
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
プログラム分析における木構造及びグラフ構造へ深層

学習の適用

Author(s) Phan, Anh Viet

Citation

Issue Date 2018-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/15320

Rights

Description Supervisor:NGUYEN, Minh Le, 情報科学研究科, 博士

APPLYING DEEP LEARNING ON TREE AND GRAPH
STRUCTURES FOR PROGRAM ANALYSIS

PHAN, ANH VIET

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

APPLYING DEEP LEARNING ON TREE AND GRAPH
STRUCTURES FOR PROGRAM ANALYSIS

PHAN, ANH VIET

Supervisor: NGUYEN Minh Le

School of Information Science
Japan Advanced Institute of Science and Technology

March 2018

Abstract

The rapid growth of software industry has increased a high demand for tools based on
source code analysis to support developers and managers during software development.
Source code classifiers are used to organize big projects or a huge amount of open source
code on the web, and thus facilitate software reuse and maintenance. With a software de-
fect prediction tool, programmers can easily locate and fix bugs. This leads to an increase
in the software quality, and a decrease in the development time and product cost.

Solving software engineering problems is a big challenge. According to previous stud-
ies, programming languages contain abundant statistical properties that are difficult to
capture by humans. In addition, a program may show different actions in different cases
hindering us from discovering its semantic meaning. Computers can run programs by
just executing single instructions, they do not truly understand the programs. For these
reasons, although many efforts have made to solve software engineering problems, the
achievements are not so high. The traditional approaches build predictive models based
on machine learning algorithms and handcrafted features, called software metrics. The
drawbacks of such approaches are time-consuming and inaccurate because we must to
manually design a set of appropriate metrics and the existing metrics are not enough to
capture semantic meanings of programs. Recently, applying deep learning on tree repre-
sentations to automatically learn programs’ features has made a breakthrough in source
code analysis. However, such trees simply reflect the program structures and do not reveal
the behavior of programs. Thus, tree-based approaches may be inefficient when adapting
to several tasks, especially those are relevant to an understanding of semantic meanings
like software defect prediction.

In this dissertation, we focus on two main tasks: (1) proposing models and techniques
to enhance existing approaches, and (2) formulating a new approach program analysis.
For software metrics-based methods, we design a feature weighting model to estimate the
importance extent of each metric according to its relevance to class labels. For tree-based
approaches, we develop new models as well as refine data by pruning redundant branches
to boost the performance. Additionally, we propose a new approach that applies deep
learning on assembly code to explore deeper into semantic meanings of programs.

Our contributions can boost the performance of current methods notably and be adapted
to various problems of source code analysis.

Keywords: Program Analysis, Abstract Syntax Trees (ASTs), Control Flow Graphs
(CFGs), Deep Learning, Convolutional Neural Networks (CNNs).

2

Acknowledgments

This dissertation would not have been accomplished without the support of many peo-
ple. First and foremost, I would like to express my sincere thank to my great supervisor,
Professor Nguyen Minh Le at School of Information Science of JAIST for the dedicated
guidance through my study time. Through many meetings, he inspired me with the re-
search enthusiasm and pushed me into significant tasks. When I expressed my ideas he
patiently listened and uncovered the more fundamental story. I am very grateful to Nguyen
Minh for teaching me not only the way to formulate research ideas but also the way to
think. I am really happy and so proud to be one of his students.

I would like to express my special thanks to Professor Mizuhito Ogawa, who guided
me to do the sub-theme. He provided many background knowledge and encouraged me to
understand deeper neural networks and deep learning. When I prepared a terrible slides
drafts, he patiently arranged several-hour discussions until all contents were clear. Thanks
to the discussions with him, I discovered a new method to solve my research problems.

I would like to thank committee members consisting of Professor Satoshi Tojo, Professor
Mizuhito Ogawa, Associate Professor Okada Shogo, and Professor Tomoko Matsui who
have spent their valuable time for reading my thesis and giving me constructive comments.
My thesis is improved very much thanks to their comments.

I am thankful to several organizations for funding my research including JSPS KAK-
ENHI Grant and Vietnam’s Ministry of Education and Training (MOET). Their financial
support gave me chances to study in Japan and attend international conferences.

I have to thank many members in Machine Learning and Language Understanding
Laboratory, who have contributed to my daily life at JAIST, especially, Chien Tran, Vu
Tran and Viet Lai for setting up the servers for running experiments, Tien Nguyen and
Danilo for their valuable comments on my work.

I would like to sincerely thank professors in the English Language Education for Science,
Technology, and Engineering center of JAIST for reading and editing my manuscripts, and
all JAST staff for their kind help in completing necessary procedures.

Deep in my heart, I would like to give special thanks to my family. My parents At Phan
and Nhuan Le, and my siblings Tai Phan, Tu Phan and Hai Phan, who always believe
me than I do. Kindness, hard work and the passion for exploration are that I learned
from you. My wife and little son, your sacrifice, love, and encouragement motivated me
to overcome any hindrance.

3

Table of Contents

Abstract 1

Acknowledgements 1

Table of Contents 3

List of Figures 5

List of Tables 6

1 Introduction 7
1.1 Program Analysis Problems . 7
1.2 Conventional Approaches and Limitations 9
1.3 Motivation and Contributions . 11
1.4 Dissertation Structure . 13

2 Deep Learning Background 15
2.1 Neural Networks . 15

2.1.1 The Basic Definitions . 15
2.1.2 Training Neural Networks . 18

2.2 Convolutional Neural Networks . 21
2.2.1 Introduction . 21
2.2.2 The General Architecture . 22

2.3 Evaluation Measures . 25

3 Software Metrics-based Approaches 28
3.1 Software metrics . 28
3.2 Feature weighting using genetic algorithms 30

3.2.1 Introduction of Support Vector Machines (SVMs) 30
The optimal hyperplane for separable data 30
The optimal hyperplane for non-separable data 31
Non-linear SVM . 32

3.2.2 Genetic algorithms - GAs . 33
3.2.3 Hybrid model GA-SVM for feature weighting and parameter opti-

mization . 35

1

TABLE OF CONTENTS

Chromosome design . 35
Fitness function . 36
System architecture . 36

3.3 Experiments . 38
3.3.1 Datasets . 38
3.3.2 Experimental setup . 39
3.3.3 Results . 40

3.4 Related work . 42

4 Tree-based Approaches 44
4.1 Abstract Syntax Trees . 44
4.2 Learning Approaches on Tree Structures 45

4.2.1 Tree Edit Distance (TED) . 45
4.2.2 Tree-based Convolutional Neural Networks (TBCNN) 46
4.2.3 Sibling-subtree Convolutional Neural Networks (SibStCNN) 47

4.3 Combinations of Deep Neural Networks and Traditional Learning 48
4.3.1 The Combination Model of kNN-TED and Tree-based Networks . . 48
4.3.2 The Integration Model of Tree-based Networks and SVM 49

4.4 Experiments . 50
4.4.1 Data Preprocessing . 50
4.4.2 The Dataset . 52
4.4.3 Experimental Setup . 53
4.4.4 Results and Discussion . 54
4.4.5 Data Analysis . 58

4.5 Related Work . 59

5 Deep Neural Networks on Assembly Code 61
5.1 Assembly code and two views of data . 61
5.2 Convolutional Neural Networks on Instruction Sequences 62
5.3 Directed Graph Convolutional Neural Networks 64

5.3.1 Convolutional Neural Networks on Directed Graphs 64
5.3.2 Convolutional Layers . 65
5.3.3 Dynamic Pooling . 66
5.3.4 Training . 66
5.3.5 Computational Complexity and Required Memory 66

5.4 Experiments . 67
5.4.1 Control Flow Graphs . 68
5.4.2 Vector representations . 68
5.4.3 Software defect prediction . 69

Task description . 69
CFG construction . 69
Datasets . 70
Baselines . 72
Results . 73

2

TABLE OF CONTENTS

Error Analysis . 77
5.4.4 Malware analysis . 79

Task description . 79
Baselines . 79
Results . 80

5.5 Related Work . 80

3

List of Figures

1.1 Active repositories of the most used languages on GitHub. 9
1.2 The AST of the statement “printf("The sum of x+y =%d", x+y);". . . 10
1.3 A motivating example . 11
1.4 Illustration of our work in this thesis. 12

2.1 A single neuron . 15
2.2 Some examples of activation functions . 17
2.3 The architecture of a feedforward neural network with one hidden layer . . 17
2.4 Backpropagation algorithm . 19
2.5 Illustration of local connectivity, two spatial dimensions and shared weights 21
2.6 A convolutional layer with 5x5x3 filters for input images 22
2.7 The feature maps of two filters on an input image 23
2.8 A max pooling layer to reduce the dimensions spatially, independently in

each depth slice of the input. 24
2.9 An example of ROC curve plotted according to the outputs of a classifier. . 26

3.1 Basic steps of genetic algorithm . 34
3.2 Illustration of the two-point crossover and mutation operators and their

effects in the generation of the offspring . 34
3.3 The structure of a chromosome for optimizing C, γ and weights of features 35
3.4 The system architecture of the hybrid GA-SVMmodel for feature weighting

and parameter optimization . 37
3.5 Running process of the GA-SVM model on the six datasets. 42

4.1 The AST for the code for the algorithm 1 45
4.2 Basic tree edit operations. (4.2a) Deleting the node labeled l2. (4.2b) Insert-

ing a node labeled l2 as the child of the node labeled l1. (4.2c) A relabeling
of the node label l1 to l2. 46

4.3 The architecture of the tree-based convolutional neural network (TBCNN). 47
4.4 Sibling-subtree convolution. Nodes on the left are feature vectors of AST

nodes. Nodes on the right are feature maps. 48
4.5 The integration model of tree-based CNNs and SVM for program classifi-

cation. 50

4

LIST OF FIGURES

4.6 The operations of pruning redundant branches of For and ProcDef (Pro-
cedure Definition) sub-trees. 52

4.7 Tuning the factor t for the combination models of TBCNN/SibStCNN and
kNN-TED. (4.7a) and (4.7c) before pruning trees, (4.7b) and (4.7d) after
heuristic pruning. 56

4.8 The accuracies on validation and test sets in the case of heuristic pruning
(HP), and the time for predicting an instance of classifiers with different
numbers of hidden nodes. TBCNN_CV, TBCNN_Test, SVM_CV and
SVM_test show the accuracies of TBCNN and TBCNN-SVM classifiers on
validation and test sets, respectively. TimeTBCNN and timeSVM represent
the time for predicting an instance using TBCNN and SVM. 58

5.1 The process of compiling C programs from source code to executable files. 62
5.2 A convolutional neural network with two views for assembly instruction

sequences. 63
5.3 The architecture of the multi-layer convolutional neural network on graphs.

Several steps of a convolution process is illustrated in the two first layers.
The same color (red, green, or blue) of a node and an ellipse indicates the
current position and the range of the filter. 64

5.4 The Control Flow Graph of an assembly code fragment. 68
5.5 An example of constructing CFGs from assembly code.(5.5a) a fragment of

assembly code;(5.5b) the CFG of the code fragment (each node is viewed
by the line number and the name of the instruction). 70

5.6 The illustration of the discrimination ability between classes of classifiers
on imbalanced datasets. Fig. 5.6a and Fig. 5.6b are the ROC curves of
TBCNN and DGCNN_1V_NoOp on FLOW016 dataset, respectively. . . . 75

5.7 Learning curves of the networks. Fig. 5.7a and Fig. 5.7b, Fig. 5.7c and
Fig. 5.7d are accuracy and error curves of MNMX and FLOW016 datasets;
the solid and dot curves correspond to training and validation, respectively. 76

5.8 Some source code examples in FLOW016 dataset which may cause mistakes
of tree-based (T) and CFG-based (G) approaches. Fig. 5.8a is a sample
in the training set. Figs. 5.8b, 5.8c, and 5.8d are samples in the test set.
Symbols “+” and “-” denote the sample is correctly and incorrectly classified
by the approaches. 78

5.9 Comparison of DGCNN and SVM according to accuracy (5.9a) and AUC
(5.9b) using 5-fold cross validation. The symbol Op indicates the use of
operands. 80

5

List of Tables

2.1 The confusion matrix . 25

3.1 List of software metrics of source code files 29
3.2 Software metrics datasets . 39
3.3 Performance comparison in terms of Accuracy and F1-score 41
3.4 Comparing the approaches according to the AUC measure 41

4.1 Statistics of the dataset (ASTsOR are the original ASTs, ASTsMP are the
ASTs after pruning minor procedure branches, ASTsHP are the ASTs after
applying heuristic pruning). 53

4.2 Performance comparison of the pruning approaches in terms of accuracy
and execution time (ASTsOR are the original ASTs, and ASTsHP are the
ASTs after heuristic pruning) . 55

4.3 Accuracy of the combination models of TBCNN/SibStCNN with SVM. . . 57

5.1 Statistics of CodeChef datasets. The values are shown in form of average±
standard deviation. 72

5.2 Structures and numbers of hyperparameters of the neural networks. Each
layer is presented in form of the name followed by the number of neurons.
Emb is a embedding layer. Rv, Conv, Pool, and FC stand for recursive,
convolutional, pooling, and fully-connected, respectively. 73

5.3 Comparison of classifiers according to accuracy and F1. 1V and 2V follow-
ing ASCNN means that an instruction are viewed by one and two perspec-
tives. Op and NoOp are using instructions with or without operands. . . . 74

5.4 Performance comparison in terms of the AUC measure. 75
5.5 Statistics on malware dataset. 79

6

Chapter 1

Introduction

1.1 Program Analysis Problems

Solving software engineering (SE) problems has great significance not only in research
but also in practice due to advantages it brings to the software industry. For instance,
accurately predicting defects in software modules in early stages helps to direct test ef-
forts, reduce costs, improve the software quality and satisfy customers [90]. Estimating
software maintenance efforts supports managers in running projects more efficiently via
timely and reasonable adjustment of resources and staff [2]. Source code classification ac-
cordingly functionalities is beneficial to software reuse and big project organization. Thus,
increasingly researchers are showing interest in applying machine learning techniques to
tackle SE problems. My research mainly focuses on solving two tasks including software
defect prediction and source code classification.

Software defect prediction is the task to predict whether or not a code contains defects.
A defect is an error or a bug in a computer program that causes incorrect or unexpected
results when executing the program. A program with some defects is called a buggy
code, otherwise, is a clean code. Software defects are hidden deeply in source code and
only revealed in specific conditions. Additionally, some defects are ambiguous because
depending on the purpose of the design, a code can be considered as a buggy code or a
clean code. Let consider two C code snippets below.

7

1.1. PROGRAM ANALYSIS PROBLEMS

Program 1

1 int sumtoN(int N)
2 {
3 int sum=0;
4 for(int i=1; i<=N;)
5 {
6 sum += i;
7 i=1;
8 }
9 return sum;

10 }

Program 2

1 int main()
2 {
3 int a, b, c;
4 printf("Please input two numbers:");
5 scanf("%d",&a);
6 scanf("%d",&b);
7 c = a/b;
8 printf("%d / %d = %d", a, b, c);
9 return 0;

10 }

Program 1 has a potential defect of an infinite loop. Indeed, after each iteration, the
control variable i is reassigned to 1, if the value of N is greater or equal 1, the condition
i<=n is always satisfied. The for statement is repeated endlessly. Similarly, there are
several types of defects in program 2. The first is the arithmetic overflow or underflow.
Since the program allows to input two integer values without checking, the users may put a
value that is outside of the integer range. The second is the division by zero occurring when
b equals 0. Possibly there is a defect of the loss of arithmetic precision due to rounding.
Assuming that a and b have the values of 3 and 2, the value of c after computing the
division is 1. However, in certain situations, the desired value should be 1.5.

In practice, software defects may lead to serious consequences such as the loss of money,
time, business credibility, and even loss of life. A noticeable example is the case of the
Therac-25, a radiation therapy machine for treating cancer patients in 1980s. Bugs in
the control program made the machine produced radiation doses with hundreds of times
greater than the expectation, and were the cause of several deaths and serious injuries.
In 1996, because of specification and design errors, an Ariane 5 rocket of the European
Space Agency burst several minutes after launched. The estimated cost for a decade of
development and the value of the rocket and its cargo is about 7.5 billion dollars. Recently,
a study estimated that every year software bugs cost the US economy 59.5 billion dollars,
and more than a third of such amount can be eliminated by improving testing.

Validating and verifying software products before deploying are essential. Existing de-
fects in software components is unavoidable due to various reasons like human mistakes.
As above analysis, defects only reveal in specific conditions, although many efforts, testers
could not discover all issues in products. Therefore, building a tool for automatically pre-
dicting defects is beneficial to software development. With this tool, developers will pay
more attention to potentially buggy components to localize and fix defects. This helps to
enhance software quality, reduce the development time and efforts, satisfy customers.

Source code classification is the task to tag programs into different categories according
to criteria such as application categories and programming languages. Properly organizing
software repositories is beneficial to programmer cooperation, maintenance and reuse
of software. Within a project, grouping source files according to their functions helps
developers can easily locate defect locations when receiving the test reports. Nowadays,
programming communities have contributed a huge amount of source code to the internet.

8

1.2. CONVENTIONAL APPROACHES AND LIMITATIONS

Language
Ja
va
Sc
ri
pt

Ja
va

Py
th
on CS
S

PH
P

R
ub
y

C+
+ C

Sh
el
l

C#

O
bj
ec
ti
ve
-C R

V
im
L

G
o

Pe
rl

Co
ff
ee
Sc
ri
pt

Te
X

Sw
if
t

Sc
al
a

Em
ac
s
Li
sp

H
as
ke
ll

Lu
a

Cl
oj
ur
e

M
at
la
b

A
rd
ui
no

M
ak
efi
le

G
ro
ov
y

Pu
pp
et

R
us
t

Po
w
er
Sh
el
l

Er
la
ng

V
is
ua
l B
as
ic

Pr
oc
es
si
ng

A
ss
em
bl
y

Ty
pe
Sc
ri
pt

XS
LT

A
ct
io
nS
cr
ip
t

A
SP

O
Ca
m
l D

Sc
he
m
e

D
ar
t

Co
m
m
on
 L
is
p

Ju
lia F#

El
ix
ir

FO
R
TR
A
N

H
ax
e

R
ac
ke
t

Lo
go
s

0K

50K

100K

150K

200K

250K

300K

A
ct
iv
it
y

Sheet 1

Figure 1.1: Active repositories of the most used languages on GitHub.

Furthermore, this code can be deployed widely and verified by many users. They are
valuable resources that we can reuse to develop new systems with less time and efforts
than building from scratch. Fig. 1.1 shows active repositories (having at least one code
push during a period) of the most used languages on GitHub during the final quarter of
2014. Without an appropriate organization, it is difficult to find a source code compatible
with our demands. Manually pushing a code into a suitable group is impractical because
sizes of projects are very large and increase rapidly [88]. A source code classifier is a tool
to support this work efficiently.

1.2 Conventional Approaches and Limitations

The traditional approaches can be divided into two directions that are based on software
metrics and abstract syntax trees. For metrics-based methods, we must manually design
a set of features called software metrics to measure some properties of source code. Then
various common machine learning algorithms are investigated to build predictive models
on the metric data. For tree-based methods, each source code written in a programming
language with grammar is represented as a tree called abstract syntax tree (AST). Fig. 1.2
illustrates the AST of the C statement “printf("The sum of x+y =%d", x+y);". Deep
neural networks thereafter are applied to automatically learn distinguishing features from
ASTs. With such features, we can build models based on either the deep neural networks
directly or other learning algorithms.

9

1.2. CONVENTIONAL APPROACHES AND LIMITATIONS

Figure 1.2: The AST of the statement “printf("The sum of x+y =%d", x+y);".

The metrics-based approaches are also widely applied to solve various software engineer-
ing problems such as fault prediction, cost, and effort estimation [38,45,53,91]. However,
the meaning of software metric values have been widely debated for two major reasons:
they have not shown good ability to capture the underlying meaning of programs [62];
and most of the currently used metrics have multiple definitions and ambiguous counting
rules [40]. Akiyama et al. [1] predicted defects from lines of code (LOC) by Eq.(1.1).

#of defects = 4.86 + 0.018 ∗ LOC (1.1)

Halstead et al. [35] proposed several complexity metrics and used these as predictors of
program defects. The most notable predictor asserted by the author is computed based
on numbers of unique operators and unique operands as follows.

#of defects = volume/3000 (1.2)

where volume = N ∗ log2n, n is the number of operators and operands in the program.
In fact, the defect rates are relevant to programmers’ skills, the complexity of projects

and other factors rather than the LOC, number of operands or operators. Hence although
various robust machine learning algorithms have been applied, the predictors have not
achieved so high performance. According to recent studies, the mean probability of detec-
tion (PD) on NASA MDP datasets [78] is around 71% [13,62].

Recently, several software engineering problems have been successfully solved by ex-
ploiting ASTs of programs [58]. In the field of machine learning, the quality of input
data directly affects the performance of learners. Regarding this, due to containing rich
information of programs, tree-based approaches have shown significant improvements in
comparison with previous research based on software metrics. Mou et al. proposed a tree-
based convolutional neural network to extract structural information of ASTs for clas-
sifying programs by functionalities [66]. Wang et al. employed a deep belief network to
automatically learn semantic features from AST tokens for defect prediction [92]. Kikuchi
et. al measured the similarities between tree structures for source code plagiarism detec-
tion [47].

Although AST-based approaches have made a breakthrough in source code classifica-
tion, they may fail to tackle software defect prediction. Defect characteristics are deeply
hidden in programs’ semantics and they only cause unexpected output in specific condi-
tions [93]. Meanwhile, ASTs do not show the execution process of programs; instead, they

10

1.3. MOTIVATION AND CONTRIBUTIONS

(a) File 1.c

(b) File 2.c

Figure 1.3: A motivating example

simply represent the abstract syntactic structure of source code. Therefore, both software
metrics and AST features may not reveal many types of defects in programs. For example,
we consider the procedures with the same name sumtoN in two C files File 1.c and File

2.c (Fig. 1.3). Two procedures have a tiny difference at line 7 File 1.c and line 15 in
File 2.c. As can be seen a bug from File 2.c, the statement i=1 causes an infinite loop
of the for statement in case N>=1. Whereas using RSM tool1 to extract the traditional
metrics, their feature vectors are exactly matching, since two procedures have the same
lines of code, programming tokens, etc. Similarly, parsing the procedures into ASTs using
Pycparser2, their ASTs are identical. These mean that both metrics-based and tree-based
approaches are not able to distinguish the two programs.

1.3 Motivation and Contributions

In the field of software engineering, exploring structures and semantic meanings of pro-
grams helps us solve various practical problems including program classification [66, 88],
software defect prediction [53,60], software plagiarism [14,56] and malware analysis [5,12].
In this thesis, I focus on addressing the drawbacks of existing methods to boost the per-
formance, and formulating a new approach for program analysis.

For metrics-based approaches, most of the current studies treat all metrics with the
same role. They concentrate on finding suitable learning algorithms [31,97], pre-processing

1http://msquaredtechnologies.com/m2rsm/
2https://pypi.python.org/pypi/pycparser

11

http://msquaredtechnologies.com/m2rsm/
https://pypi.python.org/pypi/pycparser

1.3. MOTIVATION AND CONTRIBUTIONS

Figure 1.4: Illustration of our work in this thesis.

data to remove duplicated and inconsistent instances [75], and selecting the best set of fea-
tures [46]. In fact, depending on each problem, the extent of the relevance between metrics
and class labels is different. For example, the defect rates are relevant to programmers’
skills, the complexity of projects and other factors rather than the lines of code, the num-
ber of operands or operators. Thus, measures that reflect the software complexity like
Halstead complexity and McCabe’s complexity should be emphasized. To do this, we pro-
pose a feature weighting scheme combining genetic algorithm (GA) and support vector
machines (SVMs) to estimate the weights for software metrics.

Due to containing rich information of programs, AST-based approaches are adapted
efficiently to various problems with high accuracy [66, 92]. I surveyed different models
from traditional ones to deep neural networks and found promising results even in the
case of lazy learners. I also show an interest in applying this approach to source code
categorization. Our proposals are to boost the quality of the learning. Firstly, AST data
are refined by pruning redundant branches resulting in a significant reduction of AST
nodes. This leads to not only an increase in the accuracy but also a decrease of the running
time. To make more powerful models, we designed a sibling-subtree convolutional neural
network to automatically extract ASTs’ features. In addition, we present two types of
combination models between deep neural networks and common learning algorithms.

An assembly code is a product after compiling a source file. Unlike ASTs that simply
represent the structure, the assembly code reveals the behavior of the program since it
contains atomic instructions executed sequentially. Besides, as mentioned before, software

12

1.4. DISSERTATION STRUCTURE

defect prediction is a challenging task because defect features are highly relevant to se-
mantic meanings of programs. For these reasons, assembly code-based approaches may
be beneficial to detect defects in software components. To validate this assumption, we
propose and apply several deep neural networks to automatically learn defect features on
assembly instruction sequences.

Our work in this thesis is illustrated in Fig. 1.4. Approaches for software engineering
problems can be divided into three main directions based on: (1) software metrics-based
that are suitable for the tasks of project document analysis such as software effort, cost,
maintainability estimation; (2) AST-based that should be employed in analyzing program
structures like source code classification and program plagiarism detection; (3) Assembly
code-based that are appropriate to problems of discovering program actions including
software defect prediction and malware analysis. To sum up, the main contributions of
my research can be summarized as follows:

• For software metrics-based approaches. Proposing a hybrid model of GA and
SVM for weighting the importance of software metrics to class labels.

• For AST-based approaches. Surveying several tree-based approaches for source
code classification.

• Boosting the performance of tree-based approaches by (1) developing a sibling-
subtree convolutional neural network on ASTs, (2) combining the neural networks
and common machine learning algorithms, and (3) refining ASTs by pruning redun-
dant branches.

• For assembly code-based approaches. Formulating end-to-end approaches that
apply deep learning on assembly code of programs.

• Presenting an algorithm for constructing control flow graphs of assembly code.

• Designing a convolutional neural network for learning directed labeled graphs.

1.4 Dissertation Structure

The structure of this dissertation is as follows. Chapter 1 is an introductory chapter. It
is started with describing several software engineering problems that can be solved by
program analysis. Next, we discuss the traditional approaches and their limitations. I
thereafter present the motivation and contributions of this research.

Chapter 2 provides the background of deep learning. Firstly, I describe the architecture
of a simple network and the backpropagation algorithm for training the network. After
that, I focus on clarifying convolutional neural network architectures which are mainly
used to develop my proposed models.

Chapter 3 surveys traditional approaches for program analysis using machine learning
and software metrics. To improve the performance, I propose a hybrid model of genetic
algorithms and SVMs to simultaneously optimize the parameters and feature weighting/

13

1.4. DISSERTATION STRUCTURE

selection. I conduct experiments on benchmark datasets for software defect prediction to
verify the proposed model.

Chapter 4 presents approaches based on tree representations of source code written
in programming languages with grammars. We apply machine learning techniques for
tree structures including tree edit distance (TED), recursive neural networks, tree-based
convolutional neural networks, and sibling-subtree convolutional neural networks. In ad-
dition, I proposed a combination of tree-based networks and kNN with TED to enhance
the accuracies. The approaches are assessed on a task of source code classification by
functionalities.

Chapter 5 aims to address tasks of source code analysis by applying graph-based ap-
proaches. Regarding this, each program is converted to a graph of control flow. We there-
after propose a graph-based convolutional neural network to build classifiers on graph
datasets. The experiments are conducted on datasets of software defect prediction and
malware analysis tasks.

Finally, we summarize the work in this dissertation mainly presented in Chapters 3, 4,
and 5 including three directions of approaches for solving software engineering problems.
For each direction, we have proposed several techniques to pre-process data and developed
learning models to achieve remarkable performance.

14

Chapter 2

Deep Learning Background

2.1 Neural Networks

2.1.1 The Basic Definitions

A neural network is a computational model that is built from a set of interconnected
processing elements, units or nodes called neurons. We will start with describing a basic
element that is used to construct neural networks. Fig. 2.3 shows the components of a
single neuron including inputs, an activation function, and an output. The inputs come
from the other neurons or external sources, in which each one is associated with a weight
indicating its relative importance to other inputs. To produce the output, the neuron
applies a function f to the weighted sum of the inputs. Given an input x in n−dimensional
space, the corresponding output is computed by the following function:

y = f(W T · x+ b) (2.1)

In the case of Fig. 2.3, the neuron takes two numerical inputs x1 and x2 with the weights
w1 and w2. Additionally, there is another input 1 with the weight b called the bias. The
role of the bias is to allow shifting the activation function to the left or right.

The activation function f is to transform non-linearly from the inputs into the output.
There are a number of activation functions. They should have some desirable properties
as follows:

Figure 2.1: A single neuron

15

2.1. NEURAL NETWORKS

• Nonlinear. This is an important property that allows networks able to learn complex
functions. Indeed, a two-layer neural network with nonlinear activation functions is
proven to be a universal approximator. Meanwhile, a multi-layer network that all
its neurons use linear activation functions is just equivalent to a single-layer model.

• Continuously differentiable. The most common algorithm for training neural net-
works is gradient descent. The gradient descent finds the minimum of a function
by taking steps proportional to the inverse direction of the gradient at the current
point, in which the gradient is a multi-variable generalization of the derivative. Thus,
the continuously differentiable property is necessary to enable us to apply gradient-
based optimization methods. Some activation functions may not differentiable at
certain points. In these cases, gradient-based methods make no operation on the
non-differentiable points.

• Monotonic. This is to guarantee that the error surface associated with a single-layer
model is convex.

Fig. 2.2 plots some commonly used activation functions including sigmoid, tanh, and
ReLU . Their equations are listed below:

• sigmoid maps any sized inputs to outputs in range [0,1]

σ(x) =
1

1 + e−x
(2.2)

• tanh maps input to output ranging in [-1,1]

tanh(x) =
2

1 + e−2x
− 1 = 2σ(2x)− 1 (2.3)

• ReLU removes negative part of function

ReLU(x) = max(0, x) (2.4)

A neural network is a collection of such single neurons arranged in layers, in which the
output of a neuron can be the input of another. Neurons between two adjacent layers have
connections among them and each connection is associated with a weight. Fig. 2.3 shows a
simplest type of neural networks called a feedforward neural network. The network receives
input data from other sources at the first layer, performs different transformations, and
produces the outputs at the last layer. The activation of a neuron i is the sum of the inner
product of its inputs and connection weights, and the bias: ai = f(Wi · x + bi). Assume
that the layers are fully-connected wherein every neuron in a layer is connected to all
neurons in another layer. This means that the neurons in a layer have the same set of
inputs, and we can write the activation computations for neurons in the layer in matrix
notation as:

z = Wx+ b (2.5)

16

2.1. NEURAL NETWORKS

10 5 0 5 100.0

0.5

1.0

(a) Sigmoid

10 5 0 5 10

1.0

0.5

0.0

0.5

1.0

(b) Tanh

10 5 0 5 100

5

10

(c) ReLU

Figure 2.2: Some examples of activation functions

Figure 2.3: The architecture of a feedforward neural network with one hidden layer

a = f(z), (2.6)

where x ∈ Rn, W ∈ Rm×n, b ∈ Rm and f is applied element-wise:

f(z) = f([z1, z2, ..., zm]) = [f(z1), f(z2), ..., f(zm)]. (2.7)

In a feedforward network, the data is transformed and transferred in one direction from
the input layer, through the hidden layers, and to the output layer. There are no cycles
or loops in the network. The input nodes are responsible for receiving the information
from outside and just passing them to the hidden nodes without any computation. The
hidden nodes perform different types of transformations step by step through layers to

17

2.1. NEURAL NETWORKS

the output. The computation process can be formulated as follows:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

a(3) = f(z(3))

z(o) = W (3)a(3) + b(o)

y = a(o) = f(z(o))

(2.8)

The output of the last layer is the result of the transformation done by the network model.
Observing these values, we can evaluate the error of the model according to a certain
measure. To obtain the optimal model, a set of data samples needs to be provided, and
the model parameters are adjusted during a training procedure with the aim of minimizing
the error made by the model on such dataset. In the next section, I will describe the general
procedure for training neural networks, called backpropagation.

2.1.2 Training Neural Networks

The goal of training a neural network is to find a set of weights and biases such that
for each input vector the network model can produce the desired output. To do that, we
need to define an error function (sometimes known as the cost function or loss function)
that maps each output vector to a real number. During the training process, the trainer
makes efforts to minimize such error function to obtain the optimal model. Considering
supervised learning, each sample is assigned a true label. The error of the network for
each sample can be computed based on comparing the output and the true label. Various
functions can be used the measure the error of a network model. Selecting a suitable
function plays a critical role in training the network. A standard choice is the mean
square error (MSE) that estimates the difference of the output and desired vectors by
Euclidean distance. The MSE for a single sample and for n samples as computed by the
Eq. 2.9 and Eq. 2.10.

MSEi =
1

2
(ŷi − yi)2, (2.9)

MSE =
1

2n

n∑
i=1

(ŷi − yi)2 (2.10)

where ŷi is the vector predicted by the network, and yi is the expected vector.
An efficient algorithm for optimizing neural networks is backpropagation using gradi-

ent descent method. The method performs an iteration procedure to adjust the network
parameters such as the error function converges to the minimum value. At each step, we
determine the gradient of the function at the current point by the following equation:

∇E = (
∂E

∂w1

,
∂E

∂w2

, ...,
∂E

∂wl
) (2.11)

18

2.1. NEURAL NETWORKS

Figure 2.4: Backpropagation algorithm

After that, each weight is adjusted by an amount proportional to the negative of the
partial gradient:

∆wi = −γ ∂E
∂wi

, for i = 1, ..., l (2.12)

where l is the number of weights, and γ is the learning rate to control the convergence
speed to the minimum value.

Since transforming from the input to the output is performed by a sequence of function
compositions, the partial derivatives of the error function with respect the weights cannot
be taken directly. In this case, the backpropagation algorithm is utilized to follow the
inverse direction of the feedforward process to compute gradients for all the weights. The
Fig. 2.4 indicates four main steps of the backpropagation algorithm. Firstly, the model
parameters are randomly initialized. For each iteration, we traverse all the samples and do
forward and backward steps for each sample. In forward step, the output of the sample is
computed according to equation 2.8. The backward step computes the partial derivatives
using the chain rules (Eq 2.11), and updates the weighs accordingly (Eq. 2.12). The
training procedure finishes when satisfying the stopping criteria.

To illustrate the backward step, we will take an example of the feedforward network in
figure 2.3 with its computations described in equation 2.8. Let consider a single weight of
the connection between the ith neuron in the penultimate layer and the jth neuron of the
output layer, its derivative can be easily computed by the chain rule:

19

2.1. NEURAL NETWORKS

∂E

∂W
(3)
ij

=
∂E

∂f(z
(o)
j)

∂f(z
(o)
j)

∂W
(3)
ij

=
∂E

∂f(z
(o)
j)

∂f(z
(o)
j)

∂z
(o)
j

∂z
(o)
j)

∂W
(3)
ij

=
∂E

∂f(z
(o)
j)

∂f(z
(o)
j)

∂z
(o)
j

a
(3)
i

= E ′(f(z
(o)
j))f ′(z

(o)
j)a

(3)
i

= δja
(3)
i

(2.13)

The equation 2.13 is computable because the functions are differentiable and the values
are precomputed in the forward step. The full gradient of W (3) is written as follows:

∂E

∂W (3)
= δ(o)a(3)

T
(2.14)

where δ(o) ∈ Rn, with n is the number of neurons in the output layer. δ(o) and a(3) can be
seen as the error signals and input signals of the output layer. The derivatives for biases
are computed similarly:

∂E

∂b(o)
= δ(o) (2.15)

The chain rule can be applied in the same manner for the connection weights of low
layers. Indeed, the partial derivatives of W (2) are written by the following equation:

∂E

∂W (2)
=

∂E

∂f(z(3))

∂f(z(3))

∂W (2)

=
∂E

∂f(a(3))

∂f(a(3))

∂f(z(3))

∂f(z(3))

∂W (2)

=
∂E

∂f(z(o))

∂f(z(o))

∂f(a(3))

∂f(a(3))

∂f(z(3))

∂f(z(3))

∂W (2)

=
∂E

∂f(a(o))

∂f(a(o))

∂f(z(o))

∂f(z(o))

∂f(a(3))

∂f(a(3))

∂f(z(3))

∂f(z(3))

∂W (2)

= δ(o)W (3)f ′(z(3))a(2)
T

= δ(3)a(2)
T

(2.16)

From equations 2.14 and 2.16, the error signals of the output layer can be re-used to
compute the derivatives of the penultimate layer. One trick for network implementations
is that storing the error signals at each layer to reduce the computations in the backward
process.

20

2.2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.5: Illustration of local connectivity, two spatial dimensions and shared weights

2.2 Convolutional Neural Networks

2.2.1 Introduction

Convolutional neural networks (CNNs) are variants of multilayer feedforward neural net-
works using local connectivity, spatial arrangement, and shared weights. Fig. 2.5 illustrates
an example of such variants. The connections with the same color have the same weight.
The neurons in the hidden layer are arranged in two spatial dimensions. Each neuron is
connected with a sub-region in the input layer spatially. The set of connection weights
are replicated for every neuron in the same level. It should be noted that neurons along
the depth connect to the same region by different weights. Hidden layers built by these
manners are called convolutional layers that are the core blocks of a CNN.

Convolutional neural networks are extremely efficient for learning large-scale and high-
dimensional inputs. In terms of the architecture, CNNs vastly reduce the number of pa-
rameters and avoid overfitting in comparison with regular networks. Taking the image
processing task as an example, images have a size of 600 × 600 × 3 respect with width,
high, and color channels. For a regular network, each neuron in the first hidden layer has
600*600*3 = 1,080,000 weights, and the hidden layer mostly has many such neurons. As
a result, the network contains a huge number of parameters that would lead to overfit-
ting. Meanwhile, for a convolutional network with the local-region of size 20 × 20 × 3 ,
each neuron in the hidden layer only needs 20*20*3 = 1,200 weights. For learning perfor-
mance, replicating weights across the dimensions allows CNNs be able to discover features
regardless of their position in the input. In addition, we can construct a deep network
by stacking multiple convolutional layers to learn high-level abstract features. Due to the
tremendous advantages, convolutional neural networks have made many breakthroughs
on numerous practical tasks such as programming language processing [66, 92], natural
language processing [48], image processing [81], and so on.

21

2.2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.6: A convolutional layer with 5x5x3 filters for input images

2.2.2 The General Architecture

A simple CNN is a sequence of layers and it is designed specifically for handling high-
dimensional inputs such as images, character sequences, and so on. The CNN architectures
are formed by three main types of layers including convolutional layer, pooling layer, and
fully-connected layer. In this section, we will describe in details the individual layers
of CNNs on images. In next chapters, we will discuss several variations on other data
structures like trees and graphs.

The convolutional layer is the core building block of a convolutional neural network.
For image processing tasks, each image is represented as a three-dimensional array with
respect to width, height, and three color channels (Red, Green, Blue). A sub-region is
spatially along the width and height, and extends through the all channels. Fig. 2.6 shows
a convolutional layer that takes an input image of size 32× 32× 3 and connects to sub-
regions of size 5× 5× 3. The neurons are arranged in three dimensions. With respect to
the above description, neurons along the width and height share a set of weights called
a filter, and neurons along the depth look at the same region. The forward pass of this
layer can be viewed as sliding each filter over the width and height of the image, and
computing dot products between the filter and the input at any position. This process
produces a two-dimensional activation map that corresponds to the set of neurons on
a surface. The activation maps of the filters are stacked along the depth dimension to
form the convolutional layer. We can see that the convolutional layer transforms from the
input to the output with the same dimensions (width, height, depth). Thus, we can stack
another convolutional layer on the top of the output in the same manner to perform more
abstract transformations.

The number of neurons and spatial arrangement of a convolutional layer are controlled
by three parameters including the depth, stride, and zero-padding. Next, we will discuss
these parameters.

• The depth corresponds to the number of filters we intend to use. Each filter works

22

2.2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.7: The feature maps of two filters on an input image

as a feature extractor to detect certain types of visual features on the input image
such as an edge of an orientation, circle-like patterns. Fig. 2.7 shows an example of
applying two filters on an input image to produce feature maps. Depending on each
problem, we should determine the suitable number of filters such that extracted
features are enough to capture the objects on images.

• The stride is the number values that the filter slides over the input spatially. The
stride being S means that the filters jump S pixels at a time when we slide horizon-
tally or vertically over the image. The greater stride produces the smaller feature
map size. In practice, smaller strides work better.

• The zero-padding is adding zeros around the borders. As can be seen in Fig. 2.6,
the size of a feature map is smaller than that of the input. Without padding, the
information at the borders is lost quickly after several convolution layers. Therefore,
the zero-padding should be used to control the spatial size of the output. Commonly,
we will use it to preserve the structures of the input such that the input and the
output have exactly the same width and height.

Given the three parameters, the spatial size of the output can be computed by (W −
F+2P)/S+1, where W, F, P and S are the input size, filter size, zero-padding and stride,
respectively. Taking 2.6 as an example, the 32× 32 input, 5× 5 filters with stride 1 and
pad 0, the size of each feature map is (32 − 5 + 2 ∗ 0)/1 × (32 − 5 + 2 ∗ 0)/1 = 28 × 28.
This means that each surface includes 28× 28 = 784 neurons arranged in two dimensions
28× 28.

Pooling layer In a CNN, a pooling layer is commonly inserted between two convo-
lutional layers to perform dimension reduction. Convolutional layers are responsible to
extract features using a set of filters, but they preserve the structure of the input. After
a convolution, the spatial size of the output is similar to that of the input, or exactly the
same in the case of using zero-padding. For high-dimensional data, dimension reduction
is necessary to reduce the parameters and computation in the network to control overfit-
ting. This is implemented in convolutional neuron networks by stacking a pooling layer
of the top of each convolutional layer. The pooling layer resizes spatially, independently

23

2.2. CONVOLUTIONAL NEURAL NETWORKS

(a)
(b)

Figure 2.8: A max pooling layer to reduce the dimensions spatially, independently in each
depth slice of the input.

each feature map by using an operation such as max, average, or L2-norm. The depth
dimension is unchanged.

Generally, for image processing tasks, a pooling layer takes inputs of sizeW1×H1×D1,
and produces the outputs of size W2 ×H2 ×D2, in which the output size is determined
as follows:

• W2 = (W1 − F)/S + 1

• H2 = (H1 − F)/S + 1

• D2 = D1

where F and S are the filter size and stride of the pooling layers. Fig. 2.8 shows a max
pooling layer with the filter size of 2× 2 and the stride of 2. This layer reduces a half of
the spatial size (width and height) and preserves the depth dimension of the input. For
each depth slice, the max operation is applied to all non-overlapping regions of size 2× 2
and picks the max of the four values in each region. It is worth noting that zero-padding
is not commonly used in pooling layer, and the little regions are overlapping in the case
of F > S and non-overlapping in the case of F = S.

Back-propagation for a convolutional layer or a pooling layer is applied in the similar
way to that of a feedforward layer. During the backpropagation of the convolutional layer,
every neuron computes the gradient for its weights. These gradients are added up across
each depth slice, and updating a single set of weights is performed per slice.

For a pooling layer, the forward pass reduces each N ×N block to a single value. The
backpropagation routes gradient to the inputs that produce the output in the forward pass.
In the case of max-pooling, the error is just passed to the previous layer at the neuron
with the max value. Since the other neurons in the pooling block did not contribute to the
output, their errors are assigned 0. For average pooling, the error is multiplied by 1

N×N
and assigned to all the neurons in the pooling block.

24

2.3. EVALUATION MEASURES

2.3 Evaluation Measures

To compare the performance of machine learning approaches, we will use a set of evalua-
tion measures. Most of the common measures can be computed from the confusion matrix
that is derived from observing the outputs. The confusion matrix is a table, in which each
row represents the number of instances in a predicted class and each column represents
the number of instances in an actual class (or vice versa). Table 2.1 shows the confusion
matrix for binary classification problems that data samples are classified into two cate-
gories of positive and negative labels. There are four possible outcomes when predicting
an instance using a classifier. If both the actual and predicted labels are positive, the
instance is counted as a true positive; if the actual label is positive and the predicted
label is negative, the instance is counted as a false negative; if the actual label is negative
and the predicted label is positive, the instance is counted as a false positive; if both the
actual and predicted labels are negative, the instance is counted as a true negative. Based
on the confusion matrix, several evaluation measures are computed as follows:

Table 2.1: The confusion matrix

Predicted
1 -1

Actual 1 True Positive (TP) False Negative (FN)
-1 False Positive (FP) True Negative (TN)

• True positive rate (TPR), also called recall, hit rate of sensitivity, is the ratio of
correctly predicted positive instances to total positive instances.

TPR = recall =
TP

TP + FN
(2.17)

• True negative rate, also called specificity, is the ratio of correctly classified neg-
ative instances to total negative instances.

TNR =
TN

TN + FP
(2.18)

• False positive rate, also called false alarm rate, is the ratio of incorrectly classified
negatives to total negative instances.

FPR =
FP

FP + TN
(2.19)

• Precision is the ratio of correctly predicted positive instances to the total predicted
positive instances.

Precision =
TP

TP + FP
(2.20)

25

2.3. EVALUATION MEASURES

• Accuracy is the ratio of correctly classified instances to the total instances.

Accuracy =
TP + TN

TP + FN + FP + TN
(2.21)

• F1 score is the harmonic average of precision and recall. This measure takes into
account both precision and recall to compute the score.

F1 = 2
Recall ∗ Precision
Recall + Precision

(2.22)

In machine learning, the area under the receiver operating characteristic (ROC) curve,
known as the AUC, that estimates the discrimination ability between classes is an impor-
tant measure to judge the effectiveness of algorithms. It is equivalent to the non-parametric
Wilcoxon test in ranking classifiers [25]. According to previous research, AUC has been
proved as a better and more statistically consistent criterion than the accuracy [55], es-
pecially for imbalanced data. In the cases of imbalanced datasets that some classes have
much more samples than others, most of the standard algorithms are biased towards the
major classes and ignore the minor classes. Consequently, the hit rates on minor classes
are very low, although the overall accuracy may be high. Meanwhile, in practical applica-
tions, accurately predicting minority samples may be more important. Taking account of
software defect prediction, the essential task is detecting faulty modules. However, many
software defect datasets are highly imbalanced and the faulty instances belong to minority
classes [75].

(a)
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

(b)

Figure 2.9: An example of ROC curve plotted according to the outputs of a classifier.

The AUC is estimated by the area under the ROC curve that depicts the tradeoffs
between hit rates and false alarm rates. Fig. 2.9 illustrates plotting the ROC curve for a
probabilistic classifier that outputs scores to assess the degrees of the instance belonging

26

2.3. EVALUATION MEASURES

to classes. With a threshold value, if the classifier output is above the threshold, the
predicted label is positive; otherwise, is negative. We thereafter compute the TPR and
FPR based on the confusion matrix to create a point in ROC space. By varying the
threshold from the min to the max values of scores and connecting all the points, we will
obtain the ROC curve.

To extend the use of ROC curves to multi-class problems, the average results are com-
puted based on two ways: 1) macro-averaging gives equal weight to each class, and 2)
micro-averaging gives equal weight to the decision of each sample [85]. According to the
AUC measure, the higher value the better discrimination ability the classifier has.

27

Chapter 3

Software Metrics-based Approaches

This chapter presents a traditional approach for program analysis based on software met-
rics. While current methods consider software metrics with the same role in learning mod-
els, my research discovers the importance extent for each metric according to its relevance
the class labels. To do this, I proposed a combination model of genetic algorithms (GAs)
and support vector machines (SVMs) to simultaneously optimize the classifier parameters
and metrics weights.

3.1 Software metrics

A software metric is a quantitative measure of a given attribute of a system, component,
or process. Table 3.2 describes 17 metrics of File 1.c written in C language. The metric
values are obtained by using a standard tool for source code metrics and quality analysis,
namely RSM 1. Analyzing software metrics brings many advantages to software develop-
ment. For example, with a defect prediction system, developers will pay more attention
to potentially defective modules to localize and fix bugs. This enhances software quality
and reduces the development time and the product cost as well. Estimating the level
of complexity supports managers in schedule and budget planning, cost estimation, and
optimal personnel task assignments.

1 File 1.c
2 #include<stdio.h>
3 int gcd(long long int a,long long int b)
4 {
5 if(b!=0)
6 return gcd(b,a%b);
7 else
8 return a;
9 }

10 int main()
11 {

1http://msquaredtechnologies.com/m2rsm/

28

http://msquaredtechnologies.com/m2rsm/

3.1. SOFTWARE METRICS

12 int t;
13 scanf("%d",&t);
14 while(t--)
15 {
16 long long int q,p;
17 scanf("%lld %lld",&q,&p);
18 long long int h=gcd(q,p);
19 long long int l=(p*q)/h;
20 printf("%lld %lld\n",h,l);
21 }
22 }

Table 3.1: List of software metrics of source code files

No. Metrics Meaning Value
1 File Function Count Number of functions 2
2 Total Function LOC Lines of Code 18
3 Total Function Pts LOC Function Points Derived from LOC metrics 0.4
4 Total Function eLOC Effective LOC 12
5 Total Function Pts eLOC Function Points Derived from lLOC metrics 0.3
6 Total Function lLOC Logical Statements LOC 9
7 Total Function Pts lLOC Function Points Derived from lLOC metrics 0.2
8 Total Function Params Number of Input Parameters 2
9 Total Function Return Number of Return Points 3
10 Total Cyclo Complexity Cyclomatic Complexity Logical Branching 4
11 Total Function Complex Functional Complexity (Interface + Cyclomatic) 9
12 Max Function LOC Max LOC of functions 12
13 Average Function LOC Average LOC of functions 9.0
14 Max Function eLOC Max eLOC of functions 8
15 Average Function eLOC Average eLOC of functions 6.0
16 Max Function lLOC Max lLOC of functions 7
17 Average Function lLOC Average lLOC of functions 4.5

Many software metrics have been proposed over a period of time. They can be classi-
fied into three categories: product metrics, process metrics, and project metrics. Product
metrics describe the characteristics of the product such as size, complexity, design fea-
tures, performance, and quality level. Process metrics are a collection of software-related
activities including the effectiveness of defect removal during development, the pattern of
testing defect arrival, and the response time of the fixing process. Project metrics describe
the project characteristics and execution, for instance, the number of software developers,
the staffing pattern over the life cycle of the software, cost, schedule, and productivity.
Some metrics belong to multiple categories. For example, the in-process quality metrics
of a project are both process metrics and project metrics [43]

29

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

3.2 Feature weighting using genetic algorithms

3.2.1 Introduction of Support Vector Machines (SVMs)

This section will briefly describe an effective classification algorithm in supervised machine
learning called Support Vector Machines (SVMs) [64]. Firstly, we introduce the algorithm
for separable datasets, then present its general version designed for non-separable datasets,
and finally provide a theoretical foundation for SVMs based on the notion of margin. We
start with the description of binary (two-class) classification problems in the separable
case.

The optimal hyperplane for separable data

Given a training set S = {xi, yi}mi=1, with input vectors xi ∈ Rn and target labels yi ∈
{−1,+1}, for the linearly separable case, the data points will be correctly classified by
any hyperplanes w · x+ b = 0 satisfying

yi(xi · w + b)− 1 ≥ 0, ∀i = 1, ..,m (3.1)

Although many hyperplanes perfectly separate the training samples into two classes,
SVMs find an optimal separating hyperplane with the maximum margin (distance to
closest points) by solving the following optimization problem:

min
w,b

1

2
||w||2 (3.2)

subject to yi(w · xi + b) ≥ 1, ∀i ∈ [1,m]. This quadratic optimization problem can be
solved by finding the saddle point of the Lagrange function:

L (w, b, α) =
1

2
||w||2 −

m∑
i=1

αi[yi (w · xi + b)− 1] (3.3)

where αi denotes Lagrange variables, αi ≥ 0 ∀ i = 1, ..m.
The Karush Kuhn -Tucker (KKT) conditions for a maximum of Eq.(3.3) are obtained

by setting the gradient of the Lagrangian with respect to the primal variables w and b to
zero and by writing the complementary conditions:

∇wL = w −
m∑
i=1

αiyixi = 0 ⇒ w =
m∑
i=1

αiyixi (3.4)

∇bL = −
m∑
i=1

αiyi = 0 ⇒
m∑
i=1

αiyi = 0 (3.5)

∀i, αi [yi (w · xi + b)− 1] = 0 ⇒ αi = 0 ∨ yi (w · xi + b)− 1 = 0 (3.6)

By Eq.(3.4), the weight vector w solution of the SVM problem is a linear combination
of the training set vectors x1, ..., xm. According to complementary conditions (3.6), the

30

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

value of w only depends on vectors xi that correspond the αi 6= 0. Such vectors are called
support vectors. They fully define the maximum-margin hyperplane or the SVM solution.

Substitute Eqs. (3.4) and (3.5) into Eq. (3.3), the dual form Lagrangian LD(α) of
Eq. 3.2 is derived as follows:

maxLD(α)
α

=
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj) (3.7)

subject to αi ≥ 0 i = 1, ..,m and
∑m

i=1 αiyi = 0.
To find the optimal hyperplane, LD(α) must be maximized with respect to non-negative

αi. The objective function is a standard quadratic optimization problem that can be solved
by using several standard optimization methods. The solution α can be used directly to
determine the parameters w∗ and b∗ of the optimal hyperplane returned by the SVM.
Thus, we obtain an optimal decision hyperplane f(x) (Eq.(3.8)) and an indicator decision
function sign[f(x)].

f(x) =
m∑
i=1

α∗i yi (xi · x) + b∗ =
∑
i∈SV

α∗i yi (xi · x) + b∗ (3.8)

where b∗ is calculated based on rewriting condition Eq.(3.6) as follows:

b∗ = yi −
m∑
j=1

αjyj(xj · xi) (3.9)

The optimal hyperplane for non-separable data

In most practical settings, data are often not linearly separable [64]. For any hyperplane
w · x+ b = 0, there exists xi such that

yi(xi · w + b)− 1 � 0 (3.10)

In this case, an SVM selects a hyperplane that minimizes the training error. The con-
straints in Section 3.2.1 cannot all hold simultaneously, but the above concepts can be
extended to the non-separable case. To get the formal setting of this problem, non-negative
slack variables ξi are proposed such that:

yi(xi · w + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..,m (3.11)

Here, a slack variable ξi measures the distance by which vector xi violates the desired
inequality, yi(w · xi + b) ≥ 1. For a hyperplane w.x+ b = 0, a vector xi with ξi > 0 can be
viewed as an outlier. An SVM finds the optimal hyperplane by minimizing the expression
below:

min
w,b,

1

2
||w||2 +C

m∑
i=1

ξi (3.12)

subject to yi(w · xi + b) ≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1,m]

31

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

Minimizing the expression (3.12) is an NP-hard problem. There are two conflicting
objectives: seeking a hyperplane with larger margin and limiting the total amount of
slack variables measured by

∑m
i=1 ξi. The parameter C ≥ 0 is known as trade-off between

two such objectives. Typically, C is determined via k-fold cross validation method.
The optimization model can be solved by maximizing the dual variables Lagrangian

LD(α) (Eq.(3.13)), which only differs from that of the separable case Eq.(3.7) by the
constraints α i ≤ C:

maxLD(α)
α

=
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj) (3.13)

subject to 0 ≤ αi < C, i = 1, ..,m ∧
∑m

i=1 αiyi = 0.
Two parameters w and b of the optimal hyperplane can be determined directly via

solution α similar to separable case (Eqs.(3.4), (3.9)). However, support vectors in non-
separable case include outliers and vectors which lie on marginal hyperplanes.

Non-linear SVM

The main idea of creating non-linear kernel classifiers is mapping the data into a higher-
dimensional feature space in the hope that in the higher-dimensional space the data could
become more easily separated or better structured. This is performed by using a mapping
function Φ and replacing the dot products in Eq.(3.13) by the kernel function (3.14):

K(xi, xj) = (Φ(xi),Φ(xj)) (3.14)

maxLD(α)
α

=
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK(xi, xj) (3.15)

subject to 0 ≤ αi < C, i = 1, ..,m ∧
∑m

i=1 αiyi = 0

Some widely used kernel functions include polynomial, radial basis function (RBF) and
sigmoid kernel, which are shown as functions (3.16), (3.17) and (3.18). Choosing the
most appropriate kernel function and its parameters are completely based on the specific
dataset. There are various methods to determine parameters in kernel functions. In this
work, we use the genetic algorithm to find the optimal values of parameters and weights
of data attributes.

• Polynomial kernel:
K(xi, xj) = (1 + xi · xj)d (3.16)

• Radial basis function kernel (alternative form):

K(xi, xj) = exp(−γ||xi − xj||2) (3.17)

• Sigmoid kernel:
K(xi, xj) = tanh(kxi · xj − δ) (3.18)

32

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

3.2.2 Genetic algorithms - GAs

Genetic algorithms have been used in science and engineering as adaptive algorithms
for solving practical problems [63]. The exploitation of the principles of evolution as a
heuristic method enables genetic algorithms to solve optimization problems effectively
(with the acceptable solutions) without using the traditional conditions (continuity or
differentiability of the objective function) as prerequisites.

One of the most important characteristics of GAs is the ability to work with a population
of individuals, each representing a feasible solution to a given problem. The search is now
performed in parallel on multi-points. However, this is not a simply multi-points searching
algorithm because the points are interactive with each others based on principles of natural
evolution [29]. The basic steps of GAs (Fig. 3.1) are described as follows [71]:

• Step 1 : t = 0 ; Initialize P (t) = {x1, x2, ..., xn} , where n is the number of individuals
.

• Step 2: Calculate the value of the objective functions for P (t).

• Step 3: Create a crossover pool MP = se{P (t)} where se is selection operator.

• Step 4: Determine P ′(t) = cr{MP}, with cr is the crossover operator.

• Step 5: Determine P”(t) = mu{P ′(t)}, with mu is the mutation operator.

• Step 6: Calculate the value of the objective functions for P”(t)

• Step 7: Determine P (t+ 1) = P”(t) and set t = t+ 1

• Step 8: Return Step 3, if the stop condition is not satisfied.

Solutions representation. This task plays a crucial role in designing genetic algo-
rithms, deciding whether to apply the evolutionary operators. One of the traditional
representations of GAs is the binary representation. In this way, a feasible solution to a
problem is represented as a vector of bits called a chromosome. Each chromosome con-
sists of many genes; a gene represents a parametric component of the solution. A different
type of chromosome representation is using real numbers. With this representation, the
evolution operators will perform directly on the real values(genes).

33

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

Figure 3.1: Basic steps of genetic algorithm

(a) (b)

Figure 3.2: Illustration of the two-point crossover and mutation operators and their effects
in the generation of the offspring

Selection. The goal of the selection stage is guiding the search towards better individ-
uals and maintaining a high genotypic diversity in the population. The quality of each
individual is evaluated by mean of the fitness function. This value is used to determine
which individual will be selected for the next generation whereby the more greater quality
the individual has the more chance it is chosen. Some commonly used selection methods
include:

• Roulette wheel: Selecting individuals is based on probability (proportional to the
value of the fitness function). Each is assigned a slice of a circular “roulette wheel",
the size of the slice being proportional to the individual’s fitness. The wheel is spun
N times, where N is the number of individuals in the population. On each spin, the
individual under the wheel’s marker is selected to be in the pool of parents for the
next generation [63].

• Tournament selection: The selection process involves running several “tournaments"

34

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

Figure 3.3: The structure of a chromosome for optimizing C, γ and weights of features

between two individuals chosen randomly from the population. The better individual
(the winner) having the greater fitness value is selected for the next generation.

• Elitist selection: For this selection strategy, a limited number of individuals with
the best fitness values are chosen for the next generation. Elitism avoids losing
individuals with good genetics by crossover or mutation operators.

Crossover. Crossover operators are applied to generate new individuals from their par-
ents. Crossover operators are inspired by the idea that offspring inherit the best charac-
teristics from their parents. In terms of searching, crossover operators perform a search
of the area around the solution represented by the parent individuals. There are some
crossover techniques including single-point, two-point and uniform crossovers.

Mutation. Similar to crossover operators, mutation operators are also used to simulate
mutation phenomena in biology. Mutations often generate new individuals different from
their parents. In terms of searching, mutation operators aim to deploy the finding out of
the local area. Fig. 3.2 illustrates the genetic crossover and mutation operators.

The evolutionary process is repeated until the stop criteria such as the pre-defined
number of generations and an acceptable fitness value are satisfied [18,29] (Fig. 3.1).

3.2.3 Hybrid model GA-SVM for feature weighting and param-
eter optimization

In this section, we present in detail how to combine GA and SVM for feature weighting
and parameter optimization involving chromosome design, fitness function, and system
architecture. Our implementation was carried out on C# language by extending LIBSVM,
which is originally designed by Chang and Lin (2001)[16].

Chromosome design

The proposed model searches kernel function parameters and the weights of features
simultaneously. Hence, the chromosome must contain two such parts. In our experiments,
we used the RBF kernel function for two reasons. Firstly, this kernel maps samples into a
higher-dimensional space; hence, it can handle the case when the relation between class
labels and attributes is nonlinear. The second reason is the number of hyperparameters,
which influences the complexity of model selection. The RBF kernel only requires two
parameters C and γ. Fig. 3.3 shows the structure of a chromosome in this case.

Real coding was used to represent the chromosome. All genes in the chromosome have
value in the range [0, 1]. Two first genes c and g represent the values of C and γ respec-
tively, while w1 ∼ wn represent the weights of features. Note that, we search values of C

35

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

and γ in the ranges [C1, C2] and [γ1, γ2]. Thus, parameters C and γ of the SVM classifier
are obtained by mapping c and g into corresponding ranges via the following formula:

C = C1 + c ∗ (C2 − C1) and γ = γ1 + g ∗ (γ2 − γ1) (3.19)

In the implementation, we allow users to vary lower-bound and upper-bound values of C
and γ as well as other parameters of the genetic algorithm.

Fitness function

The performance of SVM classifiers is used to design a single objective function for GAs.
In the decoding process, both training and testing datasets are transformed by multiplying
feature ith with the corresponding weight wi, i = 1, .., n. After that, the SVM model with
the RBF kernel function is built based on C, γ (Eq.(3.19)) and the transformed training
dataset. The accuracy of the classifier on the testing dataset is used to assesses the quality
of the chromosome.

In GAs, the objective functions are very important and they notably affect the rate
of convergence and the quality of the best solutions [24]. In the model, we also provide
different objective functions such as the accuracy, F1 score, or MCC(3.20).

MCC = 2 · TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3.20)

System architecture

We suggest an architecture for the hybrid system GA-SVM as Fig. 3.4. In this model,
the task of GA is to search optimal parameters of SVM and weight of features. Besides,
the SVM plays a role as oriented search strategy for GA by evaluating the fitness of
chromosomes. The details of the hybrid model are described as follows:

1. Data pre-processing (scaling). Scaling before applying SVM is very important. The
main advantage of scaling is to prevent attributes in greater numeric ranges dom-
inating those in smaller numeric ranges. Another advantage is to avoid numerical
difficulties during the calculation process [37]. When using the Grid algorithm, ac-
cording to our experimental results, feature value scaling can help to increase SVM
accuracy. Normally, each feature is linearly scaled to the range [−1,+1] or [0, 1] by
formula (3.21).

v′ =
v −mina

maxa −mina
(3.21)

where v′ is scaled value, v is original value, mina, maxa are low bound and upper
bound of the feature value, respectively.

Typically, we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
[−10,+10] to [−1,+1]. If the first attribute of testing data lies in the range [−11,+8],
we must scale the testing data to [−1.1,+0.8].

36

3.2. FEATURE WEIGHTING USING GENETIC ALGORITHMS

Figure 3.4: The system architecture of the hybrid GA-SVM model for feature weighting
and parameter optimization

37

3.3. EXPERIMENTS

For the task of finding the weights of features, scaling data may be unnecessary for
GA-SVMmodel. However, in order to gain the best results for the Grid algorithm, we
performed this process. Then all experiments of both the approaches were conducted
on the scaled datasets.

2. Decoding(generating training data and parameters C, γ for SVM). This step con-
verts the values of the chromosome into parameters C, γ of the SVM by Eq(3.19)
and the weights of features. In both the training and testing datasets, the feature
values of instances are multiplied by the corresponding weights using following for-
mula.

x̄ij = xij ∗ wj (3.22)

where xij and x̄ij are the value of the jth field of the ith instance before and after
scaling. wj is the weight of the jth field.

3. Fitness evaluation After decoding stage, C, γ and the scaled training dataset are
used to build the SVM model. The scaled testing dataset is used to evaluate the
performance of the classifier. When the predicted data is obtained, each chromosome
is evaluated by the fitness functions described in Section 3.2.3.

4. Genetic operators. In this step, a new generation is produced by genetic operators
including selection, crossover, mutation, and replacement.

5. Stopping criteria. The population is improved through many generations. The evo-
lutionary process ends when stopping criteria are satisfied. Some typical criteria are
used such as a number of iterations, acceptable results or a fixed number of last
generations without changing the fitness value.

6. Elitism replacement. To maintain the good solutions of each generation that may be
lost during the evolutionary process by crossover and mutation operators, we use the
elitism replacement technique. For each generation, we store the best chromosome
and replace worst chromosome in the next generation with such chromosome.

3.3 Experiments

3.3.1 Datasets

The datasets for conducting experiments were collected from the NASA2 (CM1, KC1,
KC2, and KC3) and the PROMISE3 (jEdit1 and jEdit2) repositories. They are extracted
from practical software projects and publicly available in order to motivate verifiable and
improvable predictive models of software engineering. Each data sample corresponds to a
module in the project, and is labeled as a clean code or defective code.

2http://openscience.us/repo/
3http://promisedata.org

38

http://openscience.us/repo/
http://promisedata.org

3.3. EXPERIMENTS

Table 3.2: Software metrics datasets

Dataset Language #Metrics #Clean #Defective System
CM1 C 21 394 48 NASAspacecraft instrument
jEdit1 Java 8 136 134 jEdit version 4.0_4.2
jEdit2 Java 8 161 202 jEdit version 4.2_4.3
KC1 C++ 21 897 315 Storage management
KC2 C++ 21 270 105 Scientific data processing
KC3 C++ 39 283 43 NASA MDP version

Table 3.2 shows statistics on the six datasets. jEdit1 and jEdit2 are calculated from
versions 4.0, 4.2 and 4.3 of the jEdit system, a well-known text editor written in Java.
They contain six attributes for object-oriented projects, number of public methods and
number of lines of code. The attributes of the other datasets include Halstead Complexity,
McCabe’s complexity, and those computed from statistical values of source code such as
operators, operands, number of lines of code, etc. As can be seen, most of the datasets are
imbalanced since the numbers of clean modules are much greater than that of defective
modules. This is a big challenge for any machine learning algorithm.

3.3.2 Experimental setup

The detailed settings for the genetic algorithm are as follows: population size 500, crossover
rate 0.9, mutation rate 0.05, two-point crossover, elite selection and elitism replacement.
In addition, we set the ranges of C [0.01 - 32000] and γ [10−6 - 8]. The aim of such
ranges is to limit the searching bounds of two SVM parameters when using the RBF
kernel (Eq.(3.19)). Corresponding to real-value coding, genetic operators are performed
as follows:

• Crossover
Xold

1 = {x11, x12, .., x1n}, Xold
2 = {x21, x22, .., x2n} (3.23)

xnew1t = x1t + σ(x2t − x1t), t ∈ [p1, p2] (3.24)

xnew2t = x2t − σ(x2t − x1t), t ∈ [p1, p2] (3.25)

Xnew
1 = {x11, .., x1p1−1, xnew1p1

, .., xnew1p2
, x1p2+1, ..., x1n} (3.26)

Xnew
2 = {x21, .., x2p1−1, xnew2p1

, .., xnew2p2
, x2p2+1, ..., x2n} (3.27)

where p1 and p2 are two random values of cut points. Xold
1 and Xold

2 represent the
pair of parents before crossover operation; Xnew

1 and Xnew
2 represent offspring. In

addition, σ, which has the range of [-1,1], is a random micro number that controls
the variance of each crossover operation. In other words, we partially perturb the
parent in directions of the differential vector between two parents.

39

3.3. EXPERIMENTS

• Mutation
Xold = {x1, x2, .., xn} (3.28)

xnewk = LBk + σ(UBk − LBk) (3.29)

Xnew = {x1, x2, .., xnewk , .., xn} (3.30)

where k is the position of the mutation. LB and UB are the lower and upper bounds
on the parameters. LBk and UBk denote the lower and upper bounds at location k.
Xold and Xnew represent the individuals before and after the mutation operation.

The stopping criteria are that the number of generations reaches 600 or the best fitness
value does not improve during the last 100 generations. The best chromosome of the final
generation is selected as the solution of the problem.

We use k-fold cross validation technique to assess the results. In this method, the
original data is randomly partitioned into k equal sized sub-parts. The cross-validation
process is repeated k times (the folds). At step k, the kth part is used for testing by the
trained model, which is built based on the remaining k− 1 sub-parts. The k results from
the folds can then be averaged (or otherwise combined) to produce a single estimation.
The advantages of this technique are that all of the test sets are independent and the
reliability of the the results could be improved. In our experiments, we choose k = 10 and
combine k results to estimate the performance of the classifiers.

3.3.3 Results

Table 3.3 compares the performance of approaches in terms of the accuracy and F1 score.
The best and second best values are marked in bold, and italic bold, respectively. For
imbalanced data, the F1 score should be put in a higher priority than the accuracy. As
can be seen, the proposed model achieves the best results on all datasets. It improves an
accuracy of 2.26-7.98%, and an F1 score of 4.23-16.65% in comparison with the second
best.

Weighting software metrics is beneficial to build predictive models. Indeed, very low
values of F1 score indicate that most of the learning approaches have been suffered from
imbalanced data. Especially, in the cases of Boosting, and SVM with grid search, the
F1 scores are 0. This means that none of the defective modules is detected. Meanwhile,
detecting defective modules is more important than that of clean modules. In contrast,
the weighting model using GA and SVM can avoid bias in majority classes. It improves
both measures of the accuracy and F1.

40

3.3. EXPERIMENTS

Table 3.3: Performance comparison in terms of Accuracy and F1-score

CM1 jEdit1 jEdit2 KC1 KC2 KC3

Method Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

C4.5 88.01 3.60 70.37 71.40 60.88 63.20 73.35 35.80 75.47 47.70 86.20 34.80

Random Forest 87.78 6.90 71.48 71.60 66.12 69.00 75.33 38.40 76.80 54.50 85.28 11.10

Naive Bayes 84.16 30.00 67.78 61.00 52.89 34.00 73.35 38.20 79.20 50.00 81.90 37.90

Boosting 89.14 0.00 70.37 68.00 56.47 56.40 74.34 15.30 79.47 58.80 85.28 25.00

SVM grid search 89.14 0.00 76.30 75.90 65.56 69.00 76.73 31.20 78.67 48.10 87.12 4.50

GA-SVM 91.40 40.63 81.85 81.78 74.10 75.39 80.03 48.73 83.73 63.03 90.80 54.55

The approaches are also verified according to the ability to distinguish among classes.
This measure is estimated by the AUC (the area under the receiver operating characteristic
(ROC) curve). Table 3.4 shows the comparison based on the AUC. Similar to the case of
the F1, the SVM with grid search achieves low AUC values. Its performance is equivalent
to a random classifier (having an AUC of 0.5). However, when combining with GA, the
discrimination ability of the SVM is enhanced notably.

Table 3.4: Comparing the approaches according to the AUC measure

Method CM1 jEdit1 jEdit2 KC1 KC2 KC3
C4.5 0.566 0.747 0.632 0.603 0.653 0.579
Random Forest 0.751 0.804 0.734 0.687 0.767 0.763
Naive Bayes 0.7 0.7 0.682 0.669 0.766 0.74
Boosting 0.671 0.789 0.606 0.661 0.799 0.737
SVM grid search 0.5 0.763 0.652 0.584 0.654 0.512
GA-SVM 0.632 0.819 0.745 0.659 0.733 0.701

Analyzing the behavior of algorithms is not based on the final results, but also on
results during the execution process. To assess the combination ability between GA and
SVM, we recorded the fitness value (accuracy) of the best solution every 10 generations.
As shown in Fig. 3.5, the performance of SVM classifiers are improved continuously and
quickly converge to the optimal solutions after around 50 generations on most of the
experimental datasets. For KC3 and KC1 datasets, the rates of convergence are slower
than others. The optimal solutions are correspondingly obtained after near 150 and 250
generations.

From above analysis, we can conclude that software metrics have different contributions
to class labels and exploiting their roles is useful to build predictive models accurately.
Our proposed model of GA-SVM is an efficient tool to optimize the model parameters
and attribute weights simultaneously. It can improve the classification performance based
on various measures like the accuracy, F1, and AUC.

41

3.4. RELATED WORK

0 50 100 150 200 250 300 350
Generation

70

75

80

85

90

95

A
cc

ur
ac

y

CM1
jEdit1
jEdit2

KC1
KC2
KC3

Figure 3.5: Running process of the GA-SVM model on the six datasets.

3.4 Related work

Various algorithms have been proposed in the literature of feature weighting. These al-
gorithms can be divided into two groups: one which searches a set of weights through
an iterative algorithm and uses the performance of the classifier as feedback to select a
new set of weights [59,73,74]; the other computes the weights using the pre-existing bias
model, e.g. conditional probabilities, class projection, and mutual information [21,33,68].

For the iterative approaches, Wu employed an evolutionary computation based method,
namely Artificial Immune System (AIS), to find optimal attribute weight values automat-
ically for weighted NB classification (AISWNB) [94] . The performance of the proposed
method was validated on 36 UCI datasets and six image classification datasets from Corel
Image repository. The experimental results demonstrate that the AISWNB method can
significantly outperform its peers in classification accuracy, class probability estimation,
and class ranking performance.

Lee proposed a new paradigm of weighting method, which assigns a different weight to
values of each feature [51]. The method is called value weighting and implemented in the
context of naive Bayes using wrapper method (VWNB). They reported that the VWNB
method improves the performance of naive Bayes significantly and can be competitive
with other state-of-the-art supervised algorithms.

Regarding the pre-existing bias model, Sáez focused on imputation methods to improve
k-NN classification [76]. Under the imputation methods, the weight for each feature is es-
timated based on the rest of data and the Kolmogorov–Smirnov nonparametric statistical
test is utilized to measure the changes between the original and imputed distribution of

42

3.4. RELATED WORK

values. Three used imputation methods are k-NN Imputation (kNNI) [6], using Support
Vector Machine to fill in missing values (SVMI) [26], Concept Most Common (CMC) [32].
They showed that their method was an effective way of improving the performance of the
Nearest Neighbor classifier.

Jiang used a deep feature weighting (DFW) approach, which estimates the conditional
probabilities of naive Bayes by computing feature weighted frequencies from training
data [39]. Firstly, they applied the correlation-based feature selection (CFS) to select
relevant features, and then defined weights of selected features and non-selected features
as 2 and 1, respectively. These values are used to estimate the conditional probabilities of
naive Bayes. The experiments on 36 UCI datasets show that their method rarely degrades
the quality of the model compared to standard naive Bayes and, in many cases, improves
it dramatically.

Xiang proposed a novel attribute weighting framework called Attribute Weighting with
Smooth Kernel Density Estimation (AW-SKDE) [95]. In the AW-SKDE framework, the
attributes weights are generated by calculating the mutual information between the fea-
tures and the class label. They made an assumption that if one attribute shares more mu-
tual information with the class label, that attribute will provide more classification ability
than other attributes, and should therefore be assigned a higher weight. The experimental
results showed that the AW-SKDE algorithm achieves comparable and sometimes better
performance than the classical naive Bayes as well as other algorithms using a relaxed
conditional independence assumption. However, their algorithm suffers from over-fitting.

43

Chapter 4

Tree-based Approaches

The previous chapter introduced traditional approaches based on hand-craft features,
called software metrics. This chapter investigates more convenient approaches that auto-
matically learn the features from programs’ tree representations, known as abstract syntax
trees (ASTs). We conduct experiments using various algorithms from common learning
to deep learning to prove that ASTs are efficiently adapted to problems in source code
analysis. This chapter provides the main contents as follows:

• Introduction to abstract syntax trees.

• Surveying different learning models on tree structures including tree edit distance
(TED), tree-based convolutional neural networks.

• Presenting a technique for pruning redundant branches and reconstructing ASTs to
boost classification performance in terms of accuracy and running time.

• Developing a sibling-subtree convolutional neural network (SibStCNN).

• Combining deep neural networks and common learning algorithms to make more
powerful models.

These approaches are verified by a task of classifying source code according to func-
tionalities.

4.1 Abstract Syntax Trees

In computer science, an abstract syntax tree (AST) is a tree representation of the abstract
syntactic structure of source code written in a programming language. Fig. 4.1 shows an
example of the AST of the code for the Euclidean algorithm

44

4.2. LEARNING APPROACHES ON TREE STRUCTURES

Algorithm 1: The Euclidean
algorithm

1 while b 6= 0 do
2 if a > b then
3 a = a− b;
4 else
5 b = b− a;
6 end

7 end
8 return a;

Figure 4.1: The AST for the code for the algorithm 1

Each node of the tree represents an abstract component occurring in the source code. An
AST is a product of the syntax analysis phase of a compiler. It serves as an intermediate
representation before generating code for the program. AST structures are widely used in
compilers as well as programming language processing due to following advantages.

• Unlike source code, ASTs do not contain inessential elements such as braces, semi-
colons, parentheses, and comments.

• The AST can be modified to optimize the program so that it executes more rapidly,
or uses less memory storage or other resources. Some optimization techniques include
replacing an expression with shorter/faster expressions, reordering of arithmetic
operations or branches, and extracting common subexpressions (CSE). Meanwhile,
such editing is impossible with the source code of a program.

• An AST contains extra information about the program. An example is the position
of an element in the source code that may be used to notify the user of the location
of an error in the source code.

4.2 Learning Approaches on Tree Structures

4.2.1 Tree Edit Distance (TED)

The tree edit distance (TED) of two trees is defined as the minimum cost sequence of
node edit operations that transform one tree into another [9]. A rooted tree T is called as
a labeled tree if each node is assigned a symbol from a fixed finite alphabet Σ; T is called
an ordered tree if a left-to-right order among siblings in T is specified. Given an ordered
labeled tree T , there are three basic tree edit operations as follows.

45

4.2. LEARNING APPROACHES ON TREE STRUCTURES

• Rename: Change the label of a node v in T .

• Delete: Remove a non-root node v in T with the parent v′, in which case the children
of v are promoted to be children of v′. The children are inserted in the place of v so
that their relative order is retained.

• Insert: a node v is inserted as a child of v′ in T . When inserting v, it becomes the
parent of a consecutive sequence of the children of v′.

(a) (b) (c)

Figure 4.2: Basic tree edit operations. (4.2a) Deleting the node labeled l2. (4.2b) Inserting
a node labeled l2 as the child of the node labeled l1. (4.2c) A relabeling of the node label
l1 to l2.

Fig.4.2 illustrates the basic edit operations for an ordered tree. Given trees T1 and
T2, there exists many different sequences that transform from T1 into T2. Assume that
we define a cost function on each edit operation. The cost of each sequence is the sum
of the costs of its operations. Then, the tree edit distance (TED) between T1 and T2 is
determined as the sequence with the minimal cost.

To calculate TED, various algorithms have been proposed and improved efficiency in
terms of computational time and memory requirements [20,69,70]. In this work, we apply
a robust and memory-efficient algorithm for the tree edit distance namely AP-TED (All
Path Tree Edit Distance) [70] to compute the distance between AST trees.

4.2.2 Tree-based Convolutional Neural Networks (TBCNN)

Tree-based convolutional neural network (TBCNN) is a novel model proposed by Mou [66],
which showed a notable performance on program classification problem. Fig.4.3 illustrates
the architecture of the TBCNN. Firstly, each AST node is represented as a vector by using
a coding layer. The task of this layer is to embed AST symbols in a continuous vector
space where semantically similar symbols are mapped to nearby points. For examples,
the symbols While and For are similar because they are loop statements. But they are
different from ID which may present some data.

After coding, each node in ASTs is represented as a real-value vector x ∈ RNf . Then
the author designed a set of fixed-depth subtree detectors sliding over entire AST to

46

4.2. LEARNING APPROACHES ON TREE STRUCTURES

Figure 4.3: The architecture of the tree-based convolutional neural network (TBCNN).

extract structural information of the program. The output of the the feature detectors is
computed by the following equation.

y = tanh(
n∑
i=1

Wconv,i · xi + bconv) (4.1)

where, x1, .., xn are vector representations of nodes inside the sliding window, y, bconv ∈
RNc ,Wconv,i ∈ RNc×Nf . (Nc is the number of feature detectors.).

One problem is that determining the number of weight matrices in Eq 5.2 is impossible
because AST nodes have various numbers of children. To solve the problem, the authors
proposed the notation of “continuous binary trees" whereby the convolutional layer only
uses three weight matrices as parameters including W t

conv, W
l
conv, and W

r
conv (superscripts

t, r, l refer to “top", “left", “right"); the weight matrix for any node xi is a linear com-
bination of W t

conv, W
l
conv, and W r

conv, with coefficients ηti , η
l
i, and ηri , respectively. The

coefficients are computed based on the relative position of xi in the sliding window as
following equations:

• ηti = di−1
d−1 (di: the depth of the node i in the sliding window; d: the depth of the

window.)

• ηri = (1− ηti)
pi−1
n−1 (pi: the position of the node; n: the total number of p’s siblings.)

• ηli = (1− ηti)(1− ηri)

The pooling layer thereafter is stacked to gather the extracted features over parts of
the tree. To produce a fixed-sized output from variable-sized ASTs, the authors apply two
ways of dynamic pooling called one-way pooling and three-way pooling [82]. According to
the experimental results, the performance of the two pooling methods is similar. Finally,
a fully connected layer and an output layer are added for supervised classification.

4.2.3 Sibling-subtree Convolutional Neural Networks (SibStCNN)

In the convolutional layer of SibStCNN, feature detectors are applied to exploit informa-
tion both in depth and width dimensions from different parts of trees. Unlike TBCNN, the

47

4.3. COMBINATIONS OF DEEP NEURAL NETWORKS AND TRADITIONAL
LEARNING

Figure 4.4: Sibling-subtree convolution. Nodes on the left are feature vectors of AST
nodes. Nodes on the right are feature maps.

local regions for feature extraction of SibStCNN are expanded to the siblings. In ASTs,
sibling nodes have the similar roles, and their information is relevant. Considering the
subtree of If in Fig. 4.1, the node of the binary operator a>b has two children ID:a and
ID:b , and the value of a>b is determined based on both values of a and b. Addition-
ally, the subtree If includes three branches of the binary operator and two assignment
statements, in which either of the assignment statements is active depending on the value
of the operator. For these reasons, it is more precise when a node is evaluated based on
information of itself and the surrounding nodes (descendants and siblings).

In this work, the subtree depth is set to 2; the number and widths of rectangles are
varying according to the location of the sliding window and the number of siblings such
that the window covers all children, siblings, and the current node (Fig. 4.4). Formally, in
each position, if the current node (x0c) has C children and S siblings with the corresponding
vector representations xic, i ∈ {1, .., C} and xjs, j ∈ {1, .., S}, then the feature maps are
obtained as follows:

y = tanh(
C∑
i=0

Wconvic
· xic +

S∑
j=1

Wconvjs
· xjs + bconv) (4.2)

An obstacle to computing the feature maps (Eq. 4.2) is that determining the number
of weight matrices is unfeasible because AST nodes have different numbers of children,
and siblings as well. To solve this problem, we use three weight matrices (W t

conv, W
l
conv,

and W r
conv) for the subtree part and one weight matrix (W s

conv) for the rectangle parts. In
this scenario, Wconvic

is a linear combination of W t
conv, W

l
conv, and W

r
conv, with coefficients

ηti , η
l
i, and η

r
i (Section 4.2.2); Wconvjs

is a scale of W s
conv with the ratio

csj
ssj

(csj : the number

of sj’s children; ssj : the number of sj’s siblings).

4.3 Combinations of Deep Neural Networks and Tra-

ditional Learning

4.3.1 The Combination Model of kNN-TED and Tree-based Net-
works

The tree-based convolution kernels explore the information contained inside the AST
nodes regardless of shapes and sizes of the trees, while TED measures the similarity
between tree structures. In other words, these methods extract two types of information

48

4.3. COMBINATIONS OF DEEP NEURAL NETWORKS AND TRADITIONAL
LEARNING

of ASTs. Thus, the cooperation between them provides stronger proof for the classifier to
determine the label of an unknown instance.

For above reasons, we design a combination model of kNN-TED and TBCNN, in which
the decision values for each unseen instance is estimated by Eq.(4.3) as follows:

DecV alij = (1− t) ∗ Probij + t ∗MF (nnDistij) (4.3)

where DecV alij is the decision value of instance i belonging to class j; Probij is the pre-
diction probability (produced by TBCNN) for class j of instance i; nnDistij is the sum of
normalized distances between instance i with instances of class j in the set of k neighbors
of i; MF is the mapping function, which transforms the value of nnDistij to [0,1]; t is the
combination factor in the range of [0,1].

After that, the label of the instance is determined by Eq.(4.4):

Li =

{
Ln1 if Ln1 = Ln2 = .. = Lnk

l if DecV alil = max{DecV alij}
(4.4)

where Li is the predicted label of instance i; Ln1 , Ln2 , .., Lnk
are the labels of k neighbors

of instance i.
To ensure the balanced contributions of kNN-TED and TBCNN to the combination

model, the value of nnDistij is mapped from the range [0, MaxDist] to [0, 1] by the
function MF . In our implementation, we use the training set and the validation set to
build the best classification model; and, the test set is used to verify the performance
of the model. To build the combination model, we have to find its parameters including
the factor t and MaxDist. Firstly, TED is applied to compute all values nnDistij in the
validation set. Next, the maximum of such values is assigned to theMaxDist. We train the
TBCNN through 60 rounds and select the classifier which obtains the highest accuracy
on the validation set. The parameter t is selected by tuning its values from 0 to 1 by
step 0.02 such that the combination model estimated according to Eq.(4.3) and Eq.(4.4)
achieves the best performance on the validation test. After acquiring the parameters t
and MaxDist, the decision values for each unseen sample are easily computed based on
Eq.(4.3); and the predicted label is determined according to Eq.(4.4).

4.3.2 The Integration Model of Tree-based Networks and SVM

To make more accurate prediction models, we integrate TBCNN/SibStCNN and an SVM
classifier. In the models, the tree-based CNNs are able to capture underlying meaning
inside tree nodes; the SVM classifier is a powerful classifier, which has shown state-of-the-
art performance in a wide range of applications such as text categorization, hand-written
character recognition, image classification, biosequences analysis and so on [7, 27,54].

Fig. 4.5 illustrates the architecture of the integration model. It consists of two compo-
nents: 1) a tree-based CNN extracts semantic features of programs, 2) SVM is adopted
to build the classifiers based on extracted features. Specially, TBCNN/SibStCNN serves
as a supervised approach to learn program vector representations from source code. We

49

4.4. EXPERIMENTS

Figure 4.5: The integration model of tree-based CNNs and SVM for program classification.

keep the training procedure of the network. The best network model obtained from train-
ing process is applied to generate vector representations for all programs by getting the
output signals of the final hidden layer (Fig.4.3). After that, an SVM classifier is built
based on the vector representations of training instances. The process of predicting the
class label of a program contains following steps:

• Parsing the source code into an abstract syntax tree.

• Feeding the TBCNN/SibStCNN models with the tree to generate the vector repre-
sentation.

• Using the SVM classifier to predict the class label of the vector.

4.4 Experiments

4.4.1 Data Preprocessing

As mentioned above, the AST data is high-dimensional and need to be refined. Thus,
we present a heuristic technique to prune redundant branches and reconstruct sub-tree
structures based on observations on source code. The details of this technique are described
as follows:

1. Eliminate structures of variables, constants, procedures, enumerations declaration
and type definitions. In a programming language, the declaration statements are
used to specify the data type (for variables and constants), or the type signature
(for procedures). However, these properties of an identifier will be revealed in next
statements, which manipulate such identifier. In other words, pruning the branches
for these statements does not lead to a decrease in an amount of information on
ASTs; and it removes unused identifiers. To illustrate, we analyze two below pro-
grams in files 46.txt and 84.txt in group 86.

50

4.4. EXPERIMENTS

Program 1 (file 46.txt):

1 int main()
2 {
3 int n,i,b[100],j,t,m;
4 scanf("%d",&m);
5 for(int l=0;l<m;l++)
6 {
7 scanf("%d",&n);
8 int *a=(int*)malloc(sizeof(int)*(n+2));
9 for(i=0; i<n; i++)

10 {
11 scanf("%d",&a[i]);
12 }
13
14 }
15 return 0;
16 }

Program 2 (file 84.txt):

1 int main()
2 {
3 int n,i,a[100],b[100],j,t,m;
4 scanf("%d",&m);
5 for(int l=0;l<m;l++)
6 {
7 scanf("%d",&n);
8

9 for(i=0; i<n; i++)
10 {
11 scanf("%d",&a[i]);
12 }
13
14 }
15 return 0;
16 }

The differences between two programs are the declaration locations and data types
of variable a. The function of variable a in both programs is to represent a set of
values. In program 1, a is an array; In program 2, a is a pointer. In terms of function,
two programs are similar and they always produce the same output with the same
input data. However, the parse trees of the programs are different. If we eliminate
the variable declaration branches, the parse trees of two program are the same. The
other notice is that the roles of variables can be revealed via operators since they are
manipulated. For example, a is known as a set of values due to the use of operator
[]; l is known as a number when it is assigned to 0.

2. Cut down two branches of trees of For statements. The ASTs for For statements
have four children representing different parts inside them (Fig.4.6a) including Init

(initialization), Condition (termination expression), Next (increment expression),
Statement (body). When designing a For statement, programmers usually put the
main works into the body section. The termination expression is responsible for
controlling For loops. Whereas Init and Next sections contain little information
about the tasks of For statements.

Indeed, after observing programs in the dataset, we found many For statements are
written in the simple form. The following snippet code is an example.

1 for(;x[k]==y[j]&&k>=0&&j>=0;)
2 {
3 k--;
4 j--;
5 }

51

4.4. EXPERIMENTS

(a) (b)

Figure 4.6: The operations of pruning redundant branches of For and ProcDef (Proce-
dure Definition) sub-trees.

For above reasons, we remove two uninformative children of ASTs of For statements
including Init and Next (Fig.4.6a).

3. Cut down the declaration branch of trees of procedure definition statements. The
ASTs of procedure definitions have two main branches including Decl (Declaration)
and Body, where the Decl contains return type, procedure name, and parameter list
sections. The parameter list section defines the temporary variables used in the pro-
cedure. When the procedure is invoked, the actual parameters are passed. It means
that there exists duplicate information in the program because the information of
temporary and actual parameters is similar. Therefore, we eliminate Decl branches
of procedure definition ASTs (Fig.4.6b).

4. Rename the root nodes of trees of For, While, and Do-While statements. After
cutting down redundant branches, the ASTs of For, While, and Do-While state-
ments have the same structure, which involves two children namely Condition and
Statement. To reduce the symbols of AST nodes, we change the AST node names
from For, While, and Do-While into Loop. Using fewer symbols is beneficial because
it reduces the complexity of the dataset.

4.4.2 The Dataset

The proposed approaches are verified by a task of program classification in which programs
performing the similar tasks are assigned to the same group. The dataset is obtained from
a pedagogical programming open judge (OJ) system shared by Mou [66]. It contains pro-
grams for 104 programming problems (considered as target labels) in which each of them
includes 500 programs. Programs with the same target label have the same functionality.
The dataset was split by 3:1:1 for training, validation, and testing.

Table 4.1 shows statistics on the AST datasets. The statistical figures indicate the
challenges of working with AST data due to their shapes and sizes are very large and
different. For the original ASTs, the numbers of tree nodes are varying from 29 to 7027; the
average number of nodes is 189.6; the standard deviation is 106. Thus, preprocessing ASTs
to reduce its complexity and noisy data as well is essential. It is noted that depending on
each specific problem, we must select appropriate refining methods to avoid losing so much

52

4.4. EXPERIMENTS

Table 4.1: Statistics of the dataset (ASTsOR are the original ASTs, ASTsMP are the ASTs
after pruning minor procedure branches, ASTsHP are the ASTs after applying heuristic
pruning).

Statistics
ASTsOR ASTsHP ASTsMP

Mean Std. Mean Std. Mean Std.
of AST nodes 189.6 106.0 134.0 92.1
of AST leaves 90.5 53.8 66.5 47.7
Avg. leaf nodes’ depth in an AST 7.6 1.7 8.3 1.9
nodes of the smallest AST 29 - 7 -
nodes of the largest AST 7,027 - 6,999 -

meaningful information. For example, regarding classifying programs by functionalities,
considering the similar roles of For, While, and DoWhile statements is compatible with
this problem. From Table 4.1, applying the heuristic pruning method reduces the node
numbers notably and increases the average leaf nodes’ depth in ASTs. This means most
of the redundant branches are shorter than the meaningful branches.

4.4.3 Experimental Setup

To address the program classification problem, we converted programs into ASTs and
then surveyed various algorithms, which treat the ASTs as the input data. The details
and settings of these algorithms are described as follows.

TBCNN, SibStCNN. Initial learning rate is 0.3; vector dimension is 30; convolution
layers’ dimension and penultimate layers’ dimension are the same value 600; the loop
iteration is 60; the activation function of the output layer is softmax.

The k-Nearest Neighbor (kNN) + TED, Levenshtein distance(LD). To em-
ploy the kNN algorithm, the distance between programs is estimated based on their ASTs.
We used two methods to compute the distance including TED [70], and Levenshtein dis-
tance [36]. The Levenshtein distance (LD) is a measure of similarity between two se-
quences. The ASTs are traversed to generate sequence representations for programs. The
number of nearest neighbors is set to 3.

TBCNN + kNN-TED. The settings of TBCNN is kept. The number of nearest
neighbors is expanded to 10 with the aim of providing the combination model with more
proof to make the final decision on instance labels. The mapping function is applied in
the same manner for both validation and test sets.

TBCNN + SVM. The settings and the training procedure of TBCNN are kept. The
dimension of output vectors is 600. The hyper-parameter C of SVM classifiers is chosen
from {1, 2, 3}. We build the classifiers with different kernels including linear, polynomial,
radial basis function (RBF), and sigmoid.

Tree kernel SVM. We used SVM-light ([65]) and combined both tree kernels and fea-
ture vectors of BOT. SVM-light is designed for binary classification problems. To adapt
for multiclass classification problems, we used one-vs.-all strategy, whereby a single clas-

53

4.4. EXPERIMENTS

sifier is trained for each class, with the samples of that class as positives and all another
samples as negatives. In other words, for K-label problems, we must train K classifiers
and use all of them for making a decision about the label of each sample. In the predic-
tion stage, the label of an unseen instance corresponds to the classifier which produces
the highest confidence score. The setting for the SVM-light includes: the kernel is the
combination of forest and vector set; kernel to be used with vectors is chosen from linear,
polynomial, radial basis function (RBF), and sigmoid tanh; decay factor in tree kernels is
0.4; The normalization is applied to each individual tree and vector. The dataset contains
104 target labels and the instances of each class are 500. To avoid facing with imbalanced
data when training classifiers using one-vs.all method, we used the sub-sampling tech-
nique to reduce the negative instances so that the proportion of positives to negatives is
1:20.

Gated Recurrent Neural Network (GRNN). The GRNN is successful in classi-
fying documents [87]. To adapt this model for program classification, each program is
considered as a document, whereby each statement is equivalent to a sentence. The docu-
ments are generated by traversing all subtrees of statements in the ASTs using depth-first
search algorithm. In the experiments, the vector representation for AST symbols is learned
by using a word2vec model. The vector size is set to 30.

4.4.4 Results and Discussion

Table 4.2 shows the performance of classifiers in terms of accuracy and running time.
For the case of without pruning, TBCNN yields a remarkable accuracy of 92.63% due to
subtree feature detectors which have good ability to capture underlying meanings of AST
nodes. Thanks to the expansion of sliding windows, SibStCNN improves the accuracy
of TBCNN by 0.63%. The accuracies of the combination models between SibStCNN/T-
BCNN and kNN indicate that learning trees from many perspectives is beneficial. Sib-
StCNN/TBCNN and kNN outperform other methods, achieving the highest accuracies of
94.13% and 93.48%, respectively.

It is worth noticing that, the tree-based algorithms outperform the sequence-based
algorithms. Although kNN is one of the simplest machine learning algorithms, it yields
higher accuracy than that of GRNN - a deep neural network which works with sequences.
The main reason is that ASTs contain rich and explicit information about programs.
Meanwhile, the position information will be lost when converting ASTs into sequences
by traversing. The loss of information leads to a decrease in the strength of classifiers.
Additionally, we extracted 17 file metrics from programs and used Weka’s implementation
of different algorithms including support vector machines (SVMs), naive Bayes, and kNN
to classify the metrics data. However, the accuracies of these classifiers are very low,
around 22%.

We tried tree kernels on AST structures and achieved the worst accuracy in comparison
with the other methods. We observed that the tree kernels could not analyze deeply the
semantic meanings of ASTs. They only captured the popular subtrees, which occur in
almost ASTs and may not be relevant to the main function of programs. An example
of a structure extracted by tree kernels is “Decl(TypeDecl(IdentifierType int)”. This

54

4.4. EXPERIMENTS

Table 4.2: Performance comparison of the pruning approaches in terms of accuracy and
execution time (ASTsOR are the original ASTs, and ASTsHP are the ASTs after heuristic
pruning)

ASTsOR ASTsHP

Method
Acc.
(%)

Avg.
time (s)

Acc.
(%)

Avg.
time (s)

kNN + TED 85.84 259.59 86.35 108.8
kNN + LD 83.08 4.78 85.56 2.39
Tree kernel SVM 58.39 0.26 62.65 0.249
GRNN+LSTM 80.61 454.37 83.31 338.2
TBCNN 92.63 1194 92.88 810
SibStCNN 93.26 1494 93.14 944
TBCNN+ kNN-TED 93.48 - 93.69 -
SibStCNN+ kNN-TED 94.13 - 93.98 -

structure is the AST of a declaration statement of a variable of type integer such as
“int a;". In programming languages, to determine the function of a program, we must
consider more complex structures inside it. For instance, AST structures of For, While

statements should be similar since they are related to control flow; and, they are different
from Constant because a Constant represents an unmodified value.

For AST data structures, dimension reduction is an essential task due to large shapes
and sizes of the trees. To reduce the complexity of the data and maintain the semantic
meaning of ASTs, we propose a technique to prune redundant branches and reconstruct
sub-trees. Table 4.2 compares the performance of classifiers in terms of accuracy and
computational time in cases of before and after pruning trees. Where the average compu-
tational time of the algorithms is estimated as follows: TBCNN and LSTM + GRNN are
the running time each of loop iteration; the others are the time to predict an instance.

The results in Table 4.2 show high efficiency of the pre-processing data techniques. For
the heuristic pruning, it not only enhances the accuracies of all classifiers but also reduces
the execution time notably. The execution time of kNN-TED and kNN-LD decreases more
than two times; the execution time of TBCNN and GRNN decreases nearly 1.5 times; the
execution time of SVM-Tree kernel decreases slightly. These prove that pruning redundant
branches can efficiently eliminate noisy information without a loss of useful information.

It is interesting that due to the application of the heuristic pruning techniques we
detected 356 duplicate instances, which may not be found when using the original trees.
In other words, many students copied completely or copied with tiny modifications the
solutions from the others and used such solutions to submit to the OJ system. For example,
the contents of file 2557.txt in group 62 and file 892.txt in group 26 completely overlap; the
programs in files 46.txt and 84.txt in group 86 are similar. The differences between them
only include the position of variable declaration statements and the use of a pointer instead
of an array to represent a set of numbers. These prove that pruning and reconstructing
tree approaches extract main contents which show the major tasks of the programs; and

55

4.4. EXPERIMENTS

these approaches provide a feasible solution to solve source code clone detection problem
in the area of software engineering.

(a) (b)

(c) (d)

Figure 4.7: Tuning the factor t for the combination models of TBCNN/SibStCNN and
kNN-TED. (4.7a) and (4.7c) before pruning trees, (4.7b) and (4.7d) after heuristic prun-
ing.

To take advantage of different types of ASTs’ information, we proposed the hybrid
model of TBCNN and kNN, where the task of TBCNN is extracting the underlying
meanings inside tree nodes and kNN measures the differences between tree structures.
In our implementation, we find the best parameters for the combination model by using
training and development sets. Fig.4.7 illustrates the process of tuning the combination
factor t in cases of before and after pruning trees. As can be seen, the two lines representing
the change of accuracies on the validation set and the test set according to t have the same
trend. The accuracies increase when t is adjusted from 0 to around 0.9; after peaking the
top at t around 0.9, the accuracies begin to drop down to the kNN classifier accuracies.
From Eq(4.3), t is the trade-off parameter between TBCNN and kNN of contribution to
the model. The down arcs are caused by the bigger contribution of kNN when t increases.
Especially, all sub-figures in Fig.4.7 show that at t = 0, the accuracies of the hybrid
model are higher than those of TBCNN (Table 4.2). According to the Eq. 4.4, the label

56

4.4. EXPERIMENTS

of an unseen instance is predicted based on kNN if ten neighbors are in the same group,
otherwise, the label is the output of TBCNN/SibStCNN. These mean that although many
structures are similar, the tree-based CNNs could not detect them. Thus, using extra
structural information of ASTs is helpful in making the final decision on class labels of
instances.

The SVM classifier is known as a powerful classifier, which has high accuracy and abil-
ity to deal with high-dimensional data. Tree-based CNNs are able to capture underlying
meaning inside tree nodes. For this reason, we generated the integration models of the
tree-based CNNs and SVM. Table 4.3 compares our proposed models with the tree-based
CNNs. Generally, the proposed model improves the accuracy of TBCNN/SibStCNN re-
markably. The SVM with RBF kernel outperforms others on all experimental datasets.

Table 4.3: Accuracy of the combination models of TBCNN/SibStCNN with SVM.

Method ASTsOR ASTsHP
TBCNN 92.63 92.88

Kernel
Linear 93.42 93.43

TBCNN+SVM Polynomial 91.69 91.58
RBF 93.74 93.89
Sigmoid 93.63 93.60

SibStCNN 93.26 93.14
Kernel
Linear 93.74 93.60

SibStCNN+SVM Polynomial 91.93 91.43
RBF 94.24 94.02
Sigmoid 94.15 93.90

For machine learning approaches, the data dimensions are subject to the performance
of algorithms regarding computer memory, computational time and the accuracy. Specif-
ically, high-dimensional data lead to a waste of computer memory and computational
time, while too few attributes may weaken algorithmic efficiency because the information
about instances is not provided sufficiently. To verify the effect of attribute quantity to
classifiers, we ran the TBCNN and TBCNN-SVM models with varying numbers of hidden
nodes. Fig. 4.8 shows that the computational time of the SVM increases rapidly with the
number of the hidden nodes. Besides, the accuracies of both models on validation and
test sets are high and stable when the hidden nodes are greater than 100. All accuracy
curves fall down sharply when the hidden nodes turn from 100 to 25. These proofs enable
us to conclude that choosing a proper number of hidden nodes or the number of features
is vital for neural networks and SVMs. In the experimental dataset, if the accuracy is
more interesting, the number of hidden nodes should be 200; this number is 100 in case
we concern both about the accuracy and the running time.

57

4.4. EXPERIMENTS

Figure 4.8: The accuracies on validation and test sets in the case of heuristic pruning
(HP), and the time for predicting an instance of classifiers with different numbers of hid-
den nodes. TBCNN_CV, TBCNN_Test, SVM_CV and SVM_test show the accuracies
of TBCNN and TBCNN-SVM classifiers on validation and test sets, respectively. TimeT-
BCNN and timeSVM represent the time for predicting an instance using TBCNN and
SVM.

4.4.5 Data Analysis

In this section, we present some observations on the experimental dataset and the output
of the classifiers as well. For the TBCNN model, the feature detectors ignore the shape and
size of an AST when collecting information of the tree. The extracted vector of each node
is computed from its descendant vectors inside the window of the feature detector. Thus,
given an AST, if we move a branch of a node to be a child of other node, the extracted
information of these nodes may be changed. In programming language C/C++, we can
change the location of a statement without effects on the program execution. For example,
a variable declaration statement can be placed in any position above the location where
the variable is used. Moreover, to implement a task, we can select different statements such
as print or cout for output stream; for, while, or do...while for iterative control flow.
Due to the flexible design of programs, although their ASTs have different appearance,
they may perform the same task. When observing the output of TBCNN and kNN, we saw
that kNN classifier was able to provide many similar structures for predicted instances,
while TBCNN failed to capture information of these instances due to above changes.
Therefore, to create a more powerful predictor, the output of kNN is used to assist the
TBCNN in making final decisions.

When working with AST data, many redundant information needs to be eliminated.
However, we must find a suitable method such that it avoid loss of meaningful nodes.
After pruning redundant branches, we saw that all algorithms work more accurately due
to avoidance of ambiguity in various cases such as using a pointer or an array to represent

58

4.5. RELATED WORK

a set of values; changing the locations of variable, procedure declarations; the use of for,
while and do...while to control a flow.

4.5 Related Work

Source code analysis has been widely applied to a variety of software engineering tasks
such as clone detection [8, 42], fault location [41, 61], quality assessment [43, 79], and so
on. The advantages of these approaches are providing much predicted information about
new products based on other applications. Such information is very helpful for enhancing
software quality by avoiding the defects and reusing the resources of previous projects.
Due to great benefits that solving software engineering problems brings to the software
industry, numerous algorithms and techniques have been proposed and improved to make
the predicting systems applicable in practice.

Ugurel et al. [88] applied machine learning approaches to automatically classify open
source code into eleven application topics and ten programming languages. Firstly, feature
extractors are utilized to generate the vector representation for each program/source code
file. Then the SVM classifiers are trained on such feature vectors. Similarly, Alvares et
al. [4] built source code classifiers by using lexical analysis, scoring strategies and an
evolutionary algorithm. The task of the evolution algorithm is to filter the set of keywords
for each programming language to strengthen the lexical-based classification analysis. The
experiments on the real-world source code of more than 200 different open source projects
show that the proposed approach can create high-performance source code classifiers. In
order to improve source code quality, Lerthathairat et al. [52] proposed an approach that
classifies source code with software metrics and fuzzy logic and then improves bad smell,
ambiguous code. Chandra et al. [15] developed a tool based on CK metrics to predict the
decomposition point of the class.

Despite the effectiveness of software metrics on specific problems, it is labor intensive
and unable to extract patterns from raw data [30]. Therefore, many studies have aimed
to automatically learn data features from graph or tree representations of source code by
leveraging deep neural networks. For graph-based approaches, Binkley et al. [10] presented
a collection of techniques which employ graphs as internal representations to improve
source code analysis tools. Komondoor et al. [49] designed a tool that analyzes program
dependence graphs (PDGs) and program slicing to find duplicated code and displays them
to programmers. The tool is useful for refining source code to make it more well-organized
by detecting and replacing all the clones by calls to the new procedures. Liu et al. [56]
conducted experiments on mining PDGs to prove the efficiency and the effectiveness of
graph-based approaches to plagiarism detection in programs having thousands of lines of
code.

Recently, due to containing rich information about programs, the tree-based approaches
have shown a notable success in dealing with obstacles of software engineering area. Wang
et al. [92] applied a deep belief network (DBN) to automatically learn semantic features
of programs for defect prediction. The experiments were conducted on various Java open

59

4.5. RELATED WORK

source projects obtained from PROMISE repository1. The results indicate that the tree-
based approaches significantly outperform metrics-based approaches in terms of precision,
recall, and f-measure. Mou et al. [66] proposed a tree-based convolutional neural net-
work (TBCNN) which work on tree structures with varying shapes and sizes. The model
achieves very high performance for two software engineering tasks: classifying programs
by functionalities and detecting bubble sort.

We would like to apply the TBCNN model for software engineering problems. We pro-
pose some data refining techniques and two combination models to enhance the accuracy
of classifiers. Our methods firstly are verified on the same problems and dataset of Mou’s
work. In ongoing work, we adapt these approaches to the software defect prediction prob-
lem. For predicting bugs, errors, or faults in a source code, the smaller size of the source
code, the more valuable the predictor is, because locating and fixing bugs are easier. Thus,
the sizes of ASTs are not huge; and the model is completely applicable. In this chapter,
we present two combination models of TBCNN and kNN-TED, SVM to solve program
classification, in which tree structures serve as the input data. In addition, we proposed
the pruning tree techniques to refine the data of ASTs. The experimental results show a
significant improvement of classifier performance in terms of accuracy as well as execution
time.

These models are applicable to other problems in the field of software engineering such
as software defect prediction, and clone detection. The tree-based approaches may provide
promising results because of following reasons:

• We can obtain ASTs from source code of programming languages with grammars
by using a corresponding parser.

• For two above problems, we should process a part of programs because the smaller
code snippet we predict the issues, the easier we locate and fix them. Therefore, the
AST sizes are not too large.

• Software metrics are usually applied for big projects, and they are failed to capture
the meaning of small source code (Section 4.4.4).

1http://openscience.us/repo/defect/

60

Chapter 5

Deep Neural Networks on Assembly
Code

The previous chapter presented building models based on ASTs. However, AST just rep-
resents the structures and do not reveal the behavior of programs. To deeply explore into
semantic meanings, this chapter formulates an end-to-end approach to program analysis.
Regarding this, assembly instruction sequences serve as input data for learners instead of
software metrics or abstract syntax trees. To enrich the formation, the instructions are
viewed by various perspectives before feeding to machine learning algorithms. The main
contents provided in this chapter are:

• Formulating an end-to-end approach that applies deep neural networks on assembly
code.

• Presenting an algorithm for constructing control flow graphs of programs from as-
sembly code.

• Designing two multi-view convolutional neural networks on assembly instruction
sequences and control flow graphs.

The proposed approaches are verified based on two tasks: software defect prediction and
malware analysis.

5.1 Assembly code and two views of data

Assembly code consists a series of low-level machine instructions that are close to machine
code instructions. Assembly code can be converted into machine code by an assembler,
and reversed by a disassembler. Transforming from a source file written in a programming
language into assembly code is done by a corresponding compiler. Fig. 5.1 describes the
process of compiling C source files into executable files. Assembly files are the products
after the compiler analyzes and translates ASTs.

61

5.2. CONVOLUTIONAL NEURAL NETWORKS ON INSTRUCTION SEQUENCES

Figure 5.1: The process of compiling C programs from source code to executable files.

An assembly instruction is equivalent to a CPU-level instruction and usually involves
an operation code mnemonic followed by a list of operands. For example, the instruction
of move ax, 128 guides the computer to copy the number 128 to the register ax.

To enrich data for learning, we use two views of data including instruction names and
instruction groups. For instance, instructions jne, jle, and jge are tagged to the same
group since they are conditional jump instructions. Similarly, addb, addl, and addw belong
to the group of arithmetic instructions.

5.2 Convolutional Neural Networks on Instruction

Sequences

We design a multi-view convolutional neural network on assembly instruction sequences,
called ASCNN. The network is built from four main types of layers including convolutional
layer, pooling layer, merge layer and fully-connected layer. Wherein, the convolutional lay-
ers are applied to automatically learn defect features from multiple views of instruction
sequences. The pooling layers perform down-sampling operations to gather extracted in-
formation. The merge layer is to combine feature vectors of all views before feeding to the
fully-connected layers (the common layers in regular neural networks) for computing the
final class scores.

Convolutional layers play an important role in the success of convolutional neural
networks. These layers are efficient to deal with large-scale and high-dimensional data by
extracting meaningful statistical patterns. In our model, the latent features of the views are
explored independently by applying different convolution operators on the corresponding
sequences. We design a set of F feature detectors (filters) to capture local dependencies
in the original sequence. Each filter can be viewed as a convolution that slides over the
sequence to produce a feature map. Formally, at position i, the feature value of the f th

filter is computed as follows:

cfi = f(W f · xi:i+h−1 + bf) (5.1)

where W f ∈ Rh×k, xi:i+h−1 = xi ⊕ xi+1 ⊕ ...⊕ xi+h−1, and f is an activation function.

62

5.2. CONVOLUTIONAL NEURAL NETWORKS ON INSTRUCTION SEQUENCES

Figure 5.2: A convolutional neural network with two views for assembly instruction se-
quences.

We combine several convolutional layers to make the network able to learn more complex
features. In general, deeper networks with multiple stacked convolutional layers potentially
achieve better performance [50]. However, using many layers leads to an increase in the
number of parameters which must be optimized, and hence a need of large datasets for
training networks. In this work, because the datasets are not large, we just stack two
layers of convolution for each view.

Pooling layers are commonly inserted between successive convolutional layers is to
reduce the dimensions of feature maps but preserve the most important information. In
the model, after a convolution, the feature map length is similar to that of the input
sequence which has up to thousands of tokens. Thus, pooling layers are necessary to
reduce model parameters, and hence to avoid overfitting.

Downsampling is performed by using a function such as max, average, or sum that
takes the largest element, the average, or sum of the input values, respectively. The pool-
ing function is applied on non-overlapping regions to resize the feature map spatially.
According to various studies, max pooling has shown better results than other pooling
types [17].

In the model, the intermediate convolutions are followed by a local max-pooling layer
with the filter size of 2. For the last convolution, a global max-pooling is applied to
generate the vector representation for the corresponding view, in which each element is
the result of pooling a feature map.

Merge layer
After convolution and the pooling steps, we obtain vector representations for the se-

quences of all views. Such feature vectors are combined before feeding to the fully-
connected layer for estimating the categorical distribution for a program. We examine

63

5.3. DIRECTED GRAPH CONVOLUTIONAL NEURAL NETWORKS

Figure 5.3: The architecture of the multi-layer convolutional neural network on graphs.
Several steps of a convolution process is illustrated in the two first layers. The same color
(red, green, or blue) of a node and an ellipse indicates the current position and the range
of the filter.

several merge operations such as concatenation, element-wise multiplication, and element-
wise maximization.

5.3 Directed Graph Convolutional Neural Networks

This section describes a multi-view multi-channel convolutional neural network (DGCNN)
for labeled directed graph classification. Firstly, we formulate the graph classification
problem.

A labeled directed graph is defined as G = (V,E, α) where V is the set of vertices,
E ⊆ V × V is the set of directed edges, α is the vertex labeling function α : V → ΣV

where ΣV is the content of vertex labels. Given a set of training examples T = {(xi, yi)}Li=0

where xi ∈ X is a graph, and yi ∈ Y = {+1,−1} is a target label, the graph classification
problem is to induce the mapping f : X → Y

5.3.1 Convolutional Neural Networks on Directed Graphs

DGCNN is a general neural network architecture designed to treat directed graphs with
vertex labels containing complex information. For example, in the CFG, each vertex is an
instruction which may involve the instruction name, and several operands. Moreover, each
instruction can be viewed in not only its contents but also other perspectives including
instruction types or functions. Each information type of a vertex label is called a view.
To leverage all available information corresponding to such characteristics of the graphs,
the multi-view multi-layer convolutional neural network on directed graphs is developed.

Fig. 5.3 demonstrates the overview architecture of DGCNN. The first layer is used to
generate vector representations (also called embeddings) for graph vertices, where each
view of a vertex label is mapped into a real-valued vector in a nf -dimensional space. Next
several convolutional layers are stacked on the embedding layer to extract the features
from different parts of the graph. We thereafter apply a dynamic pooling layer to gather
extracted features over the entire graph before feeding to a fully-connected layer. Finally,

64

5.3. DIRECTED GRAPH CONVOLUTIONAL NEURAL NETWORKS

an output layer is added to compute the categorical distributions for possible outcomes.
For multi-class classification problems, softmax is selected as the activation function to
convert final scores to probabilities of observing labels. In the remainder of this section,
we explain in details about major layers of DGCNN including vector representations,
convolutional and pooling layers.

5.3.2 Convolutional Layers

In a convolutional layer, we apply a set of circular filters with radius R sliding over graph
structures to extract features for all locations on the graphs. Because each vertex contains
several views of its label, the filters extend through the full views of the input volumes.
For example, given a filter with R = 2, and a graph with 3 views, at each position, the
filter is designed such that it covers a subgraph containing the current vertex and the
neighbors, and extends to depth 3. In other words, each neuron in the convolutional layer
is connected to a local region (subgraph) of the input and the connectivity is extended
along edges and views.

Formally, during the forward pass, each filter slides through all vertices of the graph
and computes dot products between entries of the filter and the input. Suppose that
the subgraph in the sliding window includes d + 1 vertices (the current vertex and its
neighbors) with vector representations of x0, x1, ..., xd ∈ Rvf×nf , then the output of the
filters is computed as follows:

y = tanh(
d∑
i=0

vf∑
j=1

Wconv,i,j · xi,j + bconv) (5.2)

where y, bconv ∈ Rvc×nc ,Wconv,i ∈ Rvc×nc×vf×nf . tanh is the activation function. nf and vf
are the vector size and the number of views of the input layer. nc and vc are the numbers
of filters and views of the convolutional layer.

The problem is that because of arbitrary structures of graphs, the numbers of vertices
in subgraphs are different. As can be seen in Fig.5.3, the current receptive field at the red
node includes 5 vertices while only 3 vertices are considered if the window moves right
down. Consequently, determining the number of weight matrices for filters is unfeasible.
To deal with this obstacle, we divide vertices into groups and treat items in each group
in a similar way. Regarding the way, the parameters for convolution have only three
weight matrices includingW cur,W in, andW out for current, outgoing, and incoming nodes,
respectively.

In the model, we stack several convolutional layers to broaden the area for extract-
ing features of input graphs. Convolution preserves the input structures by using filters
sliding over the entire graph. For this reason, the design procedure for all convolutional
layers is the same. In the experiments, the networks have two convolutional layers with
one or two views in the first convolution and one view in the second convolution. The
filter sizes are set to 2. This means that at each position, considered objects involve
the current vertex and its neighbors. To sum up, the set of parameters for DGCNN is

65

5.3. DIRECTED GRAPH CONVOLUTIONAL NEURAL NETWORKS

θ = {[W cur
conv1,W

in
conv1,W

out
conv1]vi , [W

cur
conv2,W

in
conv2,W

out
conv2],Whid,Woutput, [bconv1]vi ,

bconv2, bhid, boutput}, where vi is the number of views of the input data.

5.3.3 Dynamic Pooling

Convolutions preserve the spatial relationship between vertices by learning graph features
using circular filters. After convolutions, the structure of the output is completely the same
as that of the original one. Thus, the extracted features can not be fed directly to the
fully-connected layer because of enormous and varying numbers among different graphs.
An efficient solution to this problems is applying dynamic pooling [82] to normalize the
features such that they have the same dimension.

In the model, we use one-way max pooling to gather the information from all parts of the
graph to one fixed size vector regardless of graph shapes and sizes. The vector dimension
is the number of filters in the last convolutional layer. Basically, in convolutional neural
networks, pooling layers are applied to reduce the dimensionality of each feature map (the
output of one filter) but retain the most important information. Pooling layers operate
independently on every dimension of its input and resize the input spatially using an
operation. Some types of operations are max, average, and sum. In the case of max
pooling, the maximum value in each dimension is selected from the features. Instead of
taking the largest element we could also take the average (average pooling) or the sum of
all elements (sum pooling) in that window. In practice, max pooling has been shown to
work better [57, 77,96]. Therefore, the max pooling is adopted in DGCNN.

5.3.4 Training

We use mini-batch gradient descent algorithm for training the network. The objective is
to minimize the mean square error loss function as follows:

J(θ) =
1

n

n∑
i=1

(ŷi − yi)2 (5.3)

where θ is the model parameters (Subsection 5.3.2), yi is the label of data sample i, and
ŷi is the output of the network.

The training procedure is shown in the pseudo-code in algorithm 2. Firstly, the model
parameters θ are randomly initialized. The training process is performed through a pre-
defined number of epochs. For each loop, we calculate the loss function J (i) for each data
sample x(i) separately according to Eq. 5.3. Then, back propagation algorithm is applied
to compute the partial derivatives and evaluate the gradient. The model parameters are
updated every mini-batch of n training examples.

5.3.5 Computational Complexity and Required Memory

By applying filters with flexible design, and dynamic pooling, DGCNN does not require
any preprocessing such as padding to ensure graphs with the same number of nodes, and

66

5.4. EXPERIMENTS

Algorithm 2: Mini-batch gradient descent algorithm

Input : Data samples x(i), i = 1..N ;
Learning rate η;
Batch size n;

Output: Model parameters θ = {W,B}
1 Randomly initialize θ, ∆θ ← 0;
2 for l← 1 to nb_epochs do
3 for i← 1 to N do
4 compute loss J (i);

5 compute the partial derivative ∂J(i)

∂θ
;

6 ∆θ ← ∆θ + evaluate gradient(∂J
(i)

∂θ
);

7 if i% n =0 or i = N then
8 θ ← θ − η∆θ;
9 ∆θ ← 0;

10 end

11 end

12 end

alignment to match corresponding nodes between graphs. Indeed, from the two first layers
of the model (Fig. 5.3), filters slide over the entire graph and extract subgraph features at
each location independently regardless of graph structures. Additionally, computing the
feature map does not require any order of nodes (Eq. 5.2). Thus, the model can treat
dynamic graphs and matching nodes among graphs is unnecessary.

DGCNN uses a constant amount of memory to store model parameters, and its runtime
grows proportionally with the number of vertices, and vertex degrees. According to Eq. 5.2,
the cost for computing the feature map in a convolutional layer is (dmax+1)×vf×n, where
dmax is the maximum degree of graphs, vf is the number of views, and n is the number
of graph nodes. In the pooling layer, we need O(n) comparisons to gather all extracted
features into a fixed-size vector. For hidden and output layers, the numbers of operations
are constant. Intuitively, c and vf are constant, with assumption of dmax � n in large-scale
graphs, the runtime complexity of DGCNN is O[c× (dmax + 1)× vf ×n] +O(n) +O(1) =
O(n× d).

5.4 Experiments

To verify the performance of DGCNN in terms of accuracy and the ability to process large-
scale graphs, we conduct experiments on two tasks including software defect prediction
and malware analysis. To solve these problems, each data sample is converted into a
directed graph of control flow (CFG) [3], and then DGCNN is utilized to build predictive
models.

For software defect prediction, we formulate an end-to-end model with high accuracy

67

5.4. EXPERIMENTS

0x00401000
cmp eax, 0

0x00401003
je 0x0040100d

0x00401005
mov eax, 0x00401001

0x0040100a
jmp 0x00401015

0x0040100d
mov eax, 0x00401018

0x00401012
add eax, 10

0x00401015
sub eax, 4

0x00401018
ret

Figure 5.4: The Control Flow Graph of an assembly code fragment.

to predict the existence of defects in programming source code. For malware analysis,
DGCNN shows the ability to handle CFGs with hundred thousands of nodes and edges.

We ran experiments on two systems including one node of a Fujitsu CX250 Cluster and
one node of a SGI UV3000. For the Fujitsu CX250 Cluster, each node has two Intel Xeon
processors E5-2680v2 2.80 GHz with ten cores, 64GB of RAM. For the SGI UV3000, each
node has two Intel Xeon processors E5-4655v3 2.9GHz with six cores, 256GB of RAM.

5.4.1 Control Flow Graphs

A control flow graph (CFG) is a labeled directed graph, G = (V,E, α), where V is the
set of vertices, E ⊆ V × V is the set of directed edges, α is the vertex labeling function
α : V → ΣV where ΣV is the contents of vertex labels. In CFGs, each v ∈ V represents
a basic block that is a linear sequence of program instructions having one entry point
(the first instruction executed) and one exit point (the last instruction executed); and
(vi, vj) ∈ E shows the control flow path from block vi to block vj (Fig. 5.4).

CFG analysis has been widely used for various problems because of showing execution
sequences of programs. Compilers perform program optimization by determining the flow
relationships based on within graph analysis [3]. Many studies have focused on mining
CFGs to tackle the difficulties in malware analysis [5,12], software plagiarism [14,86]. For
the two tasks in this study, software defects are hidden deeply in source code and only
revealed while programs are running; malware uses different obfuscation techniques to
prevent detection by anti-virus applications. Since CFGs show the behavior of programs,
learning on CFGs may be beneficial for distinguishing patterns.

5.4.2 Vector representations

As mentioned before, an assembly instruction is viewed by two perspectives and it may
have several operands. To take advantages of all information, the vector representation of

68

5.4. EXPERIMENTS

each instruction is computed based on those of its components. Firstly, operands of block
names, processor register names, and literal values are substituted by the symbols “name",
“reg”, and “val”, respectively. Corresponding to the replacement, the instruction addq

$32, %rsp has the form of addq, value, reg. After that, the vector of the instruction
is determined as follows:

x =

{
xinstruction token (NoOp - without the use of operands)
1
C

∑C
j=1 xj (Op - with the use of operands),

(5.4)

where C is the number of the components, and xj is the vector of the jth component.

5.4.3 Software defect prediction

Task description

Software defect prediction is one of the hot topics in the field of software engineering and
has important applications. The task is to analyze source files to detect potential buggy
code. Deploying software products containing defects may cause serious consequences such
as loss of money, time, and business credibility. For a large project, manually investigating
defects may be time-consuming because the project contains not only a large number of
source files but also many logic connections among its components. Therefore, building
automatic systems for bug detection and localization is an urgent requirement in soft-
ware industry. This helps to reduce the development efforts, and enhance the quality and
reliability of software products.

In this study, we formulate a new approach to predict the existence of defects in source
codes written in a programming language. Our proposed approach involves two steps:
1) generating the CFG representation, and 2) building classifiers. In the first step, each
source file is compiled into an assembly code using g++ on Linux. The CFG thereafter is
constructed to describe the execution flows of the assembly instructions. The second step
leverages DGCNN to automatically learn defect features on CFG data.

CFG construction

The CFG of a program is generated from its assembly code after compiling. Fig. 5.5 illus-
trates an example of the control flow graph constructed from an assembly code snippet, in
which each vertex corresponds to an instruction and a directed edge shows the execution
path from an instruction to the other.

The pseudo-code to generate CFGs is shown in Algorithm 3. The algorithm takes an
assembly file as the input, and outputs the CFG. Building the CFG from an assembly
code includes two major steps. In the first step, the code is partitioned into blocks of
instructions based on the labels (e.g. L1, L2, L3 in Fig. 5.5). The second step is creating
the edges to represent the control flow transfers in the program. Specifically, the first
line invokes procedure initialize_Blocks to read the file contents and return all the
instruction blocks. In line 2, the set of edges is initially set to empty. From line 3 to 24,
the graph edges are created by traversing all instructions of each block and considering

69

5.4. EXPERIMENTS

(a) (b)

Figure 5.5: An example of constructing CFGs from assembly code.(5.5a) a fragment of
assembly code;(5.5b) the CFG of the code fragment (each node is viewed by the line
number and the name of the instruction).

possible execution paths from the current instruction to others. For a block, because the
instructions are executed in sequence, every node has an outgoing edge to the next one
(line 5-9). Additionally, we consider two types of instructions which may have several
targets. For jump instructions, an edge is added from the current instruction to the first
one of the target block. We use two edges to model function calls, in which one is from
the current node to the first instruction of the function and the other is from the final
instruction of the function to the next instruction of the current node (line 10-24). Finally,
the graphs are formed from the instruction and edge sets (line 25-26).

Datasets

The datasets were collected from a popular programming contest site CodeChef 1. We
created four benchmark datasets which each one involves source code submissions (written
in C, C++, Python, etc.) for solving one of the problems as follows:

• SUMTRIAN (Sums in a Triangle): Given a lower triangular matrix of n rows, find
the longest path among all paths starting from the top towards the base, in which
each movement on a part is either directly below or diagonally below to the right.
The length of a path is the sums of numbers that appear on that path.

• FLOW016 (GCD and LCM): Find the greatest common divisor (GCD) and the
least common multiple (LCM) of each pair of input integers A and B.

1https://www.codechef.com/problems/<problem-name>

70

https://www.codechef.com/problems/<problem-name>

5.4. EXPERIMENTS

Algorithm 3: The algorithm for constructing Control Flow Graphs from assembly
code
Input : asm_file - A file of assembly code
Output: The graph representation of the code

1 blocks← initialize_Blocks(asm_file);
2 edges← {};
3 for i← 0 to |blocks| do
4 for j ← 0 to |blocks[i].instructions| do
5 if j > 0 then
6 inst_1← blocks[i].instructions[j − 1];
7 inst_2← blocks[i].instructions[j];
8 edges.add(new_Edge(inst_1, inst_2));

9 end
10 if inst_1.type=“jump” or inst_1.type=“call” then
11 label← inst_1.params[0];
12 to_block ←find_Block_by_Label(label);
13 if to_block 6= NULL then
14 inst_2← to_block.first_instruction;
15 edges.add(new_Edge(inst_1, inst_2));
16 if inst_1.type=“call” then
17 inst_2← to_block.last_instruction;
18 inst_1← inst_1.next;
19 edges.add(new_Edge(inst_2, inst_1));

20 end

21 end

22 end

23 end

24 end
25 instructions← get_All_Instructions(blocks);
26 return construct_Graph(instructions, edges);

71

5.4. EXPERIMENTS

• MNMX (Minimum Maximum): Given an array A consisting of N distinct integers,
find the minimum sum of cost to convert the array into a single element by following
operations: select a pair of adjacent integers and remove the larger one of these two.
For each operation, the size of the array is decreased by 1. The cost of this operation
will be equal to their smaller.

• SUBINC (Count Subarrays): Given an array A of N elements, count the number of
non-decreasing subarrays of array A.

The target label of an instance is one of the possibilities of source code assessment.
Regarding this, a program can be assigned to one of the groups as follows: 0) accepted
- the program ran successfully and gave a correct answer; 1) time limit exceeded - the
program was compiled successfully, but it did not stop before the time limit; 2) wrong
answer: the program compiled and ran successfully but the output did not match the
expected output; 3) runtime error: the code compiled and ran but encountered an error
due to reasons such as using too much memory or dividing by zero; 4) syntax error - the
code was unable to compile.

We collected all submissions written in C or C++ until March 14th, 2017 of four
problems. The data are preprocessed by removing source files which are empty code, and
unable to compile. To conduct experiments, each dataset is randomly split into three folds
for training, validation, and testing by ratio 3:1:1.

Table 5.1 presents statistical figures of instances in each class of the datasets. All of the
datasets are imbalanced. Taking MNMX dataset as an example, the ratios of classes 2,
3, 4 to class 0 are 1 to 27, 46, and 24. In addition, programs’ CFGs vary considerably in
size with the number of nodes from hundreds to thousands.

Table 5.1: Statistics of CodeChef datasets. The values are shown in form of average±
standard deviation.

Dataset
Class

Nodes
Max
nodes

Degree
Max
degree0 1 2 3 4

FLOW016 3,472 4,165 231 2,368 412 117±55 1,246 3.39±0.80 11
MNMX 5,157 3,073 189 113 213 211±296 3,073 3.72±1.86 43
SUBINC 3,263 2,685 206 98 232 142±63 1,245 3.19±0.63 17
SUMTRIAN 9,132 6,948 419 2,701 1,987 236±104 2,905 3.75±1.36 56

Baselines

We compare our models including DGCNN and ASCNN with various approaches including
a tree based convolutional neural network (TBCNN) - a state-of-the-art deep neural model
for this problem [66], sibling-subtree convolutional neural networks (SibStCNN), recursive
neural networks (RvNN) [84], k nearest neighbors (kNN) with tree edit distance (TED)
and Levenshtein distance (LD) [72], and support vector machines (SVMs) with bag-of-
words (BoW) features. The parameters for the models are described as follows.

72

5.4. EXPERIMENTS

The neural networks. The structures of the networks are shown in Table 5.2. The
networks share some initial parameters: the learning rate is 0.1, the token vectors have a
size of 30, the batch size is 10.

k-nearest neighbors (kNN). The number of neighbors k is selected from {3, 5, 7, 9}.
We found that k = 3 commonly reaches the highest performance on the validation sets.

SVM-BoW. Two parameters C and γ of the SVM with RBF kernel are tuned by using
grid search.

Table 5.2: Structures and numbers of hyperparameters of the neural networks. Each layer
is presented in form of the name followed by the number of neurons. Emb is a embedding
layer. Rv, Conv, Pool, and FC stand for recursive, convolutional, pooling, and fully-
connected, respectively.

Network Architecture weights biases
RvNN Coding30-Emb30-Rv600-FC600-Soft5 1,104,600 1,235
TBCNN Coding30-Emb30-Conv600-GPool-FC600-Soft5 1,140,600 1,235
SibStCNN Coding30-Emb30-Conv600-GPool-FC600-Soft5 1,140,600 1,235
ASCNN-1V Conv600-Pool2-Conv300-GPool-FC300-Soft5 487,500 1,205
ASCNN-2V [Conv600-Pool2-Conv300-GPool]×2-Merge-FC300-Soft5 973,500 2,105
DGCNN-1V Conv100-Conv600-FC600-Soft5 552,000 1,305
DGCNN-2V Conv100-Conv600-FC600-Soft5 561,000 1,305

Results

Table 5.3 shows the performance of classifiers according to the accuracy and F1 on the
four datasets. Building the network models including the steps of training, validation and
testing was within 24 hours. The best values of ASCNN and DGCNN are highlighted in
bold, the best values of the other approaches are marked with superscipt ? and in italic.
As can be seen, assembly-based approaches significantly outperform others. Specifically,
in comparison with the second best, DGCNN improves the accuracies and F1 scores by
12.39% and 12.18% on FLOW016, 1.2% and 1.28% on MNMX, 7.71% and 6.39% on
SUBINC, and 1.98% and 0.5% on SUMTRIAN. Similarly, ASCNN achieves the higher
accuracies and F1 scores by 10.37% and 10.94% on FLOW016, 1.48% and 1.63% on
MNMX, 5.48% and 5.05% on SUBINC, and 2.1% and 2.21% on SUMTRIAN . Software
defect prediction is a complicated task because semantic errors are hidden deeply in source
code. Even if a defect exists in a program, it is only revealed during running the application
under specific conditions [93]. Therefore, it is impractical to manually design a set of good
features which are able to distinguish faulty and non-faulty samples. Similarly, ASTs
just represent the structures of source code. Although tree-based approaches (SibStCNN,
TBCNN, and RvNN) are successfully applied to other software engineering tasks like
classifying programs by functionalities, they have not shown good performance on the
software defect prediction. In contrast, assembly instructions are equivalent to CPU-level
instructions and CFGs are precise graphical structures which show behaviors of programs.
As a result, applying DGCNN on CFGs and ASCNN on instruction sequences achieve the

73

5.4. EXPERIMENTS

best accuracies and F1 scores on the experimental datasets about software defects.

Table 5.3: Comparison of classifiers according to accuracy and F1. 1V and 2V following
ASCNN means that an instruction are viewed by one and two perspectives. Op and NoOp
are using instructions with or without operands.

Approach
FLOW016 MNMX SUBINC SUMTRIAN
Acc. F1 Acc. F1 Acc. F1 Acc. F1

SVM-BoW 60.00 58.64 77.53 75.00 67.23 65.75 64.87 63.82
LD 60.75 60.61 79.13 77.89 66.62 66.36 65.81 65.73
TED 61.69 61.56 80.73 79.55 68.31∗ 68.03∗ 66.97∗ 66.83∗

RvNN 61.03 58.98 82.56 80.48 64.53 62.07 58.82 56.29
TBCNN 63.10∗ 61.85∗ 82.45 80.94 63.99 62.13 65.05 63.35
SibStCNN 62.25 61.15 82.85∗ 81.04∗ 67.69 65.15 65.10 63.20
ASCNN_1V_NoOp 72.11 71.36 83.53 82.18 73.79 73.08 69.07 69.04
ASCNN_2V_NoOp 73.47 72.79 82.96 81.67 73.71 73.04 67.82 67.81
ASCNN_1V_Op 72.39 71.57 84.33 82.67 72.01 71.54 66.52 67.12
ASCNN_2V_Op 73.19 72.71 82.73 81.14 73.63 72.88 68.29 68.19
GCNN_1V_NoOp 73.80 72.57 83.19 81.28 70.93 69.61 68.83 67.33
GCNN_2V_NoOp 74.32 73.11 83.82 82.32 74.02 72.54 68.12 66.42
GCNN_1V_Op 75.49 74.03 84.05 82.28 72.40 70.67 68.19 65.91
GCNN_2V_Op 75.12 73.60 83.70 81.88 76.02 74.42 68.95 66.62

From the last eight rows of Table 5.3, the more the information is provided, the more
efficient the learner is. In general, viewing an instruction by two perspectives including
its contents and group may help boost DGCNN and ASCNN classifiers in both cases:
with and without the use of operands. Similarly, taking into account of all components
in instructions (Eq. 5.4) is beneficial. Specifically, DGCNN with one view reaches the
accuracies of 75.49% on FLOW016, and 84.05% on MNMX; DGCNN with two views ob-
tains the accuracies of 76.02% on SUBINC, and 68.95% on SUMTRIAN. ASCNN achieve
better results on two datasets including FLOW016 and MNMX.

We also assess the effectiveness of the models in terms of the discrimination measure
(AUC) which is equivalent to Wilcoxon test in ranking classifiers. For imbalanced datasets,
many learning algorithms have a trend to bias the majority class due to the objective of
error minimization. As a result, the models mostly predict an unseen sample as an instance
of the majority classes, and ignore the minority classes. Fig. 5.6 plots the ROC curves of
TBCNN and DGCNN_1V_NoOp classifiers on FLOW016 dataset, an imbalanced data
with the minority classes of 2 and 4. Both two classifiers have a notable lower ability
in detecting minority instances from the others. For predicting class 4, the TBCNN is
even equivalent to a random classifier. After observing the other ROC curves we found
the similar problem for all of the approaches on the experimental datasets. Thus, AUC
is an essential measure for evaluating classification algorithms, especially in the case of
imbalanced data.

74

5.4. EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

micro-average ROC curve (area = 0.89)
macro-average ROC curve (area = 0.76)
ROC curve of class 0 (area = 0.80)
ROC curve of class 1 (area = 0.77)
ROC curve of class 2 (area = 0.52)
ROC curve of class 3 (area = 0.94)
ROC curve of class 4 (area = 0.78)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

micro-average ROC curve (area = 0.92)
macro-average ROC curve (area = 0.82)
ROC curve of class 0 (area = 0.89)
ROC curve of class 1 (area = 0.87)
ROC curve of class 2 (area = 0.59)
ROC curve of class 3 (area = 0.96)
ROC curve of class 4 (area = 0.78)

(b)

Figure 5.6: The illustration of the discrimination ability between classes of classifiers
on imbalanced datasets. Fig. 5.6a and Fig. 5.6b are the ROC curves of TBCNN and
DGCNN_1V_NoOp on FLOW016 dataset, respectively.

Table 5.4: Performance comparison in terms of the AUC measure.

Approach FLOW016 MNMX SUBINC SUMTRIAN
SVM-BoW 0.74 0.76 0.73∗ 0.79
RvNN 0.75 0.79∗ 0.69 0.73
TBCNN 0.76∗ 0.77 0.72 0.78
SibStCNN 0.76∗ 0.79∗ 0.71 0.80∗

ASCNN_1V_NoOp 0.81 0.80 0.72 0.80
ASCNN_2V_NoOp 0.81 0.79 0.75 0.81
ASCNN_1V_Op 0.82 0.80 0.75 0.81
ASCNN_2V_Op 0.83 0.82 0.75 0.80
GCNN_1V_NoOp 0.82 0.82 0.74 0.82
GCNN_2V_NoOp 0.80 0.81 0.72 0.81
GCNN_1V_Op 0.81 0.80 0.75 0.81
GCNN_2V_Op 0.82 0.79 0.74 0.81

Table 5.4 presents the AUCs of probabilistic classifiers, which produce the probabilities
or the scores to indicate the belonging degrees of an instance to classes. There are two
main groups including assembly-based and tree-based approaches, in which the approaches
in each group has the similar AUC scores; and assembly-based approaches show better
performance than those of tree-based. It is worth noticing that, along with the efforts of
accuracy maximization, the approaches based on assembly instructions also enhance the
distinguishing ability between categories even on imbalanced data. Comparing with the
second best, the DGCNN and ASCNN classifiers improve averages of 0.03 and 0.035 for
the AUC measure.

75

5.4. EXPERIMENTS

0 10 20 30 40 50 60
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

GCNN1V_NoOp
GCNN1V_Op
GCNN2V_NoOp
GCNN2V_Op
RvNN
SibStCNN
TBCNN

(a)

0 10 20 30 40 50 60
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

(b)

0 10 20 30 40 50 60
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(c)

0 10 20 30 40 50 60
Epochs

0.4

0.6

0.8

1.0

1.2

Er
ro

r

(d)

Figure 5.7: Learning curves of the networks. Fig. 5.7a and Fig. 5.7b, Fig. 5.7c and Fig. 5.7d
are accuracy and error curves of MNMX and FLOW016 datasets; the solid and dot curves
correspond to training and validation, respectively.

76

5.4. EXPERIMENTS

On the average, DGCNN usually shows the better performance than ASCNN and also
significant outperforms the others. Fig. 5.7 plots the learning curves of the networks on
two datasets MNMX and FLOW106. For all networks, the validation accuracies quickly
converge to the optimal values after around 20 epochs and vary around such values in
next epochs. We can see three groups of networks based on the learning curves. The first
is the DGCNN’s variants which reach highest accuracies for both training and validation,
and have lowest errors. The second includes SibStCNN and TBCNN which their curves
are closed to each other. The third is RvNN with the lowest accuracies and highest errors.
From above analysis, we can conclude that leveraging precise control flow graphs of binary
codes is suitable for software defect prediction, and DGCNN is a deep neural network for
learning on labeled directed graphs efficiently.

Error Analysis

We analyze cases of source code variations which methods are able to handle or not based
on observations on classifiers’ outputs, training and test data. We found that RvNN’s
performance is degraded when tree sizes increase. This problem is also pointed out from
other research on tasks of natural language processing [83,84] and programming language
processing [66]. From Tables 5.1, and 5.4 the larger trees, the lower accuracies and AUCs,
RvNN obtains in comparison with other approaches, especially on SUMTRIAN dataset.
SibStCNN and TBCNN obtain higher performance than other baselines due to learning
features from subtrees. For analyzing tree-based methods in this section, we only take
into account SibStCNN and TBCNN.

Effect of code structures: the tree-based approaches suffer from varying structures
of ASTs. For example, given a program, we have many ways to reorganize the source
code such as changing positions of some statements, constructing procedures and replac-
ing statements by equivalent ones. These modifications lead to reordering the branches
and producing new branches of ASTs (File 3.c and File 4.c). Because of the weight
matrices for each node being determined based on the position, SibStCNN and TBCNN
are easily affected by changes regarding tree shapes and sizes.

Meanwhile, graph-based approaches are able to handle these changes. We observed that
although loop statements like For, While, and DoWhile have different tree representations,
their assembly instructions are similar by using a jump instruction to control the loop.
Similarly, moving a statement to possible positions may not result in notable changes
in assembly code. Moreover, grouping a set of statements to form a procedure is also
captured in CFGs by using edges to simulate the procedure invocation (Section 5.4.1).

Effect of changing statements: CFG-based approaches may be affected by replace-
ments of statements. Considering source code in File 3.c, File 5.c, they have similar
ASTs, but the assembly codes are different. In C language, statements are translated into
different sets of assembly instructions. For example, with the same operator, the sets of
instructions for manipulating data types of int and long int are dissimilar. Moreover,
statements are possible replaced by others without any changes of program outcomes.
Indeed, to show values, we can select either printf or cout. Since contents of CFG nodes
are changed significantly, DGCNN may fail in predicting these types of variations.

77

5.4. EXPERIMENTS

(a) File 3.c (a training sample)
(b) File 4.c (G+, T-)

(c) File 5.c (G-, T+)

(d) File 6.c (G-, T-)

Figure 5.8: Some source code examples in FLOW016 dataset which may cause mistakes
of tree-based (T) and CFG-based (G) approaches. Fig. 5.8a is a sample in the training
set. Figs. 5.8b, 5.8c, and 5.8d are samples in the test set. Symbols “+” and “-” denote the
sample is correctly and incorrectly classified by the approaches.

78

5.4. EXPERIMENTS

Table 5.5: Statistics on malware dataset.

Dataset Total #Neg. #Pos. #nodes
Max
nodes

Degree
Max
degree

MALWARE 2,937 1,362 1,575 1,236±5,528 157,237 11.21±55.44 1736

Effect of using library procedures: when writing a source code, the programmer
can use procedures from other libraries. In Fig. 5.8, File 6.c applies the procedure __gcd

in the library algorithm, while the others use ordinary C statements for computing the
greatest common divisor of each integer pair. Both ASTs and CFGs do not contain the
contents of external procedures because they are not embedded to generate assembly code
from source code. As a result, tree-based and graph-based approaches are not successful
in capturing program semantics in these cases.

5.4.4 Malware analysis

Task description

To verify the ability to deal with large scale graphs, we apply DGCNN for malware anal-
ysis. The task is to check whether an executable file is malware. To solve this problem,
a file is represented as a directed graph of control flow using a disassembler tool called
BE-PUM (Binary Emulation for Pushdown Model) [34]. After that, several graph-based
approaches are employed graph-based approaches to classify the data samples into mal-
ware and non-malware.

The dataset includes x86 binary files, wherein malware samples are supplied by LORIA,
Loraine University 2, and VX Heaven 3; and, non-malware files were collected from the
system files in the folder Windows. From the last row of Table 5.5, the control flow graphs
of files are very large with the number of nodes up to greater than 150,000. Because the
data is quite small, the experiment is conducted using 5-fold cross validation.

Baselines

For malware analysis, we compare DGCNN with SVM-Bow. We also investigated several
graph kernel approaches such as Shortest Path Kernels and random walk graph kernels.
However, these algorithms are unable to be executed due to computational complexity and
required memory. According to previous studies, the kernel methods just process graphs
with hundreds of nodes [11,89].

As mentioned in Subsection 5.3.5, DGCNN has O(n×d) time complexity, where n and
d are the number of graph nodes and the max degree. In the case of malware dataset,
the time complexity is equivalent to O(n) because of d � n (Table 5.5). Moreover, the
required memory is about 3MB. As as results, both processes of training and testing
DGCNN take only about 24 hours.

2http://www.loria.fr/les-actus
3http://vxheaven.org/

79

http://www.loria.fr/les-actus
http://vxheaven.org/

5.5. RELATED WORK

1 2 3 4 5
Fold

80

85

90

95

100

A
cc

ur
ac

y(
%

)
GNN-1V
GNN-Op-1V

GNN-2V
GNN-Op-2V

SVM_BoW

(a)

1 2 3 4 5
Fold

80

85

90

95

100

A
U

C
(x

10
0)

GNN-1V
GNN-Op-1V

GNN-2V
GNN-Op-2V

SVM_BoW

(b)

Figure 5.9: Comparison of DGCNN and SVM according to accuracy (5.9a) and AUC
(5.9b) using 5-fold cross validation. The symbol Op indicates the use of operands.

Results

Fig. 5.9 depicts the performance of DGCNN in comparison with SVM-BoW in terms of
accuracy and AUC. BE-PUM can generate precise control flow graphs of executable files
under the presence of obfuscation techniques [34]. Thus using SVM with BoW features
also obtains high results. One problem is the huge sizes of graphs that lead to obstacles
in applying conventional methods for graphs. We tried SVM with shortest path kernels
and random walk graph kernels, but running them was failed because of computational
complexity and required memory. Meanwhile training the DGCNN models and predicting
the testing sets take around 24 hours.

GCNN-1V achieves the best performance with the average accuracy of 97.31%, and the
average AUC of 97.22%. By applying convolution to capture graphs’ features, DGCNN
is good at distinguishing between malware and non-malware files. Unlike the cases of
software fault prediction, adding more information may degrade DGCNN’s performance
on the MALWARE dataset. This probably is caused by an increase of the number of tokens
and the limited number of training instances. The numbers of unique tokens corresponding
to the cases of with and without the use of operands are 1,427, 3,669, respectively, while
the training data for each fold of cross validation contain about 2,350 samples.

5.5 Related Work

Graph data are known as one of complex structures and they have different types of
representations. Various algorithms have been developed to tackle graph data. For la-
beled directed graphs, the existing approaches are based on subgraph isomorphism and
graph kernels. However, these approaches not only are time and memory consuming but
also require several constraints. Such problems lead to obstacles to adapting to practi-
cal applications. Gartner et al. proved that measuring graph similarity using subgraph
isomorphism is NP -hard; the runtime grows exponentially with regard to the number of
vertices. Although graph kernels are more efficient alternatives, measuring the similarities

80

5.5. RELATED WORK

between graphs is computed in polynomial time. For graphs with n nodes and m edges,
random walk kernels originally proposed by Gartner on labeled directed graphs have the
running time of O(n6) [28]. Then, Vishwanathan et al. speeded up to O(n3) [89]; and,
Kang et al. reduced the time complexity to O(n2) [44]. Several methods for computing
graph kernels require the same number of graph nodes, and O(m2) memory. Because of
above drawbacks, these algorithms are infeasible for graphs with more than hundreds of
nodes [44].

Our work is diverse from several newly proposed convolutional neural networks on
graphs such as graph-based convolutional neural networks for image classification [19,
23, 80], for text categorization [19], for classifying chemical compounds [67, 80]. These
networks aim to solve problems that data samples are represented as weighted graphs.
Applying these networks to several types of labeled graphs is impractical because the
graphs must be converted into adjacency matrices. To obtain adjacency matrix repre-
sentations, each node in a graph is assigned to a unique identifier and all graphs must
share a set of identifiers. However, an instruction may appear at many locations in a
CFG. This leads to the unknown of the common identifier set because it is impossible to
align the vertices between CFGs. Indeed, given CFG1 and CFG2 with the sets of vertices
V1 = {cmp,mov, add} and V2 = {mov,mov, jmp}, we can not determine the node of the
CFG2 that corresponds the node move of the CFG1.

Closely related are the works of Mou et al. [66] and Duvenaud et al. [22]. Mou et al.
developed a tree-based convolutional neural network (TBCNN) to process abstract syntax
trees (ASTs) of programming languages. ASTs can be viewed as a specific type of labeled
directed graphs without cycles. Besides, TBCNN considers the position of each node to
determine the corresponding weights in the convolution stage. Therefore, it is impossible
to adapt TBCNN for graphs with cycles and arbitrary orders of nodes. Duvenaud et al.
designed a graph-based architecture to encode invariant substructures in a molecule. Each
molecule is represented as a graph with nodes being individual atoms and edges being
bonds. To deal with dynamic structures of local regions in convolution stage, they combine
the vectors the current node and neighbors by element-wise summation to form a single
input vector. The weights of the input vector is determined according to the number of
neighbors. Specifically, five sets of weights are used for local regions having 1-5 neighbors
with the assumption that an atom has a maximum of 5 bonds. Extending this network to
graphs in other domains faces some challenges. Unlike the graph of an atom, these graphs
may have nodes with numerous neighbors. Thus, the network requires a huge number of
weights causing overfitting. Moreover, embedding all node vectors into a single one ignores
the relations in the substructures.

Our proposed network is a general framework for labeled graphs. To tackle dynamic
substructures, we apply a shared parameter model in which the nodes having the same
type share a set of weights and do not share any connections. We consider three types of
nodes in a subgraph including the center, incoming and outgoing. In addition, our design
can take multiple views of nodes to enrich the data for learning.

81

Conclusions

In this dissertation, I present some new models and techniques for source code analysis.
Chapter 3 introduced a combination model for feature weighting and parameter optimiza-
tion. In most of data sets, the relevance between features and class labels are different.
Thus, quantifying the extent of the relevance will help us in building more accurate clas-
sifiers. Our proposed model is an appropriate tool for optimizing classifiers’ parameters
and features’ weights because it can boost the performance notably and overcome the
disadvantages of imbalanced data.

Chapter 4 turned to a more convenient approach: the applying of deep learning on
abstract syntax trees (ASTs). An advantage of deep neural networks is that they do not
require any handcrafted features. In machine learning, the accuracy of methods is greatly
influenced by the quality of input data. Since containing rich information of programs,
ASTs should be utilized to solve program analysis problems. We surveyed various machine
learning algorithms from lazy learners like kNN with tree edit distance (TED) to deep
neural networks like TBCNN, and found that AST-based methods completely beat the
metrics-based. ASTs are high-dimensional data with the node numbers up to thousands.
To refine the ASTs, we presented a technique to prune redundant branches and reconstruct
subtrees. This leads to an increase in the classification accuracy and a decrease in running
time. Additionally, several first layers of deep neural networks are to learn good features
of the input data. After obtaining such features, we can feed to feed-forward layers or
other learning algorithms to compute the distribution probabilities. Regarding this, we
proposed some combinations of deep neural networks and common learning algorithms to
make more powerful models.

Chapter 5 explored deeper semantic meanings of programs: the applying of deep learning
on assembly code. ASTs just show the structures of programs. Thus, they may fail when
adapting to other problems that need to discover the behavior of programs such as software
defect prediction. Meanwhile, assembly code exposes the execution flow of a program.
We designed two convolutional architectures to learn defect features from sequences and
control flow graphs. Our approaches outperform the others that based on features and
trees.

82

Bibliography

[1] Fumio Akiyama. An example of software system debugging. In IFIP Congress (1),
volume 71, pages 353–359, 1971.

[2] Hamoud Aljamaan, Mahmoud O Elish, and Irfan Ahmad. An ensemble of computa-
tional intelligence models for software maintenance effort prediction. In Advances in
Computational Intelligence, pages 592–603. Springer, 2013.

[3] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5-7, pages
1–19. ACM, 1970.

[4] Marcos Alvares, Tshilidzi Marwala, and Fernando Buarque de Lima Neto. Appli-
cation of computational intelligence for source code classification. In 2014 IEEE
Congress on Evolutionary Computation (CEC), pages 895–902. IEEE, 2014.

[5] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane. Graph-
based malware detection using dynamic analysis. Journal in computer virology,
7(4):247–258, 2011.

[6] Gustavo EAPA Batista and Maria Carolina Monard. An analysis of four missing
data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-
6):519–533, 2003.

[7] Rey Mark John SA Bautista, Vishnu Joshua L Navata, Aldrich H Ng, Ma Santos,
S Timothy, Justine D Albao, and Edison A Roxas. Recognition of handwritten
alphanumeric characters using projection histogram and support vector machine. In
Humanoid, Nanotechnology, Information Technology, Communication and Control,
Environment and Management (HNICEM), 2015 International Conference on, pages
1–6. IEEE, 2015.

[8] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Software Maintenance, 1998.
Proceedings., International Conference on, pages 368–377. IEEE, 1998.

[9] Philip Bille. A survey on tree edit distance and related problems. Theoretical com-
puter science, 337(1):217–239, 2005.

83

BIBLIOGRAPHY

[10] David Binkley and Mark Harman. Results from a large-scale study of performance
optimization techniques for source code analyses based on graph reachability algo-
rithms. In Source Code Analysis and Manipulation, 2003. Proceedings. Third IEEE
International Workshop on, pages 203–212. IEEE, 2003.

[11] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In
Data Mining, Fifth IEEE International Conference on, pages 8–pp. IEEE, 2005.

[12] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-mutating
malware using control-flow graph matching. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 129–143. Springer,
2006.

[13] Cagatay Catal. Software fault prediction: A literature review and current trends.
Expert systems with applications, 38(4):4626–4636, 2011.

[14] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and Eul Gyu Im.
Software plagiarism detection: a graph-based approach. In Proceedings of the 22nd
ACM international conference on Conference on information & knowledge manage-
ment, pages 1577–1580. ACM, 2013.

[15] E Chandra and P Edith Linda. Class break point determination using ck metrics
thresholds. Global journal of computer science and technology, 10(14), 2010.

[16] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[17] Alexis Conneau, Holger Schwenk, Löıc Barrault, and Yann Lecun. Very deep convo-
lutional networks for natural language processing. arXiv preprint arXiv:1606.01781,
2016.

[18] Lawrence Davis. Handbook of genetic algorithms. 1991.

[19] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in Neural
Information Processing Systems, pages 3837–3845, 2016.

[20] Erik D Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal
decomposition algorithm for tree edit distance. ACM Transactions on Algorithms
(TALG), 6(1):2, 2009.

[21] Carlotta Domeniconi, Jing Peng, and Dimitrios Gunopulos. Locally adaptive metric
nearest-neighbor classification. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(9):1281–1285, 2002.

[22] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on

84

BIBLIOGRAPHY

graphs for learning molecular fingerprints. In Advances in neural information pro-
cessing systems, pages 2224–2232, 2015.

[23] Michael Edwards and Xianghua Xie. Graph based convolutional neural network.
arXiv preprint arXiv:1609.08965, 2016.

[24] Weiguo Fan, Edward A Fox, Praveen Pathak, and Harris Wu. The effects of fitness
functions on genetic programming-based ranking discovery for web search. Journal of
the American Society for Information Science and Technology, 55(7):628–636, 2004.

[25] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–
874, 2006.

[26] Honghai Feng, Guoshun Chen, Cheng Yin, Bingru Yang, and Yumei Chen. A svm
regression based approach to filling in missing values. In Knowledge-Based Intelligent
Information and Engineering Systems, pages 581–587. Springer, 2005.

[27] Giles M Foody. The effect of mis-labeled training data on the accuracy of super-
vised image classification by svm. In Geoscience and Remote Sensing Symposium
(IGARSS), 2015 IEEE International, pages 4987–4990. IEEE, 2015.

[28] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results
and efficient alternatives. In Learning Theory and Kernel Machines, pages 129–143.
Springer, 2003.

[29] Holland Goldberg, David E and John H. Genetic algorithms and machine learning.
Machine learning, 3(2):95–99, 1988.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[31] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. Using the
support vector machine as a classification method for software defect prediction with
static code metrics. In EANN, volume 2009, pages 223–234. Springer, 2009.

[32] Jerzy W Grzymala-Busse, Linda K Goodwin, Witold J Grzymala-Busse, and Xinqun
Zheng. Handling missing attribute values in preterm birth data sets. In Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing, pages 342–351. Springer, 2005.

[33] Akkus Guvenir, H Altay and Aynur. Weighted k nearest neighbor classification on
feature projections. In Proceedings of the 12-th International Symposium on Com-
puter and Information Sciences, Antalya, Turkey, 1997.

[34] Nguyen Minh Hai, Mizuhito Ogawa, and Quan Thanh Tho. Obfuscation code local-
ization based on cfg generation of malware. In International Symposium on Founda-
tions and Practice of Security, pages 229–247. Springer, 2015.

85

http://www.deeplearningbook.org

BIBLIOGRAPHY

[35] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier New
York, 1977.

[36] Sten Hjelmqvist. Fast, memory efficient levenshtein algorithm, 2014.

[37] Lin Chih-Jen Hsu Chih-Wei, Chang Chih-Chung. A practical guide to support vector
classification, 2003.

[38] Sun-Jen Huang, Nan-Hsing Chiu, and Li-Wei Chen. Integration of the grey relational
analysis with genetic algorithm for software effort estimation. European Journal of
Operational Research, 188(3):898–909, 2008.

[39] Liangxiao Jiang, Chaoqun Li, ShashaWang, and Lungan Zhang. Deep feature weight-
ing for naive bayes and its application to text classification. Engineering Applications
of Artificial Intelligence, 52:26–39, 2016.

[40] C Jones. Strengths and weaknesses of software metrics. AMERICAN PROGRAM-
MER, 10:44–49, 1997.

[41] James A Jones and Mary Jean Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering, pages 273–282. ACM, 2005.

[42] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Transac-
tions on Software Engineering, 28(7):654–670, 2002.

[43] Stephen H Kan. Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[44] U Kang, Hanghang Tong, and Jimeng Sun. Fast random walk graph kernel. In
Proceedings of the 2012 SIAM International Conference on Data Mining, pages 828–
838. SIAM, 2012.

[45] Jaswinder Kaur, Satwinder Singh, Karanjeet Singh Kahlon, and Pourush Bassi. Neu-
ral network-a novel technique for software effort estimation. International Journal
of Computer Theory and Engineering, 2(1):17, 2010.

[46] Taghi M Khoshgoftaar and Kehan Gao. Feature selection with imbalanced data for
software defect prediction. In Machine Learning and Applications, 2009. ICMLA’09.
International Conference on, pages 235–240. IEEE, 2009.

[47] Hiroshi Kikuchi, Takaaki Goto, Mitsuo Wakatsuki, and Tetsuro Nishino. A source
code plagiarism detecting method using alignment with abstract syntax tree elements.
In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), 2014 15th IEEE/ACIS International Conference on, pages 1–6.
IEEE, 2014.

86

BIBLIOGRAPHY

[48] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[49] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In International Static Analysis Symposium, pages 40–56. Springer,
2001.

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[51] Chang-Hwan Lee. A gradient approach for value weighted classification learning in
naive bayes. Knowledge-Based Systems, 85:71–79, 2015.

[52] Pornchai Lerthathairat and Nakornthip Prompoon. An approach for source code
classification to enhance maintainability. In Computer Science and Software Engi-
neering (JCSSE), 2011 Eighth International Joint Conference on, pages 319–324.
IEEE, 2011.

[53] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. Benchmark-
ing classification models for software defect prediction: A proposed framework and
novel findings. IEEE Transactions on Software Engineering, 34(4):485–496, 2008.

[54] Bozhao Li, Na Chen, Jing Wen, Xuebo Jin, and Yan Shi. Text categorization system
for stock prediction. International Journal of u-and e-Service, Science and Technol-
ogy, 8(2):35–44, 2015.

[55] Charles X Ling, Jin Huang, and Harry Zhang. Auc: a statistically consistent and
more discriminating measure than accuracy. In IJCAI, volume 3, pages 519–524,
2003.

[56] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag: detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
872–881. ACM, 2006.

[57] Lingqiao Liu, Lei Wang, and Xinwang Liu. In defense of soft-assignment coding. In
Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2486–2493.
IEEE, 2011.

[58] Kenneth C Louden et al. Programming languages: principles and practices. Cengage
Learning, 2011.

[59] Lowe and David G. Similarity metric learning for a variable-kernel classifier. Neural
computation, 7(1):72–85, 1995.

[60] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. Transfer learning for
cross-company software defect prediction. Information and Software Technology,
54(3):248–256, 2012.

87

BIBLIOGRAPHY

[61] Atif M Memon and Qing Xie. Studying the fault-detection effectiveness of gui
test cases for rapidly evolving software. IEEE transactions on software engineer-
ing, 31(10):884–896, 2005.

[62] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes
to learn defect predictors. Software Engineering, IEEE Transactions on, 33(1):2–13,
2007.

[63] Mitchell and Melanie. An introduction to genetic algorithms. MIT press, 1998.

[64] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2012.

[65] Alessandro Moschitti. Efficient convolution kernels for dependency and constituent
syntactic trees. In ECML, volume 4212, pages 318–329. Springer, 2006.

[66] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks
over tree structures for programming language processing. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[67] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional
neural networks for graphs. In Proceedings of the 33rd annual international conference
on machine learning. ACM, 2016.

[68] Roberto Paredes and Enrique Vidal. A class-dependent weighted dissimilarity
measure for nearest neighbor classification problems. Pattern Recognition Letters,
21(12):1027–1036, 2000.

[69] Mateusz Pawlik and Nikolaus Augsten. Rted: a robust algorithm for the tree edit
distance. Proceedings of the VLDB Endowment, 5(4):334–345, 2011.

[70] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-
efficient. Information Systems, 56:157–173, 2016.

[71] Viet Anh Phan and Lam Thu Bui. Genetic algorithm and application for supporting
working schedule at hospitals. LQDTU Journal of Science and Technology: The
Section on Information and Communication Technology (LQDTU-JICT), 2:92–104,
4/2013.

[72] Viet Anh Phan, Ngoc Phuong Chau, and Minh Le Nguyen. Exploiting tree structures
for classifying programs by functionalities. In Knowledge and Systems Engineering
(KSE), 2016 Eighth International Conference on, pages 85–90. IEEE, 2016.

[73] William F Punch III, Erik D Goodman, Min Pei, Lai Chia-Shun, Paul D Hovland,
and Richard J Enbody. Further research on feature selection and classification using
genetic algorithms. In ICGA, pages 557–564, 1993.

88

BIBLIOGRAPHY

[74] Michael L Raymer, William F Punch, Erik D Goodman, Leslie Kuhn, Anil K Jain,
et al. Dimensionality reduction using genetic algorithms. Evolutionary Computation,
IEEE Transactions on, 4(2):164–171, 2000.

[75] Daniel Rodriguez, Israel Herraiz, Rachel Harrison, Javier Dolado, and José C
Riquelme. Preliminary comparison of techniques for dealing with imbalance in soft-
ware defect prediction. In Proceedings of the 18th International Conference on Eval-
uation and Assessment in Software Engineering, page 43. ACM, 2014.

[76] José A Sáez, Joaquín Derrac, Julián Luengo, and Francisco Herrera. Statistical com-
putation of feature weighting schemes through data estimation for nearest neighbor
classifiers. Pattern Recognition, 47(12):3941–3948, 2014.

[77] Tara N Sainath, Ron J Weiss, Andrew W Senior, Kevin W Wilson, and Oriol Vinyals.
Learning the speech front-end with raw waveform cldnns. In INTERSPEECH, pages
1–5, 2015.

[78] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software En-
gineering Databases. School of Information Technology and Engineering, University
of Ottawa, Canada, 2005.

[79] Gordon Schulmeyer and James I McManus. Handbook of software quality assurance.
Van Nostrand Reinhold Co., 1987.

[80] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in con-
volutional neural networks on graphs. arXiv preprint arXiv:1704.02901, 2017.

[81] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[82] Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and An-
drew Y Ng. Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection. In Advances in Neural Information Processing Systems, pages 801–809,
2011.

[83] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D
Manning. Semi-supervised recursive autoencoders for predicting sentiment distribu-
tions. In Proceedings of the conference on empirical methods in natural language
processing, pages 151–161. Association for Computational Linguistics, 2011.

[84] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, Christopher Potts, et al. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP), volume 1631, page 1642, 2013.

[85] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4):427–437, 2009.

89

BIBLIOGRAPHY

[86] Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. Detecting code reuse
in android applications using component-based control flow graph. In IFIP Interna-
tional Information Security Conference, pages 142–155. Springer, 2014.

[87] Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent
neural network for sentiment classification. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1422–1432, 2015.

[88] Secil Ugurel, Robert Krovetz, and C Lee Giles. What’s the code?: automatic classi-
fication of source code archives. In Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 632–638. ACM,
2002.

[89] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borg-
wardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242,
2010.

[90] Romi Satria Wahono and Nanna Suryana. Combining particle swarm optimization
based feature selection and bagging technique for software defect prediction. Inter-
national Journal of Software Engineering and Its Applications, 7(5):153–166, 2013.

[91] Shuo Wang and Xin Yao. Using class imbalance learning for software defect predic-
tion. IEEE Transactions on Reliability, 62(2):434–443, 2013.

[92] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for
defect prediction. In Proceedings of the 38th International Conference on Software
Engineering, pages 297–308. ACM, 2016.

[93] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshy-
vanyk. Toward deep learning software repositories. In Mining Software Repositories
(MSR), 2015 IEEE/ACM 12th Working Conference on, pages 334–345. IEEE, 2015.

[94] Jia Wu, Shirui Pan, Xingquan Zhu, Zhihua Cai, Peng Zhang, and Chengqi Zhang.
Self-adaptive attribute weighting for naive bayes classification. Expert Systems with
Applications, 42(3):1487–1502, 2015.

[95] Zhong-Liang Xiang, Xiang-Ru Yu, and Dae-Ki Kang. Experimental analysis of näıve
bayes classifier based on an attribute weighting framework with smooth kernel density
estimations. Applied Intelligence, pages 1–10, 2015.

[96] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid
matching using sparse coding for image classification. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1794–1801. IEEE,
2009.

[97] Jun Zheng. Cost-sensitive boosting neural networks for software defect prediction.
Expert Systems with Applications, 37(6):4537–4543, 2010.

90

Publications

JOURNALS

[1] Anh Viet Phan, Minh Le Nguyen, Lam Thu Bui, Feature weighting and SVM
parameters optimization based on genetic algorithms for classification
problems , Applied Intelligence, 2016

[2] Anh Viet Phan, Phuong Ngoc Chau, Minh Le Nguyen, Lam Thu Bui, Automat-
ically classifying source code using tree-based approaches, Data & Knowl-
edge Engineering, 2017

[3] Anh Viet Phan, Minh Le Nguyen, Yen Lam Hoang Nguyen, Lam Thu Bui, DGCNN:
A Convolutional Neural Network over Large-scale Labeled Graphs, Jour-
nal of Engineering Applications of Artificial Intelligence, 2017 (Submitted)

INTERNATIONAL CONFERENCES

[1] Viet Anh Phan, Ngoc Phuong Chau, Minh Le Nguyen, Exploiting Tree Struc-
tures for Classifying Programs by Functionalities, The Eighth International
Conference on Knowledge and Systems Engineering (KSE 2016)

[2] Ngoc Phuong Chau, Viet Anh Phan, Minh Le Nguyen, Deep Learning and Sub-
Tree Mining for Document Level Sentiment Classification, The Eighth In-
ternational Conference on Knowledge and Systems Engineering (KSE 2016)

[3] Minh-Tien Nguyen, Viet-Anh Phan, Truong-Son Nguyen, Minh-Le Nguyen, Learn-
ing to Rank Questions for Community Question Answering with Ranking
SVM, ECML/PKDD 2016 Discovery Challenge - cQA Challenge: Learning to re-
rank questions for community question answering.

[4] Anh Viet Phan, Minh Le Nguyen, Lam Thu Bui, SibStCNN and TBCNN +
kNN-TED: New Models over Tree Structures for Source Code Classifi-
cation, International Conference on Intelligent Data Engineering and Automated
Learning (IDEAL’2017)

[5] Anh Viet Phan, Minh Le Nguyen, Lam Thu Bui, Convolutional Neural Net-
works over Control Flow Graphs for Software Defect Prediction, Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI2017)

91

[6] Anh Viet Phan, Minh Le Nguyen, Lam Thu Bui, Convolutional Neural Net-
works on Assembly Code for Predicting Software Defects, Asia Pacific
Symposium on Intelligent and Evolutionary Systems (IES 2017)

AWARDS

[1] Best Student Paper, received in The Eighth International Conference on Knowledge
and Systems Engineering, 06-08 October, 2016 – Ha Noi, Viet Nam

[2] Second-best System of the cQA Challenge: Learning to re-rank questions for commu-
nity question answering, received in the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery (ECMLPKDD), 19-23 Septem-
ber, 2016, Riva Del Garda, Italy

92

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Program Analysis Problems
	Conventional Approaches and Limitations
	Motivation and Contributions
	Dissertation Structure

	Deep Learning Background
	Neural Networks
	The Basic Definitions
	Training Neural Networks

	Convolutional Neural Networks
	Introduction
	The General Architecture

	Evaluation Measures

	Software Metrics-based Approaches
	Software metrics
	Feature weighting using genetic algorithms
	Introduction of Support Vector Machines (SVMs)
	The optimal hyperplane for separable data
	The optimal hyperplane for non-separable data
	Non-linear SVM

	Genetic algorithms - GAs
	Hybrid model GA-SVM for feature weighting and parameter optimization
	Chromosome design
	Fitness function
	System architecture

	Experiments
	Datasets
	Experimental setup
	Results

	Related work

	Tree-based Approaches
	Abstract Syntax Trees
	Learning Approaches on Tree Structures
	Tree Edit Distance (TED)
	Tree-based Convolutional Neural Networks (TBCNN)
	Sibling-subtree Convolutional Neural Networks (SibStCNN)

	Combinations of Deep Neural Networks and Traditional Learning
	The Combination Model of kNN-TED and Tree-based Networks
	The Integration Model of Tree-based Networks and SVM

	Experiments
	Data Preprocessing
	The Dataset
	Experimental Setup
	Results and Discussion
	Data Analysis

	Related Work

	Deep Neural Networks on Assembly Code
	Assembly code and two views of data
	Convolutional Neural Networks on Instruction Sequences
	Directed Graph Convolutional Neural Networks
	Convolutional Neural Networks on Directed Graphs
	Convolutional Layers
	Dynamic Pooling
	Training
	Computational Complexity and Required Memory

	Experiments
	Control Flow Graphs
	Vector representations
	Software defect prediction
	Task description
	CFG construction
	Datasets
	Baselines
	Results
	Error Analysis

	Malware analysis
	Task description
	Baselines
	Results

	Related Work

