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Abstract

Machine translation is one of the most active research areas in natural language processing
(NLP) field. Although the history of machine translation study can be traced back to
the middle of last century, until recently, most of the research is ranged from rule-based
direct translation to interlingua method to statistical machine translation (SMT) method.
Neural machine translation (NMT) is similar to an idea that appeared firstly in the
1990s, but no further development was undergone because of the constraints of data and
computation resources at that time.

As the rise of deep learning, we have witnessed a great number of impressive achieve-
ments in various fields, especially computer vision, speech recognition and natural lan-
guage processing. Of course, it also brings a revolution to machine translation. It is the
appearance of NMT, which starts from using the neural network as a component in a
phrase-based SMT system, and later developed to a pure neural network machine trans-
lation architecture. Although NMT has achieved a lot of impressive results, it still has
many challenges, and it needs to make more refinements. Current most successful NMT
models include three types: the recurrent neural network (RNN) based, the convolutional
neural network (CNN) based and the pure attention based Encoder-Decoder sequence-to-
sequence model. In this thesis, we focus on the RNN based one, especially it’s decoding
process because the current decoding process normally uses only unidirectional informa-
tion of target sentence leaves the bidirectional information unexploited. Even though
there are several works about using bidirectional information of target sentence, you have
to train the backward model first, which means longer training time and bigger parameter
size. So it is worth to explore training forward and backward decoding in an integrated
model.

This thesis presents our research on NMT and our contributions: (1) we implement
an NMT model, and make it becomes a strong baseline to compare with state-of-art
models in terms of BLEU score through exploring parameters; (2) we implement several
multi-task learning models to make bidirectional decoding and compare these models with
each other and baseline, and then analyze the real translation result; (3) we also propose
a regularization way to build bidirectional decoder and compare with other models, and
analyze the translation result; (4) we combine the multi-task learning model and regu-
larization model to make a combined model, which achieve further improvement than
baseline model.

At first, we implemented a prevalent NMT model, the RNN based Encoder-Decoder
model with attention mechanism. In this model, the source and target sentences are just



viewed as sequences of tokens, and our model translates sequences in the source language
to sequences in the target language. Based on this basic model, we explore the influence of
beam size and auxiliary length and coverage penalty in the beam search decoding process
to the translation result. By doing this, we hope to achieve a strong baseline model
that can compete with state-of-art models. Our result shows in our model, the optimal
beam size ranges from 5 to 10 and if we pass some points, the increase will not help
translation and even make the results worse. The reason might be that the big beam size
makes a shorter translation, which can lead to worse performance. And also for length and
coverage penalty parameters, in terms of BLEU score, it can make a big improvement when
compared with baseline model, especially when both of them take an approximate value
of 0.33. However, in terms of NIST score, it seems there is no substantial improvement
in the translation result. And for both metrics, it shows that both big length penalty
and big coverage penalty does not help to improve translation results. Moreover, it can
make the performance getting worse. After choosing the parameters, we achieve a strong
baseline model, which has better performance than many state-of-arts models.

Our second experiment presented here is focusing on the multi-task learning (MTL)
model, which takes forward and backward decoding as two related tasks and trains them
together with some components shared between them. The sharable components include
attention component, decoder word embedding, and generator, which outputs prediction
from hidden states. According to sharing components, we proposed several models, in
which some only share one component and some share multiple components at the same
time. After implementing and training models, we make comparison among these models
and baseline model. The result shows that the proposed models indeed make an im-
provement when compared with baseline model, especially for the model with sharing
generator and the model with sharing both embedding and generator. When we did some
deeper analysis of the real translation results, we found that the best-proposed MTL
model actually captured more information than the baseline. However, this kind of shar-
ing component model is a quite indirect way to make a connection between the forward
and backward decoding. We can see that it will make worse results or no improved results
when sharing some components, like sharing attention mechanism, and we do not know
the reason clearly.

To make a more direct interaction between the forward and backward decoding, we
can make a regularization directly between hidden states of forward and backward. We
proposed two models. The first one usesL2 regularization loss directly between the for-
ward and backward hidden states. But this method will make less flexibility of our model
to produce hidden states. To make more flexible, we proposed the second model which
add an affine transformation layer between the forward and backward hidden states. It
transforms forward hidden states first before it calculates L2 loss. Next, we implemented
these two models and trained them with weight annealing technique, then compared their
results with baseline model. We find these two models have better performance than
baseline model. And between two proposed model, the model which has affine layer can
achieve better results. It can even achieve higher results than the MTL models. When we
analyze the translation sentence, it indeed captures more information than the baseline.
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However, for this model, the disadvantage is that we need to choose a good weight value
for the regularization loss term.

After proposed two different ways to exploit bidirectional information of target sen-
tences, we proposed two new models that take the best setting from MTL model, which
is sharing embedding and generator model, and apply two kinds of regularization from
above. We implement two models and compare them with the former proposed models
and baseline model. We find it not only outperform the baseline model, but it also outper-
forms the former models, especially for the model with L2 regularization have an affine
layer. It becomes the strongest model among all proposed model. For deep analysis, we
compare the performance of the best model and the baseline on different sentence length
data. And we find the proposed model help the model to translate longer sentence a lot.
Besides, for the generality of the proposed model, we also run several selected proposed
models in more translation direction. It shows similar improvements. And we also run
proposed models on the large dataset to further support the effectiveness of our proposed
model. The result demonstrates the effectiveness of our model even training on the big
dataset.

Although our work has several limitations, at least it can provide some help for other
research work in this field. We wish the method we proposed here can inspire more sim-
ilar ideas. The proposed methods and finding not only can be applied to NMT field,
but also can be applied to many other tasks such as question answering and document
summarization, or even image caption that are using RNN based Encoder-Decoder model.

Keywords: natural language processing, neural machine translation, sequence-to-sequence
model, bidirectional decoding, multi-task learning, regularization
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Chapter 1

Introduction

In this chapter, we will give an introduction about the background of the research problem,
the motivation to do this research, and the ultimate goals of this research.

1.1 Background

Nowadays, because of the development of the Internet and Social Network Software (SNS),
everyone can share their own opinions with other people. At the same time, these things
also make the distance between people become shorter, it is easy for us to access the
information from other countries by ourselves. However, even if we can access the foreign
websites, but a lot of them will be in foreign languages, which many of us cannot under-
stand. Beside of Internet, for many cultures there is much knowledge cannot be shared
with the world, because of the barrier of language. Although we can use the human
translator to translate this information, it means high cost and low-speed (Aslerasouli
and Abbasian, 2015). In this way, there is an urgent need to have an automatic transla-
tion system to break this wall, so that people can access information from other languages
freely.

Machine translation is a research field in natural language processing (NLP). It can
be traced down to the middle of 20th century when Warren Weaver first time published
his influential Warren Weaver’s memorandum (Hutchins, 1997). Machine translation aims
to automatically translate the content from one source language to the target language.
According to the requirement of the speed and quality, the result of machine translation
can be used to three main purposes: assimilation, dissemination, and communication,
which include the range from rough just for understanding the content to translate the
text for publication. And because machine translation is a high-level task in NLP area, so
the development of it can also boost many other tasks in NLP area. For example, current
very widely used attention mechanism was first mentioned in a machine translation model
(Bahdanau et al., 2014).

From the early days, many approaches have been explored in machine translation
area, ranging from rule-based direct translation, to transfer methods which use more
advanced way to include linguistic knowledge like morphological and syntactic informa-
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source target
language language
document document

Figure 1.1: Ilustration of a machine translation system

tion, and up to some interlingua methods that use an abstract meaning representation.
Recently, the most widespread model of machine translation is phrase-based statistical
machine translation (SMT) model, which divide the sentence into small blocks called
phrase and have several separately engineered subcomponents.

However, as the era of big data and big computation come, the deep learning tech-
nique achieves a great amount of success in many fields including NLP field. One of
the examples that deep learning succeeded in NLP is the neural machine translation
(NMT)(Bahdanau et al., 2014; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014),
in which impressive performances can be seen. It outperformed the previously dominant
phrase-based SMT method and became the state-of-art approach (Sennrich et al., 2017a;
Vaswani et al., 2017; Yang et al., 2017) to machine translation task. Furthermore, NMT
has already been introduced into the real world service and applications by many com-
panies, such as Google (Wu et al., 2016), Microsoft and Yandex. In a recent paper, there
is one NMT model that even achieves human parity performance on Chinese to English
language pair (Hassan et al., 2018) in terms of BLEU score. Beside of better performance,
another big advantage of NMT is its end-to-end approach, which means we do not need
manual engineers the subcomponents of a system like SMT, and we just need to feed the
input and output language pair to our system to train it.

Currently, in terms of the neural network architecture used in the models, the state-
of-art NMT models can mainly be divided into three categories:

e Recurrent neural network (RNN) based sequence-to-sequence model. This is
the most popular and vanilla model for neural machine translation and also the first
proposed model. The source words will be mapped into word embeddings and then
pass to RNN encoder, and the encoder will encode source sentence into a sentence
representation, which will be feed into decoder RNN decoder as the initial hidden
state. Latter, RNN decoder will output target sentence prediction with the help of
attention mechanism to check encoder hidden states. The advantage of this model
is that it has been studied longest time, and there is much-related research work. So



it is easy to find a mature model and already well-implemented model code (Klein
et al., 2017; Neubig, 2015; Sennrich et al., 2017b).

e Convolutional neural network (CNN) based sequence-to-sequence model (Gehring
et al., 2016, 2017). Compare to RNN based model, it is a relatively newer model,
which has been used in many questions after it is proposed. This CNN based model
replace the RNN encoder and decoder to CNN component and can achieve compet-
itive result with RNN based model. The advantage of this kind of model is that
because the CNN components can compute in parallel, the training speed will be
faster than RNN based model.

e Pure attention based (Ahmed et al., 2017; Vaswani et al., 2017) transformer
model. This one is the newest model, which was just proposed in the late of 2017.
Instead of using attentional sequence-to-sequence with some form of recurrence or
convolution like above two, the transformer model avoids the recurrence and con-
volution completely, and only depend on attention mechanism. This model has
achieved state-of-art on several tasks, and now widespread among researchers and
developers.

1.2 Motivation

Although the CNN based sequence-to-sequence model and attention based transformer
model have achieved some good results recently, the RNN based sequence-to-sequence
model is still the most prevalent model for NMT task. There are several reasons for
this. First, it is the most intuitive and easiest one to understand these three models.
When compared with other two, RNN is native to process sequence data, which means it
already has an inductive bias in this model to process sequence data. So when you feed
sequence data into RNN and get sequence data from RNN, it just as its nature. You do
not even need the positional embedding like in transformer. Second, it has many mature
open source research toolkit. In this way, people can easily download these toolkits and
implement their own idea upon it, instead of build from scratch. Last, it still has many
places worth to explore. As the research area about RNN is still developing fast, many
results from it can be used into NMT model to achieve better result, for example, the
new gated recurrent unit (GRU) (Cho et al., 2014) can get competitive than the old long
short-term memory (LSTM) unit with simple structure, and the simple recurrent unit
(SRU) (Lei and Zhang, 2017) can train as fast as CNN. Besides, we can also invent many
new techniques (Xia et al., 2017) about RNN based NMT model to improve performance,
like we will do here.

For RNN based sequence-to-sequence NMT model, the most well-used system will
have multiple layers bidirectional RNN for the encoder, one kind of attention mechanism,
and multiple layers unidirectional RNN for the decoder. Although the encoder is bidirec-
tional, the decoder is always unidirectional, because of the natural property of decoding
process for this sequence-to-sequence model. It has to translate the words one by one and



feed the output word of current time step as input for next time step. In this way, the
decoding process can only translate in one direction at one time.

how —— are — you — <EOS>

T T

<BOS>

Figure 1.2: Example of unidirectional RNN decoder decoding process

On the other hand, bidirectional RNN (Schuster and Paliwal, 1997) have been proved
that it normally can achieve a better result in many NLP tasks, since that bidirectional
RNN can capture richer information from both directions of sequence data. In NMT area,
of course, Sundermeyer et al. (2014) showed that bidirectional RNN can also achieve higher
performance. However, for current popular RNN based sequence-to-sequence attention
model, the only encoder is using bidirectional RNN. Therefore, if we can use the bidirec-
tional information on the decoder side, then we can expect to achieve a better result for
our NMT model.

About using bidirectional information of target language on decoder side in NMT,
there are several papers have made some efforts to explore it. For example, Liu et al.
(2016) tried to train two models on the same dataset, one is left-to-right and one is the
right-to-left model, later they use ensemble method to rerank the result of the left-to-right
model by the right-to-left model. And in another interesting recent paper, Zhang et al.
(2018) use the hidden states from a pretrained right-to-left model as an additional context
for attention component of the left-to-right model, and later output translate result. But
for these two paper, if you want to use the backward information of target language you
have to train a right-to-left model first, and then use rerank trick or attention technique.
So we will ask is there any way to use the bidirectional information in one training model.

To achieve this, the first thing comes to my mind is the multi-task learning (Caruana,
1998) way. In the normal machine learning setting, we will train a single model and make
it perform the desired task. Whereas when we focus on the single model, sometimes we
just ignore some information might help this model get better performance. Specifically,
the information comes from the training signal of the related task. So through sharing
the similar representation between related tasks, we can make our model perform better.
Here, we can think the left-to-right forward decoding and right-to-left backward decoding
as two task, and train them together. We can let them sharing some components and
representatives. In this way, the main task forward translation can get more information
to help the main translation task.



Another way that we can consider to use bidirectional information of target language
is regularization, which is one of the key components in machine learning area. Especially
in deep neural network (Goodfellow et al., 2016), regularization allows the model to
generalize well even when training on a finite training set. Therefore we can think about to
use the information from the backward direction decoder as the regularization to forward
decoder. In this way, the future information will become the regularizer (Serdyuk et al.,
2017) to make forward translation perform better.

The last motivation for this master research is the lack of related implementation and
research about this kind of end-to-end NMT. And actually, in NMT area, there are many
implement detail and tricks when you want to do the research. For example, how many
merge times it should be for byte pair encoding for preprocessing, and what preprocessing
and post-processing technique we should use for current language pair. There are few
articles about these details. So if there is no experienced people gives you suggestion and
you explore by yourself, it will be quite frustrating. So we believe that if we write the
detail about the whole implementation details of our research and talk about the tricks
inside it, it can also help others a lot, especially for the newcomer of this topic.

1.3 Objectives

In this study, we restrict our research mainly on exploring bidirectional decoder of RNN
based sequence-to-sequence NMT model. The goals of us will be:

e We would like to implement a baseline model for neural machine translation. It is
the widespread RNN based sequence-to-sequence with attention model. We would
like do some parameter exploration on this basic model, and make a strong baseline
model, which can compete with the most state-of-art models.

e We would like to implement the different models based on the ideas of multi-task
learning and regularization to make advantage of bidirectional information of target
sentences. The models will be compare with each other and baseline. We also want
to do a deeper analysis of the translation result to get a deeper understanding of
the proposed models.

e We would like to combine the proposed two ideas to one model to expect see further
improvement. Later, we would like to select the models with top performance
among proposed model, and conduct more experiments to show the significance
and credibility of proposed models. For example, we can do experiments on more
translation direction and on the large dataset.

e Finally, we would like to implement the whole translation system including prepro-
cessing and post processing. The details of these procedures will be recorded in the
thesis and the implemented code will be released later. As I know, there is no such
system be implemented in popular framework like PyTorch and make open-source
to community.



Chapter 2

Literature review

In this chapter, we would like to introduce the basic theoretical frameworks in the RNN-
based sequence-to-sequence attentional NMT model first (the other types of popular NMT
models will be only mentioned roughly in the section 2.4). Then we will introduce the in-
tuition behind the different ideas to use bidirectional information, like multi-task learning
in section 2.2 and regularization in section 2.3. Last, we will introduce recent progress
in neural machine translation area, especially for those have achieved great attention and
make a big contribution to the community.

2.1 RNN-based Sequence-to-Sequence Attention NMT
model

2.1.1 Byte Pair Encoding

Here we would like to introduce a very important technique in the preprocessing of NMT
task. That is byte pair encoding (BPE), which is first proposed to data compression
(Shibata et al., 1999), and later Sennrich et al. (2015) apply this to machine translation.
In NMT, one of the big problems is the large vocabulary problem, especially for some rich
morphological language like German. In some extreme situation, without any process,
even a dataset can have millions of vocabulary. The large vocabulary of NMT model will
make big problems. First, because the neural model of machine translation a large part
of it is the embedding table, whose size will be decided by the vocabulary size and the
embedding size. So if the vocabulary is too big, the model will also become too big to
run on small chips. Second, the large vocabulary can also make the problem of sparsity.
It will improve the difficulty of predicting the right word.

To solve this large vocabulary problem, the most common approach is to break the
rare and long words into subword units. And BPE is the most popular way to break
into subword units now. We need train BPE coding on the parallel corpus first and then
apply it to the data. The detail will be, first, split the words in the corpus into characters.
Second, the most frequent pair of characters is merged, and the vocabulary will increase



What makes this all the more gratiQ@ fying is that Members who serve on the com-
petent parliamentary committee sometimes feel they are dealing with a mot@@Q ley
ass@@ ort@@Q ment of un@@ connected legislative bQQ ills.

Transport, and this can never be repeated too often, cannot be com@Q part@QQ
ment@Q@ alized into separate modes.

It must always be seen in its entiQQ re@Q@ ty and sub@@Q ordin@@ ated to over@Q@
riding strategic aims, such as the reduction of environmental pollution.

Figure 2.1: The example of sentences after apply byte pair encoding from WMT16 DE-EN
English training data

one. Then repeat this step until the specified merge number times. The detailed algorithm
will be like Algorithm 1.

Data: Training corpus
Result: The BPE encode vocabulary of this corpus
initialize the vocabulary with the character vocabulary;
1< 0;
while i less than number of bpe merge operation do

count all symbol pairs get frequency dictionary;

sort frequency dictionary;

add symbol pair with highest frequency into vocabulary;

1 i+1
end

Algorithm 1: Byte pair encoding algorithms

There is one unintuitive thing about BPE technique. Normally, when we talking
about subword units, we will come up with some words from linguistic, such as prefix and
suffix. Whereas looking at BPE algorithm, we can find no place talking about linguistic
knowledge but just count about the symbol pair frequency. In such easy way, BPE can
even perform better than some linguistic-based subwords technique in many situations.
The real example of data after BPE like Figure 2.1, in which we use @@ to divide words.

2.1.2 Encoder-Decoder approach

Almost all of the NMT model now (Gehring et al., 2017; Sennrich et al., 2017a) are
using Encoder-Decoder approach. How is this Encoder-Decoder approach works? In the
encoder phase, the encoder process input sentence and then output hidden states encode
meaning of input sentence. We can think this hidden states as input sentence embedding.
In the decoder phase, the encoded hidden states will be feed into the decoder to produce
the translation. This procedure is illustrated in Figure 2.2.
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Figure 2.2: Encoder-Decoder approach of machine translation
Encoder (orange box) encode source sentence into sentence representation. Later, decoder
(green box) use this representation to translate target sentence.

Obviously, when entering decoder phase, if we want to predict right translation,
the quality of encoded representation from the encoder is very important. So it must
remember all time step information of input sentence during encoder phase. And during
decoder phase, not only we need to use the input hidden states to predict the whole
target sentence, we also need to know which part of the sentence already be translated,
and which part not still. All these procedures have to depend only on the operation of
the fixed-size encoded representation. Of course, a problem comes with this model.

In practice, this proposed model will work for short sentences, but can not deal
with long sentences. Cho et al. (2014) showed the increase of an input sentence length,
the performance of this kind of basic encoder-decoder approach will deteriorate fast.
Researchers have figure out some ways to solve this problem, such as feed encoded sentence
embedding as input to the all-time step of the decoder. But later, it turns out the
most effective way to solve this question is the star in deep learning now, the attention
mechanism. We will talk about it in Section 2.1.4.

Before attention mechanism, we would like to talk about components compose en-
coder and decoder first. Although now if we talking about encoder-decoder or sequence-
to-sequence model, many people will come up with RNN based encoder-decoder model.
The real important thing behind the encoder-decoder approach is its idea. Anything can
encode the input can be an encoder, and anything can do decode phase can be decoder.
For example, CNN and recent pure attention based transformer model. But here we focus
on RNN based one, so we will introduce the idea of RNN first.

2.1.3 Recurrent Neural Network

In machine learning area, there is no all-around model to deal with every problem, which
we call it no free lunch theorem (Wolpert and Macready, 1997) and each model will have



its own Inductive bias, which means the assumption about the task in the model. For
example, the main assumption of the convolutional neural network is the local invariant
and parameter sharing among those local space parts. For recurrent neural network
(RNN), the main assumption is the parameter sharing between data in different time
step. That is why RNN is suited to deal with the sequence data like language and music.

Therefore, the main purpose of RNN is to capture the temporal dependencies between
successive tokens. For example, we have an input sequence X = {z,xs,...,2,}, and
x; € R? is input vector with d dimension. When RNN run over this input sequence, it
will apply formula as bellow n times:

ht = O'h(Whht,1 —+ le't -+ bh) (21)

In above equation, there are two inputs. The x; is the input vector at ¢ time step as
mentioned before, and h;_; is the hidden state from last time step ¢-1. Here we assume
h, € R" is r dimension vector. Then W, € R™" and W, € R™ 9 are the parameter
matrices. b, € R" is bias vector, and ¢ is a non-linear activation function, like sigmoid
and relu. From the formulation, we can see current time step depends on two inputs,
current input vector, and previous time step hidden state. This setting makes the RNN
can delivery information from one-time step to another time step. One thing needs to pay
attention is that in this formula, for a different time step, we share the weight matrices
Wy and W,. So we can think RNN as that in each time step, we feed input, and RNN
calculates current hidden states from the input and the previously hidden states, then
feed current hidden states to the same network, again and again until last of the input
sequence. That is the reason why we call it recurrent neural network. A simple illustration
of this kind of cyclical network as Figure 2.3.

[ ]
— [
RNN f— RNN RNN RNN

f f f

X X0 X1 - By

Figure 2.3: Recurrent neural network computation process.

Based on the previously hidden states and the current input vector (green circle), the RNN cell
(yellow box) calculate current hidden states (red circle). Left is represent cyclic way by only
using one RNN cell, and output hidden states will be feedback to the RNN cell. Right is the

unrolled graph of the left one, just represent each time step explicitly. Although it looks
different from left, they are actually the same thing.

This is the most vanilla RNN now people use, and its name is Elman RNN (Elman,
1990). Of course there is another variant RNN like Jordan RNN (Jordan, 1997). Although
the assumption of RNN can let it works on any length sequence data theoretically, when



we apply it to the real problem, we meet a problem which is vanishing gradient. (Bengio
et al., 1994) and (Pascanu et al., 2013) show that because vanilla RNN suffers from
vanishing gradient, so it makes vanilla RNN can not learn long-term dependencies. Even
though they give some solutions like regularization, the more effective and direct way is
to extend RNN and add some new assumption in it. Therefore, several enhanced RNN
such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have been
proposed. These units can capture longer-term dependencies.

Long Short-Term Memory

The main idea behind LSTM (Hochreiter and Schmidhuber, 1997) architecture is the
gating mechanism. The LSTM unit has two kinds of hidden states, one is keeping the long-
term memory of past sequence called memory cells, and another is the output memory
of current time step depend on the long-term memory called working memory, or think
it as the short memory. These two hidden states are controlled by differentiable gating
components, which is logical gates simulated by smooth mathematical functions. Each
LSTM unit has 3 kinds of the gate: input, forget, and output gate. Through the operation
of these gates, LSTM will decide how much of the new input content should be written on
the memory, and how much of the current memory should be forgotten. The mathematical
definition of LSTM architecture is as follow:

St = RLSTM(St—la ift) = [Ct; ht]

a=fOq1+i10z2

hi = 0 ® tanh(c;)

i = o(Wyixy + Whihi—1 + b;)
f=0Wyrxy + Whyrhi_1 + by)

0 = 0(Waott + Whohi—1 + b,)

z = tanh(Wy,xy + Wi hy 1 + b,)

(2.2)

The state of LSTM unit at time ¢ is composed of two vectors, ¢; and h;. Here [cy; hy]
means concatenate of ¢; and h; vectors. ¢, hy, i, f, O,z € R" are the memory component,
hidden state component, input gate, forget gate, output gate, and update candidate
respectively. W2 € R"™? are the weight matrices for each part that will product with
current input vector, and W"° € R"™*" are the weight matrices product with hidden states
of previous time step. b, € R" are bias vectors. From the equation we can see, at first we
compute three gates based on linear combination of current input z; € R% and previous
state hy_1 € R", passed through a sigmoid activation function.
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Figure 2.4: The detailed architecture inside Long Short-Term Memory unit
For current input vector (green circle) and previously hidden states, we pass through it to
respective linear combination and activation function (orange box) to get f,i,z,0. f is the
forget gate, which controls how much memory needs to forget through the element-wise
product (yellow circle with times symbol). ¢ is the input gate, and z is the input candidate. i
controls which part of z need add to memory, then later add it to memory through
element-wise plus (yellow circle with add symbol). After a tanh nonlinear transformation, o the
output gate controls which part of memory should be output as the current hidden state (red
circle). The core idea of LSTM is the gate mechanism and the memory. From the red line, we
can clearly see why LSTM can prevent gradient vanishing problem.

Then we use tanh activation function and same kind of linear combination to calculate
update candidate state z. Later, we update ¢; memory: the forget gate decide how much
memory from previous memory should be forgotten and remembered, and the input gate
decide how much new information should be updated. Finally, we pass memory ¢; through
a tanh activation function and use output gate to decide which part of information should
be current hidden state or output. Through these gating mechanisms, gradients related
to memory ¢; can keep high value across very long time. In this way, LSTM architecture
can solve the problem of gradient vanishing. To get more intuitive understanding, please
check Figure 2.4.
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Bidirectional RNN

In a unidirectional RNN (the RNN we talk here include variants of RNN like LSTM),
when computing the current hidden state, it only uses previously hidden state from one
direction. In this way, when we take summarized hidden state at some time step, it only
summarizes the information from one direction, the information before current time step,
but without the later information. However, from our common sense, we know current
word not only related to the word before it but also the word after it. So it makes sense
we use two RNN run in the different directions, and then combine the information sum-
marized by them. Then we get the bidirectional RNN (Bi-RNN) (Schuster and Paliwal,
1997): a forward RNN run over the sequence from left to right, and a backward RNN
process sequence from right to left. Last, we concatenate the hidden states from both
RNN. The architecture of Bi-RNN is shown in Figure 2.5.

RNN RNN > RNN
A A ‘ A
RNN <« RNN < RNN
X0 X1 LI | Xn

Figure 2.5: Bidirectional RNN illustration
The input vector (green circle) in each time step feed into two RNN (yellow box) in the
different direction. And from each RNN, we get respective hidden states (orange circle). Then
we concatenate these two hidden states to get BIRNN’s hidden states (red circle).

The mathematical expression of Figure 2.5 would like:
_>
hy = [ht; E]
N N 2.3
ht :RNN(ht,l’t> ( )
hy = RNN(hy, )

12



Using this kind of bidirectional technique, many researchers have achieved good re-
sults in many areas like machine translation (Sundermeyer et al., 2014), tagging (Wang
et al., 2015) ...

2.1.4 Attention mechanism

As mentioned before, in the vanilla RNN encoder-decoder model, only the fix-sized en-
coded representation from encoder feed to the decoder. This in many conditions has no
enough information to translate, like long length sentence. The most successful way to
deal with this problem is attention mechanism (Bahdanau et al., 2014). Not like the
traditional way just feed a sentence embedding at one time, attention mechanism let de-
coder check all time step hidden states of encoder when translating, and decide which
words of source sentence will help translate current word most. The intuition behind it is
quite clear because it like that we are doing alignment between the source sentence and
the target sentence. After alignment, the translation will become easier. An example of
alignment from attention is illustrated as Figure 2.6 taken from (Bahdanau et al., 2014).
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Figure 2.6: Example of alignment from attention mechanism
Language pair in the figure is the English-French pair. And white part in the alignment map
means the alignment strength.

For conventional attention component in RNN encoder-decoder model, it will calcu-
late a context vector based on the previous decoder hidden states and all hidden states
from the encoder in each decoding time step. Later, this context vector will be used to
help calculate current hidden states of decoder, and prediction words can generate from
this hidden states. We compute context vector as follow.
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eij = a(si—1, hj)
~ exp(eyy)
Zk:l exp(eir)

n
C; = E wijhj
Jj=1

with s is the hidden states from decoder, and h is the hidden states of the encoder.
a is the score function to calculate a scalar score from s and h. In each time step ¢, we
calculate all the score between previous decoder hidden states s;_; and all n time step
of encoder hidden states, and use softmax to get n weights w;, for each encoder hidden
states. Later use these weights times respective encoder hidden states, and add together
we can get context vector for the current time step ¢;. This computation process draws
in Figure 2.7.

X0 X1 Xn

Figure 2.7: Attention mechanism in RNN encoder-decoder model
The encoder is bidirectional RNN, and it will output its hidden states (red circle with h inside)
in each time step. When decoding, decoder will use previous hidden states s;_; and encoder
hidden states to calculate score e;, (orange oval). Then normalize these scores to get attention
weights wy. for each encoder hidden states. Finally, use weights and encoder hidden states to
get context vector ¢;.

After we have context vector, we will use below equation to calculate current hidden
states of the decoder.

14



S¢ = RNN<St—1> C¢, yt) (2‘5)

One more thing need mention is that according to the difference of score function,
there are several different kinds of attention mechanism. Among them, two of the most
common mechanism is additive variant (Bahdanau et al., 2014), and the multiplicative
variant (Luong et al., 2015) which is less computation cost.

Present, attention mechanism has achieved impressive improvement in many tasks,
such as image caption (Xu et al., 2015), machine comprehension (Hermann et al., 2015),
and syntactic constituency parsing (Vinyals et al., 2015). And in NMT area, it already is
the basic setting of the models.

2.2 Multi-Task Learning

In multi-task learning (MTL) (Caruana, 1998) setting, unlike the normal way that only
focuses on one model and improves its performance, MTL advocates that we can train
several related tasks together and let them boost each other or the main task. The reason
this will work is that the related tasks will share some components between them and
share representations. These tasks can help learn better-shared representations, and later
these representations can help improve the performance of tasks back. Common MTL
neural network model like Figure 2.8.

Task
specific
components

Shared
Components

Figure 2.8: A typical multi-task learning setting
In a typical MTL setting, we have several related tasks, like task 1, task 2 and task 3. Then in
the whole model, they will share some component, and also have their own specific
components. When we training, just train them together.

Multi-task learning ! has been used in many applications successfully, such as NLP
(Collobert and Weston, 2008) and speech recognition (Deng et al., 2013). And recently,
it gets a lot of attention and some successes(Hashimoto et al., 2016). However, which
element makes the MTL model works well still need more exploration. Here are some

ITo get an overview of MLT, please check this blog post: http://ruder.io/multi-task/
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recent progress (Alonso and Plank, 2017; Bingel and Sggaard, 2017) about what makes
MTL work.

There are mainly two kinds of way to sharing parameter in MTL. One is called
hard parameter sharing, which will share the network components and multiple tasks use
the totally same parameters. The another one is called soft parameter sharing, which
will train several task on different set of network separately, but use the regularization
technique to make the related component have similar parameter. The first way will be
more parameter efficient, but less flexibility. Conversely, the soft way can make model
more flexible, but has more parameters. The soft parameter sharing have close relation
with regularization we will talk in Section 2.3.

2.3 Regularization Method

In machine learning area, the regularization method is one of the most prevalent technique
to increase the generality of the learning model (Goodfellow et al., 2016). For more
generality of the model means that the model not only performance good in training and
validate data, but the model also can achieve a better result on the test set. Therefore
we can also think regularization as a way to avoid over-fitting of our model. (Kukacka
et al., 2017) definite it like:

Definition 2.3.1. Regularization is any supplementary technique that aims at making
the model generalize better, i.e. produce better results on the test set

There are a lot of ways to do regularization, such as through data, through network
architecture, and through regularization term (Kukacka et al., 2017), which is what we
do in this thesis. Regularization also has a connection with multi-task learning. You can
use multi-task learning to do regularization or use regularization to do multi-task learning
in turn. In this work, actually, we can think the way that we use the future information
as regularization as some kind of multi-task learning, which use soft parameter sharing
between forward and backward RNN.

2.4 Related Work on Neural Machine Translation

When talking about neural machine translation, people will think it appeared recent
year because of the boom of deep learning. However, the earliest similar idea about
NMT maybe can trace back to the end of last century. It is amazing that Castano
et al. (1997) showed an approach for machine translation quite similar to current popular
NMT approach. Unfortunately, because of the constraints of the large parallel dataset
and computational resources, there are few explorations about this idea later. We need
to wait for 10 years to another breakthrough that uses the neural network method to
machine translation.

In the first 10 years of this century, it is the data-driven approaches like phrase-based
statistical machine translation (SMT) method dominant machine translation area. But at
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the same time, there are some works about integrating neural method into SMT model,
such as Schwenk (2007) used a neural language model to get a big improvement of SMT
system. Later, some researchers try to combine more neural component for traditional
SMT system (Schwenk, 2012) until the pure neural machine translation method.

In the beginning step of the pure NMT approach, researchers used convolutional
model (Kalchbrenner and Blunsom, 2013) and sequence-to-sequence model without at-
tention (Cho et al., 2014; Sutskever et al., 2014) to produce some acceptable translation
result for short sentences. But, as mentioned before, the basic sequence-to-sequence model
failed to translate longer sentences. Until the propose of attention mechanism, NMT fi-
nally can yield competitive results with classical SMT method (Bahdanau et al., 2014;
Jean et al., 2015). Furthermore, after many techniques like byte pair encoding, dual train-
ing, and joint training with monolingual data are proposed, the NMT method becomes
the new dominant method in machine translation area.

About the most recent progress, there are several very impressive works. First, one
of the most interesting properties of NMT compares with the traditional SMT system
is that it is easier to achieve zero-shot learning (Johnson et al., 2016). In this work,
researcher achieves zero-shot learning just by using a specific language token and train
several parallel data together. The model is illustrated in Figure 2.9.
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Figure 2.9: Google neural machine translation model with multi-lingual translation setting
Figure from (Johnson et al., 2016). During training, we train several language pair parallel
data together with a specific tag indicate the direction, for example in the picture token <2es>
show the target language is Spanish.

Besides, Gehring et al. (2017) found the way to use the convolutional neural network
to do sequence-to-sequence learning, which can achieve competitive performance with the
RNN one. Later, Vaswani et al. (2017) from Google proposed a totally new way that
without using RNN or CNN, but only attention mechanism to do machine translation.
And one of most recent breakthrough is that Microsoft builds a system achieve human
parity result (Hassan et al., 2018) in WMT17 Zh-En news translation dataset. The authors
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applied several advanced techniques in machine translation to achieve this impressive
result, these techniques are dual learning, joint training, deliberate network and agreement
regularization of the left-to-right and the right-to-left model, which is the technique most
related to the topic of this thesis.

One more trend in NMT area need to mention is the rise of language structure.
Because the early NMT models just treat translation task as a sequence of tokens to
another sequence of tokens, which indeed do not use linguistic knowledge a lot. Whereas
in our common sense, we know actually language is not sequence structure but tree
structure. Therefore how to use tree structure and previous linguistic knowledge to help
translation become a hot topic, and we call it syntax-aware neural machine translation
(Aharoni and Goldberg, 2017; Chen et al., 2017; Eriguchi et al., 2016).

Considering the using bidirectional information decoder on target language side, there
are few works talk about it. Liu et al. (2016) use the method that trains two models first,
left-to-right model and right-to-left model, and use the results from the right-to-left model
to rerank left-to-right model results. Another Zhang et al. (2018) take the hidden states
from a pretrained right-to-left model as the extra attention context to the left-to-right
model.

Different with two works mentioned above, we would like to try several ways to train
left-to-right and right-to-left decoder in one model, but not a separate model. So it will
be more parameter efficient, and with less training time. In this research, because of our
constraint time and resources, we do not aim to build a system to achieve the state-of-art
performance but to explore the ways to make use of bidirectional information of target
sentence and use them into standard NMT model. Later, we would like to compare the
proposed model and standard baseline model.
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Chapter 3

Neural Machine Translation Models

In this chapter, we would like to talk about the detail of the models that we implemented
in our study. Beside of models, we also present the detail about the techniques we used
in the proposed model.

3.1 RNN-based Attentional Sequence-to-Sequence Model

3.1.1 Embedding and Encoder

At first, our baseline model is implemented based on the OpenNMT, an open source NMT
toolkit. The baseline model is quite similar to the one in (Bahdanau et al., 2014). In the
model, we just treat the sentence as a sequence of tokens. After preprocessing, we divide
words in a sentence to byte pair encoding (BPE) subword units and build a vocabulary
upon these units. Later, we need feed the sentence into the encoder. But the problem is
that we can not feed word directly into neural network encoder, we have to encode these
token into vector first.

There are mainly two ways to encode word in the vocabulary, one is one-hot encoding,
and another is dominant word embedding way. Here we will use word embedding, which
is a by-product of NLP task training at the beginning because of several advantages of
it. First, if we use one-hot vector only, it will be very sparse and inefficient to training,
and word embedding is many compacts. What’s more, word embedding can capture
the semantic relationship between words, so the words with similar meaning will have the
similar vectors, and this property is very useful. Last, for one-hot vector, it is fixed, but for
word embedding, we can train the embeddings for our own task. Even sometimes, we can
use the word embedding pretrained by other people, like famous word2vec (Mikolov et al.,
2013), and Glove(Pennington et al., 2014). In this research, because we have used BPE
technique, so the overlap between the vocabulary of those pretrained word embedding
and our vocabulary would quite small. We do not use pretrained word embedding, but
train by ourselves.

To map words into the vector, at first, we build a dictionary to map a word to an
index first, later we can get word vector from embedding table by the corresponding index.
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The procedure like:

iy = map(w,)

3.1
x = select(Wy, i) (3:1)

w, means a word from source sentence, and i means index. W, € R"*? is embedding
table, which is a matrix each row corresponds to a word vector with dimension d. We
select the desired row after we get the index i, and get word vector . And then we feed
this vector into our encoder, the process illustrated in Figure 3.1.

= > RN
: Encoder
Select Word .
like > index —> Embedding Table _>Embedding_§-) %
A\ 4

Figure 3.1: The process that how to feed a word into RNN encoder
Let’s say the source side is English and we have a word like. To input this word into RNN
encoder, we need map it to an index depend on a predefined dictionary and use this index to
select the desired word embedding from embedding table. Finally, RNN encoder takes this
word embedding as current input.

For encoder, we use BIRNN with LSTM cells so-called BiLSTM model to encode
source sentence information. The last time step hidden states are used as the sentence
embedding, which will be used as the initial hidden states for the decoder. And as
mentioned before, all time step hidden states can also use to calculate the weight for
attention mechanism.

3.1.2 Decoder

Decoder we also use LSTM cell as our RNN unit, and the process from the word to the
LSTM unit is same as the encoder. Then after getting word embedding, we use it to
calculate the hidden states of the decoder and predict target words from it:

iyt = map(wyt)
v = Embedding(i,t)
he = LST M (hi—1,yt, ct) (3.2)
iyt = argmax(softmax(Wyh, 4 by))
w,t = map(iy)

with:
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e h; € R": the hidden states at time step t. It is calculated from previous hidden
states hs_q, current input word embedding y;, € R¢ and current context vector
¢; € R" from attention component.

e W, € RV*": the embedding matrix for generator to transform the hidden vector h;
to the V dimention output vector/

® wy, € RY: the predicted word for current time step. It is mapped from the predicted
index, which is calculated by using argmax to select the index of highest probability
in predicted probability vector calculated by softmax function as follow:

exp(0y;)

——— 3.3
E}/:1 exp(o]) (33)

softmax(oy) =

The detail of this predicting process is illustrated in Figure . Here, although we can
get the highest probability without a softmax layer for our generator, for the convenience
to calculate the loss function later, it is better to use softmax function. For the probability
that output by softmaz, you do not need to think it as the real probability, but just
something like probability and easy to calculate loss function.
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Figure 3.2: The process of how generator decoding current hidden states
Based on input and context vector of current time step and hidden states of the previous time
step, the RNN unit calculates current hidden states h; € R”. Then the component we call
generator in our model will at first transform hidden states from a r dimension vector to a V'
dimension vector o;. Finally, softmax output a probability vector, and we select most possible
word index.

The goal of the decoder is to maximize the log probability of correct translation
sentence of target language Y = y1, o, ..., ¥ conditioned on the correspond input sentence
of source language X = x1, 2o, ..., Tp:

M
log p(Y]X) = " log p(yi] X, Yi.i1) (3.4)

i=1
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When we are training the model, this goal will be achieved through predict and
generate a sequence of words as similar as possible with the gold translation sentence. In
this way, we can define the loss function as the average categorical cross-entropy between
the predicted sentence and the gold sentence.

H(y,y') ==Y ylillogy/[i]
=1 (3.5)

M
1
HY.Y) =7 > H(yiy)

In the equation, for each word, we will use y € RV, the gold token represented in a
one-hot vector, and the predicted probability vector from softmax function to calculate
the cross-entropy of this time step. y[i] means the i-th component of the vector y. After
we calculate the cross-entropy loss of each word, we sum them together and divide the
length of the sentence M to take the average. That is why it named average categorical
cross entropy.

To training on the whole dataset, the objective function is the sum of the log-
likelihoods of each translation pairs in the training dataset:

J(ﬁ)zm > logp(yle) (3.6)

(X,Y)eD

with D represent a set of parallel sentence pairs from training data. The parameter
6 of this model are learned by the back-propagation algorithm.

After the object function and how to optimize it, we would like to talk the detail
about the training phase and the test phase of the decoder. When we finish encoding
source sentence into sentence vector, which normally set as the last hidden states of the
encoder, we feed it into decoder as the initial states. And then combine it with the first
input token to calculate the hidden states of the first time step. Here we need mention
that the first token is a special token <s>, which we call it beginning of the sentence
(BOS).

In training phase, we can train decoder like when we are training language model
that uses the output from last time step as input for the model at current time step.
However, this way has problems, such as slow convergence and model instability. To solve
this, we make an assumption that previous token feed into every time step is correct, so
we just use the gold token to feed into the decoder to predict the right token. This kind
of training way is called teacher forcing because we feed gold token to predict target. It
solved the training problem well. There is one variation of the teacher forcing that use
the generated token from previous time step with some probability, but we only use the
normal teacher forcing for simple. And in testing phase or practical using, because the
gold tokens are not available, so we just use the previously generated token as input for
the current time step. This process will continue until it predicts another special token
< /s>, the end of the sentence (EOS). These two phases are illustrated in Figure 3.3.
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Enoder —> hi —> hy S>> hy,
BOS Y1 Ym—1

(a) In training phase, decoder inputs are gold tokens

v v EOS
Enoder —-—) h ijz 1—) h

BOS

(b) In testing phase, decoder inputs are previous predicted tokens

Figure 3.3: Different setting for decoder during training phase and test phase

3.1.3 Beam-search decoding

After we finish train our model, of course, we can just use the predicted token index
with the highest value in probability vector as real predict output for each time step.
However, in this way, normally we will meet the local optimal situation, so can not get
a good translation result. As we know in human language, the first few words can only
provide few and ambiguous information. If you decide the first several words too early, it
will prevent the better output can be found later. This kind of naive decoding algorithm
called greedy search.

There is a better way to get the predicted result and it is widely used now. It called
beam-search method. When it is decoding, it will keep a certain number of candidates
with most high probability at each time step and throw away the other prediction to
increase the chance to find a better translation sentence. The constraint certain number
we call it beam size. Normally if beam size is bigger, then the result will be better. Assume
beam search is K, then we select K best partial translation. We rank the candidates by
their scores assigned by a score function:

T
1
score(B;) = T Zlogp(wtp(, Wi_q) (3.7)

t=1

With:
e B;: the i — th beam in current step

e X: the input sentence
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e w;: the predicted token at time step ¢

o W, 1 = [wy,wy,...,w;_1]: all previous words predicted in this beam

e —: some kind of length normalization to make it more fair when compare candidates

ith different length

= Nl

<s> —> </S>

</s>

</s>

</s>

Figure 3.4: Search graph for beam search decoding in neural machine translation model
At each time step, the beam size n = 4 partial translation with highest probability are selected.
When the model predict the end of sentence token < /s >, an output sentence complete. We
reduce one from beam size. At last, we have 4 completed sentences, and we can track down
them from the arrow. The green box means the words used in the compete sentence. The red
box means the candidate words have been discarded during the decoding.

Length penalty and coverage penalty

Beside of this basic beam search, in this study we use two refinements to improve beam-
search decoding as (Wu et al., 2016) did. First one is the length penalty to prevent model
only prefer the short sentences. Another one is the coverage penalty to favor translations
that fully cover the source sentence according to the attention component. The new
scoring equations are:

s(Y, X) = log(P(Y[X))/Ip(Y) + cp(X;Y)

_ G+Y)®
lp(Y) - (5+ 1)0{ (38)

X Y|
ep(X;Y) =B+ log(min() ,1.0))
i=1 j=1
Where:
e [p: the length penalty function
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e cp: the coverage penalty function
e p;;: means the attention probability of the j-th target word on the i-th source word.

e «,3: the hyper parameter to control the strength of length penalty and coverage
penalty. When they are both 0, then it is the basic beam-search.

3.2 Multi-task Learning Model

This section we would like to talk about our multi-task learning models. Here we take
the forward translation and backward translation as two related task. For these two
tasks, our forward RNN decoder and backward RNN decoder need to capture different
distribution. And they have a different objective. For forwarding translation we need to
learn parameters to maximize following conditional probability:

P(Y |x36) = [] Py |Yirg, X:6) (3.9)

j=1
with:

7: the forward target sentence, Y = [y1,y2, ..., Ym| with y the target words

e X: the source sentence

0: the model parameters

Yio;j—1): the target words before time step j, [y1, y2, ..., Yj—1]

But for backward translation we need learn parameters to maximum another proba-
bility:
M
P(Y1X:6) = [] Pl Y10 X:6) (3.10)
j=1
with:

° ?: the forward target sentence, Y = [y1, y2, ..., Ym| with y the target words
o Yj11: the target words after time step j, as Y41, Yjt2, -, Ym)

So from multi-task learning setting, we need train this two task together, and we can
try to share some components between them. They are the decoder word embedding table,
the attention component and the generator that to predict tokens from hidden states. For
a basic model of translation, it is illustrated in Figure 3.5.

If we want train a bidirectional decoder model and share none of three above com-
ponents, the model will looks like Figure .
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/ Attention
Encoder Forward RNN Predict

Embedding

Figure 3.5: Basic model
A normal RNN based Encoder-Decoder baseline model, in which encoder encode source
sentence information then feed it into attention mechanism and decoder. Decoder use sentence
embedding from encoder, context vector from attention mechanism and word embedding from
embedding table to produce current hidden states. Last, generate use this hidden states to
calculate probability vector, and we make predict base on this vector.

Forward RNN Predict

Embedding

Attention

/
\ Back

Attention

Encoder

Back
Embedding

Backward RNN Back Generator Predict

b

Figure 3.6: The model bidirectional decoders share no component
The core component for each direction decoder is the RNN component. In the figure, the
components with the same color have the same architecture but have different parameter
inside. The word back we put in some component just to differentiate the forward and
backward components with same name and architecture.

3.2.1 Sharing decoder word embedding

In NLP area, the first thing we can consider to share is word embedding component.
Because word embedding is the most low-level layer have the elementary representation
for NLP task, for almost every neural network model in NLP now, if we want to input
words, we need map it to word embedding first. (Yosinski et al., 2014) showed that if
we want to share representation or transfer knowledge between different two tasks, then
the low-level representation is easier to share. And the widely using of pretrained word
embedding Mikolov et al. (2013); Pennington et al. (2014) also support this theory, and
in many tasks, it indeed boosts the task.

So at first, we try to share embedding component. And based on the loss information
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from both forward and backward to update the shared embedding. The model looks like
Figure 3.7.

Forward RNN Generator Predict

Attention

boa

Encoder Embedding

Back
Attention
Backward RNN Back Generator Predict

(a) Training phase

Forward RNN Generator Predict

Attention

Embedding

Encoder

Back

Attention \
Backward RNN Back Generator Predict

(b) Test phase

Figure 3.7: The calculate process of sharing embedding model in training and test phase

3.2.2 Sharing attention mechanism

The second component we want to share is the attention mechanism, which means we
input the hidden states from encoder and hidden states from both direction decoder to the
same attention component. There is some work people use shared attention mechanism
to achieve better performance, but for training different language task together (Firat
et al., 2016).

The intuition here is that for attention mechanism, the main function is to find the
alignment between the target sentence and the source sentence. No matter our model
translate from front or back, for a certain sentence pair, its sentence alignment should be
same. Therefore if we train them together, this two task should boost each other through
shared attention.

This model is illustrated like Figure 3.8.
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a) Training phase

Forward RNN ——> E—) Predict
Encoder Attention

Back
Embeddln g

Backward RNN Back Generator Predict

(b) Test phase

Figure 3.8: The calculate process of sharing attention model in training and test phase

3.2.3 Sharing generator

Finally, we would share the generator component in our model. The generator component
in our model mainly have two functions, one transforms the hidden states to vocabulary
size V dimension output vector, another one is used softmax to output the probability
vector from output vector. The intuition to share generator is that when we predict the
gold token from two direction RNN, they have same gold tokens. But the hidden states
from the different direction generally have different hidden states even for the same time
step. After we share generator, then to predict the same gold token, the hidden states
from both direction should have similar tensor value. In this way, we can think share
generator as some kind of regularization to make forward hidden states and backward
hidden states in the time step to become similar.
The model illustrated as Figure 3.9.

3.3 Regularization from Backward RNN

If we have two directions RNN in the decoder, beside of sharing component, another way
we can get information from backward RNN is to use it as regularization for forwarding
RNN. z; is the prediction word for the current time step, from above we mentioned, we
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Figure 3.9: The calculate process of sharing generator model in training and test phase

calculate if by the generator from the current hidden states h{ . The basic idea here is
to promote the forward hidden states h,{ contain more useful information to predict x;.
Here, the extra information we want to take is from the backward RNN, which means
the information from the future of the sentence. So we need use loss function to build
a connection between forwarding and backward hidden states, as illustrated in Figure
3.10b. The overview of proposed regularization model is shown as Figure 3.10a.

A naive way to do this regularization is just used L2 regularization loss to punish the
difference between the forward and backward hidden states:

Ly(x) = dy(h{, h7) (3.11)
with:
e d;: the L2 loss function
° h{ : forward hidden states

e 1% backward hidden states
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(a) Overview of the proposed regularization model
construction of decoder

(b) Decoder with L2 regularization between forward and
backward hidden states

Figure 3.10: (a) is the overview of proposed model. The decoder consists of forward
decoder and backward decoder. They use different attention components, and share the
same encoder. (b) shows the detail of the decoder. Regularization loss L is applied
between forward and backward hidden states.

However, this loss is a little too strict and make the model generate forward and backward
hidden states less flexible. We can add a simple affine transformation to our forward
hidden states first, then calculate the L2 loss with backward hidden states:

Li(r) = dt(9<h{)7 h?) (3.12)

with g the affine transformation function. We can use a linear layer to do this.
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Chapter 4

Evaluation

This chapter we first introduce the statistics of the dataset and the preprocessing on it.
Next, the detail experimental setting is be show carefully. Last, we present the results of
different experimental settings, include the translation result, and evaluation metrics like
Bilingual Evaluation Understudy Score (BLEU) score.

4.1 Dataset and Preprocessing

The dataset we used in this research is the open accessible machine translation parallel
datasets from WMT16 and WMT17. Especially, we will use the DE-EN (Germany-
English) and ZH-EN (Chinese-English) parallel dataset from the machine translation of
news shared the task. In this research, because of the constraints of our time and com-
putational resources, and to make the experimental iteration faster. I make two DE-EN
datasets from the whole WMT16 DE-EN dataset, the big one contains sentences from
three corpora: Europarl V7 (Koehn, 2005), Common Crawl corpus, and News Commen-
tary (NC) v11; the small dataset only contains the NC v11 corpus. And one ZH-EN
dataset is from the News Commentary v12 dataset.

This parallel dataset includes source language sentence and corresponds target lan-
guage translation. For DE-EN translation tasks, we use the big and small dataset men-
tioned above as the training set, and for validation and test dataset, we use the test
data in WMT16 and WMT15 and test data from WMT previous years. In detail, we
use newstest201 as validation set, use newstest2015 (testl) and newstest2016 (test2) as
two test datasets. For ZH-EN translation tasks, we use the NC v12 as training set. The
validation and test set same as WMT17 competition that newsdev2017 as validation set
and newstest2017 as test set. The detail statistic about train, valid and test set in Table
4.1 and Table 4.2.

For DE-EN task, after downloading these corpora from WMT16 website, we con-
catenate these three corpora to make the big dataset. Then we use preprocess tools from
Moses statistical machine translation system ! to do the first step of preprocessing. The

Thttps://github.com /moses-smt /mosesdecoder /tree /master /scripts
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Table 4.1: Number of sentences of the DE-EN datasets

Training | Validation | newstest2015 | newstest2016

Big (WMT DE-EN full) | 4215806 | 3003 2069 2999

Small (NC v11 DE-EN) | 242770 3003 2069 2999

Table 4.2: Number of sentences of the ZH-EN datasets

Training | Validation | newstest2017
NC v12 ZH-EN | 227330 2002 2001

pipeline is normalized punctuation in different languages, tokenize sentences, clean empty
and long sentences (we throw the sentence longer than 80 tokens), and apply true case
process, which means initial word of a sentence is converted to their most probable case
(The boy laugh. -> the boy laugh. I love you -> I love you). The second step, we
concatenate German and English corpora together and learn BPE of it (Sennrich et al.,
2016). The reason why we concatenate two corpora is to improve the consistency in the
segmentation of the source and target text. The BPE merge operation we used here is
32000 for the big dataset and 8000 for the small dataset.

After the BPE is learned, we apply it to our parallel data. The last step, we will add
several special tokens into our vocabulary. For target sentence, we add begin of sentence
(BOS) token <s> in the begin of every sentence, and append end of sentence (EOS) token
< /s> at the end of every sentence. Besides, we also use the unknown word token <unk>
to replace the tokens under 1 frequency and the word not in vocabulary when testing. For
the reason of parallel training, we need train parallel sentence pairs in batch. However,
RNN can only parallel handle sentences have the same length. so we have another special
token called pad token <blank> to pad short sentence in a batch to the same length as
the longest sentence in this batch.

For ZH-EN task, first different with English and German, there is no space between
the words in Chinese. So we need segment the Chinese sentences first. Here we use
the jieba ? Chinese segmentation tool to segment Chinese data first. And later tokenize
English, clean long sentence, and apply true case for English dataset. In terms of BPE,
we also only do it in English side, and use 8000 merge operations.

4.2 Experimental Settings

For experimental settings, most of the parameter settings we reference from previous stud-
ies (Britz et al., 2017), because of the extensive time and computation resource will cost
if we want to search a good hyperparameter setting by ourselves. Also one of the reasons
why we don’t do carefully hyperparameter searching is that the purpose of this research
is not to achieve state-of-art performance, but ways to use bidirectional information of

Zhttps://github.com /fxsjy /jieba
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target sentence in machine translation and to see it can improve the basic model or not.

At first for vocabulary, because we learn BPE from the concatenate of two corpora,
so they share a lot of vocabulary and have limited vocabulary size based on the BPE
merge operations. The vocabulary size of both encoder and decoder are 37004 for the big
dataset, and 8496 for the small dataset. Beside of this, there 4 more special tokens, as
< s>, < /s> <unk > and < blank >.

And other configurations about our network are listed in Table 4.3. We take batch
size 80 as mentioned in (Sennrich et al., 2016). And as (Britz et al., 2017) suggested,
512 for embedding dimension, 512 RNN hidden size, LSTM for RNN unit, 512 attention
dimension, Bahdanau attention type and beam size 8. And for the layer of RNN, we
choose 4 for the big dataset, and 2 for the small dataset. Beside of this, for the optimizer,
we choose Adam because of its efficiency and easy to use property. We set initial learning
rate as 0.001, and have a learning rate decay, which will decay the learning rate when
the validation perplexity does not decrease and epoch has pass certain epoch. For the
maximum generated sentence size, we set it as 100. Last, for the length penalty and
coverage penalty parameter, we set both to 0.33 based on experimental we did.

Table 4.3: The hyper parameter setting for our experiment

Hyper Parameters | Settings

Batch size 80

Word embedding size | 512

RNN type LSTM

RNN hidden states 512

Encoder layers 4 (2 for small dataset)
Decoder layers 4 (2 for small dataset)
Attention size 512

Attention type Bahdanau

Optimizer Adam

Learning rate 0.001

Beam size 8

Length penalty 0.33

Coverage penalty 0.33

Max output length 100

Every epoch we will randomly shuffle our data and make a batch to train our model.
This is a small trick to prevent over-fitting because if don’t shuffle it the model will
remember the repeat pattern. Another trick to prevent over-fitting is to use dropout
between layers. In this research, we use default dropout rate 0.3 from OpenNMT toolkit.
All the models are implemented by Pytorch, the Python version of the popular deep
learning framework Torch based on Lua language originally.

In practical for training this kind of big model on such a big dataset, it needs a lot
of parallel computation to train it fast, which means we need a computer with powerful
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GPU. Luckily, we get the chance to use the server called Tetsuzen (Iron Mountain) bought
recently in our lab. This server has 4 GeForce GTX 1080 GPU cards, and each of them
has near 8 GB memory. It makes training of my big model come true, because if you
train it on the CPU maybe it will cost several months. However, it still took quite a long
time to train one epoch, especially for the model trained on the big dataset, every epoch
it needs take several hours. In our experiment, we use 15 epochs as the standard epochs
number for training models.

4.3 Results

To evaluate the quality of a machine translation system, it is quite ambiguous. That is why
there are many metrics to evaluate machine translation systems, such as BLEU (Papineni
et al., 2002), NIST (named after the US National Institute of Standards and Technology)
(Doddington, 2002) and translation error rate (TER) (Snover et al., 2006). Sometimes
even these metrics are not enough, we need human evaluation for some systems. Because
of the convenience of evaluation tool mteval-vi3a.pl ® from Moses SMT system, we use
NIST and BLEU score as our evaluation metrics. And beside of these two metrics, we can
get accuracy and perplexity on the train and validate sets for some kind of reference to
the performance of our system. So in this research, we will report BLEU, NIST, accuracy
and perplexity for the valid set in each run. The definition of these four evaluation metrics
are as follow:

e BLEU: it is computed by n-grams overlap precision between machine translation
output hypotheses and reference gold translation, and it is the most popular evalu-
ation metrics in machine translation and many other NLP tasks. Higher is better.
For ZH-EN task, first, we separate all Chinese into character by tokenize Chinese.py
4 later calculate BLEU score based on these characters.

e NIST: it is a similar metric as BLEU to evaluate translation result, but it differs
from the way to calculate the weight for each n-gram overlap and the way to calculate
brevity penalty. Higher is better.

e Accuracy: it is calculated by the number of correct predict words divide total
words number. Accuracy is also higher better for a model.

e Perplexity: it is a measurement of how well a model predicts a sample. A lower
perplexity indicates the probability model is better at predicting the sample. It is
calculated by the exponent of the per-word negative log probability, so can calculate
it just take the exponent of loss divide words number

We run following experiments to compare the baseline system and the proposed
systems:

3https://github.com/moses-smt /mosesdecoder /blob /master /scripts /generic /mteval-v13a.pl
4http://statmt.org/wmt17 /tokenizeChinese.py
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e Experiment with the baseline model: based on the recommend parameter settings,
we build a strong baseline on big DE-EN dataset through exploring few parameters,
such as beam search width, BPE merge operation numbers. The evaluation way is
to compare it with the state-of-art machine translation model on the same dataset
in terms of BLEU score.

e Experiments with the multi-task learning models: through sharing different com-
ponent, we have several proposed models, like model share attention, model share
embedding, or we can share multiply component at the same time. Because of the
constraints of resources, so we run different setting experiments on small DE-EN
dataset.

e Experiments with the bidirectional regularization model: this part we will explore
different settings of regularization on our bidirectional RNN decoder, such as the
direct L2 loss and affine transformation added L2 loss. We use an loss weight
annealing technique to train our model.

e Experiments with models combined above two techniques: this part we take a best
setting from the multi-task learning sharing component model, and apply two kinds
of regularization upon it to build a combined model. We implement the proposed
models and compare them with baseline and proposed models in former experiments.

e Experiments on more language direction and the large dataset: this part we select
several good performance proposed models, and training on the ZH-EN dataset and
check its performance. Then we would also run models on the big DE-EN dataset
to get significant evidence of our proposed model.

4.3.1 Experiment 1: Searching a strong baseline model

In this experiment, first, we build a baseline model based on OpenNMT-py open-source
NMT code based on Pytorch deep learning framework®. Because for a task like machine
translation, it is better to reference the previously successful model to your own model.
So in the beginning, we try to follow settings from some very successful models, like Ed-
inburgh neural machine translation system (Sennrich et al., 2016), which is implemented
by nematus, an NMT open-source toolkit based on Theano framework.

However, after we follow their setting, we find our model become too big to train
on our machine because of its big vocabulary size 89500 and big encoder and decoder
parameter number. Later, we decrease hidden size from 1024 to 512 and decrease RNN
layer from 8 to 4. This time we successfully trained our model, but the result is quite bad
when compared with the state-of-art on WMT16 German to English task as Table 4.4.

The reason why this result is so bad maybe the difference between two NMT toolkits
or wrong is preprocess setting. Later, we try to follow setting as Britz et al. (2017) did.
The main contribution of this paper I think is that we decide not to follow the BPE

Shttps://github.com/OpenNMT/OpenNMT-py
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Table 4.4: Trial baseline model translation results of WMT16 EN—DE in terms of BLEU
score compare with state-of-art baseline model on big dataset (Sennrich et al., 2016)

newstest2015 | Validation
Baseline(trial) | 16.77 18.04
Edinburgh 26.4 28.5

merge operation times 89500, but to use the less setting 32000. So our model gets a large
improvement. Other parameter settings just as Section 4.2.

And later to make our translation result better, we also did some exploration of the
beam size. When we are training our models, we save the model to hard disk each epoch.
Then after observing the accuracy and perplexity on valid set, we select the best model
for the baseline model. And use different beam size to generate our translation. When
we take beam sizes: 2, 5, 8, 10, 15 and 20, the BLEU score change like Figure 4.1.
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Figure 4.1: The influence of different beam size to result

Although from the intuition, increasing the beam size can make the decoding process
explore more possible translations. In this way, there is also more chance to find a
translation with higher model scores. However, from the experiment we find to increase
the beam size does not improve translation BLEU score consistently. It reaches the
peak among 5-10, and later decrease. This finding also consistent with what Koehn and
Knowles (2017) find. The main reason for this phenomenon maybe wider beams makes
shorter translations.

Beside of beam size, we also explore length and coverage penalty related hyperpa-
rameters, o and 5. Both of them will take the range from 0 to 1. So we choose one of
the beam size 8 from above and fix it, later try to modify length and coverage penalty
parameters and to see the influence to our translation result. We can find the result in
Figure 4.2.
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Figure 4.2: WMT16 En—DE NIST and BLEU scores on newstest2015 with respect dif-
ferent length penalty parameter a value and coverage penalty parameter [ value

When the beam search function purely depends on the sequence probability (« and
are 0), the BLEU score result on the test set is same as we show in beam size experiments.
In terms of BLEU score, we find larger o can help improve BLEU score a lot, like get
+0.58 score (v = 1.0, 8 = 0.0). And for §, it have some slightly large value can help.
However, when we combine them together, we find that it achieves some sweet point in
the low range of both two parameters, but not in the high range. Indeed, if you set both
parameters big, it achieves a very worse result with —5.73 BLEU score compare with basic
beam search model. On the other hand, if we look at NIST score figure, we find that
actually, these two parameters help a little. Because we take BLEU score as our main
metrics, so later in our experiment, we will take o = 0.33 and § = 0.33 as the default
setting.

After explore on beam size and length and coverage penalty, we can get a strong
baseline for WMT16 English to German model now. Here we use English to German
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direction because there is more comparable state-of-art models’ result. These state-of-art
systems are:

Table 4.5: Comparison to Moses, BPE (Jean et al., 2014), BPE-Char (Jean et al., 2014),
RNNSearch (Bahdanau et al., 2014), Deep-Conv (Gehring et al., 2016), Mass-EnDe (Britz
et al., 2017) in terms of BLEU score one newstest2015

Model newstest2015
Ours 25.84
Ours + lcp (with penalty) | 26.51
Moses 20.54
BPE 20.50
BPE-Char 23.90
RNNSearch 24.88
Deep-Conv 24.30
Mass-EnDe 25.23

We can see the initial setting and some exploration, we get a very strong baseline
model. It can get 25.84 BLEU score on WMT16 En—DE task in newstest2015 test set,
and even if we add proper length and coverage penalty we can even reach 26.51, which is
a very high result.

4.3.2 Experiment 2: The influence of sharing components

In this section, we try to explore different settings for our multi-task learning models as
mentioned before, for example sharing embedding, attention or generator. Sometimes
we will even share multiple components to see is there any further improvements. The
results of running each model listed as Table 4.6 and Table 4.7. We will show accuracy
and perplexity of valid set in the first table, and BLEU and NIST scores on two test sets
in the second table.

Table 4.6: Comparison of various proposed multi-task learning model and base model
on EN-DE News Commentary v11 in terms of accuracy and perplexity of valid data
newstest2014

Accuracy (%) | Perplexity
NC-base 54.20 18.13
NC-share-embed 55.62 15.68
NC-share-atten 54.95 16.22
NC-share-gen 55.69 15.98
NC-share-embed-gen | 55.61 15.12
NC-share-all 54.55 16.96

For the representation of our models in the table, NC' means the model training on

38



the small dataset News Commentary vil. After the bar, we append several words, for
example, share means the sharing component model. And after it, we have embed, at-
ten and gen, they represent embedding, attention and generator component respectively.
Except for these sharing single component model, we also have models are sharing sev-
eral components. Because we want to see is there any more improvement space for our
model after we sharing several components together. Therefore, share-embed-gen means
share both embedding and generator components, and share-all means share all three
components.

After the explanation of model representation, we can look at Table 4.6 more detail.
We can find almost every proposed model get better accuracy and perplexity, for sharing
single component model, especially NC-share-embed and NC-share-gen get a big improve-
ment. So we also run a model NC-share-embed-gen to see the model can be better or not
after we combine two good sharing components. And we find indeed it get improvement
especially in terms of perplexity. However, the problem here is that sometimes accuracy
and perplexity have not so big relation with the real translation quality, so it is better to
just take it as a reference. BLEU and NIST score will better to evaluate a real translation
result.

Table 4.7: Comparison of various proposed multi-task learning model and base model on
EN-DE News Commentary v11 in terms of NIST and BLEU score

newstest2015 | newstest2016

NIST BLEU | NIST BLEU
NC-base 5.7381 | 17.64 | 6.3912 | 20.43
NC-share-embed 5.8725 | 17.99 | 6.4530 | 20.36
NC-share-atten 5.8677 | 18.10 | 6.3992 | 20.03
NC-share-gen 5.9872 | 18.59 | 6.4726 | 20.38
NC-share-embed-gen | 59317 | 18.24 | 6.5523 | 20.81
NC-share-all 5.8994 | 17.86 | 6.3971 | 19.89

From Table 4.7, we can see clearly the comparison between the models in terms of
NIST and BLEU scores. We can see from NIST score, all proposed multi-task learn-
ing model get improvement. Especially for NC-share-gen and NC-share-embed-gen two
models, the former get highest on newstest2015 data and the late has highest score on new-
stest2016 data. What’s more, they get a consistent result in terms of BLEU score. Later,
we can take these two as most promised models in our proposed multi-task learning model.
If we look at other models, we can find in in terms of BLEU score NC-share-embed, NC-
share-atten and NC-share-all these three cannot beat baseline NC-base on newstest2016
set. Particularly, for sharing all components model, it does not get a better result as
we expect. At first, we think we share all components together and each sharing single
component model can improve respectively, so maybe it can help each other by combining
them, but the result is bad. One interesting observation here is that why NC-share-gen
can get a better result than other two. From our point of view, we think the following
result may contribute to this phenomenon:
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e For embedding shared model, it may be that the dataset is a little too small. Because
as we know, if we want to get a good word embedding, normally we need train the
word embedding on a lot of data, for example, the wide used Glove word embedding
is trained on several billion tokens. Therefore, we believe if we improve data size it
can get a better result.

e For attention shared model, it may be that the task for it is a little too complex
to learn. Because as we know, attention mechanism actually is doing some kind
of alignment between the source sentence and the target sentences. We know no
matter the forward translation or backward translation, at least they are from the
same sentence pair then the alignment they need to learn is same. However, that
means if the attention mechanism is same, to learn the similar alignment the hidden
states on the same word need be similar. It sounds like the generator shred model,
but the difference is that this alignment process is quite far from the last loss function
calculation, so we think maybe there is no direct way to pass enough information
back and update properly. Even it will make a lot of noise to mislead training
process, this may explain why share all model perform badly.

e For generator shared model, it also needs force forward and backward hidden states
become same as attention shared model. But it can get direct update signal from
loss function, so train more effectively.

Besides of comparison between those metrics, we can also make some deeper analysis
by using human evaluation. We take some training examples of newstest2015 translation
results from baseline model NC-base and the strongest proposed multi-task learning model
NC-share-embed-gen. And we compare their translation result with each other and with
gold translation to see the translation quality of each model. The translation comparison
as Figure 4.3

We can see the example sentence we choose in Figure 4.3 is quite long, almost 40
tokens if we include punctuations after tokenization. The reason why we choose this is
that translation of long sentence is easier to see the difference between translation result
from different systems. We can find that the baseline model loss more information in its
translation than the result from our proposed model. Especially, the NC-base model loss
a big part of information like "meeting his Japanese counterpart, Shinzo Abe" and "in
Tokyo to discuss economic and security ties". Compare with this, the proposed NC-share-
embed-gen model capture this information very well, because it can have more information
from backward to help translation.

4.3.3 Experiment 3: The influence of regularization from back-
ward

Beside of the multi-task learning way that making a connection between both direction
by sharing components, we can also add such kind of connection through regularization
method. By adding some constraints, we can use information from backward RNN or
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Source sentence:

Indiens neuer Premierminister Narendra Modi trifft bei seinem ersten wichtigen
Auslandsbesuch seit seinem Wahlsieg im Mai seinen japanischen Amtskollegen Shinzo
Abe in Toko, um wirtschaftliche und sicherheitspolitische Beziehungen zu besprechen.

Reference sentence:

India’s new prime minister, Narendra Modi, is meeting his Japanese counterpart,
Shinzo Abe, in Tokyo to discuss economic and security ties, on his first major foreign
visit since winning May’s election.

NC-base translation:
India’s new prime minister, Narendra Modi, applies to his first major visit to his first
major foreign visit since his election victory in May.

NC-share-embed-gen translation:

India’s new Prime Minister Narendra Modi is true in his first major foreign visit,
Shinzo Abe in Toko, for his Japanese counterparts in May to discuss economic and
security relations.

Figure 4.3: The comparison among source sentence, gold reference sentence, NC-base
translation and NC-share-embed-gen translation

future information to boost forward translation. The most direct way is to make forward
and backward RNN hidden states in same time step similar to use some regularization.

The simplest function we can use here for regularization is just used Least Squares
(L2 norm), which calculated by one vector subtract another vector and take the square,
then sum all element. In this experiment, we have two kinds of models use L2 norm
to do regularization. One is the model we take L2 norm of forwarding and backward
hidden states as regularization loss, which we denote it as NC-12-direct. Because if we
take L2 regularization loss direct, it will become too strict and do not allow enough
flexibility for our model to generate even slightly different hidden states from forward and
backward (Serdyuk et al., 2017). Therefore, we try to add a transformation layer between
forward and backward hidden states. That means we do a simple affine transformation
of forward hidden states and use the generated vector to calculate L2 regularization loss
with backward hidden states. In this way, we will have more flexibility for our forward
and backward hidden states. This model we denote it as NC-12-affine. Same as above,
NC means small dataset News Commentary vi1.

When we training our model, we can set the weight for our 12 regularization model.
We have to choose a good value for this hyperparameters, after several experiments, we
find the small value like 0.3 will be better. And to let the forward and backward RNN learn
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useful information for a while, we use anneal technique, in which we start weight from
0.0 and add 0.00001 every iteration until it comes to its max value 0.3. The experiment
result as Table 4.8 and Table 4.9.

Table 4.8: Comparison of various proposed regularization model and base model on EN-
DE News Commentary v11 in terms of accuracy and perplexity of valid data newstest201

Accuracy (%) | Perplexity
NC-base 54.20 18.13
NC-12-direct | 54.75 15.88
NC-12-affine | 55.65 15.48

We can see in terms of accuracy and perplexity, both of our proposed models is
better than baseline model. And as we expect, NC-I2-affine has better performance than
NC-12-affine model. But it is better we also check the BLEU and NIST scores.

Table 4.9: Comparison of various proposed regularization model and base model on News
Commentary v11 in terms of NIST and BLEU score

newstest2015 | newstest2016
NIST BLEU | NIST BLEU
NC-base 57381 | 17.64 | 6.3912 | 20.43
NC-12-direct | 6.0193 | 18.69 | 6.4968 | 20.34
NC-12-affine | 6.0193 | 18.63 | 6.6041 | 20.85

From NIST score, we can still see both proposed model are better than baseline model,
but in terms of BLEU score NC-12-direct is a little worse than baseline on newstest2016
set. For model NC-12-affine, although it has similar scores on newstest2015 set, it has
much better performance on newstest2016 set. Above result shows the proposed model
has improvement comparing to baseline model.

And we use the same sentence as experiment 2 to analyze the real translation result.
The translation comparison as Figure 4.4.

We can see the regularization models also captured more information than the base-
line model. However, when we look at NC-[2-direct, it seems to have more information,
but its translation fluency is quite bad. It is hard understood than other two models. So
we think here NC-12-affine is a better model.

When we compare regularization model with multi-task learning model, we find that
the regularization model especially NC-12-affine model is even better than the best sharing
component model. The reason may be that regularization is a more direct way to pass
information between backward and forward. However, the problem for regularization
model is that we need to find a proper weight for our regularization loss, otherwise the
performance will be worse. For small dataset, this kind of parameter tuning is still okay,
but for the big dataset, it will be a problem, because every experiment needs cost a lot
of time.

42



Source sentence:

Indiens neuer Premierminister Narendra Modi trifft bei seinem ersten wichtigen
Auslandsbesuch seit seinem Wahlsieg im Mai seinen japanischen Amtskollegen Shinzo
Abe in Toko, um wirtschaftliche und sicherheitspolitische Beziehungen zu besprechen.

Reference sentence:

India’s new prime minister, Narendra Modi, is meeting his Japanese counterpart,
Shinzo Abe, in Tokyo to discuss economic and security ties, on his first major foreign
visit since winning May’s election.

NC-base translation:
India’s new prime minister, Narendra Modi, applies to his first major visit to his first
major foreign visit since his election victory in May.

NC-l2-direct translation:

India’s new Prime Minister Narendra Modi, in his first major foreign visit since his
victory in May, Shinzo Abe, in Too Abe, is in Too to discuss economic and security
relations.

NC-12-affine translation:

India’s new prime minister, Narendra Modi, has seen his Japanese counterpart in
Too Shinzo, in his first major foreign trip in May, to discuss economic and security
relations.

Figure 4.4: The comparison among source sentence, gold reference sentence, NC-base
translation and NC-share-embed-gen translation

4.3.4 Experiment 4: The influence of combine sharing compo-
nents and regularization

After experiments above mentioned two techniques, multi-task learning model, and regu-
larization model, it naturally comes to our mind that can we improve further by combining
this two techniques. Therefore, we take the best setting from experiment 2, the sharing
embedding and generator model. And we apply direct L2 regularization and affine L2
regularization from experiment 3 to this model. So we can get two models, which we call
them model NC-12-direct-share-embed-gen and model NC-I12-affine-share-embed-gen sep-
arately. We implement this two models and make a comparison with baseline and former
proposed models. For the regularization part, we use same weight annealing technique to
train combined model. The result as Table 4.10 and Table 4.11.

In terms of accuracy and perplexity, we find the proposed combine model have not
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Table 4.10: Comparison of combined model, base model, and various former proposed
models on EN-DE News Commentary v11 in terms of accuracy and perplexity of valid
data newstest2014

Accuracy (%) | Perplexity
NC-base 54.20 18.13
NC-12-direct-share-embed-gen | 54.93 15.60
NC-I12-affine-share-embed-gen | 55.87 15.30
NC-share-embed-gen 55.61 15.12
NC-12-direct 54.75 15.88
NC-12-affine 55.65 15.48

hurt the performance of the Nc-share-all model. It obviously outperforms baseline model.
And when compared with original regularization model NC-12-direct and NC-12-affine, we
can find by sharing embedding and generator components it actually benefits the model
performance. However, the strange point in this table is when compared with the original
NC-share-embed-gen, we find the direct regularization hurts the performance, but the
regularization with affine layer improved the performance in terms of accuracy. Although
NC-share-embed-gen has the lowest perplexity, while we already find that it may not have
big relation with metrics like BLEU, as we showed NC-[2-affine can beat it. So let’s check
other metrics.

Table 4.11: Comparison of combined model, base model, and various former proposed
models on EN-DE News Commentary v11 in terms of NIST and BLEU score

newstest2015 | newstest2016
NIST BLEU | NIST BLEU
NC-base 5.7381 | 17.64 | 6.3912 | 20.43
NC-12-direct-share-embed-gen | 5.9679 | 18.43 | 6.5361 | 20.60
NC-12-affine-share-embed-gen | 6.0247 | 18.67 | 6.6297 | 21.08

NC-share-embed-gen 5.9317 | 18.24 | 6.5523 | 20.81
NC-12-direct 6.0193 | 18.69 | 6.4968 | 20.34
NC-12-affine 6.0193 | 18.63 | 6.6041 | 20.85

Then, we get the NIST and BLEU scores of our strongest proposed model NC-/2-
affine-share-embed-gen, it get +1.03 improvement on newstest2015 and +0.65 improve-
ment on newstest2016 in terms of BLEU, which is a big improvement. When looking
at the comparison with other proposed models, for regularization with affine model the
combine always improve performance. But for direct regularization model, the combined
model sometimes helps and sometimes hurts.
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Effect of sentence length

For our proposed model, because it can make advantage of bidirectional information, so
we hypothesize that it can be better to translate sentences with longer length. To confirm
this, at first, we concatenate the newstest2015 and NESTEST2016 two test sets together
to make a test set with totally 5168 sentences. We divide this test set into 6 buckets
according to the sentence length, and calculate the BLEU 6 score for each bucket. The
statistics of sentence number for the test set as Table 4.12.

Table 4.12: Number of sentences for each length buckets

<=10|11-20]21—-30 |31 —-40 |41 =50 | > 50
Test set | 1192 1998 1282 501 141 54

We take the baseline model NC-base and our best proposed model NC-12-affine-
share-embed-gen, and translate the dataset. Later, we calculate the BLEU score of the
translation result. Then we compare their BLEU score. The result as Figure 4.5.

Figure 4.5 shows that proposed model outperform the baseline model on all length
range. At first, the two model performance are quite similar. As the length increase, the
difference of BLEU score between them become bigger. Especially, our proposed model
have much better performance on longer sentences. That means our model indeed can
use more information from bidirection to translate longer sentences compare with baseline
model. However, as sentence length too long, there are a lot of noise so the decrease of
performance is reasonable.

4.3.5 Experiment 5: Testing models on the ZH-EN data and the
large DE-EN data

Experiments on the ZH-EN language pair

For the purpose of generality of our models, we tested the selected proposed model on
another language pair, the English-Chinese pair. We run NC-base, NC-share-embed-gen,
NC-12-affine, and NC-12-affine-share-embed-gen models on EN-ZH News Commentary v12
data just released last year. The experiment as Table 4.13 and Table 4.14.

We can see in terms of accuracy and perplexity on validation set, English-Chinese
pair also share the similar trend as English-German pair. Because the metrics here are
calculated based on the preprocessed English and Chinese, and for NIST and BLEU scores
we have one more post process step before calculation, so it is better to check them first.

In terms of NIST and BLEU scores, we can see proposed models outperform base
model as demonstrated in English-German language pair. Especially, the combined model
still achieve the highest performance among all the models, with +1.18 BLEU compare
with the base model.

6Calculate by multi-bleu-detok. perl: https://github.com/OpenNMT/OpenNMT-
py/blob/master /tools/multi-bleu-detok.perl
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Figure 4.5: Compare BLEU score on different length sentences between NC-base and
NC-12-affine-share-embed-gen

Table 4.13: Comparison of various selected proposed models and base model on EN-ZH
News Commentary v12 in terms of accuracy and perplexity of valid data newsdev2017

Accuracy (%) | Perplexity
NC-base 36.46 84.87
NC-share-embed-gen 39.58 58.56
NC-12-affine 39.73 59.83
NC-12-affine-share-embed-gen | 39.93 57.03
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Table 4.14: Comparison of various selected proposed models and base model on EN-ZH
News Commentary v12 in terms of NIST and BLEU score of test data newstest2017

newstest2017

NIST BLEU
NC-base 4.6506 | 14.98
NC-share-embed-gen 4.9306 | 15.83
NC-12-affine 4.9901 | 16.10
NC-12-affine-share-embed-gen | 5.0097 | 16.16

Experiments on the large DE-EN data

To get more confidence about our proposed model, we test the proposed models on the
DE-EN big dataset, which means the whole DE-EN dataset for WMT16 task. Because
we have changed the data set, so we will also change each annotation of NC' to WMT.
For example, NC-base to WMT-base. For model with regularization, we also use weight
annealing like before. But the limit for weight loss we set this is 0.5 as (Serdyuk et al.,
2017). The accuracy and perplexity of our trained model like Table 4.15.

Table 4.15: Comparison of various selected proposed models and base model on WMT16
DE-EN data in terms of accuracy and perplexity of valid data newstest201/

Accuracy (%) | Perplexity
WMT-base 63.79 6.17
WMT-share-embed-gen 65.17 5.80
WMT-12-affine 65.07 5.80
WMT-12-affine-share-embed-gen | 64.90 5.85

We can see all the proposed model get better performance than baseline model in
terms of accuracy and perplexity on valid set. However, one unexpected thing is that
our strongest model, which share embedding and generator and have regularization with
affine layer, become the worst model among selected proposed model. We think the
reason might be the interaction between regularization and sharing components. The
regularization loss weight 0.5 choose here is not good enough. Let’s check NIST and
BLEU score in Table 4.17 for further analysis.

We find that in terms of NIST and BLEU score, the WMT-12-affine model become
the worst model. This indicate the loss weight we choose here is indeed not good enough,
and it need further exploration. The best model here become the pure MTL model WMT-
share-embed-gen with +0.98 and 40.65 BLEU score improvement on newstest2015 and
newstest2016 separately.

To further understand our model, we can also compare it with the state-of-art models.
Because on WMT16 German to English direction there is not so many result about it.
So we take the result from Edinburgh NMT system WMT16, the best model that year,
and a recent syntax-aware NMT paper (Aharoni and Goldberg, 2017). We denote the
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Table 4.16: Comparison of various selected proposed models and base model on WMT16
DE-EN data in terms of NIST and BLEU score of test data newstest2015 and new-

stest2016
newstest2015 | newstest2016
NIST BLEU | NIST BLEU
WMT-base 7.7747 | 28.81 8.7081 | 34.12

WMT-share-embed-gen

7.8274 | 29.79 | 8.6348 | 34.77

WMT-12-affine

70677 | 29.18 | 8.6205 | 34.27

WMT-12-affine-share-embed-gen | 7.7963 | 29.27 | 8.6403 | 34.38

Edinburgh baseline model as Edinburgh-WMT16 and twos models from (Aharoni and

Goldberg, 2017) as bpe2bpe and bpeltree.

Table 4.17: Comparison best proposed model with stat-of-art models on WMT16 DE-EN
translation task in terms of BLEU score on newstest2015 and newstest2016

newstest2015 | newstest2016

WMT-share-embed-gen | 29.79 34.77
Edinburgh-WMT16 26.4 28.5
+synthetic 29.9 36.2
+ensemble 31.5 37.5

bpe2bpe 27.33 31.19
bpe2tree 27.36 32.13
bpe2tree ensemble 28.7 33.24

We can see without using synthetic data and ensemble technique, our model is the
best model on this dataset. For bep2tree model, even its ensemble can not beat our model
performance. That means our model actually are a very competitive model.
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Chapter 5

Conclusion

In this thesis, we present our research on exploring bidirectional decoding of neural ma-
chine translation. Our experiments include building a strong baseline by searching some
parameters, such as beam size and length penalty, and comparison between the baseline
model and our proposed models, which include multi-task learning model and regulariza-
tion model. There are several points that we took it as the most important contribution
in this study:

e We implemented a strong deep learning based neural machine translation baseline
model. The baseline model is RNN based sequence-to-sequence model with atten-
tion mechanism. Except for reference some hyperparameters setting from previous
papers, we also did some exploration on beam size and length and coverage penalty
parameters. This experiment gives us a deeper understanding of how these param-
eters influence our translation result. And after choosing the best setting, we have
a very strong baseline model, which can compete with the performance of many
state-of-art models.

e We studied the influence of sharing components between forward and backward RNN
in our decoder, which we call it multi-task learning model. We shared three com-
ponents include attention component, target word embedding and generator sepa-
rately, and how sharing component contribute to performance. We also share multi-
ple components like embedding and generator together, it improves more. However,
when we share all component it deteriorates the performance. After more analysis
on real translation result, we find that the proposed model can actually capture
more information than baseline model.

e We studied regularization way to do the bidirectional decoding of NMT model. We
proposed two variants, one is used L2 regularization loss directly between forward
hidden states and backward hidden states, another adds an affine transformation
layer to get more flexibility. The result show these two regularization way all have
improvement than baseline, especially the model with an affine layer. When compare
with multi-task learning model, it is even better than them, because of the more
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direct way to pass information. After same translation result analysis, it shows
proposed model actually capture more information than baseline model.

e We studied combine multi-task learning technique and regularization technique to-
gether to do the bidirectional decoding of NMT model. We take the best sharing
embedding and generator model and apply regularization on it. Then we get our
strongest model multi-task learning model share embedding and generator with
affine L2 regularization, which is better than all the former proposed model. It gets
a large improvement than the baseline model, especially in long length sentences.

e We selected the top performance models among the proposed models. And we run
them on one more translation direction, English to Chinese. The result further
support our declaration before. Besides, we run selected models on the WMT16
DE-EN dataset. First, we can see effectiveness of our proposed idea. Second, the
best of our proposed model can beat almost all the state-of-arts on this dataset
without synthetic data and ensemble technique.

Although there are more things that we want to explore in this research, we could
not because of the limited time, resources and related knowledge. The main limitation of
this research are:

e The reason for why sharing components in the multi-task learning model can get
better performance has not been systematically analyzed. We could only give some
intuitive assumption about why sharing generator is better than sharing word em-
bedding and attention. And also the interaction between several components should
be explored deeper to see why some multiple components shared model are worse
than others.

e Although regularization way is quite successful, if we want it combine with the
multi-task learning model to achieve a better result, then we need more time and
experiments to explore the proper loss weight of it. And there are a lot of thing
about their interaction that we can explore.

e We could not investigate more advanced regularization way to do the bidirectional
decoding, such as variational auto-encoder (VAE) technique. Actually, we have
already implemented the VAE model, however, the result is not good and the model
can not learn more information from backward RNN. Although we spend a lot of
time and use various techniques, such as weight annealing and auxiliary loss, want
to solve this question, we could not solve it.

e Because of the limited time and resource, we could not run more experiments on
more language pairs on big datasets, and combine some technique like synthetic
data and ensemble model to achieve further improvement. We also have not do
more careful comparison with related techniques.
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Neural machine translation is a very interesting research area and still in high speed
developing. Because using deep learning in machine translation is just a recent thing,
so there are many techniques we can explore and research to improve neural machine
translation system. Later, after combining all those techniques, it is possible we can
achieve a machine translation system which is comparable to real human translator just
as some recent paper shows (Hassan et al., 2018).
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