
I

is a co-chain graph and H′
I

is a co-bipartite graph. It is easy to see

that their complements are connected.

Kijima et al. [16] showed that I is a yes-instance of 3-Partition if and only if there exists

a subgraph-isomorphism η from HI to GI such that η(XH) = XG. Thus it suffices to show that

H′I is subgraph-isomorphic to G′I if and only if there exists a subgraph-isomorphism η from

HI to GI such that η(XH) = XG. The if-part is obvious. To prove the only-if-part, let η′ be a

subgraph-isomorphism from H′I to G′I. Since X
(0)

G
∪ XG and X

(0)

H
∪ XH are the unique maximum

cliques of size (m + 2)B in G and H, respectively, it holds that η′ maps X
(0)

H
∪ XH to X

(0)

G
∪ XG.
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(1)
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(2)
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(3)
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H

Y
(1)
H

Y
(2)
H

Y
(3)
H

Y
(3m)
H

XH

YH

a1 a2 a3 a3m

a1 a2 a3 a3m

Figure 2: Graphs GI (left) and HI (right). Each circle is an independent set of size B in GI and ai in HI . Each

segment between two independent sets implies that these independent sets form a biclique.

Now, by considering the degrees of vertices, it follows that η′ maps X
(0)

H
to X

(0)

G
and yH to yG.

This means that η′ maps XG to XH and YG to YH. Therefore, by setting η := η′|XG∪YG
, we obtain

a subgraph-isomorphism η from HI to GI such that η(XH) = XG.

Corollary 4.6. Spanning Subgraph Isomorphism is NP-complete if the base graphs are bipartite

graphs and the pattern graphs are chain graphs.

5. Conclusion

We have studied (Spanning) Subgraph Isomorphism for classes of perfect graphs, and have

shown sharp contrasts of its computational complexity. An interesting problem left unsettled

is the complexity of Subgraph Isomorphism where the base graphs are bipartite permutation

graphs and the pattern graphs are chain graphs. It is known that although the maximum edge

biclique problem is NP-complete for general bipartite graphs [24], it can be solved in polyno-

mial time for some super classes of bipartite permutation graphs (see [23]). Therefore, it might

be possible to have a polynomial-time algorithm for Subgraph Isomorphism when the pattern

graphs are chain graphs and the base graphs belong to an even larger class like convex graphs.

References

[1] R. Belmonte, P. Heggernes, and P. van ’t Hof. Edge contractions in subclasses of chordal

graphs. Discrete Appl. Math., 160:999–1010, 2012.

[2] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In

A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse Matrix

Computation, volume 56 of The IMA Volumes in Mathematics and its Applications, pages

1–29. Springer Verlag, 1993.
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