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Abstract

In this paper, we present a nonparallel voice conversion (VC)
approach that does not require parallel data or linguistic label-
ing for the training process. Dictionary-based voice conver-
sion is a class of methods aiming to decompose speech into
separate factors for manipulation. Non-negative matrix fac-
torization (NMF) is the most common method to decompose
an input spectrum into a weighted linear combination of a set
comprising a dictionary (basis) and weights. However, the
requirement for parallel training data in this method causes
several problems: 1) limited practical usability when parallel
data are not available, 2) the additional error from the align-
ment process degrades the output speech quality. To alleviate
these problems, we present a dictionary-based VC approach
by incorporating a variational autoencoder (VAE) to decom-
pose an input speech spectrum into a speaker dictionary and
weights without parallel training data. According to evalua-
tion results, the proposed method achieves better speech nat-
uralness while retaining the same speaker similarity as NMF-
based VC even though unaligned data is used.

1. Introduction

Effective communication is often difficult for non-native
speakers due to the language barrier. To overcome this prob-
lem, a speech-to-speech translator (S2ST) has been developed
to translate a speech from one language to another via speech-
to-text by a speech recognizer, via text-to-text by a machine
translator, and text-to-speech by a speech synthesizer. Re-
gardless of the input voice, the conventional S2ST always
produces the same output voice. As stated in [1], paralin-
guistic information (such as speaker individuality) and non-
linguistic information play important roles in human com-
munication. Therefore, the final goal of our research is an
S2ST with a personalized output voice. As the input voice
and output voice of S2ST are in different languages, an effec-
tive cross-lingual voice conversion method must be studied to
achieve this goal.

Voice conversion is the process of manipulating non- and

paralinguistic information of speech, such as speaker individ-
uality, emotion, and intelligibility. Various methods for voice
conversion have been studied so far such as the concatenation
method, spectral mapping using a Gaussian mixture model
(GMM) or artificial neural network (ANN), speech decom-
position using non-negative matrix factorization (NMF), an
Eigenvoice GMM (EV-GMM).

A concatenation method often gives the best naturalness;
however, it is impractical in a real S2ST device because of
the enormous database required. Recently, spectral mapping
using an ANN has reached a comparable performance to the
concatenation method but using fewer data. However, when
considering cross-lingual voice conversion, the spectral map-
ping method has the limitation that it cannot be used with
nonparallel databases such as cross-lingual ones. Speech de-
composition methods such as the EV-GMM and NMF assume
that a speech spectrum can be decomposed into two separate
factors representing speaker identity and linguistic content.
However, these methods still require parallel utterances of
source and target speakers to train the model. The quality
of the synthesized speech is also still poor.

Theoretically, a speech decomposition method need not
use only parallel data. Here, we focus on expanding the
speech decomposition method to use nonparallel training
data. The previous study by Dinh [2] demonstrated the sig-
nificance of the modulation spectrum (MS) for the perceived
naturalness of speech. Therefore, we also incorporate the MS
to improve the naturalness of synthesized speech.
The rest of this paper is organized as follows. We first briefly
review NMF-based spectral conversion in Sect. 2. Then, our
proposed method is presented in Sect. 3 and the experimen-
tal results are described in Sect. 4. Finally, we conclude our
paper in Sect. 5.

2. NMF-Based VC

The basic concept of dictionary-based VC is to decom-
pose a speech spectrum into two separate factors representing
speaker individuality and speech content. The most common
method used to accomplish this task is NMF. The class of VC
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Figure 1: Illustration of NMF-based VC

methods using NMF is called NMF-based VC.
For NMF-based VC, a sequence of spectral frames

X = [x1,x2, ...,xN] is represented as linear combinations
of a dictionary matrix A = [a1, a2, ...,aK] (related to
speaker individuality) and an activation weight matrix Z =
[z1, z2, ..., zN] (related to speech content) as follows:

X ≈ AZ (1)

The dictionary matrix A can be obtained by directly select-
ing spectral frames from training utterances, which are called
exemplars. During the runtime, given the source spectrogram,
the activation matrix Z is derived from the source dictionary
and then applied to the target dictionary to generate corre-
sponding target spectrogram. The advantage of this method
is that only a limited amount of data is required. However,
most of the data is crudely used as exemplars, implying that
a large dictionary is constructed. The drawback of the large
dictionary is a long conversion time, which is unsuitable for
a real-time application.

In another method, the matrices A and Z are learned from
the training data by alternately updating one matrix while
keeping the other matrix fixed. The size of the constructed
dictionary using this method is significantly reduced relative
to that in the exemplar-based NMF method, resulting in im-
proved online conversion efficiency [3].

When applying NMF in VC, first the source-target dictio-
naries A(X), A(Y ) are constructed using parallel datasets.
However, because of their different speech rates, dynamic
time warping (DTW) is applied to obtain framewise source-
target alignment.

In the next step, to generate the converted spectrogram, the
source and target dictionaries are assumed to share the same
activation matrix. Given the source spectrogram and source
dictionary, the activation matrix is estimated using Eq. (1).
Then the converted spectrogram is obtained by multiplying
the target dictionary matrix by the activation matrix using Eq.
(2). Figure 1 illustrates the detail of NMF-based VC.

Ŷ = A(Y )Z (2)

Figure 2: Proposed speech decomposition method using VAE

3. Proposed Dictionary-Based VC Using Variational
Autoencoder

3.1 Dictionary-based voice conversion using variational
autoencoder

The major drawback of NMF-based voice conversion is
the requirement of parallel training data. This implies that
NMF-based voice conversion may not be suitable for person-
alized S2ST devices, where no parallel training data is avail-
able. Furthermore, the use of DTW to align source and tar-
get utterances may introduce an additional error, which de-
grades the converted speech quality. Therefore, to overcome
these issues, we aim to apply a different method to decom-
pose speech using nonparallel dataset.

Firstly, we expand spectrum decomposition into a nonlin-
ear domain by using a neural network with a non-linear acti-
vation function (tangent hyperbolic):

X = fdec(A
(X)Z) (3)

where fdec() is realized by a neural network.
In the next step, the following activation matrix Z is ex-

tracted from the input spectrum also using a neural network:

Z = fenc(X) (4)

The parameters of the encoder network fenc and decoder
network fdec can be learned by jointly training the two net-
works like an autoencoder. However, without any constraint
on the activation matrix, the source and target dictionaries
cannot share the same activation matrix. In other words,
the converted spectrogram cannot be constructed by the tar-
get dictionary and the activation matrix extracted from the
source spectrogram. Therefore, we introduce one additinal
constraint by assuming that the activation matrix has the stan-
dard normal distribution N(0, I) over the whole utterance.
This leads to the network having the form of a variational
autoencoder (VAE). The overview of VAE-based speech de-
composition method is shown in Fig. 2. The training objec-
tive function of our proposed network has the similar form to
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the VAE model [4] as follows:

L(θ, ϕ;xn) = −DKL(qϕ(zn|xn)||p(zn))
+log pθ(xn|zn,A(X))

(5)

where the first term DKL is the Kullback–Leibler divergence
constraining the activation to a standard normal distribution,
and the second term is the log-probability of acoustic features
xn given the activation zn and speaker dictionary AX . The
training process is equivalent to iteratively estimating the au-
toencoder parameters θ and ϕ to maximize Eq. (5):

{θ, ϕ} = argmax
θ,ϕ

L(θ, ϕ;xn) (6)

Similar to the process of NMF-based voice conversion, in
our proposed method, the converted spectrogram is gener-
ated by multiplying the target dictionary by the activation ex-
tracted from the source utterance.

3.2 MS-constrained training

To improve the naturalness of the synthesized speech, we
also incorporate the MS in the proposed model because of its
beneficial effect on speech naturalness. In this paper, the MS
of parameter sequence x is defined as follows:

s(X) =
[
s(1)⊤, · · ·, s(d)⊤, · · ·, s(D)⊤

]

s(d) = [sd(0), · · ·, sd(f), · · ·, s(Ds)]

sd(f) = abs(FFT (x(d))

(7)

The modified log-likelihood function for the VAE model
considering the modulation spectrum is defined as follow:

Lms(θ, ϕ;xn) = −DKL(qϕ(zn|xn)||p(zn))
+log pθ(xn|zn,yn) + w.log p(s(x)|zn,A(X))

(8)

The final term in Equation (8) explicitly constrains the
model to increase the log-likelihood of the modulation spec-
trum conditioned on the given latent variable zn and speaker
identity yn. Furthermore, we also assume that the modulation
spectrum has a Gaussian distribution with a diagonal covari-
ance matrix: s(x) ∼ N(s(x)|s(x), diag(σs)). Therefore, the
final log-probability term in Equation (8) can be expressed in
the following closed form:

log p(s(x)|zn,A(X)) =

−1

2

∑(
log(2πσ2

s) +
(s(x)− s(x))2

σ2
s

) (9)

4. Evaluation

4.1 Experimental settings

4.1.1 Baseline system

The baseline system is the NMF-based voice conversion
system using parallel data described in [3]. The dictionaries
have r = 100 bases. Fifty utterances of two speakers bdl
(male) and slt (female) from the CMU-ARCTIC database are
used for the training process. The source and target utterances
are aligned by DTW. For the input acoustic features, the base-
line method uses the 513-dimension STRAIGHT spectrum.
The aperiodicity (ap) remains unchanged while logF0 is lin-
early scaled.

4.1.2 Proposed system

The configuration of the proposed system is shown in ta-
ble 1. The decoder has the same configuration as the encoder
but in the reverse order. The training database is the same
as that for the baseline system. For the input acoustic fea-
tures, 60 mel-cepstral coefficients (MCCs) extracted from the
STRAIGHT spectrum are used. The stochastic gradient de-
scent (SGD) algorithm is used to optimize the parameters.
The network is trained through 400 epochs, which takes ap-
proximately 20 min on a NVIDIA GTX1060 GPU system.

Table 1: Network configuration

units activation
Input layer 128 linear

Encoder 1024-512-512-256-256 tanh
Output layer 180 linear

4.2 Objective evaluation

To assess the effectiveness of MS-constrained training, the
MS of the converted speech from the VAE model with and
without MS-constrained training is measured. According to
Fig. 3 the most important region of the MS at around 4 Hz
from the VAE model with MS-constrained training is higher,
which indicates the effectiveness of our proposed method.
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Figure 3: Measurement of 64th MS
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Figure 4: MCD measurement

In the next evaluation, we measure the Mel-cepstral dis-
tortion (MCD) between the converted speech and the target
speech by the proposed and baseline methods trained by dif-
ferent amount of data. To perform this test, the speech con-
verted by the proposed method is aligned to target speech by
DTW. The speech converted from the baseline method is al-
ready aligned, therefore no further alignment process is con-
ducted. The measured MCD from 20 utterances is averaged
to produce the final result. According to Fig. 4, the MCD
of the proposed method is significantly lower than that of the
baseline method even though unaligned training data is used.

4.3 Subjective evaluation

In the subjective evaluation, ten non-native English speak-
ers age from 25 to 30 participated in the following two ex-
periments. In the first experiment, the speaker similarity be-
tween the target voice and converted voice obtained by differ-
ent methods was evaluated. There were 20 stimuli for each
voice conversion method. Each pair of stimuli contained the
same sentence uttered by the natural voice and conversion
system. The listeners were instructed to concentrate on the
voice characteristics and ignore any distortion in the stimuli.
Then the listeners were asked to judge the similarity between
the two stimuli on a five-point scale (1: not at all similar, 5:
very similar). The result of the speaker similarity test with
the t-test p-value is shown in Fig. 5.

In the second experiment, the naturalness of the natural
voice and the voice synthesized by two systems was evalu-
ated. Based on their feelings, the listeners selected the stim-
ulus with gives greater naturalness. The result of the natural-
ness test with the t-test p-value is shown in Fig. 6.

The subjective evaluation demonstrated significantly
higher naturalness of the proposed VAE-based system than
that of the NMF-based system. Meanwhile, the speaker sim-
ilarity between the two methods is comparable.

5. Conclusions

We presented a dictionary-based voice conversion system
for use with nonparallel training data. The advantages of this
method are twofold. First, parallel training data is no longer
required for dictionary-based voice conversion. Second, this
method outperforms the conventional NMF-based voice con-
version in term of naturalness while retaining comparable
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Figure 5: Similarity to target speaker (top, p = 0.44 > 0.05)
and to source speaker (bottom, p = 0.69 > 0.55) with 95%
confidence interval
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Figure 6: Naturalness MOS score with 95% confidence inter-
val (p = 0.04 < 0.05)

speaker similarity. As the proposed method does not depend
on linguistic information, as the next step, we will general-
ize our method for use with cross-lingual datasets, making it
suitable for personalized S2ST devices.
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