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Point-wise Fusion of Distributed
Gaussian Process Experts (FuDGE)

using a Fully Decentralized Robot Team
operating in Communication Devoid

Environments
Kshitij Tiwari∗, Sungmoon Jeong, Nak Young Chong

Abstract—In this paper, we focus on large-scale environment monitor-
ing by utilizing a fully decentralized team of mobile robots. The robots
utilize the Resource Constrained - Decentralized Active Sensing (RC-DAS)
scheme to select the most informative (uncertain) locations to observe
while conserving allocated resources (battery, travel distance etc.). We uti-
lize a distributed Gaussian Process framework to split the computational
load over our fleet of robots. Since each robot is individually generating
a model of the environment, there may be conflicting predictions for test
locations. Thus, in this paper, we propose an algorithm for aggregating
individual prediction models into a single globally consistent model that
can be used to infer the overall spatial dynamics of the environment.
To make a prediction at a previously unobserved location, we propose a
novel gating network for a mixture-of-experts model wherein the weight
of an expert is determined by the responsibility of the expert over the
unvisited location. The benefit of posing our problem as a centralized
fusion with distributed GP computation approach is that the robots never
communicate with each other, individually optimize their own GP models
based on their respective observations and off-load all their learnt models
on the base-station only at the end of their respective mission times. We
demonstrate the effectiveness of our approach using publicly available
datasets.

Index Terms—Distributed Robot Systems, Path Planning for Multiple
Mobile Robot Systems, Surveillance Systems, Field Robots, Model Fusion

I. INTRODUCTION

Modeling the complex dynamics of a large-scale environmental
phenomenon is a challenging yet intriguing problem. From a robotics
perspective, the challenges arise owing to the fact that the area to
be scanned is prohibitively large but the resources allocated to the
robots are limited and must be used conservatively. From a machine
learning point of view, the choice of representative models itself is a
challenge. Many researchers use Gaussian Processes (GPs) [1], which
are data-driven models, to represent the dynamics of the environ-
ment. These models are non-parametric while providing predictive
uncertainty bounds. However, there are several limitations associated
with GPs, such as poor scalability (cubic in data set size) and a large
(quadratic in data set size) memory footprint, which have been widely
studied [2]–[4].

Similar works in this domain use the term “fusion” to combine
multiple sets of heterogeneous sensor data using GPs as discussed
in [5]–[8]. Alternatively, we can use the term “fusion” to define an
ensemble of probabilistically fused prediction estimators [2], [3], [9]–
[12], which is our area of interest. We refer to two classes of model
fusion techniques in this work. Firstly, we refer to Product of Expert
(PoE) models like the Bayesian Committee Machine (BCM) [13] and
generalized Product of Experts (gPoE) [9]. In the BCM framework,
multiple independent GP experts are trained on subsets of whole
training set, and their confidence is evaluated based on the reduc-
tion in uncertainty over the test points. Although this approach is
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promising in terms of distributing the computational load of a single
GP over multiple GP experts, it is not feasible for a real robot
implementation. Since this approach works only under the assumption
that all GP experts are “jointly trained” such that they “share the same
set of hyper-parameters” [2], we cannot apply it directly to a real
robotic setup. Doing so for a real robot team would require precise
time synchronization and an all-to-all synchronized communication
(as was used in the recent work [14]). In the generalized Product
of Experts (gPoE) models from [9], the fusion is carried out over
independent GP experts wherein their contributions are determined,
e.g., by their differential entropy scores. Both of the above models are
log opinion pool models but BCM model ensures consistency in the
sense that predictions are guaranteed to fall back to the prior when we
leave the training data. Secondly, we refer to Mixture of Expert (MoE)
models [10]–[12] wherein each GP expert specializes in different
partitions of the state space and the mixture ensemble automatically
allocates the expert, its corresponding specialist zone. This model
is a linear opinion pool of experts where the weights are given
by input-dependent gating functions. For this, we draw inspiration
from the neural network literature [15]–[17], which introduced a
point-wise locally weighted fusion (LWF) technique to evaluate the
performance of a predictor over a neighborhood around the probe-
point. However, these approaches require a sufficiently dense training
dataset with access to ground truth. Hence, they cannot be applied
directly in a real robotic setup like ours. Beyond the above mentioned
solutions, there are other solutions in the literature that deal with
multi-agent decentralized exploration like [18] wherein a Dirichlet
Process Mixture of GP experts is used to model a decentralized
ensemble of GP experts. In this approach, the requirement of a control
parameter α that manages the addition of a new cluster, enforces the
need of supervision (by base node or human) that can control and
instruct a new member to be added to the team when a new cluster
is created. Alternative solution proposed for multiple GP experts
for decentralized data fusion comes from [3]. This work does not
belong to any of the two categories summarized above, and, in this
work, the robots share the measurements gathered with their nearest
neighbors using consensus filtering. Since in our problem setting we
do not allow the robots to communicate with each other neither do we
require a supervisor to dynamically add members to the team, thus,
we propose a weighted fusion technique suitable for GPs that allows
us to evaluate the proximity of a probe point to the training samples
of GP experts while evaluating the confidence of each expert.

In our previous work [19], the distributed GP [2] framework was
proposed for a multi-robot setup in which multiple robots were
allowed to behave as self-dependent GP experts and model the target
phenomenon by collecting the most informative training samples
from their dedicated training zones. Having done this, we obtained
multiple trained GP experts, which made the predicted maps for
the spatial dynamics of the target phenomenon. However, we saw
that arbitrarily partitioning the space sometimes means that some
robots may not have access to sufficient locations to enhance their
models. Since each GP expert uses only a subset of the whole training
samples, we cannot completely rely on the predictions made by
individual GP experts. To overcome these limitations, in our current
work, we allow access to the whole sensing area for each robot.
The global model is available only at the end of the mission times
of all experts. During their respective mission times, there is no
communication between the robots, and each robot gathers training
samples that are deemed best for improving its own GP model.

We propose a novel algorithm which, at the end of mission times
of all robots, fuses all prediction models into a globally consistent
model for the entire phenomenon. For this, we fuse the predictions
of all GP experts while accounting for the strengths of all the experts
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Fig. 1. Sensing Scenario. Illustration of the sensing scenario in which the team of mobile robots operates under resource constraints. The aim is to gather
optimal observations to make a prediction for the environment defined by posterior mean µ∗k and posterior covariance Σ∗k . Estimate 1 − Estimate K
represent the k individualistic prediction maps made by the K robots based on their training samples. x∗k represents the next-best-location chosen by the
RC-DAS active sensing for kth expert. Fused Map is the globally consistent fused prediction map generated by using our proposed fusion framework. Our
target is to make the Fused Map as similar to the Ground Truth as possible. These maps show 2D spatial interpolation for ease of visualization. In reality,
we just have a discrete collection of predicted measurements at pre-determined locations.

to make a fused model, which can perform better than the individual
experts. The advantage of our fusion architecture is that it can not
only handle heterogeneity in the team in terms of robots themselves
(e.g., UAVs coupled with UGVs), but also any sort of informative path
planning can be used for the respective members. Normally, when
considering a heterogeneous robot team, different members have
different budgets and hence might end their exploration earlier than
others. Our architecture can easily account for varying exploratory
missions but this is beyond the scope of the current manuscript.
Also, our architecture is immune to complete system failures. Since
we only fuse the maps in a centralized fashion only at the end of
all the missions for all robots, should the centralized node fail, our
robots would still retain their individual models which can be fused
elsewhere. This, as opposed to the fully centralized architecture of
[20], is our first step towards a robust dual layer architecture while
splitting the exploration load over the team and only passing on
the map fusion load to the centralized node. We present empirical
evaluations backed by statistically significant results to show that
our model performs better than existing state-of-the-art models like
gPoE and a single GP. A preliminary version of this approach was
previously presented as a position paper [21].

II. PROBLEM FORMULATION

In this section, we introduce the sensing scenario in which we
demonstrate our fusion approach and also introduce the notations
deemed viable for later use.

A. Sensing Scenario:

We begin by explaining the sensing setup. The sensing environment
being considered here is similar to the works of [22] albeit there are
a few differences and extensions in this work. Our approach serves
to extend and enhance the previous works as follows:
• Choosing the next-best-location: Instead of looking at just the

immediate neighbors, our approach evaluates all combinations
of correlated locations within the field.

• Concurrent Inference and Estimation: In our approach, we
can concurrently infer the optimal model parameters by updating
the model as and when new data comes in and if required,
estimate the measurement at any arbitrary input location.

• Fusion: Although the COP approach [22] is extendable for
multi-robot setting but it is not clear what happens when multiple
robots generate models based on their individual observations.



IEEE TRANSACTIONS ON ROBOTICS 3

If the setting is a communication devoid environment like ours,
then the robots might end up generating slightly conflicting
models of the environment despite gathering overlapping ob-
servations. This problem is elegantly resolved by our model
where we fuse and generate a globally consistent model of the
environment.

• Measurement Noise: All measurements gathered are consid-
ered to be noisy and the noise variance is itself treated as a
parameter to be learnt via inference as opposed to Yu et.al’s
work [22] where noise free measurements were considered.

• Informativeness of a location: In [22], the informativeness
of a candidate location j was only considered with respect to a
specific location i in its immediate neighborhood, independent of
the rest. However, in our case, we evaluate the informativeness
of a candidate location in terms of the reduction of uncertainty
achieved over the entire environment (i.e., all the unobserved
locations)

• Team size: Our approach already tries to tackle scenarios
where the sensing environment are significantly large and the
size of robot team is significantly small to monitor and model
the environment given the limited resources.

These extensions are proposed under the following assumptions:

• The environment to be modeled is quite large and cannot be
covered by a single robot.

• We have a team of robots which cannot communicate with
each other to be able to freely cover the vast expanse of the
environment of interest.

• The resources (battery life, flight time, travel distance etc.)
available to each member of the team are not enough to perform
exhaustive coverage of the phenomenon. Blanket coverage may
lead to supreme model performance but is practically infeasible
and the robots are tasked with planning budget-limited infor-
mative tours to myopically maximize their reward (measured in
terms of information gain).

• The measurements and correlations of the field are not updated
during the robot’s exploration phase. However, during a new
exploration cycle, the measurements are varying in both spatial
and temporal domains. Thus, for the scope of this work we only
analyze the spatial domain for a chosen time step.

• Since the robots are not communicating with each other, they
need to maintain their own set of hyper-parameters despite the
fact that uncoordinated explorations may lead to more than one
robot visiting the same location during exploration. To this end,
we will use the term “Independent” to refer to individual models
maintained by each robot. However, we caution the reader that
more than one robot might use the same measurement as a
training sample for its respective model and hence the term
“Independent” must not be confused with the term conditional
independence in any sense.

• Most of the environment monitoring datasets only record mea-
surements for static sensors placed at discrete locations. How-
ever, not all stations need to be observed at all times. Thus, in
this work, we aim to select the “key” locations to be observed.
Thus, we no longer have access to static sensors but since
the measurements are only available at the locations where the
static sensors were previously placed, we restrict our robots to
only observe and visit these locations. Thus, in our setting, the
locations that can be observed at pre-defined 1 (similar to [22]).

1It must be noted here that GPs can be used to predict measurements at any
arbitrary location but since the ground truth for such locations was not made
available in the raw dataset, we cannot evaluate the prediction performance
and hence were not considered in the current problem setup.

Our problem set-up is illustrated in Fig. 1: The target phenomenon
is largely unknown, and measurements are only available for the
locations that were observed by the robot team (as opposed to the
exteroceptive sensing that is discussed commonly in the robotics
literature). We assume that each robot moves deterministically. Each
robot models its current knowledge about the phenomenon using
a GP. For the other unvisited locations, we use the ensemble of
distributed GPs to make a prediction and then fuse predictions from
all the experts in order to have a unified prediction. Each robot gathers
its own observations (from the whole field) during its mission time
and egotistically optimizes its GP model to make a model for the
whole phenomenon. Given individual training sets for each expert,
they are bound to have slightly conflicting predictions over unvisited
locations. Hence, we fuse the predictions from all the experts to
deduce an overall prediction model. Planning informative tours under
resource constraints is equally applicable in other applications like
efficient routing of a truck through a priori known depot locations
under limited budget while maximizing the net reward accrued [23]
or in monitoring oceanic oil spills, maximizing electoral turn over
[22] and the like. N.B. We use 2D spatial interpolation in this
Figure for ease of visualization. However, we do not intend on
using this interpolated data for training and inference of GP
models.

This paper addresses the following research problem: Given mul-
tiple robots, each acting as a self-reliant GP expert, how can we
effectively fuse predictions in order to make a globally consistent
model of the target environment when communication channels are
not available?

III. DISTRIBUTED GAUSSIAN PROCESS MODEL OF THE TARGET

PHENOMENON

In this section, we summarize our idea of modeling the environ-
ment using a fully decentralized team of mobile robots. For this,
each robot behaves like a GP expert, which, in a fully decentralized
fashion, models the target phenomenon based on its own observations.
Together, the team behaves like a distributed ensemble of GP experts
as follows: For a domain D ⊂ Rd, we model the phenomenon
f : Rd → R using a GP, such that f ∼ GP (µ(·), kf (·, ·)). For each
input x ∈ D, we define the associated measurement by zx if the input
was observed, otherwise we define Zx = f(x) + ε, ε ∼ N (0, σ2

ε ),
(where ε is i.i.d. Gaussian measurement noise), as a random variable,
which is used for predicting the measurements of unobserved inputs.
Then, {Zx}x∈D is a GP, such that each of its finite subsets is a
multivariate Gaussian distribution [1].

A. Field Modeling using Gaussian Process

GPs are a rich class of non-parametric Bayesian models, which
allow us to model spatial variations of the environmental phenomena.
GPs consistently quantify the uncertainty associated with predictions,
which can be exploited by active sensing schemes for exploration
and obtaining the most informative sensing locations for each mobile
robot.

A GP is a generalization of a Gaussian distribution and fully
defined by a mean function µ(·) = E[f(·)] and covariance function
kf (·, ·). The covariance function (also known as kernel), defines the
spatial correlation structure of the function to be modeled and is
parametrized by a set of hyper-parameters denoted by θ. A commonly
used covariance function is the squared exponential

σxx′ = σ2
sig exp

(
− 1

2
(x− x′)TL−1(x− x′)

)
+ σ2

ε δxx′ (1)

where x, x′ ∈ D, L = diag(l21, . . . , l
2
d) and the li are characteristic

length scales, which determine the relevance of the corresponding
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input dimension for modeling the target phenomenon. σsig corre-
sponds to the amplitude of the signal to be modeled whereas σε
describes the magnitude of the noise. The hyper-parameters are
θ =∆ {σsig, σε, l1, l2, . . . , ld}. The hyper-parameters are trained using
the standard procedure of evidence (type-II marginal likelihood) max-
imization [1]. Evidence maximization avoids overfitting by automati-
cally trading off data fit to model complexity. Since there are a total of
K GP experts, and each of these models is independently optimized,
we will obtain a super-set of hyper-parameters Θ = [θ1,θ2, . . . ,θK ].

When a column vector zOk of realized measurements2 becomes
available for a set Ok ⊂ D of inputs for the kth GP expert, we exploit
these measurements to train the GP and predict the measurements
for a set Uk ⊆ D of unobserved inputs [3], [18]. The corresponding
Gaussian process posterior predictive distribution for each of the k ∈
{1, 2, . . . ,K} GP experts is given by:

µUk|Ok,θk =∆ θUk + ΣUkOk|θkΣ−1
OkOk|θk (zOk − θOK ) (2)

ΣUkUk|Ok,θk
=∆ ΣUkUk|θk

−ΣUkOk|θk
Σ−1
OkOk|θk

ΣOkUk|θk
(3)

where µUk|Ok,θk
is a column vector of means of the predicted

(posterior) measurements of the phenomenon modeled by the expert k
and ΣUkUk|Ok,θk

is the corresponding predictive posterior covariance
matrix. Using the kernel trick, we deduce Σxx′ = kf (x, x′).

B. Resource Constrained Decentralized Active Sensing (RC-DAS)

In order to gather the training samples for GP model, a robot
usually relies on active sensing techniques. In [19], we described
the current state-of-art active sensing technique, which we referred
to as fully Decentralized Active Sensing (full-DAS). In this scheme,
the robot visits the most uncertain (highest entropy) locations and
only tries to optimize the model performance. In doing so, the robot
is forced to travel far-off and incurs prohibitively large travel costs.
Thus, in the same work, we proposed an active sensing approach
that trades off the selection of the most informative (higher entropy)
location and the closest location (lower distance), i.e., uncertainty
versus distance optimization. This new approach was called Resource
Constrained - Decentralized Active Sensing (RC-DAS). The algo-
rithm is summarized in Alg. 1. This active sensing scheme was used
to obtain trained GP experts, the predictions of which were fused
to obtain the global map. In our prior work, we used the Euclidean
distance between the current location and the next location but from
hereon, we shall use the Haversine3 distance as explained in Def. 1.

Definition 1: Given the geographic coordinates of two locations
L1, L2 ∈ R2, we can define the Haversine Distance (DHav) between
these locations as [24]:

DHav(L1, L2) =∆ 2r arctan

(√
a

1− a

)
,

a =∆ sin2
(y2 − y1

2

)
+ cos(y1) cos(y2) sin2

(x2 − x1

2

)
where r = 6371km represents the radius of earth and L1 =
(x1, y1);L2 = (x2, y2) represent the respective latitudes and lon-
gitudes of the locations. Hence, the Haversine distance returns the
separation between two locations while accounting for the curvature
of the earth.

2can be observed only by mobile robots at particular locations and time
instances

3Since our dataset spans across continental USA, the travel costs are
best explained by Haversine distance instead of its Euclidean counterpart.
For considerably smaller state-space we can rely on Euclidean or Haversine
distance interchangeably.

Algorithm 1 RC-DAS (D,B)

1: {x}Ki=1 ← x
[1]
i ; {z}Ki=1 ← NULL;

2: {O}Ki=1 ← NULL; K = 4;
3: for agent i = 1, . . . ,K do
4: while B >0 do
5:
6: /***SENSE***/
7:
8: zxi ← Sense(xi) . obtain measurement
9: zi ← [zi; zxi ] . store observation

10: Oi ← [Oi;xi] . store location
11:
12: /***PLAN***/
13:
14: θi ← MLE(zi, Oi) . obtain hyper-parameters
15: . deduce most uncertain locations
16: O∗i ← CalcUncertainNeighbors(D,xi)
17: . Compute predicted measurements
18: µ∗i,Σ

∗
i ← CompPosterior(zi, Oi, O∗i,θi)

19: . RC-DAS Objective Function
20: Obj =∆

(
αH[ZUwk

|zOwk
]− (1− α) ln(DHav(x− x∗)

)
21: . optimal Next Best Location
22: x∗ ← arg maxx∈O∗i (Obj)
23:
24: /***ACT***/
25:
26: . pass target location to robot controller
27: xi ←MoveToNextBestLoc(x∗)
28: B ← B − (S + T ) . update remaining budget
29: end while
30: end for

In Alg. 1, we defined our RC-DAS algorithm where we trade
off resource utilization to model performance in order to make an
accurate model of a large-scale environmental phenomenon. The
inputs to this algorithm are D, which is the domain of the algorithm
and, B, which is the initially allocated budget for our robots.
Usually for a robot, to move from its current location to the target
location, three primitives are involved: Sense, Plan and Act. Based
on Murphy [25] and in light of our problem setting we define these
primitives as follows:
Sense: The robot gathers measurements from its environment.
Plan: The GP experts process the measurements and make a pre-
diction for each location in Uglobal. Moreover, the GP experts
evaluate the optimal next-best-sensing-location, which is defined by
our objective function.
Act: The target location is passed to the robot controller allowing the
robot to move to the desired location and obtain new measurements
to update the model. Additionally, the residual resources are updated.

Now we give an in-depth explanation of the steps for each of these
primitives. When the robot is at a certain location xi and obtains
a sensor measurement zxi , we store the observation (line 9) and
input location (line 10) for inference (line 14). We then evaluate
the most uncertain neighbors surrounding the current robot location,
which are within accessible limits of the robot (line 16). We then
compute the posterior prediction over these locations as shown in
line 18. To evaluate the most informative next-best-sensing-location,
we evaluate our proposed cost function to optimize the travel distance
and simultaneously reduce the prediction uncertainty (line 20). If we
jointly maximize over this cost function we get the feasible next
best location as shown in line 22. We pass this as the current goal
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position to be attained by our mobile robot. In line 28, we update
our remaining budget B available to the robot by subtracting the
Sensing Cost (S) and Travel Cost (T ) incurred by our agent when it
moved to the new location x∗. Besides the factors considered in our
cost function, there are other contributors like external wind effect
and obstacle avoidance which might lead to increased traveling costs
but have not been considered in the scope of this work. Also, robot
dynamics like rotor downwash etc., which might influence and disturb
the environment are beyond the scope of this work and have been
studied elsewhere like [26], [27].

IV. PREDICTIVE MODEL FUSION FOR DISTRIBUTED GP EXPERTS

(FuDGE)

At the end of exploration (mission time) of all members of the
mobile robot team, we obtain K diverse GP experts, which were
each trained on their respective subsets of training data and have
made a predictive map over the entire target phenomenon. To fuse
the predictions from multiple models, we do a consistency check,
which involves finding the probe (test) locations that are shared by
all the GP experts.

Thus, we define Uglobal =∆ {U1 ∩ U2 ∩ . . . ∩ UK} as the super
set of all unobserved inputs that were never visited by any robot.
Similarly, we define Oglobal =∆ {O1 ∪O2 ∪ . . . ∪OK} as the super
set of all observed inputs that were visited by all robots.

A. Fusion Strategy

We define a probe point Q ∈ Uglobal as a point of interest for
which we want to fuse the predictions from multiple GP experts and
consider the following fusion algorithms for our analysis:

1) Pointwise Mixture of Experts using GMM: We first give the
premise of our model for the ease of the readers followed by the
elaborate model description.

Premise: GPs are kernel based methods and since we use isotropic
squared exponential kernels as shown in Eq. (1), predictions are made
with high confidence nearby the observed inputs and the confidence
drops gradually as the distance increases [1]. This is also supported
by the Tobler’s first law of geography which states that: “Everything
is related to everything else, but near things are more related than
distant things” [28].

Model Description: We now explain our novel model fusion
technique. For this, we obtain independently4 trained GP experts
from our distributed GP framework [19]. Then during the test phase,
we combine the expert predictions based on the proximity of a test
(probe) point to the experts’ training samples. Thus, on the lower
level we develop independent prediction models and on the higher
level we develop a fused globally consistent model making our model
a 2-level architecture.

The length scales inferred by the GP experts represent the standard
deviation in spatial variation of measurements along the ith input
dimension σi. A probe point Q lying too far5 away from the training
points of the kth expert will not be confidently predicted by that
GP. This is attributed to the fact that we use a stationary squared
exponential covariance (1) to model our environment. Using this
covariance structure, we can infer that correlation in measurements at
two locations x and x∗ will decay as the spatial separation between
them increases. Thus, we place a multivariate Gaussian distribution
over the Ok ∼ N

(
Q|Ojk,Σk

)
where j represents the jth training

sample of the kth expert and Σk =∆ diag(l2lat, l
2
long). The spread

4not the same as conditional independence. Just refers to individual models
maintained by each expert

5outside the 99.5% confidence bound

of the multivariate normal distribution is defined in terms of length
scales along the Latitude and Longitude of the corresponding
GP expert. This gives rise to one Gaussian mixture model (GMM)
over the training data points of each GP expert. We can define the
responsibilities of this hierarchical GMM as:

log p(k|Q,Oglobal) =∆ Σxi log p(Q|xi,Σk) (4)

In (4), xi refers to [Oglobal]i, Σk refers to the covariance of the
Gaussian distribution for the kth GP expert and p(Q|xi,Σk) =
N (xi,Σk). This is illustrated in Fig. 2 where all the locations
that were unvisited by the robot (k) during its exploration are
referred to as the test set for that robot Uk. The responsibilities
of a hierarchical Gaussian mixture model in Eq. (4) are such that
log p(k|Q,Oglobal) ∈ [0, 1] and ΣKk=1 log p(k|Q,Oglobal) = 1. We
define the fused prediction at probe point Q as:

µQ|Ok,θk
=∆ ΣKk=1

(
log p(k|Q,Oglobal)µQk

)
(5)

In (5), the fused prediction at probe point Q is defined as the sum
of predictions (µQk ) weighted by the sum of log-responsibilities of a
GMM (log p(k|Q,Oglobal)) for each expert k∈1, . . . ,K.

We now define the net variance at the probe point Q as:

σQ|Ok,θk
=∆ ΣKk=1

{
log p(k|Q,Oglobal)[(σQk )2 + (µQk )2]

}
−

(µQ|Ok,θk
)2 ,

=ΣKk=1

(
log p(k|Q,Oglobal)(σQk )2

)
+

ΣKk=1

(
log p(k|Q,Oglobal)(µQk )2

)
−

(µQ|Ok,θk
)2 .

(6)

Since (·)2 is a convex operator, using Jensen’s inequality [29], we
know that ΣKk=1

(
log p(k|Q,Oglobal)(µQk )2

)
≥ (µQ|Ok,θk

)2. Now,
Eq. (6) can be interpreted as the weighted combination of variances of
the components plus a correction term which is always positive. The
correction term accounts for the divergence of respective component
means (µQk ) from the mean of the mixture (µQ|Ok,θk

) for the probe
point Q.

Fig. 2. FuDGE. Illustration of weighted fusion performed using FuDGE by
positioning a 2D Gaussian distribution N (xi,Σk) to evaluate the responsi-
bility of a GP expert over a probe point. In this Figure, locations marked
in green asterisk (*) represent the training locations that were visited by
our robots during their respective missions, while those highlighted by red
asterisk (*) represent the probe points over which we need to fuse predictions
and black squares (�) represent the start location of each of the 4 robots.
For simplicity, we have only shown the first training sample of each of the
GP expert. We have 4 experts, each of which is represented by a Gaussian
contour plot centered around their first training sample.
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2) Generalized Product of Experts Model [9]: This ensemble
predicts the value at a test point as a weighted product of all expert
predictions for this test point. The gPoE model allows us to flexibly
define the weights to adjust for importance of an expert [2]. In the
original work, a differential entropy score was used to define the
weight of the experts based on the improvement in information gain
between the prior and the posterior. Thus, in our setup, we define the
weights (βk) of the kth expert and fused predictions generated by an
ensemble of K GP experts are obtained as follows:

βk =
1

2
(log(σ2

k∗∗)− log(σ2
k(x∗))) (7)

β̂k =
βk

Σkβk
(8)

µgPoEU|O,Θ =∆ ΣgPoEUU|O,θk

∑K

k=1
β̂kΣ−1

UU|Ok,θk
µU|Ok

(9)

(ΣgPoEUU|O,Θ)−1 =∆
∑K

k=1
β̂kΣ−1

UU|Ok,θk
(10)

In (7), we define the differential entropy score and in (8) we
evaluate the confidence weight per probe point x∗ by finding the
differential entropy between the prior variance σ2

k∗∗ and posterior
variance σ2

k(x∗) for the probe point x∗ such that Σkβ̂k = 1.
This model, currently the state-of-the-art, is too conservative and

ends up overestimating the variance [2]. This is owing to the fact
that there is no variance correction term in Eq. (10). This is elegantly
overcome by FuDGE.

V. EXPERIMENTS

In this section, we compare the performance of individual robot
prediction models with that of the fused models in order to empiri-
cally show that our data fusion, in fact, leads to enhanced prediction
[8]. In order to evaluate the fusion performance, we compare our
proposed model FuDGE to gPoE [9]. For all experiments, each
robot was given access to all the locations over the whole field.
We arbitrarily assigned the robot starting locations, and averaged
the performance over 5 experiments for each chosen length of walk
(size of training samples per robot). We also analyzed the fusion
performance with regards to increasing the length of walk i.e.,
increasing the number of training samples per robot. N.B. Each robot
was only allowed to plan a tour through the locations that were
provided in the dataset.

A. Dataset for performance evaluation

We used the US Ozone Dataset. This dataset includes ozone
concentrations (in parts per billion) collected by US Environmental
Protection Agency [19]. In this dataset, the measurements were
recorded from 1995-2011 for 59 static monitoring stations across
USA but we only choose one of the years for evaluation purposes.
For each station, the annual average ozone concentration at a station
was assigned as the sample measurement for that station. Since the
environment to be monitored was quite large and the robot needs to
cover distances of the order of a few hundred kms, we simulated high
end commercial drones like the one shown in Fig. 1 which can fly at
significantly high speeds during which the correlations remain rather
static. Also, as opposed to conventional batch processing approaches,
we do not split the entire dataset into test and train subsets. Rather
we allow the robots to utilize the RC-DAS selection mechanism to
actively select the samples which they deem necessary to be observed.
Thus, as explained earlier on, the input locations that were observed
by a robot during its mission time can be considered as its training
set and the unobserved input locations can be considered as its test
set.

B. Comparative analysis of RC-DAS and full-DAS

Here we compare the two active sensing approaches based on their
fusion performance and average path cost incurred.

1) Prediction performance analysis: In this section, we evaluate
the average RMSE which represents the average of errors of all robots
between the estimated model and the ground truth evaluated over each
element of Uglobal.

Fig. 3a shows the fusion performance of full-DAS against the
average performance of independent robots labeled as IndepGP,
the state-of-the-art gPoE and the single GP case evaluated over
Uglobal. IndepGP refers to the average of individual performances
of all robots as evaluated over Uglobal. As explained earlier on, this
does not mean that our GPs are conditionally independent of each
other, since they might have had shared training samples owing to
uncoordinated exploration but we refer to the independence in the
sense of uncoordinated individual GP expert models. We can see
that the independent robots tend to incur higher performance error
(average) owing to limited exploration. This error tends to go down
as more observations become available. However, fusion strategies
outperform the independent robot models. By comparing Fig. 3a and
Fig. 3b, we can clearly see that full-DAS tends to perform better than
RC-DAS since in this case, the GPs had access to the most uncertain
and hence the most informative training samples. This also helps our
fusion model perform better as some of the experts tend to know
slightly more information about a region as compared to the others,
and hence not all experts can be given equal weights. From Fig. 3a
and Fig. 3b, it can be observed that the average fusion performance
of our proposed model is always the best. In essence, our FuDGE can
be considered a Simple Averaging when the GP experts are equally
good (or bad) at predictions for a probe point while at other times,
FuDGE assigns the weights to GP experts based on the log-likelihood
of the GP for the probe point. Another interesting fact to note here
is that, while the error of all fusion techniques for full-DAS tends to
reduce as we increase the length of walk of each robot, the error does
not follow a monotonically decreasing trend for RC-DAS owing to
the choice of training samples as explained earlier. Moreover, since
FuDGE and gPoE are approximations of a single GP to aid efficient
robot exploration, we can see that this is achieved at the cost of
compromised accuracy.

In order to check the statistical significance of our claims, we
deduce the p-values for our experiments. For this we define our
null hypothesis H0:FuDGE does not perform better than gPoE and
our alternative hypothesis Ha: FuDGE performs better than gPoE.
Then for full-DAS and RC-DAS we evaluate the p-values of the z-
statistic for the right-tailed test as 0.0294 and 0.0090 respectively.
We choose a significance level of α = 0.05 and since p < α for both
active sensing techniques, we have strong evidence against the null
hypothesis, so we reject the null hypothesis. Thus, the performance
of FuDGE is significantly better when compared to that of gPoE.

2) Path Cost Analysis: We also evaluated the path cost incurred
by both active sensing schemes, whereby the path cost refers to the
net sensing cost and traveling cost incurred by a robot during its
exploration. The results are summarized in Fig. 5 which shows the
average past cost representing the average of total path costs incurred
by all robots. It can be seen that the costs incurred by full-DAS
are consistently higher than that of RC-DAS. This goes to satisfy
our claims that we can successfully trade-off model performance to
efficient resource utilization without having to drastically compromise
on any one of them.

In conclusion, it is apparent that both full-DAS and RC-DAS attain
similar performance in terms of fusion quality but RC-DAS does so
at lower path costs.
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(a) Performance of FuDGE using full-DAS
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(b) Performance of FuDGE using RC-DAS

Fig. 3. Fusion Performance. Evaluating average fusion performance for full-DAS and RC-DAS v/s Length of Walk [Ozone Dataset]

(a) Complexity v/s Length of Walk (b) Complexity v/s Number of Robots

Fig. 4. Computational Complexity. Illustrating the computational complexity of singleGP, FuDGE and GPoE models.
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Fig. 5. Path cost. Evaluating path cost for full-DAS and RC-DAS v/s Length
of Walk [Ozone Dataset]

C. Model Complexity Analysis

From Fig. 3, it is explicit that FuDGE outperforms existing state-
of-art models but it is also essential to analyze that the performance
was not obtained at the cost of extensive computations. In order to
perform a fair comparison between the referred models, we obtain
the trajectories of all robots a priori using RC-DAS. Then, we feed the
same trajectories to all models and account for this cost of exploration
as if the model was performing exploration in real time. For this, we
define #(·) as the cardinality operator and K represents the size of
the team operating in the field whose domain is D as before. The
results hence obtained are summarized in Table I.

In Table I, we categorize the computational cost using 3 compo-
nents: all costs referenced with I∗ refer to the cost for performing
GP inference, E∗ refer to the computational cost for active sensing

and F∗ refer to the computational cost for fusion. As a visual
representation of Table I, we also show Fig. 4 wherein we show
the model complexities with growing number of observations for a
fixed size of team (Fig. 4a) and also the impact of variable size
of team (Fig. 4b). From Fig. 4a, it is clear that both FuDGE and
GPoE are computationally lighter than singleGP and as the number of
observations grow, FuDGE and GPoE are computationally equivalent
but FuDGE is more accurate. In Fig. 4b we show that FuDGE and
GPoE are better off than their SingleGP counterpart as they can
efficiently distribute the computational load over the entire fleet. Thus,
based on Fig. 4, we can arrange the 3 models in decreasing order
of complexity as: SingleGP > FuDGE ≥ GPoE. From this, we
conclude that not only FuDGE can generate significantly better fused
maps as compared to existing state-of-the-art models, but this also
done at equivalent or nominally higher computation costs.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced FuDGE, for point-wise fusion of
predictions and resolving conflicting models when multiple robots
try to model a spatially varying environment based on limited
observations. Our empirical results show that we can elegantly trade-
off model performance to resource utilization without drastically
compromising on either. This work is just a preliminary step and
opens up new areas of exploration.

Further enhancements could include but are not limited to: Firstly,
development of partial decentralization schemes like the works of
[3] so that the robots can coordinate the paths with its nearest
neighbors to avoid gathering overlapping observations. Secondly, we
could replace our kernel function with area kernels [30] to consider
continuous measurements which when coupled with [31] can help
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TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS FOR FUDGE, GPOE AND SINGLEGP.

Inference Complexity Exploration Complexity Fusion Complexity Instances
SingleGP IS = O(S)3 ES = O(RS) FS = ∅ S = #(Oglobal), RS = #(D \Oglobal)
FuDGE IF = O( S

K
)3 EF = O(RFK) FF = O(FK) F = #(Uglobal), RF = #(D \Ok)

GPoE IG = O( S
K

)3 EG = O(RGK) FG = O(G + K) G = #(D), RG = #(D \Ok)

us plan trajectories over multiple time steps to infer both spatial and
temporal dynamics of the environment. Also, in doing so, since we
can utilize a fully Bayesian inference, we believe that the experts
can soon infer the locally stationary clusters of a fully non-stationary
field which may assigned to each expert like [18]. Perhaps monitoring
only the locally stationary clusters could be more effective than
our current approach so we would further investigate this. Thirdly,
a more complex stacked model can be investigated based on [32],
such that we can fuse multiple GP experts into a single GP expert,
which outperforms each individual expert. Lastly, our model should
be made fault-tolerant by taking into account erroneous local models
that might have to be used for fusion.

Furthermore, we have only looked into informative path-planning
in discrete scenarios like the works of [22] where the locations are
pre-defined and measurements are only available at these locations.
However, it might be interesting to investigate a continuous field and
endow the robots with the freedom to fly from its current location
to any other location within the field limits to observe and gather
measurements. This could allow robots to gather dense samples of
measurements and make the problem more close to real life scenarios.
However, in doing so, we would incur whole new computational
complexities and optimization challenges and hence, has been left
for further works.
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