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UAV-based Multiple Source

Localization and Contour Mapping of

Radiation Fields

Abdullah Al Redwan Newaz, Sungmoon Jeong, Hosun Lee,
Hyejeong Ryu, Nak Young Chong

Abstract

This paper proposes an efficient approach to the multiple source localization

and contour mapping problem of radiation fields using Unmanned Aerial Vehi-

cles (UAVs). A typical radiation field originating from a single hotspot can be

generated by three spatial distributions of sources; scattered, clustered and bi-

ased. Of these, the clustered sources are relatively easy to localize, because the

sources are located in a close proximity to the center of distribution. In other

cases, it is not very straightforward, because, when multiple radiating sources

generate a hotspot in a cumulative manner, sources do not coincide with the

hotspot position. Regardless of our knowledge about the hotspot position, we

attempt to solve the multiple radiation localization problem in two steps: the

Region Of Interest (ROI) selection and the source localization. Existing algo-

rithms eventually explore whole area, causing the problem of excessive use of

UAV resources. We therefore propose a framework to reduce ROI in a radiation

field that not only optimizes the resources but also increases the localization ac-

curacy. For the source localization process, two different methods are employed

interchangeably. Those methods are called the Hough Transform and the Vari-

ational Bayesian, adaptively selected with a switching technique and the overall
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performance is evaluated by balancing between the localization accuracy and

the required exploration. In favor of the optimization, the prediction model

defines the type of sources in a way that the adaptive switching methodology

can converge to an optimal solution by selecting an appropriate method. Thus,

the proposed framework enables the UAV to accurately localize the radiation

sources in a fast manner. In order to verify the validity and the performance

of the proposed strategies, we performed extensive numerical experiments with

different numbers of sources and their positions. Our empirical results clearly

show that the proposed approach outperforms existing individual approaches.

Keywords: UAV, source localization, radiation mapping, topographic map

1. Introduction

After a nuclear accident, a radiation field can be generated by the leakage of

radiation sources. As a disaster recovery plan, it is important to know the distri-

bution of radiation levels over an area of interest, so that rescue mission could be

accelerated to minimize the losses. In this kind of situation, autonomous flying

robots such as Unmanned Air Vehicle (UAV) can be deployed to monitor the

state of radiation effect, since using a UAV exploratory to autonomously gather

the measurement of a radiation field keeps humans away from performing such

a dangerous and life-risk task. Radiation sensors mounted on a UAV can detect

the intensity in a radiation field, giving an indication of the activities of nearby

sources. The inverse square relationship between the intensity of the radiation

source and its distance from the observer can be used to lead the robot to the

radiation sources by finding the maximum intensity value.

The search areas may span very large geometric distances, but the measure-

ment attributes of a large radiation field is available only to the close proximity

of the sources. Therefore, depending on the radiation leakages, several radioac-

tively contaminated areas can be found in a large radiation field. Since nearby

sources also cumulatively contribute to generate a hotspot, without losing the

generality, we assume that only a single hotspot exists in each contaminated

2



area, which is caused by all the nearby sources. UAVs may be needed to fly

over large a contamination area, which often leads to problems in designing

the exploration strategy with limited resources e.g. limited battery life, sensing

range and so on. All locations in a contaminated area are not uniformly impor-

tant to explore for spatial localization of radioactive sources. Thus, an effective

search strategy within a limited fraction of locations can facilitate efficient es-

timation of radiation source positions. Along this line, it is also important to

estimate the distribution of radiation intensity on the geometric map, so that

we can reduce our region of interest (ROI) not only for the field characteri-

zation but also for the source localization. Given reliable sensor model about

the radiation field and accurate localization and navigation performance of the

UAV, the goal of this paper is to plan an exploration strategy for the UAV to

rapidly localize all the sources. A common solving method is to cover the whole

target area so that a global picture of the radiation exposure of that area can be

obtained. However, covering the whole area in this regard is not optimal since

the UAV has to take account of the limited time constraints (partly due to the

battery life).

Recent works estimate the sources in a radiation field using either Hough

transformation (HT) [1] or Gaussian mixture [2]. When a radiation field com-

prises clustered sources, a standard way is to use the HT, especially when the

sources are located at the center of the distribution. HT can significantly reduce

the UAV exploration cost, allowing UAVs to determine the source positions by

exploring only the contour line of the radiation intensity not far away from the

sources [1]. However, the cumulative radiating effect of biased and scattered

sources makes the field more complex to estimate,as the sources are not located

in close proximity of the center of the distribution. Thus, the problem of es-

timating a radiation field, which is generated by the combination of multiple

sources effect, is often considered as the problem to estimate components from

a Gaussian mixture [2].

To balance the tradeoff between the exploration and the localization prob-

lems, an adaptive framework is proposed in this work, which can narrow down
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the robotic exploration and concurrently accelerate the source localization pro-

cesses. Thus, in this paper, given the hotspot location along with limited sam-

pling of the radiation field, our aim is to answer the following question- how

quickly and accurately can we localize all the radiating sources in a temporally

invariant radiation environment?

Figure 1: Motivation: UAV is deployed in a radiation field, shown in (a, b). Given partial

map (yellow line path and corresponding measurement), shown in (c), it has to determine the

ROI area (red line) and sources (red dots) using local sensing, shown in (d). The measurement

of radiation is indicated by colored map, shown in (b, c).

To investigate this problem, we assume that an unknown radiation field

might behave like either clustered sources or biased/scattered sources cumula-

tively generate a single hotspot. Starting off on the arbitrarily chosen initial

position of the UAV, a hotspot directed trajectory is assumed to be given for

our system (similar to Fig, 1 (c)). A conventional extremum seeking algorithm

can easily generate this kind of trajectory [3, 4, 5]. However, we also assume
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that each location in the trajectory is coupled with measurement attributes,

which represents the joint strength of the sources (intensity). We contribute

a classifier called log-gradient to determine the informative location form that

trajectory. Under the assumption that the intensity of a contour line is con-

stant value, the contour discovering processes generate a contour line for each

informative location. We show that the reduction of region of interest can be

possible by analyzing the similarity of contour shapes. Finally, focusing on the

trade-off between the exploration cost and the localization accuracy, the pro-

posed framework chooses an appropriate algorithm (namely HT or Variational

Bayesian (VB)) to localize the sources.

Briefly speaking, the main contributions of this paper are as follow.

1) Characterizing the cumulative radiation effects with multiple sources.

2) Finding the region of interest (ROI) in large radioactively contaminated

areas to narrow down the search area.

3) Quickly and accurately localize the sources that are actively acting in the

radiation field.

To discuss the aforementioned topics, this paper is organized as follows: in Sec-

tion 2, we investigate the work related in this area; in Section 3 we describe

the field property characterization and rough classification based on partial

data; Section 4, we present a complete geometric classification criteria based

on the local sensing and our strategy to find ROI. Section 5, we briefly explain

two different approaches to determine the sources and an adaptive switching

methodology to balance the tradeoff between the exploration and the localiza-

tion. Finally, in Section 6 and 7, we present experimental results and conclude

our findings.

2. Related Work

The radiation field can be analyzed through a wide range of characterization

techniques ranging from a point source to mixture models. Earlier works focus
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on point source based field characterization [6, 7, 8], whereas more variations are

found in recent literature. Recent researches have made significant progress in

predicting spatial radiation field using Gaussian Process [9, 10]. However, when

multiple sources are placed in an area showing cumulative effects, Gaussian

Mixture Model (GMM) [2] is a well-suited method to characterize it. Of these

choices, we use the GMM in our work to characterize a radiation field originating

from multiple sources.

In order to illustrate the radiation effects over an area of interest, a radiation

map is needed. A grid based map could have a finite number of rectangular

cells [11] to represent the field property. On the other hand, we can explain

the radiation field using topographic maps [12, 1]. In the topographic map,

the field is characterized by large scale intensity measurements and quantitative

representation of distribution using contour lines. Thus, it is very useful for the

time-limited mission. To this end, our work present the first prediction model

of the source locations by analyzing topographic maps.

Hotspot detection is often termed as a source seeking problem in the litera-

ture. Several strategies are applied to find a hotspot in an unknown radiation

field. Those strategies are mostly divided into two categories, namely, model-free

and model-based approaches. Specifically, model-free based approaches involve

following a stochastic gradient of the radiation field intensity. It is observed that

since the gradient of the intensity is followed, without a priori threshold limit

(definition of the hotspot) those algorithms tend to converge to a neighborhood

of a local maximum of the field [3]. In the context of model-based approach,

source seeking can be performed using either the mutual information (MI) [3, 13]

or MI gradient [4, 5]. While the popular approach for the source seeking task is

to deploy a group of distributed robots [3, 14, 15], a single robot can travel to

several locations in order to gather intensity measurements [16, 17, 18] as well

as it is then possible to localize the hotspot with a predefined threshold value

[3]. We exploit the source seeking algorithm to generate a UAV trajectory from

an arbitrary intensity zone to the hotspot zone for prior knowledge of the field.

A numerous approach can be found in the literature to estimate the multiple
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radiation sources. The Archimedian spiral search pattern [19] is basically an

exhaustive search to determine the radiation sources within the target area.

The Artificial Potential Field (APF) [20] based exploration in a radiation field

might get confused more easily with the presence of multiple sources. Multi-

robot adaptive sampling uses distributed robot exploration to classify radiation

fields via recursive geometric subdivision [15]. If the map of the target area is

a priori known, powerful algorithms like submodular optimization [21], mutual

information gain [14], maximum entropy based path planning [22] can yield

good results. Despite having a radiation map or an exhaustive search pattern,

a key challenge in radiation field mapping is plagued with a limited flight time

of the robot needed to find a ROI. This heckles the UAV in large-scale radiation

field mapping.

In literature, we have seen that GMM based radiation field parameters can

be estimated using a progressive correction technique [2], where a uniformly

distributed sensor array was deployed in the area of interest. The sequence

of distributions is successively approximated by the Bayes’ rule. However, in

our case the problem is complicated by the limitation of robotic exploration

that gathers spatial measurement attributes of the field. To avoid the problem

associated with limited exploration, we propose to use a topographic map to

represent the large radiation field with a finite number of contour lines. Only

a few efforts have been made to improve radioactive source detection using

the topographic mapping strategy. Jerry Towler [7] used Archimedian spiral

search patterns to gather measurements and discovered the contour lines with

user-defined intensity values. He finally proposed to use the HT to estimate

the source position. Although the performance of HT is satisfactory for the

clustered sources, in contrast, it gives the worst results for the biased and the

scattered sources respectively. Throughour empirical investigation, we demon-

strate that our adaptive switching methodology not only optimizes the ROI but

also persistently and accurately localizes the sources.

Fig. 2 shows all the necessary steps of our proposed algorithm. Although

our source position estimation is also based on a topographic map, the pro-
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Figure 2: System Overview: A hotspot directed path coupled with measurement attributes

is considered as a partial map for this system, it is denoted by the yellow line in the figure.

The log-gradient classifier segmented to the partial map into a finite number of interested

positions, denoted by (+) symbols. The topographic mapping processes generate the contour

lines from the interested positions. The ROI contour is selected by the similarity analysis

of the contoru lines. Two methods are studied to balance the tradeoff between the rapid

localization and the precise localization. Thus, the adaptive switching methodology selects

the best method to pursue the rapid and precise localization objectives. The blue boxes are

the output of each process. The yellow boxes, including red arrows, are the processes for ROI

selection. The gray box and black arrows are the process of source localization.
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posed approach differs significantly than [7]. First, from a given partial map,

we find a set of interested measurement attributes (intensity values) coupled

with the position information using our novel log gradient classifier. Started

with the initial positions, multiple contour lines are generated by tracking iden-

tical intensity values. Secondly, the ROI contour line is automatically chosen

using contour shape analysis. Finally, instead of a single method -which cannot

optimize all type of distributed sources, we propose a self-adaptive framework

to select the appropriate method to localize the source positions in the most

efficient manner.

3. Radiation Field Modelling

There are significant differences between geographic mapping and radiation

distribution mapping [11]. In this work, we aim to include the radiation inten-

sity and its distribution on top of a geographic map, based on the assumption

that the UAV localization error is negligible. In our radiation mapping prob-

lem, we assume that a partial observation of the field is given, but the overall

radiation distribution is unknown. Partial observation can be found, for in-

stance, observing a UAV trajectory coupled with measurement attributes of the

radiation field. It is necessary that the UAV trajectory connects an arbitrary

intensity zone to the hotspot so that a rough estimation of the radiation field

can be made initially. While the accurate radiation map can be obtained at the

expense of exhaustively exploring the area, it is desirable to develop an efficient

and effective mapping method considering the limited resources of UAVs. In

this paper, we categorize the field, so that the UAV does not need to visit all

the terrains, but rather to explore only the ROI contour or the area bounded

by the ROI contour to localize the sources.

In this section, we explain the procedure to characterize the radiation field

using GMM. Next we explain how to incorporate prior knowledge. Using the

log-gradient classifier, we segment the partial map into several interested posi-

tions.
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3.1. Field Characterization

The intensity in the field could change gradually or abruptly depending on

the source location. A region could have high intensity values because of the

influence of multiple sources or the presence of strong nearby sources. Hence,

it is not plausible to detect individual sources because of unknown diffusion

information about each source. In order to predict their possible location, we

attempt to show their effect in the geographic map, adding the distribution

of radioactive intensity on the map. In other words, the cumulative radiation

effect of the sources is unlikely to be represented using a unimodal Gaussian

model. For this reason we use GMM to characterize the radiation field. Let

x ∈ X represents the location of the field and z (x) ∈ Z represents the corre-

sponding measurement. The field property is characterized using GMM with

M components such that

Fm (x;α, µ,Σ) :=

M∑
b=1

αbφ (x− µb)
Σb

2 (1)

where φ (x) = exp
(
− ||x||

2

2

)
/(2π) ; µ1, ..., µM are the means; Σ1, ...,ΣM are

the variances and α1, ..., αM are the mixing weights that describe the Gaussian

components. The mixing weights are non-negative and added up to one. In

order to generate the ground truth, we assume that each component has equal

strength and the relative distance between each mean and measured location has

influenced α. However, in our case α is equally divided by the number of sources

(M), and the variance (Σ) is not important to localize sources. Therefore, we

only need to estimate the mean (µ) of the sources using VB.

3.2. Log-gradient classifier (lgc)

The log-gradient classifier works like a rounding function for grouping the

partial map. It converts the partial map into a finite number of interested

positions based on the numerical relationship. Let xi=0 is the robot initial

position, xi=h is the hotspot location and i is the element index of the partial

map, i : R3 → N. Also let the function z (x0, xi) is the measurement attribute
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of the corresponding location xi w.r.t. x0 such that z : R2 → R. Let, draw a

line as shown in Fig. 1(c) connecting the robot position. The line also contains

the measurement attributes based on the region of the colored radiation map.

Therefore, the partial map is the set of a small section of the field including the

corresponding measurement attribute. Our target is to group the partial map

in an efficient way. First, we investigate how the measurement varies w.r.t. the

robot position by taking gradient at a map index i given by

∇i =
z (x0, xi)

d (x0, xi)
(2)

where, d(x0, xi) is the distance functions w.r.t. the initial position of the robot.

However, in order to group the different zones into the same layer, we rather

focus on the power of gradient values given by

log (∇i) = log

(
z (x0, xi)

d (x0, xi)

)
(3)

The log-gradient operator classifies the partial map using Eqn. (3), which is

dependent on the precision value, Λ, to get the number of classified regions

xĵ, where ĵ ∈ Nm is the index set that contains a subset index of the partial

map locations. In short, the input of the log-gradient classifier (lgc) are a

partial map which is a set of explored locations coupled with measurement

attributes, < x0:h, z0:h >∈ Rn×3, and a user defined precision value Λ, resulting

in the output set which is the classified regions coupled with the measurement

attribute < xĵ, zĵ >∈ Rm×3. Note that the dimension of the classified regions

m is smaller than the dimension of the partial map n. The operation of lgc can

be expressed as follows

lgc (< x0:h, z0:h >,Λ) :=< xĵ, zĵ > (4)

The sequence of interested positions starts from the hotspot location and ter-

minates at the outward periphery such that ĵ = {h : m} in Eqn. 4. Intuitively,

we can say that if Λ is a high value (say 8 digits after the decimal point), the

classified regions are more in terms of dimensions, results in more number of

interested positions shown in Fig. 2.
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4. Topographic Mapping

Based on the initially assigned positions by the lgc, the whole contour line

is discovered in the contour generation phase. We use the intensity information

to track a contour line. It is known that intensity along the contour line is a

constant value, the robot then discovers the contour line by mapping the mea-

surement gradient into the geometric domain. However, it is beyond the scope

of this paper to summarize the state of the art in detector model; our overall

approach is concerned about the robotic exploration and is not restricted to a

specific sensor model. Without loss of generality, we will restrict our discussion

to the exploration strategy along with measurement uncertainties. Note that as

defined by the lgc, we start contour discovering algorithm relative to the nearest

distance from the hotspot so to adaptively stop contour generation phase.

4.1. Contour line discovering

Let us denote the robot position at time t as xt = {xt, yt}, where a well

known Cartesian coordinate. However, it is well known that drawing a contour

line is relatively easier in Polar coordinate system, that motivates us to compute

the robot position in Polar coordinate. The conversion from the Cartesian

coordinate to the Polar coordinate system is simple and given by

rt =

√
(xt − x0)

2
+ (yt − y0)

2
,

θt = arctan

(
yt − y0

xt − x0

)
,

(5)

where x0 and y0 are the initial positions. In order to draw a contour line, we

transfer the reference point of the Polar coordinate to the hotspot location xh.

let, r is the radial distance from the reference point to the robot location. When

the robot executes a control action, its next best location is given by a process

model xt+1 = g(xt, rt, θt), where θ is the polar angle which range is 0 to 2π. By

recursively update the polar angle and the radial distance, a contour line over

the robot positions can be discovered.
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Fig. 3 (a) shows the geometric analysis of a contour line. Let, at each

iteration step, we adjust the radial distance and the polar angle as follows

rt = rt−1 + δr,

θt = θt−1 + δθ,
(6)

where δr is the radial increment of r, where δr ∈ R+ and δθ is the angular in-

crement of θ, where δθ ∈ R+. Note that, if δr is 0 and δθ is Constant, the robot

will discover a circular contour line. However, the goal of the contour discover-

ing algorithm is to infer the robot position at each step based on knowledge of

the observation of field strength (defined as intensity I).

Let cr is the contour length in geometric domain while cI is the contour

length in intensity domain. The goal is to estimate the contour line in geometric

domain by tracking the contour line in intensity domain. After each motion,

the robot receives measurement attribute zt of the field according to its current

position xt. The observation of the contour line in an intensity domain is given

by a measurement model I = h(zt, zµ, zw), where zµ is the target intensity

sets for the intensity tracking and zw is some unknown white noise added to

model the measurement uncertainty. Starting off an arbitrary position on the

contour line assigned by the lgc, the contour discovering algorithm repeatedly

use the measurement gradient information to map the geometric contour line

by estimating an unknown scale λ such that

cr = λ · cI , (7)

where the length of cr is given by

cr =

2π∫
0

r2 +

(
δr

δθ

)2

δθ, (8)

and the length of cI is given by

cI =

2π∫
0

I2 +

(
δI

δθ

)2

δθ. (9)

Since the lgc initially assigned the values of r and I in Eqn. 8 and Eqn. 9, the

main challenge is to compute the scale λ that maps the δI and δr. Next, we will
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show how to incorporate the measurement gradient information to accurately

estimate the contour line in geometric domain.

4.2. Accurate Estimation

As it is obvious from Eqn. 6 that at each iteration step the robot has to infer

the radial distance of the next location, the measurement uncertainties as well

as the prediction uncertainties may lead the robot along the inaccurate contour

line. Therefore, in this subsection, we introduce a recursive Bayesian filter to

cope with the above mentioned uncertainties.

The contour line over the geometric domain can be discovered by discretizing

the polar angle θt into a constant increment δθ ∈ R+. Given the current polar

angle θt, the robot estimates the radial increment δrt|θt at each iteration step.

After that, it computes the intensity gradient δIt|θt ∈ R as follows

δIt|θt = zt − zµ + zw (10)

where zµ is the target intensity, zt is the current measurement attribute and zw

is Gaussian white noise. Note that the intensity gradient could be a positive

or a negative value depending on the sensing locations. In order to apply this

gradient information in geometric domain, we use a recursive Bayesian filter to

compute the optimal scale λ given by

λ = δrt|θt · δIt|θt ·
(
δr(t−1)|θt

)−1
(11)

Since the recursive Bayesian filter summarizes the current estimation δrt|θt ·

δIt|θt with the respect to the immediate past δr(t−1)|θt, as more observations

are made, the scale will begin to converge to the true value. However, given

a polar angle θt, when the estimated scale λ is a large value, the robot has to

travel a long radial distance r, which can cause a huge prediction uncertainties.

If we do not minimize that uncertainties, it will be propagated throughout the

Bayesian filter into the future estimation, results in poor estimation accuracy.

Here we propose to optimize the polar angle increments to compensate for

the discrepancy between the desired polar angle θt and the radial distance r as
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follows

δθt|rt = atan

(
δθ2
t

r2
t

)
(12)

In this case a large radial increment is discretized by reducing the polar angle

given by

θt = θt − δθt|rt (13)

Algorithm 1 summarizes the overall estimation method. Note that each iteration

step the predicted polar angle increment is a constant value, but the effective

polar angle update is consistent with the optimal scale. Fig. 3 (b) represents

the exploration strategy to discover an unknown contour line in the geometric

domain.

Algorithm 1 Contour discovering

Require: initial r, initial θ, initial δr, constant δθ

Ensure: Contour line in geometric domain

1: Predict radial distance

r(t|t−1) = r(t−1|t−1) + δrt|θt
2: Predict polar angle

θt = θt−1 + δθ

3: Compute measurement residual

δIt|θt = zt − zµ + zw

4: Compute optimal scale

λ = δrt|θt · δIt|θt ·
(
δr(t−1)|θt

)−1

5: Update radial increment

δrt = λ · δrt
6: Update radial distance

rt = rt + δrt

7: Update polar angle increment

δθt|rt = atan(δθ2
t /r

2
t )

8: Update polar angle

θt = θt − δθt|rt

15
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Figure 3: Contour discover: A contour is discovered by recursively updating the radial distance

and the polar angle using a Bayesian filter.
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4.3. Finding the ROI contour

A topographic map may contain multiple contour lines depending on preci-

sion value (Λ) of the designed. However, all the contour lines are not important

to explain the characteristic property of distribution. Obviously, contours near

to the hotspot region are very important, since they help us visualize anisotropic,

dynamic changes in the intensity of the radiation field. As the contour line goes

outwards from the hotspot, the shape tends to be quite similar to each other.

Therefore, we can analyze the contours shapes whereby the robot can terminate

the exploration.

The previous contour line discovering process was designed to discover all

the contour lines. Based on that process, we can find ĉ = {c1, c2, .., cl}, which

is the set of contour lines. Note that cr, cI are the length of each contour line in

the geometric domain and the intensity domain respectively, whereas ĉ ∈ Rl is

the index set of all contours and l is the dimension of that set. We consider the

global Cartesian coordinate system in order to analyze the degree of similarity

between neighboring contour lines. For this we introduce the elements σx and

σy, at each exploration in the contour discovering process to compute the relative

changes of initially assigned radius, r0, to the radius, rt, at current exploration

step given by

σx = {(rt − r0) cos (δθ)} ,

σy = {(rt − r0) sin (δθ)} .
(14)

It is obvious from the above equation that σ̂x =

{⋃
t
σx

t

}
and σ̂y =

{⋃
t
σy
t

}
represent the change in the radius w.r.t. the global Cartesian x-axis and y-

axis respectively. Next, we will analyze the similarity between two neighboring

contour lines by defining a function given by Γ : Rl×2 → R. We compute a score

for each contour line w.r.t. the neighboring contour line closer to the hotspot

using the following equation such that

Γ∗ = tan−1 E{σ̂x}
2

E
{
σ̂y
}2 − Γ, (15)

where Γ∗ is the current contour score and Γ is the neighboring contour score.

when Γ∗ reaches a predefined tolerance limit, adding a new contour would be
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redundant. Therefore, the robot can stop its exploration and narrow down the

ROI to the previous contour such that

ROIC = arg min
l

{
max
Γ∗∈Γl

{
Γl (cl, c(l − 1))

}}
. (16)

where, ROIC is the region of interested contour index.

5. Radiation Sources Localization

In this section, we briefly explain two different approaches to the localization

of the radiation sources, namely HT and VB inference. The HT approach is

reasonably accurate if we deal with the clustered sources only. It can localize

the source position by exploring only to the ROI contour line. When the source

distribution is somewhat uniformly scattered or biased, a potentially more ac-

curate estimation than the HT can be obtained by the VB inference. The

particular VB approach used here is based on the importance sampling which

involves drawing samples from the ROI. In the context of ROI, a dense sampling

can be performed within the bounded region, so that the estimation of the VB

can converge to the true sources positions. Note that the main VB algorithm

takes account of measurement uncertainties while estimating the source posi-

tions. Therefore, we will skip the additional explanation of the measurement

uncertainties for the VB algorithm. On the other hand, the measurement uncer-

tainties of the HT algorithm caused by the fact of the contour line discovering,

which is already discussed in earlier section.

5.1. HT based source localization

The Hough Transform (HT) is a very useful tool to solve the computer vision

and the image processing problems. Although HT is typically used to detect

lines, it has been applied to the radiation sources detection problem in [1]. Since

only contour lines are required to localize sources, it should be straightforward

to use the conventional HT in the rapid source localization mission. In order

to implement HT to localize the sources, first, the detected contour lines are
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converted to a binary image. Secondly, the binary image is downsampled to one

half to one quarter the original resolution to reduce the computational burden.

Thirdly, the Hough circles are chosen by deterministically defining the maximum

and minimum length of the radius parameters. Finally, the transform process

can determine the center of each circular distribution.

However, for the HT has several major disadvantages, especially when ap-

plied to unknown radiation distributions. First, the determination process of

the Hough circles is sensitive to the radius parameter. Without a good radius

parameter, HT cannot accurately estimate the source positions. Furthermore,

it is observed that HT can perform well when sources are clustered within a

comparatively small area and their effects are approximated by a Gaussian dis-

tribution. It can therefore be concluded that, the applications of the HT in

the source localization process is likely to be limited and source distribution

type-specific.

A significant advantage of the HT over the VB is that it does not require

information regarding the whereabouts of ROIs. We therefore use the HT to

optimize exploration for the clustered sources, where the ROI contour localizes

the sources with reasonable accuracy. The pseudo-code for the HT algorithm

is given in Algorithm 2. In our simulation the convenient radial upper bound

is the size of the image, while the lower bound is one ninth of the image size.

The matlab function we use here is houghcircles that detects the center of the

radiation sources.

5.2. VB inference based source localization

The exploration goal of the robot in this subsection is to gather the mea-

surement attribute for a set of sensing locations which is bounded by the ROI

contour line. Estimating radiation sources with given a set of measurements is

commonly reffered to as inverse problem. The inverse problem is difficult by

the fact that different regios could have the same intensity value. However, in

our proposed framework, the ROI contour line can provide an additional infor-

mation of the measurement distribution in geometric domain. Therefore, we
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Algorithm 2 Hough Transform

Require: ROI contour

Ensure: Sources

1: Convert the contour to a binary image

cImage = cnt2bin(contour)

2: Determine the parameters

maxRadius = size(cImage)

minRadius = maxRadius/9

3: Localize the sources

centers = houghcircles(cImage,maxRadius,minRadius)

here contribute a probabilistic kernel function, so that the distribution of sens-

ing locations along with their corresponding measurement attributes can jointly

compute the maximum likelihood for the VB algorithm, results in improved

estimation accuracy.

Let P is the exploration path that traverses each of the sening location at

most one time. With slightly abusing the notation, assume that a location of the

path xs ∈ P pairs with the measurement attribute of that location zs generates

a sample point < xs, zs >. After traveling the path P, the robot finds all the

sample points bounded by the ROI contour line, which is then used to compute

a probabilistic kernel function given by

k(∀zs) =
1

2 + exp(∀zs)
. (17)

Although we have gathered the measurement attribute, the actual sources are

hidden variables. In order to estimate the source positions, firstly, we charac-

terize the ROI area as an unknown GMM. Secondly, based on the measurement

attribute, the parameters of the GMM are obtained by computing a maximum

likelihood. The goal of the kernel function is to bias the distribution of sensing

location to compute the maximum likelihood of the VB as follows

p(∀xs|∀zs) = N (∀xs, µ (xs))− k(∀zs), (18)
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where ∀xs is a column vector contains all the sensing locations information

and ∀zs is also the column vector of corresponding measurements, thus, the

normal distribution N (∀xs, µ (xs)), the probabilistic kernel k(∀zs) are also a

column vectors respectively. Finally, the optimal number of components for

Bayesian GMM can be obtained iteratively using a variational EM algorithm

[23], which is achieved through partially performing an E-step and observing

the maximization of E-step and M-step using the same function F [q, π] such

that

F [q, π] =
∑
x∈∀x

∫
q (∀z, µ,T) log

p (∀x, ∀z, µ, T ;π)

q (∀z, µ,T)
∂µ∂T , (19)

where the parameters (µ, T, π) are the mean (center) of the sources, the precision

matrices and the mixture weights respectively. q is the arbitrary distribution

that approximates the posterior distribution defined by

p (∀x, ∀z, µ, T ;π)
def
= p (∀x|∀z, µ, T |∀x;π) . (20)

From Eqn. (18), we can see that uniform sample points inside the ROI

area are explicitly biased towards the significant measurement attribute, which

results in conversion of cluster samples. Therefore, the VB can easily estimate

the optimal number of sources and their corresponding locations. The detailed

formulas for computing the parameters can be found in [23]. In summary, at

each iteration, the VB performs two following steps:

• Variational E-Step: Evaluate q∗ = arg max
q

F [q, π]

• Variational M-Step: Find π∗ = arg max
π

F [q∗, π]

A notable property of this model is that when maximizing F , the prior

distribution of µ and T penalize the overlapping components, therefore the

redundant sources whose effect are negligible to the distribution, are eliminated.

Furthermore, it is sufficient to find the mean µ components to estimate the

source position. We use an open source MATLAB function [24] to implement

VB.
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Algorithm 3 Variational Bayesian

Require: ROI contour, exploration path P

Ensure: The number of sources and their corresponding positions

1: Generate the sample points by traveling P.

2: Compute the probabilistic kernel function using the Eqn. (17).

3: Compute the maximum likelihood function using the Eqn. (18).

4: Estimate the number of sources and their corresponding positions using the

Eqn. (19).

5.3. Adaptive switching strategy

The HT and VB methods described in earlier sections are now selectively

used. We propose an switching method supported by the ROI selection scheme

presented in the previous section, allowing the method to rapidly converge to a

solution despite the lack of prior knowledge of the radiation field.

Similar to the ROI selection process, the variance slope of each contour

lines can be used to estimate the distribution of source positions. Note that

the sources are different than the measurement distribution. According to our

findings, the variance slope as described in the previous section exhibits the

following three characteristic properties such that

1) Increasing order of the slope gradient : In this category, the variance

slope decreases from the outer periphery to the hotspot periphery. We

observed that biased sources exhibit this type of behavior, because the

inner contour line of biased sources is almost circular and outer contour

lines are elongated along a specific direction. Thus, the variance slope

converges from an elliptical and irregular circular shape to a (nearly) round

shape.

2) Decreasing order of the slope gradient : Unlike the previous defi-

nition, the contour shape of a scattered sources is propagated from the

nearly round to elliptical and irregular circular shapes while approaching
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to the inner contour. Therefore, the variance slope exhibits a decreasing

property while stepping towards inner contour lines.

3) Constant order of the slope gradient : When sources are positioned

close to each other, all the contour lines detected by the exploration, ba-

sically turns out to be uniform circular shapes. Thus, the variance slope

remains at a nearly constant level. We found that this is the case for the

clustered sources.

An optimized active exploration performance, as described in the earlier section,

can be achieved by selecting an to appropriate method. In detail, the HT can

be applied only for the constant order of the gradient slope property. On the

other hand, the VB can be used to tackle the increasing and decreasing order of

the gradient slope properties. Choosing an appropriate method by this strategy

alleviates the need for superfluous exploration. It is observed that without the

proposed selection method can localize the sources with improved accuracy.

However, the challenging part is fast and accurate analysis of the ROI contour.

6. Simulation Result

We have performed an extensive simulation validation of our algorithm in the

different settings of the sources. Our first experiment focuses on reducing ROI in

the radiation field depending on measurement distribution. Next, we extend the

experimental settings to evaluate the source localization strategy. Finally, we

analyze the effect of the ROI selection to the source localization, and also show

that the proposed adaptive method optimizes the tradeoff between exploration

and localization accuracy. However, the partial map given to this system does

not depend on specific initial positions. It just contains the rough idea of the

intensity distribution from lower to higher zones. In summary, we have shown

that the ROI selection is very important since it can reduce the traversed path

and enhance the estimation accuracy. Furthermore, we have also shown that

under what condition we can extremely reduce the traversed path.
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6.1. Reducing ROI

The partial map of the environment contains the UAV trajectory and cor-

responding measurement up to the hotspot location. The log-gradient classifier

(lgc) classifies the trajectory depending on the measurement change. The main

advantage of lgc is that it automatically segments the trajectory depending on

the numerical properties of the measurement, resulting in a finite number of

groups. Each group contains the starting position and the corresponding mea-

surement value. It is then further explored to determine the whole line through

the contour discovering process. We perform three experiments in determining

ROI contour where sources are distributed in such form as scattered, clustered

and biased respectively.

Fig. 4 represents our experimental situations, where the contour lines are

drawn by mapping the intensity changes into the geographic domain. The back-

ground gray colored map is the distribution of the measurement, while the yellow

line represents the given trajectory of UAV, which is also the partial map that

fed to lgc.

Although lgc segmented the field into a finite number of groups, the similarity

analysis of contour shape allows us to reduce the contour numbers further more.

The similarity slope varies depending on the distribution. As can be seen in Fig.

4 (c), (g), (k), the similarity slope between two consecutive contours reach to

a saturation level after a certain period. When the slope gets saturated, we

can discard the current contour and fix our ROI onto the previous one, which

explains why the ROI contours in Fig. 4 (d), (h), (l), are 2, 1, 2 respectively.

6.2. Source Estimation

In this scenario, we have extended our experiments to source localization.

After determining the ROI contour, we consider how the sources are localized.

Fig. 5 shows the overall procedure of the algorithm, where the partial map in

Fig. 4 (i) is discretized using the lgc and a finite number of contours are drawn

using the topographic mapping process. Among the traversed contours, the ROI

contour is selected for further exploration. Samples are taken uniformly from
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Figure 4: Finding ROI contour: The evaluation of the ROI contour computed by similarity

analysis. Three different experiments are conducted namely scattered sources (a-d), clustered

sources (e-h) and biased sources (i-l). The blue, green, red contours in (a,e,i) are labeled as

(1,2,3) in (b, c, f, g, j, k). The variance of each contour computed over circular path while the

similarity slope between two consecutive contours computed using Eqn. (16). The arrow in

(c, g, k) indicates the starting position of similar contours. Finally the red contour line shown

in (d, h, l) represents the ROI contour where the red dots are the actual sources.

the area bounded by the contour. The red circles in Fig. 5 (b), (e), (h), are the

uniform sample locations. It can be seen from Fig. 5 (a), (d), (g), the sampling

region is bounded by an approximate region of 30m × 25m, while our initial

area of interest was at most 15m× 15m. The result suggests that a significant

reduction is made in the ROI. This improvement is achieved by the similarity

analysis of contour lines.

Since the number of estimated sources are not equal to the actual sources,

the performance of algorithm is measured by computing the distance to the

nearest estimated source. Table 1 shows the difference between the VB and
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Figure 5: Source Localization: A radiation field is classified into a finite number of contour

lines in (a, d, g) using log gradient classifier. Contour generation process is automatically

terminated depending on similarity in shape analysis and uniform samples are taken inside

the ROI contour in (b, e, h). In (c, f, i) red dots are the actual sources, black circles are the

estimated sources by Hough transform and green circles are the estimated sources by proposed

algorithm.

the HT. NDS1, NDS2, NDS3 are the Euclidean distance between the nearest

estimated source and the actual sources, respectively. In Fig. 5 (c), (f), (i), the

red dots is the actual sources while the black circles and the green circles are

the estimated sources using the HT and the VB algorithm, respectively.

The performance achieved by VB is outstanding and very close to the original

source location. It takes at most 264 iterations to converge to the resulting

state. This improvement is achieved with a gathering of real measurement data

inside the ROI contour. There are several reasons that the estimated sources

do not exactly converge to the true state. This could happen because of the

linearization error and the inverse problem [2]. Despite the variation in the true

source positions, the worst case estimated error for the VB is 4.490m while the

maximum estimated error for the HT is 10.837m.

6.3. The Effect of ROI selection in localization

The selection of ROI contour is particularly important because the super-

fluous sources are eliminated as the method converges to a solution, thereby

leading to an accurate localization of the sources. To visualize the effect of ROI

26



Table 1: Sources estimation

Src. type Method
No. Src.

(ground truth)
NDS1 NDS2 NDS3

Scatter VB 3 (3) 4.490 2.618 1.942

HT 1 (3) 4.490 2.618 7.758

Cluster VB 2 (3) 0.778 1.399 1.604

HT 1 (3) 0.778 1.408 1.707

Biased VB 2 (3) 2.570 0.998 2.502

HT 1 (3) 10.837 0.998 10.687

selection, we have repeated previous experiments, and for each of them, sequen-

tially selected all the contour lines, and estimated the source positions using

the VB. In this setup, four contour lines are assigned by the proposed classifier.

The index of the contour line is counted from the outer periphery. The effect

of ROI can be seen in Fig. 4, which presents several results with the selection

of the different ROI contours. From the analysis of Fig. 5, one can easily infer

that the contour indexed 4, 2 and 3 are the ROI contours if we use the proposed

strategy. In order to analyze the effect of the ROI selection, we compute the

estimation error similar to the algorithm 4 for each contour index and plot them

in Fig. 7. The estimation errors are also shown for the clustered, biased and

scattered sources. Comparing to the ground truth denoted in the same Fig. 6, it

is obvious from Fig. 7 that most estimation errors converge to a minimum level

with the proposed ROI selection. Even though the proposed algorithm failed to

show a minimum estimation error for the scattered sources as in Fig. 6, we can

see that all the sources are bounded by the ROI contour line and the selected

ROI contour is very close to the smallest loop, numerically, less than 2m away

from the actual sources. This performance is achieved by a tight lower bound on

the ROI area. The measurement likelihood is then generated with high-density

sampling in the ROI area, as it is well known that the performance of VB excels

with the increment of sampling density [25]. However, if ROI contour is failed
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Figure 6: The effect of ROI selection : In this simulation, we compare the estimation

accuracy w.r.t. the ROI selection. The ROI contour selected by the proposed strategy is

denoted in the subfigure using the blue rectangular box. The source estimation simulations

are carried out by the selection of a contour line starting off the outer periphery of the

distribution. The red, blue and green circles are the estimated sources by the VB, estimated

sources by the HT and the ground truth positions. It is observed that the ROI selection not

only reduce the exploration space but also enhance the estimation accuracy.

to enclose all the sources, the performance of VB deteriorates due to inadequate

samples.

On the other hand, the estimation of the HT depends on the geometric

shape of the contour lines. Fig. 8 shows how the estimation of the HT could

be changed depending on the geometric shape. However, in the case of round

shapes, the HT has always found the same center of the distribution even though

the ROI contour is different. Thus, the ROI selection does not have a significant

impact on the source localization, but only to prohibit the UAV from performing

additional contour discovering processes.
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Figure 7: Estimation error: The estimated errors are using Algorithm 4. The results are

computed with the mean over 100 simulations where the error bar represents the variation.

The blue, red and green bars represent the estimation error for the clustered, biased and

scattered sources. The minimum errors for the clustered, biased and scattered sources are

found for the contour indices 4, 2, 3 respectively while the selected ROI contour indices using

the proposed strategies are 4, 2, 2 respectively. Even though the proposed strategies does not

find the optimal solution for the scattered sources, the estimation error is very close to the

minimum error and bounded by the 2m distance.

6.4. Performance of the adaptive framework

Comparing the localization accuracy and considering the exploration con-

straints, the proposed adaptive method is a very efficient yet accurate solution.

In general, we have found that there is a way out to optimize the localization

process if the ROI contour can be accurately selected and analyzed. For com-

paring the performance of the adaptive method, we applied a slightly different

metric: we looked at the estimation error and the length of traveled path which

is required to perform each of the algorithms. Fig 9 shows the error convergence

properties of each method. Since the estimated sources are different w.r.t. the

ground truth sources, we then compute the average estimation error w.r.t. the

nearest estimated sources similar to Algorithm 4. The simulations were per-

formed into two phases. In the first phase, all the simulations were conducted

independently without considering the ROI selection method. In order to com-
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Table 2: Exploration efficiency

Parameters Clustered Biased Scattered

Path

Len. (m)

Estimation

Error (m)

Path

Len. (m)

Estimation

Error (m)

Path

Len. (m)

Estimation

Error (m)

a path without ROI + VB 226.92 5.5 330.85 3.11 352.55 3.25

a path without ROI +HT 53.44 5.95 66.78 3.25 68.41 7.02

a path with ROI + HT 19.77 1.15 51.16 2.25 41.01 2.05

a path with ROI + VB 30.84 0.95 189.00 1.25 122.18 1.75

pute the estimation error, we combine 100 simulation results and plot the mean

estimation error with variance. Even though the ROI selection does not have

any influence to estimate the sources in the first case, it is obvious from the Fig.

9 that the VB outperforms the HT except for the clustered sources.

Table 2 demonstrates the efficiency of the proposed framework. It is inter-

esting to note that the sensitivity of the source localization manifest in the ROI

selection criteria. Looking at Table 2, one can see that the estimation error

calculated at the VB along with the ROI and the HT along with ROI are very

close only for the clustered sources, numerically 0.95m and 1.15m. In that situ-

ation, a rapid solution without any additional exploration in the ROI can then

be generated using the HT, results in 19.77m path to travel instead of 30.84m

path.

However, the significance of the ROI selection can be verified by the Fig.

9 (b). While the maximum and minimum mean estimation error without the

ROI selection method were around 7m and 3m respectively, in the second case

(with the proposed ROI selection method), the maximum and minimum errors

converged to 2.25m and 0.85m respectively. It is observed from the table 2 that

regardless of the specific ROI, the VB always outperformed the HT. However,

in the first case, the estimation error of the VB is more sensitive for the biased

sources. As observed in Fig. 7, the wrong ROI selection caused a large estima-

tion error. Thus, the better results can be achieved only with the appropriate

ROI selection. It is also obvious from the table 2 that the number of samples

points without a ROI selection method cannot improve the estimation accuracy.
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As a result, the path required for the VB algorithm is usually longer without the

ROI selection than the path with the ROI selection. Despite the more sampling

points by the longer path, the estimation accuracy is always better in the case

of a path with the ROI selection, shown in the table 2.

Algorithm 4 Compute estimation error

Require: source, estimation

Ensure: averageError

1: mse← {}

2: averageError ← 0

3: for i = 0 to size(source) do

4: for j = 0 to size(estimation) do

5: xs ← source(i, 1)

6: xe ← estimation(j, 1)

7: ys ← source(i, 2)

8: ye ← estimation(j, 2)

9: mse← mse ∪ sqrt((xs − xe)2 + (ys − ye)2)

10: end for

11: averageError ← averageError +min(mse);

12: end for

13: averageError ← averageError/size(source);

Since HT generates optimal results for clustered sources, we can then extend

its applications to a collection of isolated sources. However, the localization of

isolated sources is beyond the scope of this paper. For a collection of a point

sources, if one begins with the VB method which is explained in this paper, then

the VB can converge to a solution but with poor estimation. The reason why the

performance of VB is poor is that our proposed method is designed focusing on

the single hotspot with multiple sources. In the case of isolated sources, there

is multiple hotspot exist in the same radiation field. These results support

two conclusions. First, the estimation of the VB always provides the better

solution than the HT with the expense of additional exploration. Second, HT
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Figure 8: Performance analysis : Source localization simulations are carried out by the

HT and the VB independently. The simulations are conducted in three types of spatially

distributed sources, namely, biased, scattered and clustered. It is observed that the localization

accuracy of HT is better only for the clustered sources. In the case of biased and scattered

sources, the VB leads the solution to the close proximity of the ground truth positions. The

ground truths are shown in the last row with the triangular shape.

can drastically reduce the exploration expense, but the desired results can be

obtained only for the clustered sources.

7. Conclusion

A single UAV exploration based multiple unknown radiation sources local-

ization problem is investigated in this study. Three different cases of spatial

distributed sources are considered to demonstrate the efficiency of the proposed

algorithms. In order to explore a large radiation field using a UAV, we propose

to adopt a topographic mapping strategy along with the reduction of ROI in

the field. The segmentation of a large radiation field was primarily done by a
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novel log-gradient classifier (lgc) that segregates a priori known trajectory cou-

pled with measurements. The trajectory connects the lower intensity region to

the hotspot region of the field, where the lgc segmentes it into a finite num-

ber of interested positions. The contour lines are then generated by tracking

a constant intensity value. However, the similarity analysis of contour shape

indicates that the ROI in an unknown radiation field can be further reduced by

avoiding superfluous contour lines.

In order to localize the radiation sources, the mitigation strategy such as

proposed framework is demonstrated to be effective optimizing the trade-off be-

tween the cost of robotic exploration and the accuracy of source localization.

Reducing the ROI could potentially be effective in making the robot aware of

sources positions. The diagnostic criterion used for analyzing the ROI shape can

be extended to predict the type of distributed sources. Although the radiation

sources might be arbitrary located in an unknown radiation field, the proposed

framework not only accelerates the mission completion time but also leads to

accurate estimation close to actual sources. In the numerical simulation, it can

be seen that with the proposed ROI selection method the VB clearly outper-

forms the HT in terms of accuracy. To determine the clustered sources, the

HT can easily show a as similar performance as the VB without any additional

exploration. Thus, the proposed framework opted the HT only for the clustered

cases, otherwise, the VB is adopted.

Since we have shown that it is possible to quickly localize the sources by a

single UAV, our future work will be devoted to extend the proposed framework

for rapidly cover a very large areas using multiple UAVs. Furthermore, carrying

out real world experiments is also of the research interest.
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Figure 9: The analysis of error convergence : The performance of the HT and VB is

evaluated w.r.t the nearest estimated source location. The estimation error is computed over

100 iterations using algorithm 1 with (a) all possible combination of the ROI selection (b) with

the proposed ROI selection. The red bar is the estimation error of the VB and the blue bar is

of the HT. It is obvious that the VB outperforms the HT in terms of estimation accuracy. It

note worthy that the outstanding error convergence can be obtained only with the proposed

ROI selection method.
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