
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Learning Human-like Behaviors using

NeuroEvolution with Statistical Penalties

Author(s) Phuc, Luong Huu; Kanazawa, Naoto; Ikeda, Kokolo

Citation
2017 IEEE Conference on Computational

Intelligence and Games (CIG): 207-214

Issue Date 2017-08-22

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/15122

Rights

This is the author's version of the work.

Copyright (C) 2017 IEEE. 2017 IEEE Conference on

Computational Intelligence and Games (CIG), 2017,

207-214. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future

media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description



Learning Human-like Behaviors
using NeuroEvolution with Statistical Penalties

Luong Huu Phuc
School of Information Science

JAIST
Ishikawa, Japan

Email: luongphuc@jaist.ac.jp

Kanazawa Naoto
School of Information Science

JAIST
Ishikawa, Japan

Email: na-kanazawa@jaist.ac.jp

Ikeda Kokolo
School of Information Science

JAIST
Ishikawa, Japan

Email: kokolo@jaist.ac.jp

Abstract—In game artificial intelligence (AI), two common
directions for developing non-human computer players are strong
AI and human-like AI. Human-like AI aims at making computer
agents behave like humans. In this direction, NeuroEvolution
(NE), which is a combination of an artificial neural network
(ANN) and an evolutionary algorithm (EA), had been frequently
used to a make computer agent to behave like a human. Our
research introduces a novel approach to create human-like
computer agents in a platform game Super Mario Bros. (SMB)
- we called it a 2D action game in this research. The approach
utilizes statistical penalties to evaluate candidates created by NE
algorithm. The penalties help in reducing mechanical actions of
computer agents based on human data statistics, and the effects
of statistical penalties are analyzed by asking human subjects
to rate the human-likeness of agents. Experiments show that
our method improves the human-likeness in the behavior of a
computer agent.

I. INTRODUCTION

Recently, many things in modern life are inspired by nature,
and researchers tend to create every machine with artificial
intelligence based on the intelligence of living things. In
the viewpoint of Game AI, computer players are usually
made for entertaining, but the important thing is games rep-
resent real world problems. Since games are simple, well-
defined and easy to evaluate, many AI methods such as
supervised/reinforcement learning, optimization, tree search,
and reasoning are proposed to solve problems in this domain.
Creating game AI means developing an AI agent for a certain
problem, such as solving games, interacting with human
players, automatically generating suitable game levels, or even
teaching human players to play games.

A current attractive trend in this field is making intelligent
machines which are able to beat human champions. Develop-
ing a strong AI, let say an AI champion - which is able to
beat human experts, started to make impacts on society since
1997. The first machine, called Deep Blue [1], won against a
human champion in a chess game. Furthermore, contemporary
research on the deep neural network, AlphaGo [2], is the
first computer player to defeat a human champion in a very
complex game of Go.

Another interesting direction is developing human-like com-
puter agents. The purpose of making a human-like agent
differs from that of a strong AI agent. Strong AI agents’
behaviors, in case of action games, tend to be somehow

impossible to human players such as very precise movements
or immediately responses. In contrast, human-like AI agents
should react more naturally and reasonably. A reason for
the necessity of human-like AI agents is sometimes human
players may think of whom they are playing with. They prefer
to play with humans rather than computer players. Another
reason which is human-like computer players might be used
to simulate how human players play through a game, so more
suitable levels and stages can be designed. In case of teaching
human players to play a game, a human-like AI is also required
because human beginner players may not be able to follow
the optimized movements of a strong AI player. Comparing
to human players, the behavior of AI agents is very unnatural.
Thus, the questions are “Is it possible to make a computer
learn to play like a human?” and “How to make computer
players be more like human players?”

This research mainly focuses on developing a human-like
game AI agent. We attempt to use evolutionary algorithm with
artificial neural network structure to create a computer player.
Obviously, rule-based agent is a possible solution to implement
human-like agents. However, defining rules for a computer
agent to behave like a human in a specific game is very costly
and arduous, to say nothing of its generality. Therefore, a flex-
ible and creative approach is needed to address this problem.
Because of the variety in types of computer games, only 1-
player action game type is taken into account. The target of
this research is to enable an AI computer agent to behave
like a human player by using penalties to punish mechanical,
non-human behaviors as well as unnatural behaviors.

To evaluate the human-likeness of a computer agent, a
special procedure and human subjects are required. In the past,
judging the intelligence of a machine was done by Turing Test,
proposed by Alan Turing [3] in 1950. After being introduced,
many researchers used extended versions of the Turing Test
to evaluate the human-likeness of their AI agents. We employ
a test, which allows human subjects to ranking abilities of a
player from 1 (worst) to 5 (best), rather than the Turing Test
to evaluate the proposed computer agent.

A testbed, which is used in this research, is Mario AI
Benchmark 0.1.9 [4]. This testbed had been already used in
competitions in 2009 and 2010, and it is a modified version
of SMB by Nintendo, one of the most famous two-dimension



action games in the world. Strong AI agent in this game is
already achieved by using A* search algorithm [5], and the
most human-like AI is developed using NE algorithm [6].
However, the ideal human-likeness level of AI agents is not
yet reached.

II. RELATED WORK

Developing human-like computer agents in games is
adopted as a field in game AI research since competitions
in game AI become popular in the past ten years. Many com-
petitions were held, and methods similar to Turing Test were
promising for the human-likeness qualification of computer
players in games. An extended version of the Turing Test is
used in the competition 2K BotPrize Contest, and its results are
shown afterward [7]. In 2012, another Turing Test competition
was held in Mario AI Championship [8]. While 2K BotPrize
Contest uses first-person shooter game as the domain, Mario
AI Championship [9] focuses on a two-dimension action game.
In the test, human subjects are asked to watch many videos of
the game plays by human players and computer players. Then,
they have to vote whether the player was human or machine.

A. UTˆ2 computer agent

The BotPrize competition employed the computer game Un-
real Tournament 2004 (UT2004 - a first person shooter game)
as a testbed. In this game, players are able to move around
a three-dimension virtual world in a first person’s viewpoint.
The competition conducted the Turing Test to test the ability
to imitate human players of computer players. The result of
the competition shown that the UTˆ2 bot ranked the 2nd place
among computer players with humanness rating of 27.3%. The
humanness equals the number of human judgments on total
judgments in percentage. Comparing to human players, even
the least human-like player achieved 35.5% of human-likeness,
so the human-likeness of the UTˆ2 bot is still not at the level
of human players.

The UTˆ2 computer player learns combat behavior by NE,
and it uses human trace database. Additionally, an imitation
technique is also used to observe the way human do rather
than only combat. Since UTˆ2 bot is trained by NE with mul-
tiobjective to learn combat behavior, a set of three objectives
is defined. The first objective is to maximize the dealt damage.
The others are to minimize both the received damage and
the number of collision events with level geometry. Detailed
architecture and learning process, as well as multiobjective
optimization, are shown in [10]. Directly training a computer
player to play like a human player usually requires data
collected from human players, and this computer agent is
trained by this way. However, using human trace data may
not be the best way due to the accuracy and validity of the
collected human data. More data means longer training time,
and lack of data results in the inefficient training or overfitting.
If there is no human data for training the computer player,
it might be difficult to make the computer player be more
human-like, to say nothing of a huge number of human data
requires effort to collect.

B. Human-like Mario Computer Agent
The winner of the Turing Test track which was held in the

2012 Mario Championship competition [8] was named VLS
bot. After that, there are several approaches for producing
human-like behaviors introduced and compared [11]. In this
section, some notable approaches are briefly introduced.

1) VLS Bot: The VLS bot has its name of its contributors
Vinay, Likith, and Stefan. It is inspired by a technique in the
robotics field, namely Artificial Potential Field. This technique
utilizes influence map in defining a number of things in
potential fields. The author described four types of the field
which are: (1) The field of progression, (2) the field of rewards,
(3) the field of opponents, and (4) the field of terrain. The first
field, progression field, makes Mario move right rather than
left. The field of rewards make coins, mushrooms, blocks, and
flowers attractive so that Mario will change his attention to
these rewards. Next, the field of opponents provides dangerous
positions for Mario to keep a distance from enemies or to kill
them. Finally, terrain field ensures Mario to avoid gaps, dead
ends and search for correct path ways. By using these potential
fields, the computer will choose the action that will take it
to the most attractive position. Moreover, tuning parameters
for each field are also used, and the appropriated values are
obtained by asking testers to evaluate the players.

The evaluation of human-likeness in the competition is
calculated based on the number of human votes from human
subjects. The result of the competition showed that VLS bot
acquired 25.79% of score in the Turing Test track, while expert
human players score 23.21%, and 30.95% is the score of
novice human players. An explanation for the human-likeness
of the VLS bot is that VLS bot spends time moving left,
collecting most items, and interactive with enemies other than
just running in the right direction. Unfortunately, defining such
potential fields might lead to the same problem in rule-based
approach that is the complexity of mixed and overlapping
potential fields.

2) NeuroEvolution Bot: Artificial neural network (ANN)
is commonly used in AI with supervised, unsupervised, or
reinforcement learning method. However, the ANN can also be
trained by using Evolution Algorithm (EA), so the definition
of Neuro-Evolution is came from this combination. Similar to
Direct Policy Search, which is used in weightlifting robot [12]
and later on as a framework for robot model [13], NE defines
an ANN as a solution in the population.

In SMB game, an existed computer agent using NE is
basically trained by adjusting weights of the ANN [11]. The
objective for training this agent is to make the AI agent
to produce similar trajectories of Mario to human player’s
trajectories.

The results, in term of human-likeness, of this NE [11]
showed that NE had 89 times of human judgments in total.
Supervised learning method, which uses ANN Back Propaga-
tion, achieved 21 times. Comparing to human players, human
players received 110 times of human judgments. Thus, NE
is better than ANN with supervised learning, but it is still
not able to achieve the human-likeness as human players.



Moreover, the NE agent in the result uses the pre-trained
ANN obtained from the supervised learning agent, so the
performance of NE alone without using the trained ANN
structure in imitating human playing style is questionable.

3) A* Agent with Biological Constraints: According to the
result of the competition, A* is the strongest computer agent to
solve the game SMB in particular. Unfortunately, the behavior
of computer agent which uses A* search algorithm looks very
mechanical, and the performance of A* is too efficient that
it might surpass even a human expert. To limit the unnatural
actions and increase the human-likeness of A* algorithm, Fujii
et al. [14] introduced the intentional error and artificial delay
in actions of an AI agent. Biological constraints are applied
by including noise into the input information of the agent,
using information of the past for the current actions, and
physical fatigue (by limiting the number of pressing keys).
This approach made A* algorithm to be more human-like in
Mario game than human expert players, but it may be less
human-like in other game domains.

In the case of 2D action games, such as SMB, there were
currently three human-like approaches, which are VLS, NE,
and A* with biological constraints. VLS can be implemented
by using hard coding, but its inflexibility is a drawback. NE
is able to mimic one trajectory of a playing, but comparing
the positions of the character in the game between computer
agent and human players is costly and inflexible. Also, the cost
of collecting more human data raises, and human traces data
is required for the performance of this agent. Meanwhile, A*
provides strong AI players as expert as human players, and
biological constraints contribute to its human-likeness. The
disadvantage of this method is the calculation time since it
requires searching for a solution every single frame.

If there is a more general method to solve the problem
of human-like computer agents, it might be possible to make
computer players behave like a human in every types of games.
Therefore, we introduce a new approach to tackle this problem.

III. STATISTICAL PENALTIES

Generally, a penalty is a punishment which is given to a
computer player with a specific behavior to show that bad
behaviors are not allowed. The idea of this approach is to
limit or remove mechanical behaviors. By this way, a computer
player is able to behave like a human due to its selected
behavior have less chance to be a mechanical behavior.

Considering behaviors of players in games, we can divide
the behaviors into two subsets: human-like behaviors and
mechanical behaviors. Considering two subsets A and B which
are the sets of behaviors in a game, we call set A a set
of human-like behaviors, and set B is a set which contains
only mechanical behaviors. Thus, a computer player may be
more human like if its behaviors belong to set A. In order to
make this computer agent, we have to keep the size of set A
larger than set B’s. If set A is larger, the chance for human-
like behaviors to occur will increase, so a computer player,
by chance, will choose to human-like behaviors rather than

Fig. 1. A feature penalty example

mechanical behaviors. Hence, the issue now is how to trigger
this situation.

We address this problem by using the concept of penalty.
A penalty will be given to the computer players if it is
likely to produce bad things, say less human-like behaviors
and more mechanical behaviors. In other words, a computer
player receives penalties in case of the number of human-
like behaviors is not enough, or the number of mechanical
behaviors exceeds the limitation. Consequently, thresholds
must be defined for giving penalties, and a large penalty is
given if the thresholds are excessively exceeded.

One essential thing in using penalties to punish bad be-
haviors of a computer agent is designing good thresholds.
Randomly choosing values for thresholds is not the way this
approach should work. We decide to use human data statistics
to determine the threshold values for penalties. It means the
threshold values are based on the average values obtained from
human player data. The term statistical penalties is from this
idea. The next point needs to be clarified is what kind of
things should be given penalties to make a computer agent be
able to produce human-like behaviors rather than mechanical
behaviors.

A. Penalty feature

For computer agent in games, things such as the number
of pressed buttons, the number of normal or illegal actions
can be considered as features for punishment. Features can be
defined differently according to the game. Hence, the penalty
can be used to punish mechanical and non-human actions by
introducing which features should be punished. The penalty
features are defined based on human expert knowledge.

In particular, we choose the game SMB to implement the
proposed idea. Instead of the original game, we employ a
modified version, which had already been used in the last
competition, as the environment.

1) Mario AI Benchmark 0.1.9: This is a modified version
of Markus Perssons Infinite Mario Bros [9], namely Mario
AI Benchmark, which is a public domain clone of the Nin-
tendoFLs classical game SMB. It is a very popular and famous



TABLE I
HUMAN DATA CHARACTERISTICS. VALUES MOST LIKELY DESCRIBE PLAYING STYLE ARE IN BOLD.

Human AI

Instruction Free Coin Speed A* NE NE + Penalty

Stand 0.081 ± 0.057 0.192 ± 0.114 0.033 ± 0.029 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

All-Left 0.039 ± 0.028 0.136 ± 0.036 0.017 ± 0.014 0.008 ± 0.003 0.012 ± 0.002 0.052 ± 0.025

OnGround 0.216 ± 0.105 0.425 ± 0.129 0.109 ± 0.058 0.041 ± 0.002 0.039 ± 0.004 0.061 ± 0.009

ChangeAction 0.333 ± 0.141 0.611 ± 0.137 0.200 ± 0.079 0.120 ± 0.003 0.275 ± 0.011 0.280 ± 0.048

CollectedCoin 0.313 ± 0.123 0.466 ± 0.096 0.272 ± 0.098 0.283 ± 0.049 0.306 ± 0.062 0.312 ± 0.054

KilledEnemy 0.338 ± 0.191 0.418 ± 0.206 0.242 ± 0.120 0.326 ± 0.027 0.278 ± 0.021 0.278 ± 0.087

IllegalAction 0.035 ± 0.035 0.071 ± 0.067 0.044 ± 0.041 0.000 ± 0.000 0.012 ± 0.002 0.099 ± 0.092

TimeSpent 0.429 ± 0.178 0.814 ± 0.183 0.261 ± 0.107 0.142 ± 0.005 0.332 ± 0.017 0.356 ± 0.052

game, so it was made into a benchmark and used in many
competitions and international academic conferences.

The gameplay implemented in this benchmark is similar to
the gameplay of original Mario games, but it is comparatively
simpler than the original version. The main objective in the
gameplay is to navigate the Mario to reach the end of a level.
Possible actions for navigating Mario are LEFT, RIGHT, UP,
DOWN, JUMP, SPEED/SHOOT.

Collecting items, and killing enemies give additional scores
to the player. Mario can be in one of three states: Fire, Big, and
Small. Besides, there are certain types of enemies depending
on the “difficulty setting”.

2) Selected features: According to the game environment
described in the previous section. We pick features that are
necessary for accumulating the human-like performance of the
Mario computer player.

To increase the human-likeness of a computer agent, fea-
tures, which describe as the behaviors, such as the number
of actions, the number of times that actions are changed, etc.
might be included. For instance, “Left button” is almost not
used in A* agent, but human players may use for moving
backward to collect more coins. Selected features in this
research are described as following:

• Stand: Since human players sometimes stop and think
for a solution, the number of action, which no button
is pressed, is used to describe this behavior.

• All-Left: LEFT action is rarely used in case computer
player tries to reach the goal. For human players, they
tend to move left to collect some items. Therefore,
all actions where LEFT button is pressed are worth
considered.

• OnGround: This feature is related to jumping behav-
ior. Some computer controller use JUMP action in a
particular pattern to navigate the Mario character to
pass over obstacles. It may be better to have a similar
amount of time to human players being on the ground
or in the air.

• ChangeAction: We realized that some AI players
change their actions extremely frequently, and some
of them keep consistent action patterns. This kind of
behavior seems to be impossible for human players,

even with an expert.
• CollectedCoin: If a computer player is developed to

collect many coins, it possibly collects all coins or
too many coins in a level. However, human players
sometimes leave some coins behind and move for-
ward. For this reason, the number of collected coins
should be compared.

• KilledEnemy: Similar to the case of collected coins.
If human players know that they can win without
interfering with enemies, they will just pass it.

• IllegalAction: An illegal action, for example, can be
many or all buttons pressed at the same time. Useless
and conflicted actions can also be considered as illegal
actions.

• TimeSpent: Computer players tend to finish a game
level quicker than human players, so they should have
the same amount of time spending in the level for
investigation.

To use penalties for these features, the idea is that if
these features of a computer player and human players are
significantly different, the punishment can be given to the com-
puter player. As a consequence, a computer player with more
human-like behavior, says it has less penalty or punishment,
might be obtained by training with additional penalties beside
the original score.

B. Human Data Analysis

The feature comparison for calculating penalties requires
human statistical data, so we attempted to collect some human
data by asking people to play the Mario game using the
benchmark.

We have done an analysis on human behavior in this game to
obtain statistical data for the training of our agent. Collecting
human data takes time, and it is very costly. If we collect data
from many human players, we need to categorize them by
experience and level. Thus, we ask only five human players
to participate in because it is enough to see the differences
between behaviors of human players and computer players.

Five human players are given five levels in the Mario AI
Benchmark with difficulty 0. Even with difficulty 1, normal
human players feel it is hard to complete a level, and they



fail many levels, especially when Mario is not in Fire mode.
Moreover, if more levels with the same difficulty are given to
human players, they will get bored, so their behavior may be
different. Additionally, three instructions are given to human
players to examine if their behavior changes accordingly for
each objective. These instructions are: Free to play (Free),
try to collect coins as many as possible (Coin), and run as
fast as possible (Speed). Human players play each level one
time, and they have to repeat for each instruction. (Free)
comes first, then (Coin) and (Speed) follow. In addition,
we let a computer player implemented with A* algorithm
play the same levels and compare with human players. The
characteristics of human players and A* algorithm are shown
in Table I.

In table I, the average percentage and standard deviation of
actions and some features are calculated. The All-Left in the
table means all action in which LEFT button is pressed such
as LEFT and JUMP. Related features have their percentage
value, which is the number of actions of the player in one level
divided by the maximum number of actions, items, enemies, or
time allowed for each level, rounded to three number after the
decimal point for more precise analysis because the maximum
number of actions in a game play is 3000.

According to the statistics shown in Table I, explanations
for the behaviors of human players in this game are following:

– Typically, in 2D action games, a character should move
right to clear a level, so the average percentage of All-Left
action is very small comparing to other features.

– It is easily to see that the average percentage of Stand
action, in case of Coin instruction is given, is higher than
those in Free and Speed instructions. It is possible to think
that human players tend to suspend and thinking about
the solution to navigate Mario character to get some items
in the level.

– Human players with Coin instruction pressed LEFT
button the highest times comparing to the other two
instructions. The reason might be collecting more coins
requires Mario to go backward because some coins may
be left while Mario traversing through a level.

– If human players are asked to play as fast as possible, they
try to navigate the Mario to run right and jump just to
pass over obstacles and enemies. It results in the average
percentage of All-left and TimeSpent is small.

– Comparing CollectedCoin and KilledEnemy features, the
statistics clearly shows that the average percentage of
human players with Free instruction is between those
in Coin and Speed instructions. This makes sure the
behavior of human players in case of Coin instruction
is to keep surround places safe for gathering items, and
human players ignore items and enemies in case of Speed
instruction.

– The A* computer players behavior is very different from
human behaviors. Zero percentage for Stand, IllegalAc-
tion. There are a very small number of LEFT actions,
times changing actions and very short duration while
Mario character is on the ground. This AI finish a level

Fig. 2. Proposed method architecture

faster than even human players with Speed instruction.
The analysis on human behavior has shown that the playing

style of human players is different for each instruction. Based
on these features, a computer player is expected to behave
more like a human player if their average percentage of actions
or features is similar or even almost the same as human
players’. The statistical penalty existed for that reason, and
how penalties are given is important to create human-like
computer players.

C. Penalty calculation

To compute a penalty value, we take the average percentage
of a feature obtained from human data statistic plus and minus
its standard deviation to get the upper and lower limits. Then,
if the percentage of the considered feature of a computer player
falls into this range, no penalty is given, and vice versa.

Figure 1 shows an example of a feature penalty calculation.
Suppose that the considered feature is the number of an action
A, the average percentage of action A in human players’
behavior is X̄H percent, and the standard deviation is σ. Next,
let a computer agent play the game, and its behavior is
obtained. The percentage of action A of the computer player,
x, is compared to the average percentage of human players.
The penalty, which is represented by the red curve in figure 2,
is calculated by using a quadratic function. If more penalty
features are used, each individual penalty for each feature
should be calculated.

The standard deviation is used in this case because not
all human players play the same style. The variance in the
behavior of human players exists, so some human players
seem to have a play style similar to the average of human
players than others. For that reason, it is better to use standard
deviation to declare the range of value which penalty is not
given.

The total penalty is calculated using equation (2). The
sum of penalties is calculated as a summation of the squares
differences from the mean. Since different features may be
used, the weight of each penalty for each feature is needed
to be balanced. If weights are not balanced, some penalties
may not be effectively used to limit unnatural behavior. To



PenaltyactionA =

 ((X̄H − σ)− x)2 if x < X̄H − σ
(x− (X̄H + σ))2 if x > X̄H + σ

0 Otherwise
(1)

TotalPenalty =
∑

wi ∗ Penaltyi (2)

Fig. 3. Input feature setting

decide weights for penalty features, the values such as average
numbers of action of human players should be approximated.
Besides, if a feature is more important than others, its weight
can be set to a higher value.

IV. IMPLEMENTATION

Previous works had shown that NE has the potential to
imitate human players. Despite more a human-like agent in
games such as A* with biological constraints in Mario was
shown, it is only for 2D action games. The fact that A*
is efficient for path finding if and only if there is enough
time for calculation. More complex games might increase
the calculation time of A*, so more general approach is
needed. We propose an architecture in which NE and statistical
penalties are integrated.

A. NeuroEvolution

NeuroEvolution is a combination of an artificial neural
network (ANN) and an Evolutionary Algorithm (EA). In
games, NE is used for decision making. The ANN in NE
has the role of an input-output function. Its input is a game
state, and output of the ANN is usually an action. Typically,
the ANN in NE is usually a fully connected network, and it
is trained by using EA to adjust the weights. The objective of
NE is to maximize/minimize a fitness value corresponding to
how much a problem is solved.

In our proposed method, we do not use a fully connected
neural network because of its performance and inflexible

structure. Instead, we employ an approach, which is similar
to the NE of Augmenting Topologies (NEAT) proposed by
Stanley and Miikkulainen in 2002 [15], to apply in our
problem. NEAT uses a direct encoding to store information of
an ANN, for example, nodes, connections, etc. The difference
between NEAT and normal NE approach is that the ANN in
the NEAT contains no connection and hidden nodes at the
beginning.

B. Architecture

The architecture of our method is depicted in figure 2.
It consists of three components: (1) NeuroEvolution, (2)
Environment, (3) Evaluation. An approach similar to NEAT
[15] is used to develop the first component NeuroEvolution.
The Environment is the targeted game. In this research, SMB
is the targeted game, and the benchmark of this game is used
as a testbed. The Evaluation component is designed based on
the Environment.

The process of this architecture consists steps similar to NE.
At first, a set of artificial neural networks is initialized as the
population. The structure of ANNs contains no hidden node
and connection. Then, they will be placed into the environment
one by one for evaluation. Unlike the normal evaluation step in
NE, an additional calculation of penalties is taken into account
because finding best solutions, which can solve the game, is
not only the main target. The best solution, in term of solving
games, must satisfy some requirements to additionally be the
most human-like solutions. That is why penalty calculation
is introduced. The fitness value for evaluating solution is
computed by using equation (3). In the fitness function, score
is the evaluation on the main target, and penalties is calculated
based on penalties features. The calculation of total penalty is
shown in the next section.

After being evaluated, the reproduction step handles the job
of creating new solutions by mutating current solutions and
replacing worse solutions in the population. Each individual
ANN’s structure is assumed as a solution, so mutation creates
new solutions by altering the ANN’s structure. An evolutionary
strategy, called (1 + λ)-ES, is used in this step for the mutation
process. More generally, λ mutants can be generated and
compete with their parent, and the parent is replaced only
if there is a better mutant.

C. Fitness function

To evaluate the human-like candidates, fitness function
must be defined. The fitness function is calculated using the
following equation:



Fitness = Score− TotalPenalty (3)

By using this fitness function, candidates with a high total
penalty value will be removed since they are not considered as
human-like candidates. The Score is calculated by the game
environment, and the TotalPenalty is calculated by equation
(2). While Score guarantees the candidates is able to play the
game, TotalPenalty is used to measure how much human-like
a candidate is.

The objectives are maximizing score and minimizing total
penalty. The fitness value is calculated by taking the score
minus the total penalty. Note that the score and total penalty
may lead to underestimating solutions. If the value of score is
extremely big comparing to the total penalty, the total penalty
might have no effect. To address this problem, a pair of
weight values might be used for the Score and TotalPenalty
respectively, but we consider only weights of penalty features
in this research.

The weight of each penalty feature is adjusted according
to the means calculated from human data. For instance, the
mean of OnGround is 0.216, and the mean of ChangeAction
is 0.333. If the weights of ChangeAction is 1.0, then 1.5 is the
OnGround’s weight.

V. EXPERIMENTS

To train our agent, we use the evolving neural network,
which is able to alter both weights and structure because it
is faster than the fully-connected neural network in term of
training time. We did a small preliminary experiment on the
performance of both methods using only score in the fitness
function. While fully-connected NN requires 1.5 days for 2500
iterations, evolved ANN needs only 8 hours to achieve a
similar score.

A. Settings

The input features include three areas and information from
2 nearest enemies (4, 5) such as distance and angle to the
enemies as shown in figure 3. Three areas are: (1) four cells
in front of Mario, (2) spaces between Mario and the ground,
(3) a couple of column in front of Mario to the bottom of the
observation, The first area is to check whether or not there is
any obstacle that blocks Mario to process forward. The second
area is to measure the distance of the current position of Mario
to the ground. The final area is to check if there is any gap
in front of Mario. These three areas (1,2,3) return the value
corresponded {true, false} value. We also use Mario status
(isAbleToJump, isAbleToShoot, isOnGround, MarioMode),
Mario positions (x, y), and the position of Mario at one
second ago as input features.

The population size of NE is set to 20, and λ is 10. Mutation
chance is 0.5, and no crossover. The number of iterations
for training is 2500 each level. The number of output is 6
corresponding to six actions in the Mario AI Benchmark. For
fitness calculation, we use penalty features as described in the
previous section III-A2 with the threshold values of human
players in the case of Free instruction.

Fig. 4. Skillfulness comparison

TABLE II
THE STATISTICAL VALUE OBTAINED FROM THE T-TEST. α = 0.05

Agent Human NE NE + Penalties
Human - 2.3× 10−11 2.0× 10−4

NE - - 1.7× 10−3

We asked 16 human subjects to evaluate 5 pairs of videos.
We match videos of the three players (human, NE, proposed
method) into pairs. Two videos must be from different players,
but the same level is used. It is either human vs. NE, human vs.
proposed method, or NE vs. proposed method. We also adjust
pairs of videos to make all videos have the same chance to be
appeared and evaluated.

B. Results

According to the evaluations from human subjects, we have
summarized all the answers and comments. The comparison
results are shown in figure 4, and 5.

Figure 4 shows the number of rating for each value from 1
to 5 corresponding to the skillful of each player. The blue
column is the human players’ performance, red column is
for the computer agent, which using only NE approach, and
the green column indicates the performance of our proposed
method.

The important thing to be compared is the human-likeness.
Our main target is to improve the human-likeness of computer
agents. Figure 5 shows the human-likeness of human players,
NE computer player, and our proposed computer player. In
addition, statistics of the original NE and the proposed method,
in which five levels similar to the case of human players are
given for them to play, are also computed and shown in Table
I for comparison.

The t-test is applied to the results shown in figure 5 in
order to get the significance difference between means of each
pair of agents. The result of the t-test is shown in Table II.



Fig. 5. Human-likeness comparison

According to the results, the average human-likeness of the
proposed method is significantly better than the naive NE
method, but it is still significantly worse than Human.

C. Discussion

According to the results of the assessments, which is
described in the previous section, that we employed to evaluate
our agent, we computed the overall score in both cases
skillfulness and human-likeness. In average, the skillfulness of
human players is 3.16. The computer agent, which was trained
by the naive NE, scores 3.10, and our method is 3.22. The best
solution in our method after training was more skillful than
the best solution in NE without penalties.

The average human-likeness value of NE computer agent
is 2.66. Our proposed method scores 3.41. To think that the
proposed method has improved the human-likeness of NE
by 0.75 points in average. Unfortunately, the gap between
humans’ score and our agent’s is about 0.77 points.

The proposed method showed that the behavior of computer
agents trained using NE is affected by the feature penalties.
As shown in Table I, the statistics of the agent trained by
the proposed method seem to converge to human statistic
values. Because of the penalties calculation, the behavior of
the computer agent is less mechanical so that human subjects
think that it is clever. Hence, the skillfulness of the proposed
method is high.

It is easy to see that human players are the most human-
like in this case. Human players are ranked 5 in most of the
evaluations. The least human-like player is NE. Our proposed
method has improved the human-like of NE.

However, the human-likeness is not enough. The reason may
be the input and penalty features are not enough, so more
detailed/richer information is needed.

VI. CONCLUSION AND FUTURE WORKS

In order to create human-like computer players, the statis-
tical penalties are introduced. Since making computer players
to generate similar actions to human players requires human
data. Unlike previous methods that human data are directly
used for computation, our proposed method requires only
statistical data from human players. Therefore, we might not
need to collect many data to train a computer agent. An
analysis of human players’ characteristics in the domain game
should be done beforehand. The experimental results show that
the proposed method increases the human-likeness of NE. If
better features and training strategy are defined, the expected
behavior of a computer player may be as human-like as human
players.

Future works will focus on improving the efficiency of the
training. Richer information and information of the past will
be considered. Also, other game domain will be tackled to
examine the generality of our method.

REFERENCES

[1] J. Schaeffer and A. Plaat, “Kasparov versus deep blue: The re-match,”
ICCA Journal, vol. 20, pp. 95–101, 1997.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–489, 2016.

[3] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59,
pp. 433–460, 1950.

[4] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario ai
competition,” in Evolutionary Computation (CEC), 2010 IEEE Congress
on, 2010, pp. 1–8.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, pp. 100–107, 1968.

[6] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, pp. 47–62, 2008.

[7] P. Hingston, “A turing test for computer game bots,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, pp. 169–186,
2009.

[8] N. Shaker, J. Togelius, G. N. Yannakakis, L. Poovanna, V. S. Ethiraj,
S. J. Johansson, R. G. Reynolds, L. K. Heether, T. Schumann, and
M. Gallagher, “The turing test track of the 2012 mario ai championship:
entries and evaluation,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on, 2013, pp. 1–8.

[9] S. Karakovskiy and J. Togelius, “The mario ai benchmark and com-
petitions,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 4, pp. 55–67, 2012.

[10] J. Schrum, I. V. Karpov, and R. Miikkulainen, “Human-like combat be-
haviour via multiobjective neuroevolution,” in Believable bots. Springer,
2013, pp. 119–150.

[11] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis, “Imitating
human playing styles in super mario bros,” Entertainment Computing,
vol. 4, pp. 93–104, 2013.

[12] M. T. Rosenstein and A. G. Barto, “Robot weightlifting by direct policy
search,” in International Joint Conference on Artificial Intelligence,
2001, pp. 839–846.

[13] K. Ikeda, “Exemplar-based direct policy search with evolutionary opti-
mization,” in Evolutionary Computation, 2005. The 2005 IEEE Congress
on, 2005, pp. 2357–2364.

[14] N. Fujii, Y. Sato, H. Wakama, K. Kazai, and H. Katayose, “Evaluating
human-like behaviors of video-game agents autonomously acquired
with biological constraints,” in Advances in Computer Entertainment.
Springer, 2013, pp. 61–76.

[15] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, pp. 99–127,
2002.


