
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A study on type assignment systems and their

models.

Author(s) 陳, 宇

Citation

Issue Date 2018-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15347

Rights

Description
Supervisor: 石原 哉, 先端科学技術研究科, 修士(情報科

学)

A study on type assignment systems and their models.

Japan Advanced Institute of Science and Technology

Graduate School of Advanced Science and Technology

Chen Yu

June 2018

Master Thesis

A study on type assignment systems and their models.

1610128 Chen Yu

Supervisor Hajime Ishihara
Main Examiner Hajime Ishihara

Examiners Kazuhiro Ogata
 Mizuhito Ogawa
 Nao Hirokawa

Japan Advanced Institute of Science and Technology

Graduate School of Advanced Science and Technology [Information Science]

May 2018

Abstract

In this paper, we document three type assignment systems and
prove their completeness through filter models. We clarify several
ambiguity in the proof, and reconstruct the cut-elimination proof in
the union type theory. Our main focus is on the union type assign-
ment system in which several definitions and proofs are inconsistent
in the original paper. We also construct a sequent calculus system for
the type theory of the intersection type assignment system, and find
out that quasi-cut rule is necessary to prove that the cut elimination
holds in that system.

Keywords: Type assignment system; Lambda calculus; Cut-elimination

2

Contents

1 Introduction 4
1.1 Research background . 4
1.2 Previous research . 4
1.3 Research purpose . 4

2 Preliminaries 5
2.1 Untyped lambda calculus . 5
2.2 Lambda model . 7
2.3 Call-by-value lambda model 8

3 Type assignment systems 8
3.1 The simple type assignment system 9
3.2 The intersection type assignment system 12
3.3 The union type assignment system 21

4 Semantics 39
4.1 The Filter model . 39
4.2 The call-by-value filter model 46

A The original proof for Lemma 3.20 56

3

1 Introduction

1.1 Research background

As we all know, λ-calculus is a Turing-complete computational model.
In particular, typed λ-calculus has wide application not only in programming
languages, but also in some semantics of natural language and proof assistant.
For example, type inference has become one of the theoretical foundations of
type checking in compiling process.

A type assignment system (TA system) is a set of rules in order to assign
type properties to λ-terms. In order to prove its completeness to semantic
world, Barendregt et al. [1] created a filter λ-model, which was mainly based
on several axioms and rules of a partial order relation ≤ between types. Due
to its similarity to the derivability ` of a logical system, a new idea has
emerged in which we can find some properties of logical systems to define
the relation ≤.

1.2 Previous research

In previous work [2], Ishihara and Kurata defined the relation ≤ by a
LK system ⇒ as follows.

Γ, α, β,∆⇒ θ

Γ, α ∧ β,∆⇒ θ

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β · · ·

The advantage is that it makes later proof easier, because the well-known
cut-elimination property can be applied to this LK system. In particular,
following theorem can be proved.

Theorem 1.1. LT ` Γ⇒ θ if and only if
∧

Γ ≤ θ.

Because the cut-rule is admissible in the type theory, important lem-
mas concerning the relation ≤ can be easier proved by induction without
discussion about the cut-rule.

1.3 Research purpose

The objective of this research is divided into three parts. The first is
to establish a solid relation between the partial order relations ≤ of filter
λ-models and the derivabilities ` of logical systems. We shall build a new
logical system LT∧ for the relation ≤ in the intersection system, and prove
the equivalence between the relation ≤ and the derivability ` of LT∧ . The
second is to solve the proof problem occurred in the cut-elimination proof

4

of LT . The third is to extend this solution to LT∧ and prove the important
lemma by LT∧.

2 Preliminaries

For abbreviations, we use I.H for Induction Hypothesis and def for
definition in this paper.

2.1 Untyped lambda calculus

Definition 2.1. The set of untyped λ-terms Λ is defined as follows.

• The variables x0, x1, x2 · · · are untyped λ-terms.

• For each variable x and λ-term M , λx.M is also a untyped λ-term,
denoted as abstraction form.

• For two λ-terms M and N , MN is also a untyped λ-term, denoted as
application form.

We use the following abbreviations:

MN1 · · ·Nk ≡ (..(MN1) · · ·Nk)

λx1 · · · xn.M ≡ (λx1(..(λxn.M)..))

Definition 2.2. The set of free variables of M, denoted as FV(M), is
defined as follows.

• If M is a variable, then itself is the only element in FV(M).

• If M is a abstraction form as λx.N , then FV (M) = FV (N) \ {x}.

• If M is a application form as M1M2, then FV(M) is simply the union
of the two sets as FV (M1) ∪ FV (M2).

Note:
If FV(M) = ∅, then we say M is closed.

Definition 2.3. For each M, N ∈ Λ and each variable x, M[x:=N] is
defined inductively as follows.

5

M M[x:=N]
x N
y 6≡ x y
M1M2 M1[x := N]M2[x := N]
λx.M1 λx.M1

λy.M1, y 6≡ x λz.M1[y := z][x := N]

where z ≡ y if x /∈ FV (M1) or y /∈ FV (N), else z is the first variable in the
sequence x0, x1, x2, · · · not in M1 or N.

Definition 2.4.

• For a binary relation R on Λ, and each (M,N) ∈ R, M is called (R-
)redex and N is called (R-)contractum of M.

• A binary relation R on Λ is a compatible (with the operations) if
for every (M,M ′) ∈ R and x as a random variable with Z ∈ Λ,
(ZM,ZM ′), (MZ,M ′Z) and (λx.M, λx.M ′) are also in R.

• A R-equality =R (or congruence) on Λ is a compatible, reflexive,
symmetric and transitive relation.

• A R-reduction �R on Λ is one which is only compatible, reflexive,
and transitive without symmetric property.

• A one step R-reduction→R is simply a R-reduction without transitive
property.

• If R1, R2 are reductions, then their union relation R1R2 is defined as
R1 ∪R2.

Definition 2.5.

• λx.M �α λy.M [x := y] (α-reduction)(y /∈ FV(M) ∪ BV(M))

• (λx.M)N �β M [x := N] (β-reduction)

• λx.Mx�η M (η-reduction)(x /∈ FV(M))

Note:

The equality and the one step reduction corresponding to α, β, η can be defined
as Definition 2.4.

The λ-terms are often considered equal on =β or =βη.

For further reference or detail, one should read [3].

6

2.2 Lambda model

Definition 2.6. (Variable interpretation)

• Let D be a set holding all interpretations for variables of untyped lambda
calculus.
A (term) environment ρ in D is simply a total map between all
variables of untyped lambda calculus and D as follows.

ρ : V → D

EnvD is defined as the set holding all environments in D.

• If ρ ∈ EnvD, d ∈ D, then ρ[x := d] is defined by ρ′ ∈ EnvD as follows.

ρ′(y) =

{
d if y=x

ρ(y) otherwise

Definition 2.7. (Lambda model)

• We define an applicative structure as a pair 〈D, ·〉 consisting of a
set D with a binary operation · : D ×D → D on it.

• A lambda model M is defined as follows.

M =
〈
D, · , J KM

〉
in which 〈D, ·〉 is an applicative structure and J KM : Λ × EnvD → D
satisfies following equations.

1. JxKM
ρ = ρ(x)

2. JMNKM
ρ = JMKM

ρ · JNKM
ρ

3. Jλx.MKM
ρ = Jλy.M [x := y]KM

ρ

where y 6∈ FV (M)

4. Jλx.MKM
ρ · d = JMKM

ρ[x:=d]

5. If ∀d ∈ D[JMKM
ρ[x:=d] = JNKM

ρ[x:=d]] then Jλx.MKM
ρ = Jλx.NKM

ρ

6. If ρ �FV (M)= ρ′ �FV (M) then JMKM
ρ = JMKM

ρ′

7

2.3 Call-by-value lambda model

Definition 2.8. (Call-by-value lambda model)
A call-by-value lambda model M is defined as follows.

M =
〈
D,K, · , J KM

〉
where K ⊆ D, 〈D, ·〉 is an applicative structure and J KM : Λ × EnvK → D
satisfies following equations.

1. JxKM
ρ = ρ(x)

2. JMNKM
ρ = JMKM

ρ · JNKM
ρ

3. Jλx.MKM
ρ = Jλy.M [x := y]KM

ρ

where y 6∈ FV (M)

4. Jλx.MKM
ρ · k = JMKM

ρ[x:=k], where k ∈ K

5. If ∀k ∈ K[JMKM
ρ[x:=k] = JNKM

ρ[x:=k]] then Jλx.MKM
ρ = Jλx.NKM

ρ

6. If ρ �FV (M)= ρ′ �FV (M) then JMKM
ρ = JMKM

ρ′

7. If M ∈ V al, then JMKM
ρ ∈ K

3 Type assignment systems

Definition 3.1.

• We define the (type assignment) statement as follows.

M : α (M ∈ Λ with α ∈ T)

In this statement, M is called the subject and α is called the predicate.

• We define a basis as a set of statements with different variables as
subjects.
Note: One may notice that we define the basis differently comparing to
the original paper, here we follow the new definition in [4].

• We define that a statement M : α is derivable from a basis Γ written
as following.

8

Γ ` M : α

• A rule R is said to be admissible, if for all instances S0, · · · , Sn−1, S
of R it is the case that

if for all i ≤ n `i Si, then ` S.

where S0, · · · , Sn−1 are the deduction elements assigned to the immedi-
ate successors of node v and S is assigned to the node v. `i represents
the derivability in the formal system to which Si belongs.

Definition 3.2. R-reduction or R-expansion holds in a type assignment sys-
tem means that following two rules are admissible in the system respectively.

M �R N M : α
N : α

(R− reduction)
M �R N M : α

N : α
(R− expansion)

It is clear that when both rules above are admissible in the type assign-
ment system, the following rule is also admissible in the system.

M =R N M : α
N : α

(R− equality)

And the equality also finds its position in semantic world as we want, it
is in the following form for β-equality.

M =β N ⇔ JMKM
ρ = JNKM

ρ .

3.1 The simple type assignment system

The main idea of designing the simple typed system is to build an ab-
straction for function spaces. As if M gets type A → B and N gets type A,
then N applied to M can be viewed as valid and MN gets type B. In this way
types help determine what terms fit together.

In the meantime, requiring terms to have simple types implies that they
are strongly normalizing so that equality of terms of a certain type can be
reduced to equality of terms in a fixed type.

Definition 3.3. The set of simple type can be defined as follows.

A := ϕ0, ϕ1, ϕ2 · · ·
T := A | T→ T

Definition 3.4. The simple type assignment system is defined in the natural
deduction manner as follows.

9

[x : σ]
...

M : τ

λx.M : σ → τ
(→ I) M : σ → τ N : σ

MN : τ
(→ E)

Lemma 3.5. (The free variable lemma)

Γ `M : α⇒ Γ �FV (M)`M : α , where Γ �FV (M)={x : α ∈ Γ | x ∈ FV (M)}.

Proof. Induction on the derivation of Γ `M : α.

Lemma 3.6. (The generation lemma)

1. Γ ` x : α⇒ {x : α} ∈ Γ.

2. Γ `MN : α⇒ ∃β ∈ T[Γ `M : β → α and Γ ` N : β].

3. Γ ` λx.M : α⇒ ∃σ, τ ∈ T[α ≡ σ → τ and Γ, x : σ `M : τ].

Proof. Induction on the derivation of LHS. These three cases can be easily
proved as the only non-trivial case is (axiom), (→ E),(→ I), respectively.

Lemma 3.7. (The substitution lemma)

Γ, x : α `M : β and Γ ` N : α ⇒ Γ `M [x := N] : β.

Proof. Induction on the derivation of Γ, x : α `M : β.

Basis: M ≡ y.
By the generation lemma, {y : β} ∈ Γ ∪ {x : α}

• {y : β} ∈ Γ. Then y 6≡ x, so Γ ` y[x := N] : β ≡ y : β.

• y : β ≡ x : α. Then Γ ` y[x : N] : β ≡ N : α.

Induction Steps:

• The last rule applied is (→ I).

x : α, [y : σ]
....

M ′ : τ
(M ≡)λy.M ′ : σ → τ(≡ β)

(→ I)

(y ≡ x) Reduces to Basis.

(y 6≡ x) By the I.H, we have Γ, y : σ `M ′[x := N] : τ , then by (→
I), we have Γ ` (M [x := N] ≡)λy.M ′[x := N] : σ → τ(≡ β).

10

• The last rule applied is (→ E).
....

M1 : σ → β

....
N1 : σ

(M ≡)M1N1 : β
(→ E)

By the I.H, we have Γ `M1[x := N] : σ → β and
Γ ` N1[x := N] : σ, then by (→ E), we have
Γ ` (M [x := N] ≡)M1[x := N]N1[x := N] : β.

Lemma 3.8. (The βη-reduction property)

The following rule is admissible in this system.

M �βη N M : α

N : α
(βη − reduction)

Proof. By the definition of reduction, it suffices to show only one-step reduc-
tion cases.
Induction on the derivation of Γ `M : α.

Basis: M ≡ x. By the definition of reduction, there is no contractum of
variables, so this case is vacuous true.

Induction Steps:

• The last rule applied is (→ I).
[x : σ]

....
M1 : τ

(M ≡)λx.M1 : σ → τ(≡ α)
(→ I)

(N ≡ λx.M2 with M1 �βη M2) By the I.H, we have Γ, x : σ `
M1 : τ , then by (→ I), we have Γ ` (N ≡)λx.M2 : σ → τ(≡
α).

(M1 ≡ Nx with x /∈ FV (N)) By the generation lemma, we have
Γ, x : σ ` N : σ′ → τ and Γ, x : σ ` x : σ′ for some σ′. Apply
the generation lemma again, we have σ ≡ σ′. By the free
variable lemma, we have Γ ` N : σ → τ(≡ α).

• The last rule applied is (→ E).
....

M1 : σ → α

....
M2 : σ

(M ≡)M1M2 : α
(→ E)

11

(N ≡ N1M2 with M1 �βη N1)

(N ≡M1N2 with M2 �βη N2) These two cases can be treated
similarly. Simply by applying the I.H twice with (→ E), we
have Γ ` N : α.

(M1 ≡ λx.M ′ with N ≡M ′[x := M2]) By the generation lemma,
we have Γ, x : σ ` M ′ : α. By the substitution lemma, we
have Γ `M ′[x := M2](≡ N).

To see why we failed to prove that expansion rule is also admissible in
the simple type assignment system, we here show one simple example.

Example 3.9. Suppose we have assigned a type σ for yy, now we want to
assign the same type to (λx.xx)y. By applying the generation lemma, we can
construct following deduction.

x : α→ σ x : α
xx : σ

λx.xx : β → σ
(→ I)

y : β

(λx.xx)y : σ
The problem is at (→ I) on the left side. Because the subject x has

two different types, (→ I) can not be applied due to our restriction on the
basis(different subject). Even if we give up this restriction on basis which
means that we must put a restriction on the (→ I) which will also leads to
this circumstance.

3.2 The intersection type assignment system

The intersection type assignment system is an extended system of simple
type assignment system by adding intersection type. The intersection type
intends to be assigned to the λ-term which is holding two or more types.

The motivation for creating such system lies in the requirement that not
only subject reduction but also subject expansion holds. Suppose we have
` M [x := N] : α, then in order to assign the same type to (λx.M)N , it is
natural to think of application of (→ E) as follows.

λx.M : σ → α N : σ
(λx.M)N : α

(→ E)

The problem is that there may be several occurrences of x in M, so we
need a type holding other types.

Another problem appears when there is no occurrence of x in M, so that
N may be not typable at all. To solve this problem, a universal type ω is

12

needed to hold all λ-terms which is the motivation for building the ≤ relation
on types.

Definition 3.10. The set of intersection type can be defined as follows.

A := ω | ϕ0, ϕ1, ϕ2 · · ·
T := A | T→ T | T ∧ T

Definition 3.11. The intersection type assignment system is defined in the
natural deduction manner as follows.

[x : σ]
...

M : τ

λx.M : σ → τ
(→ I) M : σ → τ N : σ

MN : τ
(→ E)

M : σ M : τ
M : σ ∧ τ (∧I)

M : σ ∧ τ
M : τ(σ)

(∧E)

M : ω
(ω)

M : σ σ ≤ τ
M : τ

(≤)

Definition 3.12. The relation ≤ is inductively defined as follows.

α ≤ α (ref) α ≤ β ≤ γ ⇒ α ≤ γ (trans)
α ≤ ω (ω-top) ω ≤ ω → ω (ω-arrow)
α ≤ α ∧ α α ∧ β ≤ α α ∧ β ≤ β
(α→ β) ∧ (α→ γ) ≤ α→ (β ∧ γ)
α ≤ α′ β ≤ β′

α ∧ β ≤ α′ ∧ β′ (∧ −mono) α′ ≤ α β ≤ β′

α→ β ≤ α′ → β′
(→ −mono)

Note: One can prove easily that (∧ E) is derivable due to (≤).

We use the notation σ ∼ τ for σ ≤ τ ≤ σ.

Lemma 3.13. (α→ β) ∼ ω ⇔ β ∼ ω

Proof. We define Ω ⊆ T as follows.
Ω := ω | T→ Ω | Ω ∧ Ω

Then we will prove that σ ∈ Ω ⇒ σ ∼ ω by induction on the complexity of
σ ∈ Ω.

Base case: This case is straightforward as ω ∼ ω.

Induction Steps:

13

(σ → τ) τ ∈ Ω, so we can prove this case as follows.

σ ≤ ω

τ ∈ Ω
τ ∼ ω (I.H)

ω ≤ τ
ω ≤ ω → ω ≤ σ → τ

(→ −mono)
ω ≤ σ → τ

(trans)

(σ ∧ τ) σ, τ ∈ Ω, so we can prove this case as follows.

σ ∈ Ω
ω ≤ σ

(I.H)
τ ∈ Ω
ω ≤ τ

(I.H)

ω ∧ ω ≤ σ ∧ τ
ω ≤ ω ∧ ω ≤ σ ∧ τ

ω ≤ σ ∧ τ

Then we can easily prove that σ ∈ Ω, σ ≤ τ ⇒ τ ∈ Ω by induction on the
definition of ≤. We omit the proof here because of its triviality.
Finally we can prove this lemma as follows.

(α→ β) ∼ ω

ω ≤ α→ β

α→ β ∈ Ω

β ∈ Ω

β ∼ ω

β ∼ ω

ω ≤ β

β ∈ Ω

α→ β ∈ Ω

(α→ β) ∼ ω

Definition 3.14. The type theory LT∧ is a sequent calculus system defined
as follows.

Axiom:

Γ⇒ ω
Γ, a,∆⇒ a (a ∈ A)

Inference Rules:
Γ, α, β,∆⇒ θ

Γ, α ∧ β,∆⇒ θ
(∧ ⇒)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β (⇒ ∧)

ω ⇒ β

Γ⇒ α→ β
(⇒→)

α′ ⇒ α β ⇒ β′

Γ, α→ β,∆⇒ α′ → β′
(→⇒→)

Γ⇒ α→ β β ⇒ γ
Γ⇒ α→ γ

(⇒→⇒)(?)
Γ⇒ β → γ α⇒ β

Γ⇒ α→ γ
(⇒⇒→)

14

Γ⇒ α→ β Γ⇒ α→ γ β ∧ γ ⇒ σ
Γ⇒ α→ σ

(⇒→ ∧)

(?) This rule can be derived by (⇒→ ∧) as Lemma 3.35.

Note: In the rules above, Γ and ∆ are called the context. In the conclusion
of each rule, the types other than θ which are not in the context is called the
principal types.

It is easy to see that this system is a subset of LT which will be de-
fined later in the union type assignment system with quasi-cut rules added.
Because we have no rules concerning ∨ anymore, (⇒⇒→) rule can not be
derived. We have to add it to LT∧ to make cut-elimination work.

Definition 3.15. We define T `n Γ⇒ θ as that Γ⇒ θ has a proof of depth
at most n in the sequent calculus system T.

Lemma 3.16. We can prove the following structure properties under LT∧.

1. If LT∧ `n Γ,∆⇒ θ, then LT∧ `n Γ, α,∆⇒ θ.(Weakening-L)

2. If LT∧ `n Γ, α, β,∆⇒ θ, then LT∧ `n Γ, β, α,∆⇒ θ.(Exchange-L)

3. If LT∧ `n Γ, α, α,∆⇒ θ, then LT∧ `n Γ, α,∆⇒ θ.(Contraction-L)

Proof. Because LT∧ includes a subset of axioms and rules of LT . So every
property inside LT holds in LT∧ too. For the detailed proof, one can check
the proof under Lemma 3.37. As to the new added (⇒⇒→) rule, it is easy
to prove the properties above also hold.

Proposition 3.17. LT∧ + Cut ` Γ⇒ θ if and only if
∧

Γ ≤ θ.

Γ⇒ α ∆, α,Σ⇒ θ

∆,Γ,Σ⇒ θ
(Cut)

Proof. This proof is part of the proof of Proposition 3.39, so we omit the
detail here. As to the new added (⇒⇒→) rule, it can be proved as follows.

Γ⇒ β → γ∧
Γ ≤ β → γ

I.H

α⇒ β

α ≤ β
I.H

γ ≤ γ

β → γ ≤ α→ γ
(→ −mono)∧

Γ ≤ α→ γ

Theorem 3.18. Cut elimination holds for LT∧ + Cut.

15

Proof. This proof is part of the proof of Theorem 3.40, so we omit the detail
here. The new case need to be discussed is in Subcase 3c with the left premise
being (⇒⇒→), because (⇒⇒→) is no longer derivable. This case can be
proved as follows.

Subcase 3c (⇒⇒→) In this case, the proof is as follows.
....

Γ⇒ γ → β

....
α⇒ γ

Γ⇒ α→ β

....
α′ ⇒ α

....
β ⇒ β′

∆, α→ β,Σ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Cut)

It can be transformed into the following proof.
....

Γ⇒ γ → β

....
β ⇒ β′

Γ⇒ γ → β′

....
α′ ⇒ α

....
α⇒ γ

α′ ⇒ γ
(Cut)

Γ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Weakening − L)

Theorem 3.19. LT∧ ` Γ⇒ θ if and only if
∧

Γ ≤ θ.

Proof. This theorem can be derived from Proposition 3.17 and Theorem 3.18.

Lemma 3.20. (α1 → β1)∧· · ·∧ (αm → βm) ≤ α→ β and β 6∼ ω, then there
are i1, · · · , il ∈ {1, · · · ,m} such that αi1∧· · ·∧αil ≥ α and βi1∧· · ·∧βil ≤ β.

Proof. We will prove this lemma by LT∧. Because cut-elimination holds in
this system, we do not need to discuss about the cut-rule which makes the
proof easier than the original one. The original proof is in appendix.

By Theorem 3.19, it suffices to prove the following statement implies the
same conclusion.

LT∧ ` α1 → β1, · · · , αm → βm ⇒ α→ β and β 6∼ ω
We prove this by induction on the derivation, then the only cases need

to be treated are (⇒→), (→⇒→), (⇒⇒→) and (⇒→ ∧).

(⇒→) Because we can derive β ∼ ω from the assumption of this rule, this
case is trivial.

(→⇒→)
....

α⇒ αk

....
βk ⇒ β

α1 → β1, · · · , αm → βm ⇒ α→ β
(?)(→⇒→)

16

(?) 1 ≤ k ≤ m
By Theorem 3.41, we have α ≤ αk and βk ≤ β from the assumptions.
We simply set l = 1 and i1 = k.

(⇒→ ∧)
....

Γ⇒ α→ γ1

....
Γ⇒ α→ γ2

....
γ1 ∧ γ2 ⇒ β

Γ⇒ α→ β
(?)(⇒→ ∧)

(?) Γ = α1 → β1, · · · , αm → βm
From I.H, there exists i1, · · · , ij ∈ {1, · · · ,m} and i′1, · · · , i′j ∈ {1, · · · ,m},
such that

αi1 ∧ · · · ∧ αij ≥ α and βi1 ∧ · · · ∧ βij ≤ γ1,
αi′1 ∧ · · · ∧ αi′j ≥ α and βi′1 ∧ · · · ∧ βi′j ≤ γ2.

From (∧ −mono), we have

(βi1 ∧ · · · ∧ βij) ∧ (βi′1 ∧ · · · ∧ βi′j) ≤ γ1 ∧ γ2 ≤ β

and
α ∼ α ∧ α ≤ (αi1 ∧ · · · ∧ αij) ∧ (αi′1 ∧ · · · ∧ αi′j).

In this case, {1, · · · , l} = {i1, · · · , ij} ∪ {i′1, · · · , i′j}.

(⇒⇒→)
....

Γ⇒ γ → β

....
α⇒ γ

Γ⇒ α→ β
(⇒⇒→)(?)

(?) Γ = α1 → β1, · · · , αm → βm
From I.H, there exists i1, · · · , ij ∈ {1, · · · ,m} such that

αi1 ∧ · · · ∧ αij ≥ γ(≥ α) and βi1 ∧ · · · ∧ βij ≤ β.

In this case, {1, · · · , l} = {i1, · · · , ij}.

The reason why we need to restrain β is that if β ∼ ω then by Lemma
3.13, we have (α→ β) ∼ ω, which means that the assumption is true for all
(α1 → β1) ∧ · · · ∧ (αn → βn).

Definition 3.21. A filter is a non-empty subset d ⊆ T satisfies following
conditions:

• α, β ∈ d⇒ α ∧ β ∈ d;

• β ∈ d and α ≥ β ⇒ α ∈ d.

17

Lemma 3.22. Let T be a non-empty set of types, then ↑ T defined as follows
is called the filter generated by T.

↑ T = {α ∈ T | ∃n ≥ 1,∃β1, · · · , βn ∈ T ∪ {ω}[β1 ∧ · · · ∧ βn ≤ α]}.

Proof. Firstly, we shall prove ↑ T is a filter by induction on the definition of
filter.

• α, β ∈ d⇒ α ∧ β ∈ d.
By the definition, we have ∃α1, · · · , αn ∈ T ∪ {ω}[α1 ∧ · · · ∧ αn ≤ α]
and ∃β1, · · · , βm ∈ t∪{ω}[β1 ∧ · · · ∧βm ≤ β]. By (∧−mono), we have
∃α1, · · · , αn, β1, · · · , βm ∈ T ∪{ω}[α1∧ · · ·∧αn∧β1∧ · · ·∧βm ≤ α∧β,
so by the definition of filter, we have α ∧ β ∈ d.

• β ∈ d and α ≥ β ⇒ α ∈ d.
By the definition, we have ∃β1, · · · , βn ∈ T ∪ {ω}[β1 ∧ · · · ∧ βn ≤ β].
By (trans) we have ∃β1, · · · , βn ∈ T ∪ {ω}[β1 ∧ · · · ∧ βn ≤ β ≤ α], so
by the definition of filter, we have α ∈ d.

Secondly, we need to prove ↑ T is the smallest set satisfying the definition
of filter. Suppose we have another filter F ⊆↑ T , meaning ∃α ∈↑ T [α /∈ F].
By the definition above, we have ∃α1, · · · , αn ∈ T ∪ {ω}[α1 ∧ · · · ∧ αn ≤ α].
Because T ⊆ F , we have α1, · · · , αn ∈ F also. So by the definition of filter,
α1 ∧ · · · ∧ αn ∈ F , this leads to α ∈ F which is a contradiction.

Lemma 3.23.

1. {α | Γ `∧ M : α} is a filter.

2. Γ `∧ x : α if and only if α is in the filter generated by {β | x : β ∈ Γ}.

Proof.

1. This lemma can be proved by rules (ω), (≤), and (∧I).

2. (⇒) By induction on the derivation of Γ `∧ x : α. Because the sub-
ject is a variable, the only cases are (ω), (≤), and (∧I) which can be
straightforward proved from the definition of filter.
(⇐) By Lemma 3.22, we have

α ∈ {γ ∈ T | ∃n ≥ 1,∃β1, · · · , βn ∈ {β | x : β ∈ Γ} ∪ {ω}
[β1 ∧ · · · ∧ βn ≤ γ]}.

Then we can have

18

β1 ∧ · · · ∧ βn ≤ α

x : β1, · · · , x : βn
x : β1 ∧ · · · ∧ βn

(∧I)

x : α (≤)

Proposition 3.24. Γ `∧n λx.M : γ ⇒
∃α1, · · · , αm, β1, · · · , βm ∈ T[∀i ∈ {1, 2, · · · ,m}[Γ `∧n−1 λx.M : αi →
βi], (α1 → β1) ∧ · · · ∧ (αm → βm) ≤ γ] or Γ, x : σ `∧n−1 M : τ such
that γ ≡ σ → τ .

where Γ `∧n M : α means that M : α can be derived by a proof of at
most n depth under the intersection system.

Proof. By induction on the derivation of Γ `∧n λx.M : γ, and because the
subject is in abstraction form, the only cases are (ω), (→ I), (≤), and (∧I).

(ω) This case can be proved by (ω ≤ ω → ω).

(→ I) This case naturally stands.

(≤) From the first part of the I.H, it naturally stands. As for the second
part, we have Γ, x : σ `∧n−2 M : τ such that γ′ ≡ σ → τ , then by
(→ I) we have Γ `∧n−1 λx.M : σ → τ with σ → τ ≤ γ.

(∧I) This case can be proved from (∧ −mono) and I.H.

Lemma 3.25. (The generation lemma)

1. Γ `∧ MN : α⇒ ∃β ∈ T[Γ `∧ M : β → α and Γ `∧ N : β].

2. ∀α, β ∈ T[Γ, x : α `∧ M : β ⇒ Γ, x : α `∧ N : β], then ∀γ ∈ T[Γ `∧
λx.M : γ ⇒ Γ `∧ λx.N : γ].

3. Γ `∧ λx.M : α⇒ ∃σ, τ ∈ T[α ≡ σ → τ and Γ, x : σ `∧ M : τ].

Proof.

1. By induction on the derivation of Γ `∧ MN : α. Because the subject
is in application form, the only cases are (ω), (→ E), (≤), and (∧I).

(→ E) This case naturally stands.

(ω) This case can be proved from ω ≤ ω → ω.

19

(≤) This case can be proved from the I.H.

(∧I) α ≡ α1 ∧ α2, then
....

MN : α1

....
MN : α2

MN : α1 ∧ α2

By the I.H, we have ∃β1, β2 ∈ T such that

Γ `∧ M : β1 → α1 and Γ `∧ N : β1,
Γ `∧ M : β2 → α2 and Γ `∧ N : β2.

Then we have Γ `∧ N : β1 ∧ β2 and Γ `∧ M : (β1 → α1) ∧ (β2 →
α2) by (∧I). By the definition of ≤, we have (β1 → α1) ∧ (β2 →
α2) ≤ (β1 ∧ β2 → α1) ∧ (β1 ∧ β2 → α2) ≤ (β1 ∧ β2) → (α1 ∧ α2).
Then by (trans) and (≤), we have Γ `∧ M : (β1∧β2)→ (α1∧α2).

2. By induction on the derivation of Γ `∧ λx.M : γ. Because the subject
is in abstraction form, the only cases are (ω), (→ I), (≤), and (∧I).

(ω) This case naturally stands.

(≤) This case can be proved from the I.H and (≤).

(∧I) This case can be proved from the I.H and (∧I).

(→ I) This case can be proved directly from the assumption.

3. By induction on the derivation of Γ `∧ λx.M : α. Suppose τ ∼ ω,
then by (ω) and (≤), we have Γ, x : σ `∧ M : τ . So we may suppose
τ 6∼ ω, and because the subject is in abstraction form, the only cases
are (ω), (→ I), (≤), and (∧I).

(ω) This case is reduced to τ ∼ ω.

(∧I) α 6≡ σ → τ , so this case vacuously stands.

(→ I) This case naturally stands.

(≤) From I.H, we have β ≤ α, such that β ≡ σ′ → τ ′ and Γ, x :
σ′ `∧ M : τ ′. From the second part of conclusion of Propo-
sition 3.24, it naturally stands. From the first part, we have
∃α1, · · · , αm, β1, · · · , βm ∈ T[∀i ∈ {1, 2, · · · ,m}[Γ `∧n−1 λx.M :
αi → βi], (α1 → β1) ∧ · · · ∧ (αm → βm) ≤ σ → τ]. From Lemma
3.20, we have i1, · · · , ik ∈ {1, · · · ,m} such that αi1 ∧ · · · ∧αik ≥ σ
and βi1 ∧ · · · ∧ βik ≤ τ . Then we can build Γ, x : σ `∧ M : τ as
follows.

20

x : σ
x : αi1 ∧ · · · ∧ αik

(≤)

x : αip(1 ≤ p ≤ k)
(≤)

.... (?)
M : βip(1 ≤ p ≤ k)

M : βi1 ∧ · · · ∧ βik
(∧I)

M : τ
(≤)

(?): It is easy to see that ∀p[x : αip `∧ βip], because if x : αip 6`∧
βip , we can apply Proposition 3.24 again until we get to the second
part of the conclusion. This procedure is like we climb up the
derivation to collect all (→ I) applications on which λx.M : α
depends and take their conjunction type.

Note: The free variable lemma as follows also holds in this system.

Γ `∧ M : α⇒ Γ �FV (M)`∧ M : α,
where Γ �FV (M)={x : α ∈ Γ | x ∈ FV (M)}.

3.3 The union type assignment system

After extending to intersection types turns out to be a success, we con-
sider further adding union types to the system. But several difficulties arise
when we try to prove β-reduction holds under the new system [5].

However, if we restrain the argument to the set Val defined as follows,

Val := V | λV.Λ

we can prove the terms in the new system are invariant under the so-called
call-by-value evaluation(→v), which is a weaker version of β-reduction.

(λx.M)N �v M [x := N] (N ∈ V al)

Definition 3.26. The set of union type can be defined as follows.

A := ω | ϕ0, ϕ1, ϕ2 · · ·
T := A | T→ T | T ∧ T | T ∨ T

Definition 3.27. The union type assignment system TA is defined in the
natural deduction manner as follows.

21

[x : σ]
...

M : τ

λx.M : σ → τ
(→ I) M : σ → τ N : σ

MN : τ
(→ E)

M : σ M : τ
M : σ ∧ τ (∧I)

M : σ σ ≤ τ
M : τ

(≤)

M : ω
(ω)

N : σ ∨ τ

[x : σ]
....

M : θ

[x : τ]
....

M : θ
M [x := N] : θ

(∨E)(?)

(?) N ∈ V al.

To see why we need the restriction on N , we will show that by a simple
example as follows.

Example 3.28. We consider the following reduction sequence.

λxyz.x((λt.t)yz)((λt.t)yz)→v λxyz.x(yz)((λt.t)yz)→v λxyz.x(yz)(yz)

Now we suppose there is no restriction on N , then we can assign a type to
terms on both sides of the sequence as follows.

x : (α→ (α→ γ)) ∧ (β → (β → γ))
y : δ → (α ∨ β)
z : δ
t : α ∨ β
Let Γ include all four statement above, then for λxyz.x(yz)(yz), the

crucial part of the deduction is as follows.

Γ....
yz : α ∨ β

Γ....
x : α→ (α→ γ) [w : α]

xw : α→ γ [w : α]
xww : γ

Γ....
x : β → (β → γ) [w : β]

xw : β → γ [w : β]
xww : γ

xww[w := yz] : γ

x(yz)(yz) : γ
....

One can easily prove (λt.t)yz : α ∨ β, so we can replace yz for (λt.t)yz
in the deduction above and get the same type for λxyz.x((λt.t)yz)((λt.t)yz).
But we can not assign the same type for the intermediate one because the
substitution applies to all occurrences.

22

Definition 3.29. We define another weaker system TA− by replacing the
(∨E) with the following rule.

x : σ ∨ τ

[x : σ]
....

M : θ

[x : τ]
....

M : θ
M : θ

(∨E)−

Definition 3.30. The relation ≤ is inductively defined as an extension of
the same relation in the intersection type assignment system with following
rules concerning ∨ added.

α ≤ α ∨ β, β ≤ α ∨ β, α ∨ α ≤ α α ∧ (β ∨ γ) ≤ (α ∧ β) ∨ (α ∧ γ) (dis)

(α→ γ) ∧ (β → γ) ≤ α ∨ β → γ

α ≤ α′ β ≤ β′

α ∨ β ≤ α′ ∨ β′ (∨ −mono)

Proposition 3.31. ∧ and ∨ are associative and commutative modulo ∼.

Proof. This proposition can be proved from the monotonicity of ∧ and ∨.

Lemma 3.32. We can prove that following equivalences are derivable in this
extended type theory.

α ∧ α ∼ α α ∨ α ∼ α
α ∧ (β ∨ γ) ∼ (α ∧ β) ∨ (α ∧ γ) α ∨ (β ∧ γ) ∼ (α ∨ β) ∧ (α ∨ γ)

Proof. The first two equivalences can be easily derived from the definition,
so we only prove the later ones.

α ∧ (β ∨ γ) ≤ (α ∧ β) ∨ (α ∧ γ) This case can be derived from the definition.

α ∧ (β ∨ γ) ≥ (α ∧ β) ∨ (α ∧ γ) From (∨−mono), we have (α∧β)∨(α∧γ) ≤
(α ∧ (β ∨ γ)) ∨ (α ∧ (β ∨ γ)) ≤ α ∧ (β ∨ γ).

α ∨ (β ∧ γ) ≥ (α ∨ β) ∧ (α ∨ γ) From the distributive property and the mono-
tonicity, we have (α ∨ β) ∧ (α ∨ γ) ≤ ((α ∨ β) ∧ α) ∨ ((α ∨ β) ∧ γ) ≤
(α∧α)∨ (α∧β)∨ (α∧ γ)∨ (β ∧ γ) ≤ α∨α∨α∨ (β ∧ γ) ≤ α∨ (β ∧ γ).

α ∨ (β ∧ γ) ≤ (α ∨ β) ∧ (α ∨ γ) From (∧−mono), we have (α∨β)∧(α∨γ) ≥
(α ∨ (β ∧ γ)) ∧ (α ∨ (β ∧ γ)) ≥ α ∨ (β ∧ γ).

Lemma 3.33. Let {αi | i ∈ I} and {βj | j ∈ J} be two non-empty finite
sets of types, the following two equivalences can be derived from this extended
type theory.

23

•
∨

i∈I,j∈J
(αi ∧ βj) ∼ (

∨
i∈I
αi) ∧ (

∨
j∈J

βj)

•
∧

i∈I,j∈J
(αi ∨ βj) ∼ (

∧
i∈I
αi) ∨ (

∧
j∈J

βj)

Proof. These two are symmetric equivalences, so we only show the first one.

(≤) Since for every i ∈ I, j ∈ J , we have αi∧βj ≤ (
∨
i∈I
αi)∧ (

∨
j∈J

βj) from the

definition. So from (∨ −mono), we have
∨

i∈I,j∈J
(αi ∧ βj) ≤ ((

∨
i∈I
αi) ∧

(
∨
j∈J

βj)) ∨ · · · ∨ ((
∨
i∈I
αi) ∧ (

∨
j∈J

βj)) ∼ (
∨
i∈I
αi) ∧ (

∨
j∈J

βj).

(≥) By the distributive property and the monotonicity, we have (
∨
i∈I
αi) ∧

(
∨
j∈J

βj) ≤ ((
∨
i∈I
αi) ∧ β1) ∨ · · · ∨ ((

∨
i∈I
αi) ∧ βj) ≤ (

∨
i∈I

(αi ∧ β1)) ∨ · · · ∨

(
∨
i∈I

(αi ∧ βj)) ∼
∨

i∈I,j∈J
(αi ∧ βj).

Definition 3.34. The type theory LT is a sequent calculus system defined as
follows.

Axiom:

Γ⇒ ω
Γ, a,∆⇒ a (a ∈ A)

Inference Rules:
ω ⇒ β

Γ⇒ α→ β
(⇒→)

Γ, α, β,∆⇒ θ

Γ, α ∧ β,∆⇒ θ
(∧ ⇒)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β (⇒ ∧)

Γ⇒ α
Γ⇒ α ∨ β (⇒ ∨1)

Γ⇒ β

Γ⇒ α ∨ β (⇒ ∨2)

Γ, α,∆⇒ θ Γ, β,∆⇒ θ

Γ, α ∨ β,∆⇒ θ
(∨ ⇒)

α′ ⇒ α β ⇒ β′

Γ, α→ β,∆⇒ α′ → β′
(→⇒→)

Γ⇒ α→ β Γ⇒ α→ γ β ∧ γ ⇒ σ
Γ⇒ α→ σ

(⇒→ ∧)

Γ⇒ α→ γ Γ⇒ β → γ σ ⇒ α ∨ β
Γ⇒ σ → γ

(⇒ ∨ →)

24

Note: In the rules above, Γ and ∆ are called the context. In the conclusion
of each rule, the types other than θ which are not in the context is called the
principal types.

Lemma 3.35. The following quasi-cut rules are derivable under LT .

Γ⇒ α→ β β ⇒ γ
Γ⇒ α→ γ

(⇒→⇒)
Γ⇒ β → γ α⇒ β

Γ⇒ α→ γ
(⇒⇒→)

Proof.

• The first one can be derived as a special case of (⇒→ ∧) with the
structure property (Weakening-L) which will be treated later.

Γ⇒ α→ β Γ⇒ α→ β

β ⇒ γ

β, β ⇒ γ
(Weakening − L)

β ∧ β ⇒ γ
(∧ ⇒)

Γ⇒ α→ γ
(⇒→ ∧)

• The second one can be derived as a special case of (⇒ ∨ →).

Γ⇒ β → γ Γ⇒ β → γ

α⇒ β

σ ⇒ β ∨ β (⇒ ∨1)

Γ⇒ α→ γ
(⇒ ∨ →)

Proposition 3.36. The following statements are true under LT .

1. If LT `n Γ, α ∧ β,∆⇒ θ, then LT `n Γ, α, β,∆⇒ θ.

2. If LT `n Γ, α∨β,∆⇒ θ, then LT `n Γ, α,∆⇒ θ and LT `n Γ, β,∆⇒
θ.

Proof.

1. For the cases with no principal type or the cases with principal type
but α∧β is in the context, they can be proved by the rule applied after
I.H. For example, (⇒ ∧) case can be proved as follows.

Γ, α ∧ β,∆⇒ σ

Γ, α, β,∆⇒ σ
(I.H)

Γ, α ∧ β,∆⇒ τ

Γ, α, β,∆⇒ τ
(I.H)

Γ, α, β,∆⇒ σ ∧ τ (⇒ ∧)

(→⇒→) case is a little special, but can be proved by its inner weak-
ening property.

25

σ′ ⇒ σ τ ⇒ τ ′

Γ, α, β, σ → τ,∆⇒ σ′ → τ ′
(→⇒→)

For the only case with the principal type α ∧ β, it naturally stands.

2. This inverse property can be proved similarly as above.

Lemma 3.37. We can prove the following structure properties under LT .

1. If LT `n Γ,∆⇒ θ, then LT `n Γ, α,∆⇒ θ.(Weakening-L)

2. If LT `n Γ, α, β,∆⇒ θ, then LT `n Γ, β, α,∆⇒ θ.(Exchange-L)

3. If LT `n Γ, α, α,∆⇒ θ, then LT `n Γ, α,∆⇒ θ.(Contraction-L)

Proof.

1. All cases can be proved by putting the rule applied below the I.H. For
example, (⇒ ∧) case can be proved as follows.

Γ,∆⇒ σ

Γ, α,∆⇒ σ
(I.H)

Γ,∆⇒ τ

Γ, α,∆⇒ τ
(I.H)

Γ, α,∆⇒ σ ∧ τ (⇒ ∧)

2. For the cases with no principal type, they can be proved by putting the
rule applied below the I.H. For example, (⇒ ∧) case can be proved as
follows.

Γ, α, β,∆⇒ σ

Γ, β, α,∆⇒ σ
(I.H)

Γ, α, β,∆⇒ τ

Γ, β, α,∆⇒ τ
(I.H)

Γ, β, α,∆⇒ σ ∧ τ (⇒ ∧)

(→⇒→) case can be proved by its inner weakening property.
For other cases with principal types, they can be proved by the rule
applied after the I.H twice. For example, (∧ ⇒) can be proved as fol-
lows.

Γ, σ, τ, β,∆⇒ θ

Γ, β, σ, τ,∆⇒ θ
(I.H) ∗ 2

Γ, β, σ ∧ τ,∆⇒ θ
(∧ ⇒)

3. For the cases with no principal type, they can be proved by the rule
applied after the I.H. For example, (⇒ ∧) case can be proved as follows.

26

Γ, α, α,∆⇒ σ

Γ, α,∆⇒ σ
(I.H)

Γ, α, α,∆⇒ τ

Γ, α,∆⇒ τ
(I.H)

Γ, α,∆⇒ σ ∧ τ (⇒ ∧)

(→⇒→) case can be proved by its inner weakening property.

(∧ ⇒) and (∨ ⇒) can be proved similarly, here we only show the (∧ ⇒)
case.

Γ, α, β, α ∧ β,∆⇒ θ

Γ, α, β, α, β,∆⇒ θ
(3.36)

Γ, α, α, β, β,∆⇒ θ
(Exchange− L)

Γ, α, β,∆⇒ θ
(I.H) ∗ 2

Γ, α ∧ β,∆⇒ θ
(∧ ⇒)

Lemma 3.38. The same equivalence as Lemma 3.13 is also true under this
extended type theory.

(α→ β) ∼ ω ⇔ β ∼ ω

Proof. We can prove this lemma as Lemma 3.13 by some change on the
definition of Ω as follows.

Ω := ω | T→ Ω | Ω ∧ Ω | T ∨ Ω

Proposition 3.39. LT + Cut ` Γ⇒ θ if and only if
∧

Γ ≤ θ.

Γ⇒ α ∆, α,Σ⇒ θ

∆,Γ,Σ⇒ θ
(Cut)

Proof.

(⇒) We prove this proposition by induction on the derivation of Γ ⇒ θ.
The only non-trivial cases are (∨ ⇒), (→⇒→), (⇒→ ∧), (⇒→) and
(⇒ ∨ →).

(∨ ⇒)
Γ, α,∆⇒ θ∧
{Γ,∆} ∧ α ≤ θ

(I.H)
Γ, β,∆⇒ θ∧
{Γ,∆} ∧ β ≤ θ

(I.H)

(
∧
{Γ,∆} ∧ α) ∨ (

∧
{Γ,∆} ∧ β) ≤ θ ∨ θ ∼ θ

(∨ −mono)

(?)(α ∨ β) ∧ (
∧
{γ1 ∨ γ2}) ∧ (

∧
{γ3 ∨ α}) ∧ (

∧
{γ4 ∨ β}) ≤ θ

(3.33)∧
{Γ,∆} ∧ · · · ∧

∧
{Γ,∆} ∧ (α ∨ β) ≤ θ

(∧ −mono)∧
{Γ,∆} ∧ (α ∨ β) ≤ θ

(3.32)

(?) γ1, γ2, γ3, γ4 ∈ {Γ,∆}

27

(→⇒→)

α′ ⇒ α
α′ ≤ α

(I.H)
β ⇒ β′

β ≤ β′
(I.H)∧

Γ ∧ (α→ β) ∧
∧

∆ ≤ α→ β ≤ α′ → β′
(→ −mono)

(⇒→ ∧)
Γ⇒ α→ β Γ⇒ α→ γ∧

Γ ≤ (α→ β) ∧ (α→ γ) ≤ α→ β ∧ γ (I.H)
β ∧ γ ⇒ σ

β ∧ γ ≤ σ
(I.H)∧

Γ ≤ α→ σ
(→ −mono)

(⇒→) This case can be proved by Lemma 3.38.

(⇒ ∨ →) This case can be proved as (⇒→ ∧) similarly.

(⇐) By induction on the definition of ≤. The only non-trivial cases are
(ref) and (dis).

(ref) It suffices to show LT ` α ⇒ α by induction on the complexity
of α. α ∈ A case comes directly from the axiom. α ≡ σ ∧ τ ,
α ≡ σ∨ τ and α ≡ σ → τ can be proved similarly, so here we only
show α ≡ σ ∧ τ case.

σ ⇒ σ
σ, τ ⇒ σ (Weakening − L) τ ⇒ τ

σ, τ ⇒ τ (Weakening − L)

σ, τ ⇒ σ ∧ τ (⇒ ∧)

σ ∧ τ ⇒ σ ∧ τ (∧ ⇒))

(dis) We need to show that α, β∨γ ⇒ (α∧β)∨ (α∧γ) can be derived.

α⇒ α (ref)

α, β ⇒ α

β ⇒ β
(ref)

α, β ⇒ β

α, β ⇒ α ∧ β (⇒ ∧)

α, β ⇒ (α ∧ β) ∨ (α ∧ γ)
(⇒ ∨1)

α⇒ α (ref)

α, β ⇒ α

β ⇒ β
(ref)

α, β ⇒ β

α, β ⇒ α ∧ β (⇒ ∧)

α, β ⇒ (α ∧ β) ∨ (α ∧ γ)
(⇒ ∨2)

α, β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)

Theorem 3.40. Cut elimination holds for LT + Cut.

Γ⇒ α ∆, α,Σ⇒ θ

∆,Γ,Σ⇒ θ
(Cut)

Note: α is defined as the cut-type.

Proof. It suffices to show that we can remove an innermost cut in a proof
tree. When we say an innermost cut, we mean that it is applied above all
other cut rule applications. We define the level of a cut and the rank of a

28

cut as the sum of the depths of the premises and the number of occurrences
of type constructors in the cut-type, respectively. For intuition thinking, you
can take the level of a cut as its depth in the proof tree and the rank of a
cut as the complexity of the cut-type.

In order to prove this theorem, we proceed by induction on the rank,
with a subinduction on the level, and under this method, we can divide the
proof into following three cases.

• At least one of the premises is an axiom.

• None of the two premises is an axiom, and the cut-type is not principal
in at least one of the premises.

• The cut-type is principal in both premises.

Case 1 At least one of the premises is an axiom.

Subcase 1a The left premise is an axiom. (α ∈ A)

• The cut-type is principal in the right premise, which means that
the right premise is also the axiom.

Γ′, α,∆′ ⇒ α ∆, α,Σ⇒ α

∆,Γ′, α,∆′,Σ⇒ α
(Cut)

Γ⇒ ω ∆, ω,Σ⇒ ω
∆,Γ,Σ⇒ ω

(Cut)

The conclusions of the two are axioms, so they can be directly
derived without the cut rule.

• The cut-type is not principal in the right premise.

Γ′, α,∆′ ⇒ α

....
∆, α,Σ⇒ θ

∆,Γ′, α,∆′,Σ⇒ θ
(Cut)

Γ⇒ ω

....
∆, ω,Σ⇒ θ

∆,Γ′, ω,∆′,Σ⇒ θ
(Cut)

The conclusions can be derived by (Weakening − L) from the
right premise without the cut rule.

Subcase 1b The left premise is not the axiom, while the right premise is
the axiom.

• The cut-type is principal in the right premise. (α ∈ A)

....
Γ⇒ α ∆, α,Σ⇒ α

∆,Γ,Σ⇒ α
(Cut)

The conclusion can be derived by (Weakening−L) from the left
premise without the cut rule.

29

• The cut-type is not principal in the right premise.
....

Γ⇒ α ∆, α, a,Σ⇒ a
∆,Γ, a,Σ⇒ a

(Cut)

....
Γ⇒ α ∆, α,Σ⇒ ω

∆,Γ,Σ⇒ ω
(Cut)

The conclusions are axioms, so they can be directly derived with-
out the cut rule.

Case 2

None of the two premises is the axiom and the cut-type is not principal
in at least one of the premises.

Subcase 2a The cut-type is not principal in the right premise.
Although we need to consider all rules ended up as the right premise
with the cut-type in the context, it turns out that we only need to
apply the cut rule before every rule. Here we only show two cases, and
all other cases can be proved similarly.

(∧ ⇒)

....
Γ⇒ α

....
∆, α, σ, τ,Σ⇒ θ

∆, α, σ ∧ τ,Σ⇒ θ
(∧ ⇒)

∆,Γ, σ ∧ τ,Σ⇒ θ
(Cut)

....
Γ⇒ α

....
∆, α, σ, τ,Σ⇒ θ

∆,Γ, σ, τ,Σ⇒ θ
(Cut)

∆,Γ, σ ∧ τ,Σ⇒ θ
(∧ ⇒)

(→⇒→)

....
Γ⇒ α

....
σ′ ⇒ σ

....
τ ′ ⇒ τ

∆, α, σ → τ,Σ⇒ σ′ → τ ′
(→⇒→)

∆,Γ, σ → τ,Σ⇒ σ′ → τ ′
(Cut)

....
σ′ ⇒ σ

....
τ ′ ⇒ τ

∆,Γ, σ → τ,Σ⇒ σ′ → τ ′

Subcase 2b The cut-type is principal in the right premise, while it is not
principal in the left premise.
In this subcase, the rule ended up as the right premise can only be
(∧ ⇒), (∨ ⇒) and (→⇒→), while the rule ended up as the left premise
can only be (∧ ⇒) and (∨ ⇒).
This subcase can be similarly proved as Subcase 2a, here we only show
the proof in which the left premise is (∧ ⇒).

....
Γ′, σ, τ,∆′ ⇒ α ∧ β

Γ′, σ ∧ τ,∆′ ⇒ α ∧ β

....
∆, α, β,Σ⇒ θ

∆, α ∧ β,Σ⇒ θ

∆,Γ′, σ ∧ τ,∆′,Σ⇒ θ
(Cut)

30

It can be transformed into the following proof.

....
Γ′, σ, τ,∆′ ⇒ α ∧ β

....
∆, α, β,Σ⇒ θ

∆, α ∧ β,Σ⇒ θ

∆,Γ′, σ, τ,∆′,Σ⇒ θ
(Cut)

∆,Γ′, σ ∧ τ,∆′,Σ⇒ θ

Case 3 None of the two premises is the axiom, and the cut-type is principal
in both premises.

Subcase 3a The last rule applied in the right premise is (∧ ⇒).
....

Γ⇒ α

....
Γ⇒ β

Γ⇒ α ∧ β

....
∆, α, β,Σ⇒ θ

∆, α ∧ β,Σ⇒ θ
(∧ ⇒)

∆,Γ,Σ⇒ θ
(Cut)

This subcase can be proved as follows.

....
Γ⇒ β

....
Γ⇒ α

....
∆, α, β,Σ⇒ θ

∆,Γ, β,Σ⇒ θ
(Cut)

∆,Γ,Γ,Σ⇒ θ
(Cut)

∆,Γ,Σ⇒ θ
3.37(2), (3)

Subcase 3b The last rule applied in the right premise is (∨ ⇒). This case
can be proved as above, so we omit the proof here.

Subcase 3c The last rule applied in the right premise is (→⇒→). This
case can be further divided into three cases as the rule applied in the
left premise can be (→⇒→), (⇒→ ∧), (⇒ ∨ →) and (⇒→).

(→⇒→) In this case, the proof is as follows.
....

α⇒ α′

....
β′ ⇒ β

Γ′, α′ → β′,∆′ ⇒ α→ β

....
α′′ ⇒ α

....
β ⇒ β′′

∆, α→ β,Σ⇒ α′′ → β′′

∆,Γ′, α′ → β′,∆′,Σ⇒ α′′ → β′′
(Cut)

It can be transformed into the following proof.
....

α′′ ⇒ α

....
α⇒ α′

α′′ ⇒ α′
(Cut)

....
β′′ ⇒ β

....
β ⇒ β′

β′′ ⇒ β′
(Cut)

∆,Γ′, α′ → β′,∆′,Σ⇒ α′′ → β′′
(→⇒→)

31

(⇒→ ∧) In this case, the proof is as follows.
....

Γ⇒ α→ σ

....
Γ⇒ α→ τ

....
σ ∧ τ ⇒ β

Γ⇒ α→ β

....
α′ ⇒ α

....
β ⇒ β′

∆, α→ β,Σ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Cut)

It can be transformed without any applications of the cut rule into
the following proof.

....
Γ⇒ α→ σ

....
α′ ⇒ α

Γ⇒ α′ → σ

....
Γ⇒ α→ τ

....
α′ ⇒ α

Γ⇒ α′ → τ

....
σ ∧ τ ⇒ β

Γ⇒ α′ → β

....
β ⇒ β′

Γ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Weakening − L)

(⇒ ∨ →) In this case, the proof is as follows.
....

Γ⇒ σ → β

....
Γ⇒ τ → β

....
α⇒ σ ∨ τ

Γ⇒ α→ β

....
α′ ⇒ α

....
β ⇒ β′

∆, α→ β,Σ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Cut)

It can be transformed into the following proof with one application
of the cut rule, which has lower rank and level.

....
Γ⇒ σ → β

....
Γ⇒ τ → β

....
α′ ⇒ α

....
α⇒ σ ∨ τ

α′ ⇒ σ ∨ τ (Cut)

Γ⇒ α′ → β

....
β ⇒ β′

Γ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Weakening − L)

(⇒→) In this case, the proof is as follows.
....

ω ⇒ β

Γ⇒ α→ β

....
α′ ⇒ α

....
β ⇒ β′

∆, α→ β,Σ⇒ α′ → β′

∆,Γ,Σ⇒ α′ → β′
(Cut)

It can be transformed into the following proof.
....

ω ⇒ β

....
β ⇒ β′

ω ⇒ β′
(Cut)

∆,Γ,Σ⇒ α′ → β′

Note: As you can see, all converted cut-types have lower levels in this proof.
The reason why we still need the double induction as in the canonical proof

32

method [6] is in Subcase 3a, in which the higher cut is replaced by the I.H
with a depth-unknown proof so that we can not eliminate the lower one with
the I.H of level.

Theorem 3.41. LT ` Γ⇒ θ if and only if
∧

Γ ≤ θ.

Proof. Straightforward.

Definition 3.42. The set of prime types P(⊆ T) can be defined as follows.
P := A | T→ T | P ∧ P

Lemma 3.43. If α ∈ T, then there exists a non-empty finite set {σi | i ∈
I, σi ∈ P} such that α ∼

∨
i∈I
σi.

Proof. We prove this lemma by induction on the complexity of α.

(α ≡ A) This case is straightforward from the definition.

From I.H, we have β ∼
∨

j1∈J1

σj1 and γ ∼
∨

j2∈J2

σj2 .

(α ≡ β ∧ γ) From Lemma 3.33, we have α ≡ β ∧ γ ∼
∨

j1∈J1,j2∈J2

(σj1 ∧ σj2)

(α ≡ β ∧ γ) We have α ≡ β ∨ γ ∼
∨

i∈J1∪J2

σi from the I.H,.

(α ≡ β → γ) We have α ≡ β → γ ∼
∨

j1∈J1

σj1 →
∨

j2∈J2

σj2(∈ P) from the I.H,.

Proposition 3.44. If σ ∈ P and σ ≤ α ∨ β, then σ ≤ α or σ ≤ β.

Proof. By Theorem 3.41, it suffices to show that for a non-empty finite se-
quence Γ of prime types, LT ` Γ⇒ α∨β implies LT ` Γ⇒ α or LT ` Γ⇒ β.
We will prove this proposition by induction on the depth of the proof of
LT ` Γ⇒ α. The only cases ended up with LT ` Γ⇒ α are (∧ ⇒), (∨ ⇒),
(⇒ ∨1) and (⇒ ∨2).

(⇒ ∨1), (⇒ ∨2) Straightforward.

(∧ ⇒) This case is straightforward from the I.H.

(∨ ⇒) In this case, the proof ends up as follows.
....

Γ, σ,∆⇒ α ∨ β

....
Γ, τ,∆⇒ α ∨ β

Γ, σ ∨ τ,∆⇒ α ∨ β
But σ ∨ τ is not a prime type, so we do not need to consider this case.

33

Proposition 3.45. If
∧
i∈I

(αi → βi) ≤ α → β and β 6∼ ω, then there exist

two finite sets J and {Ij | j ∈ J, Ij ⊆ I} such that

α ≤
∨
j∈J

∧
i∈Ij

αi and
∨
j∈J

∧
i∈Ij

βi ≤ β.

Proof. By Theorem 3.41, it suffices to show that LT ` α1 → β1, · · · , αm →
βm ⇒ α → β implies the same conclusion. We can prove this by induction
on the depth of α1 → β1, · · · , αm → βm ⇒ α → β, and the only cases need
to be treated are (→⇒→), (⇒→ ∧) and (⇒ ∨ →).

Note: We do not need to treat (⇒→) case because of the restriction on β.

(→⇒→)
....

α⇒ αk

....
βk ⇒ β

α1 → β1, · · · , αm → βm ⇒ α→ β
(?)(→⇒→)

(?) 1 ≤ k ≤ m
By Theorem 3.41, we have α ≤ αk and βk ≤ β from the assumptions.
We simply set J := {1} and I1 := k.

(⇒→ ∧)
....

Σ⇒ α→ γ1

....
Σ⇒ α→ γ2

....
γ1 ∧ γ2 ⇒ β

Σ⇒ α→ β
(?)(⇒→ ∧)

(?) Σ = α1 → β1, · · · , αm → βm
From I.H, there exists four finite sets J1, J2, {Ij1 | j1 ∈ J1, Ij1 ⊆ I}, and
{Ij2 | j2 ∈ J2, Ij2 ⊆ I}, such that

α ≤
∨

j1∈J1

∧
i∈Ij1

αi and
∨

j1∈J1

∧
i∈Ij1

βi ≤ γ1,

α ≤
∨

j2∈J2

∧
i∈Ij2

αi and
∨

j2∈J2

∧
i∈Ij2

βi ≤ γ2.

From Lemma 3.33 and (∧ −mono), we have
(
∨

j1∈J1

∧
i∈Ij1

βi) ∧ (
∨

j2∈J2

∧
i∈Ij2

βi) ∼
∨

(j1,j2)∈J

∧
i∈I(j1,j2)

βi∨
(j1,j2)∈J

∧
i∈I(j1,j2)

βi ≤ γ1 ∧ γ2 ≤ β

and
(
∨

j1∈J1

∧
i∈Ij1

αi) ∧ (
∨

j2∈J2

∧
i∈Ij2

αi) ∼
∨

(j1,j2)∈J

∧
i∈I(j1,j2)

αi

34

α ∼ α ∧ α ≤
∨

(j1,j2)∈J

∧
i∈I(j1,j2)

αi.

In this case, J := J1 × J2 and I(j1,j2) := Ij1 ∪ Ij2 .

(⇒ ∨ →)
....

Σ⇒ γ1 → β

....
Σ⇒ γ2 → β

....
α⇒ γ1 ∨ γ2

Σ⇒ α→ β
(?)(⇒ ∨ →)

(?) Σ = α1 → β1, · · · , αm → βm
From I.H, there exists four finite sets J1, J2, {Ij1 | j1 ∈ J1, Ij1 ⊆ I}, and
{Ij2 | j2 ∈ J2, Ij2 ⊆ I}, such that

γ1 ≤
∨

j1∈J1

∧
i∈Ij1

αi and
∨

j1∈J1

∧
i∈Ij1

βi ≤ β,

γ2 ≤
∨

j2∈J2

∧
i∈Ij2

αi and
∨

j2∈J2

∧
i∈Ij2

βi ≤ β.

By (∨ −mono), we have
α ≤ γ1 ∨ γ2 ≤ (

∨
j1∈J1

∧
i∈Ij1

βi) ∨ (
∨

j2∈J2

∧
i∈Ij2

βi)

(
∨

j1∈J1

∧
i∈Ij1

βi) ∨ (
∨

j2∈J2

∧
i∈Ij2

βi) ≤ β ∨ β ∼ β

In this case, J := J1 ∪ J2.

As in the intersection system, we need to restrain β so that the assump-
tion will not explode by Lemma 3.38.

Lemma 3.46.

1. Γ `TA− M : α⇒ Γ �FV (M)`TA− M : α (The free variable lemma)

2. Γ, x : α `TA− M : γ and β ≤ α⇒ Γ, x : β `TA− M : γ

3. Γ `TA− x : β ⇔
∧

Γx ≤ β or β ∼ ω, where Γx = {α | x : α ∈ Γ}

Proof.

1. One can easily prove this lemma by induction on the derivation of
Γ `TA− M : α.

2. One can easily prove this lemma by (≤).

3. The proof for this lemma is trivial, so we omit here.

35

Definition 3.47. Γ is prime basis if Γ `TA− x : α∨β implies Γ `TA− x : α
or Γ `TA− x : β.

Lemma 3.48.

1. Every deduction in TA− can be replaced by a (∨E)−-last deduction with
the same assumptions and conclusion.

2. If Γ is a prime basis and Γ `TA− M : θ, then there exists a (∨E)−-free
deduction of the same derivation.

Proof.

1. We push the (∨E)− step down below all other rules which means that
(→ I), (→ E), (∧I) and (≤) need to be treated.
(∧I) case: The proof ends up as follows.

∆0....
M : α

∆1....
x : σ ∨ τ

∆2, [x : σ]
....

M : β

∆3, [x : τ]
....

M : β

M : β
(∨E)−

M : α ∧ β (∧I)

It is instinctive to think that we can treat this case as simply move the
(∨E)− application below, but it turns out to be a problematic proof as
follows.

∆1....
x : σ ∨ τ

∆′0, [x : σ]
....

M : α

∆2, [x : σ]
....

M : β

M : α ∧ β

∆′0, [x : τ]
....

M : α

∆3, [x : τ]
....

M : β

M : α ∧ β
M : α ∧ β (∨E)−

As you can see, when ∆0x 6= ∅, the transformed proof has a different
assumption set compared to the original one. In order to solve this, we
take the conjunction form of the ∆0x so that it will be canceled while
the original assumption remains.

x : γ

∆1....
x : σ ∨ τ

x : γ ∧ (σ ∨ τ)

x : (γ ∧ σ) ∨ (γ ∧ τ)

Γ, [x : γ ∧ σ]
....

M : α

∆2, [x : γ ∧ σ]
....

M : β

M : α ∧ β

Γ,∆3, [x : γ ∧ τ]
....

M : α ∧ β
M : α ∧ β (∨E)−

Note: ∆0 ⇔ Γ, x : γ, where γ ≡
∧

∆0x.

It is easy to see that this problem occurs when the last applied rule
has two premises with different assumption set, so (≤) do not have this

36

problem which means it can be treated simply be pushing down the
(∨E)−.
(→ E) case can be treated with the same trick as above, so we omit
here.

(→ I) case:

(x 6≡ y) The proof ends as follows.
∆0, [x : α]

....
y : σ ∨ τ

∆1, [x : α], [y : σ]
....

M : β

∆2, [x : α], [y : τ]
....

M : β

M : β
(∨E)−

λx.M : α→ β
(→ I)

This case can be treated easily with the free variable lemma as
follows.

∆0....
y : σ ∨ τ

∆1, [x : α], [y : σ]
....

M : β

λx.M : α→ β

∆2, [x : α], [y : τ]
....

M : β

λx.M : α→ β

λx.M : α→ β

(x ≡ y) The proof ends as follows.
∆0, [x : α]

....
x : σ ∨ τ

∆1, [x : σ]
....

M : β

∆2, [x : τ]
....

M : β

M : β
(∨E)−

λx.M : α→ β
(→ I)

This case can be treated with a little trick with Lemma 3.46(3) as
follows.

(σ → β) ∧ (τ → β) ≤ γ → β

∆1, [x : σ]
....

M : β

λx.M : σ → β

∆2, [x : τ]
....

M : β

λx.M : τ → β

λx.M : (σ → β) ∧ (τ → β)

λx.M : γ → β
(≤)

We can prove γ ≡ α as follows.
∆0, x : α `TA− x : σ ∨ τ
x : α `TA− x : σ ∨ τ 3.46(1)

α ≤ σ ∨ τ

2. For every deduction in TA− ending up with (∨E)−, the proof is as
follows.

37

....
x : σ ∨ τ

[x : σ]
....

M : θ

[x : τ]
....

M : θ
M : θ

(∨E)−

If we restrain the basis to be prime, we actually can convert the proof
into the following convenient one without (∨E)− completely.

Γ....
x :

∧
Γx

Γ `TA− x : σ∧
Γx ≤ σ

3.46(3)(?)

x : σ (≤)
....

M : θ

(?) The case with σ ∼ ω naturally stands.

Γ `TA− x : τ case is omitted because of its similarity with the above
case.

Lemma 3.49. (The generation lemma)
Γ is a prime basis.

1. Γ `TA− MN : α⇒ ∃β ∈ T[Γ `M : β → α and Γ ` N : β].

2. Γ `TA− λx.M : γ ⇒ ∃σ1, · · · , σn ∈ P, β1, · · · , βn ∈ T[∀i[Γ, x : σi `TA−
M : βi] and

∧
i

(σi → βi) ≤ γ](1 ≤ i ≤ n).

3. Γ `TA− λx.M : α⇒ ∃σ, τ ∈ T[α ≡ σ → τ and Γ, x : σ `M : τ].

Proof.

1. We can prove this lemma by turning all deduction to the (∨E)−-free
deduction by Lemma 3.48, then everything follows as in the intersection
system.

2. By induction on the depth of the (∨E)−-free derivation of Γ `TA−
λx.M : γ. (≤), (ω)and (∧I) are trivial, so we only treat the (→ I)
case. The proof ends up as lower left and can be proved as lower right.

[x : α]
....

M : β

λx.M : α→ β(≡ γ)

x : σi σi ≤
∨
i

σi ≤ α
(3.43)

x : α....
M : β

38

3. By (2), we have σ1, · · · , σn ∈ P, β1, · · · , βn ∈ T such that

∀m[Γ, x : σm `TA− M : βm] and
∧
m

(σm → βm) ≤ σ → τ(1 ≤ m ≤ n).

Then by Proposition 3.45, we have

σ ≤
∨
J

∧
Ij

σi and
∨
J

∧
Ij

βi ≤ τ .

By these four, we can prove this lemma as follows.

Firstly, we need to prove that for all j ∈ J that
Γ, x :

∧
Ij

σi `TA− M : τ

as follows.

∧
Ij

βi ≤
∨
J

∧
Ij

βi ≤ τ

Γ, x : σm `TA− M : βm
∧
Ij

σi ≤ σm

Γ, x :
∧
Ij

σi `TA− M : βm
(3.46)(2)

· · ·....· · ·

Γ, x :
∧
Ij

σi `TA− M :
∧
Ij

βi
(∧I)

Γ, x :
∧
Ij

σi `TA− M : τ

Secondly, we can prove the remaining by Lemma 3.46(2) and (∨E)− as
follows.

σ ≤
∨
J

∧
Ij

σi

σ ≤
∨
J

∧
Ij

σi x : σ

x :
∨
J

∧
Ij

σi
(≤)

1st j ∈ J....
Γ, x :

∧
Ij

σi `TA− M : τ

· · ·....· · ·

Γ, x :
∨
J

∧
Ij

σi `TA− M : τ
(∨E)−

Γ, x : σ `TA− M : τ
(3.46)(2)

4 Semantics

4.1 The Filter model

Definition 4.1. (Type interpretation)

• Let ξ: {ψi} → P(D), so ξ is a type environment from all type
variables to power set of D.

39

• The interpretation of σ ∈ T in a lambda model M via a type environ-
ment ξ, denoted as JσKM

ξ ∈P(D), can be defined as follows.

– JωKM
ξ = D

– JψiK
M
ξ = ξ(ψi)

– Jσ → τKM
ξ = {d ∈ D | ∀e ∈ JσKM

ξ [d · e ∈ JτKM
ξ]}

– Jσ ∧ τKM
ξ = JσKM

ξ ∩ JτKM
ξ

• Let ρ be a term environment in D.

• M , ρ, ξ |= M : σ if and only if JMKM
ρ ∈ JσKM

ξ .

• M , ρ, ξ |= Γ if and only if M , ρ, ξ |= x : σ for all x : σ ∈ Γ.

• Γ |= M : σ if and only if ∀M , ρ, ξ |= Γ[M , ρ, ξ |= M : σ].

Lemma 4.2. σ ≤ τ ⇒ ∀M , ξ[JσKM
ξ ⊆ JτKM

ξ].

Proof. Induction on the definition of ≤. The only two non-trivial cases can
be proved as follows.

• We take an element x ∈ J(α→ β) ∧ (α→ γ)KM
ξ , so by the definition

we have the first line.

∀d ∈ JαKM
ξ [d · x ∈ JβKM

ξ , d · x ∈ JγKM
ξ]

∀d ∈ JαKM
ξ [d · x ∈ JβKM

ξ ∩ JγKM
ξ]

x ∈ Jα→ (β ∧ γ)KM
ξ

• We take an element x ∈ Jα→ βKM
ξ , so by the definition we have the

first line.

∀d ∈ JαKM
ξ [d · x ∈ JβKM

ξ]

Jα′KM
ξ ⊆ JαKM

ξ , JβKM
ξ ⊆ Jβ′KM

ξ

I.H

∀d ∈ Jα′KM
ξ [d · x ∈ Jβ′KM

ξ]

x ∈ Jα′ → β′KM
ξ

Lemma 4.3. (Soundness). Γ `∧ M : σ ⇒ Γ |= M : σ.

Proof. Induction on the derivation of M : σ.

40

Basis:

• x : σ ∈ Γ. This case is trivial.

• σ ≡ ω. This case is trivial.

Induction Steps:

We take a lambda model M , a term environment ρ and a type envi-
ronment ξ such that they satisfy M , ρ, ξ |= Γ.

• The last rule applied is (→ I).

Γ, [x : α]
....

M1 : β

(M ≡)λx.M1 : α→ β(≡ σ)
(→ I)

M , ρ, ξ |= Γ

[∀a ∈ JαKM
ξ]1

M , ρ[x := a], ξ |= x : α

M , ρ[x := a], ξ |= Γ, x : α

JM1K
M
ρ[x:=a] ∈ JβKM

ξ

I.H

∀a ∈ JαKM
ξ [(Jλx.M1K

M
ρ · a =)JM1K

M
ρ[x:=a] ∈ JβKM

ξ]
1

Jλx.M1K
M
ρ ∈ Jα→ βKM

ξ

M , ρ, ξ |= λx.M1 : α→ β

• The last rule applied is (→ E).
Γ....

M1 : α→ σ

Γ....
N1 : α

(M ≡)M1N1 : σ
(→ E)

M , ρ, ξ |= Γ

JM1K
M
ρ ∈ Jα→ σKM

ξ , JN1K
M
ρ ∈ JαKM

ξ

I.H

∀a ∈ JαKM
ξ [JM1K

M
ρ · a ∈ JσKM

ξ], JN1K
M
ρ ∈ JαKM

ξ

def

JM1K
M
ρ · JN1K

M
ρ ∈ JσKM

ξ

JM1N1K
M
ρ ∈ JσKM

ξ

M , ρ, ξ |= M1N1 : σ

• The last rule applied is (∧ I).
Γ....

M : α

Γ....
M : β

M : α ∧ β(≡ σ)
(∧I)

41

This case is trivial.

• The last rule applied is (≤).
Γ....

M : α α ≤ σ
M : σ

(≤)

This case can be easily proved by Lemma 4.2.

As you can easily see, the simple type assignment system is a subset
of the intersection type assignment system, so soundness stands also for the
former one.

Definition 4.4.

• F={d | d is a filter}.

• For d1, d2 ∈ F , we define the relation · as follows.

d1 · d2 = {β ∈ T | ∃α ∈ d2[α→ β ∈ d1]}.

• Let ρ be a term environment over F . Then we define Γρ as follows.

Γρ = {x : α | α ∈ ρ(x)}.

• We define JMKM
ρ for M ∈ Λ as follows.

JMKM
ρ = {α | Γρ `∧ M : α}(∈ F by Lemma 3.23(1)).

We need to confirm the relation · is defined on F properly, so we shall
prove the following lemma.

Lemma 4.5. d1, d2 ∈ F ⇒ d1 · d2 ∈ F .

Proof. It suffices to prove d1 · d2 is a filter.

• ω ∈ d1 · d2, because ω ≤ ω → ω ∈ d1, so it is a non-empty set.

• β1, β2 ∈ d1 · d2 ⇒ β1 ∧ β2 ∈ d1 · d2.
From the definition of · and filter, we have ∃α1, α2 ∈ d2[α1 → β1, α2 →
β2 ∈ d1] and α1 ∧ α2 ∈ d2. By the definition of ≤, we have ((α1 →
β1) ∧ (α2 → β2))(∈ d1) ≤ ((α1 ∧ α2) → β1) ∧ ((α1 ∧ α2) → β2) ≤
((α1 ∧ α2)→ (β1 ∧ β2)) ∈ d1.

42

• α ≤ β and α ∈ d1 · d2 ⇒ β ∈ d1 · d2.
From the definition of · and ≤, we have ∃γ ∈ d2[γ → α(≤ γ → β) ∈ d1].

Theorem 4.6.
〈
F , · , J KM

〉
is a lambda model.

Proof. As you can easily see from the definitions above, the relation · and
J KM are properly defined over F . It suffices to check the 6 equations in the
definition of lambda model.

• We take σ ∈ JxKM
ρ , then from the definition we have the first line.

Γρ ∈ F

Γρ `∧ x : σ

σ ∈ filter generated by {α | x : α ∈ Γρ}
3.23(2)

σ ∈ Γρ(= ρ(x))
The converse is trivial.

• We take σ ∈ JMNKM
ρ , then from the definition we have the first line.

Γρ `∧ MN : σ

∃α ∈ T[Γρ `∧ M : α→ σ, Γρ `∧ N : α]
3.25(1)

α→ σ ∈ JMKM
ρ , α ∈ JNKM

ρ

def

σ ∈ JMKM
ρ · JNKM

ρ

def

The converse is trivial.

• This case can be proved as λ-term is considered modulo α-equality.

• We take σ ∈ JMKM
ρ[x:=d], then from the definition we have the first line.

Γρ[x:=d] `∧ M : σ

Γ′ρ, {x : α | α ∈ d} `∧ M : σ
def

Γ′ρ, x : β `∧ M : σ
(?)(for some β ∈ d)

Γ′ρ `∧ λx.M : β → σ
(→ I)

Γρ `∧ λx.M : β → σ

β → σ ∈ Jλx.MKM
ρ

def

σ ∈ Jλx.MKM
ρ · d

def

(?) Actually, we can easily prove the following proposition.

Proposition 4.7. Γ, {x : α | α ∈ d} `∧ M : σ if and only if Γ, x : β `∧
M : σ, for d ∈ F , β ∈ d.

Proof. The proof is trivial, so we omit here.

43

Actually, restraining the set to filter is not necessary. We can prove
this proposition over random set which only need to be closed under
∧.

For the converse, we simply take σ ∈ Jλx.MKM
ρ · d, then from the defi-

nition we have the first line.

β → σ ∈ Jλx.MKM
ρ (β ∈ d)

Γρ `∧ λx.M : β → σ
def

Γ′ρ `∧ λx.M : β → σ
(the free variable lemma)

Γ′ρ, x : β `∧ M : σ
3.25(3)

Γ′ρ, {x : α | α ∈ d} `∧ M : σ

Γρ[x:=d] `∧ M : σ
def

σ ∈ JMKM
ρ[x:=d]

def

• This case can be proved by Lemma 3.25(2).

• This case can be proved by the free variable lemma.

Definition 4.8.

• ξ0(ψi) = {d ∈ F | ψi ∈ d}.

• ρΓ(x) = {α ∈ T | Γ `∧ x : α} (∈ F).

Lemma 4.9.

1. ∀α ∈ T[JαKM
ξ0

= {d ∈ F | α ∈ d}].

2. Γ `∧ M : α⇔ ΓρΓ
`∧ M : α.

3. F , ρΓ, ξ0 |= Γ.

Proof.

1. By induction on the complexity of α.

α ≡ ψi, ω This case is proved from definition.

44

α ≡ σ → τ From the definition, we have:
Jσ → τKM

ξ0
= {d ∈ F | ∀e ∈ JσKM

ξ0
[d · e ∈ JτKM

ξ0
]}.

Then from the I.H, we have:
∀d1 ∈ JσKM

ξ0
[σ ∈ d1] and ∀d2 ∈ JτKM

ξ0
[τ ∈ d2].

So τ ∈ d · e, and from the definition of ·, we have some σ′ ∈ e
such that σ′ → τ ∈ d. In order to show σ → τ ∈ d, we first
take e as the filter generated by σ which is in JσKM

ξ0
. Then we

have ∃n ≥ 1, ∃β1, · · · , βn ∈ {σ, ω}[β1 ∧ · · · ∧ βn ≤ σ′] by Lemma
3.22. By the definition of ≤, we have σ′ → τ ≤ (β1 ∧ · · · ∧ βn)→
τ ≤ (σ ∧ · · · ∧ σ) → τ ≤ σ → τ . So we have σ → τ ∈ d by the
definition of filter.

α ≡ σ ∧ τ This case can be proved from definition.

2. This lemma is trivial, so we omit the proof here.

3. This lemma is trivial, so we omit the proof here.

By the new constructed type environment ξ0 and the special basis, we
can easily prove that β-equality holds in this type assignment system through
semantic equality as follows.

Γ `∧ M : α
ΓρΓ
`∧ M : α

α ∈ JMKM
ρΓ

= JNKM
ρΓ

ΓρΓ
`∧ N : α

Γ `∧ N : α

Theorem 4.10. (Completeness Theorem)
Γ |= M : σ ⇒ Γ `∧ M : σ.

Proof.

F , ρΓ, ξ0 |= M : σ
4.9(3)

Γ |= M : σ

JMKM
ρΓ
∈ JσKM

ξ0

def

σ ∈ JMKM
ρΓ

4.9(1)

ΓρΓ
`∧ M : σ

def

Γ `∧ M : σ
4.9(2)

In [1], Barendregt et al. proved that this intersection type assignment
system is conservative over the simple type assignment system, so the com-
pleteness theorem also stands in the simple type assignment system.

45

4.2 The call-by-value filter model

We will now prove the completeness of TA−.

Definition 4.11. (Type interpretation)

• Let ξ: {ψi} → ΩK, so ξ is a type environment from all type variables
to power set of K.

• ΩK ⊆P(K).

• We define K as the smallest subset of D satisfying the following condi-
tion.

X → Y := {p ∈ K | ∀u ε X[p · u ∈ Y]}
∀X, Y ∈ ΩK[K,X ∩ Y,X ∪ Y,X → Y ∈ ΩK]

• We define the relation ε as a subset of D × ΩK satisfying following
conditions.

For all u ∈ D and p ∈ K:

1. u ε K.

2. u ε X and X ⊆ Y implies u ε Y .

3. u ε X and u ε Y implies u ε X ∩ Y .

4. p ε X ∪ Y implies p ε X or p ε Y .

5. The following three conditions are equivalent for v ∈ D:

(a) v ε X → Y

(b) v · q ε Y for all q ε X with q ε K.

(c) v · u ε Y for all u ε X

• The interpretation of σ ∈ T in a call-by-value lambda model M via a
type environment ξ, denoted as JσKM

ξ ∈ ΩK, can be defined as follows.

– JωKM
ξ = K

– JψiK
M
ξ = ξ(ψi)

– Jσ → τKM
ξ = JσKM

ξ → JτKM
ξ

– Jσ ∧ τKM
ξ = JσKM

ξ ∩ JτKM
ξ

– Jσ ∨ τKM
ξ = JσKM

ξ ∪ JτKM
ξ

• Let ρ be a term environment in D, M be a call-by-value lambda model.

46

• M , ρ, ξ |= M : σ if and only if JMKM
ρ ε JσKM

ξ .

• M , ρ, ξ |= Γ if and only if M , ρ, ξ |= x : σ for all x : σ ∈ Γ.

• Γ |= M : σ if and only if ∀M , ρ, ξ |= Γ[M , ρ, ξ |= M : σ].

Lemma 4.12. σ ≤ τ ⇒ ∀M , ξ[JσKM
ξ ⊆ JτKM

ξ].

Proof. This lemma can be proved by a similar proof as Lemma 4.2. We here
only discuss the non-trivial case (α→ γ) ∧ (β → γ) ≤ α ∨ β → γ.

p ∈ J(α→ γ) ∧ (β → γ)KM
ξ

p ∈ Jα→ γKM
ξ ∩ Jβ → γKM

ξ

def
q ε Jα ∨ βKM

ξ

p ε JαKM
ξ or p ε JβKM

ξ

def

p · q ε JγKM
ξ

p ∈ Jα ∨ βKM
ξ → JγKM

ξ

def

p ∈ Jα ∨ β → γKM
ξ

def

Lemma 4.13. (Soundness). Γ `TA M : σ ⇒ Γ |= M : σ.

Proof. We prove this lemma by induction on the derivation of M : σ.

Axiom: We have JMKM
ρ (∈ D) ε JωKM

ξ (= K) by the definition of ε .

Induction Steps:

(∧I) The proof ends up as lower left, and can be proved as lower right.
....

M : α

....
M : β

M : α ∧ β

JMKM
ρ ε JαKM

ξ

I.H
JMKM

ρ ε JβKM
ξ

I.H

JMKM
ρ ε Jα ∧ βKM

ξ

def

(≤) This case can be proved by Lemma 4.12.

(→ E) The proof ends up as lower left, and can be proved as lower right.

....
M : α→ β

....
N : α

MN : β

JMKM
ρ ε Jα→ βKM

ξ

I.H

JMKM
ρ · p ε JβKM

ξ (p ε JαKM
ξ)

def
JNKM

ρ ε JαKM
ξ

I.H

JMKM
ρ · JNKM

ρ ε JβKM
ξ

JMNKM
ρ ε JβKM

ξ

def

47

(→ I) The proof ends up as lower left, and can be proved as lower right.

[x : α]
....

M : β

λx.M : α→ β

JMKM
ρ[x:=p] ε JβKM

ξ (p ε JαKM
ξ)

I.H

Jλx.MKM
ρ ε Jα→ βKM

ξ

def

(∨E) The proof ends up as lower left, and can be proved as lower right.

N : α ∨ β

[x : α]
....

M : γ

[x : β]
....

M : γ

M [x := N] : γ

JMKM
ρ[x:=p] ε JγKM

ξ (p ε JαKM
ξ)

I.H
JNKM

ρ ε Jα ∨ βKM
ξ

I.H

JNKM
ρ ε JαKM

ξ

JMKM
ρ[x:=JNKM

ρ] ε JγKM
ξ

Note: JNKM
ρ ε JβKM

ξ case can be treated similarly.

Definition 4.14.

• A prime filter p is a filter with the following property.

α ∨ β ∈ p⇒ α ∈ p or β ∈ p

• FP = {p | p is a prime filter}.

• For d1, d2 ∈ F , we define the relation · as follows.

d1 · d2 = {β ∈ T | ∃α ∈ d2[α→ β ∈ d1]}.

• Let ρ be a term environment over FP . Then we define Γρ as follows.

Γρ = {x : α | α ∈ ρ(x)}.

• We define JMKM
ρ for M ∈ Λ as follows.

JMKM
ρ = {α | Γρ `TA− M : α}.

Theorem 4.15.
〈
F ,FP , · , J KM

〉
is a call-by-value lambda model.

Proof. It suffices to verify the seven clauses in the definition under this struc-
ture.

1. We take σ ∈ JxKM
ρ , then from the definition we have the first line.

Γρ `TA− x : σ

σ ∈ ρ(x)
(?)

48

(?) By induction on the derivation of Γρ `TA− x : σ, the only non-trivial
case is when the last applied rule is (∨E)− as follows.

(x 6≡ y) (x ≡ y)

....
y : α ∨ β

[y : α]
....

x : σ

[y : β]
....

x : σ
x : σ

....
x : α ∨ β

[x : α]
....

x : σ

[x : β]
....

x : σ
x : σ

The left case can be easily proved by I.H with the free variable lemma,
so we only prove the right one.

α ∨ β ∈ ρ(x)
I.H

α ∈ ρ(x) or β ∈ ρ(x)
ρ(x) ∈ FP

Γρ `TA− x : σ

σ ∈ ρ(x)
I.H

The converse is trivial.

2. We take σ ∈ JMNKM
ρ , then from the definition we have the first line.

Γ `TA− MN : σ
Γ `TA− M : α→ σ

(3.49)

α→ σ ∈ JMKM
ρ

Γ `TA− MN : σ
Γ `TA− N : α

(3.49)

α ∈ JNKM
ρ

σ ∈ JMKM
ρ · JNKM

ρ

The converse is trivial.

3. This case is trivial, because one only need to prove the following propo-
sition.

Γρ `TA− M : α⇒ Γ[x := y] `TA− M [x := y] : α

4. We take σ ∈ Jλx.MKM
ρ · k, then from the definition we have the first

line.
Γρ `TA− λx.M : α→ σ (α ∈ k)

Γρ �FV (λx.M), x : α `TA− M : σ
3.49

σ ∈ JMKM
ρ[x:=k]

def

For the converse, we take σ ∈ JMKM
ρ [x := k], then from the definition

we have the first line.
Γρ �FV (λx.M), {x : β | β ∈ k} `TA− M : σ

Γρ �FV (λx.M), x : α `TA− M : σ
(?)

Γρ �FV (λx.M)`TA− λx.M : α→ σ

σ ∈ Jλx.MKM
ρ · k

def

(?) One can easily prove that The Proposition 4.7 still stands under
TA− system.

49

5. We take σ ∈ Jλx.MKM
ρ , then from the definition we have the first line.

Γρ �FV (λx.M)`TA− λx.M : σ

Γρ �FV (λx.M), x : σi `TA− M : βi,
n∧
i=1

(σi → βi) ≤ σ

3.49(2)

βi ∈ JMKM
ρ[x:=↑σi] = JNKM

ρ[x:=↑σi]

Γρ �FV (λx.N), x : σi `TA− N : βi,
n∧
i=1

(σi → βi) ≤ σ

def

Γρ �FV (λx.N)`TA− λx.N : σ
(∧I), (≤)

Γρ `TA− λx.N : σ
Weakening

σ ∈ Jλx.NKM
ρ

def

We must verify that ↑ σi is a prime filter. Suppose α ∨ β ∈↑ σi, then
by the definition, we have σi ∧ ω ∧ · · · ∧ σi ≤ α ∨ β. By Proposition
3.44, we have σi ∧ ω ∧ · · · ∧ σi ≤ α or σi ∧ ω ∧ · · · ∧ σi ≤ β.

6. This case can be proved by the free variable lemma.

7. (M ≡ x) case is trivial, so we only treat (M ≡ λx.N) case here. Sup-
pose α ∨ β ∈ Jλx.NKM

ρ , then by the definition, we have the first line.
Γρ �FV (λx.N)`TA− λx.N : α ∨ β

Γρ �FV (λx.N), x : σi `TA− N : βi,
n∧
i=1

(σi → βi) ≤ α ∨ β
3.49(2)

Γρ �FV (λx.N), x : σi `TA− N : βi,
n∧
i=1

(σi → βi) ≤ α(or β)
3.44

Γρ `TA− λx.N : α(or β)
(→ I), (≤)

α ∈ Jλx.NKM
ρ or β ∈ Jλx.NKM

ρ

def

Lemma 4.16. For u, v ∈ F and p ∈ FP ,

1. α 6∈ u⇒ ∃q ∈ FP [u ⊆ q, α 6∈ q].

2. u · v ⊆ p⇒ ∃q ∈ FP [u ⊆ q, q · v ⊆ p].

3. u · v ⊆ p⇒ ∃q ∈ FP [v ⊆ q, u · q ⊆ p].

Proof. We enumerate with infinite repetition all union types, and label them
as α0∨β0, α1∨β1 · · · . Then we inductively construct a sequence u0, u1, u2 · · ·
of filters such that u0 ⊆ u1 ⊆ · · · .

50

1. We can add an extra restriction to the sequence that all elements satisfy
α 6∈ uk. When k = 0 which means that α 6∈ u0(= u), it naturally
stands. Suppose we have constructed uk, then it leaves two possibilities
for ↑ (uk ∪ {αk ∨ βk}):

α ∈↑ (uk ∪ {αk ∨ βk})
or

α 6∈↑ (uk ∪ {αk ∨ βk}).
Under the latter case, we can prove by contradiction that either α 6∈↑
(uk ∪ {αk}) or α 6∈↑ (uk ∪ {βk}) as follows.

α ∈↑ (uk ∪ {αk}, α ∈↑ (uk ∪ {βk}
n∧
i=1

γi ∧ αk ≤ α,
m∧
j=1

δj ∧ βk ≤ α

def(?)

n∧
i=1

γi ∧
m∧
j=1

δj ∧ (αk ∨ βk) ≤ α

α ∈↑ (uk ∪ {αk ∨ βk})
⊥

(?) γi ∈ uk, δj ∈ uk.
So we define uk+1 as follows.

uk+1 =


↑ (uk ∪ {αk} α 6∈↑ (uk ∪ {αk}
↑ (uk ∪ {βk} α 6∈↑ (uk ∪ {βk}
uk Otherwise

Finally, we define that q :=
∞⋃
k=0

uk, then u(= u0) ⊆ q, α 6∈ q by the

definition. The proof of q being prime is the same as the following
proof, so omitted here.

2. We can add an extra restriction to the sequence that all elements satisfy
uk · v ⊆ p. When k = 0 which means that u0(= u) · v ⊆ p, it naturally
stands. Suppose we have constructed uk, then it leaves two possibilities
for ↑ (uk ∪ {αk ∨ βk}) · v:

↑ (uk ∪ {αk ∨ βk}) · v ⊆ p

or
↑ (uk ∪ {αk ∨ βk}) · v 6⊆ p.

Under the former case, we can prove by contradiction that either ↑
(uk ∪ {αk}) · v ⊆ p or ↑ (uk ∪ {βk}) · v ⊆ p as follows.

51

∃σ, τ 6∈ p[σ ∈↑ (uk ∪ {αk}) · v, τ ∈↑ (uk ∪ {βk}) · v]
n∧
i=1

γi ∧ αk ≤ σ′ → σ,
m∧
j=1

δj ∧ βk ≤ τ ′ → τ

def(?)

n∧
i=1

γi ∧
m∧
j=1

δj ∧ (αk ∨ βk) ≤ σ′ ∧ τ ′ → σ ∨ τ
(??)

σ ∨ τ ∈↑ (uk ∪ {αk ∨ βk}) · v ⊆ p(∈ FP)

σ(or τ) ∈ p def

⊥
(?) γi ∈ uk, δj ∈ uk, σ′ ∈ v, τ ′ ∈ v.

(??) Suppose we have α1 ∧ β1 ≤ σ1 → τ1 and α2 ∧ β2 ≤ σ2 → τ2, we
can prove that (α1 ∧ α2) ∧ (β1 ∨ β2) ≤ σ1 ∧ σ2 → τ1 ∨ τ2 as follows.

(α1 ∧ α2) ∧ (β1 ∨ β2) ≤ ((α1 ∧ α2) ∧ β1) ∨ ((α1 ∧ α2) ∧ β2)

≤ (α1 ∧ β1) ∨ (α2 ∧ β2)

≤ (σ1 → τ1) ∨ (σ2 → τ2)

≤ (σ1 ∧ σ2 → τ1 ∨ τ2) ∨ (σ1 ∧ σ2 → τ1 ∨ τ2)

∼ σ1 ∧ σ2 → τ1 ∨ τ2

So we define uk+1 as follows.

uk+1 =


↑ (uk ∪ {αk} ↑ (uk ∪ {αk}) · v ⊆ p

↑ (uk ∪ {βk} ↑ (uk ∪ {βk}) · v ⊆ p

uk Otherwise

Finally, we define that q :=
∞⋃
k=0

uk, then u(= u0) ⊆ q, q · v ⊆ p by the

definition. It suffices to show that q is prime as follows.
∃n[αn ∨ βn = αk ∨ βk, αn ∨ βn ∈ un](?)

↑ (un ∪ {αn ∨ βn}) · v ⊆ p

αn(or βn) ∈ un+1
def

αn(or βn) ∈ q
(?) One should notice that the reason why we need infinite repetition
of all union types lies here. Because when the sequence reaches αn∨βn
the first time, it may not be in the un, therefore we need to loop until
αn∨βn is included in the un′ so that when the sequence reaches αn∨βn
next time the deduction above will work.

52

3. This lemma can be proved similarly as above, so omitted here, but one
should notice that we define v as the sequence this time which means
that u0 = v.

Definition 4.17.

• Let Γ be a prime basis.

ρΓ := {α | Γ `TA− x : α}

• The type environment ξ is defined as follows.

ξ(α) := {p ∈ FP | α ∈ p}

• Pup(T) is defined as the set of all upward closed subsets of T with
respect to ⊆.

• ε : F ×Pup(FP)
u ε X := ∀p ∈ FP [u ⊆ p⇒ p ∈ X]

Note: Under this convenient definition, it is easy to prove that when
u ∈ FP :

u ∈ X ⇔ u ε X.

Lemma 4.18. ε is defined properly.

Proof. Induction on the definition of the type interpretation concerning ε .
Here we only treat the non-trivial case 5.

(5b)⇒(5a)

(5b)v · q ε Y (q ε X, q ∈ FP)

[u ε X]2, [r ∈ FP , p · u ⊆ r]1

∃q ∈ FP [u ⊆ q, p · q ⊆ r]
4.16

[p ∈ FP , v ⊆ p]3

v ⊆ p

v · q ⊆ p · q ⊆ r

r ∈ Y
p · u ε Y 1

p ∈ X → Y
2

(5a)v ε X → Y
3

(5a)⇒(5c)

(5a)v ε X → Y

[u ε X]1, [r ∈ FP]2, [v · u ⊆ r]3

∃p ∈ FP [[v ⊆ p]1, [p · u ⊆ r]2]
4.16

p ε X → Y
p · u ε Y 1

r ∈ Y 2

(5c)v · u ε Y 3

53

(5c)⇒(5b)
∀u ε X[v · u ε Y (u ∈ F)]

∀q ε X[v · q ε Y (q ∈ FP)]

Lemma 4.19. For every u ∈ F , α ∈ T, u ε JαKM
ξ ⇔ α ∈ u.

Proof. We shall prove the following proposition firstly.

α ∈ u⇔ ∀p ∈ FP [u ⊆ p⇒ α ∈ p](asis)
(⇒) This case is trivial.
(⇐) This case can be proved by Lemma 4.16(1), which is its contra-

position .
We prove this lemma by induction on the complexity of α.

Basis:

(α ≡ ω) This case is trivial.

(α ≡ x)

α ∈ u
∀p ∈ FP [u ⊆ p⇒ α ∈ p] (asis)

p ∈ JαKM
ξ

def

u ε JαKM
ξ

u ε JαKM
ξ

∀p ∈ FP [u ⊆ p⇒ p ∈ JαKM
ξ (⇒ α ∈ p)]

α ∈ u

Induction Steps:

(α ≡ α1 ∧ α2)

α1 ∧ α2 ∈ u
α1 ∈ u, α2 ∈ u (≤)

u ε Jα1K
M
ξ , u ε Jα2K

M
ξ

I.H

u ε Jα1 ∧ α2K
M
ξ

def

u ε Jα1 ∧ α2K
M
ξ

u ε Jα1K
M
ξ , u ε Jα2K

M
ξ

α1 ∈ u, α2 ∈ u I.H

α1 ∧ α2 ∈ u
(α ≡ α1 ∨ α2)

α1 ∨ α2 ∈ u
∀p ∈ FP [u ⊆ p⇒ α1 ∨ α2 ∈ p]

(asis)

α1 ∈ p or α2 ∈ p (def)

α1 ∈ u or α2 ∈ u (asis)

u ε Jα1K
M
ξ or u ε Jα2K

M
ξ

I.H

u ε Jα1 ∨ α2K
M
ξ

def

u ε Jα1 ∨ α2K
M
ξ

u ε Jα1K
M
ξ or u ε Jα2K

M
ξ

α1 ∈ u or α2 ∈ u I.H

α1 ∨ α2 ∈ u (≤)

(α ≡ α1 → α2)

54

u ε Jα1 → α2K
M
ξ , p ∈ FP , u ⊆ p

p ∈ Jα1K
M
ξ → Jα2K

M
ξ

α1 ∈↑ (α1)

↑ (α1) ε Jα1K
M
ξ

p· ↑ (α1) ε Jα2K
M
ξ

α2 ∈ p· ↑ (α1)
I.H

β → α2 ∈ p
α1 → α2 ∈ u (?)

(?) By definition, we have ∃τ1, · · · , τn ∈ {α1, ω}[τ1∧ · · · ∧ τn ≤ β], then
we can derive that α1 ∼ α1 ∧ · · · ∧ α1 ≤ τ1 ∧ · · · ∧ τn so that α1 ≤ β.

α1 → α2 ∈ u ∀v ε Jα1K
M
ξ [α1 ∈ v]

I.H

α2 ∈ u · v
u · v ε Jα2K

M
ξ

I.H

u ε Jα1 → α2K
M
ξ

Lemma 4.20. If Γ 6`TA− M : α, then there exists a prime basis ∆ such that
Γ ⊆ ∆ and ∆ 6`TA− M : α.

Proof. We can prove this lemma by constructing a sequence as the proof of
Lemma 4.16, so we omit the detail here and start with the discussion about
∆k. Suppose we have constructed ∆k, then either

∆k `TA− xk : βk ∨ γk or ∆k 6`TA− xk : βk ∨ γk.
In the former case, we can prove that either
∆k ∪ {xk : βk} 6`TA− M : α or ∆k ∪ {xk : γk} 6`TA− M : α
by contradiction with (∨E)−. So we define ∆k+1 as follows.

∆k+1 =


∆k ∪ {xk : βk} ∆k ∪ {xk : βk} 6`TA− M : α

∆k ∪ {xk : γk} ∆k ∪ {xk : γk} 6`TA− M : α

∆k Otherwise

Finally, we define that ∆ :=
∞⋃
k=0

∆k, then everything follows as the proof

of Lemma 4.16.

Theorem 4.21. (Completeness Theorem)
Γ |= M : σ ⇒ Γ `TA− M : σ.

55

Proof. We prove this theorem by its contra-position as follows.
Γ 6`TA− M : α

Γ ⊆ ∆,∆ 6`TA− M : α
4.20

Γρ∆
6`TA− M : α

(?)

α 6∈ JMKM
ρ∆

JMKM
ρ∆
ε/ JαKM

ξ

4.19

Γ 6|= M : σ
(??)

(?) For all x : γ ∈ Γρ∆
, we have γ ∈ ξ∆(x), then ∆ `TA− x : γ by definition.

(??) We prove M , ρ∆, ξ |= Γ as follows

∀{x : γ} ∈ Γ(⊆ ∆) JxKM
ρ∆

:= {α | ∆ `TA− x : α}

γ ∈ JxKM
ρ∆

∀p ∈ FP [JxKM
ρ∆
⊆ p⇒ p ∈ JγKM

ξ (γ ∈ p)]

JxKM
ρ∆
ε JγKM

ξ

Corollary 4.22.

• The following are equivalent.

– Γ `TA M : α.

– Γ `TA− M : α.

– Γ |= M : α.

• TA system is invariant under v-equality defined as follows.

M : α M =v N
N : α

Appendix A The original proof for Lemma

3.20

Proposition A.1. α1 ∧ · · · ∧ αn ≤ β with n ≥ 1, β 6∼ ω ⇒
∃k ≤ n[αk 6∼ ω].

Proof. We prove this proposition by contradiction. Suppose ∀k ≤ n[αk ∼ ω],
then we have α1 ∧ · · · ∧ αn ≥ ω, then β ≥ ω by (trans), then β ∼ ω by
definition which finally leads to a contradiction.

Lemma A.2. (µ1 → ν1) ∧ · · · ∧ (µn → νn) ≤ σ → τ and τ 6∼ ω, then there
are i1, · · · , ik ∈ {1, · · · , n} such that µi1∧· · ·∧µik ≥ σ and νi1∧· · ·∧νik ≤ τ .

56

Proof. It suffices to show that following proposition holds.

For n, n′,m,m′ ≥ 0 that for all l ∈ {1, · · · , n′}
[(µ1 → ν1) ∧ · · · ∧ (µn → νn) ∧ ϕj1 ∧ · · · ∧ ϕjm ∧ ω ∧ · · · ∧ ω ≤
(σ1 → τ1) ∧ · · · ∧ (σn′ → τn′) ∧ ϕ′j1 ∧ · · · ∧ ϕ

′
jm′
∧ ω ∧ · · · ∧ ω]

and τl 6∼ ω ⇒
∃i1, · · · , ik ∈ {1, · · · , n} [µi1 ∧ · · · ∧ µik ≥ σl and νi1 ∧ · · · ∧ νik ≤ τl].

By induction on the definition of ≤ .

• (α ≤ α). ∀l ∈ {1, · · · , n′}[µl ≡ σl, νl ≡ τl]. n = n′, k = 1, i1 = l.
τl 6∼ ω ⇒[µi1 ≥ σl and νi1 ≤ τl], by (ref).

• (ω ≤ ω → ω). ¬(∃l[τl 6∼ ω]), so this case is trivial.

• (α ≤ ω). ¬(∃l[τl 6∼ ω]), so this case is trivial.

• (α ≤ α ∧ α). Reduce to (α ≤ α).

• (α ∧ β ≤ α(β)). Reduce to (α ≤ α).

• ((α→ β) ∧ (α→ γ) ≤ α→ (β ∧ γ)).

(β ∧ γ ∼ ω) ¬(∃l[τl 6∼ ω]), so this case is trivial.

(β ∧ γ 6∼ ω) l = 1, k = 2, i1 = 1, i2 = 2. By (ref) and (α ≤ α ∧ α), we
have µi1∧µi2 ≥ σl and νi1∧νi2 ≤ τl. (α∧α ≥ α and β∧γ ≤ β∧γ).

• (∧-mono)
From the definition, we have

(1) ∀lα ∈ {1, · · · , n′α}[α ≤ α′ and τlα 6∼ ω ⇒ ∃i1 · · · iα ∈ {1, · · · , nα}
µi1 ∧ · · · ∧ µiα ≥ σlα , νi1 ∧ · · · ∧ νiα ≤ τlα].

(2) ∀lβ ∈ {1, · · · , n′β}[β ≤ β′ and τlβ 6∼ ω ⇒ ∃i1 · · · iβ ∈ {1, · · · , nβ}
µi1 ∧ · · · ∧ µiβ ≥ σlβ , νi1 ∧ · · · ∧ νiβ ≤ τlβ].

n = nα + nβ , n′ = n′α + n′β.
We combine the two set as follows.
{1, · · · , n} = {1, · · · , nα, 1 + nα, · · · , nβ + nα}(n′ is the same).
∀l ∈ {1, · · · , n′}[α ∧ β ≤ α′ ∧ β′ and τl 6∼ ω]⇒

(l ≤ nα) By (1), i1 = i1, · · · , ik = iα.

(nα < l ≤ nα + nβ) By (2), i1 = i1 + nα, · · · , ik = iβ + nα.

• (→-mono) l = 1.
Suppose τl 6∼ ω, then we can use the assumption, k = 1, ik = 1.
(α ≡)µ1 ≥ σl(≡ α′) and (β ≡)ν1 ≤ τl(≡ β′).

57

• (α ≤ β ≤ γ ⇒ α ≤ γ) From the definition we have

(1) ∀lβ ∈ {1, · · · , nβ}[α ≤ β and τlβ 6∼ ω ⇒ ∃i1 · · · iα ∈ {1, · · · , nα}
µi1 ∧ · · · ∧ µiα ≥ σlβ , νi1 ∧ · · · ∧ νiα ≤ τlβ].

(2) ∀lγ ∈ {1, · · · , nγ}[β ≤ γ and τlγ 6∼ ω ⇒ ∃i1 · · · iβ ∈ {1, · · · , nβ}
µi1 ∧ · · · ∧ µiβ ≥ σlγ , νi1 ∧ · · · ∧ νiβ ≤ τlγ].

{1, · · · , n} = {1, · · · , nα} , {1, · · · , n′} = {1, · · · , nγ}.
∀l ∈ {1, · · · , n′}[α ≤ γ and τl 6∼ ω]⇒

τl(≡ τlγ) 6∼ ω

µi1 ∧ · · · ∧ µiβ ≥ σl , νi1 ∧ · · · ∧ νiβ ≤ τl

µik ≥ µi1 ∧ · · · ∧ µiβ(µik 6∼ ω)

µi1 ∧ · · · ∧ µiα ≥ µik
µi1 ∧ · · · ∧ µiα ≥ σl

(trans)

(1)

A.1

(2)

We can construct such set as follows.
∀n ∈ {1, · · · , β}
[νin 6∼ ω ⇒ νn ≡ νi1 ∧ · · · ∧ νiα]
By (1), we have νi1 ∧ · · · ∧ νiα ≤ νin .
[νin ∼ ω ⇒ νn ≡ νiα]
By (ω-top), we have νiα ≤ νin .
So we have
ν1 ∧ · · · ∧ νβ ≤ νi1 ∧ · · · ∧ νiβ ≤ τl.

Acknowledgement

I want to thank everyone in the Ishihara Lab sincerely for their kind
help during my stay in JAIST. I really appreciate the tender guidance with
patience received from my supervisor Ishihara without whom I can never
finish this thesis.

References

[1] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini, “A filter lambda
model and the completeness of type assignment 1,” The journal of
symbolic logic, vol. 48, no. 4, pp. 931–940, 1983.

58

[2] H. Ishihara and T. Kurata, “Completeness of intersection and union type
assignment systems for call-by-value λ-models,” Theoretical Computer
Science, vol. 272, no. 1-2, pp. 197–221, 2002.

[3] B. Henk, “the lambda calculus: its syntax and semantics,” Studies in
logic and the foundations of Mathematics, 1984.

[4] H. Barendregt, W. Dekkers, and R. Statman, Lambda calculus with
types. Cambridge University Press, 2013.

[5] F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro, “Intersection and
union types: syntax and semantics,” Information and Computation, vol.
119, no. 2, pp. 202–230, 1995.

[6] A. S. Troelstra and H. Schwichtenberg, Basic proof theory. Cambridge
University Press, 2000, vol. 43.

59

