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Abstract This paper aims at developing a proportional fuzzy linguistic distri-
bution model for multiple attribute decision making problems, which is based
on the nature of symbolic linguistic model combined with distributed assess-
ments. Particularly, in this model the evaluation on attributes of alternatives
is represented by distributions on the linguistic term set used as an instrument
for assessment. In addition, this new model is also able to deal with incomplete
linguistic assessments so that it allows evaluators to avoid the dilemma of hav-
ing to supply complete assessments when not available. As for aggregation and
ranking problems of proportional fuzzy linguistic distributions, the extension
of conventional aggregation operators as well as the expected utility in this
proportional fuzzy linguistic distribution model are also examined. Finally, the
proposed model will be illustrated with an application in product evaluation.

Keywords: Computing with words, decision making, incomplete assessments,
linguistic modeling, multiple attribute.

1 Introduction

In practice most of the multiple attribute decision making (MADM) problems
involve both types of qualitative and quantitative attributes, which are often
organized in a hierarchical structure [1,2,17]. While quantitative attributes
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can be measured by means of numeric scales in the form of numbers, interval
or fuzzy numbers, qualitative attributes can be only assessed by subjective
judgements with uncertainty. In such situations of decision making, the prob-
lem of how to represent and aggregate qualitative attributes essentially plays
an important role in decision analysis. So far, there are several approaches pro-
posed to deal with this problem. A reasonable way is to make use of a fuzzy
linguistic approach to represent qualitative attributes by means of linguistic
values of linguistic variables [32], [33], [34], and a mechanism for computing
with words (CW) [35] for fusing linguistic information so as to provide an
evaluation for decision making.

Basically, most early work on decision making with linguistic information
made use of fuzzy sets as a tool for modeling linguistic information and ag-
gregation methods were then developed based on Zadeh’s extension principle,
e.g., [4]. Notably also, another approach also aimed to develop the linguistic
symbolic computational model based on ordinal scales [25]. Because of the in-
herent operation mechanism of these two linguistic computational models, the
results of a computational process usually do not exactly match any of the ini-
tial linguistic terms and, hence, a process of linguistic approximation must be
applied to convert the computational results into linguistic terms of the initial
linguistic domain. This linguistic approximation process causes a loss of infor-
mation and consequently leads to the lack of precision in the final results [3].
In order to overcome this limitation of information loss in the computational
stage for CW, Herrera and Mart́ınez [8] developed the so-called 2-tuple fuzzy
linguistic representation model based on the concept of symbolic translation
so as to improve the precision of the final results. This 2-tuple linguistic rep-
resentation model has been widely applied to a range of applications [5,9,10,
16,20,23]. However, as pointed out by its authors, the 2-tuple fuzzy linguistic
representation model was only suitable for handling linguistic variables with
equidistant labels. In addition, as argued by Lawry [13], although Herrera and
Mart́ınez’s symbolic approach offered a computationally much more feasible
method than those approaches using the extension principle in CW, it did not
directly take into account the underlying vagueness of linguistic terms.

In an attempt to improve Herrera and Mart́ınez’s 2-tuple fuzzy linguis-
tic representation model so as to be able to deal with unbalanced linguistic
term sets while simultaneously taking the underlying semantics of terms into
account, Wang and Hao [21] proposed a so-called proportional 2-tuple fuzzy
linguistic representation model for CW making use of the canonical charac-
teristic values (CCVs) of linguistic terms determined by their corresponding
semantics. Wang and Hao’s proportional 2-tuple fuzzy linguistic representation
model interestingly provides a suitable and more flexible space in a compu-
tation stage for CW, which could allow evaluators in various decision models
flexibly evaluate performances of alternatives by not just one label but with
proportional 2-tuples of the form (αA, βB), where A and B are two consecu-
tive linguistic terms, and α, β ∈ [0, 1], α+β = 1. However, as we have seen, by
definition, this model cannot deal with decision situations where alternative
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performances are generally assessed by means of uncertain linguistic judgments
as studied in, e.g., [11,24,26,29–31].

Recently Zhang et al. [36] also proposed a concept of distribution assess-
ment overcoming the limitations of Wang and Hao’s model [21], however, due
to the premise that the summation of symbolic proportions must equal to 1,
Zhang et al.’s model, and Wang and Hao’s proportional 2-tuple model as well,
cannot handle incomplete and ignoring information. In order words, they are
only applicable under the context that all the linguistic assessments are com-
plete. As a matter of fact, incomplete assessments emerge commonly when
evaluators are lack of confidence, especially in the case of facing with uncer-
tain and incomplete information. As such, it would be desirable that a new
linguistic representation model could be developed so as to be able to deal
with linguistic assessments with incomplete information. It is of interest to
note that the precision and the reasonability of the final result will be ob-
viously improved if such a model appropriately touches upon the incomplete
assessments or ignoring information. In fact, in the evidential reasoning (ER)
approach to MADM developed in [29,30], uncertain assessments of attributes
are modeled by means of mass functions in Dempster-Shafer theory of evi-
dence [18] and then it can also handle incomplete and ignoring information.
Also, the attribute aggregation process taking the relative weights of attributes
into account is performed by making use of the so-called discounting operation
and Dempster’s rule of combination, as discussed in [11]. Therefore, the ER
approach could not be able to deal with decision situations where the attribute
weight information is expressed linguistically and, in addition, many aggrega-
tion operators in the numerical setting often used in decision analysis could
not be extendable for use in the ER approach.

In this paper, we are dealing with MADM problems with uncertain lin-
guistic information given not only in evaluation on attributes of alternatives
but also in attribute weights. We will propose a proportional fuzzy linguistic
distribution model that not only inherits advantages of 2-tuple and propor-
tional 2-tuple fuzzy linguistic representation models, but also overcomes the
above-mentioned limitations of these models. The rest of this paper is or-
ganized as follows. Section 2 presents some preliminaries about 2-tuple fuzzy
linguistic representation model and proportional 2-tuple fuzzy linguistic repre-
sentation model. Then, Section 3 will explore the proportional fuzzy linguistic
distribution model and its computational operators as well as expected util-
ity in proportional fuzzy linguistic distribution. In Section 4, an extension of
conventional aggregation operators to deal with the aggregation problem of
proportional fuzzy linguistic distributions will be examined. In Section 5, an
example taken from [30] will be used for illustration of the proposed model.
We first use the original numerical weights for the purpose of comparing the
results and illuminating the applicability of the proposed model. Then, we
replace the numerical weights with linguistic weights in order to further ex-
plain the capability of this model for handling uncertain linguistic information.
Finally, Section 6 presents some concluding remarks.
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2 Preliminaries

In this section, we will briefly review basics of Herrera and Mart́ınez’s 2-tuple
fuzzy linguistic representation model [8] and Wang and Hao’s proportional
2-tuple fuzzy linguistic representation model [21] developed for CW. For a
comprehensive and detailed exposition of theory and applications of the 2-
tuple linguistic model, the interested reader might be referred to the survey
paper [14] and the recent book [15].

2.1 The 2-Tuple Fuzzy Linguistic Representation Model

Let S = {s0, s1, . . . , sn} be a linguistic term set, and the term si with i =
0, . . . , n, represents a possible value for a linguistic variable. The total order
on S is defined as: si ≤ sj ⇔ i ≤ j. There is a negation operator: Neg(si) = sj
such that j = n − i, where n + 1 is the cardinality of S. In general, using a
symbolic method to aggregate linguistic information [7], we often get a value
β ∈ [0, n], and β /∈ {0, . . . , n}. Therefore, an approximation function must be
used in order to conveniently express the index of the result in S.

To avoid any approximation process which consequently causes a loss of
information [8], 2-tuple (si, α) that expresses the equivalent information to β
is defined by the following function:

4 : [0, n]→ S × [−0.5, 0.5)

4 (β) = (si, α),with

{
si, i = round(β)
α = β − i, α ∈ [−0.5, 0.5)

where round (·) is the usual round operation, si has the closest index label to
β, and α is the value of the symbolic translation.

Inversely, a 2-tuple (si, α) ∈ S × [−0.5, 0.5) can also be equivalently repre-
sented by a numerical value in [0, n] by means of the following transformation:

4−1 : S × [−0.5, 0.5)→ [0, n]

4−1 (si, α) = i+ α = β.

The negation operator over 2-tuples is defined by

Neg((si, α)) = 4(n− (4−1(si, α)))

where n+ 1 is the cardinality of S = {s0, s1, . . . , sn}.
Because 2-tuples can be transformed into numerical values without loss

of information, naturally, conventional aggregation operators can be extended
for 2 tuples. Therefore, many 2-tuple aggregation operators based on con-
ventional aggregation operators have been proposed in the literature, such as
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2-tuple arithmetic mean, 2-tuple weighted average operator, and 2-tuple or-
dered weighted average operator. See [8] for more details about 2-tuple fuzzy
linguistic representation model.

2.2 The Proportional 2-Tuple Fuzzy Linguistic Representation Model

Let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn,
I = [0, 1] and

IS ≡ I × S = {(α, si)|α ∈ [0, 1] and si ∈ S}.
Given a pair (si, si+1) of two successive ordinal terms of S, any two elements
(α, si), (β, si+1) of IS are called a symbolic proportion pair and α, β are
called a pair of symbolic proportions of the pair (si, si+1) if α + β = 1. A
symbolic proportion pair (α, si), (1− α, si+1) is denoted by (αsi, (1− α)si+1)
and the set of all the symbolic proportion pairs is denoted by S∗, i.e., S∗ =
{(αsi, (1−α)si+1)|α ∈ [0, 1] and si, si+1 ∈ S}. The set S∗ is called the ordinal
proportional 2-tuple set generated by S and the members of S∗ are called
ordinal proportional 2-tuples [21].

More particularly, the authors in [21] also introduced the so-called canon-
ical characteristic values (CCV , for short) as an equivalent representation for
fuzzy number based semantics of linguistic terms and then developed an ef-
ficient method for computing with words based on the proportional 2-tuple
fuzzy linguistic model. The CCV of a fuzzy number can be defined by making
use of its expected value, center of gravity, or mean of maxima. For example,
if the semantics of a linguistic term is simply defined by a symmetrical trian-
gular fuzzy number in [0, 1], denoted by T = [c− δ, c, c+ δ], then the expected
value (EV ) of this fuzzy number can be used as CCV , i.e., EV (T ) = c.

With the notions of proportional 2-tuple and CCV , the computation op-
erator used for transforming a proportional 2-tuple into a numerical value
belonging to [0, 1] is defined as follows.

Let ci ∈ [0, 1] with c0 < c1 < · · · < cn be the canonical characteristic values
of si, i.e., CCV (si) = ci for i = 0, 1, . . . , n. Then, the function CCV on S∗ is
defined by

CCV : S∗ → [0, 1]

CCV ((αsi, (1− α)si+1)) = αCCV (si) + (1− α)CCV (si+1)

= αci + (1− α)ci+1

= z ∈ [0, 1]

and we call it the corresponding canonical characteristic value function on S∗

generated by CCV on S. It has been proved by Wang and Hao [21] that the
CCV is a bijection from S∗ to [c0, cn]. Specifically, let us define f : [0, n] →
[c0, cn] by
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f(x) = ci + β(ci+1 − ci)

where i = E(x), E is the integral part function and β = x − i. Then f is a
bijection. Since,

CCV (((1− β)si, βsi+1)) = (1− β)ci + βci+1

= ci + β(ci+1 − ci)
= f(i+ β)

= f(π((1− β)si, βsi+1))

for i = 0, 1, . . . , n − 1, β ∈ [0, 1], thus CCV = f ◦ π. Here, π is the position
index function of ordinal 2-tuples, i.e.,

π : S∗ → [0, n]

π((αsi, (1− α)si+1)) = i+ (1− α)

and its inverse π−1 : [0, n]→ S∗ is defined by

π−1(x) = ((1− β)si, βsi+1))

where i = E(x), E is the integral part function and β = x − i. So, CCV is a
bijection, and its inverse will be denoted by CCV −1.

It is not difficult to see that the role of 4 with CCV −1 and the role
of 4−1 with CCV are the same if we consider it from the perspective of
transformation between 2-tuples and numerical values. Therefore, conventional
average operators can also be extended easily for proportional 2-tuples. (For
more details, see e.g. [21].)

3 Proportional Fuzzy Linguistic Distribution Model

In this section, we will introduce a proportional fuzzy linguistic distribution
model for MADM problems. In this model, we use proportions as evaluators’
confidence levels indicating their belief degrees that each linguistic term fits
an evaluation. Further, since the uncertainty may be assigned not only to
any single evaluation grade but also to their rational combinations [28], each
attribute can be directly evaluated using subjective judgments with the un-
certainty being assigned to any number of adjacent single evaluation grades.
Moreover, with introducing a variable representing the extent of ignoring in-
formation, the proportional fuzzy linguistic distribution model is capable of
dealing with incomplete assessments. Thus, it is not necessary for evaluators
having to supply complete assessments when not available. Particularly, in the
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proportional fuzzy linguistic distribution model, evaluation on an attribute of
alternative can be represented by means of proportional fuzzy linguistic dis-
tributions defined as follows.

3.1 Proportional Fuzzy Linguistic Distribution

Again, let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn,
I = [0, 1] and

IS ≡ I × S = {(α, si)|α ∈ [0, 1] and si ∈ S}.

Given a sequence (si, si+1, . . . , si+m) of (m+ 1) successive ordinal terms of S,
any (m + 1) elements (αi, si), (αi+1, si+1), . . . , (αi+m, si+m) of IS are called
a symbolic proportion sequence, and it will be denoted by

{
(αisi, αi+1si+1, . . . , αi+msi+m, 0) if

∑i+m
j=i αj = 1

(αisi, αi+1si+1, . . . , αi+msi+m, ε) if
∑i+m

j=i αj < 1
(1)

where ε represents the extent of ignoring information. The set of all the sym-
bolic proportion sequences is denoted by S∗, i.e.,

S∗ =


(αisi, αi+1si+1, . . . , αi+msi+m, ε)

∣∣∣∣ αi ∈ (0, 1], αi+m ∈ (0, 1],

0 <
∑i+m

j=i αj ≤ 1,

ε = 1−
∑i+m

j=i αj ,

0 ≤ i, and i+m ≤ n


The set S∗ is called proportional fuzzy linguistic distribution set generated by
S and the members of S∗ are called proportional fuzzy linguistic distributions.

In the sequel, a proportional fuzzy linguistic distribution

(αisi, αi+1si+1, . . . , αi+msi+m, ε)

will be used to represent an evaluator’s subjective judgment. Here, i is called
the starting label; si is the No. i linguistic term; αj is the proportional coeffi-
cient in front of the related linguistic term. It represents the confidence levels
that to which degree the evaluator believes a linguistic term fits an evaluation.
Similarly, i+m is called the ending label.

An assessment (αisi, αi+1si+1, . . . , αi+msi+m, ε) is called complete (re-

spectively, incomplete) if
∑i+m

j=i αj = 1 (respectively,
∑i+m

j=i αj < 1). For ex-
ample, in evaluation of the performance of four types of motorcycle [30] as
discussed in Section 5, the following types of uncertain subjective judgments
of a motorcycle, say “Honda”, are frequently used.

1) The responsiveness of engine is evaluated to be good with a confidence
degree of 1.
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2) The fuel economy of engine is evaluated to be indifferent with a confidence
degree of 0.5, and to be average with a confidence degree of 0.5.

3) The quietness of engine is evaluated to be good with a confidence degree
of 0.5 and to be excellent with a confidence degree of 0.3.

4) The stopping power of brake is good with a confidence degree of 0.6.

The four assessments 1)–4) given in the above can be represented in the
form of proportional fuzzy linguistic distributions defined by (1) as

S∗(responsiveness) = (1s3, 0)
S∗(fuel economy) = (0.5s1, 0.5s2, 0)
S∗(quietness) = (0.5s3, 0.3s4, 0.2)
S∗(stopping power) = (0.6s3, 0.4)

where si with i = 1, 2, 3 and 4 are the linguistic terms of the term set S1 as
shown in (14).

It is worth mentioning that we quoted original data from [30] in order
to compare the result. Hence, the above four statements used two linguistic
terms at most to describe a linguistic variable (e.g. statements 2) and 3)). Ac-
tually, evaluators can use the combination of any number of linguistic terms
to describe a linguistic variable if they believe it is reasonable in some spe-
cial situations. For example, assessing the fuel economy of “Honda” based on
mountain road, ordinary road and highway, the following uncertain statement
perhaps could be used.

The fuel economy of Honda is indifferent on mountain roads, average on
ordinary roads, excellent on highways, and unclear on the other kinds of roads.
Then the uncertain statement can be represented in the form of proportional
fuzzy linguistic distribution as:

S∗(fuel economy) = (0.25s1, 0.25s2, 0s3, 0.25s4, 0.25).

3.2 Comparison of Proportional Fuzzy Linguistic Distributions

Let S = {s0, s1, . . . , sn} be an linguistic term set and S∗ be the proportional
fuzzy linguistic distribution set generated by S. For any two proportional fuzzy
linguistic distributions Γ,Λ ∈ S∗, where

Γ = (αisi, αi+1si+1, . . . , αi+msi+m, ε)

Λ = (βgsg, βg+1sg+1, . . . , βg+fsg+f , ε)

their comparison can be described as follows.

1) If ε1 =0 and ε2 = 0, then we define
(αisi, αi+1si+1, . . . , αi+msi+m, 0) < (βgsg, βg+1sg+1, . . . , βg+fsg+f , 0)

⇔ αi · i+ αi+1 · (i+ 1) + · · ·+ αi+m · (i+m)

< βg · g + βg+1 · (g + 1) + · · ·+ βg+f · (g + f)

⇔
i+m∑
j=i

(αj · j) <
g+f∑
k=g

(βk · k). (2)
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Fig. 1 The relationship between a complete and an incomplete proportional fuzzy linguistic
distribution

2) If ε1 = 0 and ε2 6= 0, the latter will generate an interval value [ϕ, ψ]
because it includes ignoring information. Thus, we need to allocate ε2 in
order to obtain the minimum value ϕ and maximum value ψ.
For the minimum value ϕ, we can consider an extreme situation that ε2 is
allocated to s0 completely, i.e.,

ϕ = βg · g + βg+1 · (g + 1) + · · ·+ βg+f · (g + f) + ε2 · 0

=

g+f∑
k=g

(βk · k). (3)

For the maximum value ψ, we can consider an extreme situation that ε2
is allocated to sn completely, i.e.,

ψ = βg · g + βg+1 · (g + 1) + · · ·+ βg+f · (g + f) + ε2 · n

=

g+f∑
k=g

(βk · k) + ε2 · n. (4)

Then, the interval value can be represented asg+f∑
k=g

(βk · k),

g+f∑
k=g

(βk · k) + ε2 · n


and the relationship between the two proportional fuzzy linguistic distri-
butions can be graphically described in Figure 1. A,B and C represent the
possible relative locations of the former proportional fuzzy linguistic dis-
tribution. [ϕ2, ψ2] is the interval value generated by the latter proportional
fuzzy linguistic distribution.

3) If ε1 6= 0 and ε2 6= 0, the two proportional fuzzy linguistic distributions
will respectively generate interval values [ϕ1, ψ1], [ϕ2, ψ2]. Similarly, the
relationships between the two proportional fuzzy linguistic distributions
can be graphically described in Figure 2.

3.3 Computational Operators of Proportional Fuzzy Linguistic Distribution

As a 2-tuple based linguistic computational model, the proportional fuzzy lin-
guistic distribution model is a kind of symbolic model and the related calcu-
lations can be carried out directly on the labels and proportional coefficients.
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Fig. 2 The relationship between two incomplete proportional fuzzy linguistic distributions

In addition, in this model we can also extend weighted aggregation operators
so as to be able to deal with linguistic decision situations where attribute
weights are represented not by numerical values but by complete proportional
fuzzy linguistic distributions. This can be done by making use of the CCV of
complete proportional fuzzy linguistic distributions defined as follows.

Formally, let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 <
· · · < sn, and S∗ is the proportional fuzzy linguistic distribution set generated
by S. Then the CCV of a complete proportional fuzzy linguistic distribution

(αisi, αi+1si+1, . . . , αi+msi+m, 0)

is defined as follows:

CCV (αisi, αi+1si+1, . . . , αi+msi+m, 0) =

= (αiCCV (si), αi+1CCV (si+1), . . . , αi+mCCV (si+m), 0)

= (αici, αi+1ci+1, . . . αi+mci+m, 0)

= zi + zi+1 + · · ·+ zi+m

=

i+m∑
j=i

zj (5)

with j = i, i+1, . . . , i+m. We call it the corresponding canonical characteristic
value function on S∗ generated by CCV on S, where ci < ci+1 < · · · < ci+m ∈
[0, 1] are the CCV of si, si+1, . . . , si+m respectively.

3.4 Expected Utility in Proportional Fuzzy Linguistic Distribution

The concept of expected utility has been widely used in decision making under
uncertainty. Basically, given a set of alternatives X, the preference relation
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Fig. 3 Two level hierarchy

on X can be characterized by a single-valued function u(x), called expected
utility, such that for any x, y ∈ X, x � y if and only if u(x) ≥ u(y). Then,
maximization of u(x) will yield the solution to the problem of selecting the
best alternative from X.

When the proportional fuzzy linguistic distribution model is used for MADM
with uncertain linguistic information, the aggregated assessment for each al-
ternative is represented by a proportional fuzzy linguistic distribution. In order
to define a ranking order among alternatives based on their aggregated assess-
ments, we can also use the concept of expected utility in a similar way as
discussed in the ER approach for MADM [30].

Particularly, in the proportional fuzzy linguistic distribution model we as-
sume a utility function

u′ : S → [0, 1]

satisfying

u′(si+1) > u′(si), if si+1 is preferred to si.

This utility function u′(x) can be estimated using the probability assignment
method [12,22] or other methods as discussed in [29,30].

For simplicity, suppose that the hierarchy of attributes has two levels with
only an attribute y on the top level, and a finite set E = {e1, e2, . . . , en} of its
basic attributes at the bottom level, as shown in Figure 3. If all assessments for
basic attributes are complete, i.e.,

∑i+m
j=i αj = 1, or ε = 0, then, the expected

utility of an alternative on the only attribute y is defined by

u(y) =

i+m∑
j=i

αju
′(sj). (6)

Then, for any alternatives a and b, we say that a is strictly preferred to b
if and only if u(y(a)) > u(y(b)).

If any assessment for the basic attribute is incomplete, then the assess-
ment for y is also incomplete, i.e.,

∑i+m
j=i αj < 1, or ε > 0. In such case, the

confidence interval [αj , (αj + ε)] provides the range of the likelihood to which
y may be assessed to the evaluation grades [30]. Without loss of generality,
assume that s0 is the least preferred grade having the lowest utility and sn
is the most preferred grade having the highest utility. Then, the maximum,
minimum and average expected utilities on y of an alternative in proportional
fuzzy linguistic distribution model are given by
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umax(y) =

n−1∑
j=0

αju
′(sj) + (αn + ε)u′(sn) (7)

umin(y) = (α0 + ε)u′(s0) +

n∑
j=1

αju
′(sj) (8)

uavg(y) =
umax(y) + umin(y)

2
. (9)

If all original assessments are complete, then ε = 0, and u(y) = umax(y) =
umin(y) = uavg(y). If the original assessments include incomplete information,
then the ranking of two alternatives a and b on y is based on their utility
intervals by

– a �y b if and only if umin(y(a)) > umax(y(b))
– a ∼y b if and only if umin(y(a)) = umin(y(b)) and umax(y(a)) = umax(y(b))

Otherwise, the average expected utility can be used to generate a ranking, i.e.,

– a �y b on an average basis, if uavg(y(a)) > uavg(y(b)).

Note that the ranking order based on the average expected utility may be
questionable in some situation. For example, it may happen that uavg(y(a)) >
uavg(y(b)), but umax(y(b)) > umin(y(b)) > umin(y(a)).

Alternatively, in a similar way of applying the so-called pignistic transfor-
mation [19] to induce a probability function from an incomplete aggregated
assessment as done in [11], if the overall aggregated assessment of an alterna-
tive is incomplete, we will first transform it to a complete proportional fuzzy
linguistic distribution by uniformly distributing the degree of ignoring to any
individual evaluation grades, and then compute the expected utility of the ob-
tained complete proportional fuzzy linguistic distribution for decision making.
Specifically, we have the expected utility of alternative on the only attribute
y defined as follows

u(y) =

i+m∑
j=i

(
αj +

ε

m+ 1

)
u′(sj) (10)

4 Proportional Fuzzy Linguistic Distribution Aggregation
Operators

In MADM problems one usually needs to aggregate different information of
attributes so as to obtain an integrated value that represents an overall eval-
uation of alternative. In the proportional fuzzy linguistic distribution model,
attribute aggregation of proportional fuzzy linguistic distributions will result
in a proportional fuzzy linguistic distribution as well. In this section, we are
going to introduce several proportional fuzzy linguistic distribution aggrega-
tion operators based on conventional aggregation operators and CCV function
defined above.
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4.1 Weighted average operator

Typically, attributes in a MADM problem may have different weights that
represent their relative important contributing to overall evaluation of alter-
natives. Also, the weighted average operator is widely used in many situa-
tions of MADM. In this section we will introduce an extended version of the
weighted average operator in the context of MADM with uncertain linguistic
information based on the proportional fuzzy linguistic distribution model.

Let

X =


(α1

i1
si1 , α

1
i1+1si1+1, . . . , α

1
i1+m1

si1+m1 , ε1),
(α2

i2
si2 , α

2
i2+1si2+1, . . . , α

2
i2+m2

si2+m2 , ε2),
· · · ,
(αp

ip
sip , α

p
ip+1sip+1, . . . , α

p
ip+mp

sip+mp
, εp)


be a set of proportional fuzzy linguistic distributions, and W = {ω1, ω2, . . . , ωp}
be their associated weights, respectively. Then, the weighted average of pro-
portional fuzzy linguistic distributions in X, which is also a proportional fuzzy
linguistic distribution denoted by (δisi, δi+1si+1, . . . , δi+msi+m, ε̄), is defined
as follows.

1) Let i be the minimum index of the starting labels of proportional fuzzy
linguistic distributions in X, i.e., i = min {i1, i2, . . . , ip}.

2) Let (i+m) be the maximum index of the ending labels of proportional fuzzy
linguistic distributions in X, i.e., i+m = max {i1 +m1, i2 +m2, . . . , ip +mp}.

3) Without loss of generality, proportional fuzzy linguistic distributions in X
can be represented such that they have the same starting labels and ending
labels as follows

X =


(α1

i si, α
1
i+1si+1, . . . , α

1
i+msi+m, ε1),

(α2
i si, α

2
i+1si+1, . . . , α

2
i+msi+m, ε2),

· · · ,
(αp

i si, α
p
i+1si+1, . . . , α

p
i+msi+m, εp)


where

α1
k = 0, for k < i1; k > (i1 +m1)
α2
k = 0, for k < i2; k > (i2 +m2)
. . . ,
αp
k = 0, for k < ip; k > (ip +mp)

4) Then, the weighted average (δisi, δi+1si+1, . . . , δi+msi+m, ε̄) is given by

δisi =

(∑p
k=1 α

k
i · ωk∑p

k=1 ωk

)
si

...

δi+msi+m =

(∑p
k=1 α

k
i+m · ωk∑p

k=1 ωk

)
si+m

ε̄ =

∑p
k=1 εk · ωk∑p

k=1 ωk

(11)
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4.2 Linguistic weighted average operator

In addition, the weighted average operator for proportional fuzzy linguistic
distributions defined above can be also extended for the case where the weights
are expressed by means of uncertain linguistic weights instead of numerical
values. In particular, let

X =


(α1

i1
si1 , α

1
i1+1si1+1, . . . , α

1
i1+m1

si1+m1
, ε1),

(α2
i2
si2 , α

2
i2+1si2+1, . . . , α

2
i2+m2

si2+m2
, ε2),

· · · ,
(αp

ip
sip , α

p
ip+1sip+1, . . . , α

p
ip+mp

sip+mp , εp)


be a set of proportional fuzzy linguistic distributions, and

W =


W1 = (β1

j1
ωj1 , β

1
j1+1ωj1+1, . . . , β

1
j1+n1

ωj1+n1
, 0),

W2 = (β2
j2
ωj2 , β

2
j2+1ωj2+1, . . . , β

2
j2+n2

ωj2+n2
, 0),

· · · ,
Wp = (βp

jp
ωjp , β

p
jp+1ωjp+2, . . . , β

p
jp+np

ωjp+np
, 0)


be the set of their associated linguistic weights which are also represented in
the form of complete proportional fuzzy linguistic distributions on the term
set of linguistic weights. Then, by a similar procedure as for weighted average
operator above, the linguistic weighted average of proportional fuzzy linguistic
distributions in X is defined as follows.

1) Let i be the minimum index of the starting labels of proportional fuzzy
linguistic distributions in X, i.e., i = min {i1, i2, . . . , ip}.

2) Let (i+m) be the maximum index of the ending labels of proportional fuzzy
linguistic distributions in X, i.e., i+m = max {i1 +m1, i2 +m2, . . . , ip +mp}.

3) Representing proportional fuzzy linguistic distributions in X such that they
have the same starting labels and ending labels as follows

X =


(α1

i si, α
1
i+1si+1, . . . , α

1
i+msi+m, ε1),

(α2
i si, α

2
i+1si+1, . . . , α

2
i+msi+m, ε2),

· · · ,
(αp

i si, α
p
i+1si+1, . . . , α

p
i+msi+m, εp)


where

α1
k = 0, for k < i1; k > (i1 +m1)
α2
k = 0, for k < i2; k > (i2 +m2)
. . . ,
αp
k = 0, for k < ip; k > (ip +mp)

4) Transform linguistic weights represented by complete proportional fuzzy
linguistic distributions into numerical weights by means of the CCV oper-
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ator as defined by (5), i.e.,

CCV (β1
j1ωj1 , β

1
j1+1ωj1+1, . . . , β

1
j1+m1

ωj1+m1
, 0) =

j1+m1∑
j=j1

β1
j · CCV (ωj) = Z1

...

CCV (βp
jp
ωjp , β

p
jp+1ωjp+2, . . . , β

p
jp+mp

ωjp+mp , 0) =

jp+mp∑
j=jp

βp
j · CCV (ωj) = Zp

(12)

where Zk, k = 1, . . . , p, is the numerical value transformed by CCV over
linguistic weight Wk, k = 1, . . . , p.

5) Then, the linguistic weighted average, denoted by (δisi, δi+1si+1, . . . , δi+msi+m, ε̄),
of proportional fuzzy linguistic distributions in X is given by

δisi =

(∑p
k=1 α

k
i · Zk∑p

k=1 Zk

)
si

...

δi+msi+m =

(∑p
k=1 (αk

i+m · Zk∑p
k=1 Zk

)
si+m

ε̄ =

∑p
k=1 εk · Zk∑p

k=1 Zk

(13)

In the following we will illustrate how these aggregation operators can be
used for attribute aggregation in a MADM problem with uncertain linguistic
information.

5 Example: Motorcycle Assessment Problem

In this section, we apply the proportional fuzzy linguistic distribution model to
deal with a MADM problem taken from [30]. We first use the original data in-
cluding distinct evaluation grades and weights for a comparative study. Then,
instead of using the numerical weights we suppose a set of linguistic weights
represented by complete proportional fuzzy linguistic distributions in order to
further explain the capability of handling uncertain weighting information of
the proposed model.

5.1 Motorcycle Assessment Problem

The problem is to evaluate the performances of four types of motorcycle,
namely, Kawasaki, Yamaha, Honda, and BMW. Therefore, we have to know
the overall performance of each motorcycle. The overall performance of each
motorcycle is based on evaluating three major qualitative attributes, which
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Fig. 4 Evaluation hierarchy for motorcycle performance assessment [30]

are quality of engine, operation, and general finish, although quantitative at-
tributes may also be included [27], [29]. Because these attributes are general
and difficult to assess directly, they need to be decomposed into more detailed
sub-attributes to facilitate the assessment. As a result of decomposition, an
attribute hierarchy for evaluation of motorcycles is graphically depicted in
Figure 4, where ωi, ωij and ωijk are the weights of corresponding attributes
at level 1, level 2, and level 3 respectively.

It is essential to define linguistic term set and associated semantics to
supply evaluator with an instrument to assess the attributes of the operation
of a motorcycle naturally. In this paper, we take the same linguistic term set
of distinct evaluation grades as in [30], which is defined as

S1 =
{
s10(Poor), s11(Indifferent), s12(Average), s13(Good), s14(Excellent)

}
(14)

The subjective judgments on attributes of motorcycle are summarized in
Table 1, where P, I,A,G,E are the abbreviations of the evaluation grades of
Poor, Indifferent, Average, Good, and Excellent, respectively, and a number in
a bracket denotes a degree of belief to which an attribute is assessed to an
evaluation grade.
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For the purpose of comparing the final result, all relevant attributes are
assumed to be equal relative importance as done in [30], i.e.

ω1 = ω2 = ω3 = 0.333

ω11 = ω12 = ω13 = ω14 = ω15 = 0.2

ω21 = ω22 = ω23 = 0.333

ω211 = ω212 = ω213 = ω214 = 0.25

ω221 = ω222 = 0.5

ω231 = ω232 = ω233 = 0.333

ω31 = ω32 = ω33 = ω34 = ω35 = 0.2.

5.2 Aggregating Assessments via Proportional Fuzzy Linguistic Distribution
Model

After the evaluator supplies all the subjective judgments for qualitative at-
tributes, the evaluation procedure based on proportional fuzzy linguistic dis-
tribution model will be carried out as described in the following.

1) Proportional fuzzy linguistic distributions transformation: According
to the linguistic term set of distinct evaluation grades, the original linguistic
assessments shown in Table 1 should be converted into corresponding pro-
portional fuzzy linguistic distributions by using symbolic translation value
of si, i = 0, 1, . . . , 4 and the statements with the associated representation
method such as 1)-4) discussed in Section 3. The general decision matrix for
motorcycle assessment represented by proportional fuzzy linguistic distribu-
tions is shown in Table 2, where s0, s1, s2, s3, and s4 are the expressions of
Poor, Indifferent, Average, Good, and Excellent, respectively, and the numeri-
cal coefficients in front of s0, s1, s2, s3, and s4 denote the confidence levels to
which degree an attribute is assessed to a grade.
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2) Proportional fuzzy linguistic distributions computation and aggregation:
The attribute aggregation process will then be carried out in a bottom-up fash-
ion. That is, for each alternative we first aggregate the third level attributes via
(11), and then the aggregated results obtained for the second level attributes
are aggregated in the same way. Finally, we aggregate the results for the first
level attributes in order to obtain an overall proportional fuzzy linguistic dis-
tribution for the alternative. By this way, we can get the final result of the
overall performances of four types of motorcycle represented by proportional
fuzzy linguistic distributions as shown in Table 3.

Table 3 The overall performances represented by proportional fuzzy linguistic distributions

The overall performances
Kawasaki (0.07s0, 0.066s1, 0.314s2, 0.398s3, 0.125s4, 0.027)
Yamaha (0s0, 0.16s1, 0.213s2, 0.457s3, 0.151s4, 0.019)
Honda (0s0, 0.061s1, 0.079s2, 0.401s3, 0.393s4, 0.066)
BMW (0.164s0, 0.092s1, 0.128s2, 0.168s3, 0.437s4, 0.011)

3) Proportional fuzzy linguistic distributions conversion: Convert the over-
all value of performances of four types of motorcycle represented by propor-
tional fuzzy linguistic distributions into the corresponding linguistic terms of
distinct evaluation grades, which are shown in Table 4. The distributed assess-
ments on the four types of motorcycle can be shown graphically as in Figure
5.

Table 4 Distributed assessments on four types of motorcycle

Poor (P) Indifferent (I) Average (A) Good (G) Excellent (E) ε
Kawasaki 0.07 0.066 0.314 0.398 0.125 0.027
Yamaha 0 0.16 0.213 0.457 0.151 0.019
Honda 0 0.061 0.079 0.401 0.393 0.066
BMW 0.164 0.092 0.128 0.168 0.437 0.011

5.3 Computing the Expected Utilities of Four Types of Motorcycle

Now, in order for selecting the best motorcycle, the expected utilities of four
types of motorcycle should be calculated. Taking the utility function u′ : S1 →
[0, 1] as in [30] that is defined by

u′ (P ) = 0, u′(I) = 0.35, u′(A) = 0.55,

u′ (G) = 0.85, u′(E) = 1

then, using (7), (8) and (9), we easily obtain the expected utilities of four types
of motorcycle as shown in Table 5. In Table 5, we can find that the minimum
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Fig. 5 The distributed assessments on the four types of motorcycle

utility of Honda is larger than the maximum utilities of the other three types
of motorcycle. Hence, according to the ranking principle of expected utility,
Honda is ranked first among the four types of motorcycle. Similarly, Yamaha
is ranked second as its minimum utility is larger than the maximum utilities
of the remaining two. Finally, as the average utility of BMW is larger than
that of Kawasaki, it is ranked third and Kawasaki is the last. Eventually, the
ranking of the four types of motorcycle is given by

Honda � Yamaha � BMW � Kawasaki

Table 5 The expected utilities of four types of motorcycle

Maximum utility Minimum utility Average utility
Kawasaki 0.6861 0.6591 0.6726
Yamaha 0.7316 0.7126 0.7221
Honda 0.86465 0.79865 0.83165
BMW 0.6934 0.6824 0.6879

It is clear there is not so much difference between the results obtained
by the proportional fuzzy linguistic distribution model and those obtained
by the modified ER algorithm [30]. The ranking order of the four types of
motorcycle is the same. However, it would be worth noticing that, because the
proportional fuzzy linguistic distributions employ weighted average operator
to aggregate multiple attribute, it clearly has a linear behavior. The modified
ER method exhibits a quasi-linear behavior with equal weights and strongly
nonlinear behavior with unequal weights [11].

5.4 Motorcycle Assessment Problem with Linguistic Weights

In order to further explain the capability of handling uncertain weighting in-
formation of the proposed model, we now assume that the weights of attributes
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are given linguistically in form of complete proportional fuzzy linguistic dis-
tributions. To this end, a distinctive evaluation set providing standards for
assessing the relative importance of attributes needs to be defined first.

Specifically, let S2 be a linguistic term set which is used to linguistically
evaluate the relative importance of different attributes,

S2 = {s20 (Very Low), s21(Low), s22(Fairly Low),

s23 (Fairly High), s24(High), s25(Very High)} (15)

and the associated fuzzy set semantics is shown in Figure 6.

Fig. 6 Linguistic weights and associated fuzzy number semantics

According to the linguistic weight term set and associated fuzzy number
semantics, the evaluator gives the relative importance of different attributes
of each motorcycle by means of proportional fuzzy linguistic distributions as
shown in Table 6, where s0, s1, s2, s3, s4 and s5 are the expressions of Very
Low, Low, Fairly Low, Fairly High, High and Very High, respectively.

Followed by the aggregation procedure of proportional fuzzy linguistic dis-
tribution model, the final results of the overall performances of four types of
motorcycle represented by proportional fuzzy linguistic distributions can be
obtained via (12) and (13), as shown in Table 7, which is then converted into
the corresponding linguistic terms of distinct evaluation grades, as shown in
Table 8 and graphically depicted in Figure 7. Then, using the same utilities
of five individual evaluation grades mentioned above, the expected utilities of
four types of motorcycle can be obtained via (7), (8) and (9), which are shown
in Table 9. Similarly, according to the ranking principle of expected utility,
Honda is still the most preferred among the four types of motorcycle, and the
ranking of the four types of motorcycle is given by
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Table 6 Linguistic weights represented by proportional fuzzy linguistic distributions

Attributes The third level Linguistic weights

handling ω21

steering ω211 (0.4s3, 0.6s4, 0)
bumpy bends ω212 (1s4, 0)

maneuverability ω213 (0.5s4, 0.5s5, 0)
top speed stability ω214 (1s3, 0)

transmission ω22
clutch operation ω221 (0.5s3, 0.5s4, 0)

gearbox operation ω222 (0.5s3, 0.5s4, 0)

brakes ω23

stopping power ω231 (1s5, 0)
braking stability ω232 (1s5, 0)

feel at control ω233 (0.5s4, 0.5s5, 0)
Attributes The second level Linguistic weights

engine ω1

responsiveness ω11 (0.4s4, 0.6s5, 0)
fuel economy ω12 (0.3s3, 0.3s4, 0.4s5, 0)

quietness ω13 (1s3, 0)
vibration ω14 (1s3, 0)
starting ω15 (0.5s3, 0.5s4, 0)

operation ω2

handling ω21 (0.4s4, 0.6s5, 0)
transmission ω22 (1s5, 0)

brakes ω23 (1s5, 0)

general ω3

quality of finish ω31 (1s3, 0)
seat comfort ω32 (0.6s1, 0.4s2, 0)

headlight ω33 (0.2s3, 0.8s4, 0)
mirrorsω34 (1s2, 0)
horn ω35 (1s2, 0)

Attributes The first level Linguistic weights

overall performance
engine ω1 (0.4s4, 0.6s5, 0)

operation ω2 (0.4s4, 0.6s5, 0)
general ω3 (1s4, 0)

Table 7 The overall performances represented by proportional fuzzy linguistic distributions
by using linguistic weights

The overall performances
Kawasaki (0.074s0, 0.066s1, 0.307s2, 0.384s3, 0.136s4, 0.033)
Yamaha (0s0, 0.166s1, 0.234s2, 0.434s3, 0.143s4, 0.023)
Honda (0s0, 0.072s1, 0.086s2, 0.386s3, 0.402s4, 0.054)
BMW (0.164s0, 0.115s1, 0.13s2, 0.166s3, 0.414s4, 0.011)

Table 8 Distributed assessments on four types of motorcycle by using linguistic weights

Poor (P) Indifferent (I) Average (A) Good (G) Excellent (E) ε
Kawasaki 0.074 0.066 0.307 0.384 0.136 0.033
Yamaha 0 0.166 0.234 0.434 0.143 0.023
Honda 0 0.072 0.086 0.386 0.402 0.054
BMW 0.164 0.115 0.13 0.166 0.414 0.011

Table 9 The expected utilities of four types of motorcycle by using linguistic weights

Maximum utility Minimum utility Average utility
Kawasaki 0.68735 0.65435 0.67085
Yamaha 0.7217 0.6987 0.7102
Honda 0.8566 0.8026 0.8296
BMW 0.67785 0.66685 0.67235
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Fig. 7 The distributed assessments on the four types of motorcycle by using linguistic
weights

Honda � Yamaha � BMW � Kawasaki.

As we can observe, the overall assessments of four types of motorcycle
obtained by the linguistic weighted average operator as shown in Fig. 7 have
almost the same shape as those obtained by the weighted average operator
depicted in Fig. 5. Note that linguistic weights are generated in such a way
that their CCVs (5) after normalization are close to numerical weights of
equally importance. Consequently, the three kinds of expected utilities of each
motorcycle obtained by linguistic weighted aggregation operator are also in
similar shape to those obtained by weighted average operator. As such the
same ranking result has been obtained. It is worth emphasizing here that the
ER approach could not be able to deal with MADM situations where attribute
weights are given linguistically as discussed above.

6 Concluding Remarks

So far, linguistic computational models based on 2-tuple representation have
been widely researched and applied to many areas. However, due to MADM
problems often involving uncertainty, some limitations gradually emerge, lead-
ing to a conclusion that the applicability of these models has been affected.
After carefully analyzing the causes of these limitations, we proposed a propor-
tional fuzzy linguistic distribution model aiming at supplying a new approach
for dealing with MADM under uncertain linguistic information, and mean-
while, overcoming these limitations. By relaxing the restrictions, the rational
combinations of any number of linguistic terms associated with corresponding
proportions can be used as evaluator’s subjective judgments. Moreover, with
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introducing a new variable representing the extent of ignoring information, in-
complete linguistic assessment as a response to the uncertainty could directly
be used during the evaluation process. The applicability of the proposed model
as well as it advantages have been illustrated by a tutorial example in product
evaluation.

In summary, on the one hand, the proposed model of proportional fuzzy
linguistic distributions could overcome the limitation imposed on previously
developed symbolic models [21,31] in dealing with incomplete linguistic infor-
mation; while on the other hand it could also provide a more efficient method
for attribute aggregation as well as capability in dealing with uncertain linguis-
tic weights in comparison to the ER approach [29,30]. In addition, many con-
ventional aggregation operators could be also extendable within the proposed
proportional fuzzy linguistic distribution model for use in decision analysis
with uncertain linguistic information.

The proposed model in this paper could be extended to apply to many areas
where linguistic assessments are employed. For future work, there are still some
issues which would be worth addressed. One aspect is that, in some special
situations, proportion alone perhaps is not sufficient to capture the vagueness
and uncertainty, more complicated combinations could be used, such as inter-
val. The other aspect is related to aggregation operators. We developed two
linear aggregation operators in this paper. As we know, adopting linear addi-
tive method to aggregate assessment information requires all the attributes to
be additively independent. However, linear additive independence assumption
may not always be acceptable in reality. Therefore, some non-linear aggrega-
tion operators may be considered for the evaluation model proposed in this
paper.
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