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Abstract

Due to the downsizing of VLSIs, several reliability issues have become more explicit.
Among the issues, soft-error induced degradation is one of the dominant contributors to
faults on modern VLSIs. Soft-error is a transient fault which is triggered by cosmic ray
induced neutron and alpha rays from radioactive contaminants in IC package materials.
Soft-error lasts only short time but it can affect several spatial points simultaneously.

Approaches to dealing with soft-errors are roughly divided into the following three
groups: i) approaches on the device level such as selecting of IC packing materials and
improving of well structures; ii) approaches on the circuit level such as a flip-flop with
additional circuits for error detection, error recovery and error avoidance; iii) approaches
on the system level which includes multiple module redundancy such as concurrent error
detection and triple modular redundancy. Most semiconductor designs rely on computer
aided design systems and implementation of reliability on semiconductor devices on higher
design level is important at the viewpoint of optimization. Nevertheless, because there is
no dominant approach with a single level for soft-error tolerance and such a single level
scheme imposes high overheads in terms of power, performance and chip area, a higher
level approach should be assisted by approaches on other levels. Thus, it is assumed that
several approaches are implemented across distinct levels in this research although the
author focuses on the system level approach via high-level synthesis. As a result of high-
level synthesis, fault-tolerance is implemented to datapath circuits in register-transfer
level (RTL).

This dissertation proposes a method to synthesize application specific soft-error toler-
ant datapaths via high-level synthesis. To guarantee reliability and high real-time prop-
erty, the proposed method is based on the triple redundancy of computation algorithms,
which are to be realized as datapath circuits. The method reduces time overhead orig-
inated in redundancy, and at the same time, it realizes datapaths that keep multiple
component soft-error tolerance. In order to mitigate time overhead, error detection parts
with comparison and error correction parts with retry share resources speculatively (spec-
ulative resource sharing). Operations in the retry parts are not executed as long as no
error detected. During this period, resources bound to those operations in the retry parts
are in an idle state. If it is assumed that the probability of the recurrence of soft-errors in
a short period is low enough, operations which are executed as retry and other operations
which are executed simultaneously can share resources.

To use hardware resources more efficiently, a tripled data flow graph of a computation
algorithm is partitioned into several connected subgraphs. However, the more comparison-
operations are selected, the more subgraphs are partitioned. As a result, latency of
the datapath improves because fine-grained subgraphs are relatively easier to fulfill the
speculative resource sharing condition than coarse-grained ones. On the other hand,
latency may become larger as increasing the number of comparison-operations. Thus,
deciding insertions of comparison-operations is an important factor in design optimization.

In order to reduce an excessively applied fault-tolerance and mitigate time overhead
for the executions of retry parts which are a disadvantage of comparison-retry (C-R)
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schemes, the author introduces spatial/temporal adjacency constraint between datapath
components considering a concept of localities of soft-errors. If a single soft-error has a
spatial and temporal boundary, and its influence is limited against multiple component
errors, several components can be executed at the same time. Majority-voting (M-V)
schemes have a disadvantage that third copies should be always executed, while third
copies in C-R schemes need not be executed as long as no error has occurred. Moreover,
M-V mechanisms require more hardware resources although datapaths to which those
schemes are implemented can achieve small latency. Because of introducing adjacency
constraint, an M-V mechanism for error masking and correction instead of a C-R mech-
anism, and the three copies in every subgraphs can be executed concurrently. On the
other hand, an advantage of C-R based error correction mechanisms is that the mecha-
nism can reduce power consumption contributed by idling of retry parts, in case no error
is detected. Nevertheless, the executions of retry parts cause time overhead, which is a
drawback of the C-R mechanisms. In order to merge the advantages of both C-R schemes
and M-V schemes, the author proposes a combination of the two error correction schemes
to take advantage of the strengths of each scheme. In addition, a heuristic algorithm to
find a latency-optimized integration of the two schemes is suggested.

It is found that the proposed method can reduce latency in several different applica-
tions without deterioration of reliability and chip area compared with a conventional C-R
scheme. In addition, the experimental results show that the proposed method is more
effective when a computation algorithm possesses higher parallelism and a small number
of resources is available.

Key words: fault-tolerance, soft-error, multiple component error, high-level synthesis,
datapath synthesis, datapath optimization, triple algorithm redundancy, concurrent error
detection, comparison-retry scheme, majority-voting scheme, speculative resource shar-
ing, adjacency constraint, mixed error correction scheme, check variable selection, integer
linear programming.

ii



Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor Professor
Mineo Kaneko of Japan Advanced Institute of Science and Technology for his constant
encouragement and kind guidance during this work. Looking back on my school days in
JAIST, everyday I have gradually grown as a Ph.D. candidate with his advice, suggestions
and comments. Although it is a coincidence that I decided to enroll at JAIST and belong
to Kaneko laboratory, I would not be able to acquire my degree without his support. To
be honest, I had several difficult times during my Ph.D. degree, however, he believed in
me and waited for me so that I have successfully finished this work.

I also wishes to thank my vice advisor Associate Professor Kiyofumi Tanaka for giving
advice in different points of view in different situations such as Hokuriku hardware joint
seminars, book reading seminars. Because of his advice, I have always realized my own
inadequacy.

I greatly appreciate Professor Yasushi Inoguchi for his advice which make my work
has been improved as a doctoral dissertation.

I would also like to thank Assistant Renyuan Zhang for his comments when he used
to belong to JAIST.

I gratefully acknowledge giving cheerful comments and sharing experience provided
by Assistant Professor Sungmoon Jeong as one who got a Ph.D. degree earlier than me.

I am also grateful to my minor research advisor Professor Baris Taskin at Drexel
University in Philadelphia for giving me a wonderful chance in the U.S. and stimulus not
only to my minor research but also to my life.

I am thankful to all members in Kaneko laboratory and Tanaka laboratory.
I would also like to thank all my friends in JAIST and all over the world who have

cheered me up and helped me to keep going.
Finally, I would like to thank my family members for giving me unlimited love and

waiting for me for long time.

iii



Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Fault, Error and Failure . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Fault-Aware Design Techniques . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Fault Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.4 Fault Tolerance Classification . . . . . . . . . . . . . . . . . . . . . 3

1.3 Fault-Tolerant Design of Application-Specific IC . . . . . . . . . . . . . . . 5
1.4 Research Problems and Contributions . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Tolerability against Multiple Component Soft-Errors . . . . . . . . 7
1.4.2 Mitigation of Hardware/Time Overhead . . . . . . . . . . . . . . . 7

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Works 9
2.1 Types of Soft-Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Device Level Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Transistor Structure Aware Techniques . . . . . . . . . . . . . . . . 10
2.2.2 Layout-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Circuit Level Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Information Redundancy Based Techniques . . . . . . . . . . . . . . 12
2.3.2 Techniques with Soft-Error Hardened Filp-Flops . . . . . . . . . . . 12
2.3.3 Other Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 System Level Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Algorithm-level Methodologies . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Non-Algorithm-Level Methodologies . . . . . . . . . . . . . . . . . . 18

3 Preliminaries 20
3.1 Error Detection and Error Correction Scheme . . . . . . . . . . . . . . . . 20
3.2 Triple Algorithm Redundancy (TAR) . . . . . . . . . . . . . . . . . . . . . 20
3.3 Cone-Partitioning/Comparison-Operation Insertion . . . . . . . . . . . . . 21

4 Soft-Error Tolerant Datapath Synthesis Based on Speculative Resource
Sharing 23
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



4.2 Conditions for Single Soft-Error Tolerant Datapaths . . . . . . . . . . . . . 23
4.2.1 Fault/Error Model and Fault Tolerant Condition . . . . . . . . . . 23

4.3 Scheduling Algorithm under Speculative
Resource Sharing (SRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Synthesis Problem and Formulation based on ILP . . . . . . . . . . . . . . 25
4.4.1 Definitions of Variables and Constants . . . . . . . . . . . . . . . . 25
4.4.2 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.3 Multi-Cycle Soft-Error Tolerant Datapath . . . . . . . . . . . . . . 28

4.5 Soft-Error Tolerant Datapath Synthesis
using Heuristic Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . 28
4.5.1 Proposed Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . 28
4.5.2 Scheduling Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.3 Selecting Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6.1 Performance Evaluation in Latency . . . . . . . . . . . . . . . . . . 33
4.6.2 Reliability against Soft-Errors . . . . . . . . . . . . . . . . . . . . . 34
4.6.3 Quantitative Evaluation for Area Estimation . . . . . . . . . . . . . 38

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Latency-Optimized Selection of Check Variables 40
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Optimized Check Variable Selection Algorithm under SRS . . . . . . . . . 40

5.2.1 Latency Improvement with Selecting Check Variables . . . . . . . . 40
5.2.2 Check Variable Selection Algorithm . . . . . . . . . . . . . . . . . . 41

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Adjacency Constraint between Circuit Components 46
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Adjacency Constraint on Soft-Error Tolerant Datapaths under SRS . . . . 46

6.2.1 Modified Fault Model Considering Localities of Soft-Error . . . . . 46
6.2.2 Temporal and Spatial Adjacency Constraint (AC) . . . . . . . . . . 47
6.2.3 Scheduling and Resource Binding Condition under Adjacency Con-

straint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 ILP Formulation for Resource Binding . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Definitions of Variables and Constants . . . . . . . . . . . . . . . . 48
6.3.2 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.3 General Resource Binding Constraints . . . . . . . . . . . . . . . . 48
6.3.4 Constraints under Speculative Resource Sharing . . . . . . . . . . . 49
6.3.5 Constraints under Adjacency Constraint . . . . . . . . . . . . . . . 49

6.4 Adjacency Constraint on Soft-Error Tolerant Controllers . . . . . . . . . . 49
6.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.2 Conventional Methods for Fault-Tolerant Controller Design . . . . . 50
6.4.3 A Controller Design Proposal against Multi-Component Soft-Error

under AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5.1 Performance Evaluation in Latency . . . . . . . . . . . . . . . . . . 51

v



6.5.2 Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Mixed Error Correction Scheme and Its Design Optimization 55
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Combination of Two Error Correction Scheme under AC and SRS . . . . . 55

7.2.1 Introduction of a Majority-Voting Based Error Correction Scheme
and Modified Fault Model . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.2 Combination of Two Distinct Fault-Tolerant Mechanisms . . . . . . 56
7.2.3 Speculative Resource Sharing between Two Different Types of Error

Correction Scheme under AC . . . . . . . . . . . . . . . . . . . . . 58
7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3.1 Performance Evaluation in Latency . . . . . . . . . . . . . . . . . . 59
7.3.2 Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.3 Reliability against Soft-Errors having spatial boundaries . . . . . . 62

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion 82
8.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



List of Figures

1.1 An example of duplication with comparison (DWC) [1] . . . . . . . . . . . 4
1.2 System Stack and Resilience [2] . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 A sketch of the strategy for fault tolerance; (a) is an original computation
algorithm. (b) shows a triplicate algorithm, where the first copy and the
second copy are used for detecting error, and the third one is used for retry. 21

3.2 A stage sa consists of c
(1)
a , c

(2)
a and c

(3)
a ; (a) An example of an original com-

putation algorithm (b) An example of cone-partitioned triplicate algorithm 22

4.1 Scheduled DFG; An example of SRS between operations in second-cones
and retry-cones. o

(3)
i and o

(2)
j can share a functional unit speculatively.

However, o
(3)
k and o

(2)
i cannot because the execution of c

(1)
m starts earlier

than the execution of c
(2)
l and it means that error detection and correction

should be performed by each corresponding comparator and retry cone
without SRS if c

(1)
m (or c

(2)
m ) and c

(1)
l (or c

(2)
l ) are affected by a single soft-

error at the same time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 An example of operation selection produced by greedy selection procedure;

Operations which have vertex weights 10 and 15 are elements of G(2). Other
operations in X are elements of G(1). The number of available resources is 3. 32

4.3 Experimental results in various computational algorithms with heuristics.
Each column corresponds to a different choice of allocated resources (C:
Comparator, A: ALU, M: Multiplier). Every column in each graph has
two bars, black one and gray one. Black bar represents scheduling result
(latency) with a conventional method and gray one represents proposed
scheduling result with SRS. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Reliability comparison for various computational algorithms. Each column
corresponds to a different choice of allocated resources (C: Comparator, A:
ALU, M: Multiplier). Every column in each graph has two bars, black one
and gray one. Black bar represents scheduling result (latency) without a
conventional method and gray one represents proposed scheduling result
with SRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 An example of cone partition in a scheduled data flow graph; c
(2)
x can be

partitioned into c
(2)
x′ and c

(2)
x′′ to increase the possibility of SRS. . . . . . . . 41

5.2 Four exploration examples to find the best latency-aware selections of check
variables under different choices of allocated resources (4x4INV) . . . . . . 43

5.3 Four exploration examples to find the best latency-aware selections of check
variables under different choices of allocated resources (16FFT) . . . . . . 44

vii



5.4 Experimental results in eight computational algorithms. Each column cor-
responds to a different choice of allocated resources (C: Comparator, A:
ALU, M: Multiplier). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Experimental results in six computational algorithms. Each column cor-
responds to a different choice of allocated resources (C: Comparator, A:
ALU, M: Multiplier). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 A sketch of our strategy for fault tolerance; (a) is an original computation
algorithm. (b) shows a triplicate algorithm with comparison-retry mecha-
nism, (c) depicts a triplicate algorithm with majority-voting mechanism. . 56

7.2 Stage sa consists of main-cone c
(1)
a , second-cone c

(2)
a and retry-cone c

(3)
a ;

(a) An example of an original computation algorithm (b) An example of
cone-partitioned triplicate algorithm. The M-V mechanism is implemented
in sa and the C-R mechanism is implemented in sb and sc. . . . . . . . . . 57

7.3 Experimental results in six computational algorithms. Each column cor-
responds to a different choice of allocated resources (C: Comparator, A:
ALU, M: Multiplier, V: Voter). . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Experimental Result in Area Estimation . . . . . . . . . . . . . . . . . . . 63
7.5 Area vs. Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.6 Comparison among different results based on SRS only and SRS+AC+Hyb

under dis =1, 2, 4, 8 and 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.7 Different combination of comparison among different result based on SRS

only and SRS+AC+Hyb under dis =1, 2, 4, 8 and 16 . . . . . . . . . . . 67
7.8 A placement result of components in case of AR filter under 3 voters, 4

ALUs, 4 multipliers and dis = 4 . . . . . . . . . . . . . . . . . . . . . . . 68
7.9 A part of operation and variable schedule in case of AR filter under 3 voters,

4 ALUs, 4 multipliers and dis = 4 . . . . . . . . . . . . . . . . . . . . . . 69
7.10 A simulation example of an effect of two soft-errors having spatial boundary

dia = 1 (Case 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.11 A simulation example of an effect of a single soft-error having spatial bound-

ary dia = 16 (Case 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.12 Reliability Evaluation results in six computational algorithms (Case 1,

dis = 1): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 72

7.13 Reliability Evaluation results in six computational algorithms (Case 1,
dis = 2): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 73

7.14 Reliability Evaluation results in six computational algorithms (Case 1,
dis = 4): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 74

7.15 Reliability Evaluation results in six computational algorithms (Case 1,
dis = 8): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 75

7.16 Reliability Evaluation results in six computational algorithms (Case 1,
dis = 16): Each column corresponds to a different choice of allocated
resources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . 76

viii



7.17 Reliability Evaluation results in six computational algorithms (Case 2,
dis = 1): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 77

7.18 Reliability Evaluation results in six computational algorithms (Case 2,
dis = 2): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 78

7.19 Reliability Evaluation results in six computational algorithms (Case 2,
dis = 4): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 79

7.20 Reliability Evaluation results in six computational algorithms (Case 2,
dis = 8): Each column corresponds to a different choice of allocated re-
sources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . . 80

7.21 Reliability Evaluation results in six computational algorithms (Case 2,
dis = 16): Each column corresponds to a different choice of allocated
resources (C: Comparator, A: ALU, M: Multiplier, V: Voter). . . . . . . . 81

ix



List of Tables

2.1 Error modes from terrestrial neutrons and requirements . . . . . . . . . . 10

4.1 Latency improvement rate using heuristics . . . . . . . . . . . . . . . . . . 33
4.2 Experimental Results in Latency . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Experimental Result in Area Estimation . . . . . . . . . . . . . . . . . . . 39

6.1 Specifications of Function Units and Registers . . . . . . . . . . . . . . . . 53
6.2 Experimental Results in Area Estimation . . . . . . . . . . . . . . . . . . . 54

7.1 Latency improvement rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Achieved minimum latency comparison among conventional methods . . . 60
7.3 Achieved minimum latency comparison among conventional methods under

the minimum number of voters . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Specifications of Function Units and Registers . . . . . . . . . . . . . . . . 62

x



Chapter 1

Introduction

1.1 Background

Needs for Dependable Systems

The use of computer systems including electronic devices has been increased and a lot of
portions of our daily lives have relied on them [3][4]. In these days, plenty of electronic
devices perform life-critical tasks in different fields such as aviation control systems, vehicle
control systems, missile guidance and control systems, industrial plants, and medical
appliances [3][4]. In these systems, failure of the systems may bring loss of human life.
Faults on financial fields such as banking and stock markets can cause huge financial loss
or loss of opportunity, as well [3]. Manufacturing industries also require dependability
because failure in computer systems for large-scale production causes loss of goods and
profits [5]. As a recent tragic accident of a self-driving car under an artificial intelligence
control reminded us about the importance of reliability in life-critical systems, it is clear
that highly reliable systems are needed in such critical applications and the needs for
those systems will continue to increase.

1.2 Fault Tolerance

1.2.1 Fault, Error and Failure

A fault is a physical defect, imperfection, or flaw that occurs in a hardware or software
[1][6]. An error is a deviation from a desired or intended state, which occurs as a result
of a fault. Errors are usually associated with incorrect values in the system state [6][7].
A failure is a nonperformance of some action which is due or expected [1][6]. We can
say that a system has a failure if it does not act according to the system specification.
Although faults are causes of errors and errors are causes of failures, neither every fault
causes an error nor every error causes a failure [1][6]. For instance, neutron particles from
outer space at terrestrial level can hit memories in computer systems. However, not every
neutron particle makes the value of a memory cell incorrect. Although a cell is upset by
a fault, the value can be corrected by a mechanism such as error correction code (ECC).
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1.2.2 Fault-Aware Design Techniques

There are three primary techniques to maintain normal performance of a system: fault
avoidance, fault masking and fault tolerance [1].

Fault avoidance is used to prevent faults from the beginning such as design reviews,
component screening, testing and other quality control methods [1]. Although an appro-
priate design review can eliminate many faults caused by specification mistakes, and a
test can detect and remove many faults before the system is placed into operation, those
techniques never remove all the faults in the system. Thus, other techniques should be
implemented to increase the reliability of the system [3][1].

Fault tolerance is the ability that a system continues operating properly when faults
occurred [1]. In other words, a system to which fault tolerance is implemented normally
operates without failures although faults occurred. Fault tolerance can be realized by
several techniques; fault masking, fault detection, fault location, fault containment and
fault recovery [1][6]. i) Fault masking is any process that prevents faults in a system from
introducing errors into the informational structure of that system [1]. A well known ex-
ample of fault masking is majority voting. ii) Fault detection is the process of recognizing
that a fault has occurred within a system [1][6]. Fault detection is often required before
any recovery procedure is implemented [1]. Comparison is a technique to detect faults in
the systems with duplicated components and the output results of two components are
compared [6]. If the results disagree, it indicates an occurrence of a fault [6]. iii) Fault
location is the process of determining where a fault has occurred so that an appropriate
recovery can be implemented [1]. However, when a disagreement occurs during the com-
parison of two components, it is impossible to determine which of the two has failed [6].
iv) Fault containment is the process of isolating a fault and preventing the effects of that
fault from propagating throughout a system [1]. This is typically achieved by frequent
fault detection, by multiple request/confirmation protocols and by performing consistency
checks among components [6]. v) Fault recovery is the process of remaining operational
or regaining operational status when a faulty component has been identified [1]. Fault
recovery can be achieved by replacement of the faulty component into a redundant backup
component [1][6].

Fault removal is a set of techniques for making the number of faults in the system
smaller [6]. Fault removal is performed during the development phase as well as during
the operation phase of a system [6]. During the development phase, fault removal involves
verification, diagnosis and correction steps [6]. Fault removal during the operation phase
consists of corrective and preventive maintenance [6].

Fault forecasting is a set of techniques to estimate the number of faults at present
and in the future [6]. A system behavior evaluation which concerns fault occurrence or
activation can perform fault forecasting. [6].

1.2.3 Fault Classification

The complexity of electronic devices has been developing with higher transistor density
and new generations of semiconductor device technology have archived miniaturization of
transistors [4]. Under such circumstances, computer systems have relied on the depend-
ability of semiconductor devices on their systems.

In general, faults on a hardware are classified with respect to fault duration into per-
manent, transient, and intermittent faults [4][6]. A permanent fault remains active as long
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as an appropriate countermeasure is not taken. Once a component in a permanent fault
fails, it never works correctly again [3][4][6]. It is usually caused by physical defects in the
hardware, such as shorts in a circuit, broken interconnections, or stuck cells in a memory
[6]. A transient fault remains active only for a short period of time [3][6]. Due to their
short duration, transient faults are often detected through the errors which result from
their propagation [6]. The causes of transient faults are mostly environmental ones, such
as alpha particles, atmosphere neutrons, electrostatic discharge, electrical power drops,
or overheating [6]. A transient fault which becomes active periodically or repeatedly is an
intermittent fault [3][6]. An intermittent fault never goes away entirely; it swings between
being inactive and active [4]. When the fault is inactive, the component functions nor-
mally; when the fault is active, the component malfunctions [4]. Intermittent faults occur
due to unstable or marginal hardware [8]. Those faults can be activated by environmental
changes such as higher temperature or voltage, and they usually precede the occurrence
of permanent faults [8].

Soft-Errors

Due to the shrinking of feature sizes of semiconductor devices and reduced noise mar-
gins, nanoscale circuits have become increasingly more susceptible to interferences [9].
According to [6][9][10][11], transient faults among the above different types of faults are
the dominant contributors to faults on modern LSIs. Among several degradation caused
by transient faults, soft-error induced degradation is a major one and it has become a
growing concern [9][12]. Main sources of soft-error for electronic devices are cosmic radi-
ation or cosmic rays, which are coming from space and strike the earth [13]. Radiation
induced soft-errors occur within operational lifetime of a semiconductor device when a
single ionizing radiation event affects a transistor as a burst of hole-electron pairs, which
is large enough to upset the state of the transistor [12].

1.2.4 Fault Tolerance Classification

Redundancy is the addition of information, resources or time beyond system requirements
for normal operation [1]. In that sense, redundancy is a preparation of functional capa-
bilities that will not be needed in a fault-free environment [6][14]. The redundancy in a
system can take one of several forms; hardware, information and time redundancy [3][1].
Hardware redundancy is the addition of extra hardware for supporting fault tolerance
[3][1]. Information redundancy is the addition of extra information which is appended to
the original information to implement fault tolerance [1]. Time redundancy uses addi-
tional time to perform tasks for fault tolerance [3][1].

Hardware Redundancy

Hardware redundancy is achieved by providing two or more physical copies of a hardware
component [6]. Due to replication, employment of hardware redundancy returns many
penalties: increase in weight, size, power consumption and cost to provide multiple copies,
and time to design, fabricate and test [6]. There are mainly three forms of hardware
redundancy: passive, active and hybrid [1][6]. Passive techniques employ fault masking
to conceal faults and prevent them from resulting in errors [1]. The active approach
achieves fault tolerance with fault detection and fault removal, which removes the faulty
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Figure 1.1: An example of duplication with comparison (DWC) [1]

hardware from the system [1]. Hybrid techniques merge the passive and active approaches
to take advantages of both [1].

An M -of-N system consists of N modules and the system is required that at least M
modules operate properly among N modules [4]. Thus, the system fails when fewer than
M modules are functional. Triple modular redundancy (TMR) is a well-known example
of this system and consists of triplicate hardware modules and voting elements (voter). In
TMR, all three modules operate in parallel [3]. If at least 2 outputs from 3 modules are
correct, a voter performs a majority vote of 3 outputs to mask the failure of one module,
and as a result, the system performs functionally [3]. Thus, TMR scheme relies on the
voter [3].

Active hardware redundancy techniques employ fault detection, fault location and
fault recovery to achieve fault tolerance [1]. The basic form of active redundancy is
duplication with comparison (DWC) [6]. Figure 1.1 shows the simplest DWC. In DWC,
two identical modules operate in parallel and a comparison element (comparator) checks
equality between the two outputs of the two modules [6]. If the results differ, an error
signal is generated [6]. DWC scheme can only detect the occurrence of a fault [6]. Standby
redundancy is another technique for active hardware redundancy [6][15]. If one of the
n modules is active, then the remaining n − 1 modules serve as spares [6]. A switch
monitors the active module and replaces operation with a spare if a fault-detection (FD)
unit detects an error [6]. The pair-and-a-spare technique combines DWC and standby
redundancy [1][6]. This combined approach is similar to standby redundancy but two
active modules (instead of one) work in parallel [6]. Also, similar to DWC, the results
are compared to detect disagreement [6]. If the comparator generates an error signal, the
switch analyzes the signal from the FD blocks and decides which module is in failure [6].
Then, the faulty module is removed from operation and switched to a spare [6].

Hybrid redundancy combines advantages of passive and active redundancy [6]. Fault
masking is used to prevent the hybrid system from transiently erroneous outputs [6].
Fault detection, location and recovery are used to reconfigure a system if a fault occurs
[6]. Hybrid redundancy techniques are usually implemented in safety-critical applications
[6]. Although several approaches to hybrid redundancy exist, most of them are based on
N -modular redundancy (NMR) with spares [1]. The basic idea of NMR with spares is to
provide a basic core of N modules arranged in a voting [1]. Spares are also prepared to
replace faulty modules in the NMR core [1].
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Information Redundancy

Information redundancy is commonly realized by coding [4], which has traditionally been
one of the most important techniques to support fault tolerance in hardware and has
been used in a lot of systems [3]. The basic idea is to add extra check bits to the original
data such that faults in some bits can be detected and corrected. The process of adding
check bits to the original data is called encoding and the reverse process of extracting
information from the encoded data is called decoding [3].

Parity codes are the oldest family of codes [6]. A parity-coded word contains d data
bits and an extra check bit for the parity [4]. In case of an even parity code, the extra bit
is set so that the total number of 1s in the whole (d + 1)-bit word is even [4]. Since the
parity code is separable, parity encoding and decoding circuits can simply be implemented
[4]. A parity code can only detect errors, since it is impossible to determine which bit is
erroneous [6].

A unidirectional error detecting code, which is separable and has a lower overhead, is
Berger code [4]. All the affected bits in unidirectional errors change in the same direction,
either from 0 to 1 or from 1 to 0 but not in both directions [4]. To encode Burger code,
count how many number of 1s exist in the word, express the counted number in binary
representation, complement it, and append the complement number to the original data
[4].

The most common extension of the parity approach is Hamming error-correcting code
[1][16]. A number of memory designs employ this code for several reasons [1]: i) Hamming
error correction is relatively inexpensive; Hamming codes typically need 10% to 40% of
overhead due to redundancy [1]. ii) Hamming codes are efficient in terms of the time
required to perform the correction process; the encoding and the decoding processes take
relatively smaller time [1].

Time Redundancy

The fundamental problem of hardware and information redundancy is the penalty caused
by extra hardware to implement the redundancy techniques mentioned above [1]. On the
other hand, time redundancy deals with the cost of extra hardware by using additional
time because the expense of time is much less important than that of hardware in a lot
of situations [1].

The basic concept of time redundancy is the repetition of the same computations
two or more times to detect errors [1]. If an error occurred, the computations can be
performed again to check whether the error disappears or remains [1]. Such techniques
are often suitable to detect transient faults, however, they are inappropriate in case of
permanent faults. [1]. An assumption of time redundancy is that a fault affects two
repeated computations in different ways [1]. Time redundancy can also provide error
correction when the same computations are repeated three or more times, and performed
a majority vote on the three [1].

1.3 Fault-Tolerant Design of Application-Specific IC

Application-specific integrated circuits (ASICs) implement customer-specified functions
and there are various possibilities for the associated customization [17]. Computer aided
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Figure 1.2: System Stack and Resilience [2]

design (CAD) tools are essential since growing design complexity and shrinking product
life cycles require to develop an efficient design infrastructure which is based on a custom
IC design platform [17]. However, chip design and evaluation in a low level such as
the logic-gate level suffer prohibitively expensive performance penalties when applied to
modern large LSI systems. In addition, the post logic-synthesis phase are too late in the
design cycle to improve performance such as speed, size and reliability. Therefore, an
ASIC design in more abstract and effective level (such as the register-transfer level (RTL)
or even higher level) than the logic-gate level is highly desirable [18].

The current hardware fault-tolerant designs focus on mechanisms for resilience in
the architecture and/or circuit levels of the system stack (Fig. 1.2) [2]. Single level
approaches to fault-tolerance simplify the design of the upper levels in the system stack.
However, fault-tolerant design which relies on a single level technique has its limitations
and disadvantages; to guarantee high reliability, single level schemes typically replicate
hardware components or computations [2]. For instance, as a circuit level approach, entire
ordinary flip-flops without fault-tolerant design may be replaced with soft-error resilience
flip-flops [19]–[21] (to be introduced at Chap. 2.3) to achieve fault-tolerance in the chip
design with the circuit level error correction scheme. However, the above specialized
flip-flops require high implementation costs in terms of power, performance and/or chip
area [2][22]. In order to mitigate the above overheads induced by a single level approach,
several resilience techniques can be implemented across various levels of the system stack
to achieve reliability requirements [22].

High-level synthesis (HLS) is the translation process from a behavioral description to a
structural description [23]. HLS is also known as behavioral-level synthesis or algorithmic-
level synthesis [23][24]. A behavioral description at the algorithm level defines a precise
procedure for the computational solution of a problem [24]. The constraints to be con-
sidered in high-level synthesis are chip area, performance, power consumption, reliability,
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testability and cost [23]. This abstraction level synthesis allows a hardware design engineer
to make decisions at an early stage of the design cycle and generates rapidly optimized
hardwares in terms of the above constraints [23][25]. As HLS has matured, it has dealt
with not only traditional optimization in terms of performance and power, but also fault
resiliency awareness [26]. Such progression of HLS research allows us to explore the de-
sign space with several considerations at the abstraction level via HLS to obtain resiliency
optimal register-transfer level (RTL) datapath circuits [26].

1.4 Research Problems and Contributions

The main purpose of this study is to synthesize single soft-error tolerant application spe-
cific datapaths via high-level synthesis. The author focuses on the following two problems:
(i) tolerability against multiple component soft-errors and (ii) mitigation of hardware/time
overhead due to redundancy.

1.4.1 Tolerability against Multiple Component Soft-Errors

Most studies about soft-error tolerance concern only a single fault on a single functional
unit. As mentioned in Sect. 1.2.3, multiple component errors such as MCUs and MBUs are
becoming one of serious problems in LSI design. To address this problem, this dissertation
proposes a method to synthesize single soft-error, which affects multiple components at the
same time, tolerant application-specific datapaths via high-level synthesis. The proposed
method is based on triple algorithm redundancy. In the proposed design, considering the
tolerability for multiple-component errors by a single soft-error, two copies are used for
error detection, and the third copy is used as a retry. The detail will be stated in Chap.
3.

1.4.2 Mitigation of Hardware/Time Overhead

Due to the use of redundancy, datapaths synthesized with conventional methods suffer
from hardware and time overhead. To address this problem, speculative resource shar-
ing [27], which is an effective resource management, between two distinct copies, and
adjacency constraint between components [28] are introduced. Based on the above two
proposals, the author also proposes a hybrid approach of comparison-retry and majority-
voting error correction schemes [29] to combine high resource efficiency and small latency
which are the advantages of the two schemes. In addition, in order to achieve mini-
mum solutions in latency, an optimized combination algorithm of the two fault-tolerant
mechanisms is proposed.

1.5 Dissertation Outline

This paper is organized as follows: Chapter 2 introduces conventional studies related
to this research; Chapter 3 explains the basic concepts on which the proposed method
is based; Chapter 4 proposes speculative resource sharing for hardware/time overhead
mitigation; Chapter 5 suggests a latency-aware check variable selection algorithm which
enlarges opportunities for speculative resource sharing; Chapter 6 introduces adjacency
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constraint between datapath components to mitigate time overhead further and to reduce
excessively applied fault-tolerance; Chapter 7 proposes mixed error correction mechanism
and its latency optimization algorithm; and Chap. 8 concludes this article.
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Chapter 2

Related Works

In accordance with the scale of the region of interest (ROI), there are three general
approaches to dealing with soft-errors: (i) device level, (ii) circuit level and (iii) system
level.

2.1 Types of Soft-Errors

Soft-errors can sometimes describe as single event effects (SEEs) in semiconductor devices.
Although SEEs caused by alpha rays and terrestrial neutrons on the ground were pointed
out in the late 1970s, major researches and countermeasures have focused almost only
on alpha ray-induced single event upsets (SEUs) in memory devices until the 1990s [30].
Terrestrial neutrons have been recognized as a significant source of SEUs since the early
1990s, and concerns are now growing wider and deeper with the miniaturization of the
device size [30].

Table 2.1 shows different types of error modes and their possible requirements [30].
Although soft-errors rarely occur and their effects last only short periods, they can affect
several spatial points simultaneously [31]–[33]. While single-bit upsets are mainly a reli-
ability concern in memory devices and systems, multi-bit upsets (MBUs) and multi-cell
upsets (MCUs) also have become a serious problem, recently [32]. According to the study
by Autran et al. [34], MCUs account for 80% of the bit upsets which occurred, and the
multiplicity of a MCU reaches 17 cells in 40nm SRAMs. Work by Quinn et al. [35]
reports that triple modular redundancy (TMR) can be defeated by even 2-bit multi-cell
upsets caused by a single soft-error. According to the study [36], a single soft-error can
simultaneously affect adjacent nodes which lie on separate logic paths, and as a result, it
can defeat redundant techniques which rely on majority voting.

2.2 Device Level Approaches

Purification and elimination of contamination of the IC packaging materials reduce soft-
errors induced by alpha particles from the materials [10]. Adjustments to process and
technology can also mitigate the occurrence of soft-errors. Changing substrate struc-
tures or doping profiles can reduce charge collection. DRAM designers have actually
used multiple-well isolation [37]. Researchers have also suggested well-based mitigation
technologies for CMOS logics [38] and have shown that SOI substrates reduce soft-error
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Table 2.1: Error modes from terrestrial neutrons and requirements

Category
Error
mode Explanation Possible requirement

Soft-error

SEU single event upset
1000 FIT†/chip
200-400 FIT/Mbit or higher

MCU multi cell upset a few to 10% fo total SEUs or higher

SET single event transient to be determined

MBU multi bit upset 0-10 FIT/chip

Pseudo-hard
error

SEFI single event functional interrupt 0-1 FIT/chip or system

SEL single event latchup 0-1 FIT/chip or system

Hard error
SEB single event burnout

0-1 FIT/chip or system
SEGR single event gate rupture

†1FIT = 1 error in 109 hours

sensitivity [10]. A use of additional capacitances increases critical charge of SRAMs and
logic devices, and as a result, it can increase the device’s robustness [37]. Zhang et al.
[39] analyzed that an increment of cell distance and well-contact density suppresses the
occurrence of SEUs as well as MCUs. However, device level approaches provide lim-
ited improvements for soft error mitigation although the expense of additional process
complexity, yield loss, and substrate cost are needed for most process solutions [37].

2.2.1 Transistor Structure Aware Techniques

Baze et al. [38] developed a logic cell design technique which uses actively biased and
isolated wells for SEU hardening. This technique can be implemented for clocks, asyn-
chronous control logic and dynamic logic. Their experiment results show a 3 times im-
provement of transient upset immunity in an SOI process, however, it has 5 times decrease
in speed, 3 times increase in area and 5 times increase in power consumption.

Black et al. [40] introduced guard contacts to mitigate the charge collection and to
restore the well potential more quickly especially in PMOS devices. Mitigation of the
shared charge collection in NMOS devices is accomplished through isolation of the P-
wells using a triple-well solution. The filp-flop design from the physical structures with
preset and clear increased 30% in maximum in size.

Nakauchi et al. [41] investigated the effect of back bias on neutron-induced multi-cell
upset (MCU). They found that MCUs were strongly related to the memory cell array
layout and concluded that most MCUs were induced by activation of parastic lateral npn-
bipolar transistors. They also found that MCU could be drastically reduced by supplying
back bias in the p-wells without any modification of error checking and correction (ECC).

Atkinson et al. [42] presented a layout technique that mitigates SETs in combinational
logic. This technique works by introducing one extra drain diffusion into a cell output
buffer transistor to intentionally promote charge sharing between transistors and quench
the voltage pulse on the output. The mitigation using this technique will improve with
technology scaling since the technique exploits charge sharing. These results will allow
designers to reduce cumulative SET vulnerability of a cell library with an area penalty of
10− 40%.
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Zhang and Kobayashi [43] analyzed contributions of charge sharing and bipolar effects,
which are two main factors when SEUs and MCUs occur in two redundant latches, by
changing the position of well contacts and the well structure. Device simulation results
revealed that charge sharing and bipolar effects are effectively suppressed when the well
contacts are placed in the middle of the two latches.

The study [44] suggested a technique with well-silts that mitigates MBUs in multiple
bit latches (MBLs). The area overhead is only 5.4% in 28nm technology as a MBL macro
for processors. Neutron irradiation tests clarified that the proposed technique did not
change SBU rate and consequently did not degrade processor performance.

Narasimham et al. [45] fabricated dual- and triple-well bulk CMOS SRAMs at the
28nm node and tested using alpha particles and heavy-ions over a range of supply voltages.
The test results showed that triple-well designs are better suited to limiting the extent of
MCU cross sections at reduced voltages, while dual-well SRAMs have better MCU cross
sections and spread for nominal voltage. They claimed that commercial designs targeted
for very low voltage and subthreshold voltage operation can benefit from the triple-well
option because low voltage operation is important for low power applications and for
improving battery life during device standby mode.

2.2.2 Layout-Based Techniques

Bit interleaving is commonly used to minimize the error rate contribution of multi-bit
errors [46]. It refers to a memory layout architecture in which physically adjacent bits
belong to different logic words. The result is that from an error detection and correction
standpoint, two adjacent failing bits appear as two single bit errors rather than as a double
bit error in the logic word. Bit interleaving rules are often defined as the minimum physical
distance separating two bits belonging to the same logic word.

Baeg et al. [47] proposed a selection method of the width in an interleaving architecture
in memory designs to mitigate MCU errors. They found that a use of both the interleaving
technique and single-bit error correction (SEC) codes can maximize MCU mitigation.

Furuta et al. [48] measured neutron-induced MCUs on FFs in a 65nm CMOS process
in order to evaluate their dependencies on the distance of FFs and well-contact density.
Neutron-accelerated test results showed that the MCU-SEU ratio was up to 23.4% and
was exponentially decreased by the distance between latches. Also, measurement results
showed that well-contact array insertion between flip-flops can reduce MCU rates. In case
of 10k-bit filp-flops, well-contact array insertion reduced the number of MCUs from 110
to 1. They can improve soft-error resilience without degradation of delay overhead by
inserting well contacts between latches on radiation hardened flip-flops.

Zhang et al. [39] showed that charge sharing and bipolar effect are two main factors
when MCUs occur in redundant latches. MCU is prevented when the distance between
the redundant latches is increased. Total collected charge of L0 and L1 decreases by
50% by placing the well contacts adjacent to the redundant latches. MCU-SEU ratio
decreases to 0.073% in this layout structure. According to the neutron experiment and
device simulation results, the ratio of MCU-SEU exponentially decreased by increasing
the distance of latches. Experimental results also showed that MCU rates reduced by
well-contact array insertion under supply and ground rails.
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2.3 Circuit Level Approaches

The most effective method of dealing with soft-errors in memory components is to use ad-
ditional circuitry for error detection and correction [37]. Mainly, there are two approaches
in circuit level; information redundancy based approach and specialized filp-flop based one.
Circuit level approaches basically have limitations that those approaches mainly focus on
sequential logic parts in a circuit.

2.3.1 Information Redundancy Based Techniques

Information redundancy based error detection consists of adding a single bit to store the
parity (odd or even) of each data word, regardless of word length [37]. Before data is
retrieved, the parity is computed from the stored data and compared to its parity bit
[37]. Under a single fault model, the computed parity and the parity bit do not match in
case of error. The parity system enables soft-error detection with a minimal cost in terms
of circuit complexity and memory width (each word increases by only a single bit) [37].
There are two disadvantages of this system: i) the detected error cannot be corrected,
and ii) the check won’t reveal a double error because the parity will match [37].

Error detection and correction (EDAC) or error correcting codes (ECC) address the
above disadvantages [37]. Error correction is achieved by adding extra bits to each data
vector and encoding the data so that the information distance between any two possible
data vectors is at least three [37]. The addition of more bits for parity and extra circuitry
may produce larger information distance [37]. Since the information distance in those
systems is 3, every single error, which is a change of ±1 in information space, is corrected
[37]. Those systems can detect double-bit errors, however, cannot correct them. Although
EDAC and ECC significantly reduce failure rates, they bring a higher cost in terms of
design complexity, additional memory required, and inherent latency introduced during
access, parity check, and correction [37].

Naseer and Draper presented a double-error correcting (DEC) ECC implementation
technique to mitigate MBU in SRAMs [49]. The experimental results showed that this
DEC scheme reduces errors by 98.5% compared to only 44% reduction by conventional
single-error-correcting-double-error-detecting (SEC-DED) ECC.

2.3.2 Techniques with Soft-Error Hardened Filp-Flops

Specialized flip-flops with additional circuits have been proposed to address soft-errors on
circuit level. Calin et al. [50] proposed a storage element design technique called dual
interlocked storage cell (DICE) which are insentive to radiation-induced SEUs. A cell for
DICE uses a 4-node redundant structure which employs two conventional cross-coupled
inverter latch structures that are connected to bidirectional feedback inverters. The four
nodes store the data as two pairs of complementary values which are simultaneously ac-
cessed using transmission gates for write or read operation. A DICE cell consists of 10
transistors for a simple latch configuration and 12 transistors for a memory cell architec-
ture. If two simultaneously sensitive nodes of the cell which store the same logic stage
could be flipped due to the effect of a single particle impact, the immunity is lost and the
cell is upset.

Naseer and Draper [51] proposed latch and filp-flop designs which are immune not
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only to transient on every signal, such as clock, data, preset and clear, but also to upsets
within the storage cell. The proposed design will incur an area overhead of less than
13.5% For typical ASIC macro-architectures. The speed performance of the design is
directly propositional to the pulse width of the single event transients targeted. However,
if a soft-error occurs at two nodes in the storage cell simultaneously, the SEU immunity
of the cell will not be effective any more. Also, if the pulse width of a SET is larger than
the delay in the filter, it can result in a SEU at the storage node during the setup and
hold time window. Therefore, an effective estimation of the transient pulse width in a
particular environment is necessary before finalizing the design decisions.

Uemura et al. [19] developed a soft-error immune latch called SEILA under dual-clock-
buffers (DCB), which protects from corrupting storage data by SET on local clock, and
double-height-cell (DHC), which protects from SEU on multi-nodes. According to their
experimental results, SEILA can protect 99.3% SEU on multi-nodes and almost SET on
local clock.

Lin and Zwolinski [20] suggested a fault tolerant flip-flop called SETTOFF in which
SETs, SEUs and timing errors are detected and recovered by a time redundancy-based
architecture. SETTOFF consumes 35.8% more power than a conventional flip-flop for a
10% activity rate and 48 extra transistors are added to the main flip-flop for SETTOFF.

Masuda et al. [21] have proposed a low-power redundant flip-flop named BCDMR-
ACFF which operates over 1GHz clock with high reliability and low power. BCDMR-
ACFF has 3.16 times area overhead but 1.16 times power overhead compared with a
flip-flop based on transmission gates in case of 10% data activity.

Guo et al. [52] suggested a radiation hardened memory (RHM) cell with 12 transistors
which utilizes SEU physics mechanism and layout-topology to provide fault tolerance. The
RHM cell has two advantages: i) the ability to tolerate an SEU in any single sensitive
node, ii) the ability to fully tolerate an MNU regardless of the stored value of memory
cell, iii) and SEU tolerance capability even under PVT variation impacts, and iv) a low-
power consumption. The results showed that its power consumption is only 27.7 nW,
and its layout area is 4.1 µm2, which slightly increases about 7.7% compared with DICE.
However, due to the stacked structure and PMOS access transistors, the proposed cell
has an overhead in access time.

2.3.3 Other Techniques

Zarandi et al. [53] proposed a new protected CLB and FPGA architecture which utilize
error detection and correction codes to correct SEUs in LUTs of the FPGA. The fault de-
tection and correction are realized by online or offline fast detection and correction cycles.
Error detections and corrections of k-input LUTs are performed with a latency of 2k clock
cycles without any required reconfiguration and significant increament of area overhead.
The results of power and area analysis showed that the proposed methods impose less
area and power overhead compared to the traditional schemes such as duplication with
comparison and TMR circuit design in FPGAs.

2.4 System Level Approaches

Traditionally, redundancy is considered as one of common system level approaches such
as concurrent error detection (CED) and triple modular redundancy (TMR). As discussed
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in Chap. 1.2.4, hardware redundancy generally brings several penalties [6]. To determine
the best way to implement redundancy into a system, a lot of combinations should be
investigated [6]. For instance, replacement of redundancy of a component to a higher level
one may reduce weight. Also, reduction in target dependability may cut down cost [6].

A lot of self-checking methods for LSIs have been developed as system level approaches
in the 1980’s and the 1990’s [54][55][56][57]. However, those works are based on primitive
techniques such as simple duplication and comparison without consideration of overheads
due to multiplication. Some of them assumed that faults occur under limited conditions
such as unidirectional fault properties (i.e., all bit flips appear in the same direction; from
0 to 1, or from 1 to 0).

2.4.1 Algorithm-level Methodologies

Algorithm-level methodologies for soft-error tolerance using a higher level abstraction,
such as behavioral synthesis, have been introduced [58][59]. Behavioral synthesis based
techniques have an advantage in circuit design that can explore cost trade-offs among
datapath components in earlier stages.

The study [58] proposed an algorithm-level recomputation. The proposed method is
two algorithm level recomputing CED schemes using allocation and data diversity in a reg-
ister transfer level (RTL) implementation. In order to synthesize the proposed transient
fault-tolerant datapaths in more abstract level, they used an intermediate representation
of a computation called data flow graph (DFG). RT level diversity can be achieved by
changing the operation-to-operator allocation and by shifting the operands before recom-
putation. By enabling a fault to affect the normal result and the recomputed result in
two different ways, RTL diversity yields a good CED capability with low area overhead.

Similarly, Lakshminarayana et al. [59] proposed a behavioral synthesis framework
called ALPS for the construction of fault secure and area-efficient RTL circuits. They
also introduced the concept of aliasing probability analysis to enhance resource sharing
among operations in the duplicated control data flow graph (CDFG). The experimental
results showed that ALPS can provide fault security with area overheads as low as 25.5%
over a circuit synthesized without a requirement of fault security.

Concurrent Error Detection Based Schemes

Orailoglu and Karri [60] introduced a system called SYNCERE to synthesize self-recovering
datapaths which detects temporary faults using redundancy based CED, while recovery
from transitory faults is accomplished via checkpointing and rollback. In the proposed
model, the original computations are duplicated and checkpoints are inserted to preserve
th back up the system during execution. Partial results from two copies are compared at a
checkpoint (duplication and comparison). Also, a single fault model at the system level is
assumed. If the results of the two copies agree, the results are written into the checkpoint
registers (checkpointing). On the other hand, in case of disagreement, the computation
rolls back to the previous checkpoint and retries.

Antola et al. [61] proposed a datapath design of semi-concurrent self-checking devices
via high-level synthesis. It is acceptable to perform checking operations not concurrently
with each process iteration, but periodically since the semi-concurrent checking approach
assumes low fault occurrence rates. In addition, it is assumed that at most a single fault,

14



such as a fault of either a function unit, a register or an interconnection, is present in the
system. After the reference architecture has been identified and constructed by using any
scheduling and allocation algorithm, the nominal datapath is extended to include self-
checking features. The proposed approach provides that the required checking periodicity
is satisfied while minimizing additional functional units by means of maximum reuse of
the resources available for the nominal computation as long as error detection ability is
preserved.

Based on the study [60], Wu and Karri [62] proposed a RT-level hybrid time and
hardware redundancy based CED technique that uses partitioned data dependence of an
input computation algorithm. A single fault induced by SEU is assumed so that a system
with fault-tolerant capability is able to correct this kind of faults. Aiming to further
reduce the hardware overhead associated with fault security, some of data dependencies
are broken and rearranged. According to the experimental results, the proposed CED
design technique can ensure the fault security of a design without involving too much
overhead.

In the study by Liu and Wu [63], fault-duration and location-aware CED technique
considering power efficiency and fault security is suggested. Similar to other high-level
synthesis based approaches, it is assumed that the behavioral specification has been com-
plied into a DFG, and algorithm level recomputation is employed. Their study focuses
on detecting faults which occur in datapaths during runtime, such as the faults caused
by SEU and SEL, and minimizing power consumption in the generated datapath for any
fault scenario.

Sengupta and Bhadauria [64] suggested an exploration process of an optimal fault
tolerant datapath under user specified power and delay budget via high-level synthesis.
The synthesized circuits possess capabilities of masking errors through single and multi
cycle transient faults. Based on algorithm-level duplication and fault tolerance, an original
computation unit and its duplication are scheduled so that a fault in the original unit never
propagates to its duplication unit and vise versa. Moreover, the output of the original is
separately stored two times with a certain interval and compared to detect errors in the
original. In order to mask a single fault in an unit, the two outputs of the original and the
output of the duplication are voted. The experimental results showed that the proposed
method achieved 29% reduction in hardware compared with the study [65], which is based
on TMR.

Triple Modular Redundancy Based Schemes

On the other hand, triple modular redundancy (TMR) was one of the earliest methods
[66] suggested to obtain a reliable system from less reliable components [67]. TMR is a
technique which is firstly proposed by Von Neumann [66] and is commonly used to provide
design hardening [68]. The primary shortcoming of N modular redundancy is excessive
area overhead [69].

Gaitanis [67] proposed a totally self-checking triple modular redundancy (TSC-TMR)
system consists of a conventional TMR system monitored by a TSC circuit with two
outputs indicating information errors and internal faults. The internal fault indication is
independent of the output information errors and indicates masked errors of modular units
or faults in the monitoring circuit itself. The information error indication depends on the
output information errors and it can be used as a stop signal preventing the propagation of
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erroneous outputs. An algebraic technique performing logical operations to detect errors
has been employed for the TSC multiple error checking circuit.

D’Angelo et al. [70] suggested a technique for hardware diagnosis of permanent and
transient faults possibly affecting a FPGA-based TMR system implementation. More
specifically, the proposed scheme allows to identify whether a detected error is due to
a transient or permanent fault affecting a replicated module, or the used voter, or the
proposed scheme itself. The availability of such a diagnosis method can be exploited to
active a suitable recovery technique for the identified fault.

Samudrala et al. [69] proposed a design technique to harden combinational circuits
mapped onto Xilinx Vertex FPGAs against SEUs. The signal probabilities of the lines can
be used to detect SEU sensitive subcircuits of a given combinational circuit. The circuit
can be hardened against SEUs by selectively applying TMR (STMR) to these sensitive
subcircuits. However, there is an increase in the number of the voter circuits required for
the STMR circuits. It is claimed that the proposed method can greatly reduce the area
overhead of the hardened circuit with a small loss of SEU immunity when compared to
the state-of-the-art TMR.

The study [71] proposed an approach allowing the exploration of the design space in a
FPGA-based reliable system. The proposed method is based on TMR passive hardware
redundancy technique, coupled with partial dynamic reconfiguration to recover from the
occurrence of soft errors, affecting either the FPGA configuration memory or its temporary
memory elements, used for the application computation.

Ruano et al. [72] suggested a methodology to insert selective TMR for SEU miti-
gation. The benefit is that this methodology results in a lower circuit complexity than
the traditional TMR approach, while meeting the specified reliability level. Besides, the
proposed method has been improved in performance, adding an enhancement based on
an innovative topological analysis of the target circuit.

Azambuja et al. [73] proposed a method that allows the use of dynamic partial recon-
figuration combined with TMR in SRAM-based FPGAs. The proposed method combines
large grain TMR with special voters capable of signalizing the faulty module and check-
point states that allow the sequential synchronization of the recovered module with Xilinx
TMR (XTMR) approach. As a result, only the faulty domain is reconfigured with min-
imization of time and energy, which are spent in the process. In addition, the use of
checkpoint states avoids system downtime, since the synchronization of the recovered
module is performed while the others are kept running. According to the experimental
results, the method has reduced fault recover time compared to the standard TMR, while
maintaining the compatible area overhead and performance. Also, the dynamic partial
reconfiguration process can be up to 45 times faster than the traditional approach.

Iwagaki et al. [65] proposed high-level synthesis for long duration transient fault tol-
erant datapaths based on TMR. Based on algorithm level triplication under a single fault
model, the proposed algorithm performs forced-directed scheduling so that the synthe-
sized circuits possess kd-cycle error detection and kc-cycle error correction capabilities.
The authors claimed that the proposed approach is a reasonable alternative to a conven-
tional TMR based method since long duration transient fault tolerance is implemented in
the proposed one, and area and latency are improved.

Sengupta and Kachave proposed two methodologies that a fault tolerant HLS method-
ology for simultaneously providing multiple cycle and multiple unit transient fault toler-
ance, and a HLS methodology for low cost design solution through exploration of fault
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tolerant hardware configuration and loop unrolling factor [74]. Results of the proposed
approach on standard benchmarks achieved 27% design cost reduction in average and
61% power consumption reduction in average, when compared with the study [65].

CED and TMR Hybrid Schemes

The study by Krishnamohan and Mahapatra [75] presented an approach to cope with
SETs in combinational and sequential logic circuits. They combined an error masking
technique in non-critical paths and an error detection technique with recovery in critical
paths. The proposed method also employs techniques to improve slack in circuits such
as: (i) exploiting circuit delay dependence on input vectors and (ii) redistributing slack
in pipeline circuits based on soft-error rate (SER) contribution of individual paths.

Stralen and Pimentel [76] proposed an approach towards early design space exploration
of fault-tolerant multimedia multi-processor system-on-chip (MPSoC) called SAFE, which
stands for sesame automated fault-tolerance explorer. SAFE provides a simulation-based
evaluation to explore several different fault-tolerant implementations, such as time re-
dundancy, space redundancy or hybrid of the two, in an early design stage. As a result,
SAFE can produce metrics for dynamically scheduled applications for a wide range of
fault-tolerant patterns.

Bolchini and Miele [77] suggested a design methodology that enhances the classi-
cal HW/SW codesign flow for hard real-time embedded systems to introduce reliability-
awareness in an early design phase. In addition to the flow, the proposed method employs
an extra layer for reliability-awareness having additional inputs, such as fault manage-
ment requirements to be handled and fault management mechanisms to be implemented.
The target hardware is a system-on-chip which consists of a given set of heterogeneous
processing nodes. It is assumed that the core of each node can be either a general purpose
processor (GPP) or a full-custom ASIC/FPGA module. The proposed method performs
system level replication with CED for ASIC/FPGA modules and an application level task
replication for GPPs. Similar to other system level approaches, this design paradigm sup-
ports a design space exploration in an early stage to identify the most promising solution
in terms of overall performance.

Zhang et al. [78] presented a GUARD (guaranteed reliability in dynamically reconfig-
urable systems) method which allows for autonomous runtime reliability management in
reconfigurable architectures. The proposed system dynamically determines which hard-
ware between a hardened processor and a less reliable reconfigurable hardware should
be used for a computation. As a result, the system guarantees a target reliability while
optimizing the performance. According to their experimental results, GUARD system
achieved up to 68.3% improvement in performance compared to statical fault tolerance
optimization techniques.

Ito suggested a full TMR design with respect to energy minimization [79]. The study
assumes that only one operational unit is affected by a single soft-error at one time and
other circuit elements are fault-free. Based on algorithm level triplication, two types of
TMRs are employed: the spatial TMR (S-TMR) and the temporal TMR (T-TMR). In
S-TMR, three function units (FUs) are used at the same time to execute a triplicate
computation, and then three majority voters are executed to mask an error. On the
other hand, in T-TMR, two FUs are executed at first, then two results are compared
for an equality check. After that, according to the equality, the third FU is executed.
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If the comparison result confirms the equality of the two results, the third FU will not
be executed and the power consumption of the third FU is saved. Furthermore, each
component has two types in terms of supply voltage: high and low supply voltages. If
a high supply voltage component is replaced instead of a low voltage one, the power
consumption will also be reduced. In order to minimize area overhead which originates
from S-TMR and maximize the energy efficiency of the circuit, an energy consumption
minimization problem to select ones among TMR modes and supply voltages respectively
corresponding to each operation is formulated as a mixed integer programming (MIP)
model and solved by a MIP solver.

2.4.2 Non-Algorithm-Level Methodologies

There are several non-algorithm-level soft-error tolerance approaches which consider fault-
tolerance architectures instead of implementation of algorithmic multiplication. Razor
which is proposed by Ernst et al. [80] relies on a combination of system and circuit
level techniques. In their proposal, Razor flip-flop for error detection which compares
two pipeline stage values (one with a fast clock and the other with a delayed clock), and
a pipeline mechanism for error recovery are implemented. In case of error, the pipeline
recovery mechanism restores a correct program stage.

Das et al. [81] proposed Razor II which is an advanced version of Razor. Instead of
performing both error detection and correction in Razor flip-flops, Razor II performs only
detection in the flip-flops and correction through architectural replay. As a result of the
modification, the processor provides both low-energy operation through dynamic supply
adaption as well as soft-error tolerance [81]. The power overhead for a Razor II flip-flop
as compared with a conventional flip-flop for a 10% activity factor is 28.5%.

Mitra et al. [82] introduced a dual-FPGA architecture that enables autonomous self-
repair, fast fault location techniques to identify the defective portion of the system upon
error detection, quick recovery from temporary failures, and reconfiguration techniques
to repair the system from permanent faults. They realized the architecture within 205%
area overhead and 10% degradation of maximum clock speed [82].

Avirneni and Somani proposed low overhead SEU and SET mitigation techniques
called SEM and STEM using the approach of multiple clocking of data for protecting
combinational logic blocks from soft errors [83]. SEM, which is based on distributed
and temporal voting of three registers, unloads the soft error detection overhead from
the critical path of the systems. SEM achieves an average performance improvement of
26.6% over a conventional triple modular redundancy voter-based soft error mitigation
scheme, while STEM outperforms SEM by 27.4% [83]. In addition, STEM adds timing
error detection capability to guarantee reliable execution in aggressively clocked designs
that enhance system performance by operating beyond worst-case clock frequency while
tolerating soft errors [83].

HAFTA is a fault-tolerant architecture to protect both configuration and user bits
in SRAM-based reconfigurable devices against MBUs [84]. The architecture employs
duplication for error detection, and checkpoint and rollback with history flip-flops for
error recovery. HAFTA imposes, in average, 175% area overhead, 74% dynamic power
overhead and 25% performance overhead compared with unprotected designs [84].

Zhu et al. [85] presented methods to increase the reliability of SRAM-based FPGA
(SFPGA) designs under neutron induced SEUs. They introduced an analytical approach
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based on probabilistic transfer matrix (PTM) to estimate the relative reliability of designs
mapped into SFPGAs. In addition, the proposed method can obtain the error sensitivity
rating of basic nodes in SFPGAs. The experimental results showed that partial triple
modular redundancy on the sensitive sub-circuits, which are indicated by the proposed
analysis method, is effective for SEU mitigation with less area overhead and less time
delay than that of full TMR.

Zhang et al. [86] presented a soft-error detection scheme called AUDITOR for flip-flop
based pipeline structures. The proposed scheme employs a local-audit detection which
can synchronize the asynchronous error-indicating signals, thereby providing a base for
accurate controls of error recovery. They also proposed the short-path compensation
technique to remedy the deficiency of SET detection capability. According to the exper-
imental results, the area overhead incurred by the proposed method is insensitive to the
compensation intensity and the method can achieve perfect SEU and SET fault coverage,
short detection latency at the expense of modest area overhead, while about 70%, 25%,
93% power overhead for adder, multiplier and divider pipeline, respectively.
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Chapter 3

Preliminaries

This chapter introduces the fundamentals on which the proposed method is based.

3.1 Error Detection and Error Correction Scheme

This research is based on triple algorithm redundancy. Considering the tolerability against
multiple component error caused by a single soft-error, and mitigating time overhead, the
first copy and the second copy are used for detecting an error, and the third copy is
used as a retry (comparison-retry, shortly C-R) in the proposed design. When the actual
behavior of a datapath in time order is considered, a computation block can roughly be
divided into three procedures. An example of these procedures using the block A in Fig.
1(b) is shown as follows:

• Proc. 1: Execute the first copy A(1) and the second copy A(2) of a computation block
A. Then write the outputs of A(1) and A(2) into registers r(1) and r(2), respectively.

• Proc. 2: Execute the comparator q to compare the outputs of A(1) and A(2) and
write the comparison result of q into register rq.

• Proc. 3-1: (In case q detects an error) Execute A(3) and overwrite the output of
A(3) into r(1).

• Proc. 3-2: (In case q detects no error) Do nothing.

After the execution of the copies of the block A, the data in r(1) is sent to succeeding
computation blocks. Based on this C-R mechanism, since q compares two data stored
in r(1) and r(2) instead of two outputs of A(1) and A(2) directly, q can detect not only
erroneous outputs of A(1) and A(2) but also faults on multiplexer. Once q detects an
error, A(3) is executed and its output is sent to r(1) via multiplexer which is fault-free
under the single soft-error assumption. In order to realize single fault tolerant datapaths,
an error occurring at one procedure must be prevented from affecting the next procedures.
Chapter 4.2 will present more specific conditions for single soft-error tolerant datapaths.

3.2 Triple Algorithm Redundancy (TAR)

It is assumed that a computation algorithm to be implemented is given by a pair (G,DP ),
where G is a data dependency graph and DP is the set of primary outputs. Let O
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Figure 3.1: A sketch of the strategy for fault tolerance; (a) is an original computation
algorithm. (b) shows a triplicate algorithm, where the first copy and the second copy are
used for detecting error, and the third one is used for retry.

be the set of all operations in the original input computation algorithm, let D be the
set of all variables in the original algorithm and let E be the set of all dependency
between operations and variables. Then a given dependency graph G can be described
as G = (O ∪ D,E). To synthesize a soft-error tolerant datapath, the given graph G
is triplicated (three copies are denoted as G(1), G(2) and G(3)), and then comparison-
operations and dependencies related to the comparison-operations are inserted to form a
resultant algorithm (G̃, D̃P ) which is finally mapped on hardware and time domains by
high-level synthesis.

3.3 Cone-Partitioning/Comparison-Operation Inser-

tion

It is defined that “check variables” are variables to be compared for soft-error detection,
and they will be chosen selectively, not all operation results. Dependency subgraphs
separated by those check variables are named “cones”. Now we let DQ (⊆ D) be a set
of the check variables and let Q be a set of comparison-operations corresponding to the
variables in DQ.

Definition 1 A “cone” cd (⊆ G) denotes a subgraph which is induced by tracing back from
a check variable d ∈ DQ to primary inputs or other check variables. Similarly, triplicate

copies c
(1)
d (called “main-cone”), c

(2)
d (called “second-cone”) and c

(3)
d (called “retry-cone”)

of cd are induced from the triplicate check variables d(1) ∈ G(1), d(2) ∈ G(2) and d(3) ∈ G(3),
respectively.

Definition 2 The set of main-cone c
(1)
d (⊆ G(1)), second-cone c

(2)
d (⊆ G(2)) and retry-cone

c
(3)
d (⊆ G(3)) which are induced from a check variable d is called “stage”.
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Definition 3 Triplicate copies o(1)(∈ c
(1)
d ), o(2)(∈ c

(2)
d ) and o(3)(∈ c

(3)
d ) of an operation

o (∈ cd) are elements of the same stage, and they are called “series operations”.

In this research, it is considered that all partitioned cones are disjoint, in other words,
any pair of two cones will not share the same operation. Figure 3.2 shows an example
of cone-partitioning. Selections of check variables determine the forms of the partitioned
cones. The partitioned cones are triplicated so that an original cone has three same
copies and those copies construct a stage. Then, comparison-operations are inserted into
the corresponding stages.

The way how to select check variables for comparison-operations is an important
factor for datapath optimization. Chapter 5 will present the optimization of the selection
of check variables.
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Chapter 4

Soft-Error Tolerant Datapath
Synthesis Based on Speculative
Resource Sharing

4.1 Motivation

As mentioned in Chap. 3.1 and 3.2, triple algorithm redundancy is the starting point of
this research for soft-error tolerant datapath design. Concerning the tolerability against
multiple component error due to a single soft-error in the proposed design, the main parts
and the secondary parts are used for error detection, and the retry parts are used for error
recovery.

However, a common disadvantage of redundancy is spatial or temporal overhead to
achieve fault-tolerance. In order to address this problem, the author proposes an effective
resource management method called speculative resource sharing. The new proposal will
present at Sect. 4.3.

4.2 Conditions for Single Soft-Error Tolerant Data-

paths

This section explains requested features for single soft-error tolerance and speculative
resource sharing which is one of the important proposals in this study.

4.2.1 Fault/Error Model and Fault Tolerant Condition

In this study, it is assumed that a single soft-error can affect several spatial points simulta-
neously, hence it causes multiple component error, including errors on registers, functional
units and other components at the same time. The proposed soft-error tolerant design is
based on cone-level error masking which relies on error detection by comparing the results
of the main-cone c

(1)
d and the second-cone c

(2)
d for each d ∈ DQ, and error correction by

executing the retry-cone c
(3)
d .

If the execution of a retry-cone overlaps the execution of the main-cone, the second-
cone or the comparison-operation in the same stage, multiple component error due to a
single soft-error may affect two cones or more (retry-cone and either main- or second-cone)
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within the same stage simultaneously. For this reason, the execution order of operations
in each stage should be constrained as follows:

Condition 1 [Execution order in each stage] After a main-cone and the corresponding
second-cone are executed, error detection with a comparison-operation is performed to
check the results of these two cones. Subsequently, the corresponding retry-cone is executed
only if the two results differ.

In the C-R mechanism, if and only if an error is detected, the corresponding retry-cone
is executed and its result is used immediately for the succeeding operations without error
detection of the result. The validity of this treatment relies on the following assumption.

Assumption 1 The probability of the recurrence of soft-errors in a short period is suffi-
ciently low.

On the other hand, triplicate data which are stored in three standard registers are not
reliable anymore under the assumption of multiple component error caused by a single
soft-error. Therefore, in order to guarantee the correctness of the inputs to a retry-
cone even if its main- and second-cone are affected by a single soft-error, the author has
decided to use specialized registers which inherently have a tolerance to a soft-error, such
as BCDMR-ACFF [21]. More specifically, multi-bit soft-error tolerant registers are used
to store input data of each cone (they are primary inputs or the outputs of main-cones
and retry-cones). Also, 1-bit soft-error tolerant registers are used to store the outputs of
comparison-operations. Multi-bit standard registers are used to keep other data such as
interior data in cones and the outputs of second-cones.

4.3 Scheduling Algorithm under Speculative

Resource Sharing (SRS)

In order to mitigate time overhead, the author proposes the concept of speculative resource
sharing (SRS). In the proposed treatment, operations in a retry-cone are not executed as
long as no error is detected. It means that resources bound to operations in a retry-cone
are in idle state if two results of the corresponding main- and second-cone are identical.
Under Assumption 1, the resources can be rebound in an idle state to other operations
which have no dependency with the operations in the retry-cone. More specifically, oper-
ations in a retry-cone can share resources speculatively with operations of second-cones
in different stages.

In accordance with Assumption 1, while a retry-cone is running (an error caused by
a soft-error in main-cone and/or second-cone of the running retry-cone is detected), the
correctness of other main-cones which are executed after the erroneous main- and second-
cones of the running retry-cone is highly reliable. Based on this observation, resources can
be managed more efficiently by SRS between error detection parts and error correction
parts.

In Figure 4.1, if operations in c
(3)
m and c

(2)
n share resources speculatively (m ̸= n and

there is no dependency between cm and cn), c
(1)
n is unable to detect error when a soft-error

affects some of c
(1)
m , c

(2)
m and qm, and as a result, c

(3)
m is executed since the execution of

c
(2)
n is abandoned by c

(3)
m . Hence, it is needed to carefully manage the execution of c

(1)
n so
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retry-cones. o

(3)
i and o

(2)
j can share a functional unit speculatively. However, o

(3)
k and

o
(2)
i cannot because the execution of c

(1)
m starts earlier than the execution of c

(2)
l and it

means that error detection and correction should be performed by each corresponding
comparator and retry cone without SRS if c

(1)
m (or c

(2)
m ) and c

(1)
l (or c

(2)
l ) are affected by a

single soft-error at the same time.

that the soft-error which affects c
(1)
m , c

(2)
m and/or qm may not affect c

(1)
n . Considering such

behavior, the author introduces the second condition.

Condition 2 [Speculative resource sharing] If and only if the execution of a main-cone

c
(1)
n is scheduled later than the execution of a comparison-operation qm (m ̸= n), then

SRS can be applied to a pair of operations, one in a retry-cone c
(3)
m and the other in a

second-cone c
(2)
n which corresponds to the main-cone c

(1)
n .

4.4 Synthesis Problem and Formulation based on ILP

In this section, the scheduling problem in a soft-error tolerant datapath synthesis consid-
ering SRS is formulated as an integer linear programming (ILP) problem.

4.4.1 Definitions of Variables and Constants

In a triplicate data flow graph G̃ of G, let o
(ℓ)
i be an operation in ℓth copy of G, that is,

G(ℓ). (ℓ = 1, 2, 3)

• x
(ℓ)
ij is 1 if an operation o

(ℓ)
i is executed at control step j, 0 otherwise.

• zij is 1 if a comparison-operation qi is executed at control step j, 0 otherwise.

• u
(ℓ)
if is 1 if an operation o

(ℓ)
i is executed on a functional unit f , 0 otherwise.

• win is 1 if a comparison-operation qi is executed on a comparator n, 0 otherwise.
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• spii′ is 1 if o
(3)
i (∈ G(3)) and o

(2)
i′ (∈ G(2)) share the same functional unit speculatively,

0 otherwise.

• ucs is the upper bound of control steps. (constant)

• KO is the number of available functional units. (constant)

• KQ is the number of available comparators. (constant)

• S is the upper bound of the overall schedule length.

4.4.2 ILP Formulation

It is assumed that every operation is a single-cycle operation and is bound to a single-type
functional unit for transferring basic ideas with appropriate readableness. However, the
formulas in this section can easily be expanded for multi-cycle operations and multi-type
functional units.

General Scheduling Constraints

• Every operation o
(ℓ)
i is executed exactly once. Similarly, every comparison-operation

qi is executed exactly once.

ucs∑
j=1

x
(ℓ)
ij = 1 ,

ucs∑
j=1

zij = 1 (4.1)

• If o
(ℓ)
n is an immediate successor of o

(ℓ)
m , o

(ℓ)
n must be scheduled after the execution

of o
(ℓ)
m .

ucs∑
j=1

j · x(ℓ)
mj <

ucs∑
j=1

j · x(ℓ)
nj (4.2)

Dependency between operations and comparison-operations, where the immediate
successors of a comparison-operation are only the operations in the correspond-
ing retry-cone and the immediate predecessors of a comparison-operation are only
operations in the corresponding main- and second-cone, is also considered.

• To minimize the overall schedule length, the author introduces a variable S which
follows Eq. (4.3), and the objective of the proposed scheduling is to minimize S.

ucs∑
j=1

j · x(ℓ)
ij ≤ S ,

ucs∑
j=1

j · zij ≤ S (4.3)
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Speculative Resource Sharing Constraints

In this section, constraints for SRS are shown.

• Every operation o
(ℓ)
i is bound to one functional unit. This constraint is represented

by Eq. (4.4). Similarly, every comparison-operation is bound to one comparator.

KO∑
f=1

u
(ℓ)
if = 1 ,

KQ∑
n=1

win = 1 (4.4)

• Two operations o
(ℓ)
i and o

(ℓ′)
i′ which do not share a resource speculatively must not

be bound to the same functional unit f at the same control step j. This constraint
is given by Eq. (4.5). The same constraint between two comparison-operations is
expressed by Eq. (4.6).

x
(ℓ)
ij + u

(ℓ)
if + x

(ℓ′)
i′j + u

(ℓ′)
i′f ≤ 3 (4.5)

zij + win + zi′j + wi′n ≤ 3 (4.6)

• For two operations o
(3)
i (∈ G(3)) and o

(2)
i′ (∈ G(2)), when the main-cone of the stage to

which o
(2)
i′ belongs is scheduled later than the execution of a comparison-operation

qm which belongs to the same stage as o
(3)
i , o

(3)
i and o

(2)
i′ are a speculative resource

sharable pair (spii′ can take the value 1). This constraint is shown by the following:

ucs∑
j=1

j · zmj − T · (1− spii′) <
ucs∑
j=1

j · x(1)
nj (4.7)

where o
(1)
n denotes each operation in a main-cone of the stage to which o

(2)
i′ belongs,

and T is a sufficiently large constant larger than ucs.

• If two operations o
(3)
i and o

(2)
i′ are a speculative resource sharable pair, these oper-

ations are allowed to be bound to the same functional unit f at the same control
step j. This constraint is described as Eq. (4.8).

x
(3)
ij + u

(3)
if + x

(2)
i′j + u

(2)
i′f ≤ 3 + spii′ (4.8)

• If two operations o
(3)
i and o

(2)
i′ share a resource speculatively, they cannot share a

resource with another operation speculatively anymore.∑
Speculative resource sharable operations with o

(3)
i

spii′ ≤ 1 (4.9)

∑
Speculative resource sharable operations with o

(2)

i′

spii′ ≤ 1 (4.10)
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4.4.3 Multi-Cycle Soft-Error Tolerant Datapath

The schedule constraints and SRS conditions can be expanded so that they can manage
multi-cycle soft-errors [65].

When k-cycle soft-error tolerant datapath synthesis is considered, the differences in
schedule constraints are Eq. (4.2) and (4.7) in Sect. 4.4.2. Since a single soft-error can last
k control steps in maximum, a comparison-operation must be executed k steps or more
after the completion of its preceding operations. Similarly, immediate succeeding opera-
tions of a comparison-operation must be scheduled k steps or more after the completion
of the comparison-operation. Thus it is needed to modify (4.2) as follows:

ucs∑
j=1

j · x(ℓ)
mj + k − 1 <

ucs∑
j=1

j · znj (ℓ = 1, 2) (4.11)

ucs∑
j=1

j · zmj + k − 1 <
ucs∑
j=1

j · x(3)
nj (4.12)

For the same reason, (4.7) can be rewritten as the following:

ucs∑
j=1

j · zmj + k − 1− T · (1− spii′) <
ucs∑
j=1

j · x(1)
nj (4.13)

4.5 Soft-Error Tolerant Datapath Synthesis

using Heuristic Scheduling Algorithm

The author proposes a heuristic scheduling and resource binding algorithm for single
soft-error tolerant datapaths in this section. The proposed heuristic algorithm is based
on LIST scheduling but employs a specialized priority function and a peculiar resource
counting considering SRS.

In the following, let σ : O(1) ∪ O(2) ∪ O(3) ∪ Q → N be an operation schedule, where
O(ℓ), ℓ = 1, 2 and 3, is the set of operations in G(ℓ).

4.5.1 Proposed Scheduling Algorithm

Algorithm 1 shows the proposed algorithm which is to perform the modified LIST schedul-
ing under given resource constraints [27]. The following notations are employed to explain
the proposed scheduling algorithm.

• Lcs,r : the list of ready operations of functional unit type r at control step cs

• Ucs,r : the list of executing operations of functional unit type r at control step cs

• vr,k : the k-th operation of functional unit type r

• res inuse : the number of functional units in use

Scheduling proceeds from control step 1 toward the last control step as the original
LIST scheduling does. In each control step cs, at first, operations of functional unit
type r which are scheduled already and are executing at control step cs, are registered
to Ucs,r. Ready operations which are not yet scheduled are registered to Lcs,r. After
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Algorithm 1 Modified LIST scheduling algorithm

Require: Nmax ← # of resource types
1: cs← 0;
2: while (until all operations are scheduled) do
3: cs← cs+ 1;
4: for (r ← 1; r ≤ Nmax; r++) do
5: res inuse← 0;
6: for (k ← 1; k ≤ # of operations (type r); k++) do
7: if (vr,k is already scheduled) then
8: if (execution of vr,k is not finish yet) then
9: Register vr,k in Ucs,r;
10: end if
11: else if (executions of all immediate predecessors of vr,k are already finished) then
12: Register vr,k in Lcs,r;
13: end if
14: end for
15: res inuse← count occupied FU(Ucs,r);
16: schedule with speculative share(cs, r, res inuse, Lcs,r);
17: end for
18: end while

that, the function count occupied FU is called, which counts the number of func-
tional units (res inuse) presently occupied by operations in Ucs,r, and then the function
schedule with speculative share is called, which chooses operations to be scheduled
to control step cs.

4.5.2 Scheduling Priority

In LIST scheduling, operations are chosen and assigned to a control step according to
the priority given to each operation. Of course, the main objective of this priority is
to guide the proposed scheduler toward a minimum-control-step schedule. In addition
to it, increasing SRS is also aimed by this priority since SRS can increase nominally the
number of operations to be executed in one control step more than the number of available
functional units, which may result in a shorter schedule.

First of all, priority and latency of a stage is introduced. Priority of a stage is defined
as the smallest control step of ALAP schedule 1 over all operations in the stage. Latency
of a stage is defined as the difference between the smallest control step and the largest
control step of the stage in ALAP schedule.

Priority of stage m = min(
2∪

ℓ=1

σALAP (c
(ℓ)
m )) , (4.14)

where σ(c(ℓ)m )= {x | σ(o(ℓ)i )=x, o
(ℓ)
i ∈c(ℓ)m }

Latency of stage m = max(σALAP (c
(3)
m ))−min(

2∪
ℓ=1

σALAP (c
(ℓ)
m )) + 1 (4.15)

1This is one of time-constrained schedules that all operations are scheduled as late as possible within
fixed latency.
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The priority of an operation is determined by applying the following factors in this
order (a tie in the first factor is broken by the second factor, a tie in the second factor is
broken by the third factor, and so on).

(1) Operations which are in a stage having higher priority have higher priority. As
a result, a stage which started earlier can finish earlier. Since an input computa-
tion algorithm is triplicated and comparison-operations are inserted based on cone-
partitioning, if a stage which started earlier remains without being chosen and only
operations in other stages are scheduled, operations in the remained stage, especially
comparison-operation in the stage, can be a bottleneck on the entire schedule.

(2) Operations which are in a stage having smaller latency have higher priority. Since
operations in a stage which is expected to finish earlier are easier to satisfy Condition
2, those operations are easier to find speculative resource sharing operation pairs.

(3) Operations which have smaller ALAP schedules are given higher priority.

(4) Operations which are placed in a critical path are given higher priority.

(5) Among series operations, an operation in second-cone is given higher priority than
the other to find a speculative resource sharing operation pair aggressively. As a
result, the possibility of SRS can be augmented.

Using these factors, priority is given to every operation.

4.5.3 Selecting Operations

Even if the priority of ready operations is fixed, selecting operations to be scheduled at
the current control step is not straightforward, since we need to manage a complicated
resource sharing between operations in second- and retry-cones. If speculatively sharable
operations are chosen preferentially, the number of operations to be scheduled in the
current control step can increase, and, as a result, latency can decrease. The proposed
SRS is a special resource sharing between operations in retry-cones and those in second-
cones. That is, SRS is a set of disjoint pairs of operations in retry-cones and those in
second-cones, which is modeled as a matching between operations in retry-cones and those
in second-cones. Hence, the author decided to manage SRS-aware resource counting by a
matching on a bipartite graph. In order to construct a bipartite graph, ready operations
are divided into two subsets X and Y , where X includes operations in second-cones and
Y includes operations in retry-cones, and edges are allocated between operations which
are speculatively resource sharable. On the other hand, operations in main-cones will not
share a resource speculatively. Moreover, the case should be considered that operations
in second- and retry-cones are scheduled without SRS. In order to deal with such cases
using a single framework, operations in main-cones are included as vertices in set X, and
two additional vertex sets XC in Y and YC in X are introduced as dummy vertices to be
paired with operations (vertices) scheduled without SRS. Consequently, the final bipartite
graph consists of XT which includes X and YC , and YT which includes Y and XC .

Here let X be a set of operations in main- or secondary-cone that exist in Lcs,r.
Similarly, let Y be a set of operations in retry-cone that exist in Lcs,r.

X = {x | x ∈ Lcs,r ∧ x ∈ G(1) ∪G(2) }
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Y = { y | y ∈ Lcs,r ∧ y ∈ G(3) }

In order to choose speculative resource sharing pairs aggressively, a bipartite graph H =
(XT ∪ YT ,W ) with XT and YT will be used as its partite sets.

• One partite set XT is defined as XT = X∪YC , where YC is a set of auxiliary vertices
with |YC | = |Y |.

• The other partite set YT is defined as YT = Y ∪XC , where XC is a set of auxiliary
vertices with |XC | = |X|.

Vertex weight w(z) ∈ N is defined as priority of an operation z. Also, it is considered
that weights of all auxiliary vertices in XC or YC are 0, that is, ∀z ∈ XC ∪ YC , w (z) = 0.
The edge set W of H is defined as follows.

W = { {x, PX(x)} | x ∈ X } ∪ { {PY (y), y} | y ∈ Y }
∪ { {x, y} | x (∈ X ∩G(2)) and y (∈ Y) can

share a resource speculatively }

where PX : X → XC and PY : Y → YC are arbitrary one-to-one mapping from X to XC

and from Y to YC , respectively. In addition, edge weight w (e = {x, y}) ∈ Z+ is defined
as the sum of weights of two end vertices x and y, that is, w (e = {x, y}) = w (x) +w (y).

OnceH is constructed, selecting an edge e = {x, y } fromH means that two operations
which are represented by the end vertices x and y of e share a resource speculatively. If
an end vertex of e is an auxiliary vertex (a vertex in either XC or YC), it means that the
operation which is represented by the other end vertex occupies a resource without SRS.
As a result, an operation selection considering SRS can be considered as a problem to
find a size-constrained maximum weight matching on H.

Algorithm 2 shows a detailed description of the function schedule with speculative
share [27]. After a graph H is constructed, speculative resource sharing operation pairs
are chosen by a greedy selection procedure. More specifically, matching edges are selected
in descending order of the edge weights within the number of available resources. Figure
4.2 depicts an example of operation selection by Algorithm 2. In the selection procedure,
the edges with weight-28, 20 and 19 are chosen in descending order of edge weights.
When the edge with weight-19 is selected, the procedure at the current control step will
be finished since nr reaches the number of available resources, 3. As a result, selected
operation pairs are (15, 13), (20, 0) and (10, 9). In addition, the unmatched vertex
(operation) with weight-8 is carried over to the next control step.

4.6 Experimental Results

The author has implemented the proposed scheduling algorithm as a computer program.
In order to evaluate the proposed heuristic algorithm, solutions obtained from the pro-
posed heuristic algorithm are compared with solutions obtained from two different sources.
One is a conventional LIST scheduling algorithm and the other is an ILP solver which
solves the proposed ILP formulation. These three methods are applied to various compu-
tation algorithms, such as, 16-point fast Fourier transform (16FFT), 8-point inverse dis-
crete cosine transform (8IDCT), 16-point FIR filter (16FIR), autoregressive filter (ARF),
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Figure 4.2: An example of operation selection produced by greedy selection procedure;
Operations which have vertex weights 10 and 15 are elements of G(2). Other operations
in X are elements of G(1). The number of available resources is 3.

Algorithm 2
Algorithm of function schedule with speculative share()

Require: cs← Current control step
Require: r ← Currently considered resource type
Require: nr ← Available # of resources with type r
Require: Lcs,r ← List of ready operations with type r at step cs
1: Construct a bipartite graph H based on Lcs,r;
2: for (i← 0; i < Total # of W ; i++) do
3: if (nr > 0) then
4: Select an edge e from W which has the largest edge weight;
5: Schedule two end vertices of e at current control step cs;
6: Remove the edge e and its end vertices from H
7: nr ← nr − 1;
8: else
9: break;
10: end if
11: end for

fifth-order elliptic wave digital filter (5EWDF), and inverse discrete cosine transform with
column-wise decomposition (IDCT-c). Three types of functional units, namely multipli-
ers, ALUs and comparators, three types of registers, namely multi-bit soft-error tolerant
registers, 1-bit soft-error tolerant registers and multi-bit standard registers, and multi-
plexers are utilized as allocated resources in datapath synthesis experiments. In addition,
the maximum duration of a single soft-error is set to one control step in the experiments.

A conventional LIST scheduling algorithm (shortly, Convent.), to which SRS is not
applied, and the proposed LIST scheduling algorithm with SRS (shortly, SRS) were ex-
ecuted on a computer which consists of a Intel Xeon E5-2670 (2.60GHz) processor and
6GB main memory. To find exact solutions from ILP formulations, the ILP solver Gurobi
Optimizer 6.0.0 was performed on one node, which consists of two Intel Xeon E7-8837
(2.66GHz) processors and 128GB memory, in a massively parallel computer.

32



0

20

40

60

80

100

120

140

160

180

200

1/1/1 1/1/2 1/2/1 2/2/2 2/3/2 2/4/3

La
te

n
cy

 [
co

n
tr

o
l 

st
e

p
s]

Allocated Resouces  (C/A/M)

16FFT
Convent.

with SRS

0

10

20

30

40

50

60

70

80

90

100

1/1/1 1/1/2 1/2/1 2/2/2 2/3/2 2/4/3

La
te

n
cy

 [
co

n
tr

o
l 

st
e

p
s]

Allocated Resouces  (C/A/M)

8IDCT
Convent.

with SRS

0

20

40

60

80

100

120

140

160

180

1/1/1 1/1/2 1/2/1 2/2/2 2/3/2 2/4/3

La
te

n
cy

 [
co

n
tr

o
l 

st
e

p
s]

Allocated Resouces  (C/A/M)

IDCT column-wise
Convent.

with SRS

0

10

20

30

40

50

60

70

1/1/1 1/1/2 1/2/1 2/2/2 2/3/2 2/4/3

La
te

n
cy

 [
co

n
tr

o
l 

st
e

p
s]

Allocated Resouces  (C/A/M)

AR Filter
Convent.

with SRS

0

10

20

30

40

50

1/1/1 1/1/2 1/2/1 2/2/2 2/3/2 2/4/3

La
te

n
cy

 [
co

n
tr

o
l 

st
e

p
s]

Allocated Resouces  (C/A/M)

16FIR Filter
Convent.

with SRS

0

10

20

30

40

50

60

70

80

1/1/1 1/1/2 1/2/1 2/2/2 2/3/2 2/4/3

La
te

n
cy

 [
co

n
tr

o
l 

st
e

p
s]

Allocated Resouces  (C/A/M)

5EWD Filter
Convent.

with SRS

Figure 4.3: Experimental results in various computational algorithms with heuristics.
Each column corresponds to a different choice of allocated resources (C: Comparator, A:
ALU, M: Multiplier). Every column in each graph has two bars, black one and gray one.
Black bar represents scheduling result (latency) with a conventional method and gray one
represents proposed scheduling result with SRS.

Table 4.1: Latency improvement rate using heuristics
Computation Total # of operations Max. improvement rate [%]
algorithm (triplicate algorithm) & allocated resources (C/A/M)

16FFT 328 32.3 (1/1/1)
IDCT-c 234 31.0 (1/1/1)
8IDCT 160 29.5 (2/2/2)
ARF 96 23.6 (1/2/1)

16FIRF 80 19.6 (1/1/1)
5EWDF 120 16.3 (1/1/1)

4.6.1 Performance Evaluation in Latency

Figure 4.3 and Table 4.1 show experimental results from a viewpoint of latency. Each
graph in Fig.4.3 illustrates the achieved latencies using a conventional LIST scheduling
algorithm and the proposed LIST scheduling algorithm under different resource alloca-
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tions. In 16FFT, 8IDCT and IDCT-c, the proposed method achieved smaller latency
than a conventional method for all variations of resource constraints. On the other hand,
in ARF, 16FIR and 5EWDF, the proposed method obtained almost the same latency in
case of larger resource constraints such as 2/3/2 and 2/4/3. Table 4.1 shows the max-
imum improvement rates in latency between conventional LIST scheduling results and
the proposed LIST scheduling results with SRS. The second column in Table 4.1 shows
the total number of operations as an indicator of the size of each computation algorithm.
The third column shows the maximum latency improvement rates and allocated resources
which achieve the maximum latency improvement rate. Each maximum rate is decided by
choosing a best one in latency among the six rates

(
(latency achieved with a conventional

LIST scheduling − latency achieved with SRS)÷(latency achieved with a conventional
LIST scheduling)

)
with the six kinds of resource allocations. It can be found from those

results that, for every application algorithm, latency is improved more or less when SRS
is applied. It is also found that the proposed method is more effective when a computa-
tion algorithm possesses higher parallelism (in this example, 16FFT, IDCT-c and 8IDCT)
and the improvement is larger when a smaller number of resources is allocated. The rea-
son is that, when a computation algorithm possesses higher parallelism, there are more
possibilities to share resources speculatively between retry-cones and second-cones and,
in consequence, many chances of SRS can conceal the extension of latency. When the
number of allocated resources is small, latency becomes larger due to the resource limi-
tation, and the latency improvement achieved by SRS is remarkable. On the other hand,
when the number of allocated resources is large enough, latency is dominated mainly by
a critical path length, and SRS contributes little to latency improvement.

Table 4.2 shows solutions (latencies) and their computation time obtained by a con-
ventional method, the proposed method with SRS, and an exact method using ILP solver.
In this experiment, the author limited the maximum execution time of the solver to one
day. When the solver continued to work beyond one day, it was aborted and a provisional
solution was adopted. When even a provisional solution was not obtained by one day run,
N/A is noted instead of a solution.

The results indicate that the proposed heuristic algorithm generates slightly inferior
solutions compared with exact solutions in some cases. Nevertheless, the author can claim
that the proposed method with SRS using heuristics produces high quality solutions in
practical computation time and the solutions obtained from heuristics are comparable in
latency to the exact solutions obtained by an ILP solver.

4.6.2 Reliability against Soft-Errors

In this subsection, we will compare the reliability between datapaths with a conventional
method and the proposed method. Let p be the probability that a single soft-error occurs
at a control step and, in consequence, it affects several components. Also, let P (A) be
the probability of an event A. If we consider an event that no soft-error occurs during cs
control steps, its P is described by the following equation:

P (no soft-error in [1,cs]) = (1− p)cs (4.16)

In general, as for an event that soft-errors occur n different control steps during latency
cs, its probability is given as:

P (n soft-errors in [1,cs]) = csCn ·pn ·(1− p)(cs−n) (4.17)

34



Table 4.2: Experimental Results in Latency
Resource Conventional method (CED+Retry) The Proposed Method (SRS)

Compu. # of Constrains Heuristics ILP Heuristics ILP
Algo. Op.s (C/A/M) solution time [s] sol. time [s] sol. time [s] sol. time [s]

1/1/1 192 0.1 N/A > 86400.0 130 0.1 N/A > 86400.0
1/1/2 192 0.1 N/A > 86400.0 130 0.1 N/A > 86400.0

16FFT 88 1/2/1 99 0.1 N/A > 86400.0 75 0.1 N/A > 86400.0
2/2/2 96 0.1 96 16578.0 66 0.1 N/A > 86400.0
2/3/2 64 0.1 64 1459.2 45 0.1 N/A > 86400.0
2/4/3 48 < 0.1 48 647.8 36 0.1 N/A > 86400.0

1/1/1 87 0.1 87 1056.3 62 0.1 63† > 86400.0
1/1/2 87 0.1 87 14077.8 62 0.1 62† > 86400.0

8IDCT 42 1/2/1 50 0.1 46† > 86400.0 41 0.1 37† > 86400.0
2/2/2 44 0.1 44 130.9 31 < 0.1 N/A > 86400.0
2/3/2 31 0.1 30 140.8 25 0.1 N/A > 86400.0
2/4/3 25 0.1 23 60.5 22 < 0.1 22† > 86400.0

1/1/1 174 0.1 174 9668.8 120 0.1 N/A > 86400.0
1/1/2 174 0.1 N/A > 86400.0 120 0.1 N/A > 86400.0

IDCT-c 62 1/2/1 88 0.1 87 4152.6 68 0.1 N/A > 86400.0
2/2/2 87 0.1 87 1331.5 64 0.1 N/A > 86400.0
2/3/2 58 0.1 58 962.9 45 0.1 N/A > 86400.0
2/4/3 44 0.1 44 209.9 36 0.1 N/A > 86400.0

1/1/1 58 0.1 56 4900.6 49 0.1 48† > 86400.0
1/1/2 37 0.1 37 30.3 34 0.1 32 148.4

ARF 28 1/2/1 55 0.1 54 596.5 42 0.1 40 11051.6
2/2/2 27 0.1 27 5.1 27 0.1 26 3784.4
2/3/2 27 0.1 27 8.5 26 0.1 26 8319.3
2/4/3 24 0.1 24 0.1 24 0.1 24 6205.5

1/1/1 46 0.1 46 4.9 37 < 0.1 35 1182.3
1/1/2 46 0.1 46 5.5 37 0.1 35 373.2

16FIRF 23 1/2/1 31 0.1 31 5.2 28 0.1 26 37.2
2/2/2 26 0.1 25 2.0 23 < 0.1 23 54.9
2/3/2 23 0.1 23 0.1 23 0.1 23 9.2
2/4/3 23 0.1 23 0.1 23 0.1 23 6.7

1/1/1 80 < 0.1 80 258.5 67 0.1 64† > 86400.0
1/1/2 80 0.1 80 212.6 67 0.1 62† > 86400.0

5EWDF 34 1/2/1 47 0.1 46 11.0 44 0.1 43† > 86400.0
2/2/2 46 0.1 45 33.0 41 0.1 40 4778.2
2/3/2 38 0.1 38 2.5 38 0.1 38 76.6
2/4/3 37 0.1 37 0.4 37 0.1 37 10.1

†A provisional solution is shown. Since the solver was still operating until 24h (86400s) passed,
it was aborted.
N/A: No solution is found. Since the solver was still operating without any solution until 24h passed,
it was aborted.
C: Comparator/ A: ALU/ M: Multiplier

Now, a reliability R(A) is defined as the error-free probability against an event A.
When we consider soft-errors occur n different control steps during latency cs, there are

csCn possible error distribution patterns. If a datapath masks errors in rn (≤ csCn)
patterns among them, the reliability R is described as the following:

R(n soft-errors in [1,cs]) = rn · pn · (1− p)(cs−n) (4.18)
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Finally, overall reliability R(all possible error patterns)

=
cs∑

n=0

R(n soft-errors in [1,cs])

=
cs∑

n=0

rn · pn · (1− p)(cs−n) (4.19)

where rn is the number of masked error patterns with n soft-errors. rn is obtained by
fault injection simulation. In this simulation, faults are injected based on control step.
When we consider soft-errors in n different control steps, csCn different patterns of fault
injection tests are examined. If the datapath produces error-free primary outputs under
a pattern of error, then that trial is judged as an error-masked pattern. Thus, rn is the
total number of all error-masked patterns. For example, when n is 2 and latency is 5,
possible error distribution patterns are (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4),
(3,5) and (4,5). If error-masked patterns are (1,4), (1,5), (2,4), (2,5) and (3,5) after fault
injection tests, rn becomes 5.

In the following numerical evaluations, the terms of larger number of soft-errors will
be truncated, and the reliability considering up to 3 soft-errors will be evaluated. In
addition, we consider the following:

• When a soft-error occurs at a control step, it affects all components at the control
step. Therefore, this evaluation considers the worst case.

• When a standard register is in failure caused by a soft-error, the data which is stored
in the register is corrupted at the same control step.

• If an ALU or multiplier is in failure due to a soft-error, incorrect output data of the
ALU or multiplier is latched in a register when the control step is changed to the
next step.

• If a comparator is in failure caused by a soft-error and two inputs of the comparator
are identical, the comparator outputs an incorrect comparison result, that is, two
inputs are different. As a result, the retry-cone is executed. On the other hand,
if a comparator is in failure due to a soft-error and two inputs are different, the
comparator outputs an incorrect comparison result, that is, two inputs are identi-
cal. Consequently, the retry-cone will not be executed; furthermore, the erroneous
outputs of the corresponding main-cone (and second-cone) will not be corrected.

According to [34], soft error rate (SER) is 1153 FIT/Mbit on 40nm technology SRAM at
ground level. In the numerical evaluations, it is assumed that a soft error rate p in every
control step is 0.0001. In case the operation frequency is 1GHz, this rate can be converted
to 3.6× 1017 FIT/chip. This value seems impractically large compared with SER on the
natural terrestrial environment [34]. The proposed datapath design with SRS tolerates a
single soft-error, and reliability degradation due to SRS will be revealed by multiple-time
soft-error. In order to highlight the reliability degradation due to SRS, the probability
of multiple-time soft-error have been increased by choosing a larger probability p in the
numerical evaluation.

Figure 4.4 shows the evaluation results. These results revealed that there is no huge
difference except some cases in reliability between datapaths a conventional method and
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Figure 4.4: Reliability comparison for various computational algorithms. Each column
corresponds to a different choice of allocated resources (C: Comparator, A: ALU, M:
Multiplier). Every column in each graph has two bars, black one and gray one. Black
bar represents scheduling result (latency) without a conventional method and gray one
represents proposed scheduling result with SRS.

the proposed method with SRS. In case of 16FFT under resource constraints 1/2/1, the
reliability of the proposed method is relatively inferior to a conventional method. We
can see similar results in case of 5EWDF under 1/1/1 and 1/1/2. On the other hand, in
case of 16FFT under 2/2/2 and 5EWDF under 2/2/2, the proposed method are slightly
superior to a conventional method in reliability.

As mentioned earlier, these reliability evaluations consider the worst case that all
operation results and all data stored in standard registers at a control step are corrupted
by a single soft-error. Also, these evaluations consider more than one fault during latency
cs. Due to applying SRS, in general, latency becomes smaller and, as a result, the
probability that soft-errors occur during latency cs decreases. If an error occurs during
the execution of a main-cone and/or a second-cone and the second error occurs during
the execution of the retry-cone in the same stage, the second error will not be fixed in
both conventional and proposed datapaths. However, not only the case that the second
error falls in the retry-cone, but also the case that the second error falls in a main-cone
(of another stage) whose second-cone shares resources speculatively with the retry-cone,
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the proposed datapath can not fix the error. Thus, due to applying SRS, the probability
that the entire system normally operates against more than one fault during latency cs
decreases. As a result, the superiority in reliability between datapaths without and with
SRS may change depending on the scheduling results. Despite several exceptions in the
evaluation results, it can be said that the proposed method retains almost the same level
of performance in soft-error tolerance compared with a conventional method based on
C-R mechanism without SRS.

4.6.3 Quantitative Evaluation for Area Estimation

To evaluate hardware overhead due to triplication, a chip area is estimated by counting
the number of functional units, registers and multiplexers. Left-edge algorithm is applied
to register binding in this evaluation. Table 4.3 shows the number of allocated hardware
resources which are needed to realize soft-error tolerant datapaths. These results clar-
ify that there is no huge difference in estimated area between datapaths a conventional
method and the proposed method with SRS when the numbers of functional units are
identical between the two datapaths. However, depending on computation algorithms
and available resources, the proposed method produces smaller chip areas. We can see
that datapaths with a conventional method use more soft-error tolerant registers (both
multi-bit and 1-bit) than datapaths designed by the proposed method. Particularly, this
tendency stands out in 16FFT among other computation algorithms. The main reason of
this trend can be explained as follows: If scheduling is focused on each operations with-
out considering cone-based priorities, instead of operations in the cones which are already
scheduled, new operations in other cones which are not yet scheduled may be selected. In
order to store the comparison results and the outputs of main-cones and retry-cones, 1-bit
soft-error tolerant registers and multi-bit soft-error tolerant registers are needed. When
new operations in other cones are selected, the lifetimes of those results and output are
extended and overlapped with each other. As a result, more soft-error tolerant registers
are needed to store those data. In spite of minor exceptions, it can be claimed that the
proposed method keeps almost the same level of performance in chip area compared with
a conventional C-R method.

4.7 Summary

Concerning soft-error tolerant datapath synthesis based on triplication of an input com-
putation algorithm, constraints for soft-error tolerance and a scheduling algorithm con-
sidering speculative resource sharing (SRS) are proposed. A datapath circuit designed
by the proposed method tolerates multi-component and multi-cycle error caused by a
single soft-error. From the results of soft-error tolerant datapath synthesis experiments,
it is found that SRS achieves a maximum 32.3% improvement in latency, while keeping
the comparable levels in reliability and in chip area compared with datapaths based on
a conventional method. Specifically, it is discovered that the proposed method is more
effective when an input computation algorithm possesses higher parallelism, and the num-
ber of allocated resource is relatively small. In many embedded devices, chip sizes are
restricted. In such resource-limited applications, the proposed method can make latency
smaller without increasing chip size. Keeping or decreasing the chip size is preferable also
in yield and in static power consumption.
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Table 4.3: Experimental Result in Area Estimation
Resource Conventional method (CED+Retry) The Proposed Method (SRS)

Compu. # of Constrains # of Registers # of # of Registers # of
Algo. Op.s (C/A/M) FT FT 1bit Standard Multiplexers FT FT 1bit Standard MUXs

1/1/1 32 16 1 32 25 2 2 29
1/1/2 32 16 1 32 25 2 2 29

16FFT 88 1/2/1 32 15 7 44 31 8 11 42
2/2/2 32 15 1 49 26 2 1 40
2/3/2 32 15 3 60 28 6 7 51
2/4/3 32 14 7 65 32 5 6 57

1/1/1 16 7 1 22 15 3 5 22
1/1/2 16 8 1 23 13 3 4 24

8IDCT 42 1/2/1 16 7 5 27 14 4 6 25
2/2/2 16 7 2 32 13 3 3 30
2/3/2 16 8 2 35 15 4 5 35
2/4/3 16 7 4 40 16 4 6 44

1/1/1 17 8 1 22 15 3 2 22
1/1/2 17 8 1 22 15 3 2 22

IDCT-c 62 1/2/1 19 7 8 32 17 3 10 30
2/2/2 17 7 2 32 15 5 5 35
2/3/2 17 6 7 40 17 3 8 38
2/4/3 17 5 6 46 20 4 8 46

1/1/1 30 6 1 23 27 2 2 22
1/1/2 27 3 4 28 27 2 3 29

ARF 28 1/2/1 30 7 1 26 27 2 2 23
2/2/2 27 2 4 26 27 2 4 26
2/3/2 27 2 4 26 27 2 4 26
2/4/3 28 2 6 31 28 2 6 31

1/1/1 18 4 2 18 17 2 2 18
1/1/2 18 4 2 18 17 2 2 18

16FIRF 23 1/2/1 17 3 11 23 17 3 11 23
2/2/2 18 4 3 24 18 3 3 26
2/3/2 18 3 6 30 18 3 7 30
2/4/3 19 3 8 37 19 3 9 39

1/1/1 17 5 5 22 14 4 8 22
1/1/2 17 5 3 26 14 4 7 26

5EWDF 34 1/2/1 15 3 6 26 13 4 4 24
2/2/2 14 4 5 28 13 3 4 27
2/3/2 13 3 5 32 13 3 3 29
2/4/3 13 3 3 32 13 4 4 32

C: Comparator/ A: ALU/ M: Multiplier
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Chapter 5

Latency-Optimized Selection of
Check Variables

5.1 Motivation

Speculative resource sharing, which is shown in Chap. 4 is introduced for hardware/time
overhead mitigation. However, a strict constraint is imposed on SRS. To satisfy the
constraint much easier and maximize the possibility of SRS, the author proposes a latency-
aware cone-partitioning algorithm. The more comparison-operations are selected, the
more cones, which are subgraphs of the original input data flow graph, are partitioned.
As a result, latency improves because fine-grained cones are relatively easier to fulfill the
constraint than coarse-grained cones. On the other hand, latency may become larger as
increasing the number of comparison-operations. Thus, deciding insertions of comparison-
operations is an important factor in design optimization, as mentioned in Chap. 3.3.

5.2 Optimized Check Variable Selection Algorithm

under SRS

In the previous chapter, the proposed method has mainly focused on the scheduling
and the binding algorithms for C-R based soft-error tolerant datapath synthesis, and
check variables are treated as being given a priori. However, the possibility of SRS and
the performance of a synthesized datapath depend on selecting check variables. The
main objective of this thesis is to propose a method to select latency-aware sets of check
variables.

5.2.1 Latency Improvement with Selecting Check Variables

From the viewpoint of the SRS condition (refer to Condition 2 in Chap. 4.3), as succeed-
ing operations are scheduled in far later steps from the earliest preceding operations in
the same cone, it becomes difficult for the successors to satisfy the SRS condition. For
example, in Fig. 5.1, a later successor ob in c

(2)
x has less opportunity in terms of SRS than

its predecessor oa in the same cone. In order to make ob fulfill the condition easier, ob and
its successors should be separated from their predecessors. Such separation is realized
by choosing the output of oa as a new check variable, and as a result, the cone c

(2)
x is

40



cy
(3)

cz
(3)

cx
(2)

cx'
(2)

cx''
(2)

oa

ob

oc

od

Newly selected 
check variable

Opera!ons

Cones

Newly par!!oned 
Cones

Check variables

p
ets l

ort
n

o
C

Figure 5.1: An example of cone partition in a scheduled data flow graph; c
(2)
x can be

partitioned into c
(2)
x′ and c

(2)
x′′ to increase the possibility of SRS.

Algorithm 3 Latency-aware check variable selection algorithm

Require: dfg org ← an original input data flow graph
1: cones ←make initial cone partition(dfg org);
2: dfg tri ← triplicate data flow graph(dfg org , cones);
3: schedule ← perform operation scheduling(dfg tri);
4: while (1) do
5: if (every cone consists of only a single operation) then
6: break;
7: end if
8: op pair ← find operation pair(schedule);
9: chk var ← select new check variable(op pair);
10: cones ← divide cone into two(cones, chk var);
11: dfg tri ← reconstruct data flow graph(dfg tri , cones);
12: schedule ← perform operation scheduling(dfg tri);
13: results ← save scheduling result(schedule, cones);
14: end while
15: take the best solution in latency(results);

divided into two cones c
(2)
x′ and c

(2)
x′′ . Then, not only oa and oc but also ob and od can share

resources speculatively. Consequently, choosing a new check variable allows the chance of
SRS to improve.

However, selecting new check variables may increase time overhead. In general, there
is a trade-off between latency and the number of comparison-operations. Finding an
operation pair and separating the two operations in the pair into two cones broaden op-
portunities for SRS. As a result, latency can be reduced by SRS. On the other hand, if the
number of comparison-operations increases owing to choosing more new check variables,
then latency may be extended due to the execution of inserted comparison-operations.
Therefore, an operation pair, which consists of an operation and its immediate successor,
and has a large difference in control steps between them, should be selected preferentially.

5.2.2 Check Variable Selection Algorithm

In order to overcome the strict constraint on SRS and obtain optimized solutions in
latency, the author proposes Algorithm 3 [87]. The following notations are employed to
describe it.
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• dfg org : an original input data flow graph (given)

• dfg tri : a triplicate data flow graph

• cones : partitioned cone information

• schedule: an operation schedule

• op pair : an operation pair for cone-partitioning

• chk var : a new check variable

• results : saved results at the end of each iteration

Algorithm 3 shows the proposed check variable selection algorithm. First, the initial
cone-partitioning is performed with an original data flow graph so that every internal
operation in each cone has a single output and the resultant data flow graph is composed
of maximal cones. In terms of check variables, the set of check variables inducing the initial
cone-partition can be defined as the smallest set of check variables. Next, the triplication
and the initial operation scheduling are performed. In the while loop, an operation and
its immediate successor which belong to the same cone and have the biggest difference in
control steps are found. After that, the output of the operation is selected as a new check
variable. Next, the cone which includes the new variable is divided into two cones based
on the variable. Then, the data flow graph is reconstructed and an operation scheduling
is performed again. The operation schedule and the cone-partition are saved at the end
of every iteration. This loop body is executed repeatedly until every cone consists of only
a single operation. Finally, the best cone-partition in terms of latency is obtained from
the saved results.

The main idea of this algorithm is iteration. During this process, cones are partitioned
smaller and smaller. Since every internal operation in each cone has only one output, a
new check variable divides its cone into exactly two. This iteration does not guarantee
that latency always decreases monotonically. Thus, after the process, the best solution
among saved ones is chosen.

5.3 Experimental Results

The proposed check variable selection algorithm have been implemented as a computer
program, and applied it to G.722 ADPCM Decoder (ADPCM D), four-by-four matrix
inversion (4x4INV), four-by-four matrix multiplication (4x4MUL), 16-point fast Fourier
transform (16FFT), inverse discrete cosine transform with column-wise decomposition
(IDCT-c), autoregressive filter (ARF), and fifth-order elliptic wave digital filter (5EWDF),
and 16-point FIR filter (16FIRF). Three types of functional units, which are multipliers,
ALUs and comparators, are employed as allocated resources in datapath synthesis exper-
iments.

To evaluate the effectiveness of the proposed algorithm in latency, three schemes have
been implemented in the above applications. The three implementations are: (I) a C-
R based conventional method (Conventional), (II) the C-R and SRS based preliminary
scheme (SRS only) and (III) the combination of the preliminary scheme and the proposed
algorithm (SRS+Auto Cone). For (I)(Convent.) and (II)(SRS only), the smallest set of
check variables are used as a given set of check variables. Note that the smallest set
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Figure 5.2: Four exploration examples to find the best latency-aware selections of check
variables under different choices of allocated resources (4x4INV)

of check variables is also used as the initial choice of check variables in Algorithm 3 for
(III)(SRS+Auto Cone).

Fig. 5.2, 5.3 and 5.4 show experimental results. Fig. 5.2 and 5.3 indicate four explo-
ration examples in case of 4x4INV and 16FFT, respectively, to find the best latency-aware
set of check variables under different choices of allocated resources. It is found that the
minimum latency in each case is acquired at a different index of iterations. Fig. 5.4 shows
that computation algorithms which possess higher parallelism (ADPCM D, 4x4INV and
IDCT-c) achieve significant improvements in latency compared with (II)(SRS only). In
addition, even though others (5EWDF, ARF and 16FIRF) have lower parallelism, they
show relatively large improvements under a small number of allocated resources. 4x4MUL
and 16FFT possess higher parallelism, however, they obtain limited improvements under
every resource constraint comparing with (II)(SRS only). The reason is considered as
follows; The partitioned cones induced by the smallest set of check variables of several
benchmarks (for example, 4x4MUL and 16FFT) with (II)(SRS only) have similar topolo-
gies. Such similarity of the cones helps to share more resources speculatively and improve
latency more. That is, for these applications, the smallest set of check variables may
become the best selection of check variables with a higher probability, and as a result,
the latency improvement is not achieved by (III)(SRS+AutoCone). On the other hand,
it can be thought that, for other applications unlike 4x4MUL or 16FFT, the similarity of
partitioned cone topologies will be improved by adding new check variables to the smallest
set of check variables, and a certain degree of latency improvement is achieved.

The experimental results suggest that the improved solutions are found by the pro-
posed algorithm and the best latency-aware check variable selection varies according to
available resources.
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Figure 5.3: Four exploration examples to find the best latency-aware selections of check
variables under different choices of allocated resources (16FFT)

5.4 Summary

Datapath circuits designed by the proposed method tolerate single soft-error-induced
multiple-component errors. In the preliminary study, the author proposed an efficient
resource management called speculative resource sharing (SRS). To overwhelm its strict
condition, the author proposes a check variable choosing algorithm which enlarges op-
portunities for SRS. Experimental results revealed that the proposed method achieves
improvements in latency compared to a conventional check-and-retry mechanism. The
proposed method is especially effective when the input computation algorithm possesses
a high degree of parallelism, and the number of allocated resources is relatively small.
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Figure 5.4: Experimental results in eight computational algorithms. Each column corre-
sponds to a different choice of allocated resources (C: Comparator, A: ALU, M: Multi-
plier).

45



Chapter 6

Adjacency Constraint between
Circuit Components

6.1 Motivation

In the study [39], Zhang et al. examined dependency of MCUs on flip-flop cell distance and
well-contact density. According to their report, MCU rates are exponentially decreased
by the distance between flip-flops. Also, device level approaches such as alternative place-
ment of flip-flips and high-density well-contact arrays can reduce MCU rates. Previously,
the author proposed a method to synthesize single soft-error tolerant application-specific
datapaths via high-level synthesis [27]. To handle multiple component error, a C-R mech-
anism is used to detect and correct error due to a single soft-error. In addition, in order to
mitigate time/spatial overhead, the author introduced speculative resource sharing (SRS)
which is a special resource sharing between second copies and third copies, and proposed
a heuristic scheduling algorithm to increase the chance of SRS. The two novel contribu-
tions of the proposed method in this chapter are (1) adjacency constraint to mitigate
time overhead further and to reduce excessively applied fault-tolerance; (2) an ILP based
resource binding approach to obtain optimized solution in the number of component pairs
on which adjacency constraint is imposed.

6.2 Adjacency Constraint on Soft-Error Tolerant Dat-

apaths under SRS

6.2.1 Modified Fault Model Considering Localities of Soft-Error

As mentioned in Section 4.2.1, it is assumed that a single soft-error can cause multiple
component error. Thus, it means that the scope of components which are affected by
one single soft-error simultaneously is an entire chip. In order to reduce such excessively
applied fault-tolerance and mitigate time overhead for the executions of retry-cones which
are a disadvantage of C-R scheme, the author introduces a concept of localities of soft-
error. If a single soft-error has a spatial and temporal boundary, and its influence is
limited against multiple component error, several components can be executed at the
same time. This concept is based on the following assumptions:
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Assumption 2 [Spread of time] The effect of a single soft-error lasts no longer than k
control steps.

Assumption 3 [Spread of space] The effect of a single soft-error does not exceed a certain
spatial boundary.

If Condition 2 can be ignored under the above two assumptions, the constraint on SRS
can be relaxed and more operation pairs can share resources speculatively, as a result,
latency can be improved. On the other hand, if Condition 1 can be disregarded under
Assumption 2 and 3, a majority-voting mechanism for error masking and correction in-
stead of C-R scheme can be applied, and the three copies in every stage can be executed
concurrently. Then, time overhead due to retry executions can be reduced and, in conse-
quence, latency can be smaller. Nonetheless, the comparison-retry based error correction
scheme is only focused on in this chapter.

6.2.2 Temporal and Spatial Adjacency Constraint (AC)

Let dis be a minimum spatial distance between two components which are not affected
by a single soft-error at the same time. In the resource binding phase, every operation-
operation pair which should not be affected together simultaneously needs to be bound
to two distinct components having a certain spatial distance more than dis between the
components. Otherwise, the two operations should be scheduled in the scheduling phase
so that executions of the two operations have a certain temporal interval which is the time
duration of soft-error or more. If two operations in a pair satisfy the following Condition
3 or 4 under Assumption 2 and 3, those operations will not be concurrently erroneous
although multiple component error induced by a single soft-error occurred. In a similar
way, temporal/spatial adjacency constraint (AC) can also be applied to variable-variable
pairs and operation-variable pairs.

Condition 3 [Temporal adjacency constraint] After the execution of one operation (or
the life time of one variable) is finished, the execution of the other operation (or the life
time of the other variable) is started k− 1 control steps later in case of k-cycle soft error.

Condition 4 [Spatial adjacency constraint] Two operations, two variables or one oper-
ation and one variable in a pair are bound to distinct components which keep a spatial
distance dis at least.

Condition 3 should be considered in the scheduling phase. On the other hand, Condi-
tion 4 should be considered in the resource binding phase.

6.2.3 Scheduling and Resource Binding Condition under Adja-
cency Constraint

The following three equations describe the requirements in scheduling and resource bind-
ing phases when AC is applied. If the two operations oi and oi′ which should not be
erroneous simultaneously satisfy the following equation (6.1), those operations must be
bound to keep Condition 3 or 4.

σs(oi)≤σe(oi′)+(k − 1) ∧ σs(oi′)≤σe(oi)+(k − 1) (6.1)
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If the two variables hj and hj′ which should not be corrupt at the same time keep the
following equation (6.2), those variables must be bound to fulfill Condition 3 or 4.

σs(hj)≤σe(hj′)+(k − 1) ∧ σs(hj′)≤σe(hj)+(k − 1) (6.2)

If an operator oi and a variable hj which should not be erroneous concurrently satisfy
the following equation (6.3), oi and hj must be bound to fulfill Condition 3 or 4.

σs(oi)≤σe(hj)+(k − 1) ∧ σs(hj)≤σe(oi)+(k − 1) (6.3)

6.3 ILP Formulation for Resource Binding

6.3.1 Definitions of Variables and Constants

• uiα is 1 if an operation oi is executed on a functional unit α, 0 otherwise.

• xjp is 1 if a variable hj is stored in a standard register p, 0 otherwise.

• yjr is 1 if a variable hj is stored in a multi-bit soft-error tolerant register r, 0
otherwise.

• acgg′ is 1 if adjacency constraint is imposed on component g and g′, 0 otherwise.

• S is the total number of component pairs on which adjacency constraint is actually
imposed.

• Kctyp represents the available number of component type ctyp. Component type M ,
C, SR, FM and FO represent operators, comparators, standard registers, multi-bit
soft-error tolerant registers and 1-bit soft-error tolerant registers, respectively.

6.3.2 ILP Formulation

It is assumed that every operation is a single-cycle operation and is bound to a single-type
functional unit to present the fundamentals of proposed method concisely. However, the
formulas in this section can easily be expanded for multi-cycle operations and multi-type
functional units. The next sections will present ILP formulas which are related to the
main proposal, however, the general conditions for high-level synthesis will be omitted
through this chapter.

6.3.3 General Resource Binding Constraints

Every internal operation result in every cone or every output of every second-cone, which
is represented by hj, can be bound to a standard register. Such variables can be also
bound to multi-bit soft-error registers. However, one variable should be bound to only
one register.

KSR∑
p=1

xjp +

KFM∑
r=1

yjr = 1 (6.4)
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6.3.4 Constraints under Speculative Resource Sharing

If oi and oi′ are a pair which can share a resource speculatively, the two operations should
be bound to the same operator.

uiα − ui′α = 0 (6.5)

6.3.5 Constraints under Adjacency Constraint

• If two operations oi and oi′ satisfy (6.1) and should not be erroneous at the same
time, AC is imposed on between operator α and α′.

uiα + ui′α′ − acαα′ ≤ 1 (6.6)

Similar ones can be formulated with variable-variable pairs under (6.2) and operation-
variable pairs under (6.3).

• In order to minimize the number of pairs on which adjacency constraint is actually
imposed, let us introduce a variable S which follows the following equation (6.7)
and the objective of resource binding is to minimize S.

∑
All component pairs under AC

acgg′ ≤ S (6.7)

6.4 Adjacency Constraint on Soft-Error Tolerant Con-

trollers

In order to implement complete fault-tolerance on a LSI against multi-component soft-
errors, it is needed to consider fault-tolerance on not only its datapath but also its con-
troller.

6.4.1 Preliminaries

General Finite State Machine Synthesis

The classical finite state machine (FSM) synthesis consists of three main phases [88]: i)
state assignment, ii) Boolean equation generation corresponding to the binary state codes,
the state transit functions and the output functions, and iii) logic structure generation
such as logic minimization, factorization and technology mapping.

In the synthesis of controllers under high-level specifications such as control flow graphs
and state graphs, state assignment is an important phase [89]. Furthermore, the state
assignment phase consists of two steps [88]. The first step is the recognition of situations
in the controller specification. Each recognized situation is associated an “adjacency
constraint” 1 on a group of states. The next one is the embedding in the hypercube, or
binary code assignment, which is an attempt to satisfy as many AC-SAs as possible.

1Note that adjacency constraints in the state assignment phase are totally different from the temporal
and spatial adjacency constraint on circuit components, which is the main proposal of this chapter. In
order to distinguish them, adjacency constraints for state assignment is hereafter described as ’AC-SA’.
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6.4.2 Conventional Methods for Fault-Tolerant Controller De-
sign

Single Independent Decoder Architecture Design

The single independent decoder (SID) architecture is originally presented by Armstrong
[90]. As the name SID suggests, the architecture assumes a single fault model. With this
concept, to achieve single fault tolerance in the next-state logic and state registers, a single
error correction (SEC) code with Hamming distance 3 in minimum must be used in the
state assignment phase. Then, to guarantee a single fault tolerance in the next-state logic,
the logic is locally optimized, and the factorization and mapping phases prevent any two
next-state functions from sharing logic. After that, the fault tolerance is achieved by an
independent logic block which is connected to the state register, so that an erroneous state
code is rectified before the erroneous code corrupts the next-state and output functions
[88].

Other Methods

The study by Lakshminarayana et al. [59] presented a behavioral synthesis method of
fault secure datapaths as well as controllers under a single fault model. After datapath
synthesis procedure, the following constraints are imposed on the logic synthesis phase to
implement fault security [59][91]: i) all valid controller states have the same parity, and ii)
the primary outputs and next state outputs of the controller are implemented by disjoint
partitions of logic. The primary outputs also have a parity code which is an output of the
controller. The present-state and the controller outputs are sent to a totally self-checking
(TSC) parity checker. A fault in any logic partition, a single fault in any stage flip-flop
or a single fault in the parity checker itself is detected by the checker.

Leveugle [92] modified the study [90] and addressed a synthesis method of single fault
tolerant FSMs based on SEC codes. The proposed FSM considers single fault tolerance
(SFT) in either the next state logic or the stage register. The main proposal of the
method is a new state assignment algorithm for SFT-FSMs in the embedding step. They
implemented the proposed method to two different architectures, which are SID [90] and
distributed error correction (DEC) [93]. The experimental results showed that the pro-
posed algorithm for DEC achieved 14.27% of improvement in area in average. Although
the implementation of the proposed algorithm for SID obtained less improvement than
the case of DEC, the results showed that the proposed algorithm is also effective for SID.

Iwagaki et al. [94] proposed a multi-cycle transient fault tolerant controller design
having area-efficiency using SID, which is based on the works [90][92]. They showed
that the proposed method with SID can successfully realize multi-cycle transient fault
tolerance under a single fault model. Also, to share logic functions among as many
control signals as possible, they focused on implementation of control signal generator,
which is a component of the controller sending control signals to the datapath in a LSI
chip, and logic optimization of the generator.
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6.4.3 A Controller Design Proposal against Multi-Component
Soft-Error under AC

Following to conventional methods, the author also employs SID to implement multiple
component soft-error tolerance into controllers.

AC Implementation in SID

In order to tolerate soft-errors spreading to multiple components, SID-based controllers
must fulfill the following conditions: i) Soft-error tolerant registers are employed as state
registers. ii) AC are imposed on each logic cone in the next state logic part and each logic
cone in the control signal generator. iii) Moreover, AC are imposed on among the next
stage logic part, control signal generator and decoder.

6.5 Experimental Results

The author has implemented the proposed method which is mentioned in the previous sec-
tions as a computer program, and applied it to 16-point fast Fourier transform (16FFT),
8-point inverse discrete cosine transform (8IDCT), 16-point FIR filter (16FIRF), autore-
gressive filter (ARF), fifth-order elliptic wave digital filter (5EWDF), and inverse discrete
cosine transform with column-wise decomposition (IDCT-c). Three types of functional
units, which are multipliers, ALUs and comparators, and three types of registers, which
are standard registers, 1-bit soft-error tolerant registers and multi-bit soft-error tolerant
registers, are employed as available resources in datapath synthesis experiments. In ad-
dition, the maximum duration of a single soft-error is set to one control step through the
experiments (k = 1). It is also assumed that cone-partitioning is given in advance. In
order to find exact solutions from ILP formulations, a solver Gurobi Optimizer 6.0.0 was
performed on one node, which consists of two Intel Xeon E7-8837 (2.66GHz) processors
and 128GB memory, in a massively parallel computer.

6.5.1 Performance Evaluation in Latency

To evaluate the effectiveness of the proposed method in latency, the three different meth-
ods are applied to the above six applications under four distinct resource constraints. The
three different methods are: (a) a conventional C-R method, (b) the preliminary method
SRS based on C-R scheme and (c) the combination of SRS and the new proposal AC
based on C-R scheme. Figure 6.1 shows that the mixture of SRS and AC (SRS+AC)
achieves further improvements in latency. However, some benchmark applications having
symmetrical topology, for instance 16FFT and 8IDCT, accomplish minor improvements
since the effectiveness of resource use is already maximized by SRS. Particularly, in sym-
metrical data flow graphs, it is easy to match operations in retry-cones to other operations
in second-cones as speculatively resource sharable pairs since the shapes of cones are the
same or quite similar. In addition, when there is no difference in latency between a con-
ventional method (a) and the preliminary method (b), AC does not show even minor
improvement because it is difficult to decrease latency below critical path length although
enough number of resources are available.
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Convent.

Figure 6.1: Experimental results in six computational algorithms. Each column corre-
sponds to a different choice of allocated resources (C: Comparator, A: ALU, M: Multi-
plier).

6.5.2 Area Estimation

In order to examine hardware overhead due to triplication and the introduction of adja-
cency constraint, chip areas are estimated by simulated annealing based on the sequence-
pair approach. Using the number of resources and the operation schedule, which are
the inputs and outputs of scheduling phase, the formulated resource binding problems are
solved by a solver. The objective of the problems is to minimize the number of component
pairs on which AC is imposed. 1-bit soft-error tolerant registers are set as the smallest
components which have the unit area and let the bit width of multi-bit registers be 16.
According to [21], the size of a soft-error tolerant register is approximately three times
bigger than a standard register. Thus, it can be estimated that the area of a 16-bit stan-
dard register is 1× 16÷ 3 ≈ 5.3 [a.u.]. To obtain area information of other components,
[95] is referred to and all the size data are normalized (see Table 6.1). Multiplexers are
not considered for the sake of simplicity. The experimental results (Table 6.2) show that
the proposed method keeps almost the same level of performance in chip size compared
with the preliminary method SRS while dis is small. However, as the number of compo-
nents on which AC is imposed and dis are larger, then the increment of chip size is not
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Table 6.1: Specifications of Function Units and Registers
Component Types Area [a.u.]

1-bit Soft-Error Tolerant 1
Register 16-bit Standard 5.3

16-bit Soft-Error Tolerant 16

Comparator 2.3
Operator ALU 7.6

Multiplier 42.4

concealed by placement of components any longer.

6.6 Summary

A datapath circuit designed by the proposed method tolerates multi-component and multi-
cycle error caused by a single soft-error. Based on the preliminary method speculative
resource sharing (SRS), this chapter introduces spatial/temporal adjacency constraint
(AC) between components which prevents an excessive fault-tolerance and increases the
opportunities of SRS. Furthermore, the author proposes an ILP based resource binding
under AC to minimize the number of components on which AC is actually imposed after
resource binding phase. From the results of datapath synthesis experiments, it is found
that the combined approach of SRS and AC achieves additional improvements in latency,
while keeping the comparable levels in chip areas compared with datapaths without AC.
Specifically, it have been found that the proposed method is more effective when an input
computation algorithm possesses relatively difficult topology to find speculatively resource
sharable pairs, and the spatial adjacency constraint dis is relatively small.
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Table 6.2: Experimental Results in Area Estimation
Compu. # of Resources # of AC Estimated Chip Area [a.u.]

Algo- Func. Regi- Res. Binding SRS+AC

rithms units† sters†† before after
SRS

dis=8 16 32

1/1/1 2/25/2 0 0 496.4 500.1 499.7 501.2
1/2/1 7/31/3 95 1 654.1 642.0 640.0 660.2

16FFT
2/2/2 3/27/4 0 0 601.4 600.0 598.6 602.1
2/4/3 6/32/4 10 1 769.4 769.3 775.7 769.1

1/1/1 10/14/7 102 13 400.2 406.3 455.0 682.8
2/2/2 9/14/7 78 9 436.0 437.6 435.5 497.3

IDCT-c
2/3/2 8/16/6 69 5 450.2 446.1 606.7 598.2
2/4/3 8/16/6 46 3 511.8 510.3 516.9 537.7

1/1/1 4/13/3 2 2 315.4 309.9 312.1 323.1
1/2/1 7/14/3 23 8 357.0 363.3 455.0 649.8

8IDCT
2/3/2 5/14/4 12 3 414.9 412.1 416.8 417.7
2/4/3 6/15/4 0 0 497.3 502.2 496.0 500.4

1/1/1 3/27/3 0 0 555.1 542.6 550.2 540.2
1/1/2 10/27/2 34 14 655.9 692.5 725.8 1064.5

ARF
2/2/2 4/27/2 4 1 601.9 602.1 603.1 640.3
2/4/3 5/29/3 0 0 695.2 702.8 697.4 694.1

1/1/1 2/17/4 2 1 370.2 370.2 375.0 407.3
1/2/1 9/17/2 41 15 427.5 434.1 491.5 712.5

16FIRF
2/2/2 3/18/2 4 1 446.9 450.2 448.0 457.0
2/3/2 7/18/3 24 9 474.8 474.1 477.3 573.2

1/1/1 7/15/5 18 4 370.2 378.6 418.1 483.9
1/2/1 4/13/3 12 1 326.6 326.7 330.1 335.0

5EWDF
2/2/2 5/13/3 4 1 378.6 370.5 375.0 381.1
2/3/2 3/13/3 8 2 366.9 370.4 384.7 381.7

† comparator / ALU / multiplier
†† multi-bit soft-error tolerant / 1-bit soft-error tolerant / standard register
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Chapter 7

Mixed Error Correction Scheme and
Its Design Optimization

7.1 Motivation

In the previous chapters, the author introduced speculative resource sharing between
two distinct copies (Chap. 4) and adjacency constraint between components to mitigate
hardware/time overhead (Chap. 6). Based on the two preliminary proposals, this chap-
ter proposes a hybrid approach of comparison-retry and majority-voting error correction
schemes to combine high resource efficiency and small latency which are the advantages
of the two schemes. In addition, the author proposes an optimized combination algorithm
of the two fault-tolerant mechanisms to achieve minimum solutions in latency.

7.2 Combination of Two Error Correction Scheme

under AC and SRS

This section proposes a combination of two distinct error correction mechanisms and a
heuristic algorithm to find a latency-optimized combination of the two mechanisms.

7.2.1 Introduction of a Majority-Voting Based Error Correction
Scheme and Modified Fault Model

An advantage of comparison-retry (C-R) based error correction mechanisms is that the
mechanisms can reduce power consumption contributed by idling of retry parts in case no
error is detected. Nevertheless, the executions of retry parts cause time overhead, which is
a drawback of the mechanisms. To mitigate such time overhead, the author introduces a
majority-voting (M-V) based error correction scheme. In general, the following condition
should be satisfied to implement M-V mechanisms.

Condition 5 No more than one output among the outputs of three copies in triplication
is erroneous.

If every pair of two operations in two distinct cones belonging to the same stage
satisfies the adjacency constraint, that is, Condition 3 or 4, then Condition 5 is satis-
fied and the three cones in the stage can be executed at the same time. After that,
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Figure 7.1: A sketch of our strategy for fault tolerance; (a) is an original computation
algorithm. (b) shows a triplicate algorithm with comparison-retry mechanism, (c) depicts
a triplicate algorithm with majority-voting mechanism.

three vote-operations are performed to mask at most one corrupt output data among
the three outputs. Then each voting result is sent to each succeeding computation block
(Fig.7.1(c)).

Nonetheless, M-V mechanisms also have a disadvantage that third copies should be
always executed while third copies in C-R schemes, namely retry-cones, need not be exe-
cuted as long as no error has occurred. Moreover, M-V mechanisms require more hardware
resources although datapaths to which those schemes are implemented can achieve small
latency. In order to merge the advantages of both C-R schemes and M-V schemes, the
author decided to combine the two different types of error correction schemes in a compu-
tation algorithm. To form a modified resultant algorithm (G̃, D̃P ) with the combination
of two schemes, first of all, the given dependence graph G is triplicated. Then operations
for error correction, which are comparison- and vote-operations, and dependencies related
to those operations are inserted.

7.2.2 Combination of Two Distinct Fault-Tolerant Mechanisms

Figure 7.2 illustrates an example of a hybrid of M-V and C-R mechanisms. Selecting
between the C-R scheme (Fig.7.1(b)) and the M-V scheme (Fig.7.1(c)) in each stage is
an important task for datapath optimization. To obtain optimized solutions in latency
under resource constraints, the author proposes a heuristic search algorithm which finds
an optimized combination of the two error correction schemes in latency. Algorithm 4
shows the proposed algorithm. The following notations are employed to describe the
algorithm.

• dfg org : the original input computation algorithm

• dfg tar : a reconstructed data flow graph

• op schdl : an operation schedule
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An example of an original computation algorithm (b) An example of cone-partitioned
triplicate algorithm. The M-V mechanism is implemented in sa and the C-R mechanism
is implemented in sb and sc.

• sorted schdl : a sorted operation schedule in ascending order of the number of
scheduled operations in each control step

• stage num : a selected stage to be changed into the M-V scheme

In the search algorithm (Algorithm 4), the initial scheduling is performed with the
initial data flow graph so that every stage is based on the C-R scheme. In the while loop,
the operation schedule is sorted to find the most inefficient use of resources. Then, in
the top of the sorted schedule, one operation whose stage is based on the C-R scheme
is chosen and the stage of the selected operation is converted to the M-V scheme. This
reconstruction is performed in one stage at one loop. If the M-V scheme is implemented
in all stages, the while loop is terminated. Finally, the best solution in latency can be
obtained from the saved operation schedules.

The reason for alignment in ascending order in Step 4 is as follows: if a small number
of operations are scheduled in a control step, it means that resources which do not execute
the scheduled operations are in an idle state in the control step. If the error correction
scheme of the stages of the operations in the control step is changed into M-V schemes,
then more operations can be executed concurrently and remaining resources are occupied
by those operations. As a result, latency can be improved.
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Algorithm 4 The proposed algorithm to find a latency-optimized combination of two
different error correction schemes
Require: dfg org ← the original input computation algorithm
1: dfg tar ← construct initial dfg with CV(dfg org);
2: op schdl← perform scheduling(dfg tar);
3: while (1) do
4: sorted schdl← sort op schedule asc(op schdl);
5: stage num← select one stage with CV(sorted schdl);
6: if (the M-V scheme is implemented in all stages) then
7: break;
8: end if
9: dfg tar ← reconstruct stage with MV(stage num, dfg tar);
10: op schdl ← perform scheduling(dfg tar);
11: backup if best op schedule(op schdl);
12: end while

7.2.3 Speculative Resource Sharing between Two Different Types
of Error Correction Scheme under AC

When a stage m is based on the M-V mechanism and a stage n is based on the C-
R mechanism, operations in the retry-cone c

(3)
n can share resources speculatively with

operations in the second-cone c
(2)
m or in the retry-cone c

(3)
m under the SRS condition.

Similar to Section 6.2.2, if Condition 3 or 4 is satisfied instead of the SRS condition, SRS
can be applied to those operation pairs.

7.3 Experimental Results

The author has implemented the proposed method as a computer program, and applied
it to four-by-four matrix inversion (4x4INV), 16-point fast Fourier transform (16FFT),
inverse discrete cosine transform with column-wise decomposition (IDCT-c), fifth-order
elliptic wave digital filter (5EWDF), autoregressive filter (ARF) and 16-point finite im-
pulse response filter (16FIRF). Four types of functional units, namely multipliers, ALUs,
comparators and voters were utilized as allocated resources in datapath synthesis exper-
iments. In addition, it is assumed that the cone-partitioning is given in advance and
the maximum duration of a single soft-error is set to one control step in the experiments
(k = 1).

To evaluate the effectiveness of the proposed method in latency, the four different
methods were applied to the above six applications under four distinct resource con-
straints. The four methods is: (i) a conventional C-R method (Conventional), (ii) the
C-R based preliminary method with SRS (SRS only), (iii) the C-R based preliminary
method with SRS under AC (SRS+AC), (iv) a hybrid of C-R and M-V schemes with
SRS under AC (SRS+AC+Hyb). To obtain operation schedules, the previously proposed
scheduling algorithm which aggressively finds speculatively resource sharable pairs is em-
ployed [27].
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Figure 7.3: Experimental results in six computational algorithms. Each column corre-
sponds to a different choice of allocated resources (C: Comparator, A: ALU, M: Multiplier,
V: Voter).

7.3.1 Performance Evaluation in Latency

Figure 7.3 and Table 7.1 show the experimental results. In Table 7.1, the columns Mixtr.
Ratio represent the mixture ratio of C-R scheme to M-V scheme in a benchmark appli-
cation under a different choice of allocated resources. Also, the columns Improv. Rate
indicate the latency improvement rate of the hybrid approach (SRS+AC+Hyb) compared
with that of a conventional method (Conventional). The results reveal that the proposed
method SRS+AC+Hyb improves latency more than the two preliminary methods, SRS
and SRS+AC, in cases in which the number of allocated resources is small. On the other
hand, when a relatively large number of resources is allocated, the two preliminary meth-
ods are unable to accomplish any enhancement, as can be seen in the case of 2/7/12/3
in 4x4INV and 2/4/3/3 in 5EWDF. Nevertheless, the proposed hybrid approach still
achieves significant improvements in latency.

Table 7.2 and 7.3 show performance comparison in latency among conventional meth-
ods. The study [60] has two latency results in a benchmark application. The reason is
that, in case of error, rollback takes time to recover from the error, and as a result, la-
tency reaches the maximum. Otherwise, latency becomes the minimum value. However,
time to execute voters and rollback mechanism in case of error is not counted in those
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Table 7.1: Latency improvement rate
Resource Mixtr. Improv. Resource Mixtr. Improv.

Appli-
Constraint Ratio Rate

Appli-
Constraint Ratio Rate

cation
[C/A/M/V] [C:V] [%]

cation
[C/A/M/V] [C:V] [%]

1/1/1/3 36:9 27.1 1/1/1/3 15:3 18.8
1/2/2/3 37:8 26.0 1/2/2/3 11:7 15.6

4x4INV
2/4/3/3 36:9 24.7

5EWDF
2/3/2/3 8:10 23.7

2/7/12/3 36:9 24.2 2/4/3/3 5:13 32.4

1/1/1/3 64:0 32.3 1/1/1/3 9:1 18.5
1/2/2/3 63:1 31.3 1/2/2/3 10:0 10.3

16FFT
2/4/3/3 60:4 29.2

ARF
2/3/3/3 3:7 20.8

2/7/5/3 36:28 28.6 2/4/4/3 1:9 27.3

1/1/1/3 31:2 25.9 1/1/1/3 9:2 19.6
1/2/2/3 30:3 24.1 1/2/1/3 6:5 22.6

IDCT-c
2/4/3/3 30:3 20.5

16FIRF
1/2/2/3 9:2 19.2

2/7/3/3 16:17 18.8 2/3/2/3 8:3 30.4

Table 7.2: Achieved minimum latency comparison among conventional methods

Benchmark
Applications

Study [60] Study [62] Study [65] The proposed mothod
CED+Rollback Hardware CED TMR SRS+AC+Hyb

C/A/M/V Latency C/A/M/V Latency C/A/M/V Latency C/A/M/V Latency

ARF
0/4/4/8 10 (min)

No data No data 2/4/4/3 16
0/4/4/8 17 (max)

16FIRF
0/4/4/4 9 (min)

NA/4/3/NA 9 No data 2/4/3/3 14
0/4/4/4 16 (max)

5EWDF
0/4/2/5 16 (min)

No data 3/6/3/1 10 2/7/4/3 23
0/4/2/5 24 (max)

8IDCT No data No data 3/8/5/1 13 2/7/3/3 17

NA: No specification is provided.

values. The study [62] considers only a fault-secure system. In other words, there is
no mechanism to recover from errors because a fault-secure circuit provides only correct
output or error signals. The results with hardware redundancy are shown in Table 7.2
and the results with time redundancy are shown in Table 7.3. The study [65] employs
TMR for fault-tolerant capability. The proposed method SRS+AC+Hyb and SRS+AC
are used in Table 7.2 and 7.3, respectively. In Table 7.2, the minimum latency is appeared
from each method and each benchmark application, regardless of how many resources are
used. On the other hand, the minimum latency under the minimum number of voters is
shown from each method and each benchmark application in Table 7.3. Since the condi-
tions and assumptions of each method in Table 7.2 and 7.3 are different from each other,
simple comparison might not be practical. Nevertheless, the proposed method achieves
comparable level of performance in latency compared with conventional methods.
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Table 7.3: Achieved minimum latency comparison among conventional methods under
the minimum number of voters

Benchmark
Applications

Study [60] Study [62] Study [65] The proposed mothod
CED+Rollback Time CED TMR SRS+AC

C/A/M/V Latency C/A/M/V Latency C/A/M/V Latency C/A/M/V Latency

ARF
0/4/5/2 10 (min)

No data No data 2/4/3/0 24
0/4/5/2 20 (max)

16FIRF
0/4/4/1 9 (min)

NA/2/2/NA 15 No data 2/4/3/0 23
0/4/4/1 18 (max)

5EWDF
0/4/3/3 16 (min)

No data 3/6/3/1 10 2/4/3/0 37
0/4/3/3 26 (max)

8IDCT No data No data 3/8/5/1 13 2/4/3/0 22

NA: No specification is provided.

7.3.2 Area Estimation

Similar to Chap. 6.5.2, chip areas are estimated by simulated annealing based on the
sequence-pair approach to examine hardware overhead due to triplication and the intro-
duction of the proposed hybrid method. Using the number of resources and the operation
schedule, which are the inputs and outputs of scheduling phase, the formulated resource
binding problems are solved by a solver. The objective of the problems is to minimize
the number of component pairs on which AC is imposed. It is assumed that all compo-
nents are square in shape. Also, 1-bit soft-error tolerant registers are set as the smallest
components which have the unit area and let the bit width of multi-bit registers be 16. It
is assumed that the size of a soft-error tolerant register is about three times larger than
a standard register [21]. Thus, it can be estimated that the area of a 16-bit standard
register is 1× 16÷ 3 ≈ 5.3 [a.u.]. To implement multipliers and ALUs, Carry-save adder
array based multiplier [96] and Han-Carlson Tree adder [96] are employed, respectively.
A classical voter composed by NAND gates [97] is used for voting components (voters).
Comparators are based on 4-bit magnitude comparator [98] and extended to 16-bit one.
To obtain area information of a multiplier, an ALU, a voter and a comparator, NanGate
45nm cell library is used [99]. Specification of all components are normalized (see Table
7.4). For the sake of simplicity, multiplexers are excluded from the estimation.

Figure 7.4 shows the estimation results in area and it shows that the proposed hybrid
method (SRS+AC+Hyb) keeps almost the same level of performance in chip size with
the preliminary method (SRS only) while dis is small. However, similar to the results in
Chap. 6.5.2, as the number of components on which AC is imposed and dis are larger,
then the increment of chip size is not concealed by placement of components any longer.
Figure 7.5 shows a relationship between chip area and latency, based on the results under
dis = 8 in Figure 7.4. In each graph, the dotted line indicates the preliminary method
(SRS only) and the solid line represents the proposed hybrid method (SRS+AC+Hyb).
On the whole, each solid line is located in the left side of corresponding dotted line. It
means that SRS+AC+Hyb achieves improvement in latency with combination of the two
distinct fault-tolerant schemes. However, as latency becomes smaller, chip area signif-

61



Table 7.4: Specifications of Function Units and Registers
Component Types Area [a.u.]

1-bit Soft-Error Tolerant 1
Register 16-bit Standard 5.3

16-bit Soft-Error Tolerant 16

Comparator 3.1
Voter 4.1

Function Units
ALU 12.4
Multiplier 148.1

icantly becomes larger. It suggests that SRS+AC+Hyb achieves further improvement
in latency to use more resources, however, it suffers from the increment of chip area as
compensation.

Figure 7.6 shows placement results with 8IDCT benchmark application under 2 com-
parators, 7 ALUs, 3 multipliers, 3 voters. It depicts an overlap of different results based
on the preliminary method (SRS only) and the proposed hybrid method (SRS+AC+Hyb)
under dis =1, 2, 4, 8 and 16. Figure 7.7 shows the same results with different combi-
nation of comparison. The top left shows the case of dis = 16. As shown in the figure,
there are huge dead space. The top right illustrates comparison between SRS only and
SRS+AC+Hyb under dis = 16. There are small dead space in case of SRS only. The
bottom shows comparison between SRS+AC+Hyb under dis =2 and 16. There are sig-
nificant difference in chip area when dis is large. The bottom shows another comparison
between SRS+AC+Hyb under dis =1, 2, 4 and 8. There is no huge difference among
those results.

7.3.3 Reliability against Soft-Errors having spatial boundaries

In Chap. 6, the temporal effect and the spatial effect of a single soft-error are assumed as
Assumption 2 and 3, respectively. To evaluate reliability of datapath circuits designed by
the proposed method, it is assumed that a single soft-error affects within 1 cycle (k = 1,
temporal spread) and a diameter dia (spatial spread).

Similar to the discussion in Sect. 4.6.2, let pdia be the probability that a single soft-
error occurs at a control step and, in consequence, it affects several components having a
certain spatial boundary dia. Thus, Eq. (4.17) can be modified for an event that a single
soft-error, having pdia, occurs in a control step during latency cs, as follows:

P (n soft-errors with dia in [1,cs]) = csCn ·pndia ·(1− pdia)
(cs−n) (7.1)

In the same way, Eq. 4.16, 4.18 and 4.19 can be modified to replace p with pdia as follows:

P (no soft-error with dia in [1,cs]) = (1− pdia)
cs (7.2)

R(n soft-errors with dia in [1,cs]) = rn · pndia · (1− pdia)
(cs−n) (7.3)

R(all possible error patterns)

=
cs∑

n=0

R(n soft-errors with dia in [1,cs])
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Figure 7.4: Experimental Result in Area Estimation

=
cs∑

n=0

rn · pndia · (1− pdia)
(cs−n) (7.4)

In the following numerical evaluations, it is assumed that n equals 1. It means that a
single soft-error affects only one control step during the execution, in terms of temporal
spread. In addition, the following is considered:

• a soft-error rate pdia in every control step is assumed as 0.0001. This seems unre-
alistic large value, however, it is chosen to highlight the reliability degradation due
to AC and the proposed hybrid method in the numerical evaluation.

• When a soft-error occurs at the coordination (x, y) at a control step, it affects all
components within the boundary of the diameter dia from (x, y) at the control step.
Consequently, the number of error pattern r1 in a control step becomes the rate of
the number of masked errors.

• When a standard register is in failure caused by a soft-error, the data which is stored
in the register is corrupted at the same control step.

• If an ALU or multiplier is in failure due to a soft-error, incorrect output data of the
ALU or multiplier is latched in a register when the control step is changed to the
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Figure 7.5: Area vs. Latency

next step.

• If a comparator is in failure caused by a soft-error and two inputs of the comparator
are identical, the comparator outputs an incorrect comparison result, that is, two
inputs are different. As a result, the retry-cone is executed. On the other hand,
if a comparator is in failure due to a soft-error and two inputs are different, the
comparator outputs an incorrect comparison result, that is, two inputs are identi-
cal. Consequently, the retry-cone will not be executed; furthermore, the erroneous
outputs of the corresponding main-cone (and second-cone) will not be corrected.

• If a voter is in failure due to a soft-error, the voter outputs an incorrect result
regardless of correctness of its inputs.

In the evaluation, all possible error patterns are checked whether two components on
which AC are imposed are simultaneously affected by an error. There are two cases of
the reliability evaluation:
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SRS only
SRS+AC+Hyb: dis=1
SRS+AC+Hyb: dis=2
SRS+AC+Hyb: dis=4
SRS+AC+Hyb: dis=8
SRS+AC+Hyb: dis=16

Figure 7.6: Comparison among different results based on SRS only and SRS+AC+Hyb
under dis =1, 2, 4, 8 and 16

• Case 1: A single soft-error having a spatial boundary dia strikes at (x, y). The error
coordination (x, y) is explored within the whole chip area in 0.5 [a.u.] intervals in
the x axis and the y axis.

• Case 2: Two soft-errors having the same spatial boundary dia affect at (x1, y1)
and (x2, y2) at the same time. The all combinations of (x1, y1) and (x2, y2) are
investigated within the whole chip area in 0.5 [a.u.] intervals in the x axis and the
y axis.

Although two components having AC are simultaneously affected by the error, the
corrupt outputs from two components will not propagate at the same time if one of the
two is in idle state. In that case, a corrupt output will be masked by voters or corrected
by retry. If the affected component is a voter itself, the corrupt data will be corrected in
the succeeding stage.

Figure 7.8 shows a placement result of AR filter benchmark under 3 voters, 4 ALUs,
4 multipliers and dis = 4. Except 16-bit soft-error tolerant registers, all components have
their resource numbers. A, M, N and V stand for an ALU, a multiplier, a 16-bit normal
register and a voter. Figure 7.9 shows a part of operation and variable schedule corre-
sponding to Fig. 7.8, and allocated resources corresponding to operations and variables.
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FTR stands for a 16-bit soft-error tolerant register. The placement in Fig. 7.8 is following
spatial AC. As discussed earlier, in order to obtain a correct result in M-V scheme, at
most one of the three outputs of the three cones (Main, Second and Third) are allowed
to be incorrect (Condition 5). Otherwise, the erroneous outputs are never corrected by
voters. Thus, every pair of two components in different cones which operate in the same
control step should not be affected by a single soft-error. The two components in such
pair are imposed on spatial AC. In Fig. 7.8, for example, M2, M3, A1, A4, N2, N4, N3
and N7 operate at the same control step CS2. Since N2 and N3 belong to the same cone,
the pair of the two registers is not a subject of AC. Focusing on M2 at CS2, on the other
hand, M2 and N2, M2 and N4, M2 and A1, M2 and N3, M2 and N7, and M2 and A4 are
subjects of AC and you can confirm them in Fig. 7.8.

Figure 7.10 shows an evaluation pattern with dia = 1 in Case 2. In this example,
the two soft-errors affect two components M2 and N4, on which AC is imposed, at the
same time. If the errors occur at CS2, the erroneous outputs from the two components
are not corrected by corresponding voters. Figure 7.11 illustrates an evaluation pattern
with dia = 16 in Case 1. In this figure the boundary of a single soft-error is wider than
imposed AC (dis = 4). If the error occurs at CS2, one single soft-error affects several
components N2, A4, A3 and V1 at the same time. Since A3 and V1 are in idle state,
there are no effect on those components. However, N2 and A4 belong to distinct cones,
the single soft-error neutralizes voters.

Figure 7.12, 7.13, 7.14, 7.15 and 7.16 show the evaluation results. The reliability of
the preliminarily proposed method (SRS only) is 1 because the two methods tolerate one
single soft-error during the execution. dis represents spatial AC among components and
dia indicates the spatial boundary of a single soft-error. When dis is larger than or equal
to dia, the reliability of the proposed method in this chapter is 1 because AC imposed
circuits guarantee to tolerate a soft-error having a spatial boundary up to dis. On the
other hand, if dis is smaller than dia, that is, the effect of a single soft-error is wider than
the assumption of the circuit, the reliability of the proposed method becomes smaller than
1 according to an increment of dia.

Figure 7.17, 7.18, 7.19, 7.20 and 7.21 show the evaluation results in a different condition
that two soft-errors simultaneously affect at distinct spatial points at the same control
step.

7.4 Summary

The proposed datapath circuit tolerates multi-component error caused by a single soft-
error. In the previous chapters, the author proposed a special resource management called
speculative resource sharing (SRS) and the consideration of temporal/spatial distance be-
tween components called adjacency constraint (AC). Based on these proposals, the author
introduces a combination of a comparison-retry scheme and a majority-voting scheme un-
der AC for time overhead mitigation. Furthermore, the author proposes an optimized
assortment of the two distinct schemes to enhance the latency performance of datapaths.
Soft-error tolerant datapath synthesis experiments reveal that the proposed method im-
proves latency compared with a conventional comparison-retry mechanism while keeping
the comparable levels in chip area and soft-error tolerance.
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Figure 7.7: Different combination of comparison among different result based on SRS only
and SRS+AC+Hyb under dis =1, 2, 4, 8 and 16
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Figure 7.8: A placement result of components in case of AR filter under 3 voters, 4 ALUs,
4 multipliers and dis = 4
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Figure 7.12: Reliability Evaluation results in six computational algorithms (Case 1, dis =
1): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).

72



0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/1/3 2/3/2/3 2/7/3/3

ytilibaileR

Allocated Resouces  (C/A/M/V)

8IDCT (dis=2)

diameter=2 4 8 16

0.0002
0.0001
0.0000 0.9994

0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/3/2/3 2/4/3/3

Re
lia

bi
lit

y
Allocated Resouces  (C/A/M/V)

5EWD Filter (dis=2)

diameter=2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/3/2/3 2/4/4/3

Re
lia

bi
lit

y

Allocated Resouces  (C/A/M/V)

AR Filter (dis=2)

diameter=2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/1/3 1/2/2/3 2/3/2/3

Re
lia

bi
lit

y

Allocated Resouces  (C/A/M/V)

16FIR Filter (dis=2)

diameter=2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/4/3/3 2/7/3/3

ytilibaileR

Allocated Resouces  (C/A/M/V)

IDCT-c (dis=2)

diameter=2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/4/3/3 2/7/4/3

ytilibaileR

Allocated Resouces  (C/A/M/V)

16FFT (dis=2)

diameter=2 4 8 16

0.0002
0.0001
0.0000

Figure 7.13: Reliability Evaluation results in six computational algorithms (Case 1, dis =
2): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.14: Reliability Evaluation results in six computational algorithms (Case 1, dis =
4): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.15: Reliability Evaluation results in six computational algorithms (Case 1, dis =
8): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.16: Reliability Evaluation results in six computational algorithms (Case 1, dis =
16): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.17: Reliability Evaluation results in six computational algorithms (Case 2, dis =
1): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.18: Reliability Evaluation results in six computational algorithms (Case 2, dis =
2): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.19: Reliability Evaluation results in six computational algorithms (Case 2, dis =
4): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).

79



0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/3/2/3 2/4/3/3

Re
lia

bi
lit

y
Allocated Resouces  (C/A/M/V)

5EWD Filter (dis=8)

diameter=1 2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/3/2/3 2/4/4/3

Re
lia

bi
lit

y

Allocated Resouces  (C/A/M/V)

AR Filter (dis=8)

diameter=1 2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/1/3 1/2/2/3 2/3/2/3

Re
lia

bi
lit

y

Allocated Resouces  (C/A/M/V)

16FIR Filter (dis=8)

diameter=1 2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/4/3/3 2/7/3/3

ytilibaileR

Allocated Resouces  (C/A/M/V)

IDCT-c (dis=8)

diameter=1 2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 2/2/2/3 2/3/2/3 2/7/3/3

ytilibaileR

Allocated Resouces  (C/A/M/V)

8IDCT (dis=8)

diameter=1 2 4 8 16

0.0002
0.0001
0.0000

0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

1/1/1/3 1/2/2/3 2/4/3/3 2/7/4/3

ytilibaileR

Allocated Resouces  (C/A/M/V)

16FFT (dis=8)

diameter=1 2 4 8 16

0.0002
0.0001
0.0000

Figure 7.20: Reliability Evaluation results in six computational algorithms (Case 2, dis =
8): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Figure 7.21: Reliability Evaluation results in six computational algorithms (Case 2, dis =
16): Each column corresponds to a different choice of allocated resources (C: Comparator,
A: ALU, M: Multiplier, V: Voter).
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Chapter 8

Conclusion

8.1 Summary of the Dissertation

Designing VLSIs from a abstraction layer such as high-level synthesis (HLS) is becoming
important because of its flexibility which allows hardware engineers to make decisions at
an early stage of design cycle [23]. In addition, reliable systems have been required in
several different fields and those systems have relied on the dependability of semiconductor
devices on their systems [4]. Under such circumstances, this dissertation deals with a soft-
error tolerant application specific datapath design methodology via high-level synthesis.
Datapaths designed by the proposed method tolerate multiple component errors induced
by single soft-errors. Based on triple algorithm redundancy, the author suggests four novel
proposals: (i) speculative resource sharing, (ii) latency-aware selection of check variables,
(iii) adjacency constraint between datapath components and (iv) mixed error correction
method.

In order to mitigate hardware/time overhead due to triple algorithm redundancy,
speculative resource sharing (SRS) between the retry parts and the secondary parts is
proposed. Because a strict constraint is imposed to implement SRS to datapath circuits, a
latency-aware selection of check variables is suggested to satisfy the constraint much easier
and maximize the possibility of SRS. In addition, to reduce excessively implemented fault-
tolerance, the author introduces a concept of spatial and temporal localities of soft-errors,
and the concept is applied as adjacency constraint (AC) between datapath components.
AC allows not only the use of comparison-retry (C-R) scheme but also majority-voting
(M-V) scheme. Since C-R and M-V schemes have their own advantages and drawbacks,
the author decides to combine the two different types of error correction methods to merge
the advantages of both schemes.

It is found that the proposed method is more effective when a computation algorithm
possesses higher parallelism and a small number of resources is available. Moreover, the
experimental results reveal that the proposed method improves latency, while keeping the
comparable levels in chip areas and reliability compared with a conventional C-R scheme
that neither SRS nor AC are implemented.
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8.2 Future Work

The experimental results show improvements compared with a conventional method. Nev-
ertheless, there are several issues which need to improve. In this dissertation, relatively
small benchmark applications are used for experiments. To obtain more practical results,
bigger and more complicated applications should be used for benchmark application al-
gorithms, and power estimation should be added. Moreover, the most important thing is
that a practical CAD tool should be used.
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