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Abstract—Each person has their private physical and/or psy-
chological area where they do not want to share with others
during social interactions. This area gives them comfort about
interactions and its size usually depends on various factors such
as culture, personal traits, and acquaintanceship. This issue may
also arise in case of human-robot interaction, especially when
the robot is required to generate a socially competent interaction
strategy toward people they are interacting with. Here, we
propose a new robot exploration strategy to socially interact with
people by considering the social relationship between the robot
and each person. To that end, two definitions of interaction area
are made: (1) Acceptable area allowed to be shared with other
people and robots, and (2) Private area where a human does not
want to be interfered by others. Based on these definitions, the
robot can optimize the path to maximize the frequency/degree
of visiting the acceptable area of each person and to minimize
the frequency/degree of trespassing into the private area of
them at the same time in an iterative way. In this paper, the
social force model (SFM) of each person, based on the potential
field concept, is designed by a fuzzy inference system and its
parameter is optimized by the reinforcement learning model
during interactions. We have shown that the proposed model
can generate a suitable SFM of each person, which was quite
similar to a ground truth model, allowing to plan a path to
simultaneously optimize the two factors of interaction area,
respectively.

1. INTRODUCTION

In the near future, domestic service robot will become es-
sential for assisting humans in daily lives. As they are expected
to share an environment with humans, their perceptual and
behaviroal abilities in a way conforming to social conventions
are the important key challenges for human-robot symbiosis.
Developing socially aware robot has been largely studied in
robotics research [1] and most of research progresses are
in the field of articulated human motion perception and are
turned to extend a human interaction data [2]. A Proxemics
theory, which describes human social convention, and its
correlated concept are frequently used for developing the
social robot. However, still it is a challenge to formalize this
social theory into the mathematic model for robot-centered
social representations. Our ultimate goal is to adhere social
convention to design a model of social space of human which
enables the robot to predict the human’s social area when robot
are operated in a shared environment.

For the safe navigation in a human environment, the colli-
sion avoidance concerns that humans are important elements
for unscathed maneuvers. Moreover, to realize the social
exploration of the robot, human comforts feeling should be in-
tegrated into path planning. Therefore, the Social Model could
be used to describe specific areas around the human in such
a way that defines the comfortable area of humans [3]. This
concept is also integrated into the various robotic researches,
especially safe navigation considering social effects.

Although there are various researches about the social model
for the robot navigation, the dynamics of social space of hu-
mans have not been paid much attentions yet. It is well known
that humans have distinct areas which feel safe and comfort
while interacting with others. These areas provide enough
space for interaction while considering comfortable feeling for
each person. However, these areas are difficult to be predicted
by the robot even though a person is well known to it. The
reason is that it depends on current human‘s mental states in
different situations. Naturally, this process humans can make
it automatically by learning from interaction. By mimicking
the human being, this can be embedded into the robot to
estimate comfort area of humans and avoid the unacceptable
area of them. By learning from interacting with humans in the
environment, the robot can predict The social area to match
with a realistic interacting area. After learning process, the
robot can use the prediction result to design efficient path that
has proper interaction and not assail comfortable feeling.

Therefore, this paper proposes an extend social model which
is designed by potential field concept which relies on the
experience of path planning during human-robot interaction
in the shared environment. The proposed estimated model
adapts Gaussian function parameters by learning from the
previously generated path. The result of learning social model
improves social model to correctly match with the ground truth
social model. This method assists the navigation algorithm and
improves efficiency while considering the human’s acceptable
feeling to interact with the robot.

2. RELATED WORK

The key idea to formalize human-robot interaction is the
aspect of human behavior. Therefore, the knowledge of psy-
chology and sociology are used to extend a robot behavior.



Fig. 1. Human Interaction Area

One famous theory for a social robot is Proxemics theory
which describes different interpersonal distances that humans
maintain from each other [3]. The theory was proposed by
Hall to determine the separated areas depending on types
of interaction and relationship between each person. Human
interaction areas could be defined by this theory as shown in
Fig.1. Among the various types of human interaction areac,
Public area is the area that often it is used to interact with
strangers, Social area is to interact with acquaintances, Per-
sonal area is for interacting with familiar persons, and Intimate
area is for intimate contacts. Empirical research claims that
these spatial distances play an important role to perceive and
accept the interaction with a robot, too [4][5][6]. By using
this concept, [7] proposed the social space based on geometric
models and potential field models.

Social models are described by the geometric models which
composed of ellipses or semi-ellipses. This type of models has
a clear boundary which suited to represent a sharp transition
between different regions of social spaces [8], to represent
personal spaces in nearest histograms for local navigation
[9][10] and to be applied solely for avoiding human in the
environment [11].

Another model is usually used to describe interpersonal
space by a potential field which composed of continuous
functions. This function assigns the degree of acceptable
and/or unacceptable values around each person. The model
is usually based on a Gaussian function which centered at
the human’s position. Avoiding engagement with the human
is the most application that uses the potential field concept
in social model. For example, [12][13] used the potential
field to avoid visitings into comfortable space of human by
the robot. [14] proposed a strategy to avoid humans who
approach to the robot along a corridor. The robot initiated
a right turn to send awareness signal to human and followed
avoiding trajectory past the human. Sventrup et al. employed
Rapidly Random Tree (RRT) to the social cost map and gained
feedback from robot dynamic and human motion prediction
[15]. However, the experiment was performed by simplified
experimental conditions. Modeling a function of the comfort
degree of human field-of-view and posture is used as a cost

to guide HAMP planner [16]. Not only avoidance task, but
the potential field are also used in approaching the human.
[17] proposed three Gaussian functions that blended to find
the available area to interact with the robot.

Human social behavior signal and cues are inscribed into a
high-level representation. Human’s pose, speech, and gesture
cues are used to evaluate social space to guide a robot in
a socially compliant manner [18]. Adaptive space of human-
robot interaction was proposed to dealing with uncertainties of
robot perception. Their method based on non-strationay model
as skew-normal probability density functions that deals with
human space [19]. The social relationship and genders of each
person are used as factors to generate social model by fuzzy
logic and it is given as input for transition based RRT(T-RRT)
algorithm to plan the path that avoids the human collision [20].

To recapitulate, the major weakness of previous works is
lack of flexibility of social model because of the fixed spatial
functions. On the contrary, our approach enables the robot to
adaptively estimate the social model of humans which describe
the comfort area that human allows others to work with.
From the initialization of the social model, the robot can learn
parameters to correctly update the social model of each person
during the interaction. This social model can be integrated into
a motion planning system to ensure human safety and to give
them comfort.

3. HUMAN SOCIAL MODEL

The social characteristics, which describe social cues of hu-
mans such as relationships between each person, culture, and
emotional states, are important keys to ensure human safeties
in robot navigation process. This section will summarize the
mathematic model which extends the general social model [3]
to the proposed social model that improves the fuzzy social
model by learning from human-robot interactions.

3.1. Fuzzy Social Relationship Model

The human states and the social information, e.g. relative
positions between the robot and each person, social relation-
ship between them, genders of each person, etc., can be used
to design the comfortable areas around humans according to
Proxemics theory. These comfortable areas can be formalized
by

F (x,y) =
n

∑
i=1

fi (x,y) (1)

where n is the number of person, fi is an interaction force with
human i which can be expressed by the bivariate Gaussian
distribution function. Let A be an mangnitude of social force
signal, and let β f r and βsi be the terms of frontal and lateral
interaction areas respect to the human. The social force model
fi (x,y) is designed by

fi (x,y) = A∗ exp
(
−
(
β f r−βsi

))
(2)

which present a discomfort or unacceptable degree of the
person i. A maximum degree is set at the human location and
it is decreased by considering the distance aparts from the



Fig. 2. Human states

human location. β f r and βsi terms can be modified by relating
with the human’s states and the social degree, respectively.

For β f r which defined as the terms of discomfort area of
humans, the robot perceives human state which consist of hu-
man’s states such as his position, velocity and direction. Given
the distance d and a direction θ from the human’s position
and surrounding environment, and human state (xi,yi, ẋi, ẏi,θi)
which can be visualized in Fig. 2. The magnitude of velocity
v with its direction θi can be computed by

vi =
√

ẋ2
i + ẏ2

i (3)

To integrate the motion of human by the Eq.(2), β f r can be
defined as follows:

β f r =


(d∗cos(θ−θi))

2

2∗σ2
f 0

if cos(θ −θi)≤ 0

(d∗cos(θ−θi))
2

2∗(σ f 0/(1+γ f vi))
2 otherwise

(4)

where σ f 0 is chosen according to the personal area of the
human which is described by Hall. γ f is the normalization
term and The area at the front or the back of the person can
be evaluated by the term cos(θ−θi). Therefore, the robot pays
more attention to aware the area in the front than the back of
the human with respect to human velocity and human’s field
of view.

This paper focuses on using social characteristics between
humans and the robot, e.g. genders of humans, the relative
distance between humans and robot, and relationship degree
of human and robot, to provide the factor of the discomfort
area at the side βsi. Since these social characteristics are vary
depending on the situation, it is difficult to group as a binary
function. Therefore, fuzzy logic is a suitable method to define
a metric of these factors [20].

The input membership function of human’s gender is de-
fined as a binary function subject to male (M) and female
(Fe) which is given by:

Γ1(g) =
{

0, if g is M
1, if g is Fe (5)

where g is the genders input.
Our next social characteristic is relative distance which is

devided into two sets such as near (Near) or far (Far). It

TABLE 1
DESIGNING THE SOCIAL CHARACTERISTICS USING FUZZY RULES

Input Output
Gender Social Relative Unacceptable
(Γ1) Dist.(Γ2) Dist.(Γ3) Area N

(
µ,s2)

M Near Fam CPA
M Near Acq NPA
M Near Str SA
M Far Fam CPA
M Far Acq NPA
M Far Str PA
Fe Near Fam NPA
Fe Near Acq SA
Fe Near Str SA
Fe Far Fam NPA
Fe Far Acq PA
Fe Far Str PA

is represented by sigmoidal function. Let rr be the input of
relative distance, ar is the steepness value of distribution of
relative distance and cs is an inflection point. Then the MFs
function of the relative distance is given as follows:

Γ2(rr;ar,cr) = 1/(1+ exp(−ar ∗ (rr− cr))) (6)

The relationship degree describes the relationship between hu-
mans and robot which can be set by three Gaussian functions,
familiar(Fam), acquaintance(Acq), and stranger(Str). Let ri is
the relationship degree that the robot perceives from humans.
Therefore, the relationship degree MFs are given as follows:

Γ3 (ri) =


N
(
µFam,s2

Fam
)

if Fam

N
(

µAcq,s2
Acq

)
if Acq

N
(
µStr,s2

Str

)
if Str

(7)

For the output of fuzzy logic, there are several distances
in the human’s interaction areas which give the different
standard deviations σsi. Therefore, four Gaussian functions are
used to represent a change of standard deviation(σsi) in each
interaction area which is defined as:

σsi = N
(
µ,s2)=


N
(
µPA,s2

PA

)
if PA

N
(
µSA,s2

SA

)
if SA

N
(
µNPA,s2

NPA

)
if NPA

N
(
µCPA,s2

CPA

)
if CPA

(8)

To combine the social characteristics by Eq.(2), βsi can be
defined as follows:

βsi =
(d ∗ sin(θ −θi))

2

2∗N (µ,s2)2 (9)

This means that, to avoid humans’s discomfort area, the robot
aims to estimate this area based on these social characteristics
factors. Thus, the fuzzy rules are as shown in Table 1.

3.2. Learning Fuzzy Social Model

In this paper, we proposed learning membership function
to social model estimation. The Reinforcement Learning(RL)
method is used to be a learner that learns from robot’s
experience to the human in the environment. In our paper,
we integrate reinforcement learning into fuzzy membership



Fig. 3. Learning Membership Functions Process

function, as shown in Fig 3. The membership function, as
the agent, learns to improve the social model in the sense
of learning how to increase the total amount of reward from
human-robot interactions. After that, the action is selected
by behavior policy and this action adjusts the membership
functions to effectively generate the social map to make a
path through the environment. This process will be occurred
to provide a maximum reward in an iterative way.

The R-Learning is used as the learner. In many learn-
ers in reinforcement learning problem have to abandon the
discounted reward setting. To maximize the average reward
per time, the average-reward setting is replaced in R-learning
method. Therefore, R-Learning neither discounts nor divides
experience into distinct episodes with a finite return. This is
suited to learn the social map from the environment that should
be learnt by experience until gaining the maximum reward.

The transition matrix depends on the action by an agent. In
this paper, the state S consists of value of each membeship
function. We focus only mean values µµµ of MFs to be learnt,
therefore, the state will consist of three means of Familiar,
Acquaintance and Stranger functions, µµµ = [µFam,µAcq,µStr].
The action, a ⊂ A, is how each membership function can be
adjusted. To select the action a, the ε-greedy method is used
to select the action that has maximum estimated state-action
value Q. Therefore, the value of state S with the action a can
be defined as:

Q(S,a) = Q(S,a)+α[R+ R̄+maxaQ(S′,a)−Q(S,a)] (10)

where S′ is the next state, α is a constant learning rate,
R̄ is the average reward value and R is the reward signal
that gained from the environment. In the real robot exper-
iments, the robot can receive this reward from interaction
degree and unacceptable degree from each person. Interaction
degree(ID) presents the degree of human’s comfort to interact
with the robot. Unacceptable degree(UD) is the degree that
human feels discomfort during human-robot interactions. Both
degrees depend on the distance between human and robot
according to Proxemics Theory [3]. Therefore the reward can
be defined as:

R =
k1 ∗ ID

k2 ∗UD+ c
(11)

Algorithm 1 R-Learning
Input: Reward R
Output: action a

Initialisation :
1: R̄ and Q(S,a);

LOOP Process
2: S ← current state;
3: Choose action a in S using behavior policy (e.g. ε-greedy)
4: Take action a, observe R, next state S′

5: δ ← R + R̄ + maxaQ(S′,a)−Q(S,a)
6: Q(S,a) ← Q(S,a) + αδ

7: if Q(S,a) = maxaQ(S′,b) then
8: R̄ ← R̄+βδ

9: end if

where k1andk2 are the weights of each degree, and constant c
is used to prevent zero division. ID and UD are collected by
the predefined ground truth social map. Therefore, interaction
degree and unacceptable degree can be determined as:

ID =

{
∑p ∑

n
i=1− fi(p)+1, p is in social area

0, otherwise
(12)

UD =

{
∑p ∑

n
i=1 fi(p), p is in social area
0, otherwise

(13)

where FID and FUD are the interaction degree and unaccept-
able degree that collected from generated path p which is a
set of coordination (xp,yp) starts from an intinial position to a
final destination in the predefined social map. Therefore, this
membership function can be learnt by the µµµ to maximize the
reward that includes maximum ID while minimize UD. The
complete R-Learning algorithm is given as Algorithm 1.

4. SIMULATION AND RESULT

This section shows the influence of our proposed learning
social model to the T-RRT navigation which integrated with
the genetic algorithm to solve traveling sales man problem.
The robot tries to plan a path to visit all humans in the
environment without colliding into humans unacceptable area
but in the range that humans could be able to interact. To
validate the propsoed model, we need to receive the reward
from humans as the ground truth, therefore, we use the
concept of social relationship model in [20] and set the ground
truth relationship degree MFs as three triangular functions
as folows:aFam = −0.2, bFam = 0.0 and cFam = 0.3 to Fam
set, aFam = 0.0, bFam = 0.2 and cFam = 0.6 to Acq set, and
aStr = 0.4, bStr = 0.7 and cStr = 1.1 to Str set. The ground
truth MFs is shown in Fig.5 (Top).

To estimate social model, the initial parameters of the
RelationshipDegree MFs in Eq.(7) are designed as follows:
sFam = 0.15, µFam = 0 to Fam set, sFam = 0.15, µAcq =
0.5 to Acq and sStr = 0.15, µStr = 1 to Fam set, as shown
in Fig.5 (Middle). These parameters can be learnt from our
proposed method. For the RelativeDistance MFs, aNear = -
0.35, cNear = 300 to Near set and aFar = 0.35, cFar = 300
to Far set. For the output function, the SocialRelationArea



Fig. 4. Social Map: Comparison of the social maps at different time. Ground truth social map (Left), initial social map (Middle), and estimated social map
by learning process (Right)

Fig. 5. Comparison of parameters of social relationship model (fuzzy
membership functions). Ground truth values (Top), Initial parameters of mem-
bership functions (Middle), and Trained parameters of membership functions
(Bottom)

splits into four Gaussian sets. The parameters of Eq. (8) are as
follows: µPA = 0.035, sPA = 0.005, µSA = 0.045, sSA = 0.005,
µNPA = 0.0035, sNPA = 0.06, µCP = 0.0035, sCP = 0.065. These
parameters are assigned by considering the human interaction
area concept[4].

For reinforcement learning process, we set the discrete
states which consists of three mean vales of each relationship
function i.e., [µFam,µAcq,µStr]. The action set for each function
is simply defined as stay, move right and move left i.e., [0 +0.1
-0.1]. The membership functions can be adjusted by learning
iteration until gaining the high reward signal.

The results of social map of ground truth and estimation
parameters can be seen in Fig.4. The ground truth social
map has bigger size compare to initial estimated social map.
However, after learning process, the estimated social map has
similar size compare to the ground truth. The estimated MFs
has been changed compare to initial setting Fig.5 (Bottom).

Fig.6 shows the error of estimated compare to ground
truth social map. At the beginning, the initial social map has
error around 0.006 but after learning over 100s iteration, the
error decreasing until close to zero at over 300 iterations.
Interaction degree and unacceptable degree can be shown in
Fig.7 and Fig. 8 respectively. The results show that after 200

Fig. 6. Social Map Error: The error of social map shows the difference
between the estimated social map and ground truth. The error was decreased
and got closer to zero during the learning iteration

Fig. 7. Interaction Degree: Interaction degree presents the acceptable degree
that the robot can receive it from human along generated path. The robot
should plan the path to receive high interaction degree which means the path
get close enough to possible interact with humans.

iterations, the interaction degree is increasing and get higher
value which is compared with the initial condition. In case
of the unacceptable degree, it is decreased during the learning
process and got lower value comparing with the initial setting.

5. CONCLUSION

In this paper, new social model is proposed to realize
the socially competent exploration strategy by integrating
between fuzzy inference systems and the reinforcement learn-



Fig. 8. Unacceptable Degree: Unacceptable degree presents the total
discomfort feeling that robot can receive it from humans along generated
path. The robot should plan the path avoid to enter the human’s private area.

ing method. The proposed method uses social characteristics
as the factors to determine the social model of humans in
shared environment; however, the prior knowledge setting may
produce an incorrect social maps. This problem may effect to
the robot generated the path that may intrude into human’s
discomfort area or far away from possible interaction area. The
proposed method uses concept of learning from the experience
to update the social map of humans relate to human feedback.
This concept improves the accruacy of social map generation
and to correct robot path planning decision to avoid the human
discomfort area while maintaining the path in the possible
interaction area. Simulation results show that our proposed
method provides correct social map during learning process
which can increase the interaction degree and reduce the
unacceptable degree. However, this learning method requires
long iteration to learn which not suit to realistic and is not
used in the real experiment. Therefore, In the future, we will
invstigate the improvement of social model with the real robot
experiments.
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