
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title A study on abstract meaning representation parsing

Author(s) Lai, Dac Viet

Citation

Issue Date 2018-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15205

Rights

Description
Supervisor: NGUYEN, Minh Le, 先端科学技術研究科,

修士(情報科学)

A study on Abstract Meaning Representation parsing

Lai Dac Viet

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

March, 2018

Master’s Thesis

A study on Abstract Meaning Representation parsing

1610204 Lai Dac Viet

Supervisor : Nguyen Le Minh
Main Examiner : Nguyen Le Minh

Examiners : Nguyen Le Minh
Satoshi Tojo
Kiyoaki Shirai
Shogo Okada

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science

February, 2018

Abstract

Text parsing is a core research topic in natural language processing (NLP). The output
representation of text parsing is considered as vital seeds for NLP applications. Although
text parsing has been studied comprehensively and intensively for decades, it is still a
tough but attractive field. This research focuses on developing a novel parser for Abstract
Meaning Representation (AMR). AMR is a powerful semantic representation at the sen-
tence level. This representation features many aspects of semantic such as name entity,
co-reference, and semantic relations. AMR represents the meaning of a text in form of a
labeled root directed acyclic graph. Many applications based on AMR have been intro-
duced with great improvement thank the robustness of AMR. Therefore, improving the
accuracy of AMR parser would be a great contribution to the success of those applications
including text generation, text extraction.

Abstract Meaning Representation parsing is a challenging task due to the complicated
combination of many subtasks and the structure of AMR graph. AMR covers a wide range
of semantic representation from co-reference, named entity and semantic relations. Hence,
facing many tough subtasks in a single combined problem is the most arduous difficulty in
AMR parsing. Additionally, the requirement of the graph-structure output is the second
problem which restricts the utilization of many advanced deep learning model. Moreover,
the existing AMR corpora are considered as small however it contains so large vocabulary
that make the corpora sparse. The sparsity of the dataset is an addressed tough issue for
any learning system.

Prior successful works utilized transition-based system which converts the depen-
dency tree into AMR graph, however, this method is approaching the limit because of
the simplicity of the model. Recent studies in AMR parsing turn to deep learning which
has proved its robustness in many tasks. This thesis presents our study on developing
an AMR parser using deep learning. First, we introduced a framework for text-to-AMR
(AMR parsing) and AMR-to-text (AMR generation). Second, we combined convolutional
sequence to sequence with our proposed linearization algorithm for AMR parsing. Third,
we published an AMR dataset which we expect to encourage studies in the legal domain.

Firstly, we generalized AMR parsing and AMR generation tasks into a framework
which would be an essential tool for addressing problem and evaluation in AMR-related
works. This framework contains two components: a graph conversion algorithm and
a neural machine translation model. This framework separates graph conversion and
translation model so that we can easily assess the contribution of these factors. Secondly,
we introduced an AMR parsing model based on our proposed framework. We proposed a

i

graph linearization algorithm with the reverse path as the core of graph conversion. Three
sequence to sequence models is investigated in this research. They are bidirectional long
short-term memory(LSTM) encoder-decoder, fully convolutional model and a combination
of convolutional encoder and LSTM decoder. Finally, we put our effort to build an AMR
test set for legal documents which we retrieve from the English version of Japan Civil
Code.

Our evaluations were conducted with standard SMATCH score and various task-
specific metrics which are widely used in other works. Our first experiment of upper
bound proved that reverse path linearization method efficiently rewrites a graph as a se-
quence. Hence, we can totally confident to approach parsing task with neural machine
translation method. Our parsers achieved state-of-the-art performance on two golden
standard datasets LDC2014T12 and LDC2017T10 in the second evaluation. Our addi-
tional analysis indicates that graph linearization method dominates the performance of
the parser. The benchmark of throughput confirms that convolutional sequence to se-
quence model delivers extremely higher throughput than LSTM-based models. In the
evaluation of task-specific semantic parsing, the models with reverse path linearization
outperformed existing linearization method with parenthesis.

Keywords: abstract meaning representation, convolutional sequence to sequence,
graph linearization.

ii

Acknowledgements

Spending two years at Japan Advanced Institute of Science & Technology is the most
fruitful decision in my life. My vision and knowledge have been expanded at highest ability
thank the advanced educational system at JAIST. I have received brilliant instruction from
the professors and enthusiastic support from the staffs. In addition, the facilities at JAIST
are considered as the energetic muscle of the research life. All of those compounded into
my achievement during my master program.

I would like to thank my main supervisor, Associate Professor Nguyen Le Minh,
for his continuous instruction and supervision. He contributes the largest part in my
extraordinary development including knowledge, research vision, motivation and academic
skills. I cannot imagine the extent of struggle in research without his guidance.

I appreciate the comment and recommendation from Professor Satoshi Tojo, Asso-
ciate Professor Kiyoaki Shirai and Associate Professor Shogo Okada. Their feedbacks
have increased the importance of my research. I also benefit from the support from my
minor research supervisor, Associate Professor Razvan Beuran. He has taught me many
academic skills and I admire his clearness and kindness during our conversation. The
lesson from professor Ho Tu Bao and Associate Professor Dam Hieu Chi have built up
my standard of the characteristics of data science and data scientist.

My smooth research witnessed the support from all the members of Nguyen Labo-
ratory. Their discussion and knowledge were so helpful in speeding up my research. I
would like to thank all members of JAIST Hanoi Team and Nhau Team. Thanks to their
sharing and encouragement, my research life was far from stress.

From the bottom of my heart, I give my greatest respect to my family and my dear,
they are always at my back to support me regardless my decision.

Lai Dac Viet
February 2018

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objectives . 4

2 Literature review 5
2.1 Abstract Meaning Representation . 5
2.2 Transition-system-based method . 7
2.3 Neural-translation-based method . 8

2.3.1 Theoretical framework . 8
2.3.2 Sequence-to-sequence model . 14
2.3.3 Graph linearization . 17

2.4 Prior works on abstract meaning representation 18

3 AMR parsing and generation model 20
3.1 Framework . 20
3.2 Graph conversion . 21

3.2.1 Graph simplification . 21
3.2.2 Linearization & De-linearization . 22

3.3 Convolutional attention-based sequence-to-sequence model 24
3.3.1 Word embedding . 25
3.3.2 Convolutional block . 25
3.3.3 Convolutional encoder . 26
3.3.4 Attention-based decoder . 27

4 Evaluation 30
4.1 Annotation of JCivilCode . 30
4.2 Datasets and Preprocessing . 31
4.3 Experimental environment . 32
4.4 Result . 32

4.4.1 Experiment 1: Upper bound of graph linearization 32
4.4.2 Experiment 2: AMR parsing . 33
4.4.3 Experiment 3: Testing of stability 35

iv

4.4.4 Experiment 4: More semantic evaluation 35
4.4.5 Experiment 5: Parallelization of CNN versus RNN 36

4.5 Discussion . 37

5 Conclusion 39

v

List of Figures

2.1 Computational process of recurrent neural network. 9
2.2 Computational process of bidirectional LSTM. 10
2.3 An example of convolution layer without padding. 11
2.4 An example of max pooling layer. 12
2.5 The example of CNN using in sentence classification. 13
2.6 Illustration of highway connection. 15
2.7 Computing flow of a sequence to sequence model 16
2.8 Illustration of attention mechanism with Bi-LSTM encoder. 17
2.9 Dependency tree and AMR graph . 18

3.1 An universal framework for AMR parsing and generation task 20
3.2 Architecture of the convolutional block. 26
3.3 Architecture of the encoder. 27
3.4 Architecture of the decoder. 28

vi

List of Tables

2.1 Conjunction format and PENMAN format of an AMR graph. 6
2.2 Example of calculating SMATCH score. 6

3.1 Anonymizing name entities in AMR graph. 22
3.2 Anonymizing date entities in AMR graph. 22
3.3 Graph conversion process in detail. 24

4.1 SMATCH score between two annotations of JCivilCode-1.0. 31
4.2 Detail off AMR Annotation Releases. 31
4.3 Specifications of the machine during training. 32
4.4 Upper bound of SMATCH score on three datasets. 33
4.5 Hyper parameters of experimental models. 34
4.6 Performance of previous works of AMR parsing. 34
4.7 SMATCH score on LDC2014T12 and LDC2017T10. 35
4.8 Average and standard deviation of SMATCH scores on LDC2014T12. . . . 35
4.9 Evaluation of semantic aspects on LDC2014T12. 36
4.10 Throughput of three models on LDC2017T10. 37
4.11 Two type of structural error. 38

vii

Chapter 1

Introduction

In this chapter, we provide an overview of the research problem, our motivation, our
objective, and the contribution of this study.

1.1 Background
The Internet is an extraordinary media which helps people share enormous information in
form of text such as newspaper, open knowledge base, blog, and report. Those electronic
documents have been exponentially increasing day after day and becoming a resourceful
knowledge database of almost public fields. However, integrating those resources into
daily applications has yielded many problems because of insufficient modeling techniques.
These difficulties relate to clear extraction of information from text, well-structuring in-
formation, and logical inference from that basis. Therefore, extracting and building high-
level knowledge representation take important roles in mining advantageous values from
text documents.

Text parsing is a research field in natural language processing which has been investi-
gated for decades. Parsing problems can be categorized into two main classes: structural
parsing and semantic parsing. Structural parsing includes phrase structure (Ramshaw
and Marcus, 1999), syntactic tree (Munoz et al., 1999), and dependency tree (McDonald
et al., 2005; Nivre, 2003). Studies in this subfield focused on converting a sentence-like
sequence into the tree-based structure. Those tree structures have provided valuable fea-
tures contributing to many solutions in NLP such as open information extraction (Schmitz
et al., 2012) and sequence labeling (Jie et al., 2017). On the contrary, semantic parsing
aims at extracting rules for a dedicated grammar (e.g. context-free grammar (CFG), the
structured query language (SQL), and the combinatory categorial grammar (CCG)).

Abstract Meaning Representation (AMR) is a robust semantic representation which
can express the abstract meaning at the sentence level. Each AMR graph fully generalizes
the meaning of a sentence as a directed graph. Nevertheless, AMR features semantic
relations, named entity, predicate-argument structure and so on. Therefore, AMR parsing
can be considered as both structural parsing and semantic parsing. Although AMR

1

was designed for single sentence representation (Banarescu et al., 2013), it supports the
representation of multiple sentences.

Comparing recent AMR parser, AMR parsing task has been approached in two main
different ways depending on the consideration of the problems. Structural-oriented ap-
proaches prioritize building the shape of AMR graph. Hence, the main advantages of this
method are its abilities to deal with a long sentence and to take advantage of existing
structures such as dependency tree. Semantic-oriented approaches prefer the semantic
aspect which is generated directly from the sentence before applying appropriate method
to restructure it to AMR graph. As the result, this method is good at delivering word
sense which is the content of every vertex while it suffers from poor graph construction.

According to the designation, AMR revealed many difficulties have been addressed
in recent works including:

• Word-sense disambiguation which is a tough problem in natural language pro-
cessing stands as a core problem of AMR parsing. In an AMR graph, the content
of each vertex in AMR graph is constructed from a word or a number itself or by
generalizing an English word into a sense regarding the list of word sense in the
Propbank (Banarescu et al., 2013). Thus, solving AMR parsing is also solving word
sense disambiguation problem.

• Semantic graph construction is the second challenge in AMR parsing. This
representation was designed as an abstract representation that features many aspects
of semantic such as name entity, co-reference, and semantic relations (Banarescu
et al., 2013). Therefore, the concern of an AMR parser relates to those perspectives
in a single task. Moreover, outputting a graph requires more complicated data
structure and algorithm.

• Data sparsity is the common issue for every AMR parser. Machine learning system
is arguably data-driven system. A system may behave nicer if we feed more data
for the same set of learning parameters. Recent works in neural machine transla-
tion have benefited from the large-scale dataset which contains millions of samples.
However, parsing AMR is harder than that because the vocabulary much larger
whereas the data is much smaller (Gildea et al., 2017).

1.2 Motivation
Abstract meaning representation is a promising text representation because of following
reasons. Firstly, the readability of AMR is clearly conceded (Banarescu et al., 2013; Bos,
2016) since the tree structure of AMR is a precise and straightforward way to show the
relationship between concepts and events. Secondly, semantic representations are exceed-
ingly chaotic because of enormous separated representations such as temporal entities,
named entities, semantic relations, discourse connectives, co-reference and so on. More-
over, each representation has a particular meaning and evaluation method. That makes

2

the integration of those into application hard and complicated. However, AMR introduces
a whole-sentence homogeneous semantic representation for semantic. As the result, AMR
is expected to support many natural language processing tasks such as text generation
(Banarescu et al., 2013).

Additionally, AMR provides a systematic foundation which are human-level gold-
standard resources and evaluation methodology. Firstly, the directed graph of AMR
enables the automatic evaluation of the computer-generated graph. A standard evaluation
score (Cai and Knight, 2013) was introduced to calculate the precision, recall, and F-
score of machine-generated output toward a gold-standard AMR graph. Secondly, the
annotation of AMR graph is simpler and faster than the former formal representations,
which encourages the production of large manually annotated corpus 1 consisting of nearly
40.000 samples. Due to those reasons, studying AMR is methodological and resourceful
to obtain a great understanding of the natural language.

Even though AMR parsing has experienced increasing improvement in parsing ac-
curacy, the achieved performance is far from the expected one. The recorded numbers
are around 0.70 F1-score which is much lower than syntactic parsing performances, which
is more than 0.90 F-score. Hence, there is a room for revolutionizing AMR parsing.
Moreover, since AMR revealed many attractive features, there is an increasing trend in
employing AMR in event extraction (Garg et al., 2016; Rao et al., 2017), text summariza-
tion (Dohare and Karnick, 2017; Liu et al., 2015) and text generation (Song et al., 2016;
Takase et al., 2016). Hence, abstract meaning representation parsing has a tremendous
impact on those applications. Therefore, in this research, we would like to develop an
AMR parser that generates highly accurate outputs.

Currently, the most advanced AMR parsers were built based on two main approaches:
transition system and recurrent neural network. Firstly, transition system (Wang et al.,
2015b) once introduced has leveraged the accuracy to a much higher level that time.
However, researchers who solve AMR problem using transition system are facing many
difficulties: the feature mining and the simplicity of the model. Feature engineering is
the conventional border which requires expertise. The simplicity of the model is un-
able to create remarkable improvement. Second, several researchers have adjusted the
model of machine translation to the AMR parsing problem (Konstas et al., 2017; Takase
et al., 2016). These studies indicate that RNN can deliver a good parser using existing
neural machine translation model. However, this method comes with disadvantages of
computational complexity and time consumption. Therefore, we would like to proposed
convolutional neural network to create a faster and more precise parser.

Finally, despite the existing large AMR corpus, there is a lack of publicly accessible
AMR corpus. The very high cost of the corpus, mentioned above, limits the popularity
of AMR in solving natural language processing problems. Hence, this obstacle may dis-
courage many types of research involving in AMR. In addition, the existing AMR corpus
is in the domain of public news whereas there is no domain-specific AMR corpus. We
target at producing a corpus for the legal document because of the difficulty in dealing

1https://catalog.ldc.upenn.edu/LDC2017T10

3

with legal documents. The extremely long and complicated legal documents cannot be
treated as same as general documents. By building a new AMR dataset, we believe that
the legal document processing community has a new tool for their research interest.

1.3 Objectives
In this study, our research mainly targets at building a highly accuracy abstract meaning
representation parser. Our objectives are:

• We approach the AMR parsing problem by neural machine translation method. We
implement three advanced attention-based sequence to sequence models with the
cores are either recurrent neural network or convolutional neural network. We hope
to leverage the performance of AMR parsing and text generation.

• We propose a graph linearization and want to investigate the contribution of graph
linearization and advanced models to the problem by comparing this linearization
method with an existing method.

• We put my effort into building an AMR corpus of Japan Civil Code for testing AMR
parser in the legal domain. This is the first study representing the legal document
as AMR graph.

4

Chapter 2

Literature review

In this chapter, we provide a background of the abstract meaning representation and sev-
eral models in abstract meaning representation parsing. The characteristics, applications
and potential difficulties of AMR are presented in section 2.1. Then, we introduce two
main promising approaches to solve AMR parsing problem in section 2.2 and 2.3. Finally,
in the section 2.4, we present successful works which have been proposed recently.

2.1 Abstract Meaning Representation
Abstract Meaning Representation is a semantic representation language (Banarescu et al.,
2013) which is designed to be easily readable for ordinary people. AMR forms a rooted
acyclic directed graph which is convenient for traveling in a computer program. Each AMR
graph represents the content of a set of analogous sentences which share the basic meaning,
however, differ from surface forms. Every vertex and edge of a graph are labeled according
to the sense of the words in a sentence. AMR parsing is the task of converting a given
sentence to a corresponding graph. At the time of designation, AMR is orientationally
developed for English. However, AMR has been expanding to several other languages
such as Chinese (Li et al., 2016), French, German, Spanish and Japanese (Vanderwende
et al., 2015) and is expected to be developed to other languages in the future.

Three different ways are widely utilized to demonstrate AMR graphs. Figure ??
illustrates these three typical format of AMR. First, AMR can be formally written as the
conjunction of logical triples. Secondly, the PENMAN notation is used in such occasions
that are related to human reading and writing. Thirdly, computer programs commonly
store AMRs as graph structure in memory. In an AMR graph, nodes are managed by
unique identification called variable which refers to an semantic concept representing
the content of a vertex. For shorten the expression of graph, the notation of slash defines
a vertex: g/girl means that g is an instance (vertex) of the abstract concept girl. The
concept can be either an English word (e.g. girl), a PropBank frameset (e.g. want-
01) or a special keyword. The keywords are varied including special entity type (e.g.
date-entity, organization, ordinal-entity), quantities (e.g. distance-quantity), and logical
conjunction(e.g. and, or). The label connecting two AMR nodes is made up by more

5

than 100 relation types including frameset arguments (e.g.:arg0, :arg1), general semantic
relations (e.g. :age, :condition, :domain), relations for quantities (e.g. e.g. :quant, :unit,
:scale), relations for date-entities, relations for listing (e.g. :op1, :op2, :op3).

AMR also provides the inverse form of all relations by concatenating -of to the
original relation (e.g. :location vs :location-of). Hence, if R is a directed relation of x and
y, we have: R(x, y) ≡ R-of(y, x)

Table 2.1: Conjunction format and PENMAN format of an AMR graph.

∃w, e, d, b : (w/want-01
instance(w,want-01) ∧ instance(e, eat-01) :ARG0 (d/dog)
∧instance(d, dog) ∧ instance(b, bone) :ARG1 (e/eat-01
∧arg0(w, d) ∧ arg1(w, e) :ARG0 d
∧arg0(e, d) ∧ arg1(e, b) :ARG1(b/bone)))

To measure the similarity of two semantic graphs, Cai et al (Cai and Knight, 2013)
introduced the SMATCH score. This score measures the level of element overlapping
between two structures. SMATCH score has been widely applied in measuring the accu-
racy of AMR parser. Table 2.2 shows the process to calculate the SMATCH score from
two given graphs.

Table 2.2: Example of calculating SMATCH score.

Assume that a machine generates the AMR graph of the sentence "The dog ate the bone" and
the gold standard AMR graph is the graph of the sentence "The dog wants his bone".

Sentence The dog ate the bone. The dog wants his bone.
(a/eat-01 (x/want-01

PENMAN :ARG0 (b/dog) :ARG0 (y/dog)
Format :ARG1 (c/bone)) :ARG1 (z/bone)

:poss(y))
∃a, b, c : instance(a, eat− 01) ∃x, y, z : instance(x,want− 01)

Conjunction ∧instance(b, dog) ∧instance(y, dog)
Format ∧instance(c, bone) ∧instance(z, bone)

∧arg0(a, b) ∧ arg1(a, c) ∧arg0(x, y) ∧ arg1(x, z)
∧poss(z, y)

Alignments Matches Precision Recall F-score
a=x, b=y, c=z 4 4/5 4/6 0.73
a=x, b=z, c=y 0 0/5 0/6 0.00
a=y, b=x, c=z 1 1/5 1/6 0.18
a=y, b=z, c=x 0 0/5 0/6 0.00
a=z, b=x, c=y 0 0/5 0/6 0.00
a=z, b=y, c=x 1 1/5 1/6 0.18

SMATCH Score 0.73

6

2.2 Transition-system-based method
A transition system is a collection of configurations and transitions that were widely used
to describe a dynamic process, in which the configurations represent feasible states of
the process and the transitions describe the way to shift from a state to another state.
A transition system is ordinarily defined with a set of initial states and terminal states.
Chess can be considered as a simple transition system where the positions of pieces on
the chess board is a state of the table and the chess rules are the set of transitions.

The transition-based parser has made notable achievements in text parsing tasks
such as dependency tree (Chen and Manning, 2014; McDonald et al., 2005; Nivre, 2003).
Currently, the best AMR parser also uses transition system as the core of the parser
(Wang et al., 2016, 2015a,b). Those works consider an existing structure of a sentence
(e.g. dependency tree) as the initial state and train an transition system to restructure
into AMR graph. The transition system (S, T, s0, St) in these studies contains:

• S(σ, β,G) is a set of parsing configurations (states). Each state contains two buffers
σ, β which are used to determine the transformation actions applied to the graph
G.

• T is the collection of parsing transitions (actions). Each action is a function that
maps: Si ← Sj(i 6= j).

• s0(w,D) is a function that initializes the initial state from sentence w and its de-
pendency tree D. This model employs a dependency tree parser to parse the given
sentence into a dependency tree which is the input of the initialization function s0.

• St is the set of terminal state, hence, St is a subset of S.

At the state s ∈ S, a scoring function score(s, t) estimates the score of action t ∈ T
from a weight vector ~w and a feature vector generated from function Φ(s, t):

score(s, t) = ~w · Φ(s, t) (2.1)

The greatest advantage of this method is that regardless the level of accuracy of the
score function, the output of the system is guaranteed to be an AMR graph. The main
consideration while designing this transition system is the transition set and building the
function score(s, t). Designing the set of transition is the process of drawing the map
where we travel from the dependency tree to AMR graph and constructing the score
function is as important as the search algorithm in finding the best path to travel. In
this research, we do not follow this method to build our parser. However, since this
method currently initiated the best parser, we compare our method against this compet-
itive method.

7

2.3 Neural-translation-based method
Another approach in AMR parsing is based on neural machine translation. In this method,
the graph is rewritten in an intermediate language which is fit the neural machine trans-
lation model. Hence, the parsing process is separated into two stages: (1) translating
the given sentence into an intermediate language and (2) converting the intermediate
representation into PENMAN notation using a rule-based algorithm.

2.3.1 Theoretical framework

Recurrent neural network

Recurrent neural network (RNN) is a variant of the neural network. They are designed to
tackle sequential data such as a sequence of text, numerical time-series data, genome, the
stock market, and so on. It is based on an assumption that there is a strong relationship
among values in a period in term of time point. RNN solves them by introducing a hidden
state maintaining storing the observed information, then the information is delivered back
to itself through recurrent connections as an input at the next time step. In an RNN, the
smallest component calculating hidden state from the previous hidden state and current
input is called the RNN cell.

Given a sequential input X = (x1, x2, . . . , xn) of length n where xi ∈ Rr is a r-
dimensional representation vector, the sequence of the hidden states is recursively com-
puted as follow:

ht = σ(Whht−1 +Wxxt + bh) (2.2)

where: Wh ∈ Rd×d and Wx ∈ Rd×r are the learnable weight matrices of the network;
b ∈ Rd are bias terms; ht are the hidden states of the model at a time step t; σ is a
non-linear activation function (e.g. sigmoid and tanh function). Applying this formula n
times on the inputX, we can derive the concatenation of n hidden statesH = {h1, . . . , hn}
with hi ∈ Rd. The final states hn is considered to be the aggregated representation of the
sequence because it is computed from every parts of the sequence. Figure 2.1 illustrates
the way to unroll a RNN.

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a successful extension of RNN. LSTM features
three-gate mechanism which contains input gate, forget gate, and output gate. Gating
mechanism is a kind of information filtering that keeps some parts of the information
while reducing or even wiping out the others through element-wise multiplication of the
input. Similar to the RNN, LSTM updates its hidden memory at time step t from the

8

Figure 2.1: Computational process of recurrent neural network.
The RNN cell (the green box) computes the hidden state (the blue circle) from the previous

hidden state and the input (the red circle).

input xt, the previous hidden state ht−1, and the previous memory state ct−1 as follow:

it = σ(Whiht−1 +Wxixt + bi)

ft = σ(Whfht−1 +Wxfxt + bf)

ot = σ(Whoht−1 +Wxoxt + bo)

c̃t = tanh(Whcht−1 +Wxcxt + bc)

ct = ft ⊗ ct−1 + it ⊗ c̃t
ht = ot ⊗ tanh(ct)

(2.3)

where Wj ∈ Rd×d are the weight matrices of the network; bj ∈ Rd are bias vectors; i, f, o
indicate the input gate, forget gate, and output gate; ⊗ is the element-wise multiplication.
Analogously, the component performing the computation in formula 2.3 is named the
LSTM cell.

Thanks to the gating mechanism, LSTM also reduces the vanishing and exploding
gradient issue of RNN (Hochreiter and Schmidhuber, 1997) because it provides a constant
error back-propagation during training. Therefore, LSTM is better at modeling the long-
term dependency between steps than that RNN does.

Bidirectional RNN & LSTM

Mentioned networks including RNN and LSTM model the dependencies in positive time
direction which is forward states. However, in most of the natural language processing
task, unidirectional modeling is not sufficient to design the relations. For examples, an
English noun can be supported by both the front adjectives and the relative clause in
the back. Hence, ones cannot catch the full idea of a word with only the former part of
the sentence. This phenomenon is also very common in most of the languages and other
tasks such as time series processing. Hence, it is better to make bidirectional constraints
by using bidirectional RNN and LSTM.

Bidirectional RNN (or LSTM) consists of two RNN (or LSTM) network: forward
network and backward network. The forward network processes from the head to the tail

9

of the input while the backward processes in the reverse direction. Then the hidden states
and outputs of two networks are aggregated corresponding to the index of the input. The
hidden state ht at input xt is calculated as follow:

−→
h t = ForwardCell(

−→
h t−1, xt)

←−
h t = BackwardCell(

←−
h t+1, xt)

ht =
[−→
h t,
←−
h t

] (2.4)

where ForwardCell, BackwardCell are the cells (RNN or LSTM) of the forward network
and backward network;

−→
h t−1 is the previous hidden state of the forward network corre-

sponding to the input xt−1 ;
←−
h t+1 is the previous hidden state of the previous state of the

backward network corresponding to the input xt+1.
The bidirectional neural network is widely used in a wide range of research including

machine translation (Bahdanau et al., 2015), sequence labeling (Huang et al., 2015; Lai
et al., 2017).

Figure 2.2: Computational process of bidirectional LSTM.
xi are input vectors; hbi are outputs of the backward network;

hfi are outputs of the forward network

Convolutional neural network

Convolutional neural network (CNN) is another variant of neural network featuring the
convolution layer which performs the convolution operation. Apart from convolution
layer, fully convolutional network may contain pooling layer, and fully connected layer.
A fully CNN is built by stacking these layers on top of the others before ending up by
multiple fully connected layers.

10

In a CNN, convolution layer is the core component which dominates the behaviors
and performance of the network. CNN extracts local features using a filter (or a kernel)
which is a learnable matrix. The local features are extracted based on the local connection
among regional features inside the kernel. The convolution layer performs convolution
operation regarding the kernel to output an abstract feature. The kernel slides on the
matrix of input features to map the input features into a feature map. The distance
between two consecutive operations is called the stride. Kernel size is the size of the sliding
window in which the operation is active. Conventionally, multiple kernels which share a
kernel size are used to extract multiple patterns from the input. Various kernel sizes are
put into a CNN to capture features in both short dependency and long dependency.

Figure 2.3: An example of convolution layer without padding.
The 7× 4 input feature matrix (left side) represents a sentence of of 7 words into 4-dimensional
space, two kernels whose kernel_sizes are 2 and 3 (middle), and two feature maps (right side).

Originally, CNN was invented for image processing task (e.g. image classification,
image segmentation, etc) in which the kernel is a small square matrix. It slides vertically
and horizontally along the height and the width of the image. However, many studies
have modified CNN for natural language processing. The width of the kernel is fixed as
same as the number of dimensions of input feature space which is much bigger than those
in image processing. The kernel slides vertically only to perform 1D convolution operator.
In other words, the kernel slides along the sentence length hence, the kernel size is also
considered as n-gram of the model. The values of kernel size, the dimension of input
space, the number of kernels are varied in different tasks, computational capacity, and

11

n-gram models. The kernel size is commonly chosen in the range from 2 to 5 according to
the conventional n-gram models. Figure 2.3 illustrates the behaviors of the convolution
layer.

In a CNN, pooling layer frequently locates between two convolution layers to down-
sample the spatial size of the representational features. As the results, it reduces the
number of parameters in higher CNN layer, hence, consequently reduces the computation
load and control the overfitting of the network. The pooling layer combines values of a
feature map at a layer into a value of the next layer. The pooling layer is not utilized
on the output of different feature maps. There are several types of pooling layer. Each
concrete pooling layer features an operation (e.g. max pooling performs MAX operation,
average pooling calculate the average value of the output of the prior layer). Figure 2.4
presents the down-sampling of max pooling layer.

Figure 2.4: An example of max pooling layer.
Two max pooling layers performs on two distinguishing feature maps (two column matrix on
the left); the sizes of the filter of the layer are 2× 1 (top, yellow) and 3× 1 (bottom, green).

Fully-connected layer locates at the top of the CNN architecture. This layer fully
pairwise connects neurons of two adjacent layers whereas neurons in the same layer are
not connected. This layer works as the output layer of the CNN. The simplest CNN
compound of a convolution layer, a max pooling layer, and a fully-connected layer is
illustrated in figure 2.5.

Gating mechanism

Gating mechanism is a dominant architecture in long short-term memory in which it
controls the flow of information. Thank the management of the gates, LSTM reduces
vanishing and exploding gradient and enables long-term dependencies (Hochreiter and
Schmidhuber, 1997). Moreover, gating mechanism has been upgraded to a higher level
to be applied in a non-recurrent neural network such as convolutional neural network
(Gehring et al., 2017b). The main advantage of gating mechanism is its ability to learn

12

Figure 2.5: The example of CNN using in sentence classification.

and to distill unrelated information while enhancing essential information. Intuitively,
to refine information of an input Xr×d, a gate uses a filter Gr×d and performs matrix
element-wise multiplication operation as follow:

X̄ = φ(X)⊗ ψ(G)

where φ and ψ are transformation functions including linear and non-linear functions (e.g.
tanh and sigmoid). To recent years, several variants have been introduced and achieved
state-of-the-art performance such as rectified linear unit (ReLU), gated tanh unit(van den
Oord et al., 2016), gated linear unit (GLU) (Dauphin et al., 2017; Gehring et al., 2017b).
The calculations of ReLU, GTU, GLU are presented in formula 2.6, 2.7, 2.8, respectively.

Rectified linear unit (in formula 2.5) is partially considered as a simplification of a
general ReLU unit in formula 2.6. ReLU maintains a linear path but non-linear path
for back-propagation. Therefore, the gradient of the network containing ReLU does not
vanish while passing layer to layer. However, the inactiveness to the negative input and
the trainability limit the adaptiveness of ReLU in filtering information.

ReLU(x) = max(0, x) (2.5)

ReLU(X) = X ⊗ (X > 0) (2.6)

Gated tanh unit is an LSTM-like gating mechanism which features two non-linear
paths. Since it does not contain any linear path, model which stacks multiple GTU units
may easily wipe out gradient during training with the back-propagation algorithm.

13

GTU(X) = tanh(X ∗W + b)⊗ σ(X ∗ V + c) (2.7)

Gated linear unit has the profitable properties of both ReLU and GTU. The unit
features both a linear path and a non-linear path for the flow of gradient. Therefore, it is
unnecessary to scale the gradient (Dauphin et al., 2017). GLU unit contains two sets of
filters W = (w1, w2, · · · , wk) and V = (v1, v2, · · · , vk) where wi ∈ Rmi×d and vj ∈ Rnj×d.
Given a sequence of input X = (x1, x2, · · · , xn) where xi ∈ Rd, the GLU unit compute
the sequence of hidden states H = (h0, · · · , hn) as shown in formula 2.8.

GLU(X) = (X ∗W + b)⊗ σ(X ∗ V + c) (2.8)

Highway connection

Highway connection (or residual connection, shortcut connection) is connection that skips
one or more layers. The connection makes a highway flow X which is an identity mapping
of the input X. The output of the connection is added to the output F (X) of the skipped
layers to make the output H(X) of the residual block.

H(X) = F (X) +X (2.9)

Highway connection is an extremely simple technique which is easily implemented in one
line of code on common deep learning frameworks (e.g. Tensorflow, Caffe). Moreover,
identity highway connection keeps the simplicity of the model because neither additional
parameters nor computational load is added. Enhanced convolutional neural network and
recurrent neural network with highway connection have delivered higher performance in
recent works (He et al., 2016; Zilly et al., 2017). Figure 2.6 presents the illustration of a
residual block.

2.3.2 Sequence-to-sequence model

Sequence-to-sequence (seq2seq) is a learning model that converts a sequence of data from
one domain into another domain. For example, a seq2seq model can be trained to perform
translation of a sequence of text from one language to another language (Bahdanau et al.,
2015; Luong et al., 2015; Sutskever et al., 2014). Seq2seq have been applied successfully
in many application such as machine translation (Sutskever et al., 2014), text genera-
tion (Konstas et al., 2017), text summarization (Lai et al., 2017), and structural parsing
(Konstas et al., 2017; Takase et al., 2016).

Given an input sequence (x1, x2, . . . , xn), the goal of a seq2seq model is to estimate
the conditional probability P (y1, y2, . . . , ym|x1, x2, . . . , xn) where (y1, y2, . . . , ym) are the
corresponding output whose lengthm may differ from the length of the input n (Sutskever
et al., 2014). The seq2seq model first embeds the input sequence (x1, x2, . . . , xn) into an
vector v which is the last hidden states of the model. Then it computes the conditional
probability of the output sequence follow the decomposition formula of conventional lan-
guage model:

14

Figure 2.6: Illustration of highway connection.

P (y1, . . . , ym|x1, x2, . . . , xn) =
m∏
t=1

P (yt|v, y1, . . . , yt−1) (2.10)

Encoder - Decoder

Sequence-to-sequence model commonly consists of two main components which are the
encoder and the decoder regarding two main phases in seq2seq model:

• In the encoding phase, the encoder reads the input sequence then transforms and
stores the information in its internal states which is an intermediate representation.
This form can be either a vector or a sequence of vectors which compress the fed
information.

• During the decoding phase, the decoder recursively predicts the next item (e.g. a
character, a word, and so on) of the target sequence from a special initial item (e.g.
<GO> character). The internal states of the encoder are shipped to the decoder
in order to transfer understandable knowledge from the encoder to the decoder.
To provide a sense of context, the decoder also uses its generated sequence as its
own input. Thank two informative sources of information, the decoder can both
sufficiently deliver information of the source input and generate expectedly fluent
output.

The most common seq2seq models utilize RNN and LSTM as the core of the encoder
and decoder. Naturally, RNN and LSTM reveal a sequential input and output which are

15

extremely convenient for the sequence to sequence. Figure 2.7 illustrates the overall idea
of sequence to sequence model.

Figure 2.7: Computing flow of a sequence to sequence model

In the vanilla encoder-decoder model, the decoder is given the last hidden states
of the encoder as the representation of the whole sequence. This mechanism reveals
two main obstacles due to its static context encoding mechanism. Firstly, the provided
information might be partially lost due to the limited ability of encoding of LSTM and
RNN cell. Secondly, at a certain decoding step, redundant information existing in the
encoded information may interfere the behavior of the decoder.

Attention mechanism

Attention mechanism is one of the breakthrough advancements in deep learning. This
mechanism is analogous to the human visual attention. Given a picture, a person fo-
cuses on a sub-region of the picture which is most attractive regarding his/her attentive
thought. The sequence-to-sequence models have delivered state-of-the-art performance
such as those in machine translation (Luong et al., 2015) thank the attention mechanism.

In the vanilla sequence-to-sequence model, the encoder encodes full sentence into a
single fixed-dimension vector before delivering to the decoder. This method suffers from
the low accuracy of the very long sentence even LSTM seems to be better at building such
constraints. In contrast, the decoder in the attention-based seq2seq model is provided full
access to the hidden states at every time steps. The model is trained to attend to several
particular hidden states based on the input and its previous generated outputs. Therefore,
the output of a certain time step is generated as similar as those created by human. For
example, a generated sentence should be as grammatical as possible in machine translation
and text generation.

Figure 2.8 illustrates a sequence-to-sequence model with Bi-LSTM encoder and attention-
based decoder. Given an input sequence X = (x1, x2, · · · , xn), the encoder generates its
hidden states H = (h1, h2, · · · , hn) where hi is the concatenation of forward and backward
hidden states [hfi , h

b
i]). The decoder compute the alignment probability ati among its last

hidden states hdt−1 and hidden states hi. Then it computes the context vector at the time
step t using weighted sum as follow:

16

Figure 2.8: Illustration of attention mechanism with Bi-LSTM encoder.

sti = tanh(Wdh
d
t−1 +Wehi)

ati =
exp(sti)∑n
j=1 exp(stj)

ct =
n∑

i=1

atihi

(2.11)

The RNN/LSTM of the decoder generates its hidden state by combining its previous
hidden state hdt−1, the computed context vector ct, and input x′t:

hdt = LSTM(hdt−1, ct, x
′
t)

2.3.3 Graph linearization

Sequence-to-sequence model requires sequential representation of features and labels,
therefore, the AMR graph must be presented as a sequence. However, the raw AMR
text cannot be an appropriate format due to its imbalance of tokens. Raw AMR text

17

contains too many round brackets and variables which present less semantic information
than other components such as concepts and arguments.

2.4 Prior works on abstract meaning representation
The first learning parser and aligner for AMR (namely JAMR) divide the problem into
two stages: concept recognition and relation recognition (Flanigan et al., 2014). The
parser utilizes a sequence labeling algorithm to identify the concept which is defined as
a substring of a word in the sentence. Then, a subgraph maximum-score algorithm finds
an optimal subgraph whose vertices have been collected in the first stage.

Motivated by the similarity between dependency tree and AMR graph, Wang et al.
(2015b) proposed the first transition system for parsing AMR graph. Figure 2.9 illustrates
the dependency tree and the AMR graph of the sentence: "The domicile of a juridical
person shall be at the location of its principal office". As can be seen, these two struc-
tures share some nodes, (e.g. domicile, person, juridical) and their node interrelations
(e.g. person - juridical). They defined a two-stage process for their system: (1) parsing a
sentence into a dependency tree using existing parsers such as Stanford parser and Char-
niak parser; (2) converting the obtained tree to AMR graph by an eight-action transition
system. Their later works have investigated a richer feature set including co-reference,
semantic role labeling, word cluster (Wang et al., 2015a); rich name entity tag, and ISI
verbalization list(Wang et al., 2016).

Figure 2.9: Dependency tree and AMR graph

Konstas et al. (2017) presented a joint system of parsing and generation with boot-
strapping training strategy. Barzdins and Gosko (2016) showed an efficient adaptation of
machine translation to AMR parsing. Their work indicates that character-based features
are better than word-based features in this task. Targeting at the sparsity of the AMR
graph data, Gildea et al. (2017) limited the vocabulary to 2000 and applied LSTM with

18

attention mechanism. These aforementioned approaches investigated only recurrent neu-
ral network and its variants. The work of Ballesteros and Al-Onaizan (2017) has combined
recurrent neural network and transition system into a deep transition model. Instead of
searching for a large number of features as done by the conventional transition method,
they encoded the information of every state in LSTM hidden state. The input of the
model consists of embedding vector and syntactic features.

Although recent studies have utilized LSTM in AMR parsing (Ballesteros and Al-
Onaizan, 2017; Konstas et al., 2017), there are several disadvantages of employing LSTM:

• LSTM models long dependency which might be noise to generate a linearized graph
whereas CNN provides a shorter dependency which is fit to graph traversal path.

• LSTM requires a chronologically computing process that reduces the parallelization;
on the contrary, CNN enables to run model simultaneously.

19

Chapter 3

AMR parsing and generation model

In this chapter, we first present a universal framework for translation-based AMR parsing
in section 3.1. Then, we show the process of graph conversion including graph simplifi-
cation and graph linearization which are essential to enable translation-based model in
section 3.2. In section 3.3, we present the employed attention-based sequence-to-sequence
model in this research.

3.1 Framework
We introduce a universal framework of structural parsing using neural machine-translation
method. The framework is presented in figure 3.1. First, the sequence-to-sequence model
obligates the input and the output of the model to be shaped in a linear sequence of
elements.

Figure 3.1: An universal framework for AMR parsing and generation task

In the AMR parsing, the parsing process follows the upper left-to-right flow. Given a
sentence, a text-to-graph model translates a raw sentence into an intermediate linearized
representation. A de-linearization algorithm structures the text into a graph. This recov-
ery process considers tokens as a concept of AMR graph and reconnect.

On the contrary, the generation process starts with an AMR graph. This graph is
converted into the intermediate linearized representation which is a sequence of text. Then
a graph-to-text model generates a concrete sentence from the linearized representation.

20

3.2 Graph conversion

3.2.1 Graph simplification

In this research, we apply a series of graph simplification in order to reduce the sparsity
of the AMR graph. They consist of variable removal, anonymization of named entities
such as date, the name of person, organization, and country.

Removing variables

AMR graph contains a huge number of less informative information such as the variable
of a node and the instance-of relation which is written by a slash character("/"). We
remove all of these from the PENMAN representation of the AMR graph. In the case of
reentrancy, the variable referring to an existing concept is replaced by its concept.

There are advantages and disadvantages of cutting out variables from the graph.
Firstly, eliminating variable shorten the sequential representation of the AMR graph.
Suppose an AMR node is written by 5 tokens including open and close parentheses, a
variable, a slash relation and a concept, we can reduce 40% of the tokens representing
a node. Second, variable elimination also reduces noise from the graph. A variable can
be a representative of thousands of distinguishable words hence the inconsistency of the
variable might misleads learning models and makes them hard to converge.

The removal of variable comes at a cost of information loss. The variable helps to
distinguish different nodes which share the same concept. Once the variable is wiped
out, nodes wrapping the same concept are collapsed into a single node. We present an
experimental estimation of information loss in the section 4.4.1.

Anonymizing names

Names such as human name, organization name, the country name frequently appear in
AMR, however, each name appears at a low-frequency (Konstas et al., 2017). We apply an
extensive replacement of private names by name of the category to reduces the sparsity of
the data. Additionally, collapsing a subgraph into an indexed node decreases the length
of the text representation of AMR graph. However, this method also reveals an issue
of understanding indexed nodes. The index of the collapsed node is meaningless to the
model and even makes noise to the model.

We replace a sub-graph whose roots are in fine-grained entity types by a special node.
The concept of this node contains the fine-grained type and an index i indicating the i-th
appearance of that type in the graph. Table 3.1 shows the replacement of less frequent
subgraph.

Anonymizing dates

We replace date-related nodes by anonymized tokens for day-number, day-name, month-
number, month-name, and year. Similar to the name entities, this token contains the

21

Table 3.1: Anonymizing name entities in AMR graph.

Sentence Graph

Original Mollie Brown, who slays orcs

(p / person
:wiki "Margaret_Brown"
:name (n / name

:op1 "Mollie"
:op2 "Brown")

:ARG0-of (s / slay-01
:ARG1 (o / orc)))

Anonymized person_0, who slays orcs

(p / person_0
:wiki "Margaret_Brown"
:ARG0-of (s / slay-01

:ARG1 (o / orc)))

categorical token and an index i indicating the i-th ordinal occurrence of that type in the
graph.

Although substitution of the date-related nodes does not change the length of AMR
text, it reduces the vocabulary in the AMR graph. Hence, the substitution may encourage
the convergence of translation model. An example of replacement of date-related nodes
is presented in table 3.2.

Table 3.2: Anonymizing date entities in AMR graph.

Sentence Graph

Original

(d / date-entity
:month 2

Wednesday, :day 29
February 29, 16:30 PST :weekday (w / wednesday)

:time 16:30
:timezone (z / PST))

Anonymized

(d / date-entity
:month month_0

Wednesday, :day day_0
month_0 day_0, 16:30 PST :weekday (w / wednesday)

:time 16:30
:timezone (z / PST))

3.2.2 Linearization & De-linearization

Linearization algorithm contains two main parts: (1) a graph traversal order which defines
the order of appearance of a node in the intermediate sequence (2) a rendering function

22

which generates the sequence that satisfies the recoverability criteria. The criteria ensure
that we can rebuild the graph from the generated text.

In this research, we employ the depth-first-search traversal with pre-order because
this traversal with scope markers ensure the recoverability of the graph and the generated
text is analogous to the original graph.

Linearization by parentheses

AMR graph written in PENMAN notation uses parentheses as the scope markers. The
first linearization method which we employ also use brackets because of the nature of
bracket in AMR format. However, we eliminate every redundant bracket (both the left
bracket "(" and the right bracket ")") which wrap the node with only one child, therefore,
we can lessen the number of generated tokens.

Linearization by reverse path

We propose a linearization sharing the same traversal strategy but marking scope differ-
ently. Instead of using two parentheses for marking a subgraph, we use the reverse path to
structure the graph. The detail of the traversal algorithm is presented in figure 1. Table
3.3 shows an example of two linearization methods. The bold tokens present the reverse
path.

Function dfs(T , nodet, L):
append(L, nodet)
for nodej in child(T, nodet) do

append(L, relation(nodet, nodej)
if is_leaf(nodej) then

append(L, nodej)
append(L, nodej) // Reverse path

else
dfs(T, nodej, S)

end
end
append(L, nodet) // Reverse path

Function linearize(G):
T := preprocess(G)
Initialize list L
dfs(T, root(T), L)
return S

Algorithm 1: Linearization with reverse path.
Given a graph G, we pre-process it as presented in section 3.2. After that, the graph

G is converted to tree-format T . Then we follow depth-first search traversal on the tree.
Once we exit a node, we add the concept of the node to signal that is the end of the
traversal at that node. The added concept is the reverse path to travel back to the root
node when all nodes are visited.

23

Table 3.3: Graph conversion process in detail.

Original sentence No abuse of rights is permitted.
(p / permit-01 :polarity -

AMR in PENMAN notation :ARG1 (a / abuse-01
:ARG1 (r / right-05)))

(permit-01 :polarity -
Removing variable :ARG1 (abuse-01

:ARG1 (right-05)))
Linearization permit-01 (:polarity -) :ARG1 abuse-01
with parentheses :ARG1 right-05
Linearization permit-01 :polarity - - :ARG1 abuse-01
with reverse path :ARG1 right-05 right-05 abuse-01 permit-01

3.3 Convolutional attention-based sequence-to-sequence
model

We implement the fully convolutional sequence-to-sequence model proposed by Gehring
et al. (2017b) which achieved the state-of-art performance in machine translation. We
present three significant components of this model: the convolutional block, the attention
encoder, and multi-step attention decoder.

There are three reasons why we choose convolutional sequence-to-sequence model for
AMR parsing:

• AMR graph written in PENMAN notation is an abstract representation which con-
tains generalized tokens and relations. Most of the relations between entities in
AMR graph are spanned in short paths on the graph therefore, a model featuring
local features are most suitable for AMR parsing. The convolutional neural network
is well-known in representing local feature with short-term dependency. Therefore,
we expected that convolutional sequence-to-sequence model would leverage the ac-
curacy of AMR parsing.

• Based on the mechanism of RNN and CNN, we hypothesize that CNN-based models
can deliver higher throughput than LSTM-based models. Recently, deep learning
models have taken benefits from graphics processing unit (GPU) card which features
CUDA technology with thousands of processing unit. Hence, parallelization is the
most important factor to increase the usage of thousand cores. The obstacle of
RNN is its sequential computation from one step to another, as the result, it can
not benefit from the increasing number of cores in GPU. In contrast, the slicing of
RNN is parallelized entirely because the independent of the computation of separate
slices. In other words, the number of iteration of RNN is linear with the length of
the sequence but those of CNN.

• Although convolutional sequence-to-sequence models have just been proposed re-

24

cently by Gehring et al. (2017a) and Gehring et al. (2017b), they achieved the
highest performance on a large-scale benchmark dataset. This proved a promising
chance to improve AMR parsing.

3.3.1 Word embedding

We equip two type of distributed embedding to the input of the network including con-
ventional word embedding and position embedding. The word embedding layer projects
the input sequence X = (x1, . . . , xn) into distributed space as W = (w1, . . . , wn), where
wi ∈ Rr. This layer maintains an embedding matrix D ∈ RV×r where V is the size of the
vocabulary of the language. In order to equip the sense of the position in the sentence to
the model, we add an external position embedding layer which maps the input sequence
X into P = (p1, . . . , pn) where pj ∈ Rr. The final representation of the input is the combi-
nation of word embedding and the position embedding S(s1 = w1 +p1, . . . , sn = wn +pn).

3.3.2 Convolutional block

The architecture of this convolutional block is integrated into both the encoder and the
decoder of the model. Each block contains a non-linearity layer on top of a 1-D convo-
lutional layer. The non-linear function chosen is gated linear unit (Dauphin et al., 2017)
because of its diversity of linearity and non-linearity paths. We add a residual network
connecting the input of the convolutional layer to the output of non-linearity layer.

At each step, the convolutional layer slides on k input tokens which are projected to
r-dimensional space. In other word, the input at step t is X[j − k + 1 : j] ∈ Rk×d (the
value of j depends on whether it is part of the encoder or decoder). Each convolution
layer contains a kernel W ∈ R2d×kd and bias term bw ∈ R2d. The convolutional operation
projects input X into an output Y = [AB] ∈ R2d. The non-linearity layer glu maps the
output Y back to Rd:

glu([AB]) = A⊗ σ(B)

Stacking multiple blocks

We stack several blocks to equip model the sense of hierarchical understanding, hence,
we expect the model can translate in both implicit and explicit ways. The number of
parameters in the model can be controlled in several ways. We can adjust the number of
stacked blocks and the number of kernels inside each convolutional block.

El(el1, e
l
2, . . . , e

l
n) denotes the output of the block l-th in the encoder. The output of

the block l + 1-th at time step t is calculated as:

el+1
t = glu

(
W l

encoder[e
l
t− k

2

, . . . , el
t+ k

2

]
)

+ elt (3.1)

25

Figure 3.2: Architecture of the convolutional block.

However, during decoding process, the future information must not be fed to the
decoder, so the kernel covers k−1 steps back to the time step t. The output of block l+1-th
at time step t of the decoder is calculated from the output of block l-th Dl(dl1, d

l
2, . . . , d

l
n):

dl+1
t = glu

(
W l

decoder[d
l
t−k+1, . . . , d

l
t]
)

+ dlt (3.2)

3.3.3 Convolutional encoder

The encoder contains three main parts, an embedding layer which is presented in section
3.3.1 and a stack of convolutional blocks presented in section 3.3.2. We add dropout layer
between convolutional blocks to trim the overfitting issue. We also project the output
of the last block back to the embedding space. Then we add with the word embedding
through a residual connection to produce the output of the encoder. Figure 3.3 presents
the architecture of the encoder.

During decoding process which will be presented in detail in section 3.3.4, we use the
output of the last convolutional block el for computing the proportional distribution of
the attention mechanism whereas the output of the encoder oe is used as the embedding
source of weighted sum.

oet = Welt + st (3.3)

26

Figure 3.3: Architecture of the encoder.

3.3.4 Attention-based decoder

The decoder generates the output step by step. At each step, it generates a distribution
of the next token given the source sequence and on-going generated sequence:

P (yt+1) = P (yt+1|y1, . . . , yt, X) (3.4)

We encode the generated sequence using the same architecture of the encoder. How-
ever, we use a different set of parameters in word embedding layer, position embedding
layer, projection layer and convolution layer. The output of a convolutional block is
presented in the formula 3.2.

Multilayer attention mechanism

We equip the decoder a sense of hierarchical decoding through the multilayer attention
mechanism. We utilize attention mechanism at every layer of the decoder.

At time step t + 1, the generated sequence Y1:t = (y1, . . . , yt) is mapped into dis-
tributed representation as G1:t = (g1, . . . , gt). We project the output dl of the l-th layer
back to the target embedding space. Then we combine it with the embedding of the
generated sequence gi.

hli = (Wdli + bi) + gi (3.5)

The attention coefficient alij of the state i toward source element j at the decoder

27

layer l are computed:

alij =
exp(hli · euj)∑t
u=1 exp(hli · euu)

(3.6)

Figure 3.4: Architecture of the decoder.

28

The output of the attention layer l is computed as weighted sum of both the encoder
output oe and the last hidden state of the encoder eu:

cli =
t∑

j=1

alij(o
e
j + euj) (3.7)

Finally, we compute the distribution of the output token over Vtarget possible tokens
of the intermediate representation:

P (yt+1|y1, . . . , yt,X) = softmax(Woc
u + bo) ∈ RVtarget (3.8)

Figure 3.4 illustrates the computing process of the multilayer decoder.

Objective function

Since the translation-based model output a highly dimensional distribution, we minimize
the negative log likelihood loss of the correct translated sequence G toward target sequence
T similar to Sutskever et al. (2014) where D is the dataset:

1

|T |
∑

G,T∈D

logP (G|T) (3.9)

29

Chapter 4

Evaluation

This chapter first shows the annotation of JCivilCode-1.0 dataset and experiment settings
used in this research. Since the graph conversion causes information loss to some AMR
graphs, we present the estimation of the upper bound of the score for AMR parsing task.
Finally, we present results of AMR parsing including accuracy, speed, and stability.

4.1 Annotation of JCivilCode
The Semeval competitions allowed participants to access multiple AMR corpus annotated
manually but no large corpus has been made accessible to the public. Especially, there is
no open AMR resource for any specific domain such as the juristic document or scientific
document. Therefore, we manually annotated a corpus for the English version of the
Japan Civil Code. The code is organized into multiple levels including chapter, part,
article, paragraph, and sentence.

The pre-processing consists of the following steps: gathering articles, removing all
article prefixes and article IDs, then splitting the article into sentences. We labeled
each sentence with an ID containing the article name, the paragraph index, and the
sentence index. To annotate the sentences, we used the web-based editor 1 provided by
ISI group. This editor provides a combination of command line and graphical interface.
The Propbank corpus is integrated into the search engine to minimize the time it takes to
choose a proper meaning of the words. Two annotators are given a list of article sentences
and annotate corpus independently. After finishing their own works, the annotators are
invited to discuss and aggregate their outcomes into a single result. We call this dataset
JCivilCode-1.0. The statistics of this corpus is presented in table 4.2 and table 4.4.

To evaluate the agreement of annotations, we calculate the SMATCH score between
two annotations. The results are presented in table 4.1. As can be seen, the similarity of
two annotations is very high at 92.25 points of SMATCH score. The precision and recall
are fairly equivalent. These results suggest that the dataset was built with high quality.

1https://amr.isi.edu/editor.html

30

Table 4.1: SMATCH score between two annotations of JCivilCode-1.0.

Metric Score
Precision 91.18
Recall 93.35
F-score 92.25

4.2 Datasets and Preprocessing
In this research, we evaluate our model on the AMR Annotation Release 1.02 (namely
LDC2014T12) and AMR Annotation Release 2.03 (namely LDC2017T10). They were
annotated by the Linguistic Data Consortium (LDC), SDL/Language Weaver, Inc., the
University of Colorado’s Computational Language and Educational Research group and
the Information Sciences Institute at the University of Southern California. The former
LDC2014T12 contains 13.051 pairs. The LDC2017T10 is a revised and expanded version
of the LDC2014T12 with 39.260 AMR-sentence pairs in various domains of newswire, web
blogs, and web discussion forums. Two datasets are organized into split and unsplit sets.
The unsplit set categorizes the data by topics. The split set is divided into training/vali-
dation/testing sets. Table 4.2 shows the partitions of two datasets and training/valid/test
setting of two datasets.

Table 4.2: Detail off AMR Annotation Releases.

Partition Dataset Train Valid Test Totals
BOLT DF MT ♣F 1.061 133 133 1.327
Broadcast conversation ♣ 214 0 0 214
Weblog and WSJ ♣F 0 100 100 200
BOLT DF English (1) F 1.703 210 219 2.142
BOLT DF English (2) ♣ 6.455 210 219 6.894
DEFT DF English ♣ 19.558 0 0 19.558
Guidelines AMRs ♣ 819 0 0 819
2009 Open MT ♣F 204 0 0 204
Proxy reports ♣F 6.603 826 823 8.252
Weblog ♣ 866 0 0 866
Xinhua MT ♣F 741 99 86 926
JCivilCode-1.0 ♠ 741 99 86 926
Dataset
LDC2014T12 F 10.312 1.368 1.371 13.051
LDC2017T10 ♣ 36.521 1.368 1.371 39.260
JCivilCode-1.0 ♠ 0 0 157 157

2https://catalog.ldc.upenn.edu/ldc2014t12
3https://catalog.ldc.upenn.edu/ldc2017t10

31

Before putting pairs of sequences into neural machine translation model, we per-
form additional preprocessing to the pairs. The raw sentence is tokenized using Stanford
CoreNLP tokenizer 4. This tokenizer separates punctuations and words into tokens. After
linearizing an AMR graph, we get two well-formated sequences including linearized graph
and a tokenized sentence. We set a threshold of token frequency and replace less frequent
tokens by an unknown token <unk>.

4.3 Experimental environment
We train the system using CUDA technology5 which speeds up the parallel computation
of matrix using graphic processing unit (GPU). Though the machine has multiple GPU
cards, we train models separately on a single GPU. The specifications of the machine are
presented in table 4.3:

Table 4.3: Specifications of the machine during training.

Type
CPU 1 × Intel Xeon E5-2698 20 cores 2.2 GHz6

Graphic card 4 × Nvidia GTX 10807

Memory 128GB DDR4

4.4 Result

4.4.1 Experiment 1: Upper bound of graph linearization

We estimate the maximum SMATCH score to prove the efficiency of this graph con-
version method. All graphs in the official AMR corpus G are passed through a full
linearization process L to get the linearized versions. These sequences were then put into
a de-linearization process DLto obtain the AMR graph set G′.

G′ = DL(L(G))

U(G,L,DL) =
1

n

∑
n

Smatch(Gi, G
′
i)

(4.1)

The upper bound of SMATCH score U(G,L,DL) which a graph conversion method
(L and DL) can deliver is calculated by equation 4.1. The result of the test is presented
in table 4.4.

4https://stanfordnlp.github.io/CoreNLP/
5https://developer.nvidia.com/cuda-toolkit
6https://ark.intel.com/products/91753
7https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/

32

Table 4.4: Upper bound of SMATCH score on three datasets.

Dataset Parenthesis Reverse path
LDC2014T12 79 80
LDC2017T10 79 80
JCivilCode-1.0 79 79

Firstly, as can be seen from table 4.4, the experimental upper bound of all dataset are
much higher than the performance of the current state-of-art systems which obtained at
most 0.71 SMATCH score. Therefore, approaching AMR parsing with machine translation
based method is a potential way if we can develop a robust neural machine translation
model.

Secondly, the table shows a consistent boundary of SMATCH scores. As can be seen,
the two linearization methods deliver a nearly constant upper bound among every dataset
including standard datasets and our manually annotated dataset. The result suggests that
the variety of dataset in term of size, vocabulary and annotation process have small effects
on the stability of the representation of linearization process.

Finally, though the upper restriction of the SMATCH score is far from the perfor-
mance of the most advanced parser, the limitation of the proposed linearization method
will block the more robust sequence-to-sequence model in the future. Once the margin is
narrowed down enough, we should propose another more advanced linearization method
to open to a higher performance.

4.4.2 Experiment 2: AMR parsing

In order to evaluate the accuracy and throughput of the model, we train three sequence
to sequence models namely Bi-LSTM, Conv-Enc and Fully-Conv.

Bi-LSTM model is built from a bi-directional LSTM encoder and an LSTM decoder
with fast-forward connections proposed by Zhou et al. (2016). Conv-Enc model contains
a convolutional encoder and a LSTM decoder proposed by Gehring et al. (2017a). The
Fully-Conv detail explained in the section 3.3.

For word embedding, we use a learnable embedding layer similar to Gehring et al.
(2017b) rather than a pre-trained distributed word representation (e.g. word2vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014)). To train the deep learning model,
we employ the Momentum/Nesterov optimizer, a momentum optimizer for stochastic
gradient optimization. We set up the hyper-parameters as shown in table 4.5.

Table 4.7 presents the SMATCH score of proposed models on LDC2014T12 and
LDC2017T10 datasets. On the LDC2014T12, our models with reverse path linearization
outperform reported system by a large margin of up to 6 points to the CAMR. Moreover,
the performance of the Fully-Conv with parenthesis reached the highest score at 75.47
SMATCH score at 9 points higher.

8This paper reported the SMATCH score on the LDC2016E25 dataset which contains 39.260 AMR
pairs. This dataset is an experimental dataset and was revised as LDC2017T10 dataset.

33

Table 4.5: Hyper parameters of experimental models.

Bi-LSTM Conv-Enc Fully-Conv
Encoder
Architecture LSTM CNN CNN
No. hidden layers 4 6 4
Embedding size 512 512 512
Dropout rate 0.2 0.2 0.2
Decoder
Architecture LSTM LSTM CNN
No. hidden layers 4 4 3
Embedding size 512 512 512
Dropout rate 0.2 0.2 0.2
Attention mechanism Luong attention Luong attention Multilayer
Totals
Learnable parameters (approx) 13.000.000 10.000.000 11.000.000

Table 4.6: Performance of previous works of AMR parsing.

Method SMATCH score
LDC2014T12 dataset
NeuralAMR (Konstas et al., 2017) 62
Stack LSTM (Ballesteros and Al-Onaizan, 2017) 64
CAMR (Wang et al., 2015a) 66
CAMR (Wang et al., 2016) 66
LDC2017T10 dataset
Character-based Translation (van Noord and Bos, 2017) 718

On the LDC2017T10, the scores of models using reverse path were 1 point lower than
that of the Character-based translation model however, models using parenthesis produced
up to 74.28 SMATCH score. Overall, these combinations generate 3 points higher than
the Character-based translation model did.

However, there is a crucial point of the result which should be investigated. The
variation of SMATCH score of the model with the same linearization is tiny. Considering
the difference in linearization creates a margin of 3-5 point of the score. Therefore, the
table suggested that machine translation models did not contribute the accuracy of the
system whereas the domination of linearization method did.

However, the consistency of score can be a critical point of this research, we perform
a further experiment to test the stability of the model in the next experiment.

34

Table 4.7: SMATCH score on LDC2014T12 and LDC2017T10.

Linearization Model LDC2014T12 LDC2017T10
Reverse path Bi-LSTM 72.70 69.74
Reverse path Conv-Enc 72.70 69.74
Reverse path Fully-Conv 72.71 69.75
Parenthesis Bi-LSTM 75.43 74.25
Parenthesis Conv-Enc 75.41 74.23
Parenthesis Fully-Conv 75.47 74.28

4.4.3 Experiment 3: Testing of stability

Since there are more than ten millions learnable parameters in each experimental model,
we verify the stability and convergability of the models by running ten-fold cross-validation.
We split all partitions of the unsplit LDC2014T12 into ten folds. Then we calculate the
mean and standard deviation of the SMATCH scores. In this experiment, we first try to
test on this small dataset first because neural network models are unlikely to converge
and stable on a small dataset. Moreover, training cross-validation takes so much time
that we decide to try with small one first. The results are presented in table ??

We can easily see from the table that the standard deviations of the SMATCH scores
are tiny. These indicate that our models are likely to converge on different folds of the
dataset. They also deliver stable performance on different distribution of the train/-
valid/test set.

Table 4.8: Average and standard deviation of SMATCH scores on LDC2014T12.

Linearization Model LDC2014T12
Reverse path Bi-LSTM 75.82 ± 0.82
Reverse path Conv-Enc 75.83 ± 0.82
Reverse path Fully-Conv 75.83 ± 0.82
Parenthesis Bi-LSTM 74.40 ± 0.39
Parenthesis Conv-Enc 74.39 ± 0.37
Parenthesis Fully-Conv 74.40 ± 0.39

4.4.4 Experiment 4: More semantic evaluation

In this experiment, we target at investigating several specific aspects of semantic pars-
ing such as named entity, negation, reentrancy, concept, semantic role labeling (SRL).
Named Ent is measured by calculating F-score on the named nodes which have :name
edge. There has been more attention to negation which is an important factor in semantic
representation. Negation metric is the F-score of negated concepts which hold :polarity
edge. Concept identification is a challenging task because it relates to word-sense dis-
ambiguation. Increasing the accuracy contributes largely to the higher accuracy of AMR

35

parsing. Concepts metric is the F-score of predicted concepts. Reentrancy is the dis-
tinguished property of AMR. The test of Reentrancy computes the SMATCH score on
reentrancy edge. Finally, semantic role labeling which is an influential subtask of AMR
is the identification of predicate-argument triplets. SRL metric measures the SMATCH
score on :arg edges.

We followed the evaluation method proposed by Satta et al. (2017) and used their
published evaluation source code9. The results of this evaluation are presented in table
4.9.

Table 4.9: Evaluation of semantic aspects on LDC2014T12.

Metrics Reverse path Parenthesis
BiLSTM Conv-Enc Fully-Conv BiLSTM Conv-Enc Fully-Conv

Named Ent 1.00 1.00 1.00 1.00 1.00 1.00
Negations 0.92 0.92 0.92 0.27 0.27 0.27
IgnoreVars 0.91 0.91 0.91 0.30 0.30 0.30
Concepts 0.86 0.86 0.86 0.63 0.63 0.63
Reentrancies 0.73 0.73 0.73 0.51 0.51 0.51
SRL 0.91 0.91 0.91 0.00 0.00 0.00

As can be seen from the table, there is no significant difference in accuracy of neural
machine translation model which share the same linearization method. Two linearization
methods reproduce nearly perfect on the named entity (reverse path at 0.9975 vs parenthe-
sis at 0.9969). However, comparing two linearization method, reverse path linearization
outperforms parenthesis on all other metrics. Reverse path creates an extremely wide
margin to parenthesis method. The differences are above 0.30 on Concepts and Reen-
trancies and up to more than 0.60 on Negation and IgnoreVars. The reverse path also
contributes to a high accuracy on semantic role labeling at 0.91 while parenthesis totally
failed.

4.4.5 Experiment 5: Parallelization of CNN versus RNN

In this experiment, we aim at comparing the throughput performance of three conventional
models which are bi-directional LSTM, convolutional encoder - LSTM decoder and fully
convolutional encoder-decoder. We test on the LDC2017T10 dataset to evaluate the
throughput of three models.

We set the batch size equally among three models. Specifically, we set batch-size = 32
because that is the maximum size that prevents the process from out-of-memory of the
GPU card. We picked the throughput of the last epoch (in word/second) and reported
in table 4.10.

As can be seen, the throughput of the Fully-Conv model is significantly higher than
other LSTM-related models. Fully-Conv runs at three times faster than pure Bi-LSTM

9https://github.com/mdtux89/amr-evaluation

36

Table 4.10: Throughput of three models on LDC2017T10.

Model Reverse path Parenthesis
Word/s Percentage Word/s Percentage

Bi-LSTM 6185 100% 5015 100%
Conv-Encoder 8532 138% 8464 168%
Fully-Conv 20423 330% 17209 343%

model. The speed of Fully-Conv doubles the speed of Conv-Encoder which is a mixed
model of convolutional - recurrent model. BiLSTM model delivered the lowest through-
put. Replacing the Bi-LSTM encoder by convolutional encoder boosted the throughput
of the model of 50%.

The result from table 4.10 firmly indicates that convolutional neural network is faster
than recurrent neural network because of the benefit of parallelization. The result is
entirely in accordance with the assumption of the parallelizability of CNN.

4.5 Discussion
Linearization method might create two foreseeable issues though it significantly increased
the accuracy of neural network method. First, entity redundancy occurs if the graph
contains multiple nodes who share an identical concept. The second issue is the syntax
error of the output because the neural network does not guarantee that the output follows
the PENMAN notation. Table 4.11 shows some sample of JCivilCode-1.0 and output of
our model. The bold words in the table show the error that our model generated.

37

Table 4.11: Two type of structural error.

Gold standard System
[Node collision] A person who has become subject to the ruling of commencement
of guardianship shall be an adult ward, and a guardian of an adult shall be appointed
for him/her.
(a / and

:op1 (a2 / adult
:domain (p / person

:ARG1-of (s / subject-01
:ARG2 (c / commence-01

:ARG1 (g / guard-01)))))
:op2 (a3 / appoint-01

:ARG1 (p2 / person)
:ARG2 (g2 / guardian

:poss p)))

(a0 / and
:op1 (x0 / «unk»

:domain (p0 / person
:ARG1-of (s0 / subject-01

:ARG2 (c0 / commence-01
:ARG1 (g0 / guard-01)))))

:op2 (a1 / appoint-01
:ARG1 p0

:ARG2 x0
:poss p0))

[Syntax error] Unless otherwise provided by applicable laws, regulations or
treaties, foreign nationals shall enjoy private rights.
(e / enjoy-01

:ARG0 (n / national
:mod (f / foreign))

:ARG1 (r / right-05
:ARG1-of (p / private-02))

:condition (p2 / provide-01 :polarity -
:OR (o / or

:op1 (l / law
:mod (a / applicable))

:op2 (r2 / regulate-01)
:op3 (t / treaty))))

(e0 / enjoy-01
:ARG0 (n0 / national

:mod (f0 / foreign))
:ARG1 (x0 / «unk»)
:ARG1-of x0
:condition (p0 / provide-01

:polarity (x1 / -)
x0

(o0 / or
:op1 (l0 / law

:mod x0)

38

Chapter 5

Conclusion

We have presented our study on Abstract Meaning Representation Parsing using convo-
lutional neural networks:

• We proposed a framework for AMR parsing and generation using neural machine
translation method. This framework consists of two stages which are linearization/de-
linearization and translation.

• We estimated the upper bound of the effectiveness of representing a graph as a
sequence. This proof suggests that there is room to improve the accuracy of AMR
parsing by applying neural machine translation method into AMR parsing. However,
it also revealed a fact that this room is becoming smaller.

• We proposed the utilization of convolutional sequence to sequence model on AMR
parsing. Though comparing to LSTM-based model, this unlikely improves AMR
parsing, however, convolutional architecture can remarkably increase the paralleliza-
tion on GPU hardware.

• We published the first release of AMR testing set 1 for Japan Civil Code (English
version). We hope that legal-specific dataset may encourage researcher to study on
the legal domain.

Even though this research has proved the effectiveness of graph linearization and
neural machine translation method in graph parsing, there are several limitations which
we would like to investigate in the future:

• Although we claimed the reasons for the low performance of AMR generation, the
experiment and observation of AMR generation were not enough to catch up with
the performance of existing method (Konstas et al., 2017). More observation and
modification should be conducted to outperform the NeuralAMR on text generation.

1https://github.com/nguyenlab/crest

39

• Since AMR parsing is a complex representation, we question whether SMATCH
score is a good and efficient evaluation method. According to the paper of SMATCH
score (Cai and Knight, 2013) and the source code published widely on their GitHub
page2, computing SMATCH score is solved using system optimization rather than
exhaustive search. Therefore, the SMATCH score can be unstable once it faces very
large graphs. As our observation, we raise some concerns about the reliability of
SMATCH score on huge graphs.

• The high consistent of three neural machine translation cost a huge of time for
training and evaluation. Therefore the evaluation of convergence and stability of
model on large dataset LDC2017T10 has not been conducted as carefully as those
on LDC2014T12.

2https://github.com/snowblink14/smatch

40

Publications

International conference:

1. Lai Dac-Viet, Vu Trong Sinh, Nguyen Le Minh, Ken Satoh, ConvAMR: Abstract
Meaning Representation Parsing for Legal Document, (Second International
Workshop on Scientific Document Analysis, SCIDOCA 2017)

2. Lai Dac-Viet, Truong-Son Nguyen and Le-Minh Nguyen, Deletion-based sen-
tence compression using Bi-enc-dec LSTM, (2017 Conference of the Pacific
Association for Computational Linguistics, PACLING 2017)

3. Minh-Tien Nguyen, Lai Dac-Viet, Huy-Tien Nguyen and Minh-Le Nguyen, TSix:
A Human-involved-creation Dataset for Tweet Summarization, (11th edi-
tion of the Language Resources and Evaluation Conference, LREC 2018)

4. Nguyen, Minh-Tien, Lai Dac-Viet, Phong-Khac Do, Duc-Vu Tran, and Minh-Le
Nguyen, VSoLSCSum: Building a Vietnamese Sentence-Comment Dataset
for Social Context Summarization (The 12th Workshop on Asian Language Re-
sources, ALR 2016)

5. Danilo Carvalho, Vu Tran, Khanh Tran, Lai Dac-Viet, Nguyen Le Minh, Lexical
to Discourse-level Corpus Modeling for Legal Questioin Answering, (The
10th International Workshop on Juris-Informatics, JURISIN 2016)

41

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In ICLR.

Ballesteros, M. and Al-Onaizan, Y. (2017). AMR parsing using stack-lstms. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017, pages 1269–1275.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight,
K., Koehn, P., Palmer, M., and Schneider, N. (2013). Abstract meaning representa-
tion for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse, pages 178–186.

Barzdins, G. and Gosko, D. (2016). RIGA at semeval-2016 task 8: Impact of smatch ex-
tensions and character-level neural translation on AMR parsing accuracy. In Proceedings
of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT
2016, San Diego, CA, USA, June 16-17, 2016, pages 1143–1147.

Bos, J. (2016). Expressive power of abstract meaning representations. Computational
Linguistics, 42(3):527–535.

Cai, S. and Knight, K. (2013). Smatch: an evaluation metric for semantic feature struc-
tures. In ACL (2), pages 748–752.

Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using neural
networks. In EMNLP, pages 740–750.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2017). Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages
933–941.

Dohare, S. and Karnick, H. (2017). Text summarization using abstract meaning repre-
sentation. arXiv preprint arXiv:1706.01678.

Flanigan, J., Thomson, S., Carbonell, J. G., Dyer, C., and Smith, N. A. (2014). A discrim-
inative graph-based parser for the abstract meaning representation. In Proceedings of

42

the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014,
June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pages 1426–1436.

Garg, S., Galstyan, A., Hermjakob, U., and Marcu, D. (2016). Extracting biomolecular
interactions using semantic parsing of biomedical text. In AAAI, pages 2718–2726.

Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. (2017a). A convolutional encoder
model for neural machine translation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 123–135.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017b). Convolu-
tional sequence to sequence learning. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 1243–1252.

Gildea, D., Xue, N., Peng, X., and Wang, C. (2017). Addressing the data sparsity issue
in neural AMR parsing. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, April
3-7, 2017, Volume 1: Long Papers, pages 366–375.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional lstm-crf models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Jie, Z., Muis, A. O., and Lu, W. (2017). Efficient dependency-guided named entity
recognition. In AAAI, pages 3457–3465.

Konstas, I., Iyer, S., Yatskar, M., Choi, Y., and Zettlemoyer, L. (2017). Neural AMR:
sequence-to-sequence models for parsing and generation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, pages 146–157.

Lai, D.-V., Nguyen, T.-S., and Nguyen, L. M. (2017). Deletion-based sentence compression
using bi-enc-dec lstm. 2017 Conference of the Pacific Association for Computational
Linguistics (PACLING).

Li, B., Wen, Y., Bu, L., Qu, W., and Xue, N. (2016). Annotating the little prince with
chinese amrs. LAW X, page 7.

43

Liu, F., Flanigan, J., Thomson, S., Sadeh, N., and Smith, N. A. (2015). Toward abstractive
summarization using semantic representations. In NAACL, pages 1077–1086.

Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September
17-21, 2015, pages 1412–1421.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005). Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, pages
523–530. Association for Computational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in Neu-
ral Information Processing Systems 26: 27th Annual Conference on Neural Informa-
tion Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 3111–3119.

Munoz, M., Punyakanok, V., Roth, D., and Zimak, D. (1999). A learning approach to
shallow parsing. In 1999 Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages 1532–1543.

Ramshaw, L. A. and Marcus, M. P. (1999). Text chunking using transformation-based
learning. In Natural language processing using very large corpora, pages 157–176.
Springer.

Rao, S., Marcu, D., Knight, K., and Daumé III, H. (2017). Biomedical event extraction
using abstract meaning representation. pages 126–135.

Satta, G., Cohen, S. B., and Damonte, M. (2017). An incremental parser for abstract
meaning representation. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, April
3-7, 2017, Volume 1: Long Papers, pages 536–546.

Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al. (2012). Open language learning
for information extraction. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learn-
ing, pages 523–534. Association for Computational Linguistics.

44

Song, L., Zhang, Y., Peng, X., Wang, Z., and Gildea, D. (2016). Amr-to-text generation
as a traveling salesman problem. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 2084–2089.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 3104–3112.

Takase, S., Suzuki, J., Okazaki, N., Hirao, T., and Nagata, M. (2016). Neural headline
generation on abstract meaning representation. In EMNLP, pages 1054–1059.

van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al. (2016).
Conditional image generation with pixelcnn decoders. In Advances in Neural Informa-
tion Processing Systems, pages 4790–4798.

van Noord, R. and Bos, J. (2017). Neural semantic parsing by character-based translation:
Experiments with abstract meaning representations. Computational Linguistics in the
Netherlands Journal, 7:93–108.

Vanderwende, L., Menezes, A., and Quirk, C. (2015). An AMR parser for english, french,
german, spanish and japanese and a new amr-annotated corpus. In NAACL HLT 2015,
The 2015 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 -
June 5, 2015, pages 26–30.

Wang, C., Pradhan, S., Pan, X., Ji, H., and Xue, N. (2016). Camr at semeval-2016 task
8: An extended transition-based amr parser. In SemEval-2016, pages 1173–1178.

Wang, C., Xue, N., and Pradhan, S. (2015a). Boosting transition-based AMR parsing
with refined actions and auxiliary analyzers. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 2: Short Papers,
pages 857–862.

Wang, C., Xue, N., and Pradhan, S. (2015b). A transition-based algorithm for AMR
parsing. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 366–375.

Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016). Deep recurrent models with
fast-forward connections for neural machine translation. TACL, 4:371–383.

45

Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhuber, J. (2017). Recurrent highway
networks. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 4189–4198.

46

