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Abstract

Recently, there is a lot of interest for the application of polar codes for next-generation
wireless communication networks due to its advantage compared to other well-known
channel codes like turbo codes and LDPC codes. One reason is they lack mathemati-
cal proof of capacity-achieving properties and partly reveal several drawbacks for very
high-speed wireless communications. Polar codes, which were proposed by Arikan, are
considered to be one of the significant contributions in coding theory for recent years.
They are thus a potential candidate for the next generation wireless communication such
as 5G cellular systems.

In this thesis, we propose a basic scheme using polar codes for 5G systems especially
for small and moderate code lengths such as 64, 128, 256. For example, the simulation
results show that the polar codes for short length of 128 with successive cancellation
list (SCL) decoding outperforms the turbo codes at all rates of 1/3, 1/2 and 2/3. In
addition, the polar codes length of 1024 with CRC-aided SCL decoding achieve even
better performance than LDPC codes in equal conditions. We then analyze the polar
codes performance under Rayleigh fading and propose to apply the SCL decoding and
the suitable CRC sequence as the outer channel codes to overcome the negative effect of
fading channels and get SNR gain. The selection of CRC bit length must be traded off
with the code length because it causes the increase in bits redundancy for moderate code
length. For instance, 2.5 dB gain is obtained for polar codes 1024 with rates of 0.5 under
Rayleigh fading when using our proposed design.

Lattices and lattice codes has received the increasing attention for their applications to
wireless communications, from the research community. The advantage of a lattices based
system is that it is able to merge the channel coding and the modulation as one process.
It is necessary to separate the differences between lattices and lattice codes. Since a
lattice has infinite number of number of points, a lattice code is generated by applying a
power constraint to an infinite lattice. This thesis mainly concentrates on transmitting
lattices points without power constraint over AWGN channel but this is an important
preceding step for the further work on lattice codes. Various decoders have been used
for lattices, where the sphere decoding algorithm is determined a maximum likelihood
lattice decoding approach. And the extension part of this thesis is an effort to propose
the lattice syndrome decoding that is near-optimal decoding method for small dimensions
and is potential to apply to the MIMO systems.

Because the polar codes demonstrates great performance, also have a nice nested prop-
erty that are suitable for constructing lattices. We therefore propose a lattices constructed
from polar codes called as polar lattices by Construction D with modified multi-level de-
coding for Code formula decoding, instead of subtracting the estimated binary codeword
ĉi, Construction D decoding subtracts integer vector x̂i. We propose to choose the code
rates of polar codes on each level following the capacity rule that achieve the better per-
formance. The simulation results show that polar lattices constructed by proposed code
rate selection outperforms the previous polar lattices by the Barnes-Wall (BW) rule. For
example, 2.5 dB gain is obtained at 10−3 of WER when we apply new approach instead
of choosing the BW rule for polar lattices. The analysis is conducted for polar lattices in
term of unconstrained power over AWGN channel.
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Chapter 1

Introduction

1.1 Motivation and Goals

In order to facilitate the high-level quality services, very high data rates are required
for future generations of wireless communication systems. Using cellular systems has
recently become the most common wireless method to access data or to perform voice
communication in high speed wireless communications.

5G is the fifth-generation wireless broadband technology that supports much better
data rates and capacity than the current 4G systems [1]. It is proposed to operate at 6
GHz band or millimeter waves and is set to provide peak data rates of up to 10 Gbps with
100 Mbps at cell edge. Commonly proposed cases for 5G networks are eMBB (Enhanced
Mobile Broadband), Massive machine type communication (mMTC) and URLLC (Ultra
Reliable and Low Latency Communications). While URLLC and nMTC are latency
sensitive and need high reliabilty, eMBB supports a various ranges of Internet access with
high data rates to enable huge media applications and real entertainment.

Multiple-input multiple-output (MIMO) is commonly utilized in wireless communica-
tion systems because it can enhance the channel capacity and improve end-to-end system
performance without expanding the frequency bandwidth [3]. Recently, large-scale MIMO
or massive MIMO systems which employ a huge number of antennas is considered to be
a key technology in the fifth-generation (5G) mobile networks [1].

Channel coding is a vital part of communications systems that adds patterns of re-
dundancy into the transmission sequence so as to achieve the better performance. Such
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Figure 1.1: Proposed key technologies for 5G networks.
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methods have played a key role in the development of the wireless communications sys-
tems. Turbo codes are a popular code which provided efficient channel coding in 3G and
4G cellular systems. Low Density Parity Check (LDPC) codes [11] are currently applied in
the Wi-Fi protocol family especially the standard of IEEE 802.11ac and 802.11ad and 5G
[2] because of their good performance that can achieve rates very close to channel capacity.
Nevertheless, they appear to be defective in a mathematical proof of capacity-achieving
properties. Polar codes [5] which are first proposed by Arikan are the capacity-achieving
codes for channel of the class of binary discrete memoryless channels (B-DMCs) with
reasonable complexity. Polar codes therefore are a promising candidate for high speed
communication systems such as 5G and IEEE 802.11ad and is the code class which is
mainly mentioned in this thesis.

Lattices are an efficient direction to solve the various problems in wireless communi-
cations due to the advantages of channel codes constructed using lattices: lattices have
simple structure, their ability to obtain the capacity of the channel, and equally important,
the lattices that transmitted through the medium can be decoded by different methods
called as lattice decoding. In [39], the authors firstly proposed polar lattices designed by
Barnes-Wall rule, but they did not mention how to investigate and select the code rate
that achieves best polar lattices performance.

Recently, lattice coding has received the increasingly interests for its applications to
wireless communications, from the research community. Research proposals to use lattice
codes in AWGN channel, multiple-access channel (MAC), multiple-input multiple output
(MIMO) broadcast channel, relay channel is increasing remarkably.

In this work, we only consider transmitting lattice points without power constraint over
AWGN channel. Since a lattice has infinite lattice points, it is also known as the infinite
constellation or coding without power constraint first mentioned in [33]. Understanding of
lattices is a prerequisite to continue work on lattice codes. Recall that lattices are infinite,
shaping is needed to bound the power and the lattice codes relates to the finite shaping
region with power constraint.

As an extended discussion, physical layer security issues have received attention from
researchers. Data confidentiality and security hold an increasingly important role in
wireless communications. This is thus essential for cybersecurity training to help trainers
better understand the attacks and master these security skills.

1.2 Contributions of Thesis

The contribution of this thesis can be summarized as follows

1. For polar codes

• Propose a basic scheme for 5G system using Polar codes with performance
comparisons to LDPC and Turbo codes (discussed mainly in subsection 3.6.5).
In the context that there is no code among these candidates which has signif-
icant advantages over the other for all requirements for 5G. Turbo codes are
currently used for 3G/4G networks but it reveals some clear drawbacks such
as consuming high energy per bit, selecting only narrow range of good code
rate and having a high complexity when the code length is larger. LDPC codes

2



demonstrate very good performance at large code length with acceptable com-
plexity but not actually good at low code length, meanwhile polar codes with
the proposed decoder can solve this problem efficiently. This study proposes
to use polar codes for 5G especially for small and moderate code length (32,
64, 128, 256).

• Investigate Rayleigh fading channel scenarios with proposal to improve system
performance (discussed mainly in section 3.7). The Rayleigh fading channel is
considered as the worst case for wireless transmission, we therefore investigate
polar codes reliability via several scenarios and compare to the ideal AWGN
channel and evaluate polar codes in the fading channel.

2. For polar lattices

• Introduce lattices background, propose lattices syndrome decoding method
with application to MIMO systems (that is mainly mentioned in section 4.2).
The sphere decoding algorithm is a maximum likelihood lattice decoding al-
gorithm. It searches for lattice points within a fixed radius of the received
signal but cost highest complexity. Our approach provides near-optimal lat-
tice decoding with reasonable time complexity. Furthermore, the proposed
MIMO detector can achieve better performance than the state-of-the-art lat-
tice reduction-aid decoder and reach near-optimal MIMO decoder.

• Present how to construct lattices by Construction D approach. Because polar
codes have a nice nested property that are suitable for constructing lattices.
We thus propose lattices constructed from polar codes called as polar lattices
(mainly mentioned in section 4.4). The polar codes rates selection on each
level impacts remarkably on the performance of polar lattices so that we can
analyze the various coding design schemes which helps polar lattices achieve
the best performance.

Organization of Thesis

The thesis is organized as follows

Chapter 2 provides fundamentals of the channel model, information theory and coding
theory aspects. Different channels such as AWGN and Rayleigh fading channel are also
introduced that are useful for next chapters.

Chapter 3 introduces polar codes, definition and the main ideas about the channel
polarization phenomenon which leads to the polar codes definition. Two popular decoding
methods such as successive cancellation (SC) decoding and successive cancellation list
(SCL) decoding are also explained. One of two main contributions of this thesis is in
section 3.6 and 3.7 that propose the basic scheme for 5G system using polar code.

Chapter 4 with the purpose of introducing some fundamental aspects of lattices for
the AWGN channel, how to encode and decode the lattices is described. The extension
part is an endeavor to apply the small dimensional lattices to MIMO system. The main
second contribution is the proposed lattices constructed by polar codes that is called as
polar lattices by Construction D. The detail of encoder and decoder are also presented.

Chapter 5 gives the discussion issues and following researches need to be extended in
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the future. Also, the relation to the cybersecurity training will be mentioned as an open
topic.

Chapter 6 summarizes all the important conclusions, outlines the main contributions
of this thesis.
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Chapter 2

Channel Coding Preliminaries

2.1 Information Theory and Coding Theory Aspects

Shannon’s work [4] inspired the communication researchers to work deeply and extensively
on coding theory and the past decades have seen a surge of research activities in this
area. Two central topics are proposed and solved in Shannons paper: the problem of
data compression, also known as source coding, and the problem of error correction, also
known as channel coding. This thesis is focused on the channel coding problem.

To make the transmission of message more safe and reliable over a noisy medium,
redundancy is always added to the data before transmission. At the receiver side, the
redundancy efficiently helps the decoder to reconstruct the original data sequence in the
presence of noise and interference. Adding redundancy is called channel coding. The set
of coded words generated by the channel encoder are known as channel codes. We always
call channel codes as error control codes or error correcting codes. Coding theory plays
a vital role in the modern digital technology and the good ideas from the coding theory
have a significant impact on practical applications. In term of performance improvement,
the tendency is to design codes which have large minimum Hamming distances and then
send them to modulation block so as to derive correspondingly large Euclidean distances.

The discrete memoryless channels (DMC) is considered as the simple class of channels.
Symmetric B-DMCs described in the definition below is an important class of channels
studied in information theory. B-DMCs consists of two common examples such as binary
symmetric channels (BSC) and binary erasure channels (BEC). Then, the definition of
Mutual Information and Bhattacharyya paramter is given as:

Definition 1. (B-DMC) A binary discrete memoryless channel is a B-DMC W : {0, 1} →
Y with the additional property that there exists a permutation over the outputs of the
channel π : Y → Y such that π = π − 1 and W (y|0) = W (π(y)|1).

Definition 2. (Mutual Information). The mutual information between the input and
output of a B-DMC W is defined as

I(W ) = I(X;Y ) =
∑
y∈X

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

(2.1)

Definition 3. Bhattacharyya Parameter The Bhattacharyya parameter are defined by

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1) (2.2)

5



Figure 2.1: Basic communication system model.

where the the error probability when using the channel W is upper bounded by Bhat-
tacharyya parameter.

Here, it is observed that I(W ) represents a measure of rate of W and Z(W ) denotes
a measure of reliability of W . The relation between Bhattacharayya parameter the sym-
metric capacity is expressed by: Z(W ) = 1− I(W )

• Basic notations

In order to represent the symbos in this thesis consistently, we employ various notations
shown as follows.

Denote the W as a binary input discrete memoryless channel with input alphabet X
and output alphabet Y . In this thesis, both X and Y are binary sets, i.e., X = {0, 1}.
We use capital letters to denote random variables (RVs), such as X, Y , and normal cases
to denote their realizations, such as x, y. We use W (x|y) , x ∈ X , y ∈ Y to denote the
transition probabilities of a B-DMC W.

Also, the ui is utilized to denote the row vector of information bits (u1, . . . uN). We use
BEC (ε) as abbreviation to denote the binary erasure channel with erasure probability ε,
BSC(p) to denote the binary symmetric channel with crossover probability p.

In order to achieve the Shannon limit, it is necessary to use the large block lengths in
practical schemes. That results in the increase of complexity of system. Therefore, in the
practical applications, the low space and computational complexity coding should be first
considered.

Fig. 2.1 illustrates the general model of wireless communications systems employing
the source coding and channel coding block. During the transmission process, the noise
is generally modeled with some probability distribution. For example, it is assumed to be
Gaussian distribution that is added to the transmitted messages.

2.2 Wireless Communication over Fading Channels

The bit error probability Pb denoted as BER is a good performance measure to evaluate
the systems. The BER performance system in a slow flat fading channel can be evaluated
by the following integral [8]
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Pb =

∫ ∞
0

Pb,AWGN (γ) f(γ)dγ, (2.3)

where Pb,AWGN (γ) denote the probability of error of a particular modulation scheme
under the AWGN channel at a specific signal-to-noise ratio γ = h2 Eb

N0
. While h denotes

the channel gain which is random variable, Eb
N0

is considered by ratio between bit energy

and noise power density via AWGN scheme. Deriving from random variable h, the h2 is
also the random variable that represents the instantaneous power of the fading channel,
and f(γ) denotes the probability density function of γ on the fading channel.

2.2.1 AWGN Channel

For the sake of separation in the time domain, we specify two kinds of AWGN channels
such as discrete-time (DT) and continuous-time (CT) Gaussian channel as follows:

• Discrete-time (DT) AWGN channel

Normally, the noise in a wireless channel is modeled as additive white Gaussian noise
(AWGN):

yi = xi + ni (2.4)

where the noise ni is a white Gaussian random process with mean zero and variance σ2,
ni v N(0, σ2). If a block code is employed subject to a power constraint

∑N
i=1 x

2
i (m) ≤ P,

1 ≤ m ≤M, then the channel capacity is expressed as

C =
1

2
log2

(
1 +

P

σ2

)
bits. (2.5)

• Continuous-time (CT) AWGN channel

In case of continuous-time domain, the output of waveform channel can be given by

y(t) = x(t) + w(t) (2.6)

where x(t) is the channel input and w(t) is white Gaussian noise with power spectral
density N0/2. If signaling over the CT-AWGN channel is restricted to waveforms x(t)
that are time-limited to [0, T ], band-limited to [W , W ], and power-limited to P, i.e.,∫ T

0
x2(t)dt ≤ PT , then the capacity is given by

C = W log2

(
1 +

P

N0W

)
bits/sec. (2.7)

(Signal-to-Noise Ratio and Bit/Symbol Energy): We define the received SNR as
the ratio of the received signal power Pr to the power of the noise for transmitted signal
x(t). Considering the continuous-time (CT) AWGN channel y(t) = x(t) + n(t), as the
noise n(t) has uniform power spectral density (PSD) N0/2, the total noise power in the
bandwidth 2B is N = N0/2× 2B = N0B. Hence the received SNR is determined as

SNR =
Pr
N0B

(2.8)
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Usually, we can use the signal energy per bit Eb (or another case per symbol, Es) to
express the SNR as

SNR =
Pr
N0B

=
Es

N0BTs
=

Eb
N0BTb

(2.9)

where Ts denotes the symbol duration and Tb is the bit duration (for binary modulation
Ts = Tb and Es = Eb). For pulse shaping, the Ts is considered as Ts = 1/B. In order to
simplify the notation, the SNR = Eb/N0 is usually use for binary modulation scheme.

• Error Probability for BPSK

From [8], we get the energy depended on signal amplitude in the scheme of constellation
for BPSK is given by s0 =

√
Eb and s1 = −

√
Eb. The bit error probability can be

calculated as

Pb,BPSK,AWGN = Q

(
2
√
Eb√

2N0

)
= Q

(√
2Eb
N0

)
(2.10)

where Q(.) is the error probability function described as

Q(x) =
1√
2π

∫ ∞
x

exp

(
−y

2

2

)
dy.

The equation 2.10 can be rewritten by

Pb,BPSK,AWGN =
1

2
erfc

(√
Eb
N0

)
(2.11)

where the erfc is the complementary error function that has relation to the Q function as

Q(x) =
1

2
erfc

(
x√
2

)
. (2.12)

Figure 2.2 describes the bit error probability of scheme with uncoded BPSK modulation
over AWGN channel provided by equation 2.10. We can realize that there is a large gap
to Shannon limit to obtain the target BER = 10−5. As a result, it shows the disadvantage
of transmission without the coding channel. With the presence of channel coding, it helps
to reduce the gap coding gain at the same target BER. This is actually necessary for the
practical wireless communication due to the limitation of bandwidth.

2.2.2 Rayleigh Fading Channels

In the Rayleigh fading, the channel model is assumed that the channel which will vary
randomly follows the Rayleigh distribution. Where the received signal amplitude with
the summation of two uncorrelated Gaussian randome variables is given as

p(r) =
r

σ2
e−r

2/2σ2

, r ≥ 0. (2.13)

• Outage Probability
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The outage probability can be defined as

Pout = p(γs < γ0) =

∫ γ0

0

pγs(γ)dγ (2.14)

where γ0 demonstrates the minimum SNR required for reasonable performance. The
outage probability can be achieved as

Pout =

∫ γ0

0

1

γ̄s
e−γs/γ̄sdγs = 1− e−γs/γ̄s (2.15)

• Average Error Probability

The average error probability is calculated by integrating the error probability in AWGN
over the fading scheme as

P̄s =

∫ ∞
0

Ps(γ)pγs(γ)dγ, (2.16)

where Ps(γ) is the probability of symbol error in AWGN with SNR γ. Continuing some fur-
ther transformation steps [8],we derive the average error probability for BPSK in Rayleigh
fading as follows

P̄b ≈
1

4γ̄b
(2.17)
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Chapter 3

Polar Codes

This chapter introduces polar codes, definition and the main ideas about the channel
polarization phenomenon which leads to the polar codes definition. Two popular decoding
methods such as successive cancellation (SC) decoding and successive cancellation list
(SCL) decoding are also explained. Latter part is the proposed scheme for 5G using the
polar codes with small and moderate code lengths.

3.1 Channel Transformation

3.1.1 Basic Channel Transformation (Code Length N =2)

In the conventional transmission scheme, the basis for code length N = 2 is shown as
figure 3.1. The chain rule on the joint mutual information between input and output is
given as

I(U2
1 ;Y 2

1 ) = I(U1;Y 2
1 ) + I(U2;Y 2

1 |U1)

= I(U1;Y1) + I(U2;Y2)

= I(W ) + I(W ) = 2I(W ) (3.1)

Therefore, it can be seen that the conditional mutual information I(UN
1 |Y N

1 ) is a sum-
mation of the the mutual information of each channel W and each bit ui is transmitted
over the channel .

Now, we consider another scheme called the polarized channel transform that is different
from the traditional transmission mentioned above. In this scheme, the input bits UN

1

Figure 3.1: The conventional transmission scheme, length N=2
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which contain the information are firstly encoded into XN
1 and then are transmitted via

independent channels. Let W : X → Y denote a B-DMC with input alphabet X = {0, 1}.
X2

1 is the input to two independent uses of W and Y 2
1 is the output. There is a linear

transform between X2
1 and U2

1 : X2
1 = U2

1G2, G2 =

[
1 0
1 1

]
. The first step combines two

independent copies of W and obtains a new channel W2 : X 2 → Y2.

The transition probabilities describing the channel W2 between U2
1 and Y 2

1 is defined
as

W2(y2
1|x2

1) =
2∏
i=1

W (yi|xi) = W (y1|u1 ⊕ u2)W (y2|u2). (3.2)

The process of generating a vector channel WN : XN → YN is obtained by combining
the copies of W is considered channel combining [5]. Apply the chain rule of mutual
information, we derive the I(U2

1 ;Y 2
1 ) as

I(U2
1 ;Y 2

1 ) = I(U1;Y 2
1 ) + I(U2;Y 2

1 |U1) = I(U1;Y 2
1 ) + I(U2;Y 2

1 , U1). (3.3)

In [5], the new terminology which corresponds to the mutual information I(Ui;Y
N

1 , U i
1)

as “subchannel” was first proposed. From this idea, the equation 3.2 can be evolved
up to two new “subchannels” W

(1)
2 : X → Y and W

(2)
2 : X → X × Y with transition

probabilities:

W
(1)
2

(
y2

1|u2
1

)
=

1

2

∑
u2

W2

(
y2

1|u2
1

)
=

1

2

∑
u2

W (y1|u1 ⊕ u2)W (y2|u2) (3.4)

W
(2)
2

(
y2

1, u1|u2

)
=

1

2
W (y1|u1 ⊕ u2)W (y2|u2) (3.5)

Therefore, the term I(U1;Y 2
1 ) is interpreted as the mutual information of subchannel

W
(1)
2 which let U1 and Y 2

1 be the input and output, considers U2 as noise. Similarly, we

can interpret I(U2;Y 2
1 , U1) as the mutual information of subchannel W

(2)
2 with input U2

and output Y 2
1 . Here, U1 has been decoded and is known at the decoder. This phase

of splitting the vector channel W2 to series of subchannels W
(i)
2 , i = 1, 2 is called channel

splitting [5].

Arikan [5] proved that there is a transformation of the rate and reliability of the new

subchannels W
(1)
2 and W

(2)
2 obtained from the basic transform in as shown in figure 3.2.

3.1.2 Recursive Channel Transformation (Code Length of any
power of 2)

The previous subsection described the process of creating the 2 new channels W
(1)
2 and

W
(2)
2 . We continue to study how to generalize the number of subchannels {W (i)

N , 1 ≤ i ≤
N} for N that is any power of 2, N = 2n.

The first level (n = 1) of the recursion combines two independent copies of W1 as shown
in Fig. 3.2 and obtains the channel W2 : X 2 → Y2 with the transition probabilities

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2) (3.6)

12



Figure 3.2: The channel W2.

Fig. 3.3 illustrates the next level of recursion where two independent copies of W2 are
combined to create the channel W4 : X4 → Y4 with transition probabilities W4(y4

1|u4
1) =

W2(y2
1|u1 ⊕ u2, u3 ⊕ u4)W2(y4

3|u2, u4).

In Fig. 3.3, R4 is the permutation operation that maps an input (s1, s2, s3, s4) to v4
1 =

(s1, s3, s2, s4). The mapping u4
1 → x4

1 from the input of W4 to the input of W4 can be

written as x4
1 = u4

1G4 with G4 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

. Thus, we have the relation W4(y4
1|u4

1) =

W4(y4
1|u4

1G4) between the transition probabilities of W4 and those of W 4

In order to generalize this form, Fig. 3.4 show the general form of recursion where
two independent copies of WN/2 are combined to produce the channel WN . The input
vector uN1 to WN is first transformed into sN1 so that s2i1 = u2i−1 ⊕ u2i and s2i = u2i

for 1 ≤ i ≤ N/2. In this model, RN operates as permutation, also known as the reverse
shuffle operation, and acts on its input sN1 to form vN1 = (s1, s3, . . . , sN−1, s2, s4, ..., sN),
which becomes the input to the two copies of WN/2 as shown in the figure.

The relationship of xN1 and uN1 is also demonstrated by xN1 = uN1 GN . We call GN the
generator matrix of size N . Then, the transition probabilities of the two channels WN

and WN are given by
WN(yN1 |uN1 ) = WN(yN1 |uN1 GN) (3.7)

for all yN1 ∈ YN , uN1 ∈ XN . The next part will show that GN equals BNF
⊕n for any

N = 2n, n ≥ 0, where BN is a permutation matrix known as bit-reversal and F =

[
1 0
1 1

]
.

Lemma 1. (Rate and Reliability of W
(i)
N ) Proof in [5]. Let W be a B-DMC and

W
(i)
N is defined before. For any N = 2n, n ≥ 0, 1 ≤ i ≤ N,

I
(
W

(2i−1)
2N

)
≤ I

(
W

(i)
N

)
≤ I

(
W

(2i)
2N

)
I
(
W

(2i)
2N

)
+ I

(
W

(2i)
2N

)
= 2I

(
W

(i)
N

)
(3.8)
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Figure 3.3: The channel W4 and its relation to W2 and W .

and

Z
(
W

(2i−1)
2N

)
≤ 2Z

(
W

(i)
N

)
− Z

(
W

(i)
N

)2

Z
(
W

(2i)
2N

)
= Z

(
W

(i)
N

)2

Z
(
W

(2i)
2N

)
+ Z

(
W

(2i)
2N

)
≤ 2Z

(
W

(i)
N

)
(3.9)

Furthermore, similar to N = 2, there is a special case when W is a BEC(ε). For BEC,

the Bhattacharyya parameter of each subchannel W
(i)
N is equal to the erasure probability

of W
(i)
N and the formula of calculating Z(W

(i)
N ) is

Z
(
W

(2i−1)
N

)
= 2Z

(
W

(i)
N/2

)
− Z

(
W

(i)
N/2

)2

Z
(
W

(2i)
N

)
= Z

(
W

(i)
N/2

)2

(3.10)

Example 3.1 Given the BEC(0.4) channel for N = 8. Consider the value of Bhat-
tacharyya value and channel transform under BEC channel with erasure probability
ε = 0.4 shown in figure 3.5

There are three stages of the recursive transformation of Z(W
(i)
N ). At each stage,

the value of the Bhattacharyya parameter is computed following the rule in equation

3.10.By numerical expression at stage 1, the Z
(
W

(1)
2

)
= 2 × 0.4 − 0.42 = 0.64 and

Z
(
W

(2)
2

)
= 0.42 = 0.16. Following stages are performed with the similar rule until the

stage 3.
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Figure 3.4: Recursive construction of WN from two copies of WN/2.

Figure 3.5: The evolution of Bhattacharyya parameter of code length N = 8.
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3.2 Channel Polarization

Channel polarization is a transformation by which one manufactures out of N independent
copies of a given B-DMC W a second set of N channels {W (i)

N : 1 ≤ i ≤ N} such that,

as N becomes large, the symmetric capacity terms {I(W
(i))
N } tend towards 0 or 1 for all

but a vanishing fraction of indices i. Channel polarization contains two operations, the
channel combination phase and the channel splitting phase.

Combination Two independent copies of WN
2

are combined to produce the channel WN ,

which is represented by
WN : XN → Y N ,

exemplified on Figure 3.7, where N can be any power of two, N = 2n, n ≥ 0. The
recursion begins at the 0-th level (n = 0) with only one copy of W and we set
W1 = W .

Splitting WN is split back into a set of N binary-input coordinate channels, represented
by

W
(i)
N : XN → Y N ×X i−1, 1 ≤ i ≤ N, (3.11)

defined by the transition probabilities

W
(i)
N (yN1 , u

i−1
1 |ui) =

∑
uNi+1∈XN−i

1

2N−1
WN(yN1 |uN1 ) (3.12)

where (yN1 , u
i−1
1 )denotes the output of W

(i)
N and ui is input,

WN

(
yN1 |uN1

)
=

N∏
i=1

W (yi|xi),

and xN1 = uN1 GN .

It can be realized that, when the value of N reaches large enough, the channels are
then polarized and so the symmetric capacity I(W ) which is the highest rate at reliable
communication is close to either 0 or 1.

Figure 3.6 also describes the change of symmetric capacity when the code length in-
creases significantly. The proportion of subchannels with capacity 0 or 1 are dominant
and the histograms are also illustrate these subchannels. The BEC channel capacity [7] is
1−Pe. In this case, the erasure probability is set as 0.4 and when N reaches 220 = 1048576,
the proportion of subchannels with capacity is very close to the capacity 0.6. We can eas-
ily realize that these histograms indicate the trend that the they approach the channel
capacity in theory when N is infinity. Therefore, the polarization phenomenon is also
explained visually.

Definition 4. Frozen bits are the indices for which symmetric capacity I(W
(i)
N ) are closer

to 0. Frozen bits are the set of N −K elements.

In general, by applying the channel combining and channel splitting operation, N iden-
tical channel W turn into the set of W

(i)
N with different properties. The phenomenon

definition of polarization is given as below.

Mastering the polarization effect is the key step to construct the polar codes that is
mentioned in the following section.
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Figure 3.6: Basic model of construction and transmission of polar codes.

GN
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w

U2

UN 

U1

X1

XN 

Y1

YN

Figure 3.7: Basic model of construction and transmission of polar codes.

3.3 Definition of Polar Codes

The idea of polar codes is based on a method, called channel polarization. Channel po-
larization refers to the phenomenon that after implementing a linear transform to the
channel inputs, the effective channels seen by some of the bits are better than the original
channel W and others get worse. In other words, these channels are polarized. Interest-
ingly, as the code length N increases, these effective channels tend towards either a perfect
channel (with capacity 1) or a completely noisy one (with capacity 0). If N approaches
infinity, the fraction of perfect channels approaches the channel capacity of W.

Definition 5. (Polar Codes) [5]. For a given B-DMC, W, a code P (N,K,A, uAc) is a
polar code for W if the selection of the elements of information set A follows a speci-
fied rule. A with K elements is chosen as a subset of {1, 2, ..., N} such that Z(X

(i)
N ) ≤

Z(X
(j)
N ), i ∈ A, j ∈ Ac.
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Figure 3.8: Polar codes with code length 8, code rate 4/8 under the BEC (0.5). The
Bhattacharyya parameters are computed. The frozen bits are denoted by the “0s”

Example 3.2 For a BEC(0.5), the polar code with code length N = 8, code rate 4/8
is designed as shown in Figure 3.8. After calculating the Bhattacharyya parameter, we
choose the indices with the small Z(W

(i)
N ) as the elements of information set. Therefore,

information set A = {4, 6, 7, 8}. Other positions with larger Z(W
(i)
N ) are used to put the

auxiliary bits. The transform block can be considered as the matrix GN with the output
x8
i = u8

iG8.

3.4 Polar Encoding

For a Polar(N,K,A) polar code or simplified denote P (N,K), in this section we present
how to transform the information vector u of length K into vector x of length N . That
is, the code rate will be R = K/N .

To construct a polar encoder, K of information bits are selected first and then put into
these inputs, while the remaining N −K inputs are frozen. The frozen bits are normally
set to 0, and it is a fact both encoder and the decoder may have know the value of frozen
bits in advance. An (8,4) polar encoder with frozen bits u1, u2, u3, and u5 is demonstrated
by Fig. 3.8

shows an (8; 4) polar encoder in which the frozen bits are u1, u2, u3, and u5. The rest
of bits sequence consisting of {4; 6; 7; 8} is denoted as A and is called the information set.

• Choosing A: We know that the set A should be carefully selected to get the good
codes. The method for choosing A is that we imagine decoding all N inputs of GN

with no frozen bits, and determine the probability of decoding error for each input.
These probabilities depend on the channel W . We optimize the polar code for W
by choosing A as the set of inputs with the lowest error probabilities.

18



3.4.1 Encoding with F⊗

The generator matrix of GN is presented in the previous section. We should make the
detail expression of process of creating the generator matrix GP for polar codes given by
Plotkin construction:

GP
N = BNF

⊗n, (3.13)

where GP
N is used to specify the block length N , F⊗n is the Plotkin matrix, F = [ 1 0

1 1 ],
N = 2n, ⊗ is the Kronecker product and B is called the permutation matrix that has
relation with the permutation matrix:

BN = RN(I2 ⊗BN
2

) (3.14)

where I2 is the 2 × 2 identity matrix and RN is the reverse shuffle permutation matrix
which was mentioned in Fig. 3.4. GP

N can be expanded as

GP
N = RN(F ⊗ IN

2
) · (I2 ⊗GP

N
2

), (3.15)

where the I is the identity matrix. The detail of mathematical proof is given in [5]

3.5 Relation to the Reed-Muller Codes

At the first glance, the polar codes seems to be somewhat similar to Reed-Muller (RM)
codes. This part shows the relations as well as the differences between two codes. Several
numerical results have been given in [6] to shed light the performance comparison.

Let GN(N = 2n) denote the generator matrix of RM(N, K ) where N and K denote
the block lengths and information length respectively.

The RM codes have several construction methods. One of those methods is making
use of generator matrix that is quite similar to that of polar codes. The generator matrix
is based on a submatrix of F⊗n that is obtained by the choosing the rows of F⊗n with
Hamming weights (number of 1s in that row) that are as large as possible.

In contrast, the generator matrix of polar codes Polar(N,K ) is selected according to
channel polarization using the Bhattacharyya parameter or symmetric capacity. The
difference in the selection of rows is the main reason why polar codes perform better than
Reed-Muller codes.

For example, we construct the RM (8,5) code from the

F⊗3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


, (3.16)

and select 5 of its heaviest rows to obtain
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GRM(8, 5) =


1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 . (3.17)

Meanwhile, the polar codes generation from the Bhattacharyya parmeter in 3.10 pro-
duces the values z8 = (0.996, 0.684, 0.809, 0.121, 0.879, 0.191, 0.316, 0.004), which gives
π8 = (8, 4, 6, 7, 2, 3, 5, 1), and the generator matrix is uniquely determined as

GP (8, 5) =


1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 . (3.18)

3.6 Polar Decoding

Decoding part is used to recover the ruined received signal to the original codeword. For
polar codes, there exist various techniques to realize the decoding process. The first de-
coding method is successive cancellation (SC) decoding [5]. This approach is believed to
get the symmetric capacity for polar codes with both encoding and decoding complexities
O(N logN), however, for the moderate code length, the error performance of polar code
is under the expectation which is lower than emerging channel codes like turbo codes or
LDPC codes.The successive cancellation list (SCL) decoding which is modified from SC
decoding is proposed to approach the (Maximum Likelihood) ML decoding performance
with reasonable complexity [13]. Moreover, various decoding schemes such as belief propa-
gation [14], improved stack successive cancellation decoder [15], [16], sequential successive
cancellation decoder [17], [25] have also been proposed. Especially, the decoding aided
by a cyclic redundancy check (CRC) for the SCL decoder named as CRC-aided SCL de-
coding offers comparable performance or even superior to low-density parity-check codes
(LDPC) and Turbo codes [13].

This section concentrates on describing the two popular decoding schemes of successive
cancellation (SC) and successive cancellation list decoding (SCL).

3.6.1 Successive Cancellation Decoding

As can be seen by its name, a SC decoder means the bits are decoded in order from u1 to
uN . As stated before, the mutual information I(ui; y

N
1 , u

i−1
1 ) or Bhattacharyya parameter

Z(ui; y
N
1 , u

i−1
1 ) is essential to know the channel performance, then the decoder can decode

the ui when anticipating the ui−1
1 . In other word, the decoder recognizes the frozen bits

values {uj, j ∈ Ac} in advance.

Consider a polar code with the parameters (N,K,A, uAc). From uN1 and information
of yN1 , A and uAc , an estimated ûN1 is generated by the decoder. Where the likelihood
ratio (LR) is given by
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L
(i)
N

(
yN1 , u

i−1
1

)
=
W

(i)
N

(
yN1 , u

i1
1 |ui = 0

)
W

(i)
N (yN1 , u

i1
1 |ui = 1)

(3.19)

Commonly, the 0s is used to represent frozen bits. Then a SC decoder take the following
steps to decode the source bits. The decoding process is expressed below with i from 1
to N :

• if i ∈ Ac, ûi = ui.

• if i ∈ A, calculate the LR L
(i)
N (yN1 , û

i−1) and make the decision as

ûi =

{
0 if L

(i)
N (yN1 , û

i−1) ≥ 1
1 if otherwise

.

In [12], LLRs values can be initialized with

L
(i)
N (y, ûi−1) = −2

√
2Ec
N0

y (3.20)

where Ec = K
N
Eb and the design-SNR is Ec/N0 = K

N
Eb/N0.

SC Decoding complexity: Arikan [5] also stated that traditional SC decoding, the
LRs of frozen bits do not need to be calculated. It is straightforward to observe that
the total number of LRs that need to be calculated is N(1 + logN). Therefore, the SC
decoding complexity should be O(N logN).

3.6.2 Successive Cancellation List Decoding

As mentioned in the beginning of this chapter, the fundamental idea of the SCL decoder
is that instead of retaining only one survival path in the SC decoder, the SCL decoder
keeps L survival paths with higher or more probable path metrics. Lastly, the path with
the best path metric is chosen as the final decoding result. List decoding has increased
complexity but efficiently combats error propagation in the simple SC decoding and thus
leads to superior error-rate performance.

The SCL decoder performs splitting each decoding path into two paths including in
both ûi = 0 and ûi = 1 (if ui is an unfrozen bit). In other words, the SCL decoder defines
specific number of L best paths and it will eliminate the other ones with least probable
paths. This is essential to avoid the previous hard decision errors. Finally, the decoder
selects the best metric path from the list as the estimated codeword.

We assume to send a sequence uN−1
0 and then receive a sequence yN−1

0 correspondingly,
the log-likelihood ratio of the estimation ûi of information bits ui can be defined as [19]

L
(i)
N

(
yN−1

0 , ui−1
0

) ∆
= ln

W
(i)
N

(
yN−1

0 , ui−1
0 |0

)
W

(i)
N

(
yN−1

0 , ui−1
0 |1

) (3.21)

whereW
(i)
N

(
yN−1

0 , ui−1
0 |ui

)
is the transition probability of the i-th subchannel. Therefore

ûi = δ(L
(i)
N ), where δ(x) = 1

2
(1− sign(x)).
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Figure 3.9: Block diagram of L-size SCL decoder.

For each path l ∈ [0 : L− 1] in decoding step i, the SCL decoder keeps track of L most
likely paths with metrics of

PM i
l

∆
= − ln

(
P
[
U i = ûi0[l]|Y = yN−1

0

])
=

i∑
j=0

ln

(
1 + e

−
(

1−2ûi[l]·L
(j)
N [l]

))
= PM

(i−1)
l + ln

(
1 + e

−
(

1−2ûi[l]·L
(j)
N [l]

))
(3.22)

the equation 3.22 can be well-approximated in [20] as

PM i
l ≈

PM
i
l if ûi[l] = δ

(
L

(i)
N [l]

)
,

PM i
l +

∣∣∣L(i)
N [l]

∣∣∣ otherwise.
(3.23)

During decoding ûi , the surviving paths ûi−1
0 [l], l ∈ [0 : L−1], are splitted into 2L paths

with decoding ûi as 0 and 1, respectively. Afterward, the selected codewords calculated
by 3.22 or 3.23 are sorted. The selected codeword with the best metric is then return at
the last stage.

In order to better illustrate the SCL decoder, figure 3.9 is given to describe the general
diagram of the SCL decoder. From viewpoint of each element (N,K) SC decoder, an
SCL decoder with L-size (N,K) can be considered as the combination of L duplicates of
(N,K) SC element decoders.

In [18], the author summarized the shortened version of SCL decoder as below. Let S(i)

denote all the paths in i-th bit, L denotes the max number of paths. The SCL decoding
algorithm is as:

1. Initialization: Let S(0)= (Φ) , P {Φ}=1, (Φ denotes empty set).

2. ûi estimation
(a) For i = 1, 2, . . . , N
With all path set S(i−1) , for ui = 0 and ui = 1 , let
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S(i) = {ui1|ui−1
1 ∈ S(i−1), ûi ∈ {0, 1}}

then compute path probability

P
(
ui1
)

= P
(
ui−1

1

)
P
(
ui1 = b|ui−1

1 = ûi−1
1

)
where b ∈ {0, 1}

P
(
ui1 = b|ûi−1

1 = ûi−1
1

) ∆
=


W i
N(yN1 ,u

i−1
i |ûi=b)∑

b′∈{0,1}W
i
N(yN1 ,û

i−1
i |ûi=b′)

if i ∈ Ac

1b=0 if i ∈ A

(b) If
∣∣S(i)

∣∣ ≤ L, then skip this step. Else, save the L most probability paths from
2L paths and drop the remaining.

(c) Judge path: when we accomplish all bits estimation, we select the max likelihood
rate path from L paths.

ûN1 = argν̂N1 ∈S(N) max
N∏
i=1

W
(
yi|xi =

(
νN1 ·GN

))
For a direct implementation, the time of O(LN2) and space of O(LN logN) is taken

by SCL decoder. In [13], authors proposed to use the space-efficient structure and the
memory sharing that help to decrease the complexity to O(LN logN) and O(LN) respec-
tively.

3.6.3 CRC-Aided Successive Cancellation List Decoding

Cyclic redundancy check (CRC) is the most commonly error detection technique in the
area of information and coding theory. Since the CRCs are flexible to apply in hardware,
simple to analyze in mathematical issue and very useful for detecting errors interfered by
the channel noises. CRC codes therefore are the good support for improving performance
of polar codes.

Revisit the construction of polar codes with k free unfrozen bits. The channel is able to
deploy the concatenation scheme instead it sets all the information bit for transmission.

In this case, CRC code operates as an outer code and then the polar code is used as an
inner code. Numerous studies has been proposed to use the effectively concatenating CRC
with polar codes that improve the decoding performance called as CRC-Aided Successive
Cancellation List Decoding [13],[15].

Considering an additional scheme for polar encoding as in figure 3.10, the CRC sequence
of length m bits is added to the information sequence. This CRC code is rate k/(k +m)
and thus the effective rate of the polar code is K/N = (k+m)/N but only k bits represent
information. When we increase m to improve error correction performance, the code rate
is also increased and may impacts on the decoding performance of of polar codes. This
effect is more obvious when the code length is small or moderate. Hence, we should take
this into consideration in using CRC with polar codes.

23



We denote generator polynomial as g(x) = gmx
m + · · ·+ g1x+ g0, and g = [gm; . . . ; g0]

is the coefficient row vector of generator polynomial of CRC code g(x). Here, the k + m
bits are transmitted through k +m subchannels.

When the L paths are determined at the final stage, the path with the best metric is
selected as the most reliable path and then is tested by the CRC sequence. If the path
satisfies the CRC condition, the path is chosen. Otherwise, the CRC continues to test
with the second highest likelihood path and this process is implemented iteratively until
one path passes the CRC checker.

3.6.4 Theoretical Bound for Error Performance of Polar Codes

For polar codes, given any fixed 0 < β < 1/2, and any code rate R < I(W ). The block
error probability Pe(A) is bounded by

Pe(A) ≤ 2−N
β

(3.24)

where the equation 3.24 indicates that polar codes achieve Shannon capacity of W asymp-
totically as N tends to infinity. In the literature on polar coding, the (upper) limit value
on β is usually called the error exponent of the coding scheme

Lemma 2. Bound on Block Error Probability [5]. For any given B−DMC,W, the bound
on the average block error probability Pe(A) of polar codes with parameter (N,K,A, uAc)
is given by

max
i∈A

1

2

(
1−

√
(1− Z

(
W

(i)
N

)2
)
≤ Pe(A) ≤

∑
i∈(A)

Z
(
W

(i)
N

)2

(3.25)

Because Z
(
W

(i)
N

)
upper bounds the error probability of decoding bit ui, then the block

error probability is bounded by sum of Z
(
W

(i)
N

)
of all information bits. The right side of

expression 3.25 holds. As mentioned by [23] that the error probability Pe of each decoding
bit ui is lower bounded by Pe ≥ 1

2

(
1−
√

1− Z2
)
, where Z denotes the Bhattacharyya

parameter of W on which ui is transmitted.

3.6.5 Designs of Proposed 5G Polar Codes with Aid from CRC

The basic framework of polar codes encoding and decoding for 5G is shown in Fig. 3.10.
At the transmitter side, the polar codes is used as channel coding scheme. Similar to the
turbo code module, function blocks like segmentation of Transmission Block (TB) into
multiple Code Block (CBs) are also employed when using polar codes at transmitter. At
the receiver, the system implements CB blocks and concatenating CB blocks into one TB
block. The SCL decoding scheme is proposed to decode each CB block and the specific
list size L = 32, with the aid of 16-bit CRC which is described in the above part.
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Figure 3.10: The framework of Polar codes in the 5G trial system [27]. (k = info. block
length, m = crc bits length, K = k +m, N = encoded block length after rate-matching)
.

Figure 3.11: Basic schematic of Polar SC decoder via the AWGN channel.
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Figure 3.12: Bit error rate of Polar Successive Cancellation Decoder with different code
length.
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3.7 Performance Evaluation of Polar Codes

3.7.1 Polar Codes in AWGN Channel

Fig. 3.11 describes the basic schematic for polar encoder and decoder via the AWGN
channel. First, bit sequence u is created randomly of length K. The polar encoder block
encodes K bits u into N bits x and then they are modulated by the BPSK method. In
general, we assume the channel is an additive White Gaussian Noise Channel (AWGN).
The receiver side performs decoding the N received noisy message y into K estimated
codeword û. The error is recognized when any û 6= u.

Table 3.1 shows the general complexity comparison between these well-known channel
codes including turbo, LDPC and polar codes, where N,R,M denotes the code length,
code rate and number of parity bits, respectively. Furthermore, m is the memory length
of component code of turbo code, dv is the average variable degree of LDPC parity check
matrix and dc is the average check degree of parity check matrix also. The parameter
Imax is the maximum number of iterations. As a result, table 3.2 represents the numerical
complexity of these channel codes schemes for the specific numbers of code rates. 8
iterations are used for the turbo decoder and 50 iterations for LDPC decoder. The list
size for polar codes is 8, it is about 10 times the complexity of SC decoder.

Fig. 3.12 illustrates the BER performance of polar codes under different code lengths
for the AWGN channels. Here, SC decoding is applied for polar codes that is graphically
explained by the Fig. 3.11. The polar codes with code length of 2n = 29, 210, 211, 212 with
the code rate R = 0.5 are investigated. Increasing the code length of polar codes leads to
performance improvement. However, the gap to the Shannon limit is still considerable.

The performance of polar SC decoding indicates that this approach can not be compa-
rable to LDPC or turbo code. The Fig. 3.13 shows the simulation result of the proposed
candidate for 5G scheme that uses the SCL decoding (L =32) and CRC precoding. The re-
sults were obtained by Monte-Carlo simulation 500000 trials via JAIST parallel computer
system. The comparison shows that the proposed candidate achieves better performance
to the LDPC codes in the fair condition.

Fig. 3.14 investigates the comparison performance of polar codes and turbo codes with
small block length of 128 and various code rates such as 1/3, 1/2 and 2/3. Polar codes are
decoded by the SCL decoder with list size = 8 and CRC size is 8 bits. This result shows
that polar codes for short length outperforms the turbo codes in all rates. However,
the significant advantages are disappeared when the block length increases to 1024 as
displayed by Fig. 3.15. The polar decoder N = 1024 with list size of 32 and CRC of 16
bits only gets the comparable performance to CTC WiMax turbo codes length of 960.
Only when increasing the list size to 1024 does polar SC list decoder obtain the significant
performance gain in term of block error rate (BLER) compared to turbo code. But the
trade-off paid is that the decoder complexity is much higher than other decoders.

To sum up, from these above results. Although turbo codes are being used in vari-
ous applications including 3G/4G, LTE standards, it may not satisfy the performance
requirement for eMBB for all code rates and block lengths because the complexity is too
high for higher data rates. In addition, an error floor appears in turbo code BER. Beside
from that, the modern LDPC decoders use soft decision algorithms which help to improve
the decoder gain, reduce the complexity and latency. We can observe that LDPC codes
perform very well at longer code length and a wide range of code rates with reasonable
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Figure 3.13: Block error rate comparison of proposed system using Polar codes, rate
1/2 with CRC aided and LDPC codes, rate 1/2 , where the LDPC simulation result is
extracted from [26].

Table 3.1: Complexity comparison of coding schemes [21]
Channel Code Addition Multiplications
Turbo
(Max-log-MAP)

Imax · 16 ·RN2m 2(Imax − 1)K

LDPC
(min-sum)

Imax(2Ndv + 2M) Imax(N −K)(2dc + 3)

LDPC
(Sum-Product)

Imax(2Ndv +M(2dc − 1)) -

Polar (SC List) LN · logN + (N −M)L log(2L) LN logN
Polar SC - N logN

complexity. Due to their excellent ability to achieve theoretical limits of channel capac-
ity, LDPC codes are utilized in many advanced communication systems such as DVB-S2,
802.11n or proposed 802.11ad, etc. The polar codes have excellent performance at small
and moderate code lengths compared to all other codes. The state-of-the-art polar de-
coder for the large code length only gets performance comparable to LDPC codes and
has the higher complexity with big list size. Therefore, we strongly propose to apply the
polar codes for 5G in the small and moderate code length, that is the consensus with the
content in 3GPP radio access network (RAN) #87 meeting in November, 2016 [28]. Fur-
thermore, polar+CRC codes with list decoding provides excellent performance at large
code length with the large list size. The cost is very high complexity, but with the adap-
tive list decoding [19], [24] that allows the polar decoder adjust the list size according to
its computational power, the polar codes are expected to apply in a wide range of code
lengths, code rates with the reasonable decoding complexity.
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Table 3.2: Numerical complexity of decoding schemes [22]
Block
length

Coding
Scheme

Complexity (×103) Percentage
Rate 1/3 Rate 1/2 Rate 2/3 Rate 1/3 Rate 1/2 Rate 2/3

128

Turbo 65.5 98.3 131.1 100 % 100 % 100 %
LDPC 66.0 57.2 48.5 100.7 % 58 % 37 %
Polar SC 1.0 1.0 1.0 1.5 % 1.0 % 0.8 %
Polar SCL 11.0 11.0 11.0 16.8 % 11.2 % 8.4 %

1024

Turbo 1048.6 1572.9 2097.9 100 % 100 % 100 %
LDPC 1056 916 776 100.7 % 58.2 % 37.0 %
Polar SC 24.6 24.6 24.6 2.3 % 1.6 % 1.2 %
Polar SCL 245.5 245.5 245.5 23.4 % 15.6 % 11.7 %
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Figure 3.16: Bit error rate comparison of Polar codes via the Rayleigh fading and AWGN
channel.

3.7.2 Polar Codes over Rayleigh Fading Channels

We consider the fading channel model, where the output is given by

yi = hisi + ni, i = 1, . . . N, (3.26)

where N is the frame size. In the i-th channel, si = ±1 is the channel input after BPSK
modulation si = (−1)xi , yi is the channel output and ni is the zero mean independent
Gaussian noise ni ∼ N (0, σ2) and hi is the channel gain. In this case, we assume hi follows
the Rayleigh distribution hi ∼ hi

σ2
h
e−h

2
i /2σ

2
h , h ≥ 0, where σh is the scale parameter For

simplicity, we assume that the channel state information (CSI) is known at the receiver.

In the block fading channel model, a transmission frame of N symbols is affected by
1 ≤ B ≤ N independent fading realizations, leading to a block of n = N/B symbols
which are effected by the same fading realization. Changing the value of B makes the
different types of fading. Example, for B =1, we consider as the fast fading and the slow
fading for B = N .
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Figure 3.17: Block error rate of CRC-aided (CRC size = 10 bits and 16 bits) SCL polar
decoder via the Rayleigh fading.

With the received signal scaled by the channel gain, in [29], the log-likelihood ratios of
received symbols are given as LR(y, h) = exp

(
2yh
σ2

)
.

Fig. 3.16 shows the performance of polar codes via the Rayleigh fading scenario in
comparison to AWGN channel in term of bit error rate. In the Rayleigh scheme, we
choose the scale parameter σh = 1/

√
2 for the fading coefficient. We easily observe that

about 2.7 dB is lost due to the negative effect of block fading condition to get the BER
of 10−3 compared to AWGN case.

Fig. 3.17 expresses the block error rate of proposed method for the polar codes length
1024 bits at rate 0.5. The SCL decoding was implemented with aid from CRC. As
mentioned at previous section, when the code length is small or moderate, if m large
CRC bits sequence are padded, the effective rate of polar code is then K/N = (k+m)/N .
This figure also indicates that adding the suitable CRC bits like 10 can achieve better
performance than 16 bits CRC. Thanks to this improvement, 2.5 dB gain can be achieved
in case of Rayleigh fading channel.
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Chapter 4

Lattices and Polar Lattices

This chapter presents about lattices that differ from the lattice codes, the application of
lattice syndrome decoding to MIMO system and then, a proposed polar lattices trans-
formed from polar codes by Construction D will be presented.

Lattice codes are applied in many communication scenarios with continuous-output
channels, such as the AWGN channel. The very important thing is to separate the
difference between lattices and lattice codes. In practice, only a finite set of points of a
lattice Λ can be used as a signal constellation in a communication system. Since a lattice
has infinite lattice points, a lattice code is generated by applying the power constraint to
an infinite lattice. In term of applied lattice codes, we have to consider both the (packing
problem, coding gain) and (covering problem, shaping gain).

4.1 Lattices Definition

Definition An n-dimensional lattice Λ is an discrete additive subgroup of Rn.

Property: a lattice Λ is a subset of Rn with the property that Λ forms a group under
addition. That is , if x, y ∈ Λ then x+ y ∈ Λ as well. As a result, Λ is an infinite
collection of points. Let take the example from the 2-dimentional lattices which are
helpful for illustrating the concepts.

A lattice can be described by n basis vectors, g1,g2, ...,gn, where gi is a column vector
representing a point in Rn. Then a point x is the linear combinations of the gi :

x = g1b1 + g2b2 + ...+ gnbn =
b∑
a

gibi (4.1)

where the bi are integers. The lattice point x can be expressed using a generator x = Gb
and Gi is the n-by-n matrix that consists of the n column vectors gi (for convenience, we
represent the vectors as the columns), | | |

g1 g2 . . . gn
| | |

 (4.2)

Check matrix: We already know that a lattice is written as x = Gb. We define a
matrix H = G−1 so that Hx = b. H is a check matrix because if Hx is an integer vector,
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Figure 4.1: Illustration of hexagonal lattice formed by the basic vectors g1 and g2 in
equation 4.3.

then x is a lattice points. We also have the matrix property: HG−1 = I where I is the
identity matrix.

Example: the hexagonal matrix illustrated in Fig. 4.3 has a generator matrix:

G =

[√
3

2
0

1
2

1

]
. (4.3)

A lattice Λ is a discrete additive subgroup of Rn [32]. For an n-dimensional lattice Λ
and y ∈ Rn, the problem of decoding, or shortest-distance quantization is to find the the
element of Λ closest to y in the Euclidean-distance sense:

x = arg max
u∈Λ

∥∥u− y
∥∥2

(4.4)

Then, some concepts that appears repeatly in this work will be introduced as follows.

The Voronoi region for any point x is the set of all points in Rn that are closer to x
than to any other element of Λ. Mathematically, the volume of the Voronoi region V (Λ)
is given by

V (Λ) = |det(G)|. (4.5)

Volume-to-Noise-Ratio As introduced in [33], the unconstrained power communica-
tion AWGN channel is a useful theoretical tool to analyze the coding aspect of lattices

without considering the shaping region. Here, the definition of volume V
∆
= V (Λ) =

| det G| constrains the transmit power by the lattice density, because there is no transmit
power constraint.

We could scale the lattice to be arbitrarily large, so that the lattice points are far
apart and the noise ineffective. So, we constrain the system using the density of lattice
points. The volume of the fundamental region V (Λ) measures the density of points in n
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dimensions. A rough approximation of the length of one side is n
√
V (Λ), and power is the

length (or energy) squared. So we use signal power measured as V (Λ)2/n and the noise
power is σ2. The VNR is the measure of the density of the lattice and the normalized
VNR (NVNR) is given by

VNR =
|V (Λ)|2/n

2πeσ2
. (4.6)

The Voronoi region of lattices as well as the Volume of lattices are illustrated in Λ
Fig. 4.1 for the simple case of hexagonal lattices.

4.2 Lattice Syndrome Decoding Application to MIMO

Systems

The use of lattice viewpoint is remarkably relevant for the MIMO detection problem.
In this section, we propose a new approach called lattice syndrome decoding, and apply
it to MIMO detection. We describe four algorithms based on storing error vectors in a
syndrome lookup table, which is feasible for the number of antennas typically used in
MIMO detection. This work is partly demonstrated in [37].

Numerous MIMO detection techniques have been introduced [30]. Minimum mean-
squared error (MMSE) and zero-forcing (ZF) have low complexity, but a large performance
gap with repsect to the optimal maximum likelihood (ML) detector. ML detection pro-
vides optimal performance, but the detection process of ML schemes is performed by an
exhaustive search over all the possible transmitted symbol vectors, hence the complexity
increases exponentially with the number of antennas.

From the lattice viewpoint, MIMO detection can be viewed as the problem of finding
the closest lattice point. The sphere decoding algorithm is a maximum likelihood lattice
decoding algorithm [34]. It searches for lattice points within a fixed radius of the received
signal.

Inspired by syndrome decoding for finite-field codes, the lattice syndrome decoder at-
tempts to find an estimated codeword closest to a received sequence. Syndrome decoding
is based on storing error vectors in a lookup table, however some modifications are needed
so lattice syndrome decoding can handle soft-input vectors. Four lattice syndrome de-
coding algorithms are presented, progressively solving a shortcoming of the previous one.
The fourth algorithm, a tabular lattice syndrome decoding algorithm called Algorithm D,
is an efficient and promising candidate as a general lattice decoding algorithm. MIMO
detection, one of the main applications of lattice decoding, can be efficiently performed.

While lattice syndromes have appeared previously in the literature, for example in the
context of coded modulation [36] and low-density lattice codes [31], this work represents
the first consideration of lattice syndrome decoding.

Some important aspects of lattice syndrome decoding are:

• Syndrome decoding requires another algorithm, preferably an optimal one, to gen-
erate the syndrome lookup table; for lattice syndrome decoding, we use the Schnorr-
Euchner algorithm.
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• Numerical results show that lattice syndrome decoding has negligible performance
loss with respect to optimal decoding, for the MIMO channel. However, Algorithm
D is not optimal in general.

• Lattice syndrome decoding is performed using table lookup operations. While lattice
syndrome decoding has some initialization complexity to generate the syndrome
lookup table, operations are very efficient. Once lookup tables are generated, they
can be used many times, suitable for stable MIMO channels. We can think of this
as a fast implementation of the Schnorr-Euchner algorithm.

In order to emphasize the parallelism between syndrome decoding of finite-field codes
and syndrome decoding of lattices, syndrome decoding of codes is reviewed. Matrices
representing codes and lattices are assumed to be full rank.

4.2.1 Syndrome Decoding of Finite-Field Codes

Let F be a finite field of arbitrary size so Fn is an n-dimensional vector space. A finite
code C is a a k-dimensional vector subspace of Fn. Since C is a subspace and thus is a
subgroup of Fn, the quotient group Fn/C is formed. The coset of a ∈ Fn is the set a + C.
There are | F |n−k cosets. The coset leaders are a single representative element from each
coset, chosen to be a coset member of lowest Hamming weight.

Let Hc be an (n− k)× n parity-check matrix for C. The syndrome s of any sequence
y ∈ Fn is s = Hcy; the syndrome of a codeword is a vector of zeros. If e is the coset leader
of coset containing y, then there is a unique c ∈ C such that y = c + e. The syndrome
of y is :

s = Hcy = Hc (c + e) = Hce. (4.7)

That is, all element of a coset have the same syndrome, that of the coset leader.

Syndrome decoding for a finte-field code dinds the estimated codeword x̂ ∈ C closest to
a received sequence y ∈ Fn. It uses the syndrome of y to find an estimated error vector
ê and thus achieve the estimated codeword ĉ. The estimated error is the coset leader for
the syndrome, which is stored in a syndrome table ψ. Syndrome decoding has an input
received sequence y and output x̂:

1. Compute syndrome s = Hcy

2. Look up estimated error ê = ψ (s).

3. Output nearest codeword x̂ = y − ê

4.2.2 Lattice Syndrome Decoding (Algorithm A)

• Cosets The lattice shift or coset is defined as

Λx = x + Λ = {x+ λ : λ ∈ Λ} . (4.8)

A coset is a discrete set of points such that the difference vector between every pain
of points belongs to the lattice. However, the coset itself is, in general , not a lattice,
as it is not closed under addition; it does not contain the origin.
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Let R be the set of real numbers, so that Rn is an n-dimensional vector space. A lattice
Λ is a vector subspace of Rn.

Further, let Λ′ be a superlattice of Λ with Λ′ = 1
m

Λ for m=2, 3, ...; Λ′ and 1
m

Λ are used
interchangeably. Since Λ is a sublattice and thus a subgroup of Λ′, the quotient group
Λ′/Λ is created. The coset of a ∈ Λ′ is the set a + Λ. There are mn cosets. The coset
leaders are a single representative element from each coset, chosen to be a coset member
of smallest norm.

Let G be an n × n generator matrix for Λ, and let Gc = G−1 be the corresponding
check matrix. Furthermore, Λ′ has generator matrix 1

m
G and check matrix mGc.

Definition 6. The lattice syndrome s of z ∈ 1
m

Λ with respect to a lattice Λ having check
matrix Gc, is

s = mHz mod m (4.9)

so that s ∈ {0, . . . ,m− 1}n.

The syndrome of a lattice point is a vector of integers. If e is the coset leader of the
coset containing y, then there is a unique x ∈ Λ such that z = x + e where the channel
output z is an element of a superlattice. The syndrome of z is:

s = mGcz mod m

= mGc(x + e) mod m

= mGce mod m (4.10)

That is, all elements of a coset have the same syndrome, that of the coset leader.

Lattice syndrome decoding finds the estimated lattice point x̂ ∈ Λ closest to a received
sequence z ∈ Λ′. It uses the syndrome of z to find an estimated error ê, and thus the
estimated lattice point x̂. The estimated error is the coset leader for the syndrome, which
is stored in a syndrome table φ, found by Algorithm S1, next. Syndrome decoding has
received sequence z as input, and estimated lattice point x̂ as output:

1. Compute syndrome s = mGcz mod m.

2. Look up estimated error ê = φ (s).

3. Output estimated lattice x̂ = z− ê.

Algorithm S1: Generation of syndrome table φ. The coset leaders are the codewords
of a nested lattice code Λ′/Λ. Because Λ and Λ′ are self-similar lattices, these codewords
can easily be found. Let QΛ (y) be the element of Λ closest to y ∈ Rn. For syndrome
s ∈ {0, ...,m− 1}n find the corresponding coset leader e:

e =
1

m
Gs−QΛ

(
1

m
Gs

)
, (4.11)

and the syndrome table entry is thus:

φ (s) = e (4.12)

This lattice syndrome decoding, including generation of the syndrome table, is described
in Algorithm A.

35



Algorithm S1 Syndrome Table Generation.

φ = SyndromeTable(G,m)

Input: Generator matrix G for an n-dimentional lattice. Scaling integer m.
Step For each s ∈ {0, 1 . . . ,m− 1}n, compute:

φ (s) = e =
1

m
Gs−QΛ

(
1

m
Gs

)
.

Ouput Syndrome decoding table φ.

Algorithm A Lattice Syndrome Decoding

x̂ = AlgorithmA(φ, z)

Input: Syndrome table φ, from Algorithm S1. n-dimentional lattice Λ with generator
matrix G and check matrix Gc; scaling integer m; decoder input z ∈ 1

m
Λ.

Step 1 Compute syndrome s = mGcz mod m
Step 2 Look up estimated error ê = φ (s)
Ouput nearest lattice point: x̂ = z− ê.

4.2.3 Advanced Lattice Syndrome Decoding (Algorithm B, C,
D)

• Algorithm A can be improved by using a second input to break ties (the decoder that
generates the syndrome table implicitly breaks ties). We know that the algorithm
has input z ∈ Λ′. An additional input y ∈ Rn is a point near z used in breaking
ties, rather than breaking ties arbitrarily. Now for each z ∈ Λ′ having syndrome s,
the syndrome table entry φ (s) is the set of all elements x ∈ Λ that are at the same
minimum distance from z. Given a generator matrix G and scaling m. In other
words, Algorithm B is similar to Algorithm A, but in addition to z, a real input
y ∈ Rn which is near the superlattice is available to break ties.

• Algorithm C Using the nesting property of lattices, syndrome decoding is applied
recursively. Beginning with a fine lattice, a real input y is quantized to the superlat-
tice using some suboptimal but efficient technique. Because the superlattice is fine,
the error due to suboptimality may be made as small as desired. The output at one
iteration step, quantized to a point in a lattice, is the input to the next iteration
step.

• Algorithm D A tabular approach decodes in multiple superlattices, selects the
best solution, then proceeds iteratively.

In the trade-off between space complexity and time complexity, Algorithms A–D obtain
fast decoding (low time complexity) at the expense of a large amount of memory (high
space complexity). The memory requirements for the lookup table are exponential in n,
making this technique attractive for decoding known-good lattices of modest dimension,
or for detection in stable MIMO channels.
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Figure 4.2: Diagram of MIMO system with nT transmitters and nR receivers.

4.2.4 Performance Evaluation of Lattice Syndrome Decoding
and MIMO System

We consider the MIMO system in Fig. 4.13, with nT transmitters and nR receivers. The
received signal vector u depends on the transmitted vector v as

u = Hv + w, (4.13)

where v is a vector representing the transmitted signals. H = [h1,h2, . . . ,hn] is an nR×nT
complex-valued matrix which contains channel coefficients distributed as CN (0, 1), and w
is an additive noise vector, independent Gaussian random variables with zero mean and
variance σ2.

Let HR and HI denote the real and imaginary part of channel vector H, and the same
for v, w and u. Equation (4.13) can be represented as(

uR

uI

)
=

(
HR −HI

HI HR

)(
vR

vI

)
+

(
wR

wI

)
. (4.14)

In the conversion from complex to real, from (4.14) we can see the size of channel matrix
has been increased to 2nR × 2nT .

At the receiver side, the maximum-likelihood detector (MLD), which is an optimal
detector, detects the transmitted vectors

v̂ = arg min
v∈Vm

‖ u−Hv ‖2, (4.15)

where u ∈ Rn, w ∈ Rn, and v ∈ Vm where V denotes the finite set of real-valued
transmitted signal. The MLD computes the Euclidean distance between the received
vector and all possible transmitted vectors via a given channel H.

In case of lattices, as shown in Fig. 4.3, we consider the vector x transmitted via
the AWGN channel with additive noise w, then the received sequence y = (y1, y2, . . . , yn)
is described by yi = xi + wi with wi ∼ CN (0, σ2). The vector u and matrix H play a
similar role to the vector y and channel matrix G, respectively, for lattices. As a result,
the channel matrix H can be viewed as the basis for a discrete lattice.

The role of matrix of basis generators is mentioned both in the MIMO channel matrix
and in lattices; in order to avoid confusion, we denote this matrix by the same symbol H
for both cases. In case of the generator matrix H of lattices, all elements are independent
random variables distributed as CN (0, 1). We assume that the channel state information
(CSI) is known at the receiver.
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Figure 4.3: Basic diagram of system employing lattice with generator matrix G.
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MIMO system with 16-QAM

Fig. 4.4 illustrates the performance analysis of two lattice decoders using Schnorr-
Euchner (S-E) algorithm and new proposed lattice syndrome decoder by the word-error-
rate versus the VNR in dB. The implementation of a closest point search algorithm mainly
based on the S-E strategy presented by Agrell, et al. in [35], which is regarded as the
optimal search method in lattice decoding. Numerically, this figure also plots the lattice
syndrome decoding when the generator matrix is chosen randomly with size of 4 × 4. It
is also shown that the great advantage of employing the lattice syndrome decoding as an
alternative to the optimal lattice decoding.

The comparison between the different MIMO detection methods including (Zero-Forcing)
ZF, (Maximum Likelihood Detector) MLD, (Lenstra-Lenstra-Lovász) LLL-ZF detector,
and lattice decoding using new proposed lattice syndrome decoding is shown in Fig. 4.5
in terms of VER versus the average signal-to-noise ratio per receive antenna. The MIMO
system with 16-QAM input symbols are transmitted through 4×4 antennas without chan-
nel coding or space-time coding. As mentioned, the lattice-reduction-aided detector using
LLL-ZF can achieve the considerable improvement compared with the linear detector like
ZF whose poor performance is due to the noise enhancement. For the sake of improve-
ment, the reliability of lattice syndrome decoder are also exposed. Since the 4×4 complex
channel matrix can be transformed to a lattice of 8 dimensions, and all other conditions
the same as the MIMO channel, the comparison is fair. The lattice syndrome decoder
outperforms the LLL-ZF decoder, for example, we obtain a gain of 2 dB at a vector-error
rate (VER) of 10−3. Furthermore, its curve is close to the curve of ML detector.

4.3 Lattice Construction

There are various techniques that construct lattices from finite-field codes. Lattice Con-
struction maps symbols from a finite field code to lattice points. Since lattice points are
real numbers, but the code symbols are not real numbers, we should be careful on how to
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map.

There exists several constructions including Constructions A, B, C, D, D’ and E. The
Construction A was considered as a simple version one that convert a linear binary code
to the Euclidean space. We can use x mod 2 = (x1 mod 2, ..., xn mod 2) to denote a
modulo-2 reduction of each of the components of x ∈ RN .

Construction B was proposed by Conway and Sloane in 1999 as a way to make a
connection between Reed Muller codes and Barnes-Wall lattices. However, Construction
D is more general, and is only introduced later when describing the Barnes-Wall lattices.
Construction C is also formed from binary codes, but in general forms a sphere packing
but not a lattice. In the cases where Construction C forms a lattice, it coincides with
Construction D.

Construction D is a generalization of Construction A. While Construction A uses a
single code C1, Construction D uses a sequence of a nested binary codes: C0 ⊆ C1 ⊆
... ⊆ Ca−1. Both Construction D and D’ form lattices from multiple binary codes but
Construction D uses the codes generator matrix and Construction D’ uses the code parity-
check matrix.

Due to the huge recent interest in the Construction D, this research thus mainly con-
centrates on the Construction D with application to the lattices from polar codes.

∗ Construction D

Presented by Barnes and Sloane [38], Construction D is generated by a set of nested binary
linear codes C0 ⊆ C1 ⊆ ... ⊆ Ca with parameters [N,Ki, di] for each binary linear code Ci.
The minimum distance is constrained by di ≥ 4i

γ
, where γ = 1 or 2, for i = 1, ..., a.

The minimum distance of a lattice is the minimum Euclidean distance between any
pair of lattice points, namely,

dmin(Λ) = min
x 6=y
{d(x,y)|x,y ∈ Λ}, (4.16)

where d(x,y) =‖ x− y ‖2, and ‖‖ is the Euclidean norm.

Definition 7. (Nested Binary Linear Codes)Let g1, g2, . . . , gn be a basis for Fn2 . Let
a ≥ 1, for C0 ⊆ C1 ⊆ ... ⊆ Ca = Fn2 are nested linear codes if g1, g2, . . . , gki span Ci, for
i = 0, 1, . . . , a− 1.

Nesting means that for code C0, generator vectors g1,g2, . . . ,gk0 are included in those
for code C1 with generator vectors g1,g2, . . . ,gk1 . This nesting holds for any code which
is the subcode of another code. The n-by-n matrix consisting of the basis vectors as
columns g1,g2, . . . ,gn is denoted G̃ , written as:

G̃ =

 | | | | |
g1 g2 . . . gk0 . . . gk1 . . . gn
| | | | |

 (4.17)

The n-by-ki generator matrix for code Ci is G̃i for i = 0, 1, . . . , a, which consists of spell
1 to ki of G̃
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Definition 8. (Construction D) Let C0 ⊆ C1 ⊆ ... ⊆ Ca = Fn2 be nested binary
linear codes with generator matrices G̃0, . . . , G̃a−1, G̃, respectively. Then a Construction
D lattice consists of all vectors of the form

x =
a−1∑
i=0

2iG̃i · ui + 2aG̃ · z (4.18)

where z ∈ Zn and ui = (u0,1, . . . , u0,k0)
t for i = 0, 1, . . . , a− 1 are binary vectors. The

binary matrices G̃i are taken as real-valued.

∗ Construction D Generator Matrix

The generator matrix for a lattice is not unique. However for Construction D lattices with
a specific basis G̃ and k0, k1, ..., ka−1, the Construction D generator matrix is the specific
lattice generator matrix G given by

G = G̃ ·D−1 (4.19)

where D is a diagonal matrix with diagonal entries dii

dii = 2−k for rk−1 ≤ i ≤ rk (4.20)

with with k = {0, 1, . . . , a}

In Definition 8, a lattice point x is found by selecting integers z and binary vectors
u0 to ua−1. A lattice point is found by selecting integers b ∈ Zn so that x = G · b.
Considering the example of a = 3,u1,u2,u3 and z are related to the integers b by:

bi = u0,i + 2u1,i + 4u2,i + 8zi for 1 ≤ i ≤ k0

bi = u1,i + 2u2,i + 4zi for k0 < i ≤ k1

bi = u2,i + 2zi for k1 ≤ i ≤ k2

bi = zi for k2 ≤ i ≤ n (4.21)

∗ Properties of Construction D Lattices

For Construction D lattices, the volume is given by

V (Λ) = 2an−
∑a−1
i=0 ki , (4.22)

The following lemma relates the minimum distance of the binary codes to the lattice
squared minimum distance d2

min. If γ = 1, then the binary codes have minimum distance
4, 16, 64, . . .. If γ = 2, then the binary codes have minimum distance 2, 8, 32, . . ..

Lemma 4.1 Let code Ci have minimum distance di ≥ 4a−i/γ for i = {0, 1, . . . , a− 1},
where γ = {1, 2}. Then the Construction D lattice has squared minimum distance

d2
min ≥ 4a/γ (4.23)
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Figure 4.6: Encoder and Decoder structures of Construction D lattices.

∗ Encoding and Decoding of Construction D Model

Fig. 4.6 describes the encoder, channel and successive cancellation decoder structures of
Construction D lattices.

We consider the transmitted lattice point expressed as

x = G · b, (4.24)

which may be decomposed as:

x = G̃0 · u0 + 2G̃1 · u1 + · · ·+ 2aG̃ · z (4.25)

Define xi as xi = Gi · ui, for i = {0, 1, . . . , a − 1}. Then the transmitted lattice point
is expressed as

x = x0 + 2x1 + · · ·+ 2az (4.26)

And the received point is given by

y0 = x + n (4.27)

where n is noise.

Consider using C0 to decode x0. Apply a modulo-2 operation to the received sequence,
so that the contribution of x1,x2, . . . are removed as

y′0 = y0 mod 2

= x0 mod 2 + n′

= G̃0 · u0 mod 2 + n′, (4.28)
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Algorithm 1 Decoding Construction D Lattice.

Input: noisy input y, generator matrices G̃0, G̃1, . . . G̃a−1 for Λ
Ouput estimated lattice point x̂

1: y0 = y
2: for i = 0, 1, . . . , a− 1 do
3: y′i = |mod2 (yi + 1)− 1|
4: ĉi = Deci(y

′
i) or ûi = Deci(y

′
i)

5: x̂i = G̃i · ûi or x̂i = G̃i · (Ei � ĉi)
6: yi+1 = yi−x̂i

2

7: end for
8: ẑ = byae
9: x̂ = x̂0 + 2x̂1 + . . .+ 2a−1x̂a−1 + 2aẑ

where n′ is the noise after the modulo operation. The decoder Dec0 expects c0 plus noise,
but is provided with x mod 2 plus noise. The modulo-2 value of the lattice point x is
G̃0 · u0 mod 2, and

G̃ · u0 mod 2 = G̃� u0 (4.29)

Thus, excluding the noise component, the lattice point after modulo-2 is equal to the
codeword c0 = G̃� u0, and we are justified in using the binary decoder.

Reencoding is the key step in Construction D lattice decoding but is optional for several
decoders. In reencoding, x̂i is obtained from ûi as ûi = Ei � ĉi. If the decoder produces
the estimated information ûi directly, then this step can be omitted. The estimate x̂i is
obtained by reencoding as

x̂i = G̃i · ûi = G̃i · (Ei � ĉi) (4.30)

Then, the estimate x̂0 is subtracted from the input, and this is divided by 2 to obtain
y1

y1 =
y0 − x̂0

2
, (4.31)

as the input of the next level. This process continues recursively, until x̂a−1 is obtained.

This is the key distinction from Code formula decoding, instead of subtracting the
estimated binay codeword ĉi = G̃i � ûi, Construction D decoding subtracts x̂i = G̃i · ûi.

Successive cancellation proceeds by estimating x̂1, x̂2, . . ., subtracting this from the
received signal. Finally, the sequence ya is rounded to the nearest integer sequence to
estimated ẑ. These procedures are depicted in Fig 4.6. Consequently, the estimated
lattice point is given by

x̂ = x̂0 + 2x̂1 + . . .+ 2a−1x̂a−1 + 2aẑ (4.32)

The decoding algorithm of general Construction D lattices is described in Algorithm 1.
The notation bxe in line 8 indicates the integer sequence nearest x. Decoder Ci finds the
binary codeword {0, 1} closest to y′i. The modulo operation applies to the noise as well,
and distance to (0, 1) should be preserved. The following “triangle function” preserves
these distances, and performs the modulo- 2 operation as

mod ∗(y) = |mod2 (yi + 1)− 1| (4.33)

where mod 2 indicates a component-wise modulo-2 function.
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4.4 Proposed Polar Lattices

The proposed generalized model for the polar lattices is illustrated in Fig. 4.7. The
waveforms block is optional and not analyzed in this study and the simulation results as
well.

Since polar lattices ΛP are constructed from polar codes, they are also specified by the
code lengths N and information lengths K of each polar codes components.

A sequence x̂ = (x̂1, . . . , x̂N) is the estimate of the lattice point, which is the output of
the decoder following the multilevel lattices rule.

Polar lattices produced by Construction D are represented by ΛP (K1, K2, . . . , Ki),
which are lattices formed by a group of nested binary codes, C1 ⊆ C2 ⊆ ... ⊆ Ca.

Columns from the subcode generator matrix are the information bits of a polar code
component, after combining the generator matrix form component generator matrix, polar
lattices by construction D is obtained when the polar subcodes are identified.

4.4.1 Multi-level Encoder and Decoder

In the multi-level polar lattices, the number of level can be seen as the number of nested
polar codes elements.

The generator matrix for polar lattice codes GΛP is constructed, where Gi is the polar
subcode generator matrix.

The generator matrix GΛP produces lattice points x, which are the input to the channel.

x = GΛP · b, (4.34)

where the b is computed from the summation of the component binary information vectors
ui in equation 4.21. We can see that both b and x are integer vectors.

The multi-level decoder implements decoding the received vectors y as the input. The
fundamental idea is to find the closest lattice point from the noisy channel output sequence
y. The main idea of this part is consistent with the Algorithm 1 for the Construction D
lattice.
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Output of this decoder is the estimated codeword x̂ and it should be compared to the
original transmitted codeword x to compute the reliability of decoder.

4.4.2 On the Design of Polar Lattices with Capacity Rule

Selecting the polar subcodes to construct the polar lattices plays a vital role in error
performance.

In [39], the authors proposed the polar lattices which is analogous to the Barnes-Wall
lattices from Reed-Muller codes. The basic idea is that they realized several similarities
between polar codes and Reed-Muller codes and it is natural to construct the polar lattices
from polar codes one each level and use Construction D to cooperate these polar codes
together to produce a lattice. This construction results in better performance of polar
lattices, compared to Barnes-Wall lattices.

Using a multistage decoding approach, incurred by the union bound, the overall error
probability is upper bounded by the sum of the block error probabilities at individual
levels

Pe(C, σ2) ≤ Pe(C0, σ
2) + Pe(C1, (σ/2)2) + . . .+ Pe(Ca−1, ((σ/2

a−1)2) (4.35)

Based on union bound. It is straightforward that the noise power of next level is
reduced by σi = σi−1/2. Yan et al.’s start to compute with 2nd level with the target error
probability as 10−5 and thus compute the values of σ3 ≈ 0.08719, σ2 = 2 ∗ σ3 = 0.08719
and σ1 = 2 ∗ σ2 = 0.3488 respectively. Correspondingly, the code rates are also given as
K1/N = 0.22 and K2/N = 0.9 for N = 1024 in simulation. This approach is useful for
design of polar lattices by the capacity rule mentioned in [41].

4.5 Performance Evaluation of Polar Lattices

In order to analyze polar lattices system performance, the simulation result was conducted
under the Monte-Carlo simulation method versus the change of VNR in dB. There are 2
main parameters taken into account such as the word error rate (WER) and symbol error
rate (SER) expressed by

SER =
Errors

Total number of symbols
(4.36)

WER =
any error on the codewords

Total number of transmitted codewords
(4.37)

where the “word error” occurs if the estimated codeword x̂ 6= x and the “symbol error”
is x̂i 6= x, where xi is an integer in integer vector x.

Fig. 4.8 shows the word error rate comparison of lattices with code length of N = 128
by 3 different construction approaches. The first two results (red and green lines) are
extracted from [39] for Barnes-Wall (BW) lattices and polar lattices constructed with
BW rule. In this simulation, the Belief-Propagation (BP) decoder is utilized and the
polar lattices outperformes the BW lattices versus VNR in dB.
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Figure 4.8: Performance comparison of polar lattices length of 128 and 512 by different
code rates selection

For the sake of improvement, we also employ the polar lattices by construction D. As
mentioned from previous section, the capacity rule is applied for computing the code rates
and then K1 = b0.22 · 128e = 28 bits and K2 = b0.9 · 128e = 115 bits. The successive
cancellation decoder is used as well for each level of polar codes. Under fair conditions,
the proposed polar lattices are superior to both previous lattices. For example, 2.5 dB
gain is obtained at 10−3 of WER when we apply new approach instead of choosing the
BW rule for polar lattices.
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Chapter 5

Discussion and Conclusion

5.1 Future work

Due to the time limitation of master period, there exits a couple of open topics that need
to continue in the future

∗ For polar codes

• Polar codes have been shown to achieve Shannon capacity. Their applications is
being discussing tremendously for 5G systems. This thesis only mentioned the low
order of modulation scheme (BPSK), in order to achieve very high data and adapt
to other waveform method (OFDM, FBMC . . . ), the higher constellation such as
64-QAM, 128-QAM should be considered in design.

• The rate matching with puncturing bits is a useful approach to increase performance
of high speed transmission without redundancy of information bits. The future
study should take into account this technique.

∗ For polar lattices

• One interesting topic is the Gaussian shaping technique for polar lattices in the
power-constrained AWGN channel. This is based on source polarization. In the
further research, we will be able to achieve the capacity 1/2 log(1+SNR) with low-
complexity multistage successive cancellation (SC) decoding for any given signal-
to-noise ratio (SNR). In order to achieve this, we should investigate various shaping
schemes over polar lattices.

• To make polar lattices more competitive in practice, it is important to improve their
finite-length performance. One way is to use more sophisticated decoding algorithms
for the component polar code at each level. It is a fact that for short to moderate
block lengths, the performance of polar SC decoding have a big gap to other well-
known codes such as LDPC or Turbo codes. For this reason, we used cancellation list
decoding (SCL), which is an enhanced version of SC decoding, and approaches the
Maximum-Likelihood (ML) performance at high SNR region. Furthermore, when
an outer cyclic redundancy check (CRC) code is concatenated, the SCL decoder
can compete with LDPC codes. In the future, we hope to further improve the polar
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lattices decoder by applying these advantages that can be competitive with LDPC
lattices.

• We should investigate more approaches in selecting the code rates and the number
of level in construction D for polar lattices.

5.2 Relation to the Cybersecurity Training

Data security is extremely important in common communications. it is reasonable to
argue that security measures should be implemented at all network layers. In addition,
with the development of ad-hoc and decentralized networks, higher-layer techniques, such
as encryption and key distribution, are complex and difficult to implement. The cyber-
security, also known as IT security, focuses on protecting networks, computers, programs
and data from attack, damage, unintended or unauthorized access.

Wireless network needs security especially at the physical layer due to its broadcast
nature of wireless medium. In general, some aspects of cybersecurity for low level can be
categorized as

• Achieving the secrecy of the physical layer of communication networks.

• Solving the the security challenges in large distributed networks.

• Assuring information privacy in data networks, databases and more broadly, big
data across applications.

In this approach, the polar and lattices are considered to offer well properties for the
high secrecy in the physical layer to prevent various kinds of attacks.

Cyber attacks are determined as the critical threats to any communication systems
due to its variety, very short time spread and serious levels. The attacks from physical
layer may come from Wormhole Attack (relay attack), location spoofing by radio signal
interception and relaying, Information Leakage Attack or the key extraction attack, etc.

Cybersecurity training seems to be an efficient approach to enhance the prevention of
cyber breaches effectively. Correspondingly, there exists various available training pro-
grams. The largest source for information security training in the world which is known
as SANS [43], has been providing variety of training programs in term of cybersecurity
major. Another well-known online learning platform is Udemy that supports a course
with name of Cyber Security for presenting cybersecurity concepts in a wide range from
threat analysis, risk management, encryption, and firewalls.

For the purpose of providing the cybersecurity training to everyone, the CyTrONE (Cy-
bersecurity Training and Operation Network Environment)[42] has been recently created
to automate the training content and environment setup by Cyber Range Organization
and Design (CROND) NEC-endowed chair at Japan Advanced Institute of Science and
Technology (JAIST). This system helps to generate a cyber range from a description in
text format get by the organizer. Thanks to this framework, the cyber range creation task
is much simpler and is expected to easier setup automatically in near future . Therefore,
the cybersecurity training for the physical layer security should be one of the important
elements.
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5.3 Conclusion

In this work, we have presented the theoretical and practical aspects of polar codes versus
the power constraint (denoted by the signal-to-noise ratio or Eb/N0) and extended to
the polar lattices by Construction D versus the unconstrainted power (denoted by the
volume-to-noise ratio VNR).

The main issues of this study can be separated into 2 parts as follows

• In term of polar codes: we presented the fundamentals of polar codes, how to
construct the encoders and decoders and then proposed a basic scheme for 5G system
using Polar codes with performance comparison to LDPC and turbo codes. That is,
polar codes performed very well in range of small and moderate code lengths with
reasonable complexity. In additions, with the modifications of adaptive list decoding
that allows the list size to adjust according to its computational power, the polar
codes are expected to apply in a wide range of code lengths, code rates with the
flexible decoding complexity. Furthermore, we also investigated the performance
or polar codes under the Rayleigh fading conditions and apply the advanced SCL
decoder to these schemes to reduce the bad effects of fading schemes.

• In term of polar lattices: One of the useful applications from lattices has been
proposed in this work, we show how good the lattices syndrome decoding is, and
thus it can be promising candidate for the MIMO system that reach the Near-
Maximum-Likelihood approach.

We have proposed a polar lattices by Construction D with modified multi-level
decoding for Code formula decoding, instead of subtracting the estimated binary
codeword ĉi, Construction D decoding subtracts integer vector x̂i. The algorithm
decoding also is demonstrated with detailed explanation. Since the polar lattices are
derived from the polar codes, their construction is equally efficient. The numerical
results also indicates that the polar lattices constructed by proposed code rate selec-
tion outperforms the polar lattices by the Barnes-Wall rule in [39]. As the lattices
dimensions N increases, this approach is expected to get the capacity-achieving and
can be competitive with LDPC lattices. In the further researches with the Gaussian
shaping, polar lattices may achieve the capacity of the power-constrained AWGN
channel [40].

49



Publication

1. Long H. Nguyen, Brian M. Kurkoski, “General-Purpose Lattice Decoding Using
Lookup Tables” in submitted to IEEE International Symposium on Information
Theory, June. 2018. Acceptance notification is sent out by March 31, 2018.

50



Bibliography

[1] IMT-2020 (5G) Promotion Group, “5G vision and demand”, May. 2014

[2] IEEE 802.11-2012-Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY), 2012.

[3] N. Costa, and S. Haykin, Multiple-Input, Multiple-Output Channel Models: Theory
and Practice, Wiley-Interscience, 2010.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech. J.,
vol. 27, pp. 379-423, 623-656, July and October 1948.

[5] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Trans. Inform. Theory, vol.
55, pp. 3051-3073, July 2009.

[6] E. Arkan et al., “A performance comparison of polar codes and ReedMuller codes,”
IEEE Commun. Lett,vol. 12, no. 6, pp. 447-449, 2008

[7] Thomas M. Cover, Joy A. Thomas, “Elements of information theory,” 1st Edition.
New York: Wiley-Interscience, 1991.

[8] Andrea Goldsmith, “Wireless Communications,” Cambridge University Press,. 2005.

[9] H. Si, O. O. Koyluoglu, and S. Vishwanath, “Polar coding for fading channels: binary
and exponential channel cases,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2638-2650,
2014.

[10] J. J. Boutros and E. Biglieri, “Polarization of quasi-static fading channels, in In-
ternational Symposium on. Information Theory Proceedings (ISIT), IEEE, 2013, pp.
769-773.

[11] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol.
IT-8, PP. 21-28, Jan. 1962.

[12] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar code construc-
tions for the AWGN channel, arXiv preprint arXiv:1501.02473, 2015.

[13] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on Informa-
tion Theory, vol. 61, no. 5, pp. 2213-2226, 2015.

[14] Y. Zhang, A. Liu, X. Pan, Z. Ye, and C. Gong, “A modified belief propagation polar
decoder,” IEEE Commun. Lett., vol. 18, no. 7, pp. 1091-1094, Jul. 2014.

[15] K. Niu and K. Chen, “Stack decoding of polar codes,” Electron. Lett., vol. 48, no.
12, pp. 695696, 2012.

51



[16] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar
codes,” IEEE Trans. Commun., vol. 61, no. 8, pp. 31003107, Aug, 2013.

[17] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,” IEEE Com-
munications Letters, vol. 18, no. 7, pp. 1127-1130, 2014.

[18] Lin Qi, Yu Xu, Tong Liu, Zheng Dou, “An improved successive cancellation de-
coder for polar codes” in IEEE International Conference on Electronic Information
and Communication Technology (ICEICT), Aug. 2016.

[19] Sha Shi, Bing Han, Jing-Liang Gao, and Yun-Jiang Wang, “Enhanced Successive
Cancellation List Decoding of Polar Codes,” IEEE Communications Letters,, Vol. 21,
No. 6, pp. 1233-1236, 2017.

[20] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based successive cancel-
lation list decoding of polar codes,” IEEE Trans. Signal Process., vol. 63, no. 19, pp.
5165-5179, Oct. 2015.

[21] M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian and V. Vukadi-
novic, “Channel Coding for Ultra-Reliable Low-Latency Communication in 5G Sys-
tems,” 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC,
2016, pp. 1-5.

[22] H. Gamage, N. Rajatheva and M. Latvaaho, “Channel coding for enhanced mobile
broadband communication in 5G systems,” 2017 European Conference on Networks
and Communications (EuCNC), Oulu, 2017, pp. 1-6.

[23] Satish Babu Korada, Eren Sasoglu, and Rudiger Urbanke, “Polar codes: characteri-
zation of exponent, bounds, and constructions,” IEEE Trans. Inform. Theory, vol. 56,
no. 12, Dec, 2010.

[24] Hao Liang, Aijun Liu, Yingxian Zhang, and Qingshuang Zhang, “Analysis and Adap-
tive Design of Polar Coded HARQ Transmission Under SC-List Decoding,” IEEE Wire-
less Communications Letters, vol. 6, no. 6, Dec. 2017.

[25] P. Trifonov, “Efficient Design and Decoding of Polar Codes,” IEEE Trans. Commun,
vol. 60, no. 11, pp. 3221-3227, 2012.

[26] Simulations by Iterative Solutions Coded Modulation Library, 2007.
http://www.iterativesolutions.com/Matlab.htm

[27] B. Zhang, H. Shen, B. Ying, “A 5G Trial of Polar Code”, 2016 IEEE Globecom
Workshops (GC Wkshps), Washington, DC, 2016, pp. 1-6.

[28] Session Chairman (Nokia), “Chairmans Notes of Agenda Item 7.1.5 Channel cod-
ing and modulation,” 3GPP TSG RAN WG1 Meeting 87, R1-1613710, Reno, USA,
November 2016.

[29] L. Liu and C. Ling, “Polar codes and polar lattices for independent fading channels,”
IEEE Transactions on Communications, vol. 64, no. 12, pp. 4923-4935, 2016

[30] H. Yao and G. Wornell, “Lattice-reduction-aided detectors for MIMO communication
systems,” in Proc. IEEE Conf. Global Commun., , Nov. 2002, vol. 1, pp. 424-428.

[31] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE Trans. Inf.
Theory, vol. 54, pp. 1561-1585, Apr. 2008.

52



[32] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 3rd edition.
Springer Verlag, 1999.

[33] G. Poltyrev, “On coding without restrictions for the AWGN channel,” IEEE Trans-
actions on Information Theory, vol. 40, pp. 409-417, March. 1994.

[34] W. H. Mow, “Universal lattice decoding: Principle and recent advances,” Wireless
Commun. Mobile Comput., Special Issue on Coding and Its Appl. Wireless CDMA
Syst., vol. 3, pp. 553-569, Aug. 2003.

[35] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,”
IEEE Trans. Inf. Theory, vol. 48, pp. 2202-2214, Aug. 2002.

[36] G. D. Forney, Jr., “Multidimensional constellations—Part II: Voronoi constellations,”
IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 941-958, August
1989.

[37] Long H. Nguyen, Brian M. Kurkoski, “Lattice Syndrome Decoding for MIMO De-
tection” in proceeding of technical research report, JAIST, December. 2017.

[38] E. S. Barnes and N. J. A. Sloane, “New lattice packings of spheres,” Canadian
Journal of Mathematics, vol. XXXV, no. 1, pp. 117-130, 1983.

[39] Y. Yan and C. Ling, “A construction of lattices from polar codes,” in Proceedings of
the IEEE Information Theory Workshop, pp. 124-128, Lausanne, Switzerland, 2012.

[40] Y. Yan, L. Liu, C. Ling, and X. Wu, “Construction of capacity-achieving lattice
codes: Polar lattices,” ArXiv e-prints, vol. abs/1411.0187, November 2014. [Online].
Available: http://arxiv.org/abs/1411.0187.

[41] G. D. Forney Jr., M. Trott, and S.-Y. Chung, “Spherebound-achieving coset codes
and multilevel coset codes,” IEEE Trans. Inform. Theory, vol. 46, no. 3, pp. 820 -850,
May 2000.

[42] R. Beuran, C. Pham, D. Tang, K. Chinen, Y. Tan, Y. Shinoda, “CyTrONE: An Inte-
grated Cybersecurity Training Framework,” International Conference on Information
Systems Security and Privacy (ICISSP 2017), Porto, Portugal, February 19-21, 2017.

[43] SANS Information Security Training — Cyber Certifications — Research. Retrieved
on August 4th, 2016 from https://www.sans.org/.

53


	List of Figures
	List of Tables
	Introduction
	Motivation and Goals
	Contributions of Thesis

	Channel Coding Preliminaries
	Information Theory and Coding Theory Aspects
	Wireless Communication over Fading Channels 
	AWGN Channel
	Rayleigh Fading Channels


	Polar Codes
	Channel Transformation
	Basic Channel Transformation (Code Length N =2)
	Recursive Channel Transformation (Code Length of any power of 2)

	Channel Polarization
	Definition of Polar Codes
	Polar Encoding
	Encoding with F

	Relation to the Reed-Muller Codes
	Polar Decoding
	Successive Cancellation Decoding
	Successive Cancellation List Decoding
	CRC-Aided Successive Cancellation List Decoding
	Theoretical Bound for Error Performance of Polar Codes
	Designs of Proposed 5G Polar Codes with Aid from CRC 

	Performance Evaluation of Polar Codes
	Polar Codes in AWGN Channel
	Polar Codes over Rayleigh Fading Channels


	Lattices and Polar Lattices
	Lattices Definition
	Lattice Syndrome Decoding Application to MIMO Systems
	Syndrome Decoding of Finite-Field Codes
	Lattice Syndrome Decoding (Algorithm A)
	Advanced Lattice Syndrome Decoding (Algorithm B, C, D) 
	Performance Evaluation of Lattice Syndrome Decoding and MIMO System

	Lattice Construction
	Proposed Polar Lattices
	 Multi-level Encoder and Decoder
	On the Design of Polar Lattices with Capacity Rule

	Performance Evaluation of Polar Lattices

	Discussion and Conclusion
	Future work
	Relation to the Cybersecurity Training
	Conclusion

	Bibliography

