Title	Si ngl e-Pl ayer and Two-Pl ayer But tons \& Sci ssor s Ganes
Author(s)	Burke, Kyl e; Denai ne, Erik D.; Hearn, Robert A.; Hesterberg, Adam Hoffman, Mchael; Ito, H ro; Kostitsyna, Irina; Loffler, Naarten; Uno, Yushi ; Schmidt, Christiane; Uehara, Ryuhei; Wllians, Aar on
Citation	Lect ure Notes in Computer Sci ence, 9943: 60-72
Issue Date	2016-11-24
Type	Journal Article
Text version	aut hor
URL	ht t p: //hdl . handl e. net /10119/15103
Rights	Thi s is the author-created versi on of Springer, Kyle Burke, Eri k D. Demai ne, Robert A. Hearn, Adam Hester berg, M chael Hoffman, Hiro Ito, Irina Kostitsyna, Naarten Loffler, Yushi Uno, Christiane Schnidt, Ryuhei Uehara and Aar on WIIIans, Lecture Notes in Computer Science, 9943, 2016, 60-72. The ori gi nal publication is available at umw.springerlink. com, ht tp: //dx. doi. or g/10. 1007/978-3-319-48532- 4_6
Description	Discrete and Computational Geometry and Graphs. JCDCGG 2015.

IAPAN

Single-Player and Two-Player Buttons \& Scissors Games

Kyle Burke ${ }^{1} \quad$ Erik D. Demaine ${ }^{2} \quad$ Robert A. Hearn ${ }^{3}$ Adam Hesterberg ${ }^{4}$ Michael Hoffmann ${ }^{5}$ Hiro Ito ${ }^{6} \quad$ Irina Kostitsyna ${ }^{7} \quad$ Maarten Löffler ${ }^{8} \quad$ Yushi Uno $^{9} \quad$ Christiane Schmidt $^{10} \quad$ Ryuhei Uehara ${ }^{11}$ Aaron Williams ${ }^{12}$

Abstract

The Buttons \& Scissors puzzle was recently shown to be NP-hard. In this paper we continue studying the complexity of various versions of the puzzle. For example, we show that it is NP-hard when the puzzle consists of $C=2$ colors, and polytime solvable for $C=1$. Similarly, it is NP-hard when each color is used by at most $F=4$ buttons, and polytime solvable for $F=3$. We also consider restrictions on the board size, cut directions, and cut lengths. Finally, we introduce new two-player games and show that they are PSPACE-complete.

1 Introduction

Buttons \& Scissors is a single-player puzzle by KyWorks that was recently studied by Gregg et al. [2]. A level is an $n \times n$ grid of buttons of different colors; each position is either empty or has a button of a single color sewn to it. The goal is to remove all buttons using horizontal, vertical and diagonal scissor cuts. A cut is feasible if it removes at least two buttons of the same color and no buttons of any other color. Figures 1(a)-(b) show a sample level and solution. See 2 for further clarification of the rules and terminology.

Deciding whether a level is solvable is NP-complete [2]. We show that several restricted versions of the puzzle remain hard, and provide polytime algorithms for a number of easier versions. We also introduce twoplayer Buttons \& Scissors games and show that they are PSPACE-complete. Due to space restrictions, most proofs are sketched or omitted.

[^0]

Figure 1: (a) Level 6 in the Buttons \& Scissors app is on a 5×5 grid with $C=5$ colors, each used at most $F=6$ times; (b) a solution using nine cuts of minimum length $\ell=2$ and all four directions $(d=*)$.

2 Notation

Each Buttons \& Scissors level can be parameterized as follows (see Figure 1 for an example):

1. The board size $m \times n$.
2. The number of colors C.
3. The maximum frequency F of an individual color.
4. The cut directions d can be limited from the original four directions, which we denote by $*$. We only consider $d \in\{*, *,+, \not,--\}$ because an $n \times m$ board can be rotated 90° to an equivalent $m \times n$ board, or 45° to an equivalent $k \times k$ board for $k=n+m-1$ by adding blank squares.
5. The cut length ℓ is the minimum number of buttons required to be removed by a feasible cut.
These parameters give the following decision problem (the original problem is $B \& S[n \times n, \infty, \infty, *, 2](B)$):
Decision Problem: $B \& S[m \times n, C, F, d, \ell](B)$.
Input: Given an $m \times n$ board B with buttons of C colors, where each color is used at most F times.
Output: True if B has a solution with minimum cut length ℓ using d directions. Otherwise, False.

3 Single-Player Puzzle

We now present our results on the single-player puzzle.

3.1 Board Size

Remark 1 If a Buttons ε^{8} Scissors board can be solved, then it can be solved using only cuts of 2 or 3 buttons.

Theorem 1 Buttons 8 Scissors is polytime solvable on $1 \times m$ boards. That is, $B \& S[1 \times n, \infty, \infty,-, 2](B) \in P$.

Proof. Consider the following context-free grammar,

$$
\begin{array}{llll}
S \rightarrow \epsilon & S \rightarrow S \square & S \rightarrow x S x & S \rightarrow x S x x \\
S \rightarrow S S & S \rightarrow \square S & & S \rightarrow x x S x
\end{array}
$$

where \square is an empty square and $x \in\{1,2, \ldots, C\}$. By Remark 1, the solvable $1 \times m$ boards are in one-to-one correspondence with the strings in this language.

Theorem 2 Given a full $2 \times m$ Buttons \& Scissors board with $C=2$ and a constant s, there exists a polynomial time algorithm that removes all but s buttons from the board with feasible cuts.

3.2 Number of Colors

Theorem 3 Buttons \& Scissors is polytime solvable for 1-color, and is NP-complete for 2-colors. That is, $B \& S[n \times n, 1, \infty, *, 2](B) \in P$ and $B \& S[n \times$ $n, 2, \infty, *, 2](B)$ is $N P$-complete.

Proof Sketch: In a graph G, the maximum number of vertices that can be covered by edge-disjoint K_{2} and K_{3} subgraphs is polytime computable in the size of G (see Cornuéjols et al. [1]). We convert each 1-color board B into a graph whose vertices can be perfectly covered if and only if B is solvable. The transformation uses Remark 1 and is non-trivial since the order of cuts is important. The 2 -color reduction is in the full paper.

3.3 Frequency of Colors

Remark 2 If board B^{\prime} is obtained from board B by removing every button of a single color, then $B \& S[m \times$ $n, C, F, d, \ell](B) \Longrightarrow B \& S[m \times n, C, F, d, \ell]\left(B^{\prime}\right)$ (i.e., it is impossible that Buttons \& Scissors is solvable on B, but not solvable on B^{\prime} with the same parameters).

Theorem 4 Buttons \& Scissors is polytime solvable for maximum color frequency $F=3$, and is $N P$-complete for $F=4$. That is, $B \& S[n \times n, \infty, 3, *, 2](B) \in P$ and $B \& S[n \times n, \infty, 4, *, 2](B)$ is $N P$-complete.

Proof Sketch: If $F=3$, then each color is removed by a single cut in any solution. By Remark 2, these cuts cannot make a solvable board unsolvable. Thus, there is a simple greedy algorithm for deciding solvability.

It was proven that $B \& S[n \times n, \infty, 7, *, 2](B)$ is NPcomplete via 3 -SAT [2]. We use the same reduction for $F=4$, with Figure 2 replacing each OR gadget.

Figure 2: The left blue button can be removed if and only if " x is removed $\vee y$ is removed $\vee z$ is removed".

3.4 Cut Directions

NP-completeness for horizontal and vertical cuts and $F=7$ was proven in [2]. We improve this to $F=6$.

Theorem $5 B \& S[n \times n, \infty, 6,+, 2](B)$ is $N P$-complete.

3.5 Cut Lengths

In Section 3.2 we saw that the 1-color version has a polytime algorithm. However, if the minimum cut length is set to $\ell=3$ (instead of $\ell=2$) then it is NP-complete.

Theorem $6 B \& S[n \times n, 1, \infty, *, 3](B)$ is NP-complete.

4 Two-Player Games

In our two-player games, the players take turns making feasible cuts on a common board B. In a partisan game, some cuts are available to one player, but not the other. In an impartial game all feasible cuts can be made by both players. We consider two losing conditions:

1. The player cannot execute a feasible cut (LAST).
2. The player removed fewer buttons (MAX).

Theorem 7 The partisan LAST two-player game is PSPACE-complete, where player 1 cuts blue buttons, player 2 cuts red, and both cut green (if any).

Theorem 8 The impartial MAX and LAST two-player Buttons \& Scissors games are PSPACE-complete.

References

[1] G. Cornuéjols, D. Hartvigsen, and W. Pullyblank. Packing subgraphs in a graph. Operations Research Letters, 1(4):139-143, 1982.
[2] H. Gregg, J. Leonard, A. Santiago, and A. Williams. Buttons \& Scissors is NP-complete. In Proc. 27th Canad. Conf. Comput. Geom., 2015.

[^0]: ${ }^{1}$ Plymouth State University, kgburke@plymouth.edu
 ${ }^{2}$ Massachusetts Institute of Technology, edemaine@mit. edu
 ${ }^{3}$ bob@hearn.to
 ${ }^{4}$ Massachusetts Institute of Technology, achester@mit.edu
 ${ }^{5}$ ETH Zürich, hoffmann@inf.ethz.ch
 ${ }^{6}$ The University of Electro-Communications, itohiro@uec.ac.jp
 ${ }^{7}$ Technische Universiteit Eindhoven, i.kostitsyna@tue.nl. Supported in part by NWO project no. 639.023.208.
 ${ }^{8}$ Universiteit Utrecht, m.loffler@uu.nl
 ${ }^{9}$ Osaka Prefecture University, uno@mi.s.osakafu-u.ac.jp
 ${ }^{10}$ The Hebrew University of Jerusalem, Israel, cschmidt@cs.huji.ac.il. Supported by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).
 ${ }^{11}$ Japan Advanced Institute of Science and Technology, uehara@jaist.ac.jp
 ${ }^{12}$ Bard College at Simon's Rock, awilliams@simons-rock.edu

