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Abstract

The ability of speech communication should be the biggest difference between human and any other

animal. Human speech carries not only the language message (linguistic information) but also nonlinguis-

tic information such as speaker individuality and vocal emotion. The speaker individuality information

can be defined as the information that is used by human to distinguish such a specific speaker from any

other person. The vocal emotion information can be defined as the information that is used by human

to identify the emotion state of speaker from speech. Both speaker individuality and vocal emotion play

an important role in the speech communication of our daily life. Understanding the mechanism of how

human can perceive nonlinguistic information from speech should be very important for the clarification

of the mechanism of speech perception. However, the perceptual process of speaker individuality and

vocal emotion is still not fully clarified at present.

Previous studies about the perception of nonlinguistic information were always based on the source-

filter theory from the viewpoint of speech production. The basic reason is that nonlinguistic information

can be thought to be derived from human vocal organs. The contributions of typical acoustic features

conveyed in speech, such as F0, spectral envelope, intensity, and speech rates, were investigated. However,

it was found that such typical acoustic features have difficulty to account for the human response from

cochlear-implant (CI) listeners. A probable reason is that, for CI listeners, the temporal modulation cues

provided by the temporal envelope are used as primary cues, however, the typical acoustic features can

not represent the features of the temporal envelope well. The temporal modulation cues provided by the

temporal envelope are also considered to be important for perceiving nonlinguistic information.

Why the temporal modulation cues provided by temporal envelope of speech should be important and

needed to be clarified. At first, from the viewpoint of auditory, temporal envelope plays an important role

in human auditory system. The signal processing in peripheral auditory system can be roughly modeled

as band-pass filtering (auditory filterbank) and envelope extracting (inner-hair cell model). The sound

signal is first divided into several narrow band signals by auditory filterbank. Then the temporal envelope

of each band is extracted as the mechanism of inner hair cells. Furthermore, it is suggested that human

auditory system carries out a kind of modulation frequency analysis on the temporal envelope that can

be modeled as a modulation filterbank. The auditory system should analysis the modulation frequency

components at the early stage close to the periphery. Therefore, the temporal modulation cues provided

by temporal envelope may contribute the perception of nonlinguistic information.

For speech perception, the temporal envelope has also been proved to be an important cue in the

perception of linguistic information. Studies using noise-vocoded speech (NVS) demonstrated that human

can perceive linguistic information with using the temporal envelope as a primary cue. NVS can be

generated by dividing speech signal into several narrow bands and replacing the carriers in each narrow

band with band-limited noise. The spectral cues provided will be poorer and poorer with less number

of channels. It is shown that NVS with only four bands is sufficient to achieve good vowel, consonant,

and sentence recognition. Furthermore, previous studies also showed that the low modulation frequency

components of temporal envelope should contribute to the perception of linguistic information. If the

temporal modulation cues are so that important to speech perception, they should also contribute to the

perception of nonlinguistic information.

The clarification of the contribution of temporal modulation cues to the perception of speaker indi-

viduality and vocal emotion should be important to the development of CI devices. CI devices provide the
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temporal envelope information as a primary cue, however, the temporal fine structure information is not

effectively encoded. As the poor spectral cue, CI listeners have problem with identifying the speaker or the

emotion from only speech. It is necessary to clarify the contribution of temporal modulation cues on the

perception of nonlinguistic information to optimize the CI device and improve the performance of speaker

and vocal-emotion recognition of CI listeners and also for the clarification of the perceptual process of

nonlinguistic information. Furthermore, the clarification of the contribution of temporal modulation cues

to the perception of speaker individuality and vocal emotion will also deepen our understanding of the

temporal modulation information and speech perception. To clarify the contribution of temporal mod-

ulation cues, an analysis method purely based on the modulation frequency analysis mechanism of the

auditory system is necessary.

The ultimate research goal of the present study is to clarify the contribution of temporal modulation

cues to the perception of speaker individuality and vocal emotion. To reach that goal, at first, the role

of temporal envelope and modulation frequency information in speaker and vocal emotion recognition

was investigated to confirm whether temporal modulation cues actually contribute to the perception of

speaker individuality and vocal emotion. Speaker and vocal-emotion recognition experiments using NVS

were carried out to investigate the effects of different temporal and spectral resolutions of NVS on the

perception of speaker individuality and vocal-emotion. The spectral and temporal modulation cues will

be reduced when the spectral and temporal resolution decrease.

For spectral cue, the speaker distinction performance was not sensitive to the spectral resolution,

at least in the limited set of stimuli in the present study. For vocal-emotion recognition, the spectral

resolution was important for the recognition of only neutral, joy, and cold anger NVS, but not sadness

or hot anger NVS. For temporal modulation cues, the results showed that the recognition rates were

significantly decreased with lower upper limit of modulation frequency for both speaker and vocal emotion.

In the other word, it was more difficult to recognize the speaker or vocal emotion from NVS if the temporal

modulation cues provided were reduced. Therefore, it was confirmed that the temporal modulation cues

contribute to the perception of speaker individuality and vocal emotion. Compared to the perception of

linguistic information, the temporal modulation cues provided by higher modulation frequency bands are

suggested to be important for the perception of speaker individuality and vocal emotion.

At the next step, the relationship between the modulation spectral features and the perceptual data

obtained from speaker and vocal-emotion recognition experiments was analyzed to clarify the exactly con-

tribution of temporal modulation cues on the perception of speaker individuality and vocal-emotion. The

modulation spectral features were extracted from the modulation spectrogram of speech data. The mod-

ulation spectrogram was calculated by the process of auditory filterbank, temporal envelope extraction

and modulation filterbank. The correlation between the discriminability index of modulation spectral

features and the perceptual data was calculated to demonstrate the relationship between modulation

spectral features and the perception of speaker individuality and vocal-emotion.

For speaker individuality, there were positive correlations between the modulation spectral features

and the perceptual data of speaker distinction experiment. For vocal emotion, similar results were also

obtained, however, the correlations were roughly higher than that of speaker distinction experiments. The

results showed that the modulation spectral features were useful to account for the perceptual data of

speaker and vocal-emotion recognition experiments using NVS. Therefore, modulation spectral features

were suggested to be important cues contribute to the perception of speaker individuality and vocal

emotion.

Finally, applications of the temporal modulation information in simulating CI listeners’ response and

vocal-emotion conversion of NVS were discussed. At first, the feasibility of using NVS to simulate CI

listeners’ response in vocal emotion recognition was investigated by carried out vocal-emotion recognition

experiments using both NVS and original emotional speech with NH and CI listeners. The results
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showed that the vocal-emotion recognition paradigm using NVS can be used to investigate vocal emotion

recognition by CI listeners. Furthermore, it was also suggested that the modulation spectral features can

also be used to account the performance of CI listeners in the vocal-emotion recognition.

Effect of the modification of modulation spectrogram on the vocal-emotion recognition was then

investigated. A method based on a linear prediction (LP) scheme was proposed to modify the modulation

spectrogram and its features of neutral speech to match that of emotional speech. The temporal envelopes

were modulation-filtered by using IIR filters to modify the modulation spectrum from neutral to emotional

speech. The IIR filters were derived from the relation of modulation characteristics of neutral and vocal

emotions on a LP scheme. On the acoustic frequency domain, the average amplitude of the temporal

envelope was corrected using the ratio of the average amplitude between neutral and emotional speech.

Finally, a vocal-emotion recognition experiment using NVS generated by the converted temporal envelope

was carried out. The results showed that the modulation spectrogram of neutral speech can be successfully

converted to that of emotional speech by the proposed method. The results of the evaluation experiment

confirmed the feasibility of vocal emotion conversion on the modulation spectrogram for NVS.

In conclusion, the fact that the temporal modulation cues contribute to the perception of speaker

individuality and vocal emotion was confirmed by the speaker and vocal-emotion recognition experiments

using NVS. Furthermore, the investigation of modulation spectral features demonstrated that there were

high correlations between modulation spectral features and the perceptual data obtained from speaker and

vocal-emotion recognition experiments. Therefore, the modulation spectral features could be important

cues contribute to the speaker and vocal-emotion recognition with NVS. These results further proved

that the temporal modulation cues play an important role in the perception speaker individuality and

vocal-emotion.

Keywords: Speech perception, speaker individuality, vocal emotion, temporal cue, noise-vocoded speech,

modulation spectral feature
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Chapter 1

General introduction

1.1 Introduction

The biggest difference between human and any other animal is that human can commu-

nicate through speech. One famous test to judge artificial intelligence’s (AI) ability to

exhibit intelligent behavior equivalent to human is so called Turing test. Turing thought

that a perfect AI should be indistinguishable from a human in natural language conver-

sation with text. Furthermore, I think the final goal of AI should be the ability of speech

communication, because speech carries much more information than the language mes-

sage. For this goal, we must understand how human can perceive the various information

contained in speech at first.

From the viewpoint of information generation, Fujisaki divided the information con-

tained in speech signal with 3 different categories [2]. Those are linguistic information,

paralinguistic information and non-linguistic information.

• Linguistic information: the symbolic information that is represented by a set of

discrete symbols and rules for their combination.

• Paralinguistic information: the information that is not inferable from the written

counterpart but is deliberately added by the speaker to modify or supplement the

linguistic information.

• Nonlinguistic information: the other information such like factors as the age,

gender, idiosyncrasy, physical and emotional states of the speaker, etc.
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As Fujisaki’s definition, the linguistic information is the language message that the

speaker wants to convey. The paralinguistic information contains the intentions, attitudes,

and speaking styles of the speaker which should be under the control of the speaker and

attached to the language message. The two largest categories in nonlinguistic informa-

tion should be speaker individuality and vocal emotion. The speaker individuality

information can be defined as the information that is used by listener to distinguish such

a specific speaker from other people. The vocal emotion information is defined as the

information that is used by human to identify the emotion state of speaker from speech.

Speaker individuality and vocal emotion play important roles in the speech communica-

tion of our daily life. However, the perception process of speaker individuality and vocal

emotion is still not fully clarified at present.

Previous studies about the perception of nonlinguistic information were based on the

source-filter theory from the viewpoint of speech production. Obviously, the basic reason

is that nonlinguistic information is thought to be derived from human vocal organs. For

speaker individuality, the F0 contour, spectral envelope, and the formants of speech have

been proved to contribute speaker recognition [3–6]. For vocal emotion, previous works

also focused on the acoustic features conveyed in speech, such as F0, spectral envelope,

intensity, and speech rate [7–9]. For both speaker individuality and vocal emotion, the

time-averaged acoustic features were investigated sufficiently. However, the temporal

modulation cues provided by the dynamic components of speech are also considered to

be important for perceiving nonlinguistic information.

From the viewpoint of auditory perception, the temporal modulation cues provided

by the temporal envelope is very important. The signal processing in peripheral auditory

system can be roughly modeled as band-pass filtering (auditory filterbank) and envelope

extracting (inner-hair cell model) [10, 11]. The sound signal is first divided into several

narrow band signals by auditory filterbank. Then the temporal envelope of each band is

extracted as the mechanism of inner hair cells. Furthermore, it is suggested that human

auditory system carries out a kind of modulation frequency analysis on the temporal

envelope that can be modeled as a modulation filterbank [12]. In this study, the temporal

modulation cues are defined as the cues provided by the modulation frequency components

of temporal envelope.
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The auditory system should analysis the modulation frequency components at the

early stage close to the periphery. Therefore, the temporal modulation cues provided

by temporal envelope may contribute the perception of nonlinguistic information. To

clarify the perceptual process of nonlinguistic information, it is necessary to clarify the

contribution of temporal cues. The importance to clarify the contribution of temporal

modulation cues on the perception of nonlinguistic information will be described in the

next section.

1.2 Motivation

1.2.1 The contribution of temporal cue to speech perception

The importance of temporal modulation cues in the perception of linguistic information

has been studied by many researchers. The temporal envelope of speech has been proved

to be an important cue for speech perception from the studies using noise-vocoded speech

(NVS) [13–16]. NVS is generated by replacing the temporal fine structure of the sub-

band of speech with band-limited noise, so the spectral cue is reduced dramatically and

the temporal modulation cues are preserved [17]. Shannon et al. showed that NVS with

only four bands is sufficient to achieve good vowel, consonant, and sentence recognition

[13]. Therefore, human can successfully perceive linguistic information using the temporal

envelope of speech as a primary cue.

Drullman et al. investigated the important modulation frequency bands for speech

perception by low- and high-pass filtering the temporal envelope of speech [18,19]. They

showed that the modulation frequency bands from 4 to 16 Hz contained important cues

related to linguistic information. Xu et al. attempted to elucidate the importance of

temporal envelope for phoneme recognition using NVS [20]. The spectral resolution was

manipulated by varying the number of channels of NVS and the temporal resolution

was manipulated by varying the lowpass cutoff frequencies used to extract the temporal

envelope. The results showed that vowel recognition plateaued at the 4 Hz upper limit

of modulation frequency. Tachibana et al. used a similar experimental paradigm and

demonstrated that the modulation frequency components below 8 Hz is important for

sentence recognition [14].
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Rosen developed a framework for describing the acoustic structure of speech based on

temporal aspects [21]. From Rosen’s viewpoint, speech signal can be comprised of three

main temporal features: envelope, periodicity, and fine-structure. The envelope cues

contain the modulation frequency band between about 2 and 50 Hz. This low modulation

frequency band should include the information about variations of intensity, duration,

attach, decay, and segmental cues of speech. From the previous studies described above, it

has been proved that such temporal modulation cues are very important for the perception

of linguistic information. Therefore, temporal modulation cues also have potential to

be important cues in the perception of nonlinguistic information. To understand the

perceptual process in human auditory system, the contribution of temporal modulation

cues in the perception of nonlinguistic information must be clarified.

1.2.2 Perception of nonlinguistic information by cochlear im-

plant listeners

As CI listeners using the temporal envelope as a primary cue, it is very important to

clarify the contributions of temporal modulation cues on the perception of nonlinguistic

information. CI system mimic the signal processing of the auditory peripheral system with

four main steps: bandpass filterbank, envelope extraction, amplitude compression, and

impulse signal generation [22]. As the number of channels of the bandpass filterbank in CI

system is so limited, CI device can only provide poor spectral cue. CI devices provide the

temporal envelope as a primary cue, and the temporal fine structure information is not

effectively encoded. NVS was usually used as a CI simulation with normal-hearing (NH)

listeners to predict the response of CI listeners. As the poor spectral cue, CI listeners

have problem with identifying the speaker or the emotion of speaker from only speech.

Vongphoe and Zeng evaluated whether the temporal envelope is sufficient to support

both speech recognition and speaker recognition with NVS [23]. Their results showed

a disassociation between speech and speaker recognition when primarily temporal cues

are used: participants recognized vowels accurately but speakers poorly. Gonzalez and

Oliver investigated speaker recognition as a function of the number of channels in both

noise and sinewave-vocoded speech as CI simulations [24]. The performance of speaker

recognition was shown to be poorer with fewer number of channels. However, Krull et al.
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showed that training results in improved recognition rates of speaker in CI simulations [25].

Moreover, child CI listeners succeeded in differentiating their mothers’ utterances from

those of other people [26]. CI listeners’ differentiation of speakers was facilitated by long-

term familiarity, which suggested that temporal modulation cues have the potential to

effectively support CI listeners to distinguish speakers.

It has also been known that CI listeners’ performances of vocal-emotion recognition

are poorer than NH listeners, as the poor spectral cues provided by CI device [23, 24,27,

28]. Luo et al. showed that vocal-emotion recognition of NH listeners using NVS was

significantly improved as the cut-off frequency of modulation low-pass filter was increased

from 50 to 500 Hz [28]. The modulation frequency bands between 50 and 500 Hz mainly

included the periodic information related to F0 [21]. However, the contribution of the

temporal modulation cues defined as the modulation frequency band below 50 Hz is still

unknown. By comparing the performances of vocal-emotion recognition by CI listeners

and HN listeners using NVS, Chatterjee et al. [27] found that the mean performance of CI

listeners was similar to that of NH listeners with 8-band NVS. They then analyzed the F0,

intensity, and duration of stimuli. However, it was found that the acoustic analyses could

not account for all of the perceptual data of the vocal-emotion recognition experiment

with NVS.

As the CI device provide the temporal envelope as a primary cue, it is necessary to

clarify the contribution of temporal cues in the perception of nonlinguistic information

to optimize the CI device and improve the performance of speaker and vocal-emotion

recognition of CI listeners. It seems like it is difficult to account for the perceptual data

of experiments using NVS with traditional acoustic features such like F0, duration, and

intensity. Acoustic analysis based purely on the temporal features may be useful, because

the temporal envelope is used as a primary cue in the perception of NVS.

1.3 Research goal

Previous studies related to human auditory system showed that the temporal modulation

information plays an important role. The auditory system should carry out an modulation

frequency analysis at the early stage close to the periphery. The temporal modulation

cues were suggested to contribute the perception of various information from sound wave.
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From the previous studies about speech perception, it has been proved that temporal

modulation cues are important for the perception of linguistic information. Therefore,

temporal modulation cues also have potential to be important cues in the perception of

nonlinguistic information. As the CI device provide the temporal envelope as a primary

cue, discussing the contribution of temporal modulation cues in the perception of non-

linguistic information is also important for optimizing the CI device and improving the

performance of speaker and vocal-emotion recognition of CI listeners.

The ultimate research goal of the present study is to clarify the contribution of tempo-

ral modulation cue to the perception of speaker individuality and vocal-emotion. To reach

that goal, at first, the role of temporal envelope and modulation frequency components in

the perception of speaker individuality and vocal-emotion is investigated to confirm that

whether the temporal modulation cues contribute speaker and vocal-emotion recognition..

Then, to clarify the exact contribution of temporal modulation cues in the perception of

speaker individuality and vocal-emotion, the modulation spectral features of speech are

analyzed to account for the perceptual data obtained from the speaker and vocal-emotion

recognition experiments using NVS.

In addition, applications of the temporal modulation information in simulating CI

listeners’ response and vocal-emotion conversion of NVS are discussed. In this work,

the contribution of temporal modulation cues on the perception of speaker individuality

and vocal-emotion are discussed together to indicate the difference in the perception of

linguistic information and nonlinguistic information and to clarify the common roles of

temporal modulation cue in the perception of nonlinguistic information.

1.4 Outline of thesis

The rest of this dissertation consists of five chapters and is organized as follows. Figure

1.1 shows the organization of this dissertation.

Chapter 2 introduces the background knowledge and previous studies about nonlin-

guistic information and the perception of temporal modulation components At first, the

previous studies about the perception of speaker individuality and vocal emotion based

on the acoustical features of speech are reviewed. Then the previous studies about the

contribution of temporal modulation cues in human auditory system and the perception
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of linguistic information are reviewed to expound the importance of temporal modulation

in both psychoacoustic and speech perception.

Chapter 3 purpose to clarify the role of temporal modulation cue in speaker and

vocal-emotion recognition. Speaker and vocal-emotion recognition experiments are carried

out to confirm whether the temporal modulation cues provided by the temporal envelope

of speech contribute to the perception of speaker individuality and vocal emotion. In

the experiments, speaker distinction and vocal emotion recognition are conducted by NH

listeners under different upper limit of modulation frequency and the number of channels of

NVS stimuli. The spectral and temporal modulation cues will be further reduced when the

number of channels and upper limit of modulation frequency decrease, respectively. The

experimental paradigm used in this experiment can also clarify the important modulation

frequency bands for speaker and vocal-emotion recognition.

Chapter 4 describe the relationship between modulation spectral features and the

perceptual data obtained in the speaker and vocal-emotion recognition experiments to

clarify the exact contribution of temporal modulation cues on the perception of speaker

individuality and vocal-emotion. An auditory-based method is used to calculate the

modulation spectrogram of speech and the modulation spectral features are extracted from

the modulation spectrogram. The correlation between the modulation spectral features

and the perceptual data is then analyzed to discuss whether the modulation spectral

features will contribute to speaker or vocal emotion recognition. In order to investigate the

relationship between modulation spectral features and the perceptual data of speaker and

vocal-emotion experiments, an discriminability index d’ is used. The d’ of each modulation

spectral feature present the physical distance of the distributions of modulation spectral

feature with different speaker or vocal-emotion and the d’ of the perceptual data present

the psychological distance of different speaker or vocal-emotion. The correlation between

the d’ values of modulation spectral features and the perceptual data is calculated to

demonstrate the relationship between modulation spectral features and the perception of

speaker individuality and vocal-emotion.

Chapter 5 discusses the applications of the temporal modulation information in sim-

ulating CI listeners’ response and vocal-emotion conversion of NVS. The feasibility of

using NVS to simulate CI listener’s response in vocal emotion recognition is discussed by
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carried out vocal-emotion recognition experiments using both NVS and original emotional

speech with NH and CI listeners. Effect of the modification of modulation spectrogram

on the vocal-emotion recognition is then investigated. A method based on a linear pre-

diction (LP) scheme is proposed to modify the modulation spectrogram and its features

of neutral speech to match that of emotional speech.

Chapter 6 summarizes this study and emphasizes its contributions to this research

field as well as other research fields. Furthermore, future works about deepening the

understanding of the perceptual process of speech, development of CI device and other

research field are introduced.
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Chapter 2

Research background

2.1 Introduction

In this chapter, the background knowledge and previous studies about nonlinguistic in-

formation and the perception of temporal envelope are introduced. At first, the previous

studies of speaker individuality and vocal emotion and the approach they used are re-

viewed. Then the previous studies about the importance of temporal envelope in human

auditory system and the perception of linguistic information are reviewed to expound the

contribution of temporal modulation cues in both psychoacoustic and speech perception.

Finally, the background knowledge and previous studies are summarized and the research

approach used in this study is explained.

2.2 The perception of nonlinguistic information

2.2.1 Speaker individuality

Speaker individuality can be divided into two categories that are inherent and acquired

features. The inherent features are inborn characteristics derived from the individual

difference of vocal organs (vocal fold and vocal tract). The acquired features are postnatal

characteristics derived from the individual difference of the speaking style of speaker. In

this study, the speaker individuality is defined as the physical features that is used by

human to distinguish such a specific speaker from any other person. Therefore, only the

physical features that contribute to the perception of speaker individuality is discussed
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and both inherent and acquired features are included in based on this definition.

Previous studies about the perception of speaker individuality almost based on the

source-filter theory [29] from the concept of speech production. The source-filter theory

consider the vocal fold as a sound source and the vocal tract as a kind of linear filter.

Based on this theory, previous studies investigated the features related to vocal fold source

(F0, etc.) and vocal tract filter (spectral envelope, formant, etc.) related to speaker

individuality.

Numerous acoustic features related to the perception of speaker individuality were

investigated so far. Ito et al. reported that the acoustic parameters affecting the per-

ception of speaker individuality are important in the order of spectral envelope, F0, and

the dynamic features of speaking style (tempo, etc.) [30], and the features about spectral

envelope are especially important. Hashimoto et al. analysis the contributions of acoustic

features (F0, spectrum, and duration) affecting speaker identification quantitatively with

hearing experiments [31]. They found that the spectral envelope and F0 have remarkable

contributions, and it is also reported that the degree of contribution depends on the dif-

ference of acoustic feature between different speakers. Kasuya et al. then investigated the

contribution of static and dynamic features of vocal tract to speaker identification based

on the ARX model [32]. It was reported that the contribution of static features is larger

than that of dynamic features. Related to this result, Kitamura et al. reported that the

spectral trajectory patterns do not affect speaker identification remarkably [33].

Some studies focus attention on one particular acoustic feature of vocal tract or vocal

ford related to speaker identification. Kuwabara et al. investigated the role of formant

frequencies and bandwidths in the perception of speaker individuality [34]. They found

that the frequency shift of the formants below F3 affected the perception of speaker in-

dividuality and the F3 is the most important feature. Kitamura et al. focused on the

effect of spectral envelope especially [5,35,36]. As a result, the spectral envelope compo-

nents above 1740 Hz carried more speaker individuality information and the components

on lower frequency band seem mostly relate to the linguistic information. Moreover, it

was suggested that in such high frequency band, the peaks are more important than the

dips to speaker identification. From the knowledge of physiology, Kitamura et al. then

found that such speaker individuality information appeared in the high frequency band
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is derived from the shape of hypopharyngeal cavity that does not have much movement

during speaking [6]. Aimino et al. showed that the nasal sound is effective for speaker

identification based on the individuality differences in the physiological characteristics of

articulatory organs such as nasal cavity and nasopharynx [37]. Akagi and Ienaga found

that the contour of F0 contributes to the perception of speaker individuality [3].

2.2.2 Vocal emotion

Based on the expression of vocal-emotion, emotional speech can be divided into two

categories: spontaneous emotional speech and acting emotional speech. The spontaneous

emotional speech based on the emotional state of speaker which can not be controlled be

speaker. The acting emotional speech based on the purpose of expressing the emotion

with speakers’ controlling. The mechanism of speech production of spontaneous and

acting emotional speech may be different [38, 39]. In this study, only acting emotional

speech data are used for convenience.

For the perception of vocal emotion, previous works focused on the acoustic features

conveyed in speech, such as F0, spectral envelope, intensity, and speech rate and using

such acoustic features to modeling the perception of vocal-emotion [7, 40]. Scherer et

al. presented emotion speech stimuli (14 kinds of emotion) to NH listeners to label

the emotion of each stimulus [8]. At the same time, they also extracted 29 different

acoustical features (F0, intensity, speaking rate, duration, time averaged spectrum, etc.)

of each emotion speech signal. An emotion classification model was then constructed

using multiple regression analysis analyzed the contribution of each acoustical features.

The emotion recognition rates of human response and regression model were 48% and

40% and the trend of confusion of human response and regression model was very similar.

Therefore, it is suggested that humans are also using such kinds of acoustical features to

recognize the vocal-emotion of speech.

Recently, researchers focus on the structure of model. Huang and Akagi proposed a

three-layered model with semantic primitives as a middle layer between vocal emotion and

acoustic features [9]. The bottom layer was acoustic features and fuzzy inference system

was used to built the model. The three-layered model was found to be useful in vocal-

emotion recognition system [41] and vocal-emotion conversion system [42, 43]. However,
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the acoustic features used in these studies were still based on source-filter model and the

waveform of speech.

In summary, previous studies usually use the acoustical features based on source-filter

model to investigate the perception of vocal emotion and speaker individuality. However,

in the study of the perception of nonlinguistic information by CI listeners, it was found

that the traditional acoustical features did not work well to account for the perceptual

data [27]. As the CI device provided poor spectral cues, the traditional acoustical features

can be perceived by CI listeners. On the other hand, the CI device provided temporal

modulation cues as primary cues and the temporal modulation cues also play an important

role in the human auditory system. For clarify the perception process of nonlinguistic

information, a method based purely on the auditory perception is necessary.

2.3 The perception of temporal envelope

2.3.1 Human auditory system and modulation filterbank

This work focus on the contribution of temporal modulation cue to the perception of

speaker individuality and vocal-emotion. The temporal modulation cue plays an impor-

tant role in human peripheral auditory system [44]. The peripheral auditory system is

composed of the outer, middle, and inner ear. The outer ear collects the sound wave

and the middle convert the sound wave from air vibration to liquid vibration in cochlea

effectively.

The cochlea works as an frequency analyzer and transforms the sound wave into neural

signal. A membrane called the basilar membrane runs along the length of the cochlea.

Sound waves produces traveling waves along the basilar membrane. The basilar membrane

works as a filter bank (auditory filterbank), splitting the complex sound wave into several

frequencies. Gammatone filterbank is widely used as a model of auditory filterbank in the

auditory system [45]. Furthermore, a gammachirp filterbank was proposed to simulate the

auditory filterbank [46]. The Equivalent rectangular bandwidth (ERBN) was always used

to measure the bandwidth of auditory filterbank [47] Glasberg and Moore then proposed

a frequency scale called the ERBN -number scale based on ERBN). ERBN -number is

conceptually similar to the Bark scale proposed by Zwicker and Terhardt [48] and the
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mel scale of pitch. The ERBN -number scale and Bark scale are all based on peripheral

auditory system. The Bark scale is based on the critical bandwidth, however, the ERBN -

number scale is based on the auditory filter shape measure by nothched-noise which should

can simulate the frequency analysis function of auditory system better.

The movement of the basilar membrane causes a displacement of the inner hair cells

and the inner hair cells transform such movement into neutral signal. As the mechanism

of inner hair cells, such function can be modeled as a process of envelope extraction and

amplitude compression. Therefore, the signal process in peripheral auditory system can

be computationally modeled as a bandpass filterbank, envelope extraction and amplitude

compression [10, 11]. The CI device basically use such signal process to simulate human

peripheral auditory system [22,49]. Dau et al. proposed a computational model of human

auditory signal processing and perception using modulation filterbank after the process

of envelope extraction [50,51]. The results showed that such model works better than the

previous models without modulation filterbank. Recently the modulation filterbank was

widely used in the speech intelligibility predictor and auditory system modeling [52–54]

There both physiological [55] and psychology [12] evidence suggested the existence of

modulation filterbank in auditory system. Auditory system may also have a modulation

frequency analyzer to analysis the modulation frequency components of the envelope of

speech. Therefore, from the view point of auditory perception, the temporal modulation

cues should play an important role in the perception of various information from speech.

2.3.2 Contribution of temporal modulation cues on the percep-

tion of linguistic information

For speech perception, previous studies have proved that the temporal modulation cues

are important for the perception of linguistic information. Shannon et al. showed that NH

listeners can recognize the linguistic information of NVS using the temporal modulation

cues as primary cues with poor spectral cues [13]. NVS can be generated by dividing

speech signal into several narrow bands and replacing the carriers in each narrow band

with band-limited noise. The spectral cues provided will be poorer and poorer with

less number of channels. Therefore, NVS was also usually used as a CI simulation in the

studies of the speech perception by CI listeners to simulate the poor spectral cues provided
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by CI device [25, 27, 56–58]. It is shown that NVS with only four bands is sufficient to

achieve good vowel, consonant, and sentence recognition [15,59]. Many other studies using

NVS showed that importance of temporal modulation cues in speech perception [60–64]

Therefore, human can perceive the linguistic information with the temporal envelope as

a primary cue.

For the contributions of modulation frequency components, Rosen firstly developed

a framework for describing the acoustic structure of speech based on temporal aspects

[21]. The envelope cues contain the modulation frequency band between about 2 and

50 Hz including the information about variations of intensity, duration, attach, decay,

and segmental cues of speech. Drullman et al. investigated the important modulation

frequency bands for speech perception by low- and high-pass filtering on the temporal

envelope [18, 19]. They measured the speech-reception threshold for sentences in noise

with reduce the high or low modulation frequency components of speech. The results

showed that the modulation frequency bands from 4 to 16 Hz contained important cues

related to linguistic information. Studies using NVS with similar experimental method

also showed such modulation frequency bands are important for speech perception [14,20].

2.4 The research approach of this study

In this chapter, the previous studies of the perception of speaker individuality and vocal

emotion were reviewed at first. The previous studies of nonlinguistic information almost

focused on the acoustical features of speech based on the concept speech production such

like F0, spectral envelope, etc. However, in the study of the perception of nonlinguistic

information by CI listeners, it was found that the traditional acoustical features did not

work well to account for the perceptual data [27]. The traditional acoustical features

based on speech production have difficult to present the temporal modulation cues of

speech.

Why should we clarify the contribution of temporal modulation cues on the perception

of speaker individuality and vocal emotion? One important reason is that the temporal

envelope plays an important role in auditory system. The auditory system should analysis

the modulation frequency components at the early stage close to the periphery. Further-

more, some essential studies showed the importance of temporal modulation cues in the
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perception of linguistic information. Therefore, the temporal modulation cues provided

by temporal envelope should also contribute the perception of nonlinguistic information.

For clarify the perceptual process of nonlinguistic information, a method based purely on

the auditory perception is necessary.

To clarify the contribution of temporal modulation cues, it must be confirmed that

the temporal modulation information actually contribute to the perception of speaker

individuality and vocal emotion. Shannon et al. showed that the temporal envelope

contribute to the perception of linguistic information [13]. Drullman et al. investigated

the important modulation frequency bands for speech perception by low- and high-pass

filtering on the temporal envelope [18, 19]. These important studies demonstrated us

the temporal modulation cues provided by the temporal envelope of speech contribute

to the perception of linguistic information. In this study, the approaches of using NVS

and low-pass filtering the temporal envelope are combined to confirm the contribution of

temporal modulation cues on the perception of speaker individuality and vocal emotion.

Speaker and vocal-emotion recognition experiments using NVS are carried out with low-

pass filtering the temporal envelope and varying the number of channels.

Furthermore, it is also necessary to clarify the exact features of temporal modula-

tion information related to the perception of speaker individuality and vocal-emotion.

Modulation frequency analysis has been shown to be useful for many research fields such

as auditory physiology, psychoacoustics, speech perception, and signal analysis and syn-

thesis [65–68]. The modulation spectral features were also widely used in speech tech-

nologies about nonlinguistic information such as speaker recognition [69–74] and vocal

emotion recognition [75–77]. The fact that temporal modulation information is impor-

tant to speech perception and can be used in speaker or vocal-emotion recognition system

showed that the temporal modulation cues ought to play an important role in the percep-

tion nonlinguistic information. The modulation spectral features must be more useful to

account for the perceptual data of speaker or vocal-emotion recognition experiments than

the traditional acoustic features based on speech production. Therefore, in this study,

the relationship between modulation spectral features and the perceptual data obtained

in the speaker and vocal-emotion recognition experiments is analyzed to clarify the exact

contribution of temporal modulation cues on the perception of nonlinguistic information.
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Chapter 3

The role of temporal modulation cues on the perception of 

speaker individuality and vocal emotion

Purpose: to confirm that whether the temporal modulation cues 

provided by the temporal envelope of speech actually contribute 

to the perception of speaker individuality and vocal emotion 

Method: speaker and vocal-emotion recognition experiments using 

noise-vocoded speech with different spectral and temporal resolution

Hypothesis: If the temporal modulation cues contribute to 

the perception of speaker individuality and vocal emotion, 

the performance of speaker and vocal-emotion recognition 

will be poorer with lower temporal resolution. 

Chapter 4

Contribution of modulation spectral features on the perception of

speaker individuality and vocal emotion

Purpose: to clarify the exact contribution of modulation modulation 

cues on the perception of speaker individuality and vocal-emotion. 

Method: investigate the relationship between the modulation 

spectral features and perceptual data obtained from speaker 

and vocal-emotion recognition experiments

Hypothesis: If the modulation spectral features contribute 

to the perception of speaker individuality and vocal 

emotion, there must be a high correlation between the 

modulation spectral features and the perceptual data.

Figure 2.1: The research approach of this study.
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Chapter 3

The role of temporal modulation

cues on the perception of speaker

individuality and vocal emotion

3.1 Introduction

This chapter aims to clarify the role of temporal modulation cues in speaker and vocal-

emotion recognition using NVS and confirm that whether the temporal modulation infor-

mation actually contribute to the perception of speaker individuality and vocal emotion.

Furthermore, the effects of different spectral resolutions are also investigated. In the

experiment, speaker distinction and vocal emotion recognition are conducted by NH lis-

teners under different upper limit of modulation frequency (0, 0.5, 1, 2, 4, 8, 16, 32, and

64 Hz) of NVS. The temporal modulation cues provided by NVS will be poorer with lower

upper limit of modulation frequency. In addition, the role of temporal modulation cues

in the different spectral resolutions condition are also investigated by varying the num-

ber of channels (4, 8, and 16). The spectral and temporal modulation cues are reduced

further when the number of channels and upper limit of modulation frequency decrease,

respectively. If the temporal modulation cues contribute to the perception of nonlinguistic

information, the performance of speaker or vocal-emotion recognition will be poorer with

lower temporal resolution of NVS. Therefore, this experimental paradigm can also clarify

the important modulation frequency bands for speaker and vocal-emotion recognition.
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3.2 Signal Processing: Noise-Vocoded Speech

Figure 3.1 illustrates the schematic diagram of the signal processing to generate NVS.

First, to reduce the effect of the average intensity, the active speech levels of all speech

signals were normalized to −26 dBov by using the P.56 speech voltmeter [78]. The speech

signal s(n) was then divided into several frequency bands by using a band-pass filterbank,

as following,

s(k, n) = s(n) ∗ hBPF (k, n) (3.1)

where n is time, hBPF (k, n) is the transform function of the band-pass filter in channel

k, and s(k, n) is the sub-band signal in channel k. At the same, the Gaussian white noise

with the same length of the speech signal was also divided into several frequency bands

using the same band-pass filterbank, as following,

WN(k, n) = WN(n) ∗ hBPF (k, n) (3.2)

where WN(n) is Gaussian white noise and WN(k, n) is the band-limited noise in channel

k.

The bandwidth and boundary frequencies of the band-pass filters (6th-order Butter-

worth infinite impulse response (IIR) filter) were defined using ERBN (Equivalent Rectan-

gular Bandwidth) and ERBN -number scale [44]. The ERBN -number scale is comparable

to a scale of distance along the basilar membrane, so the frequency resolution of the audi-

tory system can be faithfully replicated by dividing frequency bands in accordance with

the ERBN -number. The relationship between ERBN -number and acoustic frequency is

defined as follows:

ERBN − number = 21.4log10

(
4.37f

1000
+ 1

)
(3.3)

where f is acoustic frequency in Hz. The boundary frequencies of the band-pass filters

were defined from 3 to 35 ERBN -number with bandwidth as 2, 4, or 8 ERBN . Therefore,

the numbers of channels of the band-pass filterbank were 16, 8, or 4. The number of

channels determines the frequency resolution of NVS: higher frequency resolution will be

obtained with more channels. Table 3.1 shows the boundary frequencies of the 4-, 8-, and

16-band band-pass filters in Hz and ERBN -number. Figure 3.2, 3.3, and 3.4 shows the

frequency response of the ERBN -number based band-pass filterbank.
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Table 3.1: The boundary frequencies of the band-pass filters in Hz and ERBN -number.

4-band 8-band 16-band ERBN -number Hz

1

1
1

3 87.18

2
5 163.1

2
3

7 257.2

4
9 373.8

2

3
5

11 518.5

6
13 698.0

4
7

15 920.5

8
17 1197

3

5
9

19 1539

10
21 1963

6
11

23 2489

12
25 3142

4

7
13

27 3951

14
29 4955

8
15

31 6200

16
33 7743

35 9657
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Figure 3.2: Frequency response of the ERBN -number based 16-band band-pass filterbank.
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Figure 3.3: Frequency response of the ERBN -number based 8-band band-pass filterbank.
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Figure 3.4: Frequency response of the ERBN -number based 4-band band-pass filterbank.
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Then, the temporal envelope e(k, n) of the output signal from each band-pass filter

was extracted using the Hilbert transformation and performing a low-pass filter (2nd-order

Butterworth IIR filter).

e(k, n) = |s(k, n) + jH[s(k, n)]| ∗ hLPF (n), (3.4)

where H denotes the Hilbert transform and hL(n) is the impulse response of the low-pass

filter. The cut-off frequency of the low-pass filter determined the upper limit of modulation

frequency. The upper limit of modulation frequency relates to the temporal resolution

that higher temporal resolution will be obtained with higher upper limit of modulation

frequency. To investigate the role of temporal cues in the perception of nonlinguistic

information, the cut-off frequencies of the low-pass filter were 0.5, 1, 2, 4, 8, 16, 32, and

64 Hz. Moreover, there was an additional “0 Hz” condition where only the direct current

component of the Hilbert envelope was extracted.

Finally, the temporal envelope in each channel served to amplitude modulation with

the band-limited noise that was generated by band-pass filtering white noise at the same

boundary frequency. All amplitude-modulated band-limited noises were summed to gen-

erate the NVS stimulus, as following,

NV S(n) =
K∑
i=1

e(k, n)×WN(k, n), (3.5)

where NV S(n) is the NVS signal and the K is the number of channels which could be 4,

8, or 16.

Figure 3.5 shows the spectrogram of a Japanese speech data. Figure 3.6 shows the

spectrogram a 16-band NVS with the upper limit of modulation frequency is 64 Hz gener-

ated from the speech data in figure 3.5. Figure 3.7 shows the spectrogram a 4-band NVS

with the upper limit of modulation frequency is 4 Hz generated from the same speech

data. For NVS, there is no such harmonic structure and the power in such one band is

almost flat. With the decreasing of the number of channels, the spectral solution is also

decreased and the spectral cue is poorer. Also with the decreasing of the upper limit of

modulation frequency, the NVS is smoothed further and the temporal modulation cue is

poorer.
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Figure 3.5: Spectrogram of original speech.
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Figure 3.6: Spectrogram of the 16-band NVS and the upper limit of modulation frequency

is 64 Hz.
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Figure 3.7: Spectrogram of the 4-band NVS and the upper limit of modulation frequency

is 4 Hz.
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3.3 speaker distinction experiment using noise-vocoded

speech with different temporal resolution

3.3.1 Speech Data

The speech data were selected from ATR Japanese speech database set C. All the speech

data were recorded at a 20 kHz sampling frequency. Each sentence was uttered for about

four to five seconds.

In this study, the XAB method was used in the speaker distinction experiment. In

the XAB method, one trial consists of three different speech signals (X, A, and B). The

speakers of A and B are different, and the speaker of X is the same speaker of either A or

B. Participants are asked to select which speaker, A or B, is more similar to the speaker

of X. It is assumed that the similarity of the speaker pair A and B will affect the results

of speaker distinction rates dramatically. Two highly similar speakers may be difficult to

distinguish between even when the spectral and temporal cues are reserved. On the other

hand, the two highly dissimilar speakers may be easy to distinguish between even when

the spectral and temporal cues are reduced. This kind of bias is not undesirable.

Kitamura et al. measured the perceptual similarity of 20 female and 20 male Japanese

speakers in ATR speech database set C [1]. NH listeners listened to the same two same

sentences spoken by two speakers and were asked to rate the similarity of these two

speakers from 1 to 5. The perceptual similarity of speakers is considered to generate

some undesirable bias in the XAB test. Therefore, to remove the impact of similarity, the

speaker pairs used in this study have perceptual similarity closest to the average value of

perceptual similarity (female: 1.87, and male: 1.99) measured by Kitamura et al. [1]. The

five female and five male speaker pairs used in this study and their perceptual similarities

are shown in Table 3.2. All 20 speakers are different, and the speakers of each pair have

the same gender.

3.3.2 Participants and Procedure

Nine native Japanese speakers (two females and seven males) participated in this experi-

ment. All participants had normal hearing (hearing losses of the participants were below
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Table 3.2: Speaker pairs selected from ATR database and their average similarity index

measured by Kitamura et al. [1]. Left and right halves show female and male speaker

pairs, respectively.

Speaker pair Similarity Speaker pair Similarity

F407 F306 1.87 M509 M318 1.99

F611 F418 1.86 M603 M409 1.98

F606 F605 1.88 M508 M113 2.00

F720 F213 1.88 M519 M211 2.01

F709 F614 1.83 M520 M517 1.97

the mean hearing level of 12 dB in the frequency range from 125 to 8000 Hz).

This experiment was carried out using the XAB method. The contents of stimuli X,

A, and B were as follows:

• X: NVS

• A: NVS with the same speaker as X

• B: NVS with a different speaker from X.

The sentences of X, A, and B were different. Participants were asked to compare the

speakers of A and B with the speaker of X to select which one was more similar to the

speaker of X. Both stimuli with XAB and XBA orders were presented to counterbalance

any effects due to the order of presentation. All the speaker pairs of A and B are shown

in the Table 3.2.

A total of 3 different numbers of channels (4, 8, and 16) and 9 upper limits of mod-

ulation frequency (0, 0.5, 1, 2, 4, 8, 16, 32, and 64 Hz) created 27 NVS conditions. The

original speech was also presented as a control condition. The participants were allowed

to listen to each stimulus only once. Before the experiment, 10 stimuli were presented

to the participants to familiarize them with the NVS and the experimental environment.

The stimuli used in the experiment were different from those used in the practice. In the

experiment, all stimuli were presented randomly.

The experiment was conducted while the participants were in a sound-proof room.

The sound pressure level of background noise was lower than 25.8 dB. The stimuli were
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Interface
PC

Sound-proof room

Figure 3.8: The experiment environment.

simultaneously presented to both ears of a participant through a PC, audio interface

(RME, Fireface UCX), and a set of headphones (SENNHEISER HDA 200). The sound

pressure levels were calibrated to be the same (65 dB SPL) for all participants by using

a head and torso simulator (B&K, type 4128) and sound level meter (B&K type 2231).

3.3.3 Results

Figure 3.9 shows the average value of speaker distinction rates, and the error bars indicate

a ±1 standard error of the mean. Under the original speech condition, the mean recogni-

tion rate was close to 95%. Thus, participants were nearly perfect at speaker distinction

with the original speech. The results for NVS stimuli showed that speaker distinction

improved as the upper limit of modulation frequency increased. The results for 4-band

NVS were lower than those for 8 or 16-band NVS at some upper limits (0.5, 4, 8, and 32

Hz). However, the performance was not obviously affected by the number of channels.

A three-way repeated-measures analysis of variance (ANOVA) was conducted on the

results with the number of channels, upper limit of modulation frequency and speaker

pairs as the factors. There was significant main effect of the speaker pairs (F (9, 72) =

20.99, p < 0.01). It was shown that, even the perceptual similarities of all speaker pairs

were close, the results of different speaker pair were still different. It should be mentioned

that the data of perceptual similarities were measured by using original speech signals
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Figure 3.9: speaker distinction rates in all 27 NVS conditions and original speech condi-

tion. Error bars indicate ±1 standard error of mean.

and the stimuli used in this experiment were NVS. The reducing of spectral cues may

be the reason of the difference between the perceptual similarities and the results of this

expeirment.

There was a significant main effect of the upper limit of modulation frequency (F (8, 64) =

23.86, p < 0.01) but no significant main effect of the number of bands (F (2, 16) = 3.32) or

significant interaction between the two factors (F (16, 128) = 1.16). These results showed

that speaker distinction was significantly affected by the temporal resolution. Therefore,

this suggests that temporal cues should contribute to speaker distinction with NVS. The

speaker distinction performance was less sensitive to the spectral resolution, however, at

least in the limited set of stimuli used in the present study.
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3.3.4 Discussion

This experiment was intended to clarify the role of temporal cues in speaker distinction.

Specifically, the important modulation frequency band for speaker distinction was inves-

tigated. To identify the important modulation frequency band, a sigmoid function was

used to fit the data of the experiment. The sigmoid function was mathematically defined

as follows:

y =
a

1 + eb(x−c)
+ d (3.6)

where x is the upper limit of modulation frequency and y is the percent-correct scores.

The values of parameters a, b, c, and d were calculated on the basis of the method of

least squares. Moreover, the upper limit of modulation frequency at which 90% of the

performances plateaued was defined as a knee point. The results of fitting lines and

knee points for each number of channels are shown in figure 3.10, 3.11, and 3.12. The

coefficients of determinations R2 of the fitting results in 4, 8, and 16-band NVS were 0.86,

0.96, and 0.93.

The knee point of 4-band NVS was about 20.09 Hz, which was higher than those of 8-

band NVS (4.96 Hz) and 16-band NVS (7.60 Hz). This result suggests that the temporal

cue may contribute more to speaker distinction when the spectral resolution is limited

further.

Note that the speaker distinction rates of 4-band NVS are lower at some upper limits of

modulation frequency. However, the number of channels did not affect the performance

of speaker distinction significantly. These results were different from those of previous

studies [23] [24] in which the performance was improved as the number of channels in-

creased. One difference between the present study and previous studies is that the upper

limit of modulation frequency in this study was lower. In previous studies, the cut-off

frequencies of the low-pass filter were 500 Hz [23] and 160 or 400 Hz [24]. The modulation

frequency band between about 50 and 500 Hz is related to the periodicity information

about F0 [21], which is not included in the stimuli used in the present study. One possible

explanation may be that the temporal cue related to the periodicity information in the

higher modulation frequency bands is more sensitive to the number of channels. The main

target of this study is to clarify the role of temporal cues in the modulation frequency

band below 64 Hz [21]. Such modulation frequency band includes the information about
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Figure 3.10: Speaker distinction rates in each condition of number of channels and their

sigmoid fitting lines for 4-band NVS. Coefficients (95 % confidence interval): a = 23.84

(0.0342, 47.65), b = -0.8913 (-2.873, 1.091), c = 4.862 (2.509, 7.215), d = 58.59 (44.04,

73.14). Coefficient of determinations: R2 = 0.86.

variations of intensity, duration, attack, decay, and segmental cues of speech.

As the spectral cue provided by 4-band NVS was reduced dramatically, participants

may have primarily used the temporal cues rather than spectral cues to recognize the

speakers. Even so, the average speaker distinction rate for 4-band NVS with a 64 Hz

upper limit for modulation frequency was about 80%. Therefore, the temporal cue is

showed to be important in the perception of speaker individuality.
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Figure 3.11: Speaker distinction rates in each condition of number of channels and their

sigmoid fitting lines for 8-band NVS. Coefficients (95 % confidence interval): a = 20.3

(13.99, 26.61), b = -1.914 (-4.204, 0.3764), c = 4.163 (3.472, 4.854), d = 61.79 (57, 66.58).

Coefficient of determinations: R2 = 0.96.
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Figure 3.12: Speaker distinction rates in each condition of number of channels and their

sigmoid fitting lines for 16-band NVS. Coefficients (95 % confidence interval): a = 23.02

(10.46, 35.58), b = -1.163 (-2.792, 0.4665), c = 4.054 (2.748, 5.359), d = 60.91 (51.28,

70.55) Coefficient of determinations: R2 = 0.93.
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3.4 Vocal emotion recognition experiment using noise-

vocoded speech with different temporal resolu-

tion

3.4.1 Speech Data

The emotional speech data used in this study were selected from the Fujitsu Japanese

Emotional Speech Database [9]. This database includes five emotions (neutral, joy, cold

anger, sadness, and hot anger) expressed by one professional actress. The same sentence

was spoken with five emotions. Ten utterances of each emotion were selected. The

linguistic contents of each sentence were semantically emotion-neutral to minimize any

biasing effect of context. The duration of each utterance was about 3 or 4 s. The sampling

frequency and quantization bits were 22.05 kHz. and 16 bits.

3.4.2 Participants and Procedure

Eleven native Japanese speakers (seven males and four females) participated in this ex-

periment. All participants had normal hearing (hearing levels of the participants were

below hearing level of 12 dB in the frequency range from 125 to 8000 Hz).

The same as experiment I, there were 27 NVS conditions with 3 different numbers of

channels (4, 8, and 16) and 9 upper limits of modulation frequency (0, 0.5, 1, 2, 4, 8, 16,

32, and 64 Hz). The original speech was also presented as a control condition. All stimuli

were randomly presented to the participants during the experiment. Participants were

asked to indicate which of the five emotions (neutral, joy, cold anger, sadness, and hot

anger) he/she thought was associated with the stimulus. Each stimulus was presented

only once. The experimental environment was as the same as that in speaker distinction

experiment in section 3.3.

3.4.3 Results

Figure 3.13 shows the results of the vocal-emotion recognition experiment. First, the

recognition rates of the original emotional speech are fixed to 100% for all participants.

The Fujitsu database was determined to be a reliable emotional speech database.
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The results also showed that vocal-emotion recognition improved as not only the upper

limit of modulation frequency but also the number of channels increased. A three-way

repeated-measures ANOVA was conducted on the results with the number of channels,

upper limit of modulation frequency, and emotion as the factors. Results revealed sig-

nificant main effects of the number of channels (F (2, 20) = 79.83, p < 0.01) and upper

limit of modulation frequency (F (8, 80) = 76.36, p < 0.01). The interaction between

the number of channels and upper limit of modulation frequency was also significant

(F (16, 160) = 8.61, p < 0.01). The ANOVA also showed a significant main effect of emo-

tion (F (4, 40) = 31.16, p < 0.01). Therefore, the emotion significantly affected results for

recognition rates. The results for different emotions need to be analyzed separately.

Figure 3.14 - 3.18 shows the vocal-emotion recognition rates of different emotions.

The results for different emotions are obviously different. The ANOVA showed significant

interactions between the number of channels and emotion (F (8, 80) = 19.11, p < 0.01)

and between the upper limit of modulation frequency and emotion (F (32, 320) = 2.02, p <

0.01). Following these significant interactions, as sub effect test, the analysis of simple

main effect showed that for all emotions, there was a significant simple main effect (p <

0.01) of the upper limit of modulation. However, the simple main effect of the number

of channels was significant (p < 0.01) for only neutral, joy, and cold anger. The simple

main effect of the number of channels was not significant for sadness (p = 0.20) and hot

anger (p = 0.10). Furthermore, there was a significant interaction between the number of

channels, the upper limit of modulation frequency and emotion (F (64, 640) = 2.59, p <

0.01). The simple interactions between the number of channels and the upper limit of

modulation frequency were significant (p < 0.01) for all emotions except sadness (p =

0.86).
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Figure 3.13: Vocal-emotion recognition rates in all 27 NVS conditions and original speech

condition. Error bars indicate ±1 standard error of mean.
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Figure 3.14: Vocal-emotion recognition rates of neutral speech. Error bars indicate ±1

standard error of mean.
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Figure 3.15: Vocal-emotion recognition rates of joy speech. Error bars indicate ±1 stan-

dard error of mean.
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Figure 3.16: Vocal-emotion recognition rates of cold anger speech. Error bars indicate

±1 standard error of mean.
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Figure 3.17: Vocal-emotion recognition rates of sadness speech. Error bars indicate ±1

standard error of mean.
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Figure 3.18: Vocal-emotion recognition rates of hot anger speech. Error bars indicate ±1

standard error of mean.
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3.4.4 Discussion

Mean confusion matrices obtained with the results of vocal-emotion recognition experi-

ments are shown in Appendices A. The results showed that the selection rates of Neutral

were increased with the reducing of the upper limit of modulation frequency or the num-

ber of channels. Subjects may tend to select Neutral when they can not recognize the

emotion of stimuli.

This experiment was intended to clarify the role of temporal cues in vocal-emotion

recognition, so the same fitting method used in Experiment I was also used to the results

of the vocal-emotion recognition experiment. Figure 3.19 - 3.21 shows the sigmoid fitting

lines of the mean vocal-emotion recognition rates. The coefficients of determinations R2

of the fitting results in 4, 8, and 16-band NVS were 0.9880, 0.9886, and 0.9986. The

knee points of 4- and 8-band NVS were 9.16 and 10.62 Hz, which were higher than that

of 16-band NVS (5.26 Hz). The same as for speaker distinction, if the spectral cue is

limited further, the temporal cue may contribute more to vocal-emotion recognition. The

relationship of the important modulation frequency bands for the perception of linguistic

information, speaker individuality and vocal emotion will be discussed in the next section.

The results also showed that the effects of the number of channels and upper limit of

modulation frequency were different for different emotions. For neutral (Fig. 3.14), the

mean recognition rates was higher than that for other emotions, even for 4-band and 0

Hz upper limit of modulation frequency. Participants may select neutral when they could

not recognize the emotion of the NVS stimuli.

For joy (Fig. 3.15), both the number of channels and upper limit of modulation fre-

quency significantly affected the vocal-emotion recognition rates. Therefore, both spectral

and temporal resolutions are important for the recognition of joy NVS stimuli. The recog-

nition rates improved as the number of channels and upper limit of modulation frequency

increased. At 64 Hz upper limit of modulation frequency, participants performed almost

perfectly for the 16-band NVS stimuli. On the other hand, the mean recognition rates

for 4-band NVS stimuli were close to or even below the chance level (20%). The fine

structure of the spectrum and the temporal variation of amplitude envelope are shown to

be important for the recognition of joy NVS.

For cold anger (Fig. 3.16), analyses of simple main effects also showed that both spec-
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tral and temporal resolutions affected the results significantly. However, the recognition

rates were lower than those of other emotions. Participants performed remarkably more

poorly for cold anger when the spectral and temporal cues were reduced.

For sadness (Fig. 3.17) and hot anger (Fig. 3.18), only the upper limit of modulation

frequency showed significant simple main effects. This indicates that the spectral solution

seems to be unimportant for recognizing sadness and hot anger NVS.

The results showed that temporal solution significantly affected the recognition rates

of all emotions. It is confirmed that the temporal cue plays an important role on the

perception of vocal emotion. The results also showed that the contribution of spectral cue

on the perception of vocal emotion is different for different emotion. The high recognition

rates of sadness and hot anger with only 4-band NVS showed that only a rough shape of

spectrum is enough for the participants to recognize such emotions. On the other hand,

to recognize joy speech, more details of spectrum are necessary. The potential reason

of the different contribution of spectral cue should be the different spectral structure of

emotional speech.
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Figure 3.19: Vocal-emotion recognition rates in each condition of number of channels and

their sigmoid fitting lines for 4-band NVS. Coefficients (95 % confidence interval): a =

24.78 (28.68, 20.89), b = -1.266 (-1.839, 0.6936), c = 4.461 (4.076, 4.845), d = 57.52

(55.44, 59.6). Coefficient of determinations: R2 = 0.9880.
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Figure 3.20: Vocal-emotion rates in each condition of number of channels and their sigmoid

fitting lines for 8-band NVS. Coefficients (95 % confidence interval): a = 36.28 (28.76,

43.8), b = -1.163 (-1.815, -0.5106), c = 4.52 (4.012, 5.028), d = 32.57 (27.33, 37.82).

Coefficient of determinations: R2 = 0.9886.
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Figure 3.21: Vocal-emotion recognition rates in each condition of number of channels and

their sigmoid fitting lines for 16-band NVS. Coefficients (95 % confidence interval): a

= 45.83 (43.07, 48.59), b = -1.603 (-1.923, -1.283), c = 4.027 (3.889, 4.164), d = 36.26

(34.12, 38.4). Coefficient of determinations: R2 = 0.9986.
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3.5 General discussion

The temporal envelope of speech has been demonstrated to be an important cue for

perceiving of linguistic information. The results obtained in this study demonstrated that

the temporal cue is also important for the perceiving nonlinguistic information. However,

the important modulation frequency bands for linguistic and nonlinguistic information

are different.

Xu and Pfingst measured both consonant and vowel recognition as a function of the

number of channels (1 to 16) and upper limit of modulation frequency (1 to 512 Hz) [16].

The knee points of vowel recognition for different numbers of channels are all below

about 4 Hz. Tachibana et al. conducted an experiment of NVS sentence recognition

with various upper limits of modulation frequency [14]. They found that increasing the

upper limit from 4 to 8 Hz improved the correct response rate more that increasing the

upper limit from 8 to 16 Hz. In previous study, the effect of controlling the upper limit

of modulation frequency on the recognition of words and speakers while using a fixed

number of channels was investigated [79]. The result of word intelligibility tests showed

that the average correct number of morae decreased when the upper limit of modulation

frequency was less than 5 Hz. The moraic syllable structure is suggested to contribute to

the perception of speech. Houtgast and Steeneken demonstrated that the most important

modulation frequencies for linguistic information are 3-4 Hz, reflecting the syllable rate in

speech [80]. This result is consistent with Arai and Greenberg’s previous study about the

temporal properties of speech [81]. Their modulation spectral analysis of speech showed

that there is a peak on the modulation spectrum at around 4 and 5 Hz. And such temporal

characteristics of English and Japanese are remarkably similar.

In this study, the important modulation frequency bands for speaker and vocal-

emotion recognition were investigated by using NVS with 3 different numbers of channels

(4, 8, and 16). The knee points of 4-, 8-, and 16-band NVS were 20.09, 4.96, and 7.60 Hz

for speaker distinction and 9.16, 10.62, and 5.26 Hz for vocal-emotion recognition. The

knee points for speaker and vocal emotion recognition were all above 4 Hz. The duration

and segmental cues below about 5 Hz for the temporal envelope are also suggested to

be used in recognizing speakers and vocal emotions. These segmental cues related to the

rhythm, tempo, and the speaking style of the speaker which should be different with dif-
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ferent speaker and different emotion. Furthermore, the important modulation frequency

bands for nonlinguistic information are suggested to be higher than those for linguistic

information. The higher modulation frequency bands are considered to be related to the

perception of voice quality.

It is necessary to clarify exactly what kinds of features of the temporal envelope are

important for perceiving nonlinguistic information. One possible way to do this is to com-

pare the results of speaker and vocal-emotion recognition experiments with modulation

spectral features (MSFs). MSFs, which are the static features extracted from the mod-

ulation spectrum of speech, have been shown to be useful for automatic vocal-emotion

recognition [77]. The relationship between MSFs and the response of humans will be

investigated further.

3.6 Summary

In this chapter the role of temporal modulation cues in the perception of speaker indi-

viduality and vocal emotions was investigated. Speaker and vocal-emotion recognition

experiments were carried out using NVS as stimuli. The temporal resolution was con-

trolled by varying the upper limits of the modulation frequency. In addition, the role of

temporal modulation cues in the different spectral resolution conditions was also investi-

gated by varying the number of channels.

For both speaker and vocal emotion, the recognition rates were significantly decreased

with lower upper limit of modulation frequency. Therefore, the results demonstrated

temporal modulation cues contribute to the recognition of speakers and vocal emotions.

However, the speaker distinction performance was not sensitive to the spectral resolution,

at least in the limited set of stimuli in the present study. For vocal-emotion recognition,

the spectral resolution was important for the recognition of only neutral, joy, and cold

anger NVS, but not sadness or hot anger. Compared to the perception of linguistic

information, the temporal modulation cues provided by higher modulation frequency

bands were suggested to be important for the perception of speaker individuality and

vocal emotion. It is confirmed that the temporal modulation cues contributes to the

perception of not only linguistic information but also speaker individuality and vocal

emotion.
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Chapter 4

Contributions of modulation spectral

features on the perception of speaker

individuality and vocal emotion

4.1 Introduction

From the speaker and vocal-emotion recognition experiment with NVS, it has been con-

firmed that the temporal envelope of speech contributes to the perception of not only

linguistic information but also speaker individuality and vocal emotion. The temporal

modulation cue is suggested to play an important role in the auditory system to extract

various information from speech. However, it is still unknown that exactly what kinds of

features of the temporal modulation components contribute to the perception of speaker

individuality and vocal-emotion.

On the other hand, the modulation spectrum of temporal envelope of speech has been

proved to be important for many research fields such as auditory physiology, psychoa-

coustics, speech perception, and signal analysis and synthesis [65]. Moreover, modulation

spectral features have been successfully applied in automatic speaker or vocal emotion

recognition systems [69–74,76,77]. Therefore, modulation spectral features can represent

speaker individuality and vocal emotion information. Such kinds of modulation spectral

features are calculated based on the signal process of auditory system. However, it is still

unclear whether modulation spectral features contribute to the perception of nonlinguistic
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information in auditory system.

In this chapter, the relationship between the modulation spectral features and percep-

tual data is investigated to clarify the contribution of modulation spectral features on the

perception of speaker individuality and vocal-emotion. At first, ten types of modulation

spectral feature are extracted from the modulation spectrogram of speech data. The cor-

relation between the modulation spectral features and the perceptual data was calculated

to discuss whether the modulation spectral features will contribute to the perception of

speaker individuality or vocal-emotion.

4.2 Method to analysis modulation spectral features

4.2.1 Modulation Spectrogram Analysis

A previous study suggested that the acoustic features of intensity and duration can-

not account for the human perception of vocal emotion with noise-vocoded speech [27].

Moreover, for vocal emotion recognition by machine, it has been proved that the mod-

ulation spectral features perform better than the traditional acoustic features such as

Mel frequency cepstrum coefficient (MFCC) and perceptual linear predictive (PLP) coef-

ficient [77]. For these reasons, we only investigated the modulation spectral features for

this study.

All emotional speech signals used in this study were selected from the Fujitsu Japanese

Emotional Speech Database [9]. This database includes five emotions (neutral, joy, cold

anger, sadness, and hot anger) spoken by one female speaker. Ten utterances of each

emotion were used.

Figure 4.1 shows the auditory-inspired process used in this study to calculate the

modulation spectrogram. The signal process until the temporal envelope extraction is as

same as that of the signal process to generate NVS stimuli. Emotional speech signals s

were first band-pass filtered using an auditory-inspired band-pass filterbank as follows:

s(k, n) = s(n) ∗ hBPF (k, n) (4.1)

where h(k, n) is the impulse response of the kth channel and n is sample number in the

time domain. The same 4-,8-,16-band filterbank used in NVS stimuli generation (section

3.2) is also used here.
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The instantaneous amplitude of kth channel signal e(k, n) was then calculated using

the Hilbert transform as follows:

e(k, n) = |s(k, n) + jH[s(k, n)]|, (4.2)

where H denotes the Hilbert transform. The next step involved decomposing the in-

stantaneous amplitude into several modulation frequency bands by using a modulation

filterbank. The modulation filterbank consisted of six filters, gm(n), (one low-pass filter

and five band-pass filters). The low-pass filter was a 2nd order Butterworth IIR filter with

a cut-off frequency of 2 Hz. The cut-off frequencies of the band-pass filters were equally

spaced on a logarithm scale from 2 to 64 Hz. Figure 4.2 shows the frequency response of

the modulation filterbank. Finally, the modulation spectrogram E(k,m, n) was obtained

by:

E2(k,m, n) = |g(m,n) ∗ e(k,m, n)|2, (4.3)

where m is the channel number of the modulation filter. Finally, the time averaged

modulation spectrogram E(k,m) in dB was used to calculate the modulation spectral

features.

E(k,m) = 10 log10
1

N

N∑
n=0

E2(k,m, n) (4.4)

where N is the length of speech signal.
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Figure 4.1: Schematic diagram of noise-vocoder method used to generate stimuli (BPF:

band-pass filter; LPF: low-pass filter; and NBN: narrow-band noise).
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Figure 4.2: Frequency response of the modulation filterbank.
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4.2.2 Modulation-Spectral Feature Extraction

We extracted ten types of modulation spectral feature to determine whether these fea-

tures can be used to identify the corresponding vocal emotion with noise-vocoded speech.

Two kinds of modulation spectral feature were calculated by analyzing the modulation

spectrogram in the acoustic frequency domain and the modulation frequency domain.

In the acoustic frequency domain, the first feature was the modulation spectral centroid

(MSCRm), which can be defined as follows:

MSCRm =
ΣK

k=1kE(k,m)

ΣK
k=1E(k,m)

, (4.5)

where K is the number of acoustic frequency bands (4, 8 or 16). The MSCRm indicates

the center of the spectral balance across acoustic frequency bands (k).

The modulation spectral spread (MSSPm) was then calculated by:

MSSPm =
ΣK

k=1[k −MSCRm]
2E(k,m)

ΣK
k=1E(k,m)

. (4.6)

The MSSPm can represent the spread of the spectrum around its MSCRm as the 2nd

moment.

Two other higher order features, modulation spectral skewness (MSSKm) and kurtosis

(MSKTm), were also calculated. The MSSKm describes the degree of asymmetry of the

spectrum which was calculated from the 3rd order moment:

MSSKm =
ΣK

k=1[k −MSCRm]
3E(k,m)

ΣK
k=1E(k,m)

. (4.7)

The MSKTm gives a measure of the peakedness of the spectrum which was calculated

from the 4th order moment:

MSKTm =
ΣK

k=1[k −MSCRm]
4E(k,m)

ΣK
k=1E(k,m)

. (4.8)

On the modulation frequency domain, the first feature is the MSCRk which is the

barycenter of the modulation spectrum in each acoustic frequency band. Different from

the MSCRm which was calculated across the acoustic frequency bands (k), the MSCRk was

calculated across the modulation frequency bands (m). Then the other three higher order

features of the modulation spectrogram on the modulation frequency domain (MSSPk,

MSSKk, and MSKTk) were also calculated as following.

MSCRk =
ΣM

m=1mE(k,m)

ΣM
m=1E(k,m)

, (4.9)
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MSSPk =
ΣM

m=1[m−MSCRk]
2E(k,m)

ΣM
m=1E(k,m)

, (4.10)

MSSKk =
ΣM

m=1[m−MSCRk]
3E(k,m)

ΣM
m=1E(k,m)

, (4.11)

MSKTk =
ΣM

m=1[m−MSCRk]
4E(k,m)

ΣM
m=1E(k,m)

, (4.12)

where the M is the number of channels of the modulation filterbank which is 6.

The last feature on the acoustic frequency domain was modulation spectral flatness

(MSFTm), which was computed from the ratio of the geometric mean to the arithmetic

mean of the spectrum:

MSFTm =

K

√∏K
k=1 E

2(k,m)
1
K
ΣK

k=1E
2(k,m)

. (4.13)

The MSFTm is a measure of the noisiness of a spectrum.

The last modulation spectral feature on the modulation frequency domain was modu-

lation spectral tilt (MSTLk), which is the linear regression coefficient obtained by fitting

a first-degree polynomial to the modulation spectrum in dB scale.

4.3 Modulation spectral features related to the per-

ception of speaker individuality

In this section, at first, the relationship between modulation spectral features and percep-

tual speaker similarity is investigated to confirm whether the modulation spectral features

could be possible cues in the perception of speaker individuality. In the next step, the

correlation between modulation spectral features and the perceptual data obtained from

speaker distinction experiments using NVS is investigated to clarify that whether the

modulation spectral features contribute to the speaker distinction. In section 3.3, speaker

distinction experiments using NVS was carried out. However, the perceptual speaker

similarities of the speaker pairs are too close, so the perceptual data can not be used

to investigated the relationship with modulation spectral features. Therefore, another

speaker distinction experiment is carried out using the speaker pairs with different per-

ceptual speaker similarity.
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4.3.1 The relationship between modulation spectral features and

perceptual speaker similarity

Kitamura et al. measured the perceptual similarity of speaker individualities of 20 female

and 20 male Japanese speakers in ATR speech database set C [1]. Two same sentences

with different speakers were presented to NH listeners, and the listeners were asked to

select the similarity of these speaker spairs from 1 to 5. If the modulation spectral features

contribute to the perception of speaker individuality, there must be a high correlation

between the modulation spectral features and the perceptual speaker similarity. In this

section, the relationship between modulation spectral features and perceptual speaker

similarity is discussed. At first, the modulation spectral features of the speech data from 20

female and 20 male Japanese speakers used in [1] is calculated. Then, an discriminability

index called d’ (d-prime) to describe the separation of each modulation spectral feature

between different speaker pairs. Finally, the correlation between the d’ of modulation

spectral features and perceptual speaker similarity is calculated.

Speech data

The speech data from 20 female and 20 male Japanese speakers used by Kitamura [1] was

used in this study. The speaker numbers of all 40 speaker are F213, F214, F306, F308,

F406, F407, F409, F418, F507, F509, F605, F606, F609, F611, F614, F702, F704, F709,

F714, F720, M109, M113, M211, M214, M318, M409, M504, M508, M509, M510, M517,

M519, M520, M601, M603, M614, M705, M710, M714, M718. The table 3 and 4 in [1]

show the data of perceptual speaker similarity of the 20 male and 20 female speakers. 10

utterance spoken by each speaker was used to calculate the modulation spectral features.

The discriminability index (d’) of modulation spectral features

The modulation spectral features of the speech data was calculated by the method de-

scribed in section 4.2. Then, an discriminability index called d’ (d-prime) to describe

the separation of each modulation spectral feature between different speaker pairs. The

discriminability index is defined as the absolute value of the difference between the mean

values of the modulation spectral feature (taken across the 10 utterances) for two speakers,
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divided by the root of their average variance as follows.

d′ =
µspeaker1 + µspeaker2√
1
2
(σ2

speaker1 + σ2
speaker1)

(4.14)

where µ and σ2 are the mean value and variance of a modulation spectral feature taken

across the 10 utterances. The average value of discriminability indices (taken across all

the acoustic frequency or modulation frequency bands) was computed as a measure of

the net discriminability provided by this feature. The d’ can present the distance of such

modulation spectral feature between two different speakers. Higher value of d’ means

the modulation spectral feature’s distributions of two speakers are more separated. The

correlation coefficients between the average value of the d’ of modulation spectral features

and the perceptual speaker similarity were then calculation to clarify the relationship

between modulation spectral features and perceptual speaker similarity.

Results

Figure 4.3 shows the results of the correlation coefficients between the d’ of 16-band

modulation spectral features and the perceptual speaker similarity for female and male

speakers. The scatterplots of the d’ of MSFs and perceptual data of perceptual speaker

similarity are shown in Appendices B. For each modulation spectral feature, there was a

minus correlation between the d’ and perceptual speaker similarity. The results showed

that the distance of modulation spectral features of two speakers will be closer when

the two speakers are more similar. It is suggested that the modulation spectral features

should contribution to the perception of speaker individuality. The auditory system may

take advantage of modulation spectral features to distinguish different speakers.

Figure 4.4 shows the correlation coefficients between the d’ of MSFs. The correlation

between each MSF were all significant. The results showed that there were high correla-

tion between MSCRm, MSSKm, and MSFTm. There were also high correlation between

MSSPm, and MSKTm and the same trend was also appeared for the MSFs in modulation

frequency domain. However, the correlations between the MSFs in acoustic frequency

domain and modulation frequency domain were low.
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Figure 4.3: The correlation coefficients between the d’ of modulation spectral features

and the perceptual speaker similarity for female and male speaker pairs.
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Figure 4.4: The correlation coefficients between the d’ of modulation spectral features.
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Table 4.1: Speaker pairs selected from ATR database and their average similarity index

measured by Kitamura et al. [1]. Left and right halves show female and male speaker

pairs, respectively.

Speaker pair Similarity Speaker pair Similarity

F507 F609 1.45 M504 M601 1.61

F407 F702 1.97 M614 M710 1.83

F213 F214 2.42 M214 M519 2.36

F611 F614 2.93 M509 M603 2.68

F606 F704 3.32 M409 M705 3.38

4.3.2 Speaker distinction experiment using NVS

Speech data

In section 3.3, speaker distinction experiments using NVS were carried out. However,

the perceptual speaker similarities of the speaker pairs are too close, so the perceptual

data can not be used to investigated the relationship with modulation spectral features.

Therefore, another speaker distinction experiment is carried out using the speaker pairs

with different perceptual speaker similarity.

The speaker pairs used in this experiment were also selected based on the perceptual

similarity data measured be Kitamura et al. [1]. The 5 female and 5 male speaker pairs

used in this study and their perceptual similarities are shown in Table 4.1. All 20 speakers

are different and the speakers of each pair have the same gender. 12 sentences of each

speaker were used to generate the NVS stimuli.

Stimuli and procedure

NVS stimuli were used in this experiment. The number of channels of NVS stimuli was

8, or 16, and the upper limit of modulation frequency was only 64 Hz. Eight native

Japanese speakers with NH (two females and six males) participated in this experiment.

XAB method was also used in this experiment. The experimental environment was as

same as that in section 3.3
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Results

Figure 4.5 and 4.6 shows the results of speaker distinction rates of female and male speaker

pairs. For female speaker pairs, the speaker distinction rate decreased dramatically when

the speaker similarity was higher than 3. For male speaker pairs, when the speaker

similarities were lower than 3, the speaker distinction rates decreased with the increasing

of similarity. However, the speaker distinction rate was suddenly increased when the

speaker similarity was higher than 3.

A 3-way repeated measures ANOVA was then conducted on the results with the gender

of speaker pairs, speaker similarity, and the number of channels as the factors. The results

of ANOVA show that the main effect of the gender of speaker pairs was not significant

(F (1, 7) = 1.38, p = 0.28). The main effect of the number of channels (F (1, 7) = 8.58, p <

0.05) was significant. These results are different from the previous study [23]. The effect

of the number of channels in speaker distinction was shown to be different when the

speaker pairs and their similarity were different. Furthermore, the main effect of the

speaker similarity (F (4, 28) = 9.59, p < 0.01) was also significant. In the next section, the

modulation spectral features were calculated to account for the perceptual data obtained

in this experiment and the effect of speaker similarity.
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Figure 4.5: Results of speaker distinction rate for female speaker pairs.
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Figure 4.6: Results of speaker distinction rate for male speaker pairs.
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4.3.3 The correlation between the perceptual data and modu-

lation spectral features

To investigate the correlation between the perceptual data and modulation spectral fea-

tures, the d’ values of the perceptual data of the speaker distinction experiment were

calculated as the method in [82]. The d’ value was calculated as following:

d′ = ϕ−1(Hit)− ϕ−1(FalseAlarm), (4.15)

where ϕ−1 means the z score, Hit is the hit rate, and FalseAlarm is the false alarm

rate. Tabel 4.2 and 4.3 show the d’ values of the perceptual data for female and male

speakers. Figure 4.7 shows the results of the correlation coefficients between the d’ of

modulation spectral features and the perceptual data for all speakers. The scatterplots

of the d’ of MSFs and the perceptual data for all speakers are shown in Appendices

C. For all modulation spectral features the correlation coefficients are positive. As the

correlations are all positive, the results showed that the psychological distance of each

speaker pair increases as the distance of modulation spectral features increases. Therefore,

it is suggested that the modulation spectral features should contribute to the perception

of speaker individuality.

Table 4.2: The d ’values of perceptual data for female speakers.

F507&F609 F407&F702 F213&F214 F611&F614 F606&F704

8-band 1.825 2.195 1.272 2.926 0.063

16-band 2.187 2.795 2.590 2.563 0.818

Table 4.3: The d ’values of perceptual data for male speakers.

M504&M601 M614&M710 M214&M519 M509&M603 M409&M705

8-band 2.879 2.187 1.199 0.252 1.209

16-band 2.879 2.318 1.353 1.095 1.906
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Figure 4.7: The correlation coefficients between the d’ of modulation spectral features

and the perceptual data for all speakers.
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4.4 Modulation spectral features related to the per-

ception of vocal emotion

4.4.1 The perceptual data of vocal-emotion recognition experi-

ment

To discuss the relationship between modulation spectral features and the perception of

vocal-emotion, the perceptual data collected in the vocal-emotion recognition experiments

(section 3.4) were used. In this section, only the perceptual data on the condition that

the upper limit of modulation frequency was 64 Hz were used. Figure 4.8 and table 4.4

show the perceptual used in this section and the d’ values of the perceptual data. The

d’ values of the perceptual data were calculated based on the confusion matrices in Table

A.9, A.18, and A.27. The average recognition rate decreased when the number of bands

decreased, and the results of joy were mostly effected by the number of bands. In addition,

the average recognition rates of sadness and hot anger were higher than the other three

emotions.

Table 4.4: The d’values of the perceptual data on the condition that the upper limit of

modulation frequency was 64 Hz.

Neutral Joy Cold Anger Sadness Hot Anger

4-band 1.314 1.266 0.908 2.737 1.904

8-band 1.438 1.863 1.090 2.905 2.356

16-band 2.366 3.457 1.968 3.349 2.996
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Figure 4.8: The results of vocal-emotion recognition experiment on the condition that the

upper limit of modulation frequency was 64 Hz.
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4.4.2 The modulation spectrogram of vocal-emotion speech

Before the discussion of modulation spectral features, in this section, the modulation

spectrogram of emotional speech is discussed firstly. The modulation spectrogram of the

emotional speech data used in section 3.4 was calculated. Figure 4.9-4.13 show the exam-

ples of the time-average modulation spectrogram of the speech with 5 different emotions in

the Fujitsu database. The results show that different emotion has different characteristic

on the time-averaged modulation spectrum, suggesting they could be well discriminated

from each other. Compared to Neutral, Sadness has significantly more low acoustic fre-

quency energy as Sadness should be a less expressive emotion. To the contrary, Hot Anger

and Joy both have more high acoustic frequency energy. However in the higher acoustic

frequency bands beyond about 25, Joy has less energy than Hot-Anger. For Cold-Anger,

the distribution of modulation spectrum in acoustic frequency is significantly low. In the

next step, the modulation spectral features of emotional speech is extracted to discuss

whether these features can be used to account for the perceptual data obtained from the

vocal-emotion recognition experiments in figure 4.8.
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Figure 4.9: The time averaged modulation spectrogram of a neutral speech data with

16-bands.
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Figure 4.10: The time averaged modulation spectrogram of a joy speech data with 16-

bands.
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Figure 4.11: The time averaged modulation spectrogram of a cold anger speech data with

16-bands.
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Figure 4.12: The time averaged modulation spectrogram of a sadness speech data with

16-bands.
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Figure 4.13: The time averaged modulation spectrogram of a hot anger speech data with

16-bands.
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4.4.3 The correlation between the perceptual data and modu-

lation spectral features

In this section the modulation spectral features of emotional speech data were calcu-

lated by the method described in section 4.2 to investigate those that may account for

the perceptual data of human perception. The results of the vocal-emotion recognition

experiment showed that participants achieved better performance with sadness and hot

anger stimuli and there was a significant effect of the type of emotion on emotion recog-

nition. It is necessary to discuss the modulation spectral features depend on different

emotions. The averaged d’ of modulation spectral features of different emotional speech

were calculated.

Figure 4.14 shows the correlation coefficients between the d’ of modulation spectral

features and the perceptual data (table 4.4). The scatterplots of the d’ of MSFs and per-

ceptual data of vocal-emotion recognition experiments are shown in Appendices D. Except

MSFTm in the condition of 4-band and 8-band, the correlation of all other modulation

spectral features are positive. In the condition of 4-band, the correlation coefficients of

MSSPm, MSKTm, MSCRk, and MSTLk are close to 1. The modulation spectral features

on the modulation frequency domain are higher than that on the acoustic frequency do-

main roughly. Moreover, the correlation increased with the decreasing of the number of

channels. These results suggest that these modulation spectral features may be important

cues for vocal emotion recognition with NVS. The contribution of modulation spectral

features may increase with the decreasing of the number of channels of NVS.

Moreover, figure 4.15, 4.16, and 4.17 show the the correlation coefficients between the

d’ of modulation spectral features of emotional speech. The results showed that there

were high correlation between MSCRm, MSSKm, and MSFTm. Different from the results

in figure 4.4, there were also high correlation between MSSPm, MSKTm and the MSFs in

modulation frequency domain. The correlation of all the MSFs in modulation frequency

domain were high.
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Figure 4.14: The correlation coefficients between modulation spectral features and the

perceptual data of vocal-emotion recognition experiments.
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Figure 4.15: The correlation coefficients between the d’ of 4-band modulation spectral

features of emotional speech.
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Figure 4.16: The correlation coefficients between the d’ of 8-band modulation spectral

features of emotional speech.
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Figure 4.17: The correlation coefficients between the d’ of 16-band modulation spectral

features of emotional speech.
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4.4.4 Discussion

Modulation spectral features on acoustic frequency domain

Both MSSPm and MSKTm had high correlation with the perceptual data. The MSSPm

can represent the spread of the spectrum around its MSCRm as the 2nd moment. The

MSKTm gives a measure of the peakedness of the spectrum which was calculated from

the 4th order moment. Therefore, there was also a high correlation between MSSPm and

MSKTm.

From the scatter of MSSPm for 4-band NVS (figure D.2), sadness stimuli had the

highest d’ value of both perceptual data and MSSPm. Table A.9 shows the confusion

matrix for 4-band and 64 Hz stimuli. The results showed that sadness had the highest

hit rate and the false alarm rate is very low. Therefore the d’ value of perceptual data

of sadness stimuli was highest. From the figures of modulation spectrogram (figure 4.9

- 4.13), it is shown that the modulation spectrogram of sadness stimuli was so different

from the other emotions. On the acoustic frequency domain, the power of sadness stimuli

concentrated on the low frequency bands. The spread and peakedness of sadness stimuli

were lower that other emotions.

Hot anger stimuli had the second highest d’ value of both perceptual data and modu-

lation spectral features. From the confusion matrix, hot anger stimuli also had the second

highest hit rate. For the false alarm rates, 35 % of joy stimuli were recognized as hot

anger. The modulation spectrogram of hot anger and joy were also similar, except that

hot anger had more high frequency components.

Then neutral, joy, and cold anger stimuli had lower d’ values. For modulation spectro-

gram these three emotions were more similar to each other than sadness and hot anger.

For the perceptual data, the neutral stimuli had high hit rate, however the false alarm

rate was also high. Joy stimuli had low false alarm rate, however the hit rate was also low.

The hit rate and false alarm rate of cold anger stimuli were in the middle of neutral and

joy stimuli. Such facts resulted the low d’ values of neutral, joy and cold anger stimuli.

Modulation spectral features on modulation frequency domain

For the modulation spectral features on modulation frequency domain, all features had

high correlation with the perceptual data. For neutral, joy, and cold anger, the distribution
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of modulation spectrogram on modulation frequency domain were still very similar. The

modulation spectrogram of sadness stimuli showed that the modulation components on

high modulation frequency bands (8 - 64 Hz) were much lower than the other emotions.

The reason should be that the speaker speaking sadness speech data very slow. Therefore

the temporal envelope of sadness should be more smooth that the other emotions. Such

facts resulted the highest d’ values of sadness stimuli of the modulation spectral features

on modulation frequency domain.

To the contrary, hot anger stimuli had much more high modulation frequency compo-

nents. It should be related to that the speaker speaking hot anger speech data very fast.

The speech rate was not the only reason, because the speech rate of joy stimuli was also

high. However, comparing with hot anger, the high modulation frequency components of

joy stimuli were lower. Another reason should be that the hot anger speech was spoken

more roughly and the high modulation frequency components were related to the rough-

ness of speech. Therefore, for the perception of hot anger speech, the high modulation

frequency components were shown to be an important factor.

4.5 General discussion

For the results of speaker individuality (figure 4.5 and 4.6), the values of correlation

coefficient were different with different conditions. The d’values of modulation spectral

features decreased with the increasing of perceptual speaker similarity of speaker pairs.

However, the perceptual data showed that the speaker distinction rates did not decreased

with the increasing of speaker similarity monotonically. A possibility reason may be that

the relationship between the modulation spectral feature and perceptual data is not linear.

Moreover, the number of speaker pairs may not be large enough. Kitamura et al. measured

the perceptual similarity of total 380 speaker pairs [1]. speaker distinction experiments

with more speaker pairs are necessary to obtain more general role of the modulation

spectral features in the perception of speaker individuality. The results showed that there

are positive correlations between the modulation spectral features and perceptual data.

These results have shown the potential possibility of modulation spectral features for

speaker individuality analysis.

For the results of vocal-emotion (figure 4.14), the correlations between the modulation
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spectral features and perceptual data were higher than that of speaker distinction exper-

iment (figure 4.5 and 4.6). The results suggested the potential of modulation spectral

features for vocal emotion analysis. The effect of modifying modulation spectral features

on vocal emotion recognition is needed to be investigated to clarify whether these features

can contribute to the perception of vocal emotion. Moreover, the variation in modulation

spectral features in the time domain should be discussed in detail. Since human percep-

tion of speaker individuality and vocal-emotion may not depend on just one single feature,

the interaction of modulation spectral features should also be further discussed.

4.6 Summary

In this chapter, the relationship between the modulation spectral features and perceptual

data was investigated to clarify the contribution of modulation spectral features on the

perception of speaker individuality and vocal-emotion. Ten types of modulation spectral

feature were extracted from the modulation spectrogram of speech data. The correlation

between the modulation spectral features and the perceptual data obtained from speaker

or vocal-emotion recognition experiments was calculated.

For speaker individuality, there were positive correlations between the modulation

spectral features and the perceptual data of speaker distinction experiment. Similarity

results were also obtained from the results of vocal emotion, however, the correlations were

roughly higher than that of speaker distinction experiments. The results showed that the

modulation spectral features were useful to account for the perceptual data of speaker

and vocal-emotion recognition experiments. It was suggested that modulation spectral

features could be important cues contribute to the perception of speaker individuality and

vocal-emotion with NVS.
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Chapter 5

Discussion of the application of

temporal modulation information

So far, it is confirmed that the temporal envelope of speech contributes to the perception

of nonlinguistic information. Moreover, modulation spectral features are suggested to be

important cues contribute to the perception of nonlinguistic information. The temporal

modulation information has been proved to play an important role in the perception

of not only linguistic but also nonlinguistic information. In this chapter, two kinds of

applications of the temporal modulation information are discussed.

At first, the feasibility of using NVS to simulate CI listeners’ response in vocal emotion

recognition is discussed. In section 4.4, the high correlation of the modulation spectral

features and the perceptual data obtained from the vocal-emotion recognition experiments

using NVS with NH listeners showed that the modulation spectral features could be

used to account for the perceptual data of vocal-emotion perception. NVS is known

as a CI simulation to simulate the poor spectral cue provided by CI device. The fact

that modulation spectral features are useful to account for the perceptual data of vocal-

emotion recognition experiments using NVS with NH listeners shows that the modulation

spectral features could also be used to account for the perceptual data from CI listeners.

A vocal-emotion recognition experiment was carried out to confirm this concept.

Then the effect of the modification of modulation spectrogram on the vocal emotion

recognition with noise-vocoded speech is discussed. A method based on a linear prediction

scheme is proposed to modify the modulation spectrogram and its features of neutral
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speech to match that of emotional speech. The logic of this approach is that if vocal

emotion perception of CI simulation is based on the modulation spectral features, NVS

with similar modulation spectral features of emotional speech will be recognized as the

same emotion.

5.1 Feasibility of using noise-vocoded speech to simu-

late cochlear implant listeners’ response in vocal

emotion recognition

5.1.1 Intoduction

It has been known that CI listeners’ performances of vocal-emotion are poorer than

normal-hearing (NH) listeners, as the poor spectral cues provided by CI device [23, 24,

27,28]. Luo et al. showed that vocal-emotion recognition of NH listeners using NVS was

significantly improved as the cut-off frequency of modulation low-pass filter was increased

from 50 to 500 Hz [28]. The modulation frequency bands between 50 and 500 Hz mainly

included the periodic information related to F0 [21]. However, the contribution of the

temporal cue defined as the modulation frequency band below 50 Hz is still unknown. By

comparing the performances of vocal-emotion recognition by CI listeners and HN listeners

using NVS, Chatterjee et al. [27] found that the mean performance of CI listeners was

similar to that of NH listeners with 8-band NVS. Chatterjee et al. then analyzed the F0,

intensity, and duration of stimuli. However, it was found that, the acoustic analyses could

not account for all of the perceptual data of the vocal-emotion recognition experiment

with NVS.

In section 4.4, the high correlation of the modulation spectral features and the percep-

tual data obtained from the vocal-emotion recognition experiments using NVS with NH

listeners showed that the modulation spectral features could be used to account for the

perceptual data of vocal-emotion perception. The fact that modulation spectral features

are useful to account for the perceptual data of vocal-emotion recognition experiments

using NVS with NH listeners shows that the modulation spectral features could also be

used to account for the perceptual data from CI listeners.
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In this section, vocal-emotion recognition experiments using NVS with NH and CI

listeners were carried to confirm that whether NVS can be used to simulate CI listeners’

response in vocal emotion recognition. The feasibility of using modulation spectral fea-

tures to account for the perceptual data from CI listeners is also discussed by comparing

the results of NH and CI listeners.

5.1.2 Method

Stimuli

The same Fujitsu Japanese Emotional Speech Database used in section 3.4 was used

in these experiments. This database includes five emotions (neutral, joy, cold anger,

sadness, and hot anger) expressed by one professional actress. The same sentence was

spoken with five emotions and ten utterances of each emotion were selected. The linguistic

contents of each sentence were semantically emotion-neutral to minimize any biasing effect

of context. The duration of each utterance was about 3 or 4 s. The sampling frequency

and quantization bits were 22.05 kHz. and 16 bits.

The original emotional speech and the NVS generated from the emotional speech were

used as stimuli. The method to generate NVS stimuli is described in section 3.2. However,

the conditions of NVS are only 8- and 16-band with 64 Hz upper limit of modulation

frequency.

Participants

3 CI listeners participated in this experiment. Tabel 5.1 shows the detailed information

about the CI listeners. The averaged age of CI listeners was 18. Previous study showed

that a strong developmental effect was observed in the NH listeners with NVS in vocal-

emotion recognition [27]. For this reason, 9 NH high school students (5 males and 4

females) participated in this experiment. The averaged age of NH listeners was about 17.

Procedure

There were 2 NVS conditions with 2 different numbers of channels (8, and 16) and the up-

per limits of modulation frequency was 64 Hz. The original speech was also presented. All

stimuli were randomly presented to the participants during the experiment. Participants
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Table 5.1: Detailed information about the CI listeners, Mean ATH is the mean absolute

threshold of hearing of the ear using CI.

ID Age Gender Manufacturer/device Mean ATH [dB]

CI01 17 Female Cochlear Ltd./Nucleus 6 40

CI02 16 Male Cochlear Ltd./Nucleus 6 30

CI03 21 Male Cochlear Ltd./Nucleus Freedom 40

were asked to indicate which of the five emotions (neutral, joy, cold anger, sadness, and

hot anger) he/she thought was associated with the stimulus. Each stimulus was presented

only once.

For NH listeners, the experimental environment was as same as that in section 3.3

For CI listeners, the experiment was also conducted while the participants were in a

sound-proof room. The sound pressure level of background noise was lower than 25.8

dB. The stimuli were simultaneously presented to a participant through a PC, audio

interface (RME, Fireface UCX), a power amplifier (YAMAHA, A-U671), and two speakers

(YAMAHA, NS-pf7). The sound pressure levels were calibrated to be the same for all

participants by using a head and torso simulator (B&K, type 4128) and sound level meter

(B&K type 2231).

5.1.3 Results

Figure 5.1 shows the results of vocal-emotion recognition experiment for NH listeners. For

original emotional speech, the recognition rates are all 100 %. Therefore, it is confirmed

that NH participants can perceive the vocal emotion information from the original emo-

tional speech successfully. For NVS, similar to the results in 4.4, NH listeners performed

better on the Sadness and Hot Anger NVS than the other emotions. The results of Joy

NVS were also mostly affected by the number of channels.

Figure 5.2 shows the results of vocal-emotion recognition experiment for CI listeners.

The results showed that CI listeners could not recognize the emotion of even original

emotional speech successfully. The results for CI listeners revealed that they recognized

sadness and hot anger more easily than joy and cold anger in both original emotional

speech and NVS conditions.
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Figure 5.1: The results of vocal-emotion recognition experiment for NH listeners.
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Figure 5.2: The results of vocal-emotion recognition experiment for CI listeners.
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Table 5.2: Mean confusion matrix with 8-band NVS stimuli for CI listeners.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.47 0.07 0.33 0.10 0.03

Joy 0.27 0.23 0.27 0.03 0.20

Cold Anger 0.53 0.03 0.30 0.13 0

Sadness 0.07 0.03 0.03 0.87 0

Hot Anger 0.03 0.07 0.33 0 0.57

Table 5.3: Mean confusion matrix with 16-band NVS stimuli for CI listeners.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.37 0.17 0.33 0.10 0.03

Joy 0.17 0.30 0.33 0.07 0.13

Cold Anger 0.50 0.03 0.23 0.23 0

Sadness 0.17 0 0.10 0.73 0

Hot Anger 0 0.17 0.30 0.03 0.50

Table 5.4: Mean confusion matrix with original emotional speech for CI listeners.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.63 0.03 0.27 0.07 0

Joy 0.20 0.47 0.13 0.10 0.10

Cold Anger 0.67 0 0.23 0.10 0

Sadness 0.10 0.07 0.23 0.60 0

Hot Anger 0.07 0.03 0.07 0 0.83
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Table 5.5: Mean confusion matrix with 8-band NVS stimuli for NH listeners.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.40 0.18 0.20 0.02 0.20

Joy 0.04 0.31 0.13 0.07 0.44

Cold Anger 0.27 0.04 0.42 0.20 0.07

Sadness 0 0.04 0.04 0.87 0.04

Hot Anger 0.02 0.07 0.02 0.02 0.87

Table 5.6: Mean confusion matrix with 16-band NVS stimuli for NH listeners.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.47 0.13 0.16 0.13 0.11

Joy 0.04 0.69 0.04 0.07 0.16

Cold Anger 0.22 0.02 0.58 0.13 0.04

Sadness 0 0 0.02 0.93 0.04

Hot Anger 0.04 0 0.11 0 0.84

5.1.4 Discussion

Table 5.2 - 5.6 show the confusion matrices in each condition. There was a common trend

that the Cold Anger stimuli were recognized as Neutral speech. For NH listeners, Joy

stimuli were recognized as Hot Anger speech. However, for CI listeners, the selection for

Joy stimuli was more random.

Figure 5.3 shows the results of the average vocal-emotion recognition rate for each CI

listeners. By comparing the results with the Mean ATH of each CI listeners, it is suggested

the CI listener with lower ATH will performs better at vocal emotion recognition.

The purpose of these experiments is to discuss whether NVS can be used to simulate

CI listeners’ response in vocal emotion recognition. Figure 5.4 shows the averaged vocal-

emotion recognition rates of NH and CI listeners. At first, there was no remarkable

difference of the results of CI listeners with different conditions. It is suggested that

results of 8-band NVS with NH listeners can simulate the response of CI listeners better.

Moreover, in the condition of both 8-band NVS with NH listeners and original speech

with CI listeners, there was a similar trend that the participants performed better on Sad-
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ness and Hot Anger than the other emotions. This trend was also appeared in the results

in section 4.4 which was the point to elucidate that the modulation spectral features can

be used to account for the perceptual data obtained from the vocal-emotion recognition

experiments with NVS. Therefore, the results showed that the modulation spectral fea-

tures can also be used to account the performance of CI listeners in the vocal-emotion

recognition. The modulation spectral features may also play an important role in the

perception of vocal-emotion by CI listeners.

5.1.5 Summary

In this section, vocal-emotion recognition experiments with NH and CI listeners were

carried out to clarify whether CI listeners can perceive vocal emotion the same way as

NH listener with NVS do. The results for CI listeners revealed that they recognized

sadness and hot anger more easily than joy and cold anger in both original emotional

speech and NVS conditions. Moreover, the results for NH listeners with NVS showed the

same trend. The results suggested that the vocal-emotion recognition paradigm using

NVS can be used to investigate vocal emotion recognition by CI listeners. Therefore, the

modulation spectral features can also be used to account the performance of CI listeners

in the vocal-emotion recognition.

93



CI01 CI02 CI03
0

10

20

30

40

50

60

70

80

90

100

M
ea

n
 V

o
ca

l-
em

o
ti

o
n

 r
ec

o
g

n
it

io
n

 r
at

e 
[%

]

Figure 5.3: The average vocal-emotion recognition rate for each CI listener.
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5.2 Effect of the modification of modulation spec-

trogram on the vocal-emotion recognition with

noise-vocoded speech

5.2.1 Introduction

The relationship between the modulation spectral features of the temporal envelope and

human perception of vocal-emotion with NVS is discussed in section 4.4. The results

showed that sadness and hot anger are more easily recognized than joy and cold anger with

simulated CIs. Similar trends were also shown from experiments with CI listeners. High

correlations between modulation spectral features and the perception of vocal emotion

based on the NVS scheme were found. These results suggested that the modulation

spectrogram of speech should be an important cue for voice emotion recognition with

simulated CIs.

This section aims to study the feasibility of vocal emotion conversion on a modulation

spectrogram for simulated CIs. Luo and Fu successfully enhanced the tone recognition

on the NVS scheme by manipulating the amplitude envelope to more closely resemble the

F0 contour [83]. Their results showed the possibility of enhancing the recognition of non-

linguistic information by modifying the temporal envelope. It is also found that the sound

texture can be converted successfully by modifying the modulation spectrogram [84].

In this section, a method based on a linear prediction (LP) scheme is proposed to

modify the modulation spectrogram and its features of neutral speech to match that of

emotional speech. The logic of this approach is that if vocal emotion perception of CI

simulation is based on the modulation spectral features, NVS with similar modulation

spectral features of emotional speech will be recognized as the same emotion.

In the process, the neutral speech is first divided into several bands using an auditory

filterbank, and the temporal envelope of each band is extracted. Then, the temporal en-

velopes are modulation-filtered by using infinite impulse response (IIR) filters to modify

the modulation spectrum from neutral to emotional speech. The IIR filters are derived

from the relation of modulation characteristics of neutral and vocal emotions on a lin-

ear prediction scheme. On the acoustic frequency domain, the average amplitude of the
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temporal envelope is corrected using the ratio of the average amplitude between neutral

and emotional speech. Finally, a vocal-emotion recognition experiment using NVS gen-

erated by the converted temporal envelope is carried out. The method for enhancing the

vocal-emotion information of the modulation spectrogram is also discussed further.

5.2.2 Vocal-emotion conversion on modulation spectrogram

In this section, the method of vocal emotion conversion on the modulation spectrogram

as shown in Fig. 5.5 is described.

All emotional speech signals used in this study were selected from the Fujitsu Japanese

Emotional Speech Database [9]. This database included five emotions (neutral, joy, cold

anger, sadness, and hot anger) spoken by one female speaker. As the definition of cold

anger is too ambiguous and not easily recognized, only neutral (NE), joy (JO), sadness

(SA) and hot anger (HA) speech were used in this study.

Auditory-inspired band-pass filterbank and temporal envelope extraction

The performance of vocal emotion recognition by CI listeners was found to be similar to

that of NH listeners with 8-band NVS [27]. Therefore, in this study, the speech signal

was divided into 8 bands by an auditory-inspired band-pass filterbank as follows:

s(k, n) = hBPF(k, n) ∗ s(n) (5.1)

where hBPF(k, n) is the impulse response of the band-pass filter in the kth band, “∗”

denotes the convolution operation, and n is the sample number in the time domain.

The auditory filterbank was constructed by using 3rd-cascaded 2nd-order Butterworth

IIR filters. The bandwidth of the filter was designed as ERBN (equivalent rectangular

bandwidth), and all filters were placed on the ERBN-number scale [44]. ERBN-number is

defined by the following equation,

ERBN − number = 21.4log10

(
4.37f

1000
+ 1

)
(5.2)

where f is the acoustic frequency in Hz. This scale is comparable to a scale of distance

along the basilar membrane so that the frequency resolution of the auditory system can

be faithfully replicated by dividing the frequency bands according to ERBN-number. In
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this study, the boundary frequencies of band-pass filters are spaced from 3 to 35 ERBN-

numbers with 4 ERBN as the bandwidth of the acoustic frequency region (8-bands).

Then, the temporal envelope of each band-limited signal was calculated by using the

Hilbert transform and a low-pass filter.

e(k, n) = |s(k, n) + jH[s(k, n)]| ∗ hLPF(n) (5.3)

where H denotes the Hilbert transform and hLPF(n) is the impulse response of the low-

pass filter. The low-pass filter was constructed by using a 2nd-order Butterworth IIR

filter. The cut-off frequency of the low-pass filter was 64 Hz.
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5.2.3 Vocal emotion conversion based on LP scheme

At first the temporal envelopes of the input signal were modulation-filtered by using IIR

filters to modify the modulation spectrum from neutral to emotional speech. The transfer

function of this IIR filter is represented as follows:

HLP(z) =

∑p
i=0 bNE,iz

−i∑p
i=0 aEM,iz−i

(5.4)

where bNE,i and aEM,i are the linear prediction (LP) filter coefficients calculated from the

envelope of neutral (NE) and target emotional (EM) speech and p is the order of filter.

These LP coefficients are calculated by minimizing the linear prediction error in the least

squares sense. The IIR filters were derived from the relation of modulation characteristics

of neutral and vocal emotions on a LP scheme. From the preliminary experiments, the

best performance of conversion was found when the order of LP filter p was 20. We found

that the linguistic information will be destroyed when the order of the LP filter is higher

than 20. But if the order is lower, the conversion of the modulation spectrum will not be

enough. This process can also modify the modulation spectral kurtosis close to the target

emotion. The process of LP filtering can be represented as follows:

êLP(k, n) = eNE(k, n) ∗ hLP(k, n) (5.5)

where, eNE(k, n) is the envelope of neutral speech, and hLP(k, n) is the impulse response

of the LP filter.

In the next step, we used a modulation transform function (MTF) filter (1st-order IIR

filter) to modify the modulation spectral tilt of neutral speech close to the target emotion

as follows:

êMTF(k, n) = êLP(k, n) ∗ hMTF(k, n) (5.6)

where hMTF(k, n) is the impulse response of the 1st-order MTF filter. The frequency

characteristics of this MTF filter are the best fits (in a least-squares sense) for the modu-

lation spectrum of the target emotion. Then, the amplitude of the temporal envelope was

corrected using the ratio of the average amplitude between emotional and neutral speech.

ê(k, n) = êMTF(k, n)
ēNE(k)

ēEM(k)
(5.7)

where ēNE(k) and ēEM(k) are the average amplitude of the envelope of neutral speech and

the target emotional speech in the kth band. This process can modify the modulation
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spectrogram on the acoustic frequency domain to shift the spectral centroid close to the

target emotion.

Finally, a temporal stretching of the temporal envelopes based on the duration ratio

of neutral to the target emotion was used to modify the duration. The amplitude of

the converted temporal envelope in the interval in which the amplitude of the neutral

speech is 40 dB smaller than the maximum was set to 0. This process aims to reduce the

redundant components of the converted temporal envelope generated by the LP based

conversion filtering. These redundant components will sound like reverberation of speech

and destroy the linguistic information.

Figure 5.6 shows an example of the modulation spectrum of the converted temporal

envelope. The target emotion is hot anger and the modulation spectrum in the 3rd

channel is shown. The modulation spectrum is the amplitude spectrum of the temporal

envelope calculated by the Fourier transform. The results show that the modulation

spectrum of the converted temporal envelope (blue line) is very close to that of the target

emotion (red line) from neutral speech (green line). Figure 5.7-5.9 show the modulation

spectrograms of neutral, emotional speech, and converted speech. As a result, the shape

of the modulation spectrogram of converted speech is similar to that of hot anger speech.

That means the modulation spectrogram of neutral speech was successfully converted to

that of emotional speech.
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Figure 5.7: Modulation spectrograms of (a) neutral, (b) joy, and (c) neutral-joy converted

speech.
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Figure 5.8: Modulation spectrograms of (a) neutral, (b) sadness, and (c) neutral-sadness

converted speech.
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Figure 5.9: Modulation spectrograms of (a) neutral, (b) hot anger, and (c) neutral-hot

anger converted speech.

105



5.2.4 Evaluation experiment

An experiment of vocal emotion recognition was carried out to confirm whether the vocal

emotion of NVS can be converted successfully by using the proposed method.

Stimuli

To generate a stimulus in the 8–band NVS scheme, the envelope of each band was used

to amplitude modulated with band-limited noise limited in the same band. Then, all am-

plitude modulated band-limited noises were summed to generate a stimulus. To confirm

the effect of modifying the modulation spectrum with LP filtering, a condition with only

amplitude correction and no modification of modulation spectrum by LP filtering was

added. For joy, sadness, and hot anger, 10 sentences of vocal emotion conversion with the

LP filter and vocal emotion conversion with only amplitude correction were generated.

There were also 10 sentences of neutral NVS for the balance of stimuli.

Procedure

Four male native Japanese speakers participated in this experiment. All participants have

normal hearing (hearing levels of the participants were below 12 dB in the frequency range

from 125 to 8000 Hz). All participants were not familiar with NVS stimuli.

In this experiment, the NVS stimuli were presented to both ears of a participant

through a PC, audio interface (RME, Fireface UCX), and a headphone (SENNHEISER

HDA 200) in a sound-proof room. The sound pressure level of background noise was lower

than 25.8 dB. The sound pressure level was calibrated to a comfortable level (about 65

dB) by using a head and torso simulator (B&K, type 4128) and sound level meter (B&K

type 2231). All NVS stimuli were randomly presented to the participants. Participants

were asked to indicate from all four kinds of emotions which emotion he/she thought was

associated with the stimulus. Each stimulus was presented only once.

Results

Figure 5.10 shows the vocal emotion recognition rates of the experiment. The vocal

emotion recognition rate was very low for joy. However, joy was found to be more difficult

to recognize than the other emotions, even with the original joy NVS. The method of
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Figure 5.10: Results of vocal-emotion recognition experiment.

further enhancing the modulation spectral features to increase the recognition rate of joy

is discussed in the next section. For sadness and hot anger, the results of vocal emotion

conversion with the LP filter were higher than those without the LP filter. The results

show that the process of LP filtering for modifying the modulation spectrogram is effective

for the vocal emotion conversion of sadness and hot anger. Furthermore, the modulation

spectrogram is confirmed to be an important cue for the perception of vocal emotion with

simulated CIs. However, the results of repeatedly measured analyses of variance showed

that there was no significant difference between the process method with and without the

LP filter (F (1, 3) = 4.84).
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Discussion

McDermott et al. successfully converted the texture of sound by modifying the modu-

lation spectrogram [84]. The method they used began with processing stages from the

auditory periphery (auditory filterbank, envelope extraction, and modulation filterbank)

to calculate the modulation spectrogram and culminated with the measurement of simple

statistics of these stages. It was found that the synthetic textures will sound like an-

other example of the corresponding real-world texture if the statistics of the modulation

spectrogram used for synthesis are similar to those of the real-world texture. Their re-

sults suggested the importance of the modulation spectrogram in the timbre perception

by humans and the possibility of converting sound signals by modifying the modulation

spectrogram.

As a result of the evaluation experiment, modifying the modulation spectrogram using

the LP filter was shown to be useful for the vocal emotion conversion of sadness and hot

anger on the condition of simulated CIs. The results showed that the proposed method

is not successful for joy on the NVS scheme. However, it should be mentioned that even

the original joy NVS is difficult to be recognized. As the authors considered, by using the

LP filtering and amplitude correction processes, the timbre of converted NVS is similar

to the original emotional speech on the NVS scheme. However, this proposed method

only focuses on the time averaged modulation spectrogram. The dynamic components of

emotional speech such as accents are very important for the perception of vocal emotion.

Therefore, a time varying modulation filtering process is considerably necessary as the

next step in our future work.

5.2.5 Summary

In this section, a method based on a LP scheme was proposed to modify the modulation

spectrogram and its features of neutral speech to that of emotional speech. The results

showed that the modulation spectrogram of neutral speech can be successfully converted

to that of emotional speech by the proposed method. Then a vocal-emotion recognition

experiment using NVS generated by the converted temporal envelope was carried out. The

results of the evaluation experiment confirmed the feasibility of vocal emotion conversion

on the modulation spectrogram for simulated CIs.
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Chapter 6

Conclusion

6.1 Summary

The purpose of this research is to clarify the contribution of temporal modulation cues to

the perception of speaker individuality and vocal emotion. First of all, to confirm whether

temporal modulation cues actually contribute to the perception of speaker individuality

and vocal emotion, the role of temporal envelope and modulation frequency information

in speaker and vocal emotion recognition was investigated. Speaker and vocal emotion

recognition experiments using NVS were carried out to investigated the effects of differ-

ent temporal and spectral resolutions of NVS on the perception of speaker individuality

and vocal emotion. NVS is generated by dividing the speech signal into several band

and replacing the carriers of each band with band-limited noise. The number of channels

determines the spectral resolution of NVS: higher spectral resolution will be obtained

with more channels. The upper limit of modulation frequency relates to the temporal

resolution that higher temporal resolution will be provided with higher upper limit of

modulation frequency. In the experiment, speaker distinction and vocal emotion recogni-

tion were conducted by NH listeners under different upper limit of modulation frequency

(0, 0.5, 1, 2, 4, 8, 16, 32, and 64 Hz) of NVS. The role of temporal cues in the different

spectral resolutions condition was also investigated by varying the number of channels

(4, 8, and 16). The spectral and temporal modulation cues are reduced further when the

number of channels and upper limit of modulation frequency decrease, respectively. If the

temporal modulation cues contribute to the perception of nonlinguistic information, the
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performance of speaker or vocal-emotion recognition will be poorer with lower temporal

resolution of NVS. Therefore, this experimental paradigm can also clarify the important

modulation frequency bands for speaker and vocal-emotion recognition.

For spectral cue, the speaker distinction performance was not sensitive to the spectral

resolution, at least in the limited set of stimuli in the present study. For vocal-emotion

recognition, the spectral resolution was important for the recognition of only neutral, joy,

and cold anger NVS, but not sadness or hot anger NVS.

For temporal modulation cues, the results showed that the recognition rates were

significantly decreased with lower upper limit of modulation frequency for both speaker

and vocal emotion. On the other word, it was more difficult to recognize the speaker or

vocal emotion from NVS if the temporal modulation cues provided by NVS were reduced.

Therefore, it was confirmed that the temporal modulation cues contribute to speaker

and vocal-emotion recognition. Compared to the perception of linguistic information, the

temporal modulation cues provided by higher modulation frequency bands are suggested

to be important for the perception of speaker individuality and vocal emotion.

At the next step, the relationship between the modulation spectral features and the

perceptual data obtained from speaker and vocal-emotion recognition experiments was

analyzed to clarify the exactly contribution of temporal modulation cues on the per-

ception of speaker individuality and vocal-emotion. Modulation spectral features were

extracted from the modulation spectrogram of speech data. The modulation spectrogram

was calculated by the process of auditory filterbank, temporal envelope extraction and

modulation filterbank. The modulation spectral centroid, spread, skewness, kurtosis, tilt

and flatness were then extracted from the modulation spectrogram as modulation spectral

features. In order to investigate the relationship between modulation spectral features and

the perceptual data of speaker and vocal-emotion experiments, an discriminability index

d’ was used. The d’ of each modulation spectral feature present the physical distance

of the distributions of modulation spectral feature with different speakers or vocal emo-

tions. On the other hand, the d’ of the perceptual data present the psychological distance

of different speakers or vocal emotions. The correlation between the d’ of modulation

spectral features and the perceptual data was calculated to demonstrate the relationship

between modulation spectral features and the perception of speaker individuality and
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vocal-emotion.

For speaker individuality, there were positive correlations between the modulation

spectral features and the perceptual data of speaker distinction experiment. Similar

results were also obtained from the results of vocal emotion, however, the correlations

were roughly higher than that of speaker distinction experiments. The results showed

that the modulation spectral features were useful to account for the perceptual data of

speaker and vocal-emotion recognition experiments using NVS. It was suggested that

modulation spectral features could be important cues contribute to the perception of

speaker individuality and vocal emotion.

Finally, applications of the temporal modulation information in simulating CI listeners’

response and vocal-emotion conversion of NVS were discussed. At first, the feasibility of

using NVS to simulate CI listeners’ response in vocal emotion recognition was discussed by

carried out vocal-emotion recognition experiments using both NVS and original emotional

speech with NH and CI listener. The results showed that the vocal-emotion recognition

paradigm using NVS can be used to investigate vocal emotion recognition by CI listeners.

Furthermore, it was suggested that the modulation spectral features can also be used to

account the performance of CI listeners in the vocal-emotion recognition.

Effect of the modification of modulation spectrogram on the vocal-emotion recognition

was also investigated. A method based on a linear prediction (LP) scheme was proposed

to modify the modulation spectrogram and its features of neutral speech to match that

of emotional speech. The logic of this approach is that if vocal emotion perception of

CI simulation is based on the modulation spectral features, NVS with similar modula-

tion spectral features of emotional speech will be recognized as the same emotion. The

temporal envelopes were modulation-filtered by using IIR filters to modify the modula-

tion spectrum from neutral to emotional speech. The IIR filters were derived from the

relation of modulation characteristics of neutral and vocal emotions on a LP scheme. On

the acoustic frequency domain, the average amplitude of the temporal envelope was cor-

rected using the ratio of the average amplitude between neutral and emotional speech.

Finally, a vocal-emotion recognition experiment using NVS generated by the converted

temporal envelope was carried out. The results showed that the modulation spectrogram

of neutral speech can be successfully converted to that of emotional speech by the pro-
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posed method. The results of the evaluation experiment confirmed the feasibility of vocal

emotion conversion on the modulation spectrogram for NVS.

In conclusion, the fact that the temporal modulation cues contribute to the percep-

tion of speaker individuality and vocal emotion was confirmed by the speaker and vocal-

emotion recognition experiments using NVS. Furthermore, the investigation of modula-

tion spectral features demonstrated that there were high correlations between modulation

spectral features and the perceptual data obtained from speaker and vocal-emotion recog-

nition experiments. Therefore, the modulation spectral features could be important cues

contribute to the speaker and vocal-emotion recognition with NVS. These results fur-

ther proved that the temporal modulation cues play an important role in the perception

speaker individuality and vocal-emotion.

6.2 Contributions

The most important contribution is that the results of this study can help us to deepen

our understanding of the relationship between the temporal modulation information of

temporal envelope and the perception of nonlinguistic information. The previous studies

about nonlinguistic information were almost based on the “classical” acoustical features

such like F0, formant, spectral envelope, etc. However, the temporal modulation cues

have been proved to be important cues in the speech perception. The results of this

study demonstrated that the temporal modulation cues also contribute to the perception

of nonlinguistic information. The modulation spectral features investigated in this study

were analyzed based on the knowledge of human auditory system. Therefore, the temporal

modulation information must play an important role in the perceptual process of various

information in human auditory system directly.

The results of this study can also contribute to the development of cochlear implants

(CI) device. CI system mimic the signal processing of the auditory peripheral system

with four main steps: bandpass filterbank, envelope extraction, amplitude compression,

and impulse signal generation. As the number of channels of the bandpass filterbank in

CI system is so limited, CI device can only provide poor spectral cue. CI devices provide

the temporal envelope information as a primary cue, and the temporal fine structure in-

formation is not effectively encoded. As the poor spectral cue, CI listeners have problem
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of identifying the speaker or the emotion from only speech correctly. The method used in

this study also mimic the signal processing of the auditory peripheral system. Therefore,

the results of this study can be used to optimize the CI device. Particularly, the modula-

tion spectrogram based vocal-emotion conversion method discussed in section 5.2 can be

used in enhancing the modulation spectral features related to vocal-emotion to improve

the performance of vocal-emotion recognition of CI listeners.

The modulation spectrogram and its features also have potential in modeling the per-

ception of speaker individuality and vocal emotion. The modulation spectrogram is calcu-

lated based on the computational model of human peripheral auditory system. Therefore,

the modulation spectrogram can be used in the physiology model of the perception of var-

ious information from not only speech but also other sounds. The modulation spectral

features can also be used as acoustical features in the perceptual model of nonlinguistic

information. The engineering applications of the modulation spectrogram and its features

in the development of speaker or vocal-emotion recognition systems can also be expected.

6.3 Future works

1. Analysis of modulation spectrogram in time domain

In this study, the modulation spectral features of time-averaged modulation spectro-

gram were analyzed. The modulation spectrogram is a 4-dimension data contained

information about acoustic frequency, modulation frequency, amplitude and time.

It is necessary to analysis the details of modulation spectrogram in time domain.

However, as the modulation spectrogram is a 4-D data, it will be difficult extract the

features related to nonlinguistic information from modulation spectrogram. Deep

learning may be a good resolution for analyzing the modulation spectrogram in time

domain.

2. Modeling the perceptual process of nonlinguistic information based on

modulation spectral features

The modulation spectrogram and its features has been proved to contribute the

perception of nonlinguistic information. Therefore, the temporal modulation infor-

mation can be used to modeling the perception of speaker individuality and vocal
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emotion. For computational model such like the three-layer model [9], the modu-

lation spectral features can be used as kinds of acoustical features. The method to

calculate modulation spectrogram used in this study was based on the signal pro-

cess in human peripheral auditory system. Therefore, the modulation spectrogram

can be used in the physiology model. For example, the modulation spectrogram

can be used as the input of a neural network based model instead of the traditional

spectrogram calculated by short-time Fourier transformation.

3. Details of modulation spectrogram related to the perception of nonlin-

guistic information

In this study, global features of modulation spectrogram were investigated. Such

kinds of features may be used as cues in speaker and vocal-emotion recognition.

However, the perceptual process of nonlinguistic information should not be that

simple. It is undeniable that the local features such as the specific segmental cues

are also used in the perception of nonlinguistic information. It is necessary to under-

stand the contributions of the detailed information of the modulation spectrogram.

4. Application of temporal modulation information in the development of

CI device

As we known CI listeners have problem in speaker and vocal-emotion recognition

as the poor spectral cue provided by CI device. Luo and Fu successfully enhanced

the tone recognition on the NVS scheme by manipulating the amplitude envelope

to more closely resemble the F0 contour [83]. Their results showed the possibility of

enhancing the recognition of non-linguistic information by modifying the temporal

envelope. However, as CI listeners using the temporal modulation cues as primarily

cues, the results of this study can be used to optimize the CI device for improving

the performance of speaker and vocal-emotion recognition by CI listeners. We can

assumed that the target of vocal emotion is known (e.g., vocal-emotion recognition

methods can be used to predict the target emotion via a dimension approach (V-A))

and enhance enhance the vocal emotion information of emotional NVS by modifying

the modulation spectral features.

5. Connect the temporal modulation information to the mechanism of speech
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production

This study demonstrated that the temporal modulation information contain the

information related to speaker individuality and vocal-emotion. Such nonlinguistic

information can be thought to be derived from human vocal organs. It is diffi-

cult to connect the temporal modulation information to the mechanism of speech

production. However, it is still necessary to investigate the relationship between

auditory-based modulation-spectral features and speech production.

6. Contribution of temporal fine structure

Speech signals can be represented as a sum of amplitude modulated frequency bands.

The signal in each band can be regarded as a temporal amplitude envelope with a

carrier (temporal fine structure). In this study, the temporal modulation cues con-

tained in the temporal amplitude envelope has been proved to play an important role

in the perception of speaker individuality and vocal-emotion. However, the temporal

fine structure should also contribute to the speech perception of various information.

It is necessary to understand the contribution of temporal fine structure further to

complement the knowledge of the contributions of temporal information in speech

perception.
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Appendix A

Confusion matrix of the results of

vocal-emotion recognition

experiments

Mean confusion matrices obtained with the results of vocal-emotion recognition experi-

ments in section 3.4 are shown here. Confusion matrices are presented with the stimuli

organized vertically and the response categories organized horizontally. Each cell shows

the selection rate for that particular stimulus and response combination: the range is

from 0 to 1.
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Table A.1: Mean confusion matrix with 4-band, 0 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.63 0 0.15 0.06 0.16

Joy 0.61 0.11 0.10 0.05 0.14

Cold Anger 0.68 0 0.12 0.07 0.13

Sadness 0.35 0.01 0.08 0.55 0.01

Hot Anger 0.48 0.13 0.05 0.05 0.29

Table A.2: Mean confusion matrix with 4-band, 0.5 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.55 0.03 0.19 0.08 0.15

Joy 0.57 0.07 0.16 0.05 0.14

Cold Anger 0.52 0.02 0.14 0.15 0.17

Sadness 0.29 0.01 0.10 0.59 0.01

Hot Anger 0.43 0.15 0.10 0.05 0.27

Table A.3: Mean confusion matrix with 4-band, 1 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.61 0.02 0.16 0.06 0.15

Joy 0.53 0.03 0.16 0.04 0.25

Cold Anger 0.49 0.02 0.24 0.10 0.15

Sadness 0.29 0 0.03 0.67 0.01

Hot Anger 0.47 0.04 0.15 0.05 0.30

Table A.4: Mean confusion matrix with 4-band, 2 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.53 0.02 0.26 0.03 0.16

Joy 0.45 0.03 0.19 0.05 0.27

Cold Anger 0.43 0.02 0.21 0.10 0.25

Sadness 0.15 0 0.08 0.76 0

Hot Anger 0.31 0.03 0.14 0.01 0.52
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Table A.5: Mean confusion matrix with 4-band, 4 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.57 0.02 0.24 0.07 0.10

Joy 0.33 0.11 0.12 0.01 0.44

Cold Anger 0.28 0.03 0.39 0.17 0.13

Sadness 0.06 0 0.11 0.83 0

Hot Anger 0.25 0.05 0.10 0.01 0.60

Table A.6: Mean confusion matrix with 4-band, 8 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.66 0.04 0.21 0.05 0.05

Joy 0.30 0.25 0.15 0.03 0.27

Cold Anger 0.36 0.04 0.37 0.14 0.09

Sadness 0.09 0 0.06 0.85 0

Hot Anger 0.25 0.10 0.09 0 0.56

Table A.7: Mean confusion matrix with 4-band, 16 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.73 0.03 0.15 0.05 0.04

Joy 0.28 0.24 0.12 0.02 0.35

Cold Anger 0.40 0 0.38 0.16 0.05

Sadness 0.06 0.01 0.02 0.90 0.01

Hot Anger 0.16 0.10 0.15 0.03 0.56

Table A.8: Mean confusion matrix with 4-band, 32 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.70 0.02 0.15 0.05 0.07

Joy 0.29 0.27 0.15 0.04 0.25

Cold Anger 0.43 0.01 0.35 0.15 0.06

Sadness 0.05 0 0.04 0.91 0

Hot Anger 0.25 0.05 0.10 0 0.59
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Table A.9: Mean confusion matrix with 4-band, 64 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.67 0.04 0.20 0.06 0.03

Joy 0.23 0.22 0.18 0.02 0.35

Cold Anger 0.34 0.02 0.40 0.20 0.05

Sadness 0.05 0 0.05 0.90 0

Hot Anger 0.16 0.03 0.05 0.01 0.75

Table A.10: Mean confusion matrix with 8-band, 0 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.57 0.01 0.16 0.06 0.19

Joy 0.55 0.15 0.12 0.03 0.15

Cold Anger 0.66 0.02 0.16 0.08 0.07

Sadness 0.47 0.01 0.05 0.45 0.01

Hot Anger 0.39 0.15 0.10 0.05 0.31

Table A.11: Mean confusion matrix with 8-band, 0.5 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.54 0.06 0.17 0.09 0.14

Joy 0.53 0.14 0.09 0.13 0.12

Cold Anger 0.53 0.07 0.22 0.13 0.05

Sadness 0.22 0 0.12 0.66 0

Hot Anger 0.39 0.19 0.11 0.09 0.22

Table A.12: Mean confusion matrix with 8-band, 1 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.59 0.03 0.14 0.09 0.15

Joy 0.48 0.11 0.13 0.06 0.22

Cold Anger 0.57 0.02 0.15 0.21 0.05

Sadness 0.31 0 0.07 0.61 0.01

Hot Anger 0.41 0.14 0.07 0.05 0.34
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Table A.13: Mean confusion matrix with 8-band, 2 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.57 0.18 0.10 0.06 0.08

Joy 0.46 0.20 0.09 0.04 0.21

Cold Anger 0.44 0.03 0.24 0.16 0.14

Sadness 0.11 0.01 0.06 0.82 0

Hot Anger 0.22 0.13 0.08 0.03 0.55

Table A.14: Mean confusion matrix with 8-band, 4 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.67 0.12 0.15 0.01 0.05

Joy 0.31 0.31 0.07 0.01 0.30

Cold Anger 0.41 0.03 0.34 0.21 0.02

Sadness 0.06 0.02 0.07 0.85 0

Hot Anger 0.17 0.20 0.06 0.02 0.55

Table A.15: Mean confusion matrix with 8-band, 8 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.75 0.13 0.05 0.05 0.03

Joy 0.21 0.50 0.04 0.02 0.24

Cold Anger 0.54 0 0.29 0.15 0.02

Sadness 0.05 0.01 0 0.93 0.01

Hot Anger 0.11 0.15 0.05 0 0.68

Table A.16: Mean confusion matrix with 8-band, 16 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.78 0.10 0.09 0.02 0.01

Joy 0.16 0.65 0.06 0 0.13

Cold Anger 0.42 0 0.42 0.15 0.01

Sadness 0.07 0 0.04 0.88 0.01

Hot Anger 0.08 0.15 0.06 0.01 0.69
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Table A.17: Mean confusion matrix with 8-band, 32 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.80 0.10 0.07 0.01 0.02

Joy 0.13 0.69 0.03 0.01 0.15

Cold Anger 0.44 0.01 0.37 0.15 0.04

Sadness 0.07 0 0.04 0.89 0

Hot Anger 0.09 0.10 0.07 0 0.74

Table A.18: Mean confusion matrix with 8-band, 64 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.73 0.14 0.09 0.04 0.01

Joy 0.18 0.62 0.04 0.01 0.15

Cold Anger 0.49 0 0.32 0.16 0.03

Sadness 0.05 0 0.05 0.90 0

Hot Anger 0.08 0.10 0.06 0 0.75

Table A.19: Mean confusion matrix with 16-band, 0 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.62 0.02 0.21 0.04 0.12

Joy 0.45 0.19 0.11 0.08 0.16

Cold Anger 0.55 0 0.23 0.16 0.06

Sadness 0.35 0 0.08 0.56 0

Hot Anger 0.40 0.14 0.10 0.08 0.28

Table A.20: Mean confusion matrix with 16-band, 0.5 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.47 0.13 0.10 0.23 0.07

Joy 0.42 0.26 0.09 0.16 0.06

Cold Anger 0.51 0.02 0.18 0.25 0.05

Sadness 0.22 0.01 0.05 0.72 0

Hot Anger 0.36 0.26 0.06 0.09 0.22
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Table A.21: Mean confusion matrix with 16-band, 1 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.62 0.06 0.14 0.05 0.13

Joy 0.35 0.34 0.10 0.08 0.13

Cold Anger 0.47 0.01 0.22 0.28 0.02

Sadness 0.24 0.01 0.05 0.69 0.01

Hot Anger 0.31 0.22 0.13 0.05 0.29

Table A.22: Mean confusion matrix with 16-band, 2 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.73 0.07 0.07 0.08 0.05

Joy 0.24 0.53 0.05 0.05 0.14

Cold Anger 0.32 0.03 0.38 0.22 0.05

Sadness 0.10 0.01 0.04 0.83 0.03

Hot Anger 0.18 0.25 0.03 0.02 0.52

Table A.23: Mean confusion matrix with 16-band, 4 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.78 0.08 0.10 0.03 0.01

Joy 0.05 0.87 0.03 0.01 0.04

Cold Anger 0.29 0.01 0.49 0.21 0

Sadness 0.03 0.01 0.06 0.90 0

Hot Anger 0.14 0.22 0.04 0 0.61

Table A.24: Mean confusion matrix with 16-band, 8 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.83 0.09 0.05 0.02 0.02

Joy 0.06 0.94 0 0 0

Cold Anger 0.33 0 0.55 0.12 0.01

Sadness 0.03 0 0.04 0.93 0.01

Hot Anger 0.06 0.08 0.06 0 0.79
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Table A.25: Mean confusion matrix with 16-band, 16 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.89 0.03 0.05 0 0.03

Joy 0.05 0.92 0.01 0 0.02

Cold Anger 0.31 0.01 0.60 0.07 0.01

Sadness 0.03 0 0.05 0.91 0.01

Hot Anger 0.05 0.09 0.06 0.01 0.78

Table A.26: Mean confusion matrix with 16-band, 32 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.88 0.03 0.06 0.03 0

Joy 0.06 0.90 0.01 0.01 0.02

Cold Anger 0.31 0 0.57 0.11 0.01

Sadness 0.04 0 0.03 0.94 0

Hot Anger 0.06 0.04 0.10 0 0.80

Table A.27: Mean confusion matrix with 16-band, 64 Hz NVS stimuli.

Neutral Joy Cold Anger Sadness Hot Anger

Neutral 0.86 0.04 0.07 0.01 0.02

Joy 0.03 0.95 0 0.01 0.02

Cold Anger 0.26 0.01 0.60 0.12 0.01

Sadness 0.04 0 0.03 0.94 0

Hot Anger 0.08 0.08 0.07 0 0.76
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Appendix B

Scatterplots of perceptual speaker

similarity and the d’ of MSFs

The scatterplots of perceptual speaker similarity and d’ of MSFs are shown here. The

horizontal axis is the perceptual speaker similarity of each speaker pairs measured by

Kitamura et al. [1]. The vertical axis is the d’ value of MSFs. The name of MSF, the

correlation coefficient (CC), and the p-value for testing the hypothesis of no correlation

are shown on the top of each figure. These results are related to the figure 4.3.
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Figure B.1: The scatterplot of perceptual speaker similarity and d’ of modulation spectral

features on acoustic frequency domain for female speakers.
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Figure B.2: The scatterplot of perceptual speaker similarity and d’ of modulation spectral

features on modulation frequency domain for female speakers.
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Figure B.3: The scatterplot of perceptual speaker similarity and d’ of modulation spectral

features on acoustic frequency domain for male speakers.
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Figure B.4: The scatterplot of perceptual speaker similarity and d’ of modulation spectral

features on modulation frequency domain for male speakers.
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Appendix C

Scatterplots of the d’ of MSFs and

the results of speaker distinction

experiments

The scatterplots of the d’ of MSFs and perceptual data of speaker distinction experiments

are shown here. The horizontal axis is the d’ of the perceptual data of speaker distinction

experiment (Table 4.2 and 4.3). The vertical axis is the d’ value of MSFs. The name of

MSF, the correlation coefficient (CC), and the p-value for testing the hypothesis of no

correlation are shown on the top of each figure. These results are related to the figure 4.7.
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Figure C.1: The scatterplot of the d’ of the perceptual data of speaker distinction ex-

periment and modulation spectral features on acoustic frequency domain for for 8-band

NVS.
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Figure C.2: The scatterplot of the d’ of the perceptual data of speaker distinction exper-

iment and modulation spectral features on modulation frequency domain for for 8-band

NVS.
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Figure C.3: The scatterplot of the d’ of the perceptual data of speaker distinction ex-

periment and modulation spectral features on acoustic frequency domain for for 16-band

NVS.
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Figure C.4: The scatterplot of the d’ of the perceptual data of speaker distinction exper-

iment and modulation spectral features on modulation frequency domain for for 16-band

NVS.
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Appendix D

Scatterplots of the d’ of MSFs and

the results of vocal-emotion

recognition experiments

The scatterplots of the d’ of MSFs and perceptual data of vocal-emotion recognition

experiments are shown here. The horizontal axis is the d’ of the perceptual data of

vocal-emotion recognition experiment (Table 4.4). The vertical axis is the d’ value of

MSFs. The name of MSF, the correlation coefficient (CC), and the p-value for testing

the hypothesis of no correlation are shown on the top of each figure. These results are

related to the figure 4.8.
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Figure D.1: The scatterplot of the d’ of the perceptual data of vocal-emotion recognition

experiment and modulation spectral features on acoustic frequency domain for for 4-band

NVS.
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Figure D.2: The scatterplot of the d’ of the perceptual data of vocal-emotion recognition

experiment and modulation spectral features on modulation frequency domain for for

4-band NVS.
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Figure D.3: The scatterplot of the d’ of the perceptual data of vocal-emotion recognition

experiment and modulation spectral features on acoustic frequency domain for for 8-band

NVS.
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Figure D.4: The scatterplot of the d’ of the perceptual data of vocal-emotion recognition

experiment and modulation spectral features on modulation frequency domain for for

8-band NVS.
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Figure D.5: The scatterplot of the d’ of the perceptual data of vocal-emotion recognition

experiment and modulation spectral features on acoustic frequency domain for for 16-band

NVS.
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Figure D.6: The scatterplot of the d’ of the perceptual data of vocal-emotion recognition

experiment and modulation spectral features on modulation frequency domain for for

16-band NVS.
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