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ABSTRACT: We propose a computational scheme to evaluate Hamaker
constants, A, of molecules with practical sizes and anisotropies. Upon the
increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate
binding curves for such molecules to extract the constants, we discussed how
to treat the averaging over anisotropy and how to correct the bias due to the
nonadditivity. We have developed a computational procedure for dealing
with the anisotropy and reducing statistical errors and biases in DMC
evaluations, based on possible validations on predicted A. We applied the
scheme to cyclohexasilane molecule, Si6H12, used in “printed electronics”
fabrications, getting A ≈ 105 ± 2 zJ, being in plausible range supported even by other possible extrapolations. The scheme
provided here would open a way to use handy ab initio evaluations to predict wettabilities as in the form of materials informatics
over broader molecules.

■ INTRODUCTION
Hamaker constants,1 A, dominate the wettability2,3 of solvents,
which is one of the critical properties in industrial applications
of Sol−Gel methods,4 including solution processes for
semiconductor devices.5 Microscopic insights on the wett-
ability2,3 relate the Hamaker constant with molecular
interactions, which can be, in principle, evaluated from ab
initio simulations.6,7 From the asymptotic behavior of molecular
binding curves, or potential energy surfaces (PES), ∼C6/R

6, the
Hamaker constant can be computed as Aadd = πC6ρ

2, provided
that only a binding with a single C6 matters and a naive
superposition is expected.3 The index, “add”, then stands for
“additive” and ρ denotes the molecular density, which appears
when the interactions between each of the infinitesimal
fragments are superposed over the volume. Though we can
find several such prototypical works3 of the “ab initio
assessment” applied to simple and highly symmetric molecules,
we would immediately encounter troubles when attempting to
apply the framework to practical solute molecules. Most
molecules of industrial interest are not so highly symmetric that
we cannot generally expect the additivity of the interaction.8 In
these cases, too many alignments of coalescence are possible
due to the anisotropy of molecules, bewildering us how to
model the coalescence with the confidence for capturing the
nature of the system.
The main subject of the present paper is how to estimate A

for practical solute molecules via Aadd with plausible
considerations mainly for the anisotropy. Once we could

establish such a scheme, such database of molecular interactions
aided by recent ab initio methods9 can provide the Hamaker
constants over various liquids. It would help to predict, control,
and design such solution processes including not only
wettabilities but also suspensions and solvabilities by using
empirical molecular dynamics simulations.2

The present study has been originally motivated by the
demand to estimate A for a cyclohexasilane molecule, Si6H12
(CHS), which is used as an ink for “printed electronics”
technology to fabricate polycrystalline Si film transistors.5 The
ink including Si-based precursors is sprayed on a substrate,
which is sintered to form an amorphous Si thin film, without
using expensive vacuum equipment in the conventional
semiconductor processes. The ink printing process has hence
attracted recent interest for realizing more savings and lower
environmental impact technology.5 Controlling the wettability
of these inks is of rather general interest because the technology
is about to be applied further to fabricate oxide or carbon
nanotube film semiconductor devices10,11 by using various inks
instead of Si-based ones. For going beyond conventional/
experimental preparations of inks, several simulations have been
made to analyze the wettability of droplets on inkjet processes
dynamically using molecular dynamics12 or empirical models.13

The predictability of these simulations strongly depends on the
force fields that are currently prepared by empirical para-
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metrizations of Lennard-Jones type potentials. The ab initio
assessment for these parametrizations is obviously recognized
as an important breakthrough in getting more universal
applicability.
For CHS, there is no reference to A, and then we tried

evaluating Aadd from its binding curve. Besides the anisotropy
discussed above, the commonly available framework, DFT
(density functional theory), is known to fail to describe
molecular interactions mostly, and the DFT performance
strongly depends on exchange-correlation (XC) functionals
adopted.14 In the present case, the interaction of this system,
CHS, is of non-π staking nature, known as an aliphatic−
aliphatic one15 between the σ bonds at the HOMO (highest-
occupied molecular orbital) levels of the monomers. Unlike
π−π interactions of, for example, benzene dimer, there has been
only a few investigations on σ−σ interactions and hence no
established scheme of how to treat the anisotropy of molecules
in the evaluation of binding curves even for moderately
tractable size and symmetry of the target molecules. As is well-
known, accurate correlated methods such as CCSD(T) are
required to get enough reliable estimations of molecular
interaction.14,16 Such methods are, in general, quite costly in
the sense of the scalability on the system size, N, for example,
∼N7 for CCSD(T).17 Such severe scalabilities obstruct the
applications to larger molecules being likely in the practical
cases. In contrast, DMC (diffusion Monte Carlo) method is
quite promising, and its applicability to more practical issues
gets rapidly extended.18−21 This framework is regarded in
principle as the most reliable that can achieve “numerically
exact solutions” in some cases,22,23 and there has been so far
several applications to noncovalent systems,24−34 to calibrate
even over accurate molecular orbital methods such as
CCSD(T). DMC scales at worst to ∼N3,19 making it possible
to be applied further to larger molecules including molecular
crystals.29−33

In this paper, we therefore applied DMC to evaluate Aadd of
CHS. Upon a careful benchmark on benzene molecule (given
in Appendix C), we have established a scheme (i) coping with
the anisotropy of the molecules, (ii) reducing statistical error
bars and biases that are small enough for a usable predictions,
and (iii) based on several possible validations on the predicted
A for which no experimental reference value is available. The
scheme is applied to CHS getting A = 105 ± 2 zJ, which is in a
reasonable range validated by several side considerations. By
making comparisons with binding curves by DFT, we also
provide a useful calibration over several XC for the
predictability of A.
The paper is then organized as follows: In the main body of

the paper, we provide descriptions of the scheme applied to
CHS, followed by validations of the prediction and benchmarks
for molecular systems with experimental values as briefly as
possible so as to concentrate on following the established
procedure. Thus, put aside into appendices are detailed
descriptions for computational methods (Appendix A), some
formalism of Hamaker constants considered in the present
work (Appendix B), and all the discussions on the validations of
the procedure made on the benzene dimer benchmark
(Appendices C−E). Technical details about evaluation of Aadd
for CHS are also given alongside the benzene case in the
appendices. Summaries of the paper are given as Concluding
Remarks at the end of main text. Detailed correction schemes,
such as BSSE (basis set superposition error), CBS (complete

basis set) schemes, as well as time-step error in DMC, are given
in Supporting Information.

■ RESULTS AND DISCUSSIONS
Hamaker Constant of CHS. To obtain C6, we first

evaluated dimer binding curves of CHS for three types of
coalescences, that is, sandwich (type A), T-shape (type B), and
parallel (type C), as shown in Figure 1. Computational details

for the evaluation are given in Appendix A. We took the chair
conformation as the CHS monomer structure, because it is
known to be most stable.35,36 The monomer geometry is
optimized at the B3LYP/6-311G level using Gaussian09.37 To
plot a binding curve, we vary binding distances of a dimer
coalescence, leaving each of the monomer structures
unchanged from the optimized ones. Here the intermonomer
distance is defined as that between the centers of gravity of the
monomers. The use of the fixed monomer geometries is valid
to some extent because we focus on C6 extracted from the long-
range behavior where each of the monomer structures may be
almost the same as that of an isolated monomer.
Figure 2 shows DMC binding curves for each of the

coalescence configurations, compared with CCSD(T) refer-
ences. The sandwich (type A) configuration is found to give the
most stable binding energy, ΔE, over the others, p ∝
exp(−ΔE/(kT)) ≈ 98% at T = 298.15 K as given in Table 1.
To obtain C6 from the binding curves, we first evaluate the
asymptotic exponents from the corresponding logarithm plots,
as shown in Figure 3. The best fits of the exponents in DMC
[CCSD(T)] give −5.6 ± 5.8 [−5.9], − 4.2 ± 5.9 [−7.3], and
−7.2 ± 7.2 [−8.7] for type A, B, and C, respectively. Supported
by the CCSD(T) estimations, we can somehow find that type A
dominates the wettability with the longest-ranged exponent
that is close to the ∼C6/R

6 dependence. For type A, we can
then identify the C6 constant from the fitting with exponent
fixed to be 6.0. To sum up, only the stable configuration
contributes to ∼1/R6 asymptotic behavior, while the others give
different exponents. In addition to the above CHS case, our
careful benchmark for the benzene case given in Appendix C
clarifies that the deepest binding configuration almost
dominates the Hamaker constants (the most stable coalescence,
parallel displacement, asymptotically behaves as ∼1/R6, while
the other ones do not). We can therefore concentrate only on
the type A binding curve to extract C6 from its asymptotic
behavior. Hereafter we adopt a symbol, C6

stable, as a C6 value for
the most stable coalescence configuration.
To extract C6

stable from the PES data, we considered several
fitting schemes: 6-12 Lennard-Jones (LJ) (Figure 2), log-fit

Figure 1. Typical configurations of the dimer coalescence considered
in this work, sandwich (type A), T-shaped (type B), and parallel (type
C).
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(Figure 3), and power-fit for the correlation energy defined as
the deviation from Hartree−Fock energy (Figure 4), which are
denoted as C6

stable;LOG, C6
stable;LJ, and C6

stable;Corr, respectively. The
estimation is also affected by the choice of which distance range
is taken to be fit. We describe technical details of our fitting
schemes in Appendix D, considering the benzene benchmark as
well as CHS. From them, we find out that the power-fit for the
correlation energy38,39

Δ = − −E R
C
R

C
R

( ) ...corr
6
6

8
8 (1)

achieves small enough error bars for usable predictions on the
Hamaker constant by DMC, Aadd(C6

stable;Corr) = 105 ± 2 zJ, with
the fitting range R = 4.4−6.4 Å, which minimizes a measure of
the deviation from the fitting model (Appendix D), where the
experimental density of CHS, ρ = 0.323 × 1028[1/m3] at
298.15 K,40 was used to evaluate Aadd = πρ2C6. The Hamaker
constants evaluated from various approaches (methods/
schemes) in the present study are listed in Table 2, and their
validation is given in the next subsection.

Validation of A Value. We found that our DMC
evaluations of Aadd agree with those obtained from the other
reliable quantum chemistry methods, CCSD(T) and MP2,
implying our ab initio evaluation schemes would be reasonable
within the framework of many-electron wave function theory.
But, there is no reference to A to be compared directly to the
present estimation for CHS. So we tried a validation via side-
way manner as follows: (1) A simple evaluation based on
London’s theory38 gives lower bounds of AL, that is, it is well-
known to underestimate AL as well as Aadd (See Appendix C for
more detail).3,41−43 Static polarizabilities and ionization
energies were evaluated using HF and DFT levels of theory
to give C6 values (denoted as C6

London), where the ionization
energies are evaluated by the ΔSCF procedure. We found that
HF gives Aadd(C6

London) = 66 zJ, while most DFT values give
Aadd(C6

London) ≈ 80 zJ. Note that HF underestimates the
ionization energy significantly due to lack of correlation,22

leading to HF underestimation of Aadd. The London estimates
with DFT are consistent in the sense that they are actually
located in the underestimated range compared with the other
estimations in Table 2.
(2) As another trial for the validation using the estimations

(AL) based on the Lifshitz theory,
44 whose formalism is given in

Appendix B, we consider the dependence on the molecular
weights of A ∝ C6. Since the dispersion interactions scale to the
total polarization, expecting that A is roughly proportional to
molecular weights is not so bad. Under this assumption, the
ratio, AL(C6H12)/AL(C5H10) = (53.0 ± 0.2)/(49.4 ± 0.3), can
be taken as being equal to AL(Si6H12)/AL(Si5H10). Using the
known value of AL (73.4 ± 0.4 zJ) for CPS (Si5H10), we can
roughly estimate that of CHS as AL(extrapol.) = 78.9 ± 0.5 zJ.
Another possible regression can be made in terms of C6 instead
of A. Regressing the quadratic functions to the TDDFT and

Figure 2. DMC binding curves for three types of coalescence (sandwich/T-shape/parallel) compared with CCSD(T). For eye-guide, Lennard-Jones
fitting is depicted for both DMC and CCSD(T), though for T-shape and parallel, the fitting has a limited meaning because they do not behave like
R−6 (see Appendix D for details).

Table 1. Comparisons of the Equilibrium Stability among
Three Coalescence Configurations for CHS Shown in Figure
1, in Terms of the Thermal Probability Weight, p ∝
exp(−ΔE/(kT))a

B3LYP-GD3 MP2 CCSD(T) DMC

p(A)/Re 0.971/4.9 0.976/4.7 0.968/4.8 0.987(82)/4.83(2)
p(B)/Re 0.026/6.6 0.023/6.1 0.030/6.2 0.010(24)/6.37(6)
p(C)/Re 0.003/8.8 0.002/8.4 0.003/8.6 0.003(14)/8.7(1)
R̅dim 5.0 4.7 4.9 4.9(1)

aEquilibrium binding lengths, Req [Å], are also shown. R̅dim [Å] is the
thermal averaged binding lengths at T = 298.15 K for each method.
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EMT (effective medium theory) data on C6 values of the SinHm
family45 (denoted as C6

extrapol.), we get Aadd(C6
extrapol.) = 110 zJ

and 94 zJ, respectively. These values lie within a reasonable
range by comparison with those in Table 2, being consistent
with the fact that Aadd is larger than AL(extrapol.). We found the
EMT extrapolation of Aadd being closer to AL(extrapol.). This
may be attributed to the fact that, in EMT, C6 is evaluated by
the dielectric constants modeled by those of bulk quantities, as
in the Lifschitz theory. The reason why Aadd generally
overestimates A values compared with AL may be explained
as follows: Aadd(C6

stable) is evaluated only from the longest-
ranged exponent with a selected coalescence configuration, type
A in the present case. The other configurations with shorter-
ranged exponents should be included in liquids by some
fractions, and hence effectively weaken the binding strength
estimated under such an assumption with 100% constitution of
type A coalescence. Such an effect would be represented as

“effectively reduced” Hamaker constants close to AL. Hence,
the values, Aadd/AL, could be sorted out by a factor dominating
the fraction, exp(−ΔE/(kT)), where ΔE denotes a typical
energy difference between the coalescence configurations with
the longest- and the shortest-ranging exponents.

Validation of Equilibrium Properties. Although the long-
range behavior of PES concerns the evaluation of A, validation
of PES at equilibrium distance may also give us some
confidence in our numerical results. Equilibrium properties
including binding energies (ΔE) and equilibrium lengths (Req)
are summarized in Table 3. The estimated binding energies in
our DMC-PES are comparable with the typical value of non-π

Figure 3. Asymptotic behaviors of binding curves evaluated by DMC and CCSD(T), as given in logarithmic plots fitted by two different lines, “Best”
and “Limited”. In the former fitting, the exponent is fitted to get the best fitting, while in the latter it is fixed to be assumed R−6 behavior.

Figure 4. Correlation energy contributions to binding energies
evaluated by DMC and CCSD(T).

Table 2. Computed Hamaker Constants, Aadd(C6
stable) [zJ],

for CHS, based on Different C6 Evaluation Schemes,
C6
stable;LOG, C6

stable;LJ, and C6
stable; Corra

method/scheme LOG LJ Corr London

LDA 48 90 67 93
M06-2X 36 56 46 81
GGA-PBE 84
B3LYP 81
B3LYP-GD2 57 62 66 81
B3LYP-GD3 96 105 104 81
B97-D 98 81 101 82
HF 66
MP2 104 99 104
CCSD(T) 95 103 106
DMC 99(30) 107(7) 105(2)

aSee text for more details about the definitions. Since HF, PBE, and
B3LYP give repulsive PESs, their Hamaker constants cannot be
evaluated by the present PES scheme, and the London scheme is used
to estimate Aadd(C6

London), instead. Statistical errors in the DMC values
are given in parentheses.
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stacking energies approximately −5 kcal/mol.15 Compared with
π-stacking energies, it is about two times larger, which would be
consistent with the higher boiling temperature of CHS than
that of its structural isomers with the same molecular weights
but without hydrogen bonding.46

For further possible validations of our DMC-PES, we would
take the facts that (a) the PESs are consistent with those
estimated by another reliable standard, CCSD(T), and (b) we
can make a plausible comparison that explains the exper-
imentally observed density from our estimated binding lengths
Re. For point a, we shall make detailed discussions on the
comparison as well with DFT later (see Calibration of DFT).
As for point b, we confirmed that our scheme that relating Re

with an experimental density works well for not only CHS but
also benzene. For CHS, experimental values of the molecular
weight (180.61 g/mol) and density (0.97 g/cm3 at T = 298.15
K) lead to the mean intermolecular distance, Rρ ≈ 6.8 Å, which
reasonably drops within the binding lengths of types A to C. As
shown in Table 1, the simple thermal averaging over the three
configurations by the factor p ∝ exp(−ΔE/(kT)) under-
estimates Rρ: R̅dim ≈ 4.9 Å. An alternative averaging over four-
body trapezoid configurations shown in Figure 5 gives an
improved estimate, R̅tetra, getting closer to the experimental
estimation of 6.8 Å, as shown in Table 4, where an “effective”
length is measured as the square root of the trapezoid area. In
the case of benzene, R̅dim ≈ 3.8 Å and R̅tetra ≈ 5.0 Å. The former

underestimates and the latter agrees with an experimental
estimation of Rρ ≈ 5.3 Å (For detail, see Appendix E).

Calibration of DFT. DFT is a much more practical choice
of methods combined with our ab initio Hamaker evaluation
schemes, but its reliability strongly depends on XC functionals
adopted as usual. Here we provide a useful calibration over
several XC functionals appropriate for predicting A values, by
comparing with the many-electron wave function theories.
Figure 6 highlights typical binding curves evaluated by

various methods, though only for type A (for the other types,
see Supporting Information). All the SCF curves were
corrected by the BSSE scheme17,47−49 (see Supporting
Information). The present study takes CCSD(T) as a standard
reference to calibrate the performance of the SCF approaches.
We can find the DFT predictions scattering around CCSD(T).
Except LDA, conventional functionals such as PBE and B3LYP
fail to capture the binding itself. The LDA overbinding has
been frequently reported for a number of molecular
systems.29−32,50 This can be regarded as spurious due to
improper self-interactions: exchange repulsion is not fully
reproduced in LDA because of the lack of the exact cancellation
of self-interaction, and hence spurious “chemical” bindings are
formed due to the weakened repulsions, rather than true
chemical bindings. The exchange repulsion weakened in LDA
gets recovered when changing XC into GGA and further into
B3LYP, which may explain the repulsive curves pushing the
minimum toward distant region. As LDA is known to
inherently fail to describe dispersion interactions, a significant
difference in the LDA estimations between Aadd(C6

stable;LOG) and
Aadd(C6

stable;LJ) (see Table 2) implies a poor reliability on its
long-range behavior description.
The XC functionals for molecular interactions, M06-2X, B97-

D, and B3LYP-GD(2,3), on the other hand, well reproduce the
bindings at their equilibrium lengths, as seen in Figure 6. We

Table 3. Summary of the Abilities in Describing Each Binding Region at Various Levels of Theorya

equilibrium properties

ΔE(Re) Re short-range ΔE(4.2) long-range ΔE(7.0)
LDA −9.39 [NG] 4.34 [NG] −8.73 [NG] −0.44 [NG]
B3LYP-GD2 −3.47 [NG] 4.93 [G] 2.09 [NG] −0.71 [NG]
B3LYP-GD3 −5.06 [G] 4.93 [G] 5.74 [NG] −1.13 [G]
B97-D −4.13 [NG] 4.88 [G] 2.73 [NG] −1.24 [G]
M06-2X −3.75 [NG] 4.67 [NG] 1.84 [NG] −0.40 [NG]
MP2 −6.36 [NG] 4.70 [NG] −0.88 [NG] −1.23 [G]
DMC/B3LYP −5.3(2) [G] 4.89(2) [G] 1.6(4) [G] −1.2(4) [G]
CCSD(T) −5.24 4.89 0.94 −1.13

aNG or G in brackets stands for No Good or Good, respectively. Statistical errors in the DMC results are indicated in parentheses.

Figure 5. Possible four-body clusterings formed from the two-body
coalescences shown in Figure 1. Hatched regions stand for the surfaces
surrounded by the ring of cyclohexasilane molecule. lS, lT, and lP
correspond to the binding lengths with sandwich (type A), T-shape
(type B), and parallel (type C) dimer configurations, respectively.

Table 4. Comparisons of the Equilibrium Stability among
Four Clustering Configurations in Figure 5, in Terms of the
Thermal Probability Weight, p ∝ exp(−ΔE/(kT))a

B3LYP-GD3 MP2 CCSD(T) DMC

p(α)/Rα 0.343/6.6 0.293/6.3 0.327/6.4 0.48(27)/6.5
p(β)/Rβ 0.243/6.7 0.248/6.3 0.245/6.5 0.21(7)/6.6
p(γ)/Rγ 0.243/6.6 0.248/6.1 0.245/6.3 0.21(7)/6.4
p(δ)/Rδ 0.172/6.6 0.210/6.1 0.183/6.2 0.09(19)/6.4
R̅tetra 6.6 6.2 6.4 6.5(2)

aΔE is computed from a sum of dimer pairs in the tetramer. Rα,β,γ,δ [Å]
are the effective lengths for tetramers, α, β, γ, δ (see text), and R̅tetra
[Å] is their thermal averaged length at T = 298.15 K. Statistical errors
in DMC are given in parentheses.
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see, however, that M06-2X and B3LYP-GD2 give rise to less
reliable asymptotic behaviors at long-range region, where they
decay much faster than CCSD(T) or the other XC functionals
for molecular interactions. As for M06-2X, its functional form
based on hybrid meta-GGA does not explicitly contain
dispersion interactions by its construction, and its para-
metrizations of the XC functionals are adjusted so as to
reproduce a number of molecular bindings around their
equilibrium geometries, giving rise to the unreliable long-
range behavior. B97-D and B3LYP-GD2 are classified into the
DFT-D2 family including “atom-pairwise” second-order
perturbative dispersion corrections (two-body term).51 Both
B97-D and B3LYP-GD2 give poor estimates of binding
energies and lengths, but the former behaves better than the
latter at long-range region, being appropriate for the estimation
of Hamaker constants. This implies long-range behaviors also
depend on original functionals, and atom-pairwise dispersion
corrections do not necessarily lead to a correct description of
“molecule-pairwise” dispersion interactions, as in the B3LYP-
GD2 case. It has been reported that DFT-D3 including atom-
pairwise third-order perturbative dispersion corrections (three-
body term) can remedy this kind of discrepancy in long-range
as well as equilibrium behaviors at the DFT-D2 level of
theory.52 It is notable that the present B3LYP-GD3 binding
curve is well improved in its long-range behavior to reproduce a
correct decaying exponent. For the present CHS case, its
correct molecule-pairwise dispersion behavior at long-range
region requires both the second- and third-order perturbative
dispersion corrections. Looking at the short-range region, on
the other hand, we find that B97-D and M06-2X give a better
description than B3LYP-GD3, getting closer to the DMC and
CCSD(T) estimations. This suggests that B3LYP-GD3
includes too large Hartree−Fock exchange effects to be
adequately canceled out by correlation effects. The above
results can be summarized in Table 3.
Our DMC and MP2 results are shown in Figure 6b,

compared with the reference CCSD(T), the typical SCF
(B3LYP), and the best within DFT at equilibrium and long-
range regions (B3LYP-GD3). As is well-known, MP2 overbinds
with deeper (shorter) binding energy (distance).53 It may not
be surprising to get the coincidence of asymptotic behaviors
between MP2 and CCSD(T), because the present CCSD(T) is
corrected by the CBS scheme taken from MP254 (see
Supporting Information). Three DMC curves were obtained
starting from guiding functions generated by LDA, PBE, and
B3LYP, respectively (see Supporting Information). They

almost converged to the same binding curve, even starting
from either B3LYP (worst in reproducing binding at SCF level)
or LDA (too deep spurious overbinding at SCF level). Similar
insensitivity to the choice of guiding functions has been also
reported for a DNA stacking case,29 implying that these DMC
predictions are not seriously affected by the fixed-node
approximation. Based on the variational principle with respect
to nodal surfaces in DMC,55−57 we henceforth concentrate on
the B3LYP guiding function only, because it gives the lowest
total energy though the energy differences among the three
binding curves are quite small. Note that this is consistent with
a number of previous DMC studies.29,58−61

The present DMC is found to give almost the same results as
CCSD(T). A remarkable difference between CCSD(T) and
DMC is the binding energy at short-range, ΔE(4.2) by
∼0.6(±0.4) kcal/mol. The difference would be partly attributed
to the dynamical correlation effect, which becomes more
important at shorter binding length as well as exchange
repulsions. Even under the fixed-node approximation, the
dynamical correlation is expected to be well de-
scribed,18,19,24−32 and hence the present DMC curve is
regarded as the best description of the binding of CHS.

Benchmarks. The scheme shown to work for CHS might
look somewhat arbitrary, as no experimental reference is
known. To make this more convincing, we would need to show
the scheme also works for a couple of systems where the
experimental values are known. Table 5 summarizes the results
of such benchmarks, using several methods applied to C6H6
and C6H12. In these estimations, we considered parallel
displacement and sandwich configurations for C6H6 and
C6H12, respectively. Our Aadd values based on the scheme are
found to agree well with experimental ones, AL, albeit with

Figure 6. Binding curves of type A (sandwich) dimer coalescence evaluated by (a) DFT methods (LDA, PBE, B3LYP, B3LYP-GD2/GD3, B97-D,
M06-2X) and (b) correlation methods (MP2, CCSD(T), and DMC/B3LYP) compared with selected DFTs. All the curves (except DMC) are
corrected by BSSE and CBS (see Supporting Information for more details).

Table 5. Computed Hamaker Constants, Aadd(C6
stable) [zJ],

Based on Different C6 Evaluation Schemes, C6
stable;LOG,

C6
stable;LJ, and C6

stable;Corra

molecule method LOG LJ Corr expt

C6H6 DMC 54(12) 51(4) b 50(2)
C6H12 B3LYP-GD3 70 82 72 53(2)

MP2 81 78 83
CCSD(T) 71 72 73

aSee text for more details about the definitions. Statistical errors in the
DMC values are given in parentheses. Experimental values for C6H6
and C6H12 were both evaluated from ref 62. bNot applicable.
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some overestimation. This is the same tendency as discussed in
the section entitled Validation of A Value. The smaller
discrepancy with experiments for the smaller size of molecule
would be accounted for as follows: As discussed in the previous
section, the major origin of the discrepancy comes from the
anisotropy, which cannot be well captured by the Aadd(C6

stable)
scheme. Since the anisotropy generally gets larger when the
molecular size gets larger, the discrepancy is expected to get
larger as well.
Practicality: DMC vs CCSD(T). Figure 7 shows the

comparison between DMC and CCSD(T) with and without

basis set (CBS) corrections. Even though CCSD(T) is known
as the “gold standard” among ab initio predictions, the practical
use of CCSD(T) requires very careful handling of corrections,
as described in Supporting Information, to get enough reliable
predictions.63 The correction itself is also under quite a limited
approximation54,64 (see eq 1 in Supporting Information). These
practical limitations are, in contrast, not the case in DMC
because it is free from the basis set choice to the extent that
only the nodal structure of the many-body wave function is
fixed by the given basis set. In order to evaluate Hamaker
constants of practically larger systems, therefore, DMC has the
advantage over CCSD(T) in the sense of less sensitivity to basis
sets.
We have to note, in fairness, that the preparation of workable

DMC trial wave functions would be far from straightforward in
practice. Though, in principle, DMC predictions are not relying
on the choice of trial wave function (except nodal surfaces), no
acceptable numerical stabilities and significant statistics are
achieved without carefully brushed up trial wave function via
VMC optimizations.65 Once the optimization has been
achieved, it is true to take advantage of ∼N3 scaling over
CCSD(T), though the optimization procedure sometimes
exhausts human and computational resources. This is in
contrast to rather transparent procedures for basis sets in
CCSD(T).
Our proposed scheme begins with the landscape of binding

curves to find that of the most stable configuration, from which
asymptotic behaviors are extracted. For this purpose, it is still
helpful to use quick DFT evaluations, though one should be
careful for the choice of XC functionals. As shown in Tables 2
and 3, it was found that at least GD3 level of theory for

dispersion is necessary for obtaining reliable evaluations of both
equilibrium and asymptotic properties.
Table 6 summarizes the comparison of computational costs

using several methods. Though the apparent expensiveness of

QMC may attract attention, we note that the achieved accuracy
and reliability are not the same: CCSD(T)/CBS is around 1/9
times cheaper than QMC; the reliability is assured up to cc-
pVDZ basis set level. While further refinement about the basis
set is not feasible by the current computational resources, we
can fully utilize quite a high parallel efficiency of QMC32 to
speed up. We note that the unit in Table 6 is core-hour, and the
current parallel implementation of CCSD(T) works up to
around 16 parallel processes.66 It is practically even in the sense
of required elapse time between QMC and CCSD(T) by using
640-core parallel environment, which is now commonly
available in the middle scale computational facilities.

■ CONCLUDING REMARKS
We considered a scheme using DMC-PES to evaluate Hamaker
constants A for practical anisotropic molecules and applied it to
a cyclohexasilane (CHS) molecule used as an ink for printed
electronics. The scheme should take into account two
important factors for practical applications, namely, the weak
molecular interactions dominated by electron correlations
(especially dispersion) and nonunique coalescing direction
between anisotropic molecules. By making comparisons with
the estimations by the Lifschitz theory (AL) on benzene, we
clarified several possible origins to give systematic biases on
Aadd when it is estimated by PES with or without any averaging
operations over anisotropy. The success of our scheme in the
benzene case leads us to its application to CHS. In the
application to CHS, our DMC results coincide fairly well with
other correlation methods such as CCSD(T), MP2, and several
DFT with exchange-correlation functionals for molecular
interactions, like B3LYP-GD3. The evaluated binding curve
can be reasonably validated by the experimentally observed
density of the liquid solution via a scheme to relate its binding
length and the mean intermolecule distance. We find out that
the parallel-wise coalescence of molecules gives the longest
distant exponent for the interaction, being around 6.0. Several
possible fitting schemes are applied to get Aadd, and finally we
estimate it around 105 ± 2 zJ, with practically enough small
statistical error. Though there is no experimental data available
for a direct comparison, the present estimation is well
supported from the trend of both Hamaker constants for
similar kinds of molecules and systematic difference between
the predictions by the Lifshitz theory and by the asymptotic
exponent estimations.

Figure 7. Comparison of binding curves between DMC and BSSE-
corrected CCSD(T) with the CBS/DZ basis set. “CCSD(T)/
DZ[CBS]” stands for the raw value without any corrections by DZ
basis sets [CBS limit], while “BSSE-CCSD(T)/DZ[CBS]” means that
with BSSE corrections.

Table 6. Computational Costs for Several Methodologies in
Terms of Core-Hour, Which Is CPU Time Multiplied by the
Number of Cores Exploiteda

method cost [core-hour]

B3LYP-GD3/CBS 9
MP2/CBS 34
CCSD(T)/cc-pVDZ 159
CCSD(T)/CBS 183
QMC (=opt.+DMC) 1587 (=9 + 1578)

aNote that CCSD(T)/CBS equals a sum of CCSD(T)/cc-pVDZ and
MP2/CBS.
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■ APPENDIX A. COMPUTATIONAL METHODS
The binding curves are evaluated by DMC, compared with
CCSD(T), MP2, and several DFT calculations with various XC
functionals. As a common choice, the fixed-node approxima-
tion18,19 was made to the DMC simulations (DMC), taking
Slater−Jastrow wavefunctions as the guiding functions. The
Slater determinants are composed of Kohn−Sham (KS)
orbitals obtained using Gaussian0937 with Burkatzki−Filippi−
Dolg (BFD) pseudopotentials (PP)67 and its accompanying
VTZ Gaussian basis sets. The BFD-PPs have been proven to
give enough practical accuracies not only in DMC but also in
DFT on applications such as a DNA stacking problem.29

Our Jastrow functions68,69 were those implemented in
CASINO,18 consisting of one-, two-, and three-body con-
tributions, denoted as χ-, u-, and F-terms, respectively. The χ-,
u-, and F-terms include 16, 16, and 32 adjustable parameters,
respectively. They were optimized by the variance minimization
scheme.70,71 The electron−electron cusp condition72 was
imposed only on the u-term during the optimization procedure.
For DMC statistical accumulations, we set the target population
(the number of random walkers) to be 1024 configurations on
average and the time step to be δt = 0.02 in atomic unit. The
time step bias73 arising from this choice is discussed in
Supporting Information. We took averages over 1.7 × 105

accumulation steps after the equilibration of 103 steps. We also
used T-move scheme57 for the locality approximation to the
evaluation of PPs55,56 in DMC.
Only for type A, we benchmarked various DFT-SCF

calculations for a comparison with DMC, seeing how the
choice of the XC functionals affects the trial nodal structures in
DMC. Our choice of XC functionals in DFT includes those
recently designed for molecular interactions, B3LYP+GD251/
GD3,52 M06-2X,74 and B97-D,51 as well as LDA,75 PBE,76

B3LYP.77−79

For a systematic comparison, we consistently used the same
basis sets as DMC, VTZ basis sets provided in BFD-PP
library.67 For correlated methods (MP2 and CCSD(T)),
however, the VTZ is too large to be accommodated in tractable
memory capacities (512 GB shared by 64 parallel cores in SGI
Altix UV1000). To correct biases due to basis set choices, we
considered Complete Basis Set (CBS) methods54,64 with two
different basis sets, and counterpoise methods for basis set
superposition error (BSSE).17,47−49 Detailed discussions about
these corrections are given in Supporting Information. All the
DFT-SCF and correlated calculations were performed using
Gaussian09.37

As demonstrated in Supporting Information, all the three
functionals give almost the same binding energy and
equilibrium distance, but B3LYP is found to give the best
nodal surface in the sense of the variational principle. Hence we
concentrated only on B3LYP orbitals for DMC for type B and
C.

■ APPENDIX B. SUMMARY OF FORMALISMS OF
HAMAKER CONSTANTS

In most practical cases, the Hamaker constants are estimated by
the macroscopic frameworks based on the Lifshitz theory44 (let
us denote the estimation by these frameworks as AL). In the
scheme Aadd = πC6ρ

2, several possibilities are available for C6
evaluations, including those (i) by DOSD (dipole oscillator
strength distribution) experiments,41 (ii) by estimations by the
Casimir−Polder relation (CPR)80 using ab initio evaluations of

dynamical polarizabilities,42,43 and (iii) by the fitting of
asymptotic behaviors in the molecular binding curves or
potential energy surfaces (PES), evaluated by ab initio
calculations.81 The Casimir−Polder formula for option ii is
given in hartree units as

∫π α= ̅
∞

C u iu3 d ( )6
0

2
(2)

in an integral over the imaginary frequency, iu, of the
orientation average of the polarization tensor, α̅(iu) := (1/
3)Tr[α(iu)]. α̅ can be evaluated by TDDFT (time-dependent
DFT) within the linear response theory.42,43 Provided that the
molecule has a unique absorption frequency (ionization
energy), νI (= I/h), a further approximation with α̅(iu) ≈
α̅(0)νI

2/(u2 + νI
2) substituted to (eq 2) leads to the London

formula of the dispersion force,38

α= ̅C I3
4

(0)6
2

(3)

where α̅(0) is the static polarizability.
C6 for practical anisotropic molecules obviously depends on

the orientation of coalescence, such as T-shape, parallel, or
sandwich. Plausible averaging is required over the possible
orientations to get Aadd, which is the main subject of the present
study. This would be a reason that AL is used much rather than
Aadd because in the former the nonadditivity as well as the
anisotropy are effectively taken into account by using
macroscopically averaged quantities. In options i and ii, the
macroscopic or observed quantities used in the formula would
be regarded as the effective consideration of such averaging to
give ⟨C6⟩, as we used in Table 7. For most of the practical cases,
the Hamaker constants are evaluated not by Aadd but by AL, a
macroscopic framework based on the Dzyaloshinskii−Lifshitz−
Pitaevskii (DLP) theory, in which the Hamaker constant is

Table 7. Comparisons of Hamaker Constants, A, of Benzene
Estimated by Different Schemesa

label
scheme/theory/

method C6, 10
3 [au] A [zJ]

1/AL Exp/DLP NA 50 ± 2b

2/Aadd(⟨C6
London⟩iso) London/HF 0.925c 42

3/Aadd(⟨C6
London⟩iso) London/B3LYP 1.105d 48

4/Aadd(⟨C6
CPR⟩iso) CPR/TDHF 1.737e 75

5/Aadd(⟨C6
CPR⟩iso) CPR/TDDFT 1.773f 77

6/Aadd(⟨C6
DOSD⟩iso) Exp/DOSD 1.723g 74

7/Aadd(C6
PES)

(sandwich)
PES/MP2 0.59h 25

8/Aadd(C6
PES)

(sandwich)
PES/CCSD(T) 0.602i 26

9/Aadd(C6
PES) (T-shape) PES/CCSD(T) 3.911i 169

10/Aadd(⟨C6
PES⟩iso) PES/DFT-SAPT 1.726j 74

11/Aadd(⟨C6
PES⟩iso+aniso) PES/DFT-SAPT 1.165k 50

12/Aadd(C6
PES)

(ParaDisp)
PES/DMC/log 1.25 ± 0.27l 54 ± 12

13/Aadd(C6
PES)

(ParaDisp)
PES/DMC/LJ 1.19 ± 0.10l 51 ± 4

aThe braket, ⟨···⟩, means spatial averaging (see text for details).
bReference 3. cIonization energy and static polarizability were obtained
at HF/6-311++G(3d,3p) level. dIonization energy and static polar-
izability were obtained at B3LYP/cc-pVQZ level. eReference 42.
fReference 43. gReference 41. hReference 84. iReference 54.
jReference 81. kThis work with data from ref 81. lThis work with
data from ref 85.
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expressed as an infinite series of an expansion. Truncation up to
the second term gives a practical approximation, known as
Ninhan−Parsegian formula,82,83

ε ν= −
ϵ + + −

+
⎜ ⎟⎛
⎝

⎞
⎠A kT

h n
n

3
4

1
1

3
16 2

( 1)
( 1)L

2
e

2 2

2 3/2 (4)

and its truncation error is estimated to be around 5%.3 The
Hamaker constant can then be evaluated using macroscopic
quantities of the bulk, that is, dielectric constant, ε, and the
refractive index, n (k and T are the Boltzmann constant and
absolute temperature, respectively, while h and ν are the Planck
constant and the frequency of the primary electronic excitation
in ultraviolet range). Unlike Aadd, the macroscopic AL can avoid
the additive assumptions, namely, the macroscopic quantities
effectively take into account the nonadditivity as well as the
anisotropy.

■ APPENDIX C. COMPARISON OF DIFFERENT
PREDICTIONS OF A

For the side-way manner of the validation of A predicted for
CHS, we would like to know if there is a systematic bias
between Aadd and other macroscopic AL. For this purpose, we
take benzene as a representative tiny benchmark. In this case,
there are many references to C6 and AL available in
literature,3,41−43,81 by which we can survey the possible relation
between Aadd and AL to get a plausible validation for the
estimate of realistic Hamaker constants Aadd(C6) evaluated from
ab initio PES calculations. Even for this simple molecule, there
has been little investigation relating it to Aadd for practical
molecules, though it is straightforward. This might be attributed
to the difficulty of the averaging over anisotropic configurations
of coalescence.
Table 7 summarizes the Hamaker constants estimated by

several approaches explained in Appendix B. Nos. 2−6 in Table
7 are obtained using C6 evaluated by London’s theory, CPR,
and DOSD, which can be regarded as an equivalent averaging
over orientations to get a representative isotropic value, ⟨C6⟩

iso.
For London’s theory (nos. 2 and 3), the closer values to AL (no.
1) might be accidental. These should be comparable rather to
nos. 4 and 5 but turned out to be underestimated by around
40%. The underestimation can be explained because, as we
mentioned, the London theory only picks up single absorption
frequency, ignoring other contributions, which are all positive.
Nos. 4−6 are consistent with each other being around 75 zJ,
but overestimating when we take AL as the reliable reference for
the perfect averaging about the anisotropy and nonadditivity.
The importance of the anisotropy can be seen in Nos. 7−9,

where C6 are evaluated only by PES for a coalescence
configuration, such as sandwich or T-shape. We see that
different methods for PES give consistent results with each
other for the same configuration (no. 7 and no. 8), while the
same method gives a different estimation for different
configurations (no. 8 and no. 9).
SAPT evaluations, no. 10 and no. 11, give some confidence

about the effective isotropic averaging for nos. 4−6 and the
importance to consider the anisotropy for the AL value. In
SAPT, the dispersion interaction is evaluated in the form,

∑

ω ω

≈ −

Ω

E
R

C l k l k l w

l k l k l

1 [ , , , , ]

[ , , , , ]( , , )

l k l k l
disp 6

, , , ,
6 A A B B 6

A A B B A B

BA A B

(5)

as the summation over the possible anisotropic configurations
labelled by the rank of tensor {lA,kA,lB,kB,l} with each weight w6.
{ωA,ωB,Ω} denote the Euler angles between molecules A and
B, and the solid angle between the molecules, respectively. No.
10 is evaluated from the isotropic contribution, C6[0,0,0,0,0] =
1726, and consistent with nos. 4−6 as expected. We can also
obtain the anisotropic contributions from the supplemental
information of ref 81, C[0,0,2,0,2] = C[2,0,0,0,2] = −552,
C[2,0,2,0,0] = 17, C[2,0,2,0,2] = 45, C[2,0,2,0,4] = 482, to
estimate no. 11. To avoid the complicated averaging operations
with serious weightings, we simply take the arithmetic mean for
isotropic and anisotropic contribution and get ⟨C6⟩

iso+aniso quite
closer to AL in no. 1.
Nos. 12 and 13 give the estimation by a single configuration,

parallel-displacement (ParaDisp), which is identified as the
most stable binding.86 The estimation is made from the DMC
data by Azadi et al.,85 from which we fit C6 using log plots (no.
12) or 6-12 Lennard-Jones (LJ) potential (no. 13) as shown in
Figure 8. Since we are interested in the long-range asymptotic
behavior ∼R−6, we did not take the original spline-like fitting
function used in ref 85, which is used to describe the whole PES
shape being different from the present purpose. We note for the
log plot that the larger error bar is a sort of inevitable
consequence of log-plot for long-range exponents.8 For a fixed
magnitude of statistical errors over the range of distance R, any
decreasing dependence on a log-plot gives inevitably enlarged
error bars as R increases (the resolution of the vertical axis gets
enlarged downward by def inition). In the present case, the
statistical noise has been well suppressed, less than 0.02 kcal/
mol, and further reduction of the error bar in A is not practical.
In LJ fitting, on the other hand, enough practical reduction of
the error bar has been achieved. The estimation of the fitting

Figure 8. DMC binding curves of benzene dimer: (a) logarithmic plot fitted by asymptotic R−6 behavior and (b) Lennard-Jones fitting.
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actually depends on the choice of the details of fitting functions
and data range of the fitting, which we have chosen carefully
with some validation as shown in Appendix D. Despite a single
configuration, the fitting for the parallel-displacement config-
uration, nos. 12 and 13, coincides well with AL. This implies
that the most stable binding configuration (parallel displace-
ment in this case) is almost dominant, and other possible
configurations can be ignored for A.

■ APPENDIX D. FITTING SCHEME FOR C6

Several different fitting schemes are possible to extract C6 from
PES, in principle, such as log-fit (C6

stable;LOG), LJ-fit (C6
stable;LJ),

and the power-fit for the correlation contribution (C6
stable;Corr).

Table 8 summarizes the fitting results of benzene using various

kinds of fitting functions and the choices of data range to be fit.
While every fitting seems to work fairly well as shown in Figure
9, the estimations of A significantly depend on the arbitrary
choice. We tried 6-12 LJ, 6-9 LJ, 6-exponential potential (6-
exp),87 and pairwise polynominal fitting function.85 The choice
of the fitting range is about whether we include the data at
repulsive region (at R = 3.0) or not. Only for 6-exp we could
not get reasonable convergence without the data point at R =

3.0 to increase the data points for such a strong nonlinear
fitting. For the polynominal, we could not extract C6 for the
asymptotic R−6 behavior as we mentioned in the previous
paragraph, but we can use it to get a reliable reference for the
binding energy, ΔE, and bonding length, Re, as it is the most
precise function for the whole fitting purpose as described in ref
85. Taking those references for ΔE and Re, we see that
excluding the repulsion point, R = 3.0, from LJ fitting gives
better estimations. Though the log-fitting result (no. 12) in
Table 7 has the large error bar, the value is reliable to some
extent in the aspect of the asymptotic behavior, from which 6-9
LJ (3.5−6.0) gives larger deviation. Based on these facts, we
finally take 6-12 LJ (3.5−6.0) to provide the value no. 11 in
Table 7.
For CHS, the results using different fitting schemes were

tabulated in Table 2 of main text. We start with the log-fit
(C6

stable;LOG). To obtain plausible estimates of C6
stable;LOG, it is

essential to choose their fitting region, Rf, at long-range. We
focus on the relation that by definition the binding energy can
be decomposed as the sum of Hartree−Fock (HF) and
correlation contributions: ΔE(R) = ΔEHF(R) + ΔEcorr(R).88
Since ΔEHF(R) (exponentially) decays much faster than
ΔEcorr(R) (polynomially) at large R, the asymptotic behavior
is dominated by ΔEcorr(R). Thus, we choose Rf such that R ∈ Rf
satisfies |EHF(R)/Ecorr(R)| < 1/10. As mentioned in the main
text, we found only type A has ∼1/R6 asymptotic behavior (see
Figure 3 of main text), which is the most stable configuration.
On the other hand, the other configurations have weaker
contributions to long-range behaviors. Note that this “less
contributions to A” from other metastable configurations is
quite in contrast to the case for the molecular density
estimation, for which only the stable binding configuration
cannot reproduce the proper density, as described in Appendix
E.
As was explained in the benzene case, the log-fits are

inevitably accompanied by the larger statistical error bars. If we
aimed to reduce the error bar by one more digit, 100 times
more statistical accumulation would be necessary. This
computation corresponds to 2.2 × 106 core-hours (half a year
CPU time on 512 cores parallel, provided that we can keep on
using it without any queue) and hence is impractical.
The larger error bars in the log-fitting are much improved by

using the other fitting schemes: The present study employed
the 6-12 LJ fitting (Figure 2 of main text) using

= − +U R
C
R

C
R

( ) 6
6

12
12 (6)

and the correlation fitting (Figure 4) based on a power
expansion,38,39

Δ ≈ −E R
C
R

( )corr
6
6 (7)

to extract C6 from PES. As was discussed in the benzene case,
the estimation depends on the data fitting range, and then some
plausible choice is required. Table 9 compares the choices
especially about whether the range includes repulsive region (R
< 4.4). To get the best choice, we adopted a figure of merit,

∑ σ
=

Δ −

=
f

E R U R

R

( ( ) ( ))

( )j

j j

j1

2

2
(8)

as defined using the deviation of ΔE(Rj) from the fitting,
weighted by the statistical error σ(Rj) in DMC [which is set to

Table 8. Dependences of Estimated Binding Energies (ΔE),
Binding Lengths (Re), and Hamaker Constants (Aadd) on the
Choices of Fitting Functions and Fitting Ranges

functions range ΔE [kcal/mol] Re [Å] Aadd [zJ]

6-12 LJ 3.0−6.0 −2.4 ± 0.2 3.54 ± 0.01 29 ± 2
6-12 LJ 3.5−6.0 −2.8 ± 0.2 3.78 ± 0.02 51 ± 4
6-9 LJ 3.0−6.0 −2.4 ± 0.2 3.64 ± 0.01 52 ± 3
6-9 LJ 3.5−6.0 −2.6 ± 0.2 3.81 ± 0.03 76 ± 7
6-exp 3.0−6.0 −2.5 3.88 70 ± 11
pairwise poly.85 3.0−6.0 −2.7 ± 0.3 3.8 ± 0.3 a

CCSD(T) referenceb

configuration ΔE Re

PD (most stable) −2.78 3.87
T-shape −2.74 5.01
sandwich −1.81 6.09

aNot applicable. bReference values for ΔE and Re by CCSD(T) are
also shown, obtained from ref 54.

Figure 9. Comparison between different fitting schemes of DMC
binding curves (benzene dimer with parallel-displacement (PD)
configuration) using 6-12 LJ (Lennard-Jones), 6-9 LJ, and 6-exp
with different fitting ranges (e.g., “6-12/3.0” means the range starting
from R = 3.0 Å).
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be unity for CCSD(T)]. For the 6-12 LJ fitting, we chose the
estimations achieving minimum f, those with the range R =
4.6−6.4 Å, as finally tabulated in Table 2.
For the correlation fitting, the final choices in Table 2 of

main text are also those which achieve minimum f in Table 9, as
we did for the 6-12 LJ case. The correlation fitting, if tractable,
would be more plausible in the following sense: (i) Its
theoretical background is sound (perturbation theory on
electron correlation at long-range). (ii) Based on the theory,
it is obvious to exclude the repulsive (short-range) region from
the fitting region. (iii) Hence there is no ambiguity about the
model function to describe the repulsive region such as 6-12/6-
9 LJ or 6-exp. (iv) Since ΔEcorr increases monotonically, a
better and more (numerically) stable fitting can be expected.

■ APPENDIX E. BINDING LENGTH AND DENSITY
A PES gives a binding length, Re, which would have some
relation to the experimental molecular density. Once some
reliable relation is established, we can use it to validate the
binding curve calculation. The relation is however not so clear
cut, as we describe below. The experimental density of the
benzene liquid89 gives an estimate of mean intermolecular
distance as Rρ ≈ 5.3 Å, being far larger than Re in the most
stable binding by 26%. This is quite in contrast to the case of A
where only the most stable configuration seems dominant. The
simplest idea is to take into account the contributions not only
from the most stable parallel displacement (ΔE = −2.78 kcal/
mol; Re = 3.87 Å), but also other metastable ones, T-shape
(−2.74 kcal/mol; 5.01 Å) and sandwich (−1.81 kcal/mol; 6.09
Å). Only the most unstable configuration (sandwich) has a
longer binding length of R = 6.09 Å, and the thermal averaging
with the weight p ≈ exp(−ΔE/(kT)) at T = 298.15 K gives R̅dim
= 4.5 Å, being 15% underestimation.
As one of the possible origins for the discrepancy, we might

consider the intramolecular relaxation, but it is unlikely to
account for it: the relaxation will bring energy gains at shorter
binding lengths when the molecule deforms by the binding
interaction and hence make the binding length shorter, being
further away from Rρ.

Further consideration makes us realize that we took into
account only two-body coalescences to argue the mean
separation. When we consider further four-body clusterings
possibly occurring in realistic liquids, we notice that the mean
separation seems to be dominated rather by the longest binding
length among the possible coalescence: The mean value can
roughly be estimated by an “effective” length of four-body
trapezoids, as shown in Figure 5 of main text. Taking the center
of gravity of each molecule as the vertices of trapezoids, the
“effective lengths” can be defined as the square root of the area
of a trapezoid, which is dominated rather by the longest distant
binding pair. Estimating the possibility weight for each
trapezoid as the Boltzmann weight with the sum of the binding
pair energies, ΔE, then the thermal averaging over the “diagonal
lengths”, lS = 3.9 Å (sandwich), lT = 5.1 Å (T-shape), and lP =
6.0 Å (parallel),90 gives an improved estimate of R̅tetra = 5.0 Å,
getting closer to the experimental estimation of Rρ ≈ 5.3 Å.
The discrepancy still left would further be reduced by

considering the higher order clustering as well as the atomic
vibration at finite temperature,91 but the present simple idea
about four-body trapezoids seems quite successful.
The above scheme also works for CHS, as shown in the main

text (See Validation of Equilibrium Properties). For CHS, we
can directly estimate the binding energy, ΔE, and the
equilibrium binding length, Re, by fitting the data using an
equivalent form of eq 6,

= Δ −⎜ ⎟ ⎜ ⎟
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( ) 2 e
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e
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as summarized in Table 3 of main text. Note that we can also
estimate ΔE and Req “after” the fitting (C6,C12) first by eq 6 in
Appendix D, but this is not a good idea for DMC because the
error propagation for statistical noises during the further
transformation to ΔE and Re loses the accuracy of estimates.
Fitting curves well describe the dependence around equilibrium
lengths, as shown in Figure 2 of main text. For types B and C
with shorter-ranged exponents, it is not rigorously validated to
use the LJ potential because its functional form assumes the 1/
R6 asymptotic behavior. We use it, however, under such a

Table 9. Dependence of the Hamaker Constant, Aadd, on Types of Fitting Functions, U(R), Fitted within Ranges Rf for DMC
and CCSD(T)a

method U(R) Rf ΔE Re Aadd f

DMC 6-12 LJ 4.2−6.4 −4.9 ± 0.2 4.74 ± 0.01 85 ± 4 1.198
6-12 LJ 4.4−6.4 −5.2 ± 0.2 4.79 ± 0.01 100 ± 5 0.113
6-12 LJ 4.6−6.4 −5.3 ± 0.2 4.89 ± 0.02 107 ± 7 0.033
6-12 LJ 4.8−6.4 −5.2 ± 0.2 4.96 ± 0.03 112 ± 9 0.206
Corr. 4.2−6.4 103 ± 1 0.022
Corr. 4.4−6.4 105 ± 2 0.005
Corr. 4.6−6.4 108 ± 2 0.020
Corr. 4.8−6.4 110 ± 5 0.062

CCSD(T) 6-12 LJ 4.2−6.4 −5.10 4.76 86 0.027
6-12 LJ 4.4−6.4 −5.27 4.82 95 0.004
6-12 LJ 4.6−6.4 −5.24 4.89 103 0.002
6-12 LJ 4.8−6.4 −5.12 4.94 107 0.006
Corr. 4.2−6.4 106 0.018
Corr. 4.4−6.4 108 0.034
Corr. 4.6−6.4 110 0.053
Corr. 4.8−6.4 110 0.050

aThe best choice of ranges were made such that values of figure of merit, f (see text for definition), achieve minima. For the 6-12 LJ fitting, binding
energies, ΔE, and binding lengths, Re, are also listed.
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limited reason just to get possible estimates of ΔE and Re even
for types B and C, as given in Table 1 of main text. Similar to
the benzene case, the two-body thermal averaging at T =
298.15 K gives R̅dim ≈ 4.9 Å, which underestimates Rρ ≈ 6.8 Å
estimated from experiment. On the other hand, the four-body
thermal averaging at the same temperature gives an improved
estimate, R̅tetra, getting closer to the experimental estimation, as
shown in Table 4 of main text.
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