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Abstract

Past theoretical studies on word learning have offered
simple sampling models as a means of explaining real
word learning, with a particular goal of addressing the
speed of word learning: people learn tens of thousands
of words within their first 18 years. The present study
revisits past theoretical claims by considering a more re-
alistic word frequency distribution in which a large num-
ber of words are sampled with extremely small probabil-
ities (e.g., according to Zipf’s law). Our new mathemati-
cal analysis of a recently-proposed simple learning model
suggests that the model is unable to account for word
learning in feasible time when the distribution of word
frequency is Zipfian (i.e., power-law distributed). To
ameliorate the difficulty of learning real-world word fre-
quency distributions, we consider a type of active, self-
directed learning in which the learner can influence the
construction of contexts from which they learn words.
We show that active learners who choose optimal learn-
ing situations can learn words hundreds of times faster
than passive learners faced with randomly-sampled situ-
ations. Thus, in agreement with past empirical studies,
we find theoretical support for the idea that statistical
structure in real-world situations–potentially structured
for learning by both a self-directed learner, and by a
beneficent teacher–is a potential remedy for the patho-
logical case of learning words with Zipf-distributed fre-
quency.

Keywords: cognitive models of language acquisition;
cross-situational word learning; statistical learning

Child word learning
One of the most prominent differences between human
and nonhuman cognition is our language ability. Much
research has been dedicated to understanding the human
capability for language, with a great deal of discussion
focused on the process of language acquisition. A central
debate in this conversation considers whether acquisi-
tion is based on innate and language-specific mechanisms
(Chomsky, 1965; Gleitman, 1990), or bootstrapped from
domain-general mechanisms (Smith, 2000; Kachergis,
2012). From the former perspective, humans become
competent language users–mastering a complex system
of syntax to produce endless semantics–very rapidly, and
with relatively little training.

Word learning has been treated as an indicator of
language development, and has been compared with a
number of other indicators of cognitive abilities, such as
memory (Vlach & Johnson, 2013; Vlach & Sandhofer,
2012). Although there are multiple empirical estimates
of the number of words that children acquire, many stud-
ies agree that child’s word learning is quite fast. Early

word production starts when the child is 12 months old
on average, and by 18 months children can produce 50
words and comprehend 100-150 (Hulit & Howard, 2002).
By 18 years of age, it is estimated we know over 60,000
words (Bloom, 2000). Under the assumption that each
child has 8 hours of word learning opportunity everyday,
these estimates mean the child learns a new word every
learning hour for 18 years of the life.

Given these empirical estimates of word learning, the-
oretical studies have attempted to account for the quan-
titative characteristics of word learning. The first ques-
tion is: What combination of learning mechanisms and
structure in the language environment allows children to
learn at this rate? This question poses a good neces-
sary condition for any account of child word learning,
as it needs to address this quantitative aspect of word
learning.

As a first-order approximation, child learning may be
modeled as an independent sampling process in which
each word is learned independently. To estimate the
fastest possible learning rate, (Blythe, Smith, & Smith,
2010, 2016) proposed an idealized learning model to ad-
dress acquiring a full lexicon in the long term: 60,000
words over 18 years. In their model, each word is
learned with its first sample – known as fast mapping
in the developmental literature. Under the simplifying
assumption that each word is independently learned via
fast-mapping, and its word frequency is distributed uni-
formly, their mathematical analysis of the model showed
that a cross-situational learner is sufficiently fast to learn
all 60,000 words after experiencing a reasonably small
number of spoken words.

Theoretical approach

Blythe et al.’s theoretical estimate has been treated as
a theoretical implication that shows learning via inde-
pendent fast-mapping of words is efficient enough to be
a model of child word learning. In this study, we rein-
spect this theoretical implication by introducing a more
realistic word frequency distribution. Our mathematical
analysis implies that the learning rate of the independent
fast mapping is quite sensitive to the word frequency
distribution. More importantly, even fast mapping–the
most efficient learning, requiring only a single sample,
can be too slow to learn 60,000 words in 18 years, if
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word frequency follows Zipf’s law (Zipf, 1949) or a fat-
tailed distribution which is often found in natural cor-
pora. Thus, our analysis implies that the independent
fast-mapping model cannot be an account for child word
learning, if there are many words sampled less frequently.
This mathematical implication leads to an empirical test
of whether the word distribution in the child-directed
speech is uniform or non-uniform such as a Zipf dis-
tribution. Thus, in the second study, we analyzed the
CHILDES corpora for word distribution in child-directed
speech.

Given this result of the mathematical analysis, we ex-
plore an extension of the word learning mechanism by
additionally assuming that the word learning is more ac-
tive than that is supposed to be traditionally. Typically,
as analyzed in the past studies above (Blythe et al., 2010,
2016), the learning is supposed passive – the learner has
no choice but observing samples words and objects from
a given probability distribution. This is certainly over-
simplified, as actual child word-learners choose when,
where and from whom they would like to learn words.
Thus, our second analysis estimates the impact of a form
of active choice of situations in word learning. Our anal-
ysis shows that active learning is likely to have a suf-
ficiently beneficial impact to make word learning fast
enough to happen on a realistic timescale.

Independent fast-mapping learning

Uniformly distributed word frequency

Blythe, Smith, & Smith (2010) proposed a mathematical
model of word learning, which has a closed-form expres-
sion under a certain simplification. In their recent study,
Blythe, Smith, & Smith (2016) analyzed essentially the
same model, although slightly modified for analytic con-
venience. Here we briefly introduce the most recent form
(2016) of their model.

Blythe et al. originally consider cross-situational word
learning. Suppose there are W words and O objects in
the hypothetical world. Further the numbers of words
and objects are equal, W = O, in their cross-situational
learning scheme, and every object has its name and no
objects have two names. Namely, there are W correct
pairs of words and objects. Without loss of generality,
denote the W pairs by 1, 2, . . . ,W , and suppose kth ob-
ject is paired with the kth word.

Given these pairs being unknown, a word learner is to
infer correct pairs by going through episodes. In each
episode, the learner is exposed to M ≤ W words and
M objects, without any explicit information on which
word is paired with which object. With one episode with
M ≥ 2 objects and words, the learner cannot tell which
of M words should be associated to which of M objects.

The most simple model among a series of extended
ones is called fast-mapping learning model. In the liter-
ature of language development, it is well-known that chil-

dren as young as three years old can quickly generalize
a novel name to objects when they hear the novel name
given to its fast instance. Due to this one-shot nature
of their word learning, it is called fast mapping. Cap-
turing this empirical finding, the fast-mapping learner in
the model is supposed to learn a new pair of word and
object only with the first experience of it. The fast-
mapping learner is equivalent to the cross-situational
learner, if there is one correct pair of object and word in
each episode (M = 1).

As fast-mapping learning is the most efficient scheme
(at least for independent word learning), it gives a good
baseline estimate of the number of samples to learn all
the words in a given list. Blythe et al. (2010) model
a fast-mapping learner acquiring words independently
drawn from a uniform distribution of W words given in
each episode. As every episode has one word with prob-
ability 1/W , this is equivalent to the so-called Coupon
Collector’s Problem (Blom, Holst, & Sandell, 1994). In
this problem, the expected time T to finish sampling all
the words is

E[T ] =

W∑
i=1

E[ti].

where ti is the time to sample a ith new word given (i−1)
words being learned. Thus,

E[T ] = W

W∑
i=1

1/i ≈ W logW. (1)

Setting the number of words W = 60, 000, which is an
empirical estimate of the number of words 18 years old
knows on average, T = 660, 126. This estimate is compa-
rable with the “reasonable” number of samples justified
by Blythe et al. (2010) which individual children can be
exposed to for their 18 years of lives.

Non-uniformly distributed word frequency

Here we extend this analysis on the fast-mapping
learner to the case with word frequency distributed non-
uniformly. Our extended analysis will reveal that the
estimate based on Equation (1) by Blythe et al. is quite
“optimistic”, as an estimate with non-uniform word dis-
tribution is larger than that in general.

Here let us derive the number of episodes T that,
for 0 ≤ ϵ ≤ 1, the (1 − ϵ) of children learned all
the W words listed. Suppose a set of W words in
which each word 1, . . . ,W is drawn from the distribu-
tion p = (p1, . . . , pW ). The proportion of children who
finished learning all the words is (1 − ϵ) for 0 < ϵ < 1
requires the number of episodes T , which is the root of

W∏
i=1

(
1− (1− pi)

T
)
= 1− ϵ. (2)

The left hand side of (2) is the probability that every
word is present at least once in the T episodes.
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Write

fW,ϵ(x) :=
log

(
1− (1− ϵ)1/W

)
log (1− x)

.

For the uniform distribution, pi = 1/W for every i =
1, . . . ,W , the root of (2) is given by

T = fW,ϵ(1/W ). (3)

This T is the number of episodes with which the propor-
tion of children finished learning all the words is (1− ϵ).
Setting ϵ = 1/2 in (3), we obtain the median of T ,
fW,1/2(1/W ), that is comparable with the mean of T
in (1).

Unlike (3) for the uniform distribution, the root T of
Equation (2) in general is not closed-form. Thus, let us
consider the upper and lower bound for the root instead
of the rigorous form of it. For the general word distri-
bution p = (p1, . . . , pW ), the intermediate value theo-
rem states that there exists a unique constant c holding
min p ≤ c ≤ max p, with which the root of (2) is ex-
pressed as

T = fW,ϵ(c).

Equivalently, we have inequality

fW,ϵ(max p) ≤ T ≤ fW,ϵ(min p).

As we are interested in the worst possible estimate of
T , this inequality states that the upper bound T+ :=
fW,ϵ(min p) of T is characterized with the probability to
sample the least frequent word min p.

This extended mathematical analysis implies that the
uniform distribution q = (1/W, . . . , 1/W ) of words gives
the minimal possible upper bound T+ among any fre-
quency distribution of W words, as any distribution
min p of W words holds min p ≤ min q. Therefore, the
expectation of T in the form of (1) with the uniform
distributed words is the most optimistic, which may un-
derestimate the number of episodes required for learning
with a realistic word distribution.

For example, let us consider an alternative case
that the W word follows the Zipf distribution p =
(1−1/HW , 2−1/HW , . . . ,W−1/HW ), where HW is the

harmonic number HW =
∑W

i=1 i
−1. In this case, the

minimal probability is min p ≈ 1.44× 10−6, and the up-
per bound T+ is 1.08 × 107 for ϵ = 0.01. This estimate
means that learning of Zipf-distributed words requires
16.4 times as many samples as learning of uniformly-
distributed words. That means that 206 independent
episodes exposed to a word learner every hour (or three
episodes every minute), assuming 8 hours of learning ev-
eryday of 18 years of life. This estimate cannot possibly
be considered “reasonable” with respect to ordinary life
of children in any culture.

Sensitivity to non-uniformity of word
frequency distribution

To analyze the sensitivity to the non-uniformity, here
we analyze the Zipf distribution with different ex-
ponent parameters. Denote the Zipf distribution
with the exponent parameter a ≥ 0 by p =
(1−a/HW,a, 2

−a/HW,a, . . . ,W
−a/HW,a) where HW,a is

the generalized harmonic number HW,a =
∑W

i=1 i
−a. It

is reduced to the uniform distribution by a = 0. The
larger the exponent a is, the minimal probability min p
is smaller. Thus, here we analyze the upper bound T+

as a function of the exponent parameter a.

Write T+ = fN,ϵ(min p), which gives a reasonable es-
timate of the upper bound of the root T of (2). As a
function of the exponent a, we have

∂ log T+

∂a
=

pmin

(
∂HN,a

∂a /HN,a + logW
)

(1− pmin) log (1− pmin)

and further we have

∂2 log T+

∂a2
≥ 0.

This implies the T+ is a super-exponential monotone
function of the exponent a. It is also numerically con-
firmed in Figure 1, in which the numbers of episodes
are shown as functions of the exponent for W =
10000, 60000. In this plot, a = 0 shows an estimate for
the uniform distribution, and a = 1 shows that of the
standard Zipfian distribution. It is striking that even
the fastest learning such as fast mapping can be quite
slow (exponentially as a function of a) for with distribu-
tions with some item with a very small probability.

Empirical dataset

Given theoretical implication in the previous study, let
us analyze an empirical word distribution, which chil-
dren typically are exposed to. It is difficult to exactly
count “episodes” or “pairs of word and object” in a
real dataset, due to its ambiguity of definition and it
is also up to children’s subjective perspective. Here,
as a proxy of them, we counted the word frequency
based on child-directed speech in the CHILDES corpus
(MacWhinney & Snow, 1990). Figure 2 shows a repre-
sentative word distribution of 51,446 words aggregated
over 4,163 transcripts of all the corpora in CHILDES re-
trieved in December 2007. The minimal word probabil-
ity was 1.089×10−7, which gives the upper bound T+ =
f51446,0.01(1.089 × 10−7) = 1.420 × 108 or the median
estimate T+ = f51446,0.5(1.089 × 10−7) = 1.030 × 108.
These estimates of required samples, an order of mag-
nitude larger than the optimistic theoretical estimate,
suggest that it is difficult to learn these empirical words
with this Zipfian-like frequency distribution.
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Figure 1: For ϵ = 0.01, 0.5, 0.99 (broken and solid lines),
N = 10000, 60000 and the exponent a = 0, 0.25, . . . , 1.5,
the required number of samples M for a generalized Zipf
distribution pk = k−a/

∑N
k=1 k

−a is numerically calcu-
lated by the root of Equation (2).

Active choice of situations

Formulation

The implication of the mathematical analysis above,
which suggested that even fast-mapping may not be effi-
cient enough for non-uniformly distributed words, raises
a controversy between past theoretical analyses and em-
pirical findings of quantitative aspects of word learning.

Here, we explore a possibility to reconcile the discrep-
ancy between theory and empirical findings, by consider-
ing a further relaxation of past theoretical assumptions
about children’s word learning. In the conventional the-
oretical framework, the learner is assumed to be pas-
sive, having no choice but to observe and learn from a
given context: a randomly-sampled set of of objects, of
which a (random) subset are labeled with words. This
assumption of a passive learner simplifies the theory,
but surely underestimates real learners, who have some
choice about which contexts they experience. Here, we
consider a type of active learner who is able to choose
from which situation/context he or she learns words.

Suppose that there areN word-object pairs andM sit-
uations, and that the conditional probability to observe
the ith word-object pair is pij given the jth situation.
Thus, the active learner has a choice of the situation out
of the given M situations from which he or she learns
the word-object pairs. Suppose that the active learner
chooses the jth situation by the probability qj . Let us
denote the N ×M matrix of the conditional probability
by P = {pij}ij and the N × 1 vector of the choice prob-
ability by q = (q1, q2, . . . , qM )T . With this notation, the
marginal probability of word-object pairs is given by the
vector Pq ∈ RN . According to our mathematical anal-

100 101 102 103 104 105
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log P = -1.7548 log( rank ) + 2.6105

Figure 2: Word frequency in a corpus aggregated from
the CHILDES transcripts.

ysis in the previous section, the minimal probability of
objects decides the number of samples required to com-
plete the word learning, the best choice for the active
learner is given by the choice probability

q̂ = argmaxq min(Pq).

This minimal probability, min(P q̂), gives the theoret-
ical upper bound for the minimal number of samples
fW,ϵ(min(P q̂)), as P is not known before empirical learn-
ing, and the active leaner also needs to estimate P from
the sample. For a given matrix P , the optimal q̂ can be
computed by the iterated linear programming algorithm
(See also Appendix for the detail).
As a baseline for the passive learner, we consider the

average min(Pq) with the uniform distribution over the
vector q, whose lower bound is given by the Jensen’s
inequality∫

q∈SN
min(Pq)(N − 1)!dq ≥ min(P1N/N),

where the integral is taken over the N − 1 dimensional
unit simplex q ∈ SN . For a sufficiently small x ≪ 1
and y ≪ 1, fW,ϵ(x)/fW,ϵ(y) ≈ y/x. Thus, the rate
R = min(P q̂)/min(P1N/N) gives a good estimate for
the rate of efficiency R, by which the active learning
with the optimal probability q̂ R times faster than the
passive learning with a fixed probability q.

Empirical evaluation

To evaluate the potential impact of the active leaning,
we study the SUN database (Xiao, Hays, Ehinger, Oliva,
& Torralba, 2010) as an empirical object distributions in
an collection of real-life scenes. The SUN database (re-
trieved on September 25th in 2016) has N = 3, 458 ob-
jects and M = 1, 111 scenes in it. This data is supposed
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to give the N ×M matrix P in which each column is the
conditional probability of the objects given each scene.
If the scene choice probability is the uniform distribu-
tion q = 1N/N , the min(Pq) was 8.30 × 10−9. Mean-
while, with the optimal q̂, the min(P q̂) was 1.95× 10−6,
which implies the active learning was approximately
min(P1N/N)/min(P q̂) = 235.3 times faster than the
baseline passive learning. The marginal probability dis-
tributions of objects for the baseline and optimal q are
shown in Figure 3. The difference between the two
marginal distributions is visible at their tails – the tail
for the uniform q decreases like an exponential function,
but that for the optimal q̂ decreases as a power function
(linear in the double log plot). This empirical evaluation
suggests that the active learning of interest can boost the
fast mapping a few orders more efficiently.
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Figure 3: The marginal probability of objects for the
optimal q̂ (line) and its baseline (dots).

Online active learning

The quantification of the efficiency of active learning is
based on the optimal q̂ with the knowledge of P . This
gives an optimistic estimate for the active learner, as
the matrix P is not fully known in reality. Here we
performed a Monte Carlo simulation to quantify the effi-
ciency of an online active leaner who gradually updates
knowledge in the matrix P and estimates q on the basis
of the sample estimate of P . If this online active leaner
is comparable with the optimal active learner with q̂, we
can treat the performance analysis on the optimal active
leaner above (a few orders more efficient) as holding for
the online active leaner. For this purpose, we generated
a N × M matrix P with N = 1000,M = 100, which
has the elements in each column are Zipfian probabili-
ties Pπ(i) ∝ i−a with the random coefficients a ∈ [1, 1.5],
where π : {1, . . . , N} 7→ {1, . . . , N} is a random per-
mutation. The online active learner has the uniform

choice probability q1 = 1N/N . For kth batch of 1000
steps, the online learner samples the objects according
to the probability Pqk, and constructs the sample proba-
bility matrix P̂k according to the sample frequency. Af-
ter the kth sampling step, the online learner estimates
qk := argmaxq min(P̂kq). In each run of this procedure,
we repeat up to 100×1000 samples, and obtain one sam-
ple for the number of required samples to finish learning
all the 1000 objects. With 100 runs, we obtain the Monte
Carlo estimate of the online learner shown in Figure 4.
Figure 4 shows the sample probability distribution of the
number of required samples in the Monte Carlo simula-
tion (circles: histogram, line: smoothed estimate), and
its comparable median estimate for the optimal learner
(green vertical line) and the passive learner with the uni-
form q (red vertical line). This simulation result shows
that the online learner is as fast as the optimal learner,
and is likely to be faster than the passive learner.
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Figure 4: The probability distribution of the number
of required samples to finish learning for passive (red),
optimal (green), and online active learner (blue).

Discussion

This study has provided mathematical analyses of quan-
titative aspects of word learning that provide key con-
straints which any theoretical account for children’s word
learning should satisfy. We reinspected the past theo-
retical claim by Blythe et al. (2010) that learning via
independent fast mapping was efficient enough to ac-
count for the average number of words known by 18-
year-olds. Our new analysis extends their analysis to
fast mapping with non-uniform word frequency distri-
butions, and shows that even learning via fast mapping
is not efficient enough to learn words whose distribu-
tion has rarely sampled words–including the Zipf (i.e.
power-law) distribution, which describes empirical word
frequency distributions from natural language.
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Given that this new analysis implies learning would
be too slow under realistic distributions, we consider
a more efficient learning scheme, in which the learner
can choose preferred situations from which words are
learned. This type of active control over situations or
contexts seems natural with respect to general obser-
vations of children’s behavior, and has been shown to
benefit adult word learners (Kachergis, Yu, & Shiffrin,
2013), but has not been subjected to theoretical analysis
as far as we know. We quantify and evaluate the effect of
this type of self-directed learning in word learning. As
the least probable word in the distribution determines
learning efficiency, we analyzed the active choice for the
situations maximizing this key parameter. Analyzing an
empirical dataset of the words given situations, we esti-
mate that active learning is over two hundred times more
efficient in learning time than passive learning. This
result suggests that active choice in word learning can
resolve the issue that naturalistic non-uniform word dis-
tributions greatly slows passive fast mapping.

Our analyses in this paper utilized one of the simplest
learning schemes, fast mapping, in order to highlight
the effects of varied word frequency distributions, and of
active learning. However, we expect the analytic tech-
niques we employed would also allow analysis of other
learning algorithms, including many proposed variants
of cross-situational learning. In future work, we will re-
port similar analyses for learning schemes with perhaps
greater cognitive plausibility. On this path towards ever
more realistic assumptions about the language environ-
ment and learners’ ability to shape it, we expect to make
progress toward a general theoretical framework span-
ning many proposed word learning schemes.
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Appendix: Iterated linear programming
For a N × M matrix P , write its ith row by Pi. Let
I = {1, 2, . . . , N} be the set of all indices. At the initial
step, define

K0 := ∅, C0 := SM , q0 := e1,

where e1 := (1, 0, . . . , 0)T ∈ RN . Then for 0 < n ≤ N ,
define

kn := argmin
k∈I\Kn−1

Pkqn−1, Kn := Kn−1 ∪ {kn},

Cn :=

{
q ∈ C0|

∧
k∈Kn

(Pkn
− Pk)q ≤ 0

}
,

qn := argmax
q∈Cn

Pknq,

until n = m such that mink∈Km
Pkqm ≤ mink∈I Pkqm.

The algorithm stops the iterative procedure by out-
putting q := qm.
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