
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Sliding tokens on block graphs

Author(s) Hoang, Duc A.; Fox-Epstein, Eli; Uehara, Ryuhei

Citation Lecture Notes in Computer Science, 10167: 460-471

Issue Date 2017-02-21

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/15359

Rights

This is the author-created version of Springer,

Duc A. Hoang, Eli Fox-Epstein and Ryuhei Uehara,

Lecture Notes in Computer Science, 10167, 2017,

460-471. The original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-53925-6_36

Description

WALCOM: Algorithms and Computation, 11th

International Conference and Workshops, WALCOM

2017, Hsinchu, Taiwan, March 29‒31, 2017,

Proceedings

Sliding tokens on block graphs

Duc A. Hoang1⋆, Eli Fox-Epstein2, and Ryuhei Uehara1

1 JAIST, Japan. {hoanganhduc, uehara}@jaist.ac.jp
2 Brown University, USA. ef@cs.brown.edu

Abstract. Let I, J be two given independent sets of a graph G. Imagine
that the vertices of an independent set are viewed as tokens (coins). A
token is allowed to move (or slide) from one vertex to one of its neighbors.
The Sliding Token problem asks whether there exists a sequence of
independent sets of G starting from I and ending with J such that each
intermediate member of the sequence is obtained from the previous one
by moving a token according to the allowed rule. In this paper, we claim
that this problem is solvable in polynomial time when the input graph
is a block graph—a graph whose blocks are cliques. Our algorithm is
developed based on the characterization of a non-trivial structure that, in
certain conditions, can be used to indicate a no-instance of the problem.
Without such a structure, a sequence of token slidings between any two
independent sets exists.

1 Introduction

Recently, motivated by the purpose of understanding the solution space of a
problem, many theoretical computer scientists have focused on the study of re-
configuration problems. Reconfiguration problems are the set of problems in which
we are given a collection of feasible solutions, together with some reconfigura-
tion rule(s) that defines an adjacency relation on the set of feasible solutions
of the original problem. The question is, using a reconfiguration rule, whether
there is a step-by-step transformation which transforms one feasible solution to
another, such that each intermediate result is also feasible. A simple example
is the famous Rubik’s cube puzzle. The reconfigurability of several well-known
problems, including satisfiability, independent set, vertex-colouring,
matching, clique, etc. have been studied extensively. For more information
about this research area, see the survey [10].

As the independent set problem is one of the most important problems
in the computational complexity theory, its reconfiguration variants have been
well-studied [5, 7, 8]. Recall that an independent set of a graph is a set of pairwise
non-adjacent vertices. Among these variants, the Sliding Token problem (first
introduced by Hearn and Demaine [5]) is of particular interest (see [8] for the
other variants). Given two independent sets I and J of a graph G, and imagine
that a token is placed on each vertex in I. Then, the Sliding Token problem

⋆ The first and third authors are partially supported by MEXT/JSPS Kakenhi Grant
Number 26330009 and 24106004.

asks whether there exists a sequence (called a TS-sequence) S = 〈I1, I2, . . . , Iℓ〉
of independent sets of G such that
(a) I1 = I, Iℓ = J , and |Ii| = |I| = |J | for all i, 1 ≤ i ≤ ℓ; and
(b) for each i, 1 ≤ i ≤ ℓ− 1, there is an edge uv in G such that Ii \ Ii+1 = {u}

and Ii+1 \ Ii = {v}.

If such a sequence S exists, we say that S reconfigures I to J in G and write

I
G
! J . An example of a TS-sequence is given in Fig. 1. Observe that “

G
!”

is indeed an equivalence relation. Sliding Token is PSPACE-complete even
for planar graphs [5] and bounded-treewidth graphs [9]. On the positive side,
polynomial-time algorithms have been designed recently for claw-free graphs [1],
cographs [8], trees [2], bipartite permutation graphs [4], and cactus graphs [6].

I1 I2 I3 I4 I5

Fig. 1. Example of a TS-sequence 〈I1, I2, . . . , I5〉 in a given graph that reconfigures I1
to I5. The vertices in independent sets are depicted by black circles (tokens).

A block of a graph G is a maximal connected subgraph with no cut vertex.
A block graph is a graph whose blocks are cliques (for example, see the graph
in Fig. 1). Note that, in order to preserve the independence property of the set
of tokens, a token sometimes needs to make “detours”. This restriction indeed
makes Sliding Token more complicated (recall that the problem is PSPACE-
complete even for bounded-treewidth graphs), even when the input graph is a
tree (see [2]). As there might be exponential number of paths between any two
vertices of a block graph (while in a tree, there is a unique path), for each token,
we may have exponentially many choices of “routes” to slide and possibly super
polynomial detours in general. Thus, in this case, the problem becomes more
difficult. In this paper, we design a polynomial-time algorithm for solving the
Sliding Token problem for block graphs.

Our algorithm is designed based on the following observations. Given a block
graph G and an independent set I of G, one can characterize the properties of a
non-trivial structure, called (G, I)-confined clique (Section 4). More precisely, we
claim that one can find all (G, I)-confined cliques in polynomial time (Lemma 3),
and, in certain conditions, we can easily derive if an instance of Sliding Token

is a no-instance (Lemma 5). Without such a structure, we claim that for any
pair of independent sets I, J , I is reconfigurable to J (and vice versa) if and only
if they are of the same cardinality (Lemma 9).

Due to the limitation of space, some proofs are omitted.

2

2 Preliminaries

Graph notation. We define some notation that is commonly used in graph
theory. For the notation that is not mentioned here, see [3]. Let G be a given
graph, with edge set E(G) and vertex set V (G).

We sometimes denote by |G| the size of V (G). For a vertex v, we define
NG(v) = {w ∈ V (G) : vw ∈ E(G)}, NG[v] = NG(v) ∪ {v} and degG(v) =
|NG(v)|. For two vertices u, v, we denote by distG(u, v) the distance between u
and v in G. For a graph G, sometimes we write I ∩G and I −G to indicate the
sets I ∩ V (G) and I \ V (G), respectively.

For X ⊆ V (G), we denote by G[X] the subgraph of G induced by vertices of
X . We write G−X to indicate the graph G[V (G)\X]. Similarly, for an induced
subgraph H of G, G−H indicates the graph G[V (G) \ V (H)], and we say that
the graph G−H is obtained by removing H from G.

Notation for Sliding Token. We now define some useful notation for tackling
Sliding Token. For a TS-sequence S, we write I ∈ S if an independent set I of
G appears in S. For a vertex v, if there exists I ∈ S such that v ∈ I, then we say
that S involves v. We say that S = 〈I1, I2, . . . , Iℓ〉 slides (or moves) the token t
placed at u ∈ I1 to v /∈ I1 in G if after applying the sliding steps described in
S, the token t is placed at v ∈ Iℓ. For convenience, we sometimes identify the
token placed at a vertex with the vertex itself, and simply say “a token in an
independent set I.”

Let W ⊆ V (G) and assume that I ∩W 6= ∅. We say that a token t placed at

some vertex u ∈ I ∩W is (G, I,W)-confined if for every J such that I
G
! J , t

is always placed at some vertex of W . In other words, t can only be slid along
edges of G[W]. In case W = {u}, t is said to be (G, I)-rigid. The token t is
(G, I)-movable if it is not (G, I)-rigid.

Let H be an induced subgraph of G. H is called (G, I)-confined if I ∩ H
is a maximum independent set of H and all tokens in I ∩ H are (G, I, V (H))-
confined. In particular, if H is a clique of G, we say that it is a (G, I)-confined
clique. Note that if H is a clique then |I ∩H | ≤ 1. We denote by K(G, I) the set
of all (G, I)-confined cliques of G. For a vertex v ∈ V (H), we define Gv

H to be
the (connected) component of GH containing v, where GH is obtained from G
by removing all edges of H .

3 Some useful observations

In this section, we present several useful observations. These observations will
be implicitly used in many statements of this paper. The next proposition char-
acterizes some properties of a (G, I)-confined induced subgraph.

Proposition 1 ([6, Lemma 1]). Let I be an independent set of a graph G. Let
H be an induced subgraph of G. Then the following conditions are equivalent.

(i) H is (G, I)-confined.

3

(ii) For every independent set J satisfying I
G
! J , J ∩ H is a maximum

independent set of H.
(iii) I ∩ H is a maximum independent set of H and for every J satisfying

I
G
! J , any token tx placed at x ∈ J ∩H is (Gx

H , J ∩Gx
H)-rigid.

The next proposition says that when G is disconnected, one can deal with
each component separately. In other words, when dealing with Sliding Token,
it suffices to consider only connected graphs.

Proposition 2 ([6, Proposition 2]). Let I, J be two given independent set of

G. Assume that G1, . . . , Gk are the components of G. Then I
G
! J if and only

if I ∩Gi
Gi

! J ∩Gi for i = 1, 2, . . . , k.

In the next proposition, we claim that in certain conditions, a TS-sequence
in a subgraph of G can be somehow “extended” to a sequence in G, and vice
versa.

Proposition 3 ([6, Proposition 3]). Let u be a vertex of a graph G. Let
S = 〈I1, I2, . . . , Iℓ〉 be a TS-sequence in G such that for any I ∈ S, u ∈ I. Let

G′′ = G − NG[u]. Then I1 ∩ G′ G′′

! Iℓ ∩ G′. Moreover, for any TS-sequence

S ′ = 〈I ′1, . . . , I
′

l〉 in G′′, I ′1 ∪ {u}
G
! I ′l ∪ {u}.

In case G is a block graph, we also have:

Proposition 4. Let I be an independent set of a block graph G. Let B be a block
of G and suppose that I ∩B = {u}. Let S = 〈I1, I2, . . . , Iℓ〉 be a TS-sequence in

G such that for any J ∈ S, u ∈ J . Let G′ = G − B. Then I1 ∩ G′ G′

! Iℓ ∩ G′.
Moreover, for any TS-sequence S ′ = 〈I ′1, . . . , I

′

l 〉 in G′ such that NG(u)∩ I ′i = ∅,

where i ∈ {1, 2, . . . , ℓ}, I ′1 ∪ {u}
G
! I ′l ∪ {u}.

Proposition 5. Let G be a block graph and let I be an independent set of G.
Let v ∈ V (G) be such that no token in NG(v)∩ I is (G, I,NG[v])-confined. Then

there exists an independent set J of G such that I
G
! J and NG[v] ∩ J = ∅.

Proposition 6. Let I be an independent set of a block graph G. Let w ∈ V (G).
Assume that no block of G containing w is (G, I)-confined. If there exists some
vertex x ∈ NG[w]∩I such that the token tx placed at x is (G, I,NG[w])-confined,
then x is unique. Consequently, there must be some independent set J such that

I
G
! J and NG[w] ∩ J = {x}. Moreover, let H be the graph obtained from G by

turning NG[w] into a clique, called Bw. Then tx is (G, J,NG[w])-confined if and
only if Bw is (H, J)-confined.

4 Confined cliques in block graphs

In this section, we show that one can compute K(G, I) in polynomial time, where
G is a block graph and I is an independent set of G. First, we prove an useful
characterization of (G, I)-confined cliques.

4

v1
v2

v3v4

w1 w2

w4w5 x1

x2x3

x4

x6 x5

w3

v1
v2

v3v4

w1 w2

w4w5 x1

x2x3

x4

x6 x5

w3

(a) (b)

y1

B B

Fig. 2. (a) B is (G, I)-confined and (b) B is not (G, I)-confined.

Lemma 1. Let I be an independent set of a block graph G. Let B be a block of
G with I ∩B 6= ∅. Let G′ = G−B. Then B is (G, I)-confined (see Fig. 2(a)) if
and only if either G = B or for every cut vertex v ∈ V (B), one of the following
conditions holds.

(i) There exists a block B′ 6= B of G containing v such that B′ − v is (G′, I ∩
G′)-confined (for example, the vertices v1 and v2 in Fig. 2(a)).

(ii) For every block B′ 6= B of G containing v, B′ − v is not (G′, I ∩ G′)-
confined; and for every w ∈ NG(v) \ V (B), either
(ii-1) there exists a block B′′ of G′ containing w such that B′′ is (G′, I∩

G′)-confined (for example, the vertex v4 in Fig. 2(a)); or
(ii-2) every block B′′ of G′ containing w is not (G′, I ∩ G′)-confined;

and there exists x ∈ NG′ [w] ∩ I such that the token tx placed at
x is (G′, I ∩ G′, NG′ [w])-confined (for example, the vertex v3 in
Fig. 2(a)).

Next, we characterize (G, I)-rigid tokens.

Lemma 2. Let I be an independent set of a block graph G. Let u ∈ I. The token
t placed at u is (G, I)-rigid (see Fig. 3) if and only if for every v ∈ NG(u), there
exists a vertex w ∈

(

NG(v) \ {u}
)

∩ I such that one of the following conditions
holds.

(i) The token tw placed at w is (G′′, I ∩ G′′)-rigid, where G′′ = G − NG[u]
(for example, the vertex w1 in Fig. 3(a)).

(ii) The token tw placed at w is not (G′′, I ∩ G′′)-rigid; and the block B′ of
G containing v and w satisfies that B′ − v is (G′′, I ∩ G′′)-confined (for
example, the vertices w3 and w4 in Fig. 3(a)).

The next lemma says that one can compute all (G, I)-confined blocks in
polynomial time, where G is a block graph and I is an independent set of G.

5

u u

v1 v2

v3

w1

w2 w3

w4
w5

v1 v2

v3

w1

w2 w3

w4
w5

(a) (b)

Fig. 3. (a) The token placed at u is (G, I)-rigid and (b) The token placed at u is
(G, I)-movable.

Lemma 3. Let I be an independent set of a block graph G. Let m = |E(G)|. Let
B be a block of G with I ∩ B 6= ∅. Then, one can check if B is (G, I)-confined
in O(m) time. Consequently, one can compute K(G, I) in O(m2) time.

Proof. We describe a recursive function CheckConfined(G, I, H) which re-
turns yes if an input induced subgraph H is (G, I)-confined, where I is an
independent set of G and H is either a clique or a vertex. Otherwise, it returns
no and a TS-sequence SH in G which slides the token in I ∩H (if exists) to a
vertex in

⋃

v∈V (H) NG(v)\V (H). Clearly, if I∩H = ∅ then CheckConfined(G,

I, H) returns no and there is no such SH described above. Thus, we now assume
that I ∩ H 6= ∅. Note that since H is either a clique or a vertex, |I ∩H | = 1.
By definition, it is clear that if G = H then CheckConfined(G, I, H) returns
yes. Then, we now consider the case when G 6= H , i.e., G contains more than
one block. Let u be the unique vertex in I ∩H , and tu be the token placed at
u. Let G′ = G−H and G′′ = G−NG[u]. If H is a clique, we will use Lemma 1
to check if H is (G, I)-confined. On the other hand, if H contains only vertex
u (i.e., H = ({u}, ∅)), we will use Lemma 2 to check if H is (G, I)-confined (by
definition, it is equivalent to checking if tu is (G, I)-rigid).

If H is a clique, then by Lemma 1, for every cut vertex v ∈ V (H), we need
to check if one of the conditions (i), (ii) of Lemma 1 holds. Note that since v is
a cut vertex, there is at least one block B′ 6= H of G containing v. To check if
Lemma 1(i) holds, we recursively call CheckConfined(G′, I ∩G′, B′ − v) for
every block B′ 6= H of G containing v. If CheckConfined(G′, I ∩G′, B′ − v)
returns no for all blocks B′ 6= H of G containing v, i.e. Lemma 1(i) does not
hold, we can construct a TS-sequence Sv in G that slides tu to v as follows.
If u = v then nothing needs to be done. Thus, we assume that u 6= v, which
then implies that v /∈ I. In order to slide tu to v, we need to make sure that
for every block B′ 6= H of G containing v, if I ∩ (B′ − v) 6= ∅, the token in
I ∩ (B′ − v) need to be moved to a vertex not in B′ − v first. To do this, note
that for each such B′, the function CheckConfined(G′, I ∩ G′, B′ − v) also
returns a TS-sequence SB′−v in G′ that slides the token in I ∩ (B′ − v) to a

6

vertex in
⋃

x∈V (B′−v) NG′(x) \ V (B′ − v). By Proposition 4, such a sequence

SB′−v can indeed be performed in G. Hence, Sv can be constructed (using the
results from CheckConfined(G′, I ∩G′, B′−v)) by first performing all SB′−v,
then performing a single step of sliding tu to v. If Lemma 1(i) does not hold, for
every w ∈ NG(v) \ V (H), we need to check if Lemma 1(ii) holds. We first need
to check whether there exists a block B′′ of G′ containing w such that B′′ is
(G′, I ∩G′)-confined. This can be done by calling CheckConfined(G′, I ∩G′,
B′′) for all blocks B′′ of G′ containing w such that I ∩ B′′ 6= ∅. If the result is
no for every such B′′, i.e., Lemma 1(ii-1) does not hold, we still need to check
if Lemma 1(ii-2) holds. To do this, we consider the following cases.

◦ Case 1: |NG′ [w] ∩ I| = 0. In this case, Lemma 1(iii) does not hold, which
then implies that CheckConfined(G, I, H) returns no. To see this, we
shall construct a TS-sequence SH in G that slides tu to w ∈ NG(v)\V (H).
Indeed, SH can be constructed by simply performing two steps of sliding:
tu to v, and then tu from v to w (since |NG′ [w] ∩ I| = 0).

◦ Case 2: |NG′ [w] ∩ I| = 1. Let K be the block graph obtained from G′

by turning NG′ [w] into a clique, called Bw. By Proposition 6, checking if
Lemma 1(iii) holds is equivalent to checking if Bw is (K, I)-confined. In
case Lemma 1(iii) holds, the construction of SH can be done by first sliding
the token in NG′ [w]∩I to some vertex not in NG′ [w]∩I (converting a TS-
sequence in K to a TS-sequence in G′ as in Proposition 6, and extending
that TS-sequence to a TS-sequence in G using Proposition 4), and then
use the process described in Case 1 to slide tu to w.

◦ Case 3: |NG′ [w] ∩ I| ≥ 2. We first show how to construct an indepen-

dent set J such that I
G
! J and |NG′ [w] ∩ J | ≤ 1. Note that since

|NG′ [w] ∩ I| ≥ 2, we have w /∈ I. The idea of this construction comes
from Proposition 5 and Proposition 6. Proposition 6 indeed implies that
there is at most one token tx in NG′ [w] ∩ I that is (G′, I ∩ G′, NG′ [w])-
confined. In other words, all tokens in NG′ [w] ∩ I except tx (if exists) can
be slid to a vertex not in NG′ [w]. Now, for each block B′′ of G′ contain-
ing w with I ∩ B′′ 6= ∅, from the results of calling CheckConfined(G′,
I ∩ G′′, B′′), we obtain a TS-sequence SB′′ in G′ (which can also be ex-
tended in G using Proposition 4) that moves the token in I ∩ B′′ to a
vertex not in B′′. Note that SB′′ may or may not contain the step of slid-
ing the token in I ∩ B′′ to w. If for some block B′′ of G′ containing w
with I ∩ B′′ 6= ∅, SB′′ contains such a step, then clearly it will move all
other tokens in I∩NG′ [w] “out of” NG′ [w] first, and then moves the token
in I ∩ B′′ to w. Stop at this point, we obtain an independent set J such

that I
G
! J and |NG′ [w] ∩ J | = 1. The only token in NG′ [w] ∩ J is now

indeed the token placed at w. On the other hand, if for all blocks B′′ of
G′ containing w with I ∩B′′ 6= ∅, SB′′ does not contain the step of sliding
the token in I ∩B′′ to w, then we simply perform all such SB′′ . Since G is
a block graph, all such SB′′ can indeed be performed independently, i.e.,
no sequence involves any vertex that is involved by other sequences. At

the end of this process, we obtain an independent set J such that I
G
! J

7

and |NG′ [w] ∩ J | = 0. Once we have J , the checking process can indeed be
done using either Case 1 or Case 2. Keep in mind that the construction
of J uses only the results that can be obtained from the recursive callings
of the CheckConfined function.

In the above arguments, we have analyzed the cases that CheckConfined(G,
I, H) returns no using Lemma 1, where H is a clique. In all other cases, Check-

Confined(G, I, H) indeed returns yes (by Lemma 1).

If H contains only a single vertex u, then by Lemma 2, we need to check that
for every v ∈ NG(u), whether there exists a vertex w ∈

(

NG(v)\{u}
)

∩I such that

one of the conditions (i), (ii) of Lemma 2 holds. Clearly, if
(

NG(v) \ {u}
)

∩ I =
∅, one can construct a TS-sequence SH that slides tu to v by performing the
single step of sliding tu to v, and hence CheckConfined(G, I, H) returns no.
Next, we consider the case when

(

NG(v) \ {u}
)

∩ I 6= ∅. In this case, for every

w ∈
(

NG(v) \ {u}
)

∩ I, we recursively call CheckConfined(G′′, I ∩G′′, {w})
to check if Lemma 2(i) holds. If CheckConfined(G′′, I ∩ G′′, {w}) = no for
all w ∈

(

NG(v) \ {u}
)

∩ I, we still need to check if Lemma 2(ii) holds by calling

CheckConfined(G′′, I ∩G′′, Bw − v) for all w ∈
(

NG(v) \ {u}
)

∩ I, where Bw

denotes the (unique) block of G containing both v, w. If CheckConfined(G′′,
I∩G′′, Bw−v) returns no for all w ∈

(

NG(v)\{u}
)

∩I, we can indeed return no

for the function CheckConfined(G, I, H). The TS-sequence SH that moves tu
to v in this case can be constructed as follows. For each w ∈

(

NG(v) \ {u}
)

∩ I,
since CheckConfined(G′′, I ∩ G′′, Bw − v) returns no, there must be a TS-
sequence SB′−v in G′′ (which can be extended to G using Proposition 3) that
slides the token in I∩(B′−v) to a vertex in

⋃

z∈V (B′−v) NG′(B′−v)\V (B′−v). SH

then can be constructed by first performing all such SB′−v, and then performing
a single step of sliding tu to v. In the above arguments, we have analyzed the
cases that CheckConfined(G, I, H) returns no using Lemma 2, where H is
a vertex. In all other cases, CheckConfined(G, I, H) indeed returns yes (by
Lemma 2).

Next, we analyze the complexity of the described algorithm. First of all,
note that all the TS-sequences mentioned in the described algorithm can in-
deed be construction using the results from the recursive callings of the Check-

Confined function. Thus, the running time of our algorithm is indeed propor-
tional to the number of callings of the CheckConfined function. For a vertex
v ∈ V (G), let f(v) be the number of calling CheckConfined related to v,
in the sense that the function CheckConfined is either called for v or for a
block containing v. Thus, the total number of callings CheckConfined is in-
deed bounded by

∑

v∈V (G) f(v). Moreover, from the described algorithm, note

that f(v) is at most O(degG(v)). Hence, checking if H is (G, I)-confined takes at
most O(

∑

v∈V (G) degG(v)) = O(m) time, where H is either a clique or a vertex.

Consequently, since the number of blocks of G is O(m), computing K(G, I) takes
at most O(m2) time.

8

5 Sliding tokens on block graphs

Let G be a block graph, and let I, J be two independent sets of G. In this section,
we prove the following main result of this paper.

Theorem 1. Let (G, I, J) be an instance of the Sliding Token problem, where

I, J are two independent sets of a block graph G. Then, one can decide if I
G
! J

in O(m2) time, where m = |E(G)|.

To prove Theorem 1, we shall describe a polynomial-time algorithm for deciding

if I
G
! J , estimate its running time, and then prove its correctness. The following

algorithm checks if I
G
! J .

◦ Step 1:
• Step 1-1: If K(G, I) 6= K(G, J), return no.
• Step 1-2:Otherwise, remove all cliques in K(G, I) and go to Step 2.
Let G′ be the resulting graph.

◦ Step 2: If |I ∩ F | 6= |J ∩ F | for some component F of G′, return no.
Otherwise, return yes.

We now analyze the time complexity of the algorithm. Let m,n be respec-
tively the number of edges and vertices of G. By Lemma 3, Step 1-1 takes at
most O(m2) time. Step 1-2 clearly takes at most O(n) time. Hence, Step 1
takes at most O(m2) time. Step 2 takes at most O(n) time. In total, the algo-
rithm runs in O(m2) time.

The rest of this section is devoted to showing the correctness of the algorithm.
First of all, the following lemma is useful.

Lemma 4. Let I be an independent set of a block graph G. Let w ∈ V (G).
Assume that every block of G containing w is not (G, I)-confined. Then, there is
at most one block B of G containing w such that B−w is (G′, I ∩G′)-confined,
where G′ = G− w.

The next lemma ensures the correctness of Step 1-1.

Lemma 5. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G. Then, it is a no-instance if
K(G, I) 6= K(G, J).

In the next lemma, we claim that Step 1-2 is correct.

Lemma 6. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G satisfying that K(G, I) =
K(G, J). Let G′ be the graph obtained from G by removing all cliques in K(G, I) =

K(G, J). Then, I
G
! J if and only if I∩G′ G′

! J∩G′. Furthermore, K(G′, I ∩G′) =
K(G′, J ∩G′) = ∅.

Proof. Let S = 〈I = I1, I2, . . . , Iℓ = J〉 be a TS-sequence in G that reconfigures
I to J . We claim that there exists a TS-sequence S ′ in G′ that reconfigures I∩G′

9

to J ∩G′. Note that for any independent set I of G, I∩G′ forms an independent
set of G′. Moreover, for i = 1, 2, . . . , ℓ − 1, let uv be an edge of G such that
u ∈ Ii \ Ii+1 and v ∈ Ii+1 \ Ii, then clearly u and v must be either both in G′ or
both in some block B ∈ K(G, I). Hence, the sequence S ′ = 〈I1 ∩G′, . . . , Iℓ ∩G′〉
reconfigures I1 ∩G′ = I ∩G′ to Iℓ ∩G′ = J ∩G′.

Let S ′ = 〈I ∩ G′ = I ′1, I
′

2, . . . , I
′

l = J ∩ G′〉 be a TS-sequence in G′ that
reconfigures I∩G′ to J∩G′. We claim that there exists a TS-sequence S in G that
reconfigures I = (I ∩G′)∪

⋃

B∈K(G,I)(I ∩B) to J = (J ∩G′)∪
⋃

B∈K(G,I)(J ∩B).

Note that for an independent set I ′ of G′ and a block B ∈ K(G, I), it is not
necessary that I ′ ∪ (I ′′ ∩ B) forms an independent set of G, where I ′′ is an

independent set of G such that I
G
! I ′′. For a component F of G′, one can

construct a TS-sequence S ′
F = 〈I ′1 ∩ F, . . . , I ′l ∩ F 〉 in F . We now describe how

to construct S. Let A =
⋃

B∈K(G,I)

⋃

v∈I∩B

(

NG(v) ∩ V (F)
)

. For a component

F of G′, we consider the following cases.
◦ S ′

F does not involve any vertex in A. In this case, note that for every
independent set IF of F and a block B ∈ K(G, I), the set IF ∪(J∩B) forms
an independent set of G, where J is any independent set of G satisfying

I
G
! J . Thus, such a sequence S ′

F above indeed can be “extended” to a
TS-sequence in G.

◦ S ′
F involves vertices in A. Note that for a block B ∈ K(G, I), since

G is a block graph, there is at most one vertex v ∈ V (B) satisfying that
NG(v) ∩ V (F) 6= ∅. Moreover, if there exists two vertices u1, u2 ∈ V (F)
such that NG(ui) ∩ V (B) 6= ∅ (i = 1, 2) then they must be adjacent to
the same vertex in B. Let v be the unique vertex in I ∩ B and assume
that NG(v) ∩ V (F) 6= ∅. Then, the token tv placed at v must not be
(G, I)-rigid. To see this, note that, if the token t placed at u ∈ I is (G, I)-
rigid, then by definition of confined cliques, any block of G containing u
must be in K(G, I). Hence, for a block B ∈ K(G, I) and v ∈ I ∩ B with
NG(v) ∩ V (F) 6= ∅, there exists a TS-sequence S ′(B, v) in G that moves
the token tv placed at v to some other vertex in B. Since G is a block
graph, if there are two of such block B, say B1 and B2, with v1 ∈ I ∩B1

and v2 ∈ I ∩B2, then clearly S ′(B1, v1) does not involve any token which
is involved by S ′(B2, v2) (and vice versa).

Now, we construct a TS-sequence S in G that reconfigures I to J as follows.
First, we perform all TS-sequence S ′

F that does not involve any vertex in A.
Next, for a component F with the corresponding sequence S ′′

F involving let
B ∈ K(G, I) such that there exists a (unique) vertex v ∈ I ∩ B satisfying that
NG(v) ∩ V (F) ⊆ A. For such component F and such block B, we first perform
S ′(B, v), then perform S ′

F , and then perform S ′(B, v) in reverse order. Note
that if after performing S ′(B, v), the token tv (originally placed at v) is placed
at some vertex w ∈ J , then in the step of reversing S ′(B, v), we do not reverse the
step of sliding tv to w. At this moment, we have reconfigured I ∩G′ to J ∩G′ in
G. It remains to reconfigure I∩B to J∩B in G for each block B ∈ K(G, I), which
can be done using the observation that for any vertex v ∈ J ∩B, NG(v)∩J 6= ∅.

10

Finally, we claim that K(G′, I ∩G′) = ∅. Similar arguments can also be
applied for showing K(G′, J ∩G′) = ∅. Assume for the contradiction that there
exists some block B′ ∈ K(G′, I ∩G′). Let v be the unique vertex in I ∩ B′, and
let B be the block of G containing B′. We consider the following cases.

◦ B = B′.
Note that since B′ is a block of both G and G′, it follows that B′ is
not (G, I)-confined. In other words, there exists a TS-sequence S in G
that slides the token tv placed at v ∈ I ∩ B′ to some vertex not in B′.
Moreover, as before, we have proved that such a TS-sequence can indeed
be “restricted” to G′ based on the observation that for any independent
set I of G, I ∩ G′ forms an independent set of G′ and any sliding step is
performed either along edges of G′ or along edges of some (G, I)-confined
block. Therefore, B′ is not (G′, I ∩G′)-confined, a contradiction.

◦ |V (B) \ V (B′)| = 1.
Let w be the unique vertex in V (B)\V (B′). Note that since w is a vertex
of some (G, I)-confined block C 6= B, the token tv placed at v cannot be
slid to w in G. Since B is not (G, I)-confined, as before, there exists a
TS-sequence S in G that slides the token tv placed at v ∈ I ∩B′ to some
vertex not in B′. Moreover, S does not move tv to w, which means that
it moves tv to some vertex of G′ that is not in B′. Thus, S can indeed be
“restricted” to G′, which means that B′ is indeed not (G′, I∩G′)-confined,
a contradiction.

Before proving the correctness of Step 2, we need some extra definitions.
Let B be a block of a block graph G. A block B′ 6= B of G is called a neighbor
of B if V (B) ∩ V (B′) 6= ∅. B is called safe if it has at most one cut vertex and
at most one neighbor having more than one cut vertex. A vertex v ∈ V (G) is
called safe if it is a non-cut vertex of a safe block of G.

The next two lemmas are useful for showing the correctness of Step 2.

Lemma 7. Let I be an independent set of a block graph G such that K(G, I) = ∅.
Let v be a safe vertex of G. Then, there exists an independent set J of G with

I
G
! J and v ∈ J .

Lemma 8. Let I be an independent set of a block graph G such that K(G, I) =
∅. Let v ∈ I be a safe vertex of G and let Bv be the (unique) safe block of
G containing v. Let G∗ be the subgraph of G obtained by removing Bv. Then,
K(G∗, I ∩G∗) = ∅.

The following lemma ensures the correctness of Step 2.

Lemma 9. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G satisfying that K(G, I) =

K(G, J) = ∅. Then, I
G
! J if and only if |I| = |J |.

Proof. The only-if-part is trivial. We shall prove the if-part, i.e., if |I| = |J | then

I
G
! J . More precisely, we claim that there exists an independent set I∗ such

11

that I
G
! I∗ and J

G
! I∗. Indeed, I∗ can be constructed as follows. Initially,

I∗ = ∅.
◦ Pick a safe vertex v of G. (Note that the “tree-like” structure of a block
graph ensures that one can always find a safe block, and hence a safe
vertex.)

◦ Slide a token from I and a token from J to v. Then, add v to I∗. This can
be done using Lemma 7. Let I ′ and J ′ be the resulting independent sets.

◦ Let G′ be the graph obtained by removing Bv – the (unique) block of G
containing v.

◦ Repeat the above steps with the new triple (G′, I ′ \ {v}, J ′ \ {v}) instead
of (G, I, J). The procedure stops when there is no token to move.

The correctness of this construction is followed from Lemma 7 and Lemma 8.

Acknowledgement. The first author would like to thank Yota Otachi for his
useful comments and discussions.

References

1. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. In: Ravi, R., Gørtz, I. (eds.) Algorithm Theory - SWAT 2014, LNCS,
vol. 8503, pp. 86–97. Springer (2014)

2. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H.,
Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on
trees. Theoretical Computer Science 600, 132–142 (2015)

3. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173. Springer, 4th
edn. (2010)

4. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite
permutation graphs. In: Elbassioni, K., Makino, K. (eds.) Algorithms and Com-
putation - ISAAC 2015, LNCS, vol. 9472, pp. 237–247. Springer (2015)

5. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343(1), 72–96 (2005)

6. Hoang, D.A., Uehara, R.: Sliding tokens on a cactus. In: Hong, S.H. (ed.) Algo-
rithms and Computation - ISAAC 2016. LIPIcs, vol. 64, pp. 37:1–37:26. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2016)

7. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412(12), 1054–1065 (2011)

8. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theoretical Computer Science 439, 9–15 (2012)

9. Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over
tree decompositions. In: Cygan, M., Heggernes, P. (eds.) Parameterized and Exact
Computation - IPEC 2014, LNCS, vol. 8894, pp. 246–257. Springer (2014)

10. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, pp. 127–160. Cambridge Uni-
versity Press (2013)

12

