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Abstract We study the computational hardness of the tiling puzzle with
polyominoes, where a polyomino is a rectilinear polygon (i.e., a polygon made
by connecting unit squares.) In the tiling problem, we are given a rectilinear
polygon P and a set S of polyominoes, and asked whether P can be covered
without any overlap using translated copies of polyominoes in S. In this pa-
per, we focus on trominoes and bars as polyominoes; a tromino is a polyomino
consisting of three unit squares, and a bar is a rectangle of either height one or
width one. Notice that there are essentially two shapes of trominoes, that is, I-
shape (i.e., a bar) and L-shape. We consider the tiling problem when restricted
to only L-shape trominoes, only I-shape trominoes, both L-shape and I-shape
trominoes, or only two bars. In this paper, we prove that the tiling problem
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remains NP-complete even for such restricted sets of polyominoes. All reduc-
tions are carefully designed so that we can also prove the #P-completeness
and ASP-completeness of the counting and the another-solution-problem vari-
ants, respectively. Our results answer two open questions proposed by Moore
and Robson (2001) and Pak and Yang (2013).

Keywords tiling problem · polyominoes · NP-complete · #P-complete ·
ASP-complete

1 Introduction

Since Golomb [5] introduced the notion of polyominoes, many puzzles with
polyominoes have been considered and solved from the viewpoint of theoretical
computer science. In this paper, we focus on the tiling puzzle which is one of
the most famous and classical puzzles with polyominoes.

A polyomino is a rectilinear polygon (i.e., a polygon made by connecting
unit squares along their edges.) Then, we study the problem of tiling a rectilin-
ear polygon with polyominoes, defined as follows: Given a rectilinear polygon
P and a set S of polyominoes, determine whether P can be covered without
any overlap using translated copies of polyominoes in S. (See Fig. 1 and 2 as
examples.) To avoid the confusion, while both P and polyominoes in S are
rectilinear polygons, P is called a polygon and each rectilinear polygon in S is
called a polyomino. In the rest of this paper, we denote by (P, S) an instance
of the tiling problem.

1.1 Known results

The tiling problem has been studied for several decades, and there are many
known results for the problem. We here summarize some of them classified by
whether a given polygon P can have a hole or not. In the following, we simply
denote by x× y the polyomino of a rectangle with x rows and y columns.

1.1.1 Polygons without any hole

For the case where a given polygon P contains no hole, the tiling problem
is solvable in polynomial time if S = {1 × 2, 2 × 1, 1 × 3, 3 × 1} [11] or
S = {k × k′, m×m′} for any fixed positive integers k, k′,m,m′ [8,13].

It is a natural question to ask whether the tiling problem (without any
hole in P ) is solvable in polynomial time or not, if S contains only a constant
number of polyominoes. Pak and Yang [10] negatively answered the question:
there exists a set S consisting of 106 polyominoes such that the tiling problem
is NP-complete and its counting variant is #P-complete.
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(a) (b) (c)

Fig. 1 A Yes-instance (P, S) of the tiling problem consisting of (a) a rectilinear polygon P
and (b) a set S of polyominoes. (c) Tiling P with polyominoes in S.

(a) (b)

Fig. 2 A No-instance (P, S) of the tiling problem consisting of (a) a rectilinear polygon P
and (b) a set S of a polyomino.

(a) (b)

Fig. 3 (a) L-trominoes and (b) I-trominoes.

1.1.2 Polygons with holes

For the case where a given polygon P may contain holes, the complexity has
been analyzed more precisely.

First, consider the case where S contains only bars (i.e., 1 × m or m × 1
rectangles for a positive integer m.) If S consists of dominoes, that is, S =
{1 × 2, 2 × 1}, then the tiling problem can be solved in polynomial time by
reducing it to the matching problem on bipartite graphs. Rémila [12] gave a
linear-time algorithm for S = {1× 2, 2× 1, 1× 3, 3× 1}. On the other hand,
Beauquier et al. [1] showed that the tiling problem is NP-complete even if
S = {1×m, k × 1}, for any fixed integers m ≥ 2 and k ≥ 3.

Second, consider the case where S contains polyominoes which are not
necessarily bars. Such a polyomino with the smallest size is a tromino, that is,
a polyomino consisting of three unit squares. (See Fig. 3.) Trominoes have only
two shapes essentially; four polyominoes in Fig. 3(a) are called L-trominoes,
and two polyominoes in Fig. 3(b) are called I-trominoes. Let L and I be the
sets of all L-trominoes and I-trominoes, respectively. The result by Beauquier
et al. [1], mentioned above, implies that the tiling problem is NP-complete if
S = I. Moore and Robson [9] showed that the tiling problem is NP-complete
if S = L. They also showed that if S = L ∪ {2× 2}, the tiling problem is NP-
complete and its counting variant is #P-complete. However, the complexity
status was open for S = L ∪ I.
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1.2 Our contribution

In this paper, we precisely analyze the computational hardness of the tiling
problem and its variants for polygons P with holes when the polyominoes in
S are restricted to trominoes or only two bars. We denote by L-tiling, I-
tiling and LI-tiling the tiling problem when restricted to S = L, S = I and
S = L ∪ I, respectively; we also denote by 2BAR-tiling the tiling problem
when restricted to S = {1×m, k× 1} for any fixed integers m ≥ 2 and k ≥ 3.

In this paper, we prove the NP-completeness of L-tiling, I-tiling, LI-
tiling and 2BAR-tiling. As we mentioned in Section 1.1.2, the NP-completeness
of L-tiling, I-tiling and 2BAR-tiling are already known. However, our
proofs are different from the known ones; we will construct a polynomial-
time reduction from one-in-three 3SAT (which will be defined later) to
each of the four problems. We emphasize that our reductions are carefully
designed so that (valid) tilings of the corresponding instance have the one-to-
one correspondence with (valid) solutions of a given instance of one-in-three
3SAT. Therefore, our reductions also prove that the counting variants and the
another-solution-problem variants of the four problems are #P-complete and
ASP-complete, respectively. Note that the another-solution-problem variant
of a problem is defined as follows [15]: Given an instance of the problem and
its (valid) solution s, find a solution s′ of the instance other than s if exists.

We note that, while many complexity results are known for the tiling prob-
lem, there are only a few results about #P-completeness. Indeed, showing the
#P-completeness of L-tiling was an open problem proposed by Moore and
Robson [9]. In addition, Pak and Yang [10] conjectured that the counting vari-
ant of the tiling problem is #P-complete even if S consists of only a small
number of rectangles. Our results answer both of them.

An early version of this paper has been presented in [7].

2 Reductions

To prove our results, we introduce a graph orientation problem, called the
one-in-three graph orientation problem (1-in-3 GO for short), and give
reductions from one-in-three 3SAT to our problems via 1-in-3 GO.

We first define the one-in-three 3SAT problem, which is known to be
NP-complete [14], #P-complete [2] and ASP-complete [15].

Definition 1 One-in-three 3SAT.
We are given a conjunctive normal form (CNF) formula φ consisting of

m clauses with n variables such that each clause Cj contains three literals
(i.e., variables or their negations.) Then, one-in-three 3SAT is to determine
whether there exists a satisfying truth assignment to the variables such that
each clause in φ has exactly one true literal.

For example, φ = (x∨ y ∨ z)∧ (x∨ z ∨w) is a yes-instance, because there is a
satisfying truth assignment (x, y, z, w) = (False, False, False, True). On the
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(a)

(b)

Fig. 4 (a) Instance Gφ of 1-in-3 GO corresponding to an instance φ = (x∨y∨z)∧(x∨z∨w)
of one-in-three 3SAT, and (b) a valid orientation of Gφ corresponding to a satisfying truth
assignment (x, y, z, w) = (False, False, False, True).

other hand, φ′ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) is a no-instance, even though there
is a truth assignment which satisfies all clauses in φ′.

2.1 Reduction to 1-in-3 GO

We now introduce the one-in-three graph orientation problem, as fol-
lows:

Definition 2 1-in-3 GO (one-in-three graph orientation).
We are given an undirected 3-regular graph G = (V,E) such that V is par-

titioned into three (disjoint) node-subsets Vℓ, VC and VC ; the nodes in Vℓ, VC ,
and VC are called literal nodes, clause nodes, and negated-clause nodes, respec-
tively. Then, 1-in-3 GO is to determine whether there exists an orientation of
G (i.e., an assignment of directions to all edges in G) such that
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(1) every literal node in Vℓ has in-degree either zero or three;
(2) every clause node in VC has exactly one inbound edge, i.e., in-degree

one; and
(3) every negated-clause node in VC has exactly one outbound edge, i.e.,

out-degree one.

For example, the undirected 3-regular graph in Fig. 4(a) is a yes-instance,
because it has a valid orientation as illustrated in Fig. 4(b), where each literal
node in Vℓ is depicted by a black circle, each clause node in VC by a gray circle,
and each negated-clause node in VC by a gray square.

In this subsection, we prove the following theorem.

Theorem 1 1-in-3 GO and its counting and another-solution-problem vari-
ants are NP-complete, #P-complete and ASP-complete, respectively.

Observe that 1-in-3 GO is in NP, in #P and in ASP. Therefore, as a proof
of Theorem 1, we construct a polynomial-time reduction from one-in-three
3SAT to 1-in-3 GO. We note that, to prove the #P-hardness and ASP-
hardness, our reduction satisfies that valid orientations to our corresponding
instance of 1-in-3 GO have the one-to-one correspondence with satisfying
truth assignments to a given instance of one-in-three 3SAT. In addition,
although the corresponding graph of 1-in-3 GO is not required to be planar,
we will embed it (with edge-crossings but without any edge-overlap) on a
grid whose size is bounded by a polynomial size (see Fig. 4 as an intuitive
illustration); this embedding will be useful for the reductions from 1-in-3 GO
to the tiling problem.

2.1.1 Construction

Let φ be a given 3-CNF formula consisting of m clauses with n variables.
Then, we construct an undirected 3-regular graph Gφ (with an embedding
on a grid) as the corresponding instance of 1-in-3 GO. (See Fig. 4(a) for
φ = (x ∨ y ∨ z) ∧ (x ∨ z ∨ w) as an example of the construction.)

First, for each variable x in φ, we add a cycle to Gφ. (See the upper half
of Gφ in Fig. 4(a).) The cycle consists of some pairs of literal nodes labeled
x and x, and the number of such pairs in the cycle equals to the number
of occurrences of the variable in φ. In addition, the labels x and x of the
literal nodes appear alternatively when we traverse the cycle in the clockwise
direction. Each pair (x, x) will correspond to one occurrence of the literals of
the variable x in φ. As an embedding of the cycle on a grid, we place a pair
(x, x) on the upper side if it corresponds to an occurrence of the positive literal
x so that the left literal node is labeled with x; otherwise we place the pair on
the lower side so that the left literal node is labeled with x.

Second, for each clause Cj = ℓ1 ∨ ℓ2 ∨ ℓ3 with three literals ℓ1, ℓ2 and
ℓ3 in φ, we add two nodes to Gφ; one is a clause node labeled with Cj and
the other is a negated-clause node labeled with Cj . (See the bottom of Gφ

in Fig. 4(a).) In the embedding, we place the clause node Cj on the left side
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Fig. 5 A pair of a clause node Cj and a negated-clause node Cj which corresponds to a
clause Cj = ℓ1 ∨ ℓ2 ∨ ℓ3 with three literals ℓ1, ℓ2 and ℓ3 in φ.

and the negated-clause node Cj on the right side. Recall that each of the three
literals ℓ1, ℓ2 and ℓ3 has its corresponding pair of literal nodes in the upper half
of Gφ. Then, as illustrated in Fig. 5, we can connect the clause node Cj with
three literal nodes labeled with ℓ1, ℓ2 and ℓ3; and connect the negated-clause
node Cj with three literal nodes labeled with ℓ1, ℓ2 and ℓ3.

This completes the construction of the corresponding instance Gφ of 1-
in-3 GO. By the construction, Gφ is 3-regular and contains 8m nodes and
12m edges in total. Thus, Gφ can be embedded on the grid of width O(m)
and height O(n). Therefore, we can obtain Gφ together with its embedding in
O(mn) time.

2.1.2 Correctness of the reduction

We now prove that the reduction in Section 2.1.1 is correct, and indeed satisfies
the one-to-one correspondence between valid orientations of Gφ and satisfying
truth assignments of φ. As an example, a valid orientation in Fig. 4(b) of the
graph Gφ corresponds to exactly one satisfying truth assignment (x, y, z, w) =
(False, False, False, True), and vice versa.

Consider a satisfying truth assignment of φ. Then, we assign the outward
direction to all edges incident to the literal nodes which corresponds to True,
while assign the inward direction to all edges incident to the literal nodes which
corresponds to False; thus, Condition (1) of Definition 2 is satisfied. Note that,
since the literal nodes x and x appear alternatively in the cycle for a variable
x, these assignments do not conflict with each other. Since each edge in Gφ is
incident to at least one literal node, we have already assigned directions to all
edges in Gφ; this implies that a satisfying truth assignment of φ corresponds
to exactly one orientation of Gφ. Since each clause in φ has exactly one true
literal by this truth assignment, Conditions (2) and (3) of Definition 2 are
satisfied and hence this orientation of Gφ is valid.

Conversely, consider a valid orientation of Gφ. Then, each literal node has
in-degree either zero or three. Since the literal nodes x and x appear alter-
natively in the cycle for each variable x, all literal nodes with the same label
x (or x) have the same in-degree. Thus, we set x = True if the literal nodes
with label x have in-degree zero; otherwise set x = False. Since Condition (2)
of Definition 2 ensures that each clause node Cj has in-degree one, the corre-
sponding clause Cj in φ has exactly one true literal. Thus, the obtained truth
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assignment is satisfiable for φ. Furthermore, this truth assignment is uniquely
decided from the orientation of Gφ.

This completes the proof of Theorem 1.

2.2 Reduction to L-tiling

In this subsection, we consider the tiling problem with only L-trominoes and
prove the following theorem.

Theorem 2 L-tiling and its counting and another-solution-problem variants
are NP-complete, #P-complete and ASP-complete, respectively.

Observe that L-tiling is in NP, in #P and in ASP. Therefore, as a proof of
Theorem 2, we construct a polynomial-time reduction from 1-in-3 GO to L-
tiling with preserving the one-to-one correspondence between valid solutions.

2.2.1 Idea of the reduction

Since the problem is restricted to the case where S = L (see Fig. 3(a)), we
can construct only a polygon P so that it corresponds to a given instance
of 1-in-3 GO. Recall that, in the previous subsection, we have constructed
the graph Gφ of 1-in-3 GO with an embedding on a grid of polynomial size.
Thus, we indeed construct the polygon P by replacing Gφ on a grid embedding
with our gadgets so that a valid way of tiling the polygon P with L-trominoes
corresponds to a valid orientation of Gφ, and vice versa.

More specifically, we explain our idea of the reduction using our simplest
gadget, called a line gadget for L-tiling, which is illustrated in Fig. 6(a);
this gadget corresponds to (a part of) an edge in Gφ. The line gadget for L-
tiling consists of both the solid and dotted unit squares in Fig. 6(a), although
each dotted unit square will be used as a “connector” and will be shared by
another gadget to propagate the way of tiling. If we want to cover all solid
unit squares of this gadget by L-trominoes, there are only two ways of tilings
as illustrated in Fig. 6(b) and (c). We regard the ways of tilings (b) and (c)
as two corresponding directions of (the part of) the edge in Gφ: The tiling
(b) corresponds to assigning the direction from left to right to the edge, while
the tiling (c) corresponds to assigning the direction from right to left to the
edge. Covering (resp., not covering) the dotted unit square by an L-tromino
represents that the direction of the edge is outbound (resp., inbound.)

If we need to bend an edge in Gφ, we use a corner gadget for L-tiling
illustrated in Fig. 7(a). Similar to the line gadget above, if we want to cover
all solid unit squares of the corner gadget by L-trominoes, there are only
two ways of tilings; the dotted unit square covered (resp., not covered) by
an L-tromino represents that the direction of the corresponding part of the
edge is outbound (resp., inbound.) Therefore, these dotted unit squares work
as connectors; by combining link and corner gadgets as in Fig. 7(b), we can
correctly propagate the direction of the edge.
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(a) (b) (c)

Fig. 6 A line gadget for L-tiling and LI-tiling, and its two ways of tiling.

(a) (b)

Fig. 7 (a) A corner gadget for L-tiling and LI-tiling, and (b) a combination of line and
corner gadgets.

We respectively replace the edge-crossing points, pairs of literal nodes,
clause nodes, and negated-clause nodes in Gφ by cross, duplicator, clause,
negated-clause gadgets for L-tiling that will be defined in Section 2.2.2. All
but the duplicator gadget are of the same size. The size of the duplicator
gadget equals to that of a combination of two other gadgets, since we replace
two literal nodes by one duplicator gadget. As a result of these replacements,
we can obtain a “patchwork” of the gadgets as the polygon P of L-tiling
which corresponds to a given instance Gφ of 1-in-3 GO.

Recall that the graph Gφ is embedded on a grid of size O(mn), where m is
the number of clauses in φ and n is the number of variables in φ. Therefore,
we use O(mn) gadgets for replacing the elements in Gφ. Furthermore, each of
our gadgets consists of a constant number of unit squares, and hence the cor-
responding polygon P is of size O(mn) and can be constructed in polynomial
time.

Therefore, to complete the proof of Theorem 2, it suffices to give the other
gadgets (i.e., cross, duplicator, clause, and negated-clause gadgets) with noting
that they preserve the one-to-one correspondence between valid tilings and
valid orientations.

2.2.2 Other gadgets for L-tiling

For each edge-crossing in the embedding of Gφ, we replace it with a cross
gadget for L-tiling given in Fig. 8(a). There are only four ways, as illustrated
in Fig. 8(b)–(e), to cover all solid unit squares of this gadget by L-trominoes.
Note that the left and right connectors (dotted unit squares) always preserve
the direction of the horizontal edge in Gφ, that is, if the left connector is
covered, then the right connector is not covered, and vice versa. The same
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(a) (b) (c)

(d) (e)

Fig. 8 A cross gadget for L-tiling and its four ways of tilings.

property holds for the upper and bottom connectors, and hence the direc-
tion of the vertical edge in Gφ is also preserved. Note that, however, we can
independently choose the directions of the vertical and horizontal edges.

Each pair of literal nodes in Gφ is replaced with a duplicator gadget for
L-tiling given in Fig. 9(a). As mentioned before, the width of the duplicator
gadget equals to that of a combination of two other gadgets. There are only two
ways to cover all solid unit squares of the duplicator gadget by L-trominoes, as
shown in Fig. 9(b) and (c). The upper-left and bottom-left (resp., the upper-
right and bottom-right) connectors always have the same direction (inbound
or outbound), while the upper-left and upper-right connectors always take the
opposite directions. This property preserves Condition (1) of Definition 2.

Each clause node in Gφ is replaced with a clause gadget for L-tiling given
in Fig. 10(a). There are only three ways to cover all solid unit squares of this
gadget, as shown in Fig. 10(b)–(d), each of which has exactly one uncovered
connector (i.e., the inbound direction.) This property preserves Condition (2)
of Definition 2.

Each negated-clause node in Gφ is replaced with a negated-clause gadget
for L-tiling given in Fig. 11. Similar to the clause gadget above, there are
only three ways to cover all solid unit squares of this gadget; however, each
of them has exactly one covered connector (i.e., the outbound direction.) This
property preserves Condition (3) of Definition 2.

This completes the proof of Theorem 2.
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(a) (b)

(c)

Fig. 9 A duplicator gadget for L-tiling and LI-tiling, and its two ways of tilings.

(a) (b) (c) (d)

Fig. 10 A clause gadget for L-tiling and LI-tiling, and its three ways of tilings.

(a) (b) (c) (d)

Fig. 11 A negated-clause gadget for L-tiling and LI-tiling, and its three ways of tilings.

2.3 Reductions to I-tiling, LI-tiling and 2BAR-tiling

In this subsection, we consider the tiling problem with only I-trominoes, both
L-trominoes and I-trominoes, or only two bars. By the same arguments as in
Section 2.2.1, it suffices to construct six gadgets for each variant, that is, line,
corner, cross, duplicator, clause and negated-clause gadgets. Thus, we only
give those gadgets for each variant such that
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(a) (b) (c)

(d)

(e) (f)

Fig. 12 Gadgets for I-tiling: (a) line, (b) corner, (c) cross, (d) duplicator, (e) clause and
(f) negated-clause gadgets.

(a) the size of each gadget equals to that of a combination of a constant
number of the smallest-size gadget in the variant;

(b) covering a connector (i.e., a dotted unite square) represents the outward
direction, and not covering it represents the inward direction; and

(c) the gadgets preserve the one-to-one correspondence between valid ori-
entations and valid tilings.

In the following, we give such gadgets for each variant, and prove the following
theorem.

Theorem 3 I-tiling, LI-tiling and 2BAR-tiling and their counting and
another-solution-problem variants are NP-complete, #P-complete and ASP-
complete, respectively.
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2.3.1 Gadgets for I-tiling

The line, corner, cross, duplicator, clause and negated-clause gadgets for I-
tiling are given in Fig. 12(a)–(f), respectively. For line, corner and clause
gadgets in Fig. 12(a), (b) and (e), respectively, we can straightforwardly find
the ways to cover all solid unit squares, and can check their correctness. We
note that a crank in the line gadget in Fig. 12(a) guarantees that there are
exactly two ways of tilings, which correspond to two directions of (a part of)
a corresponding edge in Gφ. The other non-trivial gadgets work as follows.

(c) Cross gadget.In general, constructing a gadget for an edge-crossing is the
most difficult part to design in these kinds of reductions, as mentioned in [6].
This difficulty also occurs in I-tiling, too. (See Fig. 12(c) and 13.)

Observe that there are only two ways to cover each of the left and right
connectors, because of the crank structure; recall the similar structure in the
line gadget in Fig. 12(a). Since there are 127 solid unit squares in the gadget,
we need 43 I-trominoes to cover all of them and hence two unit squares of
I-trominoes remain. These two remaining unit squares can cover two of the
four connectors. Carefully tracing all possible ways of tilings, we can check
that both of the top and bottom connectors cannot be covered at the same
time, and both of the right and left connectors cannot be covered at the same
time. Therefore, we only have four ways of tilings as shown in Fig. 13.

(d) Duplicator gadget.In the middle part of the duplicator gadget in Fig. 12(d),
notice that there are three “bridges” of length four which join the right and
left halves. Then, there are only two ways to cover each bridge; putting an
I-tromino on either the left side or the right side. Since there are 106 solid unit
squares in the gadget, we need 36 I-trominoes to cover all of them and hence
two unit squares of I-trominoes remain. These two remaining unit squares can
cover two of the four connectors. The crank structure near each connector
controls the possible ways of tilings, and indeed there are only two ways to
cover all solid unit squares of the gadget as shown in Fig. 14.

(f) Negated-clause gadget.In the negated-clause gadget given in Fig. 12(f), the
rectangle of size 4× 2 placed on the center plays an important role. Consider
the ways to put two I-trominoes on the rectangle. Note that, since the width
of the rectangle is two, both the I-trominoes must be of size 3 × 1. If the
two I-trominoes are put on different heights, then we cannot cover all solid
unit squares of the rectangle. Therefore, there are only two ways to put the I-
trominoes on the rectangle. This gives us only three valid tilings of the gadget,
as illustrated in Fig. 15.

2.3.2 Gadgets for LI-tiling

Notice that, if we use even one I-tromino, there is no way to cover all solid unit
squares of the gadgets for L-tiling except for the cross gadget. Therefore, we



14 Takashi Horiyama et al.

(a) (b)

(c) (d)

Fig. 13 Four ways to cover the cross gadget for I-tiling.

can use the gadgets for L-tiling in Fig. 6, 7, 9, 10 and 11 as line, corner,
duplicator, clause and negated-clause gadgets for LI-tiling, respectively. The
cross gadget for LI-tiling is given in Fig. 16. There are only four ways to
cover all solid unit squares of the gadget, as shown in Fig. 17.

2.3.3 Gadgets for 2BAR-tiling

Notice that I-tiling is a special case of 2BAR-tiling. Indeed, all gadgets for
I-tiling can be extended straightforwardly to those for 2BAR-tiling with
S = {1 × m, k × 1}, for any fixed integers m ≥ 2 and k ≥ 3. As examples,
we give the gadgets for S = {1× 2, 3× 1} in Fig. 18, and give the cross and
duplicator gadgets for S = {1× 5, 4× 1} in Fig. 19 and 20, respectively.

Recall that, in the negated-clause gadget for I-tiling in Fig. 12(f) and 15,
the rectangle of size 4× 2 at the center played an important role. For 2BAR-
tiling with S = {1 × m, k × 1}, we define the size of such a rectangle as
(k+ 1)× (m− 1). Then, to cover all unit squares in the rectangle, we have to
place (m− 1) bars of size k × 1 with the same height.
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(a)

(b)

Fig. 14 Two ways to cover the duplicator gadget for I-tiling.

(a) (b) (c)

Fig. 15 Three ways to cover the negated-clause gadget for I-tiling.

3 Concluding Remarks

We have studied the computational hardness of L-tiling, I-tiling, LI-tiling
and 2BAR-tiling, and clarified that the tiling problem remains computation-
ally intractable even for a few (at most six) polyominoes. We emphasize that
our results gave answers to two open questions proposed by [9,10].

In this paper, we focused on the tiling problem for a polygon P with holes.
It remains open to clarify whether the tiling problem and its variants remain
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Fig. 16 A cross gadget for LI-tiling.

(a) (b)

(c) (d)

Fig. 17 Four ways to cover the cross gadget for LI-tiling.

NP-complete, #P-complete and ASP-complete even if a given polygon P has
no hole and a given set S consists of only a few polyominoes.

Finally, we note that many of our reductions can be extended to the fol-
lowing related problems.

(1) Packing problem
Given a polygon P , a set S of polyominoes and an integer k, determine
whether k copies of polyominoes in S can be placed on P without any
overlap. Note that, in the packing problem, we can rotate the copy of a
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(a) (b) (c)

(d) (e) (f)

Fig. 18 Gadgets for 2BAR-tiling with S = {1× 2, 3× 1}: (a) line, (b) corner, (c) cross,
(d) duplicator, (e) clause and (f) negated-clause gadgets.

polyomino in S. It is known that this problem is solvable in polynomial
time if S = {1× 2}, while it is NP-complete if S = {2× 2} [3,4].

(2) Covering problem
Given a set P of points in the plane, a set S of polyominoes and an integer
k, determine whether k translated copies of polyominoes in S can cover
all points in P . In this problem, the copies of polyominoes are allowed to
mutually overlap each other.

(3) Unique covering problem
Given a set P of points in the plane, a set S of polyominoes and an integer
k, determine whether k translated copies of polyominoes in S can uniquely
cover all points in P , that is, no overlap of the copies of polyominoes is
allowed.

Similar to L-tiling, I-tiling, LI-tiling and 2BAR-tiling, consider the three
problems above when restricted to only L-trominoes, only I-trominoes, both
L-trominoes and I-trominoes, and only two bars.

Notice that each of L-tiling, I-tiling and LI-tiling takes all possible
rotated copies of trominoes as the set S of polyominoes; the same holds for
2BAR-tiling with S = {1× k, k × 1} for any fixed integer k ≥ 3. Therefore,
we can see the correspondence between the tiling and the packing problems for
such cases, and hence the packing problem and its variants are NP-complete,
#P-complete and ASP-complete for such cases.
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Fig. 19 A cross gadget for 2BAR-tiling with S = {1× 5, 4× 1}.

Fig. 20 A duplicator gadget for 2BAR-tiling with S = {1× 5, 4× 1}.

By converting the gadgets in this paper to the positions of points (and
regarding the set of points as the set P ), we can also see the correspondence
between the tiling and the (unique) covering problems. Therefore, the (unique)
covering problem and its variants are NP-complete, #P-complete and ASP-
complete.
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