JAIST Repository

https://dspace.jaist.ac.jp/

Title gobooooooooboooooooo
Author(s) oo, 00

Citation

Issue Date 2018-03

Type Thesis or Dissertation

Text version

aut hor

19/15213

URL http://hdl.handle.net/ 101
Rights
Description Supervisor: goooo, ooooooo,

gg

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Build One Player Mahjong Player Based on Reinforcement
Learning

Shouo Yamada (1510056)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 9, 2018

Keywords: Computer Mahjong, Machine Learning, Reinforcement Learning.

Extended Abstract

When creating computer game players that play with/against human players, the main
and ultimate goal is usually to entertain the human players. While there are many con-
ditions needed for entertaining human players, the most elementary one is that computer
players have sufficient skills compared to human players. For many games, it was a diffi-
cult task to make such strong computer players, so research for strong computer players
has been intensively done.

In the case of Chess, IBM Deep Blue won against the human world champion in 1997,
and in the case of Shogi (Japanese Chess), many programs showed excellent performance
in games against professional players. Finally, in the case of Go, AlphaGo from DeepMind
won against the human world champion in 2017. These three games are two-player, perfect
information and zero-sum games. In such games, we can conclude that the method of
making very strong computer players has been achieved. Therefore, researchers interests
have now shifted to other types of games, especially more complex games in a way. One
of such interesting games is Mahjong.

Mahjong is a four-player, imperfect information and stochastic game. In addition, one
game of Mahjong is composed of about 10 sub-games, and the total scores of the sub-
games are compared. So, players should try to win single sub-games (by completing their
hand), but it is often more important to change the strategy according to the current total
score situation. For example, if a player has the highest score after some sub-games, it is
more important to win earlier (even if small score gain) and to avoid being exploited, than
to win with big score gain. In contrast, if a player has a lower score after some sub-games,
it is more important to win with a big score gain, even if the probability is small, or slow.
Of course, an intermediate strategy between these two strategies is sometimes optimal.
Since various strategies for various situations are needed, and since many local rules are
employed for actual Mahjong games, it is difficult to prepare good strategies by hand, or
by using supervised learning.

Copyright (© 2018 by Shouo Yamada



In this research, reinforcement learning is employed for preparing strong Mahjong com-
puter players, with various strategies for various situations. We can obtain various strate-
gies by changing the "reward function” and some parameters. In the actual experiments,
we employed two different reward functions when a hand is completed: 1) fixed amount
of reward, 2) score actually gained by the player. It is expected that a ”strategy for early
completion” is learned in the former case, and a "strategy for bigger score gain” in the
latter case. In addition, it is expected that an intermediate strategy can be obtained by
changing a parameter called discount factor gamma.

At first, we applied reinforcement learning to some simplified, small scaled and one-
player Mahjong games, since experiments for such simplified games can be executed in
shorter time, and theoretical values of state-action (Q) values can be strictly computed
and compared to the result. Five simplified games are designed for this purpose, and
several reinforcement learning methods are evaluated and compared. By using such games
that have different scales of state-action spaces, we can understand the advantage and
disadvantage of reinforcement learning methods.

The first method is called "table-type” Q-learning, where all state-action pairs are stored
independently in a big array table. Each Q-value can be updated without changing other
values, so that true Q-values can be represented and learned after sufficient learning
episodes. On the other hand, if the state-action space is very big, such table cannot
be stored in the PC memory, or a lot of episodes are needed for experiencing all the
state-action pairs. This table-type Q-learning worked successfully in 3-tiles Mahjong and
5-tiles Mahjong, with about 100,000 state-action pairs, but could not work well in 8-tiles
Mahjong.

The second method is called "feature-type” Q-learning, where each state-action pair
is converted to a feature vector, and the inner product of the vector and a weight vec-
tor is used as the Q-value. A 76-dimension vector is used for 5-tiles Mahjong and a
112-dimension vector for 8-tiles Mahjong, respectively. The number of parameters for
representing the policy is significantly smaller (76 and 112) than the first method, then
there is no problem about PC memory. On the other hand, when a Q-value is updated,
it means that other (Q-values are also changed, since the common weight vector is used.
By this limitation, it is difficult or usually impossible to represent theoretically optimal
Q-values. In fact, comparing the two methods for 5-tiles Mahjong, the average moves for
completion was 11.9 (table-type) and 12.4 (feature-type) respectively, which means that
table-type was better in this small game.

We also employed 14-tiles Mahjong, which is the usual size of hand, but in a one-player
game. Since table-type cannot be used, feature-type with 192 dimension vector was used.
We employed two types of rewards, 1) fixed and 2) gained score, for 1) early completion
and 2) big score completion. The average number of moves until completion was 30.3
and 34.8 respectively, meaning that 1) completed hands earlier, and average score at
completion was about 3300 and 7700, meaning that 2) got higher scores, as expected. In
addition, we modified the discount factor from 0.9 to 0.7 in order to guide the learning
to earlier completion. Then the average number of moves became 32.6 and the average
score became 4200. This means that an intermediate strategy was obtained, as expected.

Finally, the third method is called "neural network type”, where feature vector is used
but the Q-value is calculated by a neural network, instead of simple linear product. By this



method, representation ability, generalization ability and then performance are expected
to be improved. At the same time, it cannot be helped that the calculation cost is
significantly expensive compared to table-type or linear-feature-type. After applying this
method to 8-tiles Mahjong, we could observe fast improvement of winning ratio. To
achieve 90 % winning ratio, linear feature type required about 600,000 episodes (games),
and neural network type only 30,000 episodes, while the actual learning time was not so
different.



