
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

[課題研究報告書] An Investigation of the Steven

Eker's Approach to Associative-Commutative

Matching

Author(s) Phan, Huu Tho

Citation

Issue Date 2018-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15197

Rights

Description
Supervisor: 緒方 和博, 先端科学技術研究科, 修士(情報

科学)

An Investigation of the Steven Eker’s Approach to
Associative-Commutative Matching

Phan Huu Tho

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

March, 2018

Master’s Research Project Report

An Investigation of the Steven Eker’s Approach to
Associative-Commutative Matching

1610160 Phan Huu Tho

Supervisor : Kazuhiro Ogata
Main Examiner : Kazuhiro Ogata

Examiners : Kunihiko Hiraishi
Toshiaki Aoki
Nao Hirokawa

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science
February, 2018

Abstract

This master’s project report focuses on the associative-commutative matching via bipar-
tite graph matching including not only the basic approach but also the detailed algorithm
to help other researchers get a better understanding about the algorithm created by S.
M. Eker.

The problem we want to solve is the one consists of multiple terms where the subsets
of functions symbols are associative-commutative. Eker’s approach to solving this com-
plex problem is that we first change the form of both pattern term and subject term
into ordered normal form because of the easier in representative and checking equality.
Then making use of the recursive attribute of bipartite graph, we construct a hierarchy
of bipartite graph matching problems containing AC subproblem and variable bindings.
We try to find the variable bindings as soon as possible and concentrate on finding the
variable clashes to backtrack rather than finding all possible solutions and then test them
for consistency. From these graphs it can be found out the sets of solutions and build the
semi-pure AC systems. When we solve the semi-pure AC system, we divide the variable
into two type: the shared variable and owned variable with the different way of solving.
Then, we try to find all the potential term in the subject terms to make the assignment
to a variable. Afterwards, putting all the variable bindings and the solution from solving
semi-pure AC system step to get the matching substitutions. This algorithm has imple-
mented in Maude and showed the highest performance rewrite engine modulo AC. So we
investigate in Eker’s approach to find the efficiency of his algorithm which can apply when
we want to implement the independent software component.

Keywords: AC Matching Problem, Bipartite Graph Matching, Associativity, Commu-
tativity, Ordered Normal Form, .

1

Acknowledgements

After almost two years working and studying with a lot of useful advice and various
skilfully learning points, finally, I had been finished my thesis. I would first like to thank
my supervisor, Professor Kazuhiro Ogata, you definitely supported and provided me with
the most valuable directions both in research and my own life.

I also deeply appreciate my friends in Ogata lab, in JAIST for their full assistance to
help me overcome the obstacle in my school life.

Finally, I want to spend the last meaningful word to my family, who always stand by
me even if whatever happens to deliberate and give me your love unconditionally.

Thank you very much, everyone!
Phan Huu Tho.
February, 16, 2018

2

Contents

1 Introduction 6
1.1 Background and Motivation . 6
1.2 Thesis Outline . 7

2 Preliminaries 8
2.1 Term rewriting . 8
2.2 Associative-Commutative (AC) Matching 9
2.3 Ordered Normal Form . 10
2.4 Bipartite Graph . 11

3 The Basic Algorithm 12
3.1 Ordered Normal Form . 12
3.2 Decomposition to bipartite graphs . 13
3.3 Solving the bipartite graph hierarchy . 15
3.4 Solving the semi-pure AC system . 16

4 Detailed Description of Algorithm 18
4.1 Notational considerations . 18
4.2 Conversion to ordered normal form . 19
4.3 Building the graph hierarchy . 20

4.3.1 The graph hierarchy data structure 20
4.3.2 The construction algorithm . 22

4.4 Solving the graph matching problems . 24
4.5 Rebuilding the semi-pure AC system . 29
4.6 Solving the semi-pure AC system . 29
4.7 Putting it all together . 34

5 The Significant Efficiency of Eker’s Algorithm 36

6 Conclusion and Future Work 38

3

List of Figures

2.1 Rewriting process . 9
2.2 Examples of bipartite graph . 11

3.1 One level of an AC matching problem . 13
3.2 Decomposition of subproblem 1] . 14
3.3 Decomposition of subproblem 2 . 14

4.1 flattening a term . 20
4.2 Converting a flattened term to ordered normal form 21
4.3 Building the match object . 22
4.4 Matching the non-AC skeleton . 23
4.5 Solving a graph hierarchy . 25
4.6 Solving an AC subproblem . 26
4.7 Sovling a bipartite graph problem . 27
4.8 Solving a system of semipure subproblem 30
4.9 Finding an assignment to a shared variable 31
4.10 Finding an assignment to an owned variable 32
4.11 Selecting an assignment . 33
4.12 AC Matching algorithm . 34
4.13 Procedure build_match . 35
4.14 Procedure extract_match . 35

4

List of Tables

4.1 Data structure of graph hierarchy . 21

5.1 Running time of some examples with CafeOBJ and Maude (ms) 36

5

Chapter 1

Introduction

Generally, Associative-Commutative (AC) pattern matching plays the important part
in the world of functional programming, algebraic specification, verification as well as
term rewriting systems which help to implement the functional programming languages,
automated deduction [4] and hardware verification [6]. Term writing also can be viewed at
both mechanizing equational logic and computing in the initial model of a set of equations
[1].

Because of the limitation of pure term rewriting such as the associative and commutative
axioms can be able to make the systems leading to the never-ending sequences of rewrites.
To break down the condition of limited ability, one of the solution is that using congruence
classes of terms instead of term themselves. One of the implementations of this approach
is AC matching algorithm where AC is associative and commutative. The AC matching
problem is known as an NP-complete, then S. M. Eker had presented the AC-matching
algorithm [2] which runs productively on non-pathological problem instances. He had
introduced the way to find ordered normal form then decompose the matching problem
into the hierarchy of bipartite graphs. So solving these hierarchies get the matching
substitution after combining with semi-pure AC problems.

1.1 Background and Motivation
Nowadays human being heavily relies on software systems which are existed in every single
aspect of life. And it is inevitable that the modern software with cutting-edge technology
has supported our lives much better and easier. Technologies systems then play the vital
part in the development of mankind. This is undeniably the reason for increasing the
growing awareness of making such systems highly reliable. Formal verification is one
possible promising technique to make it possible to do so.

One formal verification technique is model checking that exhaustively traverses the
reachable states of the state formalizing software systems. Associative-Commutative (AC)
operators allow specifying state machines succinctly. To efficiently model check such
succinctly specified state machine, it is necessary to make AC pattern matching efficiently.

6

1.2 Thesis Outline
This master project report will follow the below outline:

Chapter 2: Preliminaries
This chapter shows the overview and some preliminaries to support for the main
algorithms, AC pattern matching algorithm.

Chapter 3: The general approach
This chapter shows the basic algorithm with the concrete example to help the re-
searcher understand the overview of Eker’s algorithm.

Chapter 4: Detailed description of algorithm
This chapter shows the implementation in pseudocode as detail as possible with the
clear explanation.

Chapter 5: The significant efficiency of Eker’s algorithm
This chapter explains the reason why his algorithm so fast and such the techniques
he used in his implementation.

Chapter 6: Conclusion and Future Work
This chapter shows the summary of our report and what we want to do in the near
future.

7

Chapter 2

Preliminaries

In this chapter, we will describe some basic definitions to support the readers get fa-
miliar with before moving to the main algorithm. It contains term writing, associative-
commutative pattern matching, bipartite graph, Maude, and meta-programming.

2.1 Term rewriting
Term rewriting is a surprisingly simple computational paradigm that is based on the re-
peated application of simplification rules. It is particularly suited for tasks like symbolic
computation, program analysis, program transformation [3]. Understanding term rewrit-
ing will help you to solve such tasks in a very effective manner, especially fully comprehend
the whole content of Eker’s algorithm in this master research project.

To apply the rewriting process in Figure 2.1 [3], we have to know several key words
below:

• The initial term T is the term that needs to be simplified.

• The rewrite rules are the rules that will be applied in rewriting process

• The rewriting process will take one or more rewrite rules as the input and gradually
reduced to a term that is cannot be simplified, then it is the output of the rewriting
process and it is normal form T’.

The next term will be emphasized is that pattern match. Given a term t and a ground
term s, the pattern match between t and s is the problem to decide whether there exists
a substitution σ such that σ(t) = s. t may be called a pattern. If that is the case, s is
called an instance of the pattern t and can match the pattern t with the substitution σ
[5].

We want to introduce rewrite rules. A rewrite rule is a pair (l, r) of terms l and r such
that the least sort of l is a sort of r, l is not a single variable, each variable occurring in
r occurs in l. A term rewriting system (TRS) is a set of rewrite rules. [5].

The simple example of term rewriting is shown below:

(7− 5)2 ∗ (1 + 2) = 22 ∗ (1 + 2) = 4 ∗ (1 + 2) = 4 ∗ 3 = 12

8

Figure 2.1: Rewriting process

As can be seen from the above example, the initial term T is (7− 5)2 ∗ (1 + 2), rewrite
rules are the rules of elementary arithmetic, and the normal form T’ is 12. Normally,
we will work with a term which is defined by the variable or function with zero or more
terms. In that case, the complex hierarchy of term can be constructed.

2.2 Associative-Commutative (AC) Matching
There are some concepts we will work with:

• Σ: Set of function symbols:

• χ: Set of variable symbols such as L, M, N,...

• Σ0: Set of constant symbols such as a, b, c, ... Note: Σ0 ⊂ Σ.

• ΣAC : Set of AC function symbols such as F, G, H,... Note: ΣAC ⊂ Σ.

• Σfree: Set of free function symbols such as f, g, h,... Note: Σfree ⊂ Σ.

• AC = {f(f(X, Y), Z)) = f(X, f(Y, Z)), f(X, Y) = f(Y,X)|f ∈ ΣAC}: Set of asso-
ciativity and commutativity axioms.

9

The AC matching problem describes as: given a term p (the pattern term) and a
term s (the subject term) we wish to find the substitutions σ such that AC ` pσ =
s. These substitutions are called matching substitutions, and the problem to find the
matching substitution is NP-complete, but a single solution can be found (if existing) in
the polynomial time by transforming the problem into a graph matching problem if the
pattern is restricted to being linear [2]. Via using this idea, we could able to apply into
non-linear patterns and view the AC matching as a special case of AC unification.

When an AC matching problem can be written as p ≤?
AC s with the subject s containing

no variables, then there are two more terms needed to comprehend are as follows:

• semi-pure problem: if p consists of a single AC function symbol with only variable
symbol arguments.

• pure problem: if the subject s of the semi-pure problem consists of a single symbol
with only constant symbol arguments.

2.3 Ordered Normal Form
The ordered normal form represents the equivalent relation agent for the congruence class
by converting terms to ordered normal form so that we can easily check for equality
modulo AC via syntactic equality. To deal with associative function symbols, we use
the way that grouping associative operators to the right (or left). Then we can get the
unique normal form via a multi-set of terms because the number of occurring of term is
perhaps more than once. So ordered normal form can be viewed as the unique syntactic
representation of multi-set of arguments when we use sorting and grouping inductively
extended to terms.

To implement ordered normal form, first we will compare the top symbols of two terms.
If it is different, the ordering on the term is defined by the ordering on their top symbols.
On the other hand, if it holds the same top symbols, we will divide the type of function
symbol into two cases: free function symbol and AC function symbol. Firstly, assuming
that there are two terms with the same top symbol is free function. Then f(t1, ..., tn) >
f(u1, ..., un) if there is k ∈ {1, ..., n} such that tj = uj for j ∈ {1, ..., k − 1} and tk > uk.
Secondly, assuming that there are two terms with the same top symbol is AC function.
Then F (tα1

1 , ..., t
αn
n) > F (uβ11 , ..., u

βm
m) if there is k ∈ 1, ...,min(n,m) such that tj = uj and

αj = βj for j ∈ 1, ..., k − 1 and it holds one of the below conditions:

1. tk > uk; or

2. tk = uk and αk > βk; or

3. tk = uk and αk = βk and m = k and n > k.

After applying all these criterion, flattening nested AC function then sorting and grouping
the AC function symbol, finally we get the ordered normal form. For examples:

10

• The ordered normal form of
F (F (a, F (c, F (g(a, b), g(a, c)))), F (b, F (b, F (g(b, a), g(c, b)))))

is
F (a, b2, c, g(a, b), g(a, c), g(b, a), g(c, b))

• The ordered normal form of
G(G(G(a,G(a,G(a, b))), G(g(b, a), h(a))), h(b))

is
G(a3, b, g(b, a), h(a), h(b))

• The ordered normal form of
F (F (F (F (a, a), F (b, F (a, b))), F (a, F (c, F (a, F (b, F (a, c)))))), a)

is
F (a6, b3, c2)

• The ordered normal form of
f(F (F (N,F (P, g(a, L))), F (N, g(M, b))),

G(G(G(U, a), G(h(Q), h(S))), G(G(g(T, a), N), U)), V)
is

f(F (g(a, L), g(M, b), N2, P), G(a, g(T, a), h(Q), h(S), N, U2), V) .

2.4 Bipartite Graph
A bipartite graph, is also called bigraph, is a special graph which is its vertices set V can
be divided into two disjoint subsets V = V1 ∪ V2, such that each edge connects a vertex
from one set to a vertex from another subset, in another word, it means every edge of
graph has the e = (x, y) where x ∈ V1 and y ∈ V2. Remember that, there are no vertex
both in V1 or V2 are connected.

Figure 2.2: Examples of bipartite graph

11

Chapter 3

The Basic Algorithm

Eker’s approach is not the easy idea to comprehend in a couple of minutes. That is the
reason why I want to shows the basic approach first. In this part, the simple example
will be introduced with step by step to support the researcher getting familiar with the
solving path. Eker’s algorithm contains four steps:

1. Change the form of pattern term and subject term into ordered normal form

2. Decompose the matching problem into a hierarchy of bipartite graphs.

3. Solve the bipartite graph hierarchy and build a system of semi-pure AC problems.

4. Solve the system of semi-pure AC problems to get a matching substitution.

It can be seen that the first step is not complicated and be introduced in the previous
chapter. In the second step, with the support from additional data, we can make the
hierarchy of bipartite graphs from the matching problem. In the third step, it is necessary
repeated to extract all the possible sets of solutions to the bipartite graph matching
problem.

We will show all steps with the general explanation using the below example [2]:
f(F (F (N,F (P, g(a, L))), F (N, g(M, b))),

G(G(G(U, a), G(h(Q), h(S))), G(G(g(T, a), N), U)), V) ≤?
AC

f(F (F (a, F (c, F (g(a, b), g(a, c)))), F (b, F (b, F (g(b, a), g(c, b))))),
G(G(G(a,G(a,G(a, b))), G(g(b, a), h(a))), h(b)), F (a, b))

It is clear from the example that it is not easy to solve our example immediately
because of consisting of many different and connected parts. Then the key idea is to
divide the complex hard-to-solve problem (the original AC pattern matching) into the
multiple easier-to-solve problems called AC semi-pure problem systems which we will
deal with in step three and four.

3.1 Ordered Normal Form
In the previous chapter, we showed that it is able to flatten the terms involving associative
and commutative functions symbols, then convert it to a normal form. It may produce

12

a new term with fewer characters. After these steps, sort and group term’s arguments
will create the ordered normal form. Applying these methods in our problem, we get the
ordered normal form as follow:

f(F (g(a, L), g(M, b), N2, P), G(a, g(T, a), h(Q), h(S), N, U2), V) ≤?
AC

f(F (a, b2, g(a, b), g(a, c), g(b, a), g(c, b)), G(a3, b, g(b, a), h(a), h(b)), F (a, b))

3.2 Decomposition to bipartite graphs
From an overall perspective, it is very helpful and essential to get the knowledge of subterm
or subproblem before describing bit by bit inherently recursive the way of decomposing
to a bipartite graph of an AC matching problem. The definition of the level of a subterm
within a term is the number of AC functions above it. And the definition of the level of a
subproblem (p′, s′) within the whole AC matching problem (p, s) is the level of p′ within
p.

Figure 3.1: One level of an AC matching problem

As is illustrated from the Figure 3.1, it highlights one level in the hierarchical decom-
position of an AC matching problem with full components with some notices as follow:
only one rectangle represents the further decomposition, the double rectangles reveals the
possibly empty set of objects. Starting from the original AC matching problem which may
contain the AC subproblem and the variable bindings, there is the first step to determine
how many subproblems, how many variable bindings it has and keep in mind that it is
also understandably conceivable. The way of determination of this issue is that confirm
the type of pattern’s top symbol. If the non-AC top symbol is held by the pattern, it
is called ”skeleton” and we treat them all the arguments which are under top symbol
in order as the usual way. As the consequence of solving non-AC skeleton, the matching
problem results in either the failure (if there is nothing match) or else leaving with a set of
subproblem whose top symbols are AC and a set of variable bindings. There is a case that
one or both of these sets are empty. Applying these principles to analyze our example,
we get the set of variable bindings with single-member

V = F (a, b)
and the set of subproblems with AC top symbols containing the two members

F (g(a, L), g(M, b), N2, P) ≤?
AC F (a, b2, g(a, b), g(a, c), g(b, a), g(c, b)) (1)

G(a, g(T, a), h(Q), h(S), N, U2) ≤?
AC G(a3, b, g(b, a), h(a), h(b)) (2)

If we find a variable clash (the same variable exists in the different bindings) then we have
failure. When it comes to the decomposition of AC subproblems, we need to consider the
arguments type directly under the AC top symbol as follows:

13

• constant in the pattern will be deleted from both pattern and subject term. After
the deletion, there must be no constant in the pattern term. If there is any constant
left in the pattern term, then there is a failure. Because we cannot match any
constant in the pattern term to the subject term. Only variables and function
symbols can be in the patter term after this step.

• function symbol (AC or free): for each function symbol ψ, we construct the bipartite
graph containing pattern nodes (set of nodes) and subject nodes (set of nodes) under
the same function ψ with the condition that the multiplicity of the pattern term
must be lesser or equal to the multiplicity of the subject term, now the pair of
subject node and pattern node is making the new problem with the same form as
the original problem which can be recursively decomposed. If the pattern nodes
have no corresponding subject node, there is a failure. In addition, if the subject
node has no corresponding pattern node (e.i undeleted constants, terms headed by
function symbols which is no graph), then it is called unmatched subject term.

Figure 3.2: Decomposition of subproblem 1]

Figure 3.3: Decomposition of subproblem 2

Following these instructions and apply to our example, we can successfully decompose
the subproblem 1, the subproblem 2 and show the result in Figure 3.2 and Figure 3.3
corresponding.

14

3.3 Solving the bipartite graph hierarchy
The goal of this step is to solve the bipartite graph hierarchy which consists of pattern
nodes and subject nodes to make a system of semi-pure AC problems and the compatible
set of solutions.

In term of finding an effective way to deal with bipartite graph matching problems,
there is an answer that we can select each pattern node in turn and backtrack on failure.
Whenever getting a successful solution by selecting an edge, all variable binding below and
all graph problem can be solved when matching edge is found. By contrast, we conduct
the backtracking or failure because of variable clashes. If variable clashes are found, it
means the further path is not the solution, so we need to choose another path to solve by
selecting another edge for this pair of pattern node and subject node. It also means that
all the variable bindings while solving the bipartite matching problem with the wrong
edge is not right anymore so that we need to retract. When finishing this step, if there
is no failure, then the solution and a semi-pure AC problems are found.The semi-pure
problems are constructed by the left AC problem in the left-hand side combining with
unmatched subject subterm or any subject node left over from bipartite graph matching
problem.

With regard to our example, in case of the decomposition of the subproblem 1, there
are two pattern nodes and four nodes in subject side. As can be seen from the Figure
3.2, there are two edges from g(a, L) pattern node to g(a, b) and g(a, c). And there are
two edges from g(M, b) pattern node to g(a, b) and g(c, b). No edge is connected to g(b, a)
subject node, it means this node is surely added to the right hand side of semi-pure prob-
lem afterwards. If we choose the first node from g(a, L) to g(a, b) to make an edge, then
the next edge is chosen from g(M, b) must be to g(c, b) even if there is an edge between
g(M, b) and g(a, b). The reason for this is that the multiplicity of both g(a, L) and g(a, b)
are 1, after choosing an edge, we have to decrease the multiplicity from both nodes. So
that we cannot make an edge between g(M, b) and g(a, b) anymore, if the multiplicity of
subject node (g(a, b)) is greater than pattern node (g(a, L)), then there is a case, but in
this case, there is no chance. All of pattern nodes is now chosen the edge already with
leaving two subject nodes are g(a, c) and g(b, a) which will be added to semi-pure problem
with unmatched subterms. From the first edge, we have the variable bindings 〈L, b〉, and
from the second edge, we have 〈M, c〉. And the semi-pure problem consists N2 and P
in the left hand side, a, b2, g(a, c) and g(b, a) in the right hand side. We have the first
semi-pure problem as follow:

F (N2, P) ≤?
AC F (a, b2, g(a, c), g(b, a) .

With the same strategy, the two other choices of edges when an selected edge is from
g(a, L) to g(a, c), the g(M, b) pattern node can connect to g(a, b) or g(c, b). It results two
other sets of variable bindings and semi-pure problems as follow:

{〈L, c〉, 〈M,a〉}, F (N2, P) ≤?
AC F (a, b2, g(b, a), g(c, b))

{〈L, c〉, 〈M, c〉}, F (N2, P) ≤?
AC F (a, b2, g(a, b), g(b, a))

In terms of the composition of the subproblem 2 applying the previous rule, it results
two sets of variable bindings and semi-pure problem as follow:

{〈T, b〉, 〈Q, a〉 〈S, b〉}, G(N,U2) ≤?
AC G(a2, b)

15

{〈T, b〉, 〈Q, b〉 〈S, a〉}, G(N,U2) ≤?
AC G(a2, b)

Thanks to the results of decomposition of subproblem 1 with three semi-pure problems
and subproblem 2 with two semi-pure problems, we can build totally 3 × 2 = 6 possible
semi-pure AC systems.

3.4 Solving the semi-pure AC system
In the fourth step, it will be repeated in order to extract all matching substitutions from
the semi-pure AC system which is the result of step three. We will consider the solution
under three cases below.

Firstly, we will show the solution in general point of views. The easiest systems are
that it consists of an only single semi-pure AC problem. Therefore, if we replace the
term headed by AC top symbol on the right-hand side by the fresh constants then the
semi-pure AC problem will be considered as the pure AC problem following by:

F (Xα1
1 , ..., Xαn

n) ≤?
AC F (cβ11 , ..., c

βm
m)

Keep in mind that each variable can be assigned to one or more constants, if more than
one constant are assigned to one variable, then all the assigned constants will be treated
as the arguments under AC top symbol. Because the multiplicity of the left-hand side
must be equal to the right-hand side in any case, so that the solution must satisfy the
below Diophantine: α1x1,1 + . . .+ αnxn,1 = β1

...
...

...
α1x1,m + . . .+ αnxn,m = βm

Condition for all variables with i ∈ {1, ..., n} because every variables must be assigned

to something:
m∑
j=1

xi,j ≥ 1.

Secondly, another striking feature is that the consists of k semi-pure AC problem in
semi-pure AC systems occur, then we will get the same Diophantine formulation with
k ×m equations.

Lastly, the most complicated case, the semi-pure AC system contains many semi-pure
problems with different AC top symbols. In this case, the beginning hypothesis about a
replacement of term cannot work anymore. It means the variables occur under at least
two AC semi-pure problem with different AC top symbol must be assigned to only one
term. If not, there is a failure unless one of the arguments on the right-hand side of
one semi-pure AC problem has as its head the AC top symbol of another semi-pure AC
problem. Here is the example of the exception.

F (L,M) ≤?
AC F (a, b, c)

16

G(L,N) ≤?
AC G(F (a, b), c, d)

As can be seen from the semi-pure AC system, both a and b can be assigned to L in
the first semi-pure AC problem, then it means L = F (a, b) because F is the top function
symbol of the first problem. One more thing is that in the second problem, the term
F (a, b) occurs in the right hand side under G top symbol. So it is possibly a solution for
our assignment. After all, we have to matching substitution below.

L = F (a, b),M = c,N = G(c, d)

Another needed step to make clear should be that we divide the type of variable into two
classes: owned variable and shared variable. The owned variable is the variable occurring
under only single function symbol. And shared variable is the variable occurring under two
or more different function symbol. Whenever the assignment is made, the multiplicities
of the related terms must be reduced, and the procedure will continuously conduct to find
a solution or facing the failure.

As we know that we have 6 possible semi-pure AC systems with the same solving path.
So we take the first system into our consideration as follow:

F (N2, P) ≤?
AC F (a, b2, g(a, c), g(b, a))

G(N,U2) ≤?
AC G(a2, b)

The type of variables:

• Shared variable: N

• Owned variable under F is P , owned variable under G is U

Then we can show the above system in the tabular form:

N P U a b g(a, c) g(b, a)
F 2 1 0 1 2 1 1
G 1 0 2 2 1 0 0

It is obviously clear from the tabular form that N is assigned to b because N is the shared
variable, it means the multiplicity of N has to satisfy both in F and G function, if not,
there is a failure. So that b is the only choice of N in this case. Then we have a new
tabular form:

N P U a b g(a, c) g(b, a)
F 0 1 0 1 0 1 1
G 0 0 2 2 0 0 0

Combining with the variable bindings from the previous steps, we get the matching
substitution for the first semi-pure AC system:

L = b M = c N = b P = F (a, g(a, c), g(b, a))
Q = a A = b T = b U = a

17

Chapter 4

Detailed Description of Algorithm

This chapter supports the basic algorithm via giving the information about all steps with
pseudocode and explain comprehensively.

From a general perspective, the data structure of hierarchy of bipartite graph is recursive
which is demonstrated by the form of a problem under edge between pattern node and a
subject node is the same form with original AC matching problem. Consequently, it leads
to using recursion for traversing bipartite graph rather than search space. In the solving
procedure, we wish to find one solution first then based on the previous solution to figure
out the next solution. If not, there is a failure, then we backtrack to an original matching
problem to discover another solution. As we know, the recursive procedure costs a lot
of time and effort. To limit this weak point, we only use recursive for traversing data
structure itself. In another part it is needed to be done with non-recursive way, we use
stack frame for the calling procedure (caller) and it is accessible by the direct route.

4.1 Notational considerations
Because of the complexity of Eker’s algorithm, to explain and make it intelligible and
comprehensible, we highlight the pseudocode and standard mathematical notation with
some supported notation which will be defined below.

Firstly, we want to use the presupposition that there is a top_symbol function of a
term such that top_symbol(t) is the outermost function symbol of term t, or t itself if
t is a constant or a variable. The nil value is also used to emphasize the empty set or
no return value. When it comes to an assignment, we want to distinguish between the
symbol ′ :=′ and ′ ⇐′. The former stands for assignments to temporary and the latter
stands for destructively update part of a complicated data structure.

Secondly, to make the intricate structures look more friendly, there are some container
data types that it would be helpful:

• tuples/records: it is the same usual meaning as tuple notation in mathematical
field, now we also use it to form the object, contain the ordered list of elements.
Examples: h = 〈A,B〉, b = 〈x, t〉, tm = 〈t, α〉.

18

• sets: the unordered list of unique elements, the same meaning in its usual notation.
Example: {a, b, c}

• multisets: the same meaning with set except allowing duplicated elements. Notice
that the set is also multiset. Example: {a, a, b}

• stacks: the collection of elements containing two principle operation which are push
and pop to add and remove the element.

• arrays: the container of elements with index which is can accessible by using a[i]
notation with index i.

Last but not least, there are some supported operations which use to traverse our data
types:

• first(s): return the first element in s.

• last(s): return the last element in s.

• next(s,e): return the element following e in s.

• previous(s,e): return the element preceding e in s.

4.2 Conversion to ordered normal form
The first step of converting to ordered normal form is flatten the term using the algorithm
illustrated in Figure 4.1 [2].

It is clear from the pseudocode for flattering a term that there are four cases depending
on the type of terms. If the term’s type is

• constant or variable, then return the constant or variable itself respectively.

• free function, then return the flattening of each argument under free function recur-
sively.

• AC function, then there are a little more complicated. First we need to flatten two
arguments as t1 and t2 under AC function symbol. After that, both of arguments
have the same top symbol with the original term, then it obviously combines all
the under t1 and t2 to under the original term’s top symbol after removing the top
symbol of t1 and t2. If one of argument holds the different top symbol with the
original top symbol, the combining the different term itself with all argument of the
other term under the top symbol of the original term. Otherwise, just keep the t1
and t2 itself under the top function symbol.

After flattening all the terms, we continuously sort the argument list of AC operators
and combine identical subterms which show in details in Figure 4.2 [2]. If the type of
term is

19

1: flatten(x) where x ∈ χ is return x.
2: flatten(c) where c ∈ Σ0 is return c.
3: flatten(f(t1, ..., tn)) where f ∈ Σfree is return f(flatten(t1), ..., f latten(tn)).
4: flatten(F (t1, t2)) where F ∈ ΣAC is
5: t1 := flatten(t1);
6: t2 := flatten(t2);
7: if t1 = F (t

′
1, ..., t

′

n′) then
8: if t2 = F (t

′′
1 , ..., t

′′

n′′) then
9: return F (t

′
1, ..., t

′
n, t

′′
1 , ..., t

′′

n′′)
10: else
11: return F (t

′
1, ..., t

′
n, t2)

12: end if
13: else
14: if t2 = F (t

′′
1 , ..., t

′′

n′′) then
15: return F (t1, t

′′
1 , ..., t

′′

n′′)
16: else
17: return F (t1, t2)
18: end if
19: end if

Figure 4.1: flattening a term

• constant or variable, then return the constant or variable itself in order given.

• free function, then return the ordered normal form of each argument under free
function recursively such as f(onf(t1), ..., onf(tn)).

• AC function onf(F (t1, ..., tn)), then the first step is that make the ordered normal
form of all arguments under the AC function from onf(t1) to onf(tn), then sort the
argument list of AC operators using merge sort as (t1, ..., tn) := mergesort(onf(t1), ..., onf(tn)).
Then we try to group the same subterm together to make the term shorter by in-
creasing the multiplicity of subterms.

4.3 Building the graph hierarchy

4.3.1 The graph hierarchy data structure

From now on, we assume that all terms have been transferred into ordered normal form.
And basically the graph hierarchy data structure looks like the Figure 3.1 [2] which had
shown in the last chapter. In details, it will be described in the Table 4.1.

20

1: onf(x) where x ∈ χ is return x.
2: onf(c) where c ∈ Σ0 is return c.
3: onf(f(t1, ..., tn)) where f ∈ Σfree is return f(onf(t1), ..., onf(tn)).
4: onf(F (t1, ..., tn)) where F ∈ ΣAC is
5: (t1, ..., tn) := mergesort(onf(t1), ..., onf(tn));
6: u1 := t1 ; α1 = 1; k := 1;
7: for i := 2 to n do
8: if ti = uk then αk := αk + 1
9: else k := k + 1; uk = ti; αk := 1 end if

10: end for
11: return F (uα1

1 , ..., u
αk
k)

Figure 4.2: Converting a flattened term to ordered normal form

Name Notation Explanation

Graph hierarchy: h h = 〈A,B〉 A = h.ac_subproblems: a set of AC subproblem
B = h.bindings: a set of variable bindings

Variable bindings: b b = 〈x, t〉 x = b.variable: a variable
t = b.term: a term

AC subproblem: a a =
〈f, V, L,G〉

f = a.top_symbol: an AC symbol function
V = a.variables: a set of term-multiplicity pairs

where all term are variable
L = a.leftovers: a set of term-multiplicity pairs
G = a.graphs: set of bipartite graph problem

Term-multiplicity
pair: tm tm = 〈t, α〉 t = tm.term: a term

α = tm.multiplicity: a positive integer

Biparte graph
problem: g g = 〈f, P, S〉

f = g.top_symbol: a function symbol
P = g.pattern_nodes: a set of pattern nodes

S = g.subject_nodes: a set of term multiplicity-pairs

Pattern node: pn pn =
〈p, α, E, c〉

p = pn.term: a term
α = pn.multiplicity: a positive integer

E = pn.edges: a set of edges
c = pn.current_edge: an edge drawn from E,

used to traverse graph hierarchy and
hold the current state with initial value being nil

Edge: e e = 〈s, h〉
s = e.subject: a term such that for some β
〈s, β〉 is an element of g.subject_nodes
h = e.consequences: a graph hierarchy

Table 4.1: Data structure of graph hierarchy

21

4.3.2 The construction algorithm

1: build_hierarchy(t, u, B) is
2: h := simplify(t, u, B);
3: if h = fail then
4: return fail
5: end if ;
6: A′ := ∅;
7: for each 〈f, V, L,G〉 ∈ h.ac_subproblems do (*for each AC subproblem*)
8: G′ := ∅;
9: for each 〈f ′, P, S〉 ∈ G do (*for each bipartite graph*)

10: P ′ := ∅;
11: for each 〈p, α, ∅, nil〉 ∈ P do (*for each pattern node*)
12: E := ∅
13: for each 〈s, β〉 ∈ S do (*for each subject node*)
14: if β > α then
15: h2 := build_hierarchy(p, s, B ∪ h.bindings)
16: if h2 6= fail then
17: E := E ∪ {〈s, h2〉}
18: end if
19: end if
20: end for
21: if E = ∅ then (*unmatched pattern*)
22: return fail
23: end if ;
24: P ′ := P ′ ∪ {〈p, α, E, nil〉}
25: end for
26: G′ := G′ ∪ {〈f ′, P ′, S〉}
27: end for
28: A′ := A′ ∪ 〈f, V, L,G′〉
29: end for
30: return 〈A′, h.bindings−B〉 .

Figure 4.3: Building the match object

In the first period, the build_hierarchy procedure represented in Figure 4.3 [2] takes
a pattern term p, a subject term s, and an initially empty set of variable bindings B as
its arguments in order to generate all level of hierarchy of bipartite graph and construct
their data structure. The first command it does is to call the simplify procedure shown
in Figure 4.4 [2] via h := simplify(t, u, B). The output of simplifies procedure is either
fail if the variable clashes are found and there is no possible match or the single level of
graph hierarchy with empty edge sets. The purpose of simplify function is to recursively
traverse in the topmost level of the pattern term, the subject term, then try to match

22

1: simplify(x, t, B) where x ∈ χ is
2: if (∃〈x′, t′〉 ∈ B).[x′ = x ∧ t′ 6= t] then return fail else return 〈∅, {(x, t)}〉
3: end if
4: simplify(c, t, B) where c ∈ Σ0 is
5: if c = t then return 〈∅, ∅〉 else return fail end if
6: simplify(f(p1, ..., pn), t, B) where f ∈ Σfree is
7: if t = f(s1, ..., sn) then
8: A := ∅
9: for i := 1 to n do

10: h := simplify(pi, si, B);
11: if h = fail then
12: return fail
13: end if
14: B := B ∪ h.bindings; (*collect bindings*)
15: A := A ∪ h.ac_subproblems (*collect AC subproblems*)
16: end for
17: return 〈A,B〉
18: else
19: return fail
20: end if
21: simplify(F (pα1

1 , ..., p
αn
n), t, B) where F ∈ ΣAC is

22: if t = F (sβ11 , ..., s
βm
m) then

23: V := {〈pi, αi〉|pi ∈ χ}; (*collect pattern variables*)
24: for each i such that pi ∈ Σ0 do (*eliminate pattern constants*)
25: if (∃j).[sj = pi ∧ βj ≥ αi] then βj := βj − αi else return fail end if
26: end for
27: G := ∅
28: for each f ∈ Σ − Σ0 such that (∃i).[topsymbol(pi) = f] do (*build bipartite

graphs*)
29: P := {〈pj, αj, ∅, nil〉|topsymbol(pj) = f}; (*pattern nodes*)
30: S := {〈sj, βj〉|topsymbol(sj) = f}; (*subject nodes*)
31: G := G ∪ {〈f, P, S〉} (*add bipartite graph with no edges*)
32: end for
33: L := {〈si, βi〉|(∀〈f, P, S〉 ∈ G).[top_symbol(si) 6= f]∧βi > 0}; (*collect leftover

subject terms*)
34: return 〈{〈F, V, L,G〉}, ∅〉
35: else
36: return fail
37: end if

Figure 4.4: Matching the non-AC skeleton

23

function symbols, variables, and constants. The input of simplify function is the same
as the parameters of build_hierarchy function as (x, t, B), x is the pattern term, t is the
subject term, and B is the variable bindings from build_hierarchy procedure.

Firstly, if the pattern term x is variable, then we look for the variable bindings in B
to find the existing of variable clashes comparing with 〈x, t〉. If any, return fail, if not,
return the graph hierarchy with an empty set of subproblem and set of variable binding
containing single item {〈x, t〉}.

Secondly, if the pattern term x is constant such as c, then if c is the same value with
subject term t, then return empty of graph hierarchy 〈∅, ∅〉. Otherwise, it returns fail
because of nor existing of variable binding neither graph hierarchy.

Thirdly, in case the pattern term is the term with free function symbol as the top
function formed f(p1, ..., pn), if the subject term t is not the term with free function f ,
then return obviously fail. There is no chance of finding a matching. On the other
hand, if the subject term t holds the top symbol as the free function such as f(s1, ..., sn),
then for each pair parameters pi and si combining with B, creating an empty set of AC
subproblem A, we recursively operate the function simplify(pi, si, B). Then, we collect
all the variable bindings into B and AC subproblems into A. After all, we return the
bigraph hierarchy 〈A,B〉.

Lastly, if the pattern term is under AC function symbol as simplify(F (pα1
1 , ..., p

αn
n), t, B).

So that the subject term must be the same form as the pattern term with F as the AC
function symbol unless it returns fail. The first move is that we collect the pattern
variable containing multiplicity which is stored in set V . Then, it is needed to eliminate
pattern constant by comparing constant between pattern terms and subject terms and
decrementing the multiplicity with the term duplication. Then, for each pair of pattern
subterms and subject subterms, at that time we build the bipartite graph G with no edge
from pattern subterms as the pattern nodes P and subject subterms as the subject nodes
S. Next, we collect the leftover subject term L. The last step is to return 〈F, V, L,G〉
with an empty variable binding set.

4.4 Solving the graph matching problems
The answer of finding all the substitutions for the root AC matching problem is extremely
complicated. One of the possible solving paths, as we know, is to divide the original
pattern matching into the multiple levels of bipartite graph called graph hierarchy. The
problem is solving the whole graph hierarchy is actually not easy. So that we come up
with solving the single bipartite graph matching problem g = 〈f, P, S〉 is the temporary
step forward to the final solution. And the result of bipartite graph problem is called
a localsolution which is the assignment between the pattern node in P and the subject
node in S with two required conditions [2]:

1. The subject node sn is assigned to pn is the target of one of the edges in pn (recall
that edges are associated with each pattern node rather than the graph).

24

1: solve_hierarchy(h, r) is
2: if r = true then (*look for a first solution*)
3: if (∃(x, t) ∈ solution, 〈x′, t′〉 ∈ h.bindings)[x = x′ ∧ t 6= t′] then (*variable

clash*)
4: return false
5: end if
6: solution⇐ solution] h.bindings; (*assert local bindings*)
7: p := first(h.ac_subproblems)
8: else(*backtrack to look for another solution*)
9: p := last(h.ac_subproblems)

10: end if
11: while p 6= nil do
12: r := advance_ac_subproblem(p, r)
13: if r = true then
14: p := next(h.ac_subproblems, p) (*examine next subproblem*)
15: else
16: p := previous(h.ac_subproblems, p) (*backtrack to previous subproblem*)
17: end if
18: end while
19: if r = false then (*failed to find a solution*)
20: solution⇐ solution h.bindings (*retract local bindings*)
21: end if
22: return r

Figure 4.5: Solving a graph hierarchy

2. The sum of the multiplicities of all of the pattern nodes to which sn is assigned is
less or equal to the multiplicity of sn.

From the condition 1, we understand that we need to keep track of the set of pattern
nodes. Then fixing the chosen edge from pattern node to subject node is to create the
possible smaller graph hierarchy with its local solution (may be null) and recursively
search through the graph hierarchy, after that we can still keep the pattern node and
change the subject node to create a new possible graph hierarchy until all elements in set
of pattern nodes and set of subject nodes have been traversed. The most bottom level
and of the graph hierarchy is the graph hierarchy containing no bipartite graph problem
which is able to solved easily without serious issues. Contrastly, we have to define the
local solution of the graph problem through the consequence of all the bottom level of
the graph problem’s solution of its hierarchies, then the solution is the union set of these
consequence sets.

Before going to the further step, we need to know how to solve the simplest graph hier-
archy h = 〈A,B〉 containing no bipartite graph problem. A is the set of AC subproblem
which A’s element is ai = 〈f, V, L, ∅〉 ∈ A (i = 0→ n, n is the number of AC subproblem
in A). For each AC subproblem ai, we can make the semi-pure problem with f as the head

25

1: advance_ac_subproblem(a, r) is
2: if r = true then (*look for a first solution*)
3: g := first(a.graphs)
4: else(*backtrack to look for another solution*)
5: pop(semipure); (*delete old semipure equation*)
6: g := last(a.graphs)
7: end if
8: while g 6= nil do
9: r := advance_graph(g, r);

10: if r = true then
11: g := next(a.graphs, g) (*examine next graph*)
12: else
13: g := previous(a.graphs, g) (*backtrack to the previous graph*)
14: end if
15: end while
16: if r = true then (*found a solution*)
17: R := {〈s, β〉|(∃g′ ∈ a.graphs)[〈s, β〉 ∈ g′ ∧ β > 0]}; (*gather unused subject

terms from graphs*)
18: push(semipure, 〈a.topsymbol, a.variables, a.leftovers ∪ R〉) (*create new

semipure equation*)
19: end if
20: return r.

Figure 4.6: Solving an AC subproblem

function, V as arguments in the left-hand side and L as the arguments in the right-hand
side. From those semi-pure problem combining with variable bindings B, we have the
solution of graph hierarchy h. For the more complex graph hierarchy which is including
bipartite graph problem, we need to define recursively that each edge of bipartite graph is
the lower level of graph hierarchy until the top bottom level to reach the simplest graph
hierarchy which contains no bipartite graph, and the variable bindings B is the union of
all variable bindings in each graph hierarchies which is always consistent, it means that
for the same variable, it musts be assigned to the same term in whole variable bindings.

For the implementation of solving hierarchy, we use solve_hierarchy(h, r) procedure
which h is the graph hierarchy, r is the flag whose value is true if we are looking for
further step of the first solution, false if we change the direction of finding another so-
lution. Inside the procedure solve_hierarchy(h, r), we call the sub procedure named
advace_ac_subproblem(a, r) with AC subproblem as the first argument and flag as
the second argument. Then, as the inner part of advace_ac_subproblem(a, r), we call
advace_graph(g, r) with a graph as the first argument and the second argument is the
flag r coming from a super procedure. These three recursive procedures will traverse all
the level of the hierarchy to create the variable bindings called solution and a stack of
semipure problems which having the semi-pure AC problems from solving these bipartite

26

1: advance_graph(g, r) is
2: if r = true then (*look for a first solution*)
3: pn := first(g.pattern_nodes)
4: else(*backtrack to look for another solution*)
5: pn := last(g.pattern_nodes)
6: end if
7: while pn 6= nil do
8: if r = true then (*look for a first match*)
9: e := first(pn.edges)

10: r := false (*initially we have no match*)
11: else(*see if current match can be solved in a new way*)
12: e := pn.current_edge;
13: if solve_hierarchy(e.consequences, flase) = true then
14: r := true (*current match is still good*)
15: else(*look for another match*)
16: sn := 〈s, β〉 ∈ g.subject_nodes such that s = e.subject;
17: (*destructively update g.subject_nodes through this reference*)
18: sn.multiplicity ⇐ sn.multiplicity + pn.multiplicity; (*restore old sub-

ject’s multiplicity*)
19: e := next(pn.edge, e)
20: end if
21: end if
22: while r = false ∧ e 6= nil do
23: sn := 〈s, β〉 ∈ g.subject_nodes such that s = e.subject;
24: (*destructively update g.subject_nodes through this reference*)
25: if sn.multiplicity ≥ pn.multiplicity ∧

solve_hierarchy(e.consequence, true) = true then
26: pn.current_edge⇐ e;
27: sn.multiplicity ⇐ sn.multiplicity − pn.multiplicity;
28: r := true (*we have a successful match*)
29: else
30: e := next(pn.edges, e)
31: end if
32: end while
33: if r = true then (*we found a match - advance to next pattern node*)
34: pn := next(g.pattern_nodes, pn)
35: else(*we did not find a match - backtrack to previous pattern node*)
36: pn := previous(g.pattern_nodes, pn)
37: end if
38: end while
39: return r.

Figure 4.7: Sovling a bipartite graph problem

27

graphs. The main idea of figuring out the solution is that we try to find the first solution
with testing the variable clashes continuously and update destructively the solution, if at
any time we occur the variable clashes, we change the direction to find another solution.

The first procedure is solve_hierarchy(h, r) described in Figure 4.5 [2] aiming to solve
the graph hierarchy h. The first step is checking flag r, it means looking for a first solution.
If flag is true, we continuously check the variable clashes in h.bindings, if found, return
false immediately. If not, we do destructively update the global multiset of bindings
solution with h.bindings. Then we traverse the first AC subproblem. If the flag is false,
we traverse the last AC subproblem. The next step is dealing with AC subproblems in a
loop, for each AC subproblem, it will call advance_ac_subproblem to operate and return
the value to flag r. Appling the unified strategy, we will try with the next AC subproblem
if the flag is true, if not, backtrack to the previous AC subproblem. After all, if the flag is
false, it means that we need to retract the local bindings by substracting the h.bindings
in the global solution set, then destructively update solution.

The second procedure is advance_ac_subproblem highlighted in Figure 4.6 [2] to solve
the AC subproblem obviously. The first step is checking flag r, we will look for the first
solution by solving the first graph in a.graphs set. If not, we backtrack to look for another
solution through deleting the top the old semi-pure equation traversing the last graph in
a.graphs set. The second step is the loop calling advance_graph to solve all the graphs
one by one. If the result of advance_graph procedure returns true, we will examine
next graph, if not, we backtrack to the previous graph. After traversing all graphs, if
the flag is still true, we will gather the unused subject terms from graphs and create the
new semi-pure equation which contains the top symbol, the variable, the leftover and the
unused subject terms from graphs.

The last procedure is advancegraph shown in Figure 4.7 [2] which solves the bipartite
graph problem via choosing the suitable edge between a pattern node one by one and a set
of subject nodes. The first step is depending on the value of the flag, if it is true, we look
for the first solution, if not, backtrack to look for another solution by changing the pattern
node from the first of element into the last element in pattern nodes set. The next step
is to find the lower graph hierarchy by choosing an edge. We continuously check the flag,
if it is false, we have to solve the matching edge in a new way by calling again procedure
solve_hierarchy with current edges being the graph hierarchy as the first argument and
the false flag as the second argument. If the result returns true, it means the current
match is still good. If not, we need to destructively update set of subject nodes, restore
old subject’s multiplicity and choose the next edge to search again. Then, we go to loop
to find the suitable current edge while the flag is false and the current edge is not null.
We check whether the multiplicity of a subject node is greater than the multiplicity of
pattern node and the result of solve_hierarchy of current edge with flag true still return
true. Hence we update the current edge, subtract the multiplicity of the subject node by
the multiplicity of pattern node and reset the value of the flag is true because of a new
successful match found. Otherwise, we choose another pattern node to solve. After all, if
we find the match, we continue with the next pattern node, if not, we backtrack to the
previous node.

28

Overall, because of the finite of the root graph hierarchy, we finally possibly can put
an end to this recursive procedure. The first case is that there is no consistent solution
and return false. By contrast, we have the multiset solution containing the variable
bindings and the stack semipure containing the semi-pure AC problems associated with
a consistent solution of h.

4.5 Rebuilding the semi-pure AC system
For the better efficiency, we will rebuild the semi-pure AC system which is the result of
solving the graph matching problem step. We transform the semi-pure system into a tuple
s = 〈V, T,E〉 whose are:

• s.variable = V : a set of variable-records which is v = 〈i, o, sa,ms,ma, cs, ca〉 ∈ V

– v.index = i: the index unique of the variable

– v.owner = o: if v is the owned variable, v.owner = shared: if v is the shared
variable.

– v.singleassigment = sa: a term index for the assignment of variable v

– v.max_size = ms: an integer, the maximum assignment size to variable v

– v.current_size = cs: an integer, the current assignment size to variable v

– v.max_assign = ma: an arrays of integers indexed by term indices.

– v.current_assign = ca: an arrays of integers indexed by term indices.

• s.terms = T : a set of term-record which is t = 〈i, I〉

– t.index = i: an index unique to the term

– t.subterm_indices = I: a set of index-multiplicity pairs for the subterms of
the term. (if the term is headed by AC function symbol and the subterm is
not under as the right hand side term, so that the value of t.subterm_indices
is ∅)

• s.equations = E: a set of equation-records which is e = 〈f, vm, tm〉 ∈ E.

– e.top_symbol = f : an AC function symbol

– e.variable_multiplicity: an array of integers indexed by variable indices.

– e.term_multiplicity: an array of integer indexed by term indices.

4.6 Solving the semi-pure AC system
From an overall perspective, the solving the semi-pure system containing six procedures
to find the possible assignments of variables. We also keep the strategy that applied in

29

the previous procedures that taking the flag r for the direction, r = true if we want to
find to the first solution, r = false if we want to find another solution. And the result of
flag r also respect the output of our problem, r = true if we found the solution, if not,
we did not find the solution.

The first procedure is solve_semipure shown in Figure 4.8 [2] which the most important
procedure and it will call the remaining procedure inside itself. Then, as we mentioned
before, it will check the flag for the direction, we will look for a first solution if the flag is
true, then try to find the assignment of the first variable, if not, we will backtrack to look
for another solution, then try to find the assignment of the last variable. After that, we
need to check whether the chosen variable is the owned variable or the shared variable to
call the suitable procedure for each type of variable. After assignment for all the variables,
if there are any unused term that is not be assigned to any variable, it means that the
solution to a final variable is not suitable, then set the flag to false for a return value. If
there is no unused term is available, we continuously check the return value of the flag, if
it is true, we will examine the next variable, if not, we do the backtrack to the previous
variable. We will repeat this loop until the last variable.

1: solve_semipure(s, r) is
2: if r = true then (*look for a first solution*)
3: v := first(s.variables)
4: else(*backtrack to look for another solution*)
5: v := last(s.variables)
6: end if
7: while v 6= nil do
8: if v.owner = shared then
9: r := advanced_shared(v, s.terms, s.equations, r)

10: else
11: r := advance_owned(v, s.terms, s.equations, r)
12: end if
13: if next(v) = nil ∧ (∃e ∈ s.equations, t ∈ s.terms).[e.term −

milipilicty[t.index] 6= 0] then
14: r := false (*solution to final variable fails if there is an unused term*)
15: else
16: if r = true then
17: v := next(s.variables, v) (*examine next variable*)
18: else
19: v := previous(s.variable, sv) (*backtrack to previous variable*)
20: end if
21: end if
22: end while
23: return r.

Figure 4.8: Solving a system of semipure subproblem

30

1: advance_shared(v, T, E, r) is
2: if r = true then (*look for a first assignment*)
3: t := first(T)
4: else(*backtrack to look for another assignment*)
5: updateshared(v, v.singleassignment, E, 1);(*replace subject terms used up by

previous assignment*)
6: t := next(v.singleassignment)
7: end if
8: while t 6= nil do
9: for each e ∈ E do

10: vm := e.variable_multiplicity[v.index];
11: if vm > 0 then
12: if t.top_symbol = e.top_symbol then
13: if t.subterm_indices = ∅ ∨ (∃〈i,m〉 ∈

t.subterm_indices).[e.term_multiplicity[i] < m× vm] then
14: goto failure
15: end if
16: else
17: if e.term_multiplicity[t.index] < vm then goto failure
18: end if
19: end if
20: end if
21: end for
22: v.single_assignment⇐ t;
23: update_shared(v, t, E,−1); (*remove used up subject terms*)
24: return true;
25: failure:
26: t = next(T, t) (*try next term*)
27: end while
28: return false.
29: update_shared(v, t, E, n) is
30: for each e ∈ E do
31: if t.top_symbol = e.top_symbol then
32: for each 〈i,m〉 ∈ t.subterm_indices do
33: e.term_multiplicity[i] ⇐ e.term_multiplicity[i] + n × m ×

e.variable_multiplicity[v.index]
34: end for
35: else
36: e.term_multiplicity[t.index] ⇐ e.term_multiplicity[t.index] + n ×

e.variable_multiplicity[v.index]
37: end if
38: end for

Figure 4.9: Finding an assignment to a shared variable

31

1: advance_owned(v, T, E, r) is
2: if v = true then (*look for a first assignment*)
3: v.max_size⇐ 0;
4: for each t ∈ T do (*calculate maximum assignment to variable for each term*)
5: a :=∞
6: for each e ∈ E do
7: if e.variable_multiplicity[v.index] > 0 then
8: a := min(a, e.term_multiplicity[t.index]/e.variable_multiplicity[v.index])
9: end if

10: end for
11: v.current_assign[t.index]⇐ 0;
12: v.max_assign[t.index]⇐ a;
13: v.max_size⇐ v.max_size+ a;
14: end for
15: v.current_size⇐ 1
16: else
17: if advanced_select(v, T, E, v.current_size, false) = true then
18: return true
19: end if
20: v.current_size⇐ v.current_size+ 1;
21: end if
22: if v.current_size ≤ v.max_size then
23: return advanced_select(v, T, E, v.current_size, true)
24: end if
25: return false

Figure 4.10: Finding an assignment to an owned variable

The next procedure is advaced_shared described in Figure 4.9 [2] for finding the as-
signment to a shared variable. We will take four arguments into our consideration. The
first argument is variable for sure, the second argument is a set of a term in semi-pure AC
system, the third argument is the set of equation, and the last is the flag. The first step
is checking the value of the flag, if it true, we consecutively look for the first assignment,
if not, we retrace our step to look for another assignment. We will replace subject terms
used up by previous assignment via calling update_shared procedure. Then, we choose
the next term to assign to the variable. For each term in turn, for each equation, in
turn, we find the variable multiplicity of this variable in each equation, test whether the
variable multiplicity is greater than zero or not, if not, we try with another term. If any,
we test whether the top symbol of a term is the same as the top symbol of the equation
or not, if any, continuously check the whether the subterm occurs in the right-hand side
or not, if not, we try the next term, if any, we move to the next equation. If the top
symbol of the term and the top symbol of the equation is not the same, we will check
whether the term multiplicity of an equation in this term index is lesser than the variable
multiplicity or not. If any, we try with another term, if not, we try with another equation.

32

After traversing all the equation for each term, we make the single assignment for this
term through v.single_assignment, then call update_shared to remove used up subject
terms. Then we return the flag to true.

1: advance_select(v, T, E, n, r) is
2: if r = false then
3: n := 0; t := first(T);
4: while t 6= nil do (*find a term to assign to variable*)
5: if n > 0 ∧ v.current_assign[t.index] < v.max_assign[t.index] then
6: v.current_assign[t.index]⇐ v.current_assign[t.index] + 1;
7: updateowned(v, t, E,−1);
8: n := n− 1;
9: goto forwards

10: end if
11: updateowned(v, t, E, v.current_assign[t.index]);
12: n := n+ v.current_assign[t.index];
13: v.current_assign[t.index] := 0
14: t := next(T, t)
15: end while
16: return false
17: end if
18: forwards:
19: t := first(T);
20: while n > 0 do (*assign n more terms to variable*)
21: v.current_assign[t.index]⇐ min(n, v.max_assign[t.index]);
22: update_owned(v, t, E,−v.current_assign[t.index]);
23: n := n− v.current_assign[t.index];
24: t := next(T, t)
25: end while
26: return true.
27: update_owned(v, t, E, n) is
28: for each e ∈ E do
29: e.term_multiplicity[t.index] ⇐ e.term_multiplicity[t.index] + n ×

e.variable_multiplicity[v.index]
30: end for

Figure 4.11: Selecting an assignment

The Figure 4.10 [2] shows the procedure advance_owned [2] which finds the assignment
for the owned variable with the type and order of argument as the same as the type and
order of argument of the procedure advance_shared. This procedure is complicated
because we can assign multiple terms to a variable. It means that we need to traverse
through all the multiset of available terms. The first step is checking the flag r. If
the flag r is true, then we look for a first assignment. Then, we calculate maximum

33

assignment to a variable for each term. So each term in turn, for all equations, if the
variable multiplicity at the variable index v.index is greater than zero. Then maximum
ratio e.term_multiplicity[t.index]/e.variable_multiplicity[v.index]) in all equations is
the max assignment for the variable at v.index. Then, update the max size by adding itself
to max assign, set the initial current assignment to zero. After completion of calculating
maximum assignment, we set the current size of the variable to one. If the flag is false
or the current size is lesser than the max size, we look for another solution with the same
size as the previous by calling procedure advance_select, if found, we return true, if not,
we increase the size of selection v.current_size ⇐ v.current_size + 1. In the different
state, we return false.

The last procedure is to find the assignment of size n to the current variable named
advance_select shown in Figure 4.11 [2] with four argument as the same as the argument
of procedure advance_owned and one more argument about the size of selection n. If the
flag is true, we try to assign n more terms to a variable. If not, we find a term to assign
to a variable. Choose the first term in the term set, check the multiplicity of a term and
current assignment, if possible, we call procedure update_owned with −1 being the last
argument value for subtracting the multiplicity of a term. Then, decrease the size of the
selection, and try to assign more term to a variable. If we cannot find a term to assign to
a variable, we call procedure update_owned to restore the multiplicity to term and set
the current assignment to zero. Then we choose the next term in a term set to try to
assign. Otherwise, the false value is returned.

4.7 Putting it all together
The whole algorithm [2] includes three procedures which are build_match, extract_match
and destroy_match shown in Figure 4.12.

1: AC_matching(p, t) is
2: match_object := build_match(p, t);
3: substitution := extract_match(match_object);
4: destroy_match(); (*collect garbage*)
5: return substitution

Figure 4.12: AC Matching algorithm

As mentioned before, Eker’s algorithm has four steps. In order that the first proce-
dure build_match will take care of the two first steps in the algorithm, the procedure
extract_match will implement the three and four steps. And the last destroy_match
collects the garbage afterward. The build_match shown in Figure 4.13 will take the pat-
tern term and a subject term as the argument, change both terms into ordered normal
form, create the graph hierarchy, and then release the match object which encodes the
set of matching substitutions. The match object consists of the hierarchy together with
a null semi-pure AC system, and empty multiset solution and an empty stack semipure.

34

1: build_match(p, t) is
2: p := onf(flatten(p));
3: t := onf(flatten(t));
4: h := build_hierarchy(p, t, ∅); (*build graph hierarchy*))
5: return 〈h, nil, ∅, ∅〉 (*return match object*)

Figure 4.13: Procedure build_match

1: extract_match(h, semipure_system, solution, semipure) is
2: r := true; (*initial value of flag*)
3: while !(h == nil ∧ r == false) do
4: if semipure− system == nil then
5: r := solve_hierarchy(h, r);
6: rebuiding_semipure(semipure, solution);
7: else
8: r := solve_semipure(semipure_system, r)
9: if r then

10: sub := union(solution, single_assignment, current_assign)
11: substitution⇐ substitution] sub;
12: else
13: r := solve_hierarchy(h, r) (*change the direction*)
14: end if
15: end if
16: end while
17: return substitution

Figure 4.14: Procedure extract_match

The second procedure extract_match shown in Figure 4.14 will extract the next match-
ing substitution and update the match object. In the first period, we have neither semi-
pure AC problem nor semi-pure AC system, so we need to solve the hierarchy with a true
value of the flag. It means that we try to look for the first solution for the first time.
Then we use rebuiding_semipure procedure the rebuild the semi-pure AC system, change
the stack of semi-pure AC problem into the new form semipure_system = 〈V, T,E〉
as the first argument of procedure solve_semipure. If we can find the result from
the semi-pure AC system, we use procedure union to create the matching substitution
from solution, the single_assignment where stores shared variable assignment, and the
current_assign where stores owned variable assignment. If we cannot find the solution
from solvesemipure, we back to solve the hierarchy with another direction. When there is
no solution to the graph hierarchy and there is no solution from the semi-pure AC system,
then we exit the loop to return the substitution.

35

Chapter 5

The Significant Efficiency of Eker’s
Algorithm

As we know, CafeOBJ is an algebraic specification language and system, a direct successor
of OBJ3, the most famous algebraic specification language and system, and has been
mainly developed at JAIST. The execution mechanism used by CafeOBJ is what is called
(term) rewriting and an implementation of execution mechanism is called a rewrite engine.
There is another direct successor of OBJ3: Maude. Therefore, Maude is a sibling language
of CafeOBJ. The execution mechanism used by Maude is also rewriting. Rewriting modulo
AC allows us to succinctly formalize distributed systems. Maude has been implemented
in C++ with huge and very sophisticated data structures and algorithms. The Eker’s
algorithm in Maude is much faster than the algorithm implemented in CafeOBJ. So, in
this chapter, we would like the give an explanation of the significant efficiency of Eker’s
algorithm.

Example No.1 No.2 No.3 No.4 No.5

CafeOBJ 2 23801 Heap exhausted Cannot find substitution 227
Maude 0.01 47 484 1 8

Table 5.1: Running time of some examples with CafeOBJ and Maude (ms)

The experiments are shown in Table 5.1 reveals that Maude is much more efficient
than CafeOBJ. The reason why Eker’s algorithm showed the greatest efficiency is that
he applied many techniques in both coding and theories to his implementation. We want
to emphasize two of those to support the interested researchers easily comprehend his
approach. The first reason is that he does not try to create all the possible solutions and
the check solutions to find the final substitution. He tries to find the failure first, it means
checking the variable clashes is the first and the most important priority. Because we can
save our time and effort of solving the lower level of the hierarchy of bipartite graph by
cutting it. The second reason is that Eker encodes the variables and terms in the very
sophisticated way in order to plummet remarkably the consuming time of CPU. It makes
his approach work fast and effective.

36

Firstly, We do not generate solutions and test them for consistency. We try to find the
variable clashes first as soon as possible. So that we save the time of further step and
backtrack immediately. We also use globally accessible multiset of bindings solution and
update it destructively. We use multiple sets for solution because of easily subtraction
of variable bindings when we need to backtrack[2].we also make use of bipartite graph to
make it fast because the data structure of the hierarchy of bipartite graphs is genuinely
recursive, so we can use recursion to traverse the hierarchy effectively[2] and cut the lower
level at the point of finding the variable clashes and do not take care of all the lower parts,
just focusing on the possible part which may produce the substitution. When building the
hierarchy of bipartite graph, the multiplicity filed of an element 〈s, β〉 in g.subject_nodes
for a bipartite graph problem g will be destructively updated to reflect the number of
unused copies of a subject subterm in the current partial match[2]. And in the procedure
build_hierarchy, it only stores the variable bindings found by simplify that are distinct
from those it was passed in its B argument because we come to search the branch of
the graph hierarchy the latter will already be in force[2]. One more reason, when Eker’s
algorithm has been implemented in the procedure buil_hierarchy, the edge sets can be
inserted into the graph hierarchy by destructive updates and the set of variable bindings
at edge stage in the recursion in both simplify and build_hierarchy can be tracked by
single global array indexed by small integers representing variables[2]. So that we can see
how he use various techniques to support the failure case in order to easily backtrack at
any point during solving the hierarchy and restore the multiplicity to the terms and try
to find another solution if possible.

Secondly, we rebuild the semi-pure AC system after solving the hierarchy before going
to solve the semi-pure AC system. This step is really important because, in practice,
the phase of solving semi-pure AC system is the most consuming time of CPU time. So
that, instead of using terms themselves, we assign the indices to the variables and terms
and rearrange the semi-pure AC problems to array indexed by variable and term indices.
There is also using the extra to handle nested AC symbols correctly in the presence of
shared variable [2]. In the period of rebuilding the semi-pure AC system, of course, we
possibly have some variable bindings in solution, so that we can replace variable with their
bindings when building an array and canceling terms from both sides. If the canceling
process cannot be executed, we have an immediate failure and there is no need to try to
solve the semi-pure AC system. It helps reduce the search space and save time.

37

Chapter 6

Conclusion and Future Work

We have shown our investigation of the Steven Eker’s Approach to Associative-Commutative
Matching focusing on using bipartite graph matching problem. It also uses the ordered
normal form method to make the canonical representative and check the equality modulo
AC via their syntactic equality. Two main methods used in an implementation of an
ordered normal form are flattering and grouping the term. After converting the pattern
term and subject term into ordered normal form, we will build the hierarchy of bipartite
graph, try to make a suitable edge between the set of pattern nodes and subject nodes set.
From the hierarchy, we can find the suitable solution containing the consistent variable
bindings and the stack of semi-pure AC problem. Then, try to solve all of semi-pure AC
problems combining with the solution, we can get the substitution in final. Eker also
applied many techniques in both implementations, data structure and theories to make
the algorithm as fast as possible.

In the future, we want to implement the design of rewrite engine modulo AC based on
the Eker’s algorithm. So that the rewrite engine modulo AC can be used as the indepen-
dent software component and as a rewrite engine of algebraic specification languages such
as CafOBJ.

38

Bibliography

[1] Samson Abramsky, Dov M Gabbay, and Thomas SE Maibaum. Handbook of logic in
computer science, volume 1. Clarendon Press Oxford, 1992.

[2] SM Eker. Associative-commutative matching via bipartite graph matching. The Com-
puter Journal, 38(5):381–399, 1995.

[3] Paul Klint. Quick Introduction to Term Rewriting. http://www.
meta-environment.org/doc/books/extraction-transformation/
term-rewriting/term-rewriting.html/, 2007. [Online; accessed 16-
January-2018].

[4] Jan Willem Klop et al. Term rewriting systems. Handbook of logic in computer science,
2:1–116, 1992.

[5] Kazuhiro Ogata. Functional programming course, term rewriting lecture. page 7,
2017.

[6] Victoria Stavridou. Formal methods in circuit design, volume 37. Cambridge Univer-
sity Press, 1993.

39

http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html/
http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html/
http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html/

	Introduction
	Background and Motivation
	Thesis Outline

	Preliminaries
	Term rewriting
	Associative-Commutative (AC) Matching
	Ordered Normal Form
	Bipartite Graph

	The Basic Algorithm
	Ordered Normal Form
	Decomposition to bipartite graphs
	Solving the bipartite graph hierarchy
	Solving the semi-pure AC system

	Detailed Description of Algorithm
	Notational considerations
	Conversion to ordered normal form
	Building the graph hierarchy
	The graph hierarchy data structure
	The construction algorithm

	Solving the graph matching problems
	Rebuilding the semi-pure AC system
	Solving the semi-pure AC system
	Putting it all together

	The Significant Efficiency of Eker's Algorithm
	Conclusion and Future Work

